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Abstract

Traced monoidal categories are introduced, a structure theorem is proved for
them, and an example is provided where the structure theorem has application.

1. Introduction

This paper introduces axioms for an abstract trace on a monoidal category. This
trace can be interpreted in various contexts where it could alternatively be called
contraction, feedback, Markov trace or braid closure. Each full submonoidal
category of a tortile (or ribbon) monoidal category admits a canonical trace. We
prove the structure theorem that every traced monoidal category arises in this way.
Naively speaking, the construction is a glorification of the construction of the
integers from the natural numbers. Less naively, the construct provides a left
biadjoint to the forgetful 2-functor from the 2-category of tortile monoidal categories
to the 2-category of traced monoidal categories, and we prove that the unit for this
biadjunction is fully faithful.

It should be kept in mind that the more familiar symmetric monoidal categories
[ML] are obtained as special cases of balanced monoidal categories by taking the
twist isomorphisms 6A:A^A to be identities. In the same way, compact closed
categories [KL] are special tortile monoidal categories. In the diagrams for these
special cases the reader may replace the ribbons by strings and ignore over and under
crossings. Giulio Katis pointed out that an early attempt at the construction by the
second author was too simplistic to be correct for the non-symmetric case.

We shall describe here, for motivation, the meaning of our trace for linear
functions between finite dimensional vector spaces. Consider a linear function
/ : F® U-> PF® U where U,V,W are vector spaces with bases (ut), (v}), {wk). The
trace of/ with respect to U is the linear function t:V^»W given by

t{vi) = S afj wk where f(vt®u})= £ af™ wk ® um.
),k k,m
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448 A N D R E J O Y A L , R O S S STREET AND DOMINIC V E R I T Y

This reduces to the usual trace of/: U-> U when V and W are one dimensional. As the
symmetric monoidal category 'Vect^ of finite-dimensional vector spaces is already
compact closed, the main construction of this paper just gives back Y~ectfin up to
equivalence.

In knot theory, our work relates to that of [Y], [JS1, JS2], [FY1.FY2], [Sm],
[RT]. In computer science, the connection between feedback and an iteration
operation was pointed out to us by Steve Bloom who suggested an intriguing formula
for some examples of traces (see [BE]); in these cases, the construction coming out
of our structure theorem leads to some interesting new compact closed (bi)categories
in which the tensor product is direct sum. This notion of trace also appears in the
geometry of interaction as the 'execution formula' [G].

2. Abstract trace

For legibility and without loss of generality, we write as if our monoidal categories
were strict. The concept of balanced monoidal category appears in [JS1], and the
appropriate ribbon diagrams for them are described and justified in [JS2]. We remind
the reader that our conventions are to compose arrows / : A-+B,g: B ->C to get
gf-.A^C, we tensor / : A -+B,f: A'-^B' to get / ® / ' : A ® A' ̂ B ®B', and we
depict these respectively as follows.

f®f

An arrow / : A ® B-^-C® B® D, the braiding cA B: A®B^B® A, and the twist
8A : A ->A are respectively depicted as follows:

I t is the braiding which introduces the third dimension into our diagrams, and the
twist which forces the change from strings to ribbons.

Definition. A trace for a balanced monoidal category V is a natural family of
functions

Trv
A B: V{A ®U,B®

satisfying three axioms:

vanishing:
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Traced monoidal categories 449

superposing:

cCi

yanking:

A traced monoidal category is a balanced monoidal category equipped with a trace.

We extend the diagrams for balanced monoidal categories as follows to
accommodate trace:

The purpose of the arrow is to remind us of the non-progressive part of the diagram
where trace is employed. The axioms on trace can then be illustrated as follows:

sliding (naturality in U)

tightening (naturality in A, B)

vanishing
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450 ANDRE JOYAL, ROSS STREET AND DOMINIC VERITY

superposing

yanking

uu
Remark. The reader should be careful in using these diagrams. Diagrams which

look justified by three-dimensional reasoning must, at this stage, be deduced from
the axioms if they involve trace. Three dimensional reasoning is valid on the
progressive parts of the diagrams because of the results of [JS2] for balanced
monoidal categories. With these provisos, our geometric proofs are completely
rigorous. Our next three lemmas will give some exercises in using diagrams and the
axioms. Algebraic proofs can be constructed from the geometric ones, but algebraic
proofs seem only to obfuscate the intuition.

One of the basic properties of traditional trace is Tr (fu) = Tv(uf) whenever /, u
are composable in both orders. This is clearly a special case of sliding. So it might
come as a surprise that the sliding axiom can be weakened.

LEMMA 2-1. Slidings of crossings and twists suffice for all slidings in the presence of
the other axioms.

Proof. Our proof, that slidings of crossings and twists imply all slidings, is
diagrammatic.

Balance
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Traced monoidal categories 451

Yank Balance

Remark. Instead of ribbons it is permissible to draw strings with integers to record
the twists. In fact, the integers can be put anywhere on the string because this is
known to be possible in balanced monoidal categories, and can be extended to traced
monoidal categories because of sliding.

LEMMA 2-2 {Flipping). The trace TTU off: A ® U^-B ® U is equal to the trace of the
composite

1 c c f c'1 <r '

A® U—>U®A—>A® U—>B®U—>U®B—>B®U.

Proof. Again we use diagrams beginning with the one for the trace of the above
composite.

Slide

Yank

Tighten
superpose
balance

Tighten
balance

Superpose
balance
tighten

Yanking and an obvious balanced manoeuvre leave us with the trace of/.

LEMMA 2-3 (Trace swapping). For all f: A ®B^-G®D, the following composites have
the same trace.

A®B®D >A®D®B >A

1®C~' 1®/
A ®B®B >A®B®B

Pictorially, this is the following equality.

-C®D®D >G®D®D,
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452 ANDRE JOYAL, ROSS STREET AND DOMINIC VERITY

Proof. Starting with the left-hand side by using tightening, we proceed
diagrammatically as follows.

I

Recall that a (strong) monoidal functor F: "V -> "W is a functor equipped with a
natural family of isomorphisms <f>A B:FA®FB^F{A®B) and an isomorphism
(j>°: I^>Fl satisfying the obvious coherence conditions. It is called balanced when it
is compatible with the braidings and twists on V, iV. If "K, iV are traced monoidal,
we say F: 'f -> iV is traced monoidal when it is balanced monoidal and it preserves
trace in the following obvious sense:

U) >F{B ® U)

>FB.

® FU)

We point out the following rather straightforward proposition.

PROPOSITION 2-4. Suppose F: "V ^-W is a fully faithful, balanced monoidal functor
with W traced monoidal. Then there exists a unique trace on V for which F is a traced
monoidal functor. {This is called the trace on "V transported from W along F.)

3. Canonical trace

In a tortile monoidal category [JSl, JS2, Sm], each object [/has a left dual Uv with
counit e:Uy®U-+I and unit rj: I-^U®Uy. The diagrams for these are as follows.

As justified in [JS4], the appropriate counit and unit for Uv as a right dual of U are

e':U®Uv • Uv ® U • W ® U >/,

which are illustrated best by the diagrams on the right-hand sides of the following
equalities.
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Traced monoidal categories 453

The following definition of trace is essentially classical in the case A = B = I
[SR.KL].

PROPOSITION 31 . In any tortile monoidal category, a trace, called the canonical trace,
is defined by the formula

v
B(f) = (A >A ®U®UV >B i C/v

Furthermore, every balanced strong monoidal functor between tortile monoidal categories
is traced with respect to the canonical traces.

Proof. The diagrams for tortile monoidal categories will be explained precisely in
[JS5]. However, for the present purposes, using the above diagrams for the counits
and units, we see that the formula for the trace leads to the same diagram for trace
as we use in any traced monoidal category. Then the diagrams for the axioms can
easily be used to construct a full algebraic proof. The last sentence is clear from the
formula for canonical trace. I

The goal of the next few sections is to prove a structure theorem for traced
monoidal categories by augmenting dual objects. We shall prove that every trace on
every balanced monoidal category "V is transported from a canonical trace on a
tortile monoidal category

4. The monoidal category Inff

We begin with a traced monoidal category 'f and define a category IntT^. The
objects of Int y are pairs (X, U) of objects X, U of "V. (One should think of the pair
(X, U) as a formalization of X ® JJW.) An arrow/: (X, U) -*• (Y, V) in Int y is an arrow
/ : X ® 7-> Y ® U in iT. The composite of/: (X, U) -> (Y, V) and g: (Y, V) -+ (Z, W) is
the value of the trace function

at the composite

f®\ 1®C *

W >Y® W® U

1®C

U >Z® U® V.
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454 ANDRE JOYAL, ROSS STREET AND DOMINIC VERITY

The composition in Int"^" is represented by the following diagram.

z\

The identity of the object (X, U) in IntTT is \x ® &$: X ® U-+X ® U.

Remark. The reader may suspect that there is a degree of choice in the definition
of composition in I n t ^ . Indeed, this suspicion will extend to definitions we make
later. However, a consistent set of choices is forced on us by the desired universal
property of Int "V as a tortile tensor category.

PROPOSITION 4-1. The above data do define a category Int "V and a fully faithful
functor N: Y^\nfV is defined by N(X) = (X,I),N(f) = f.

Proof. The following two diagrammatic calculations prove that arrows 1 ® 6'1 give
the identities for composition in
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Traced monoidal categories

The proof that composition is associative is as follows:

455

The fact that N is a fully faithful functor follows from the first vanishing
equation. I

We now define a tensor product functor ®': Int V x Int "V -> Int Y. The definition
on objects is

(X, U) ®' (X', U') = (X® X', U'®U).

For arrows / : (X, U)^(Y, V),f: (X', V) -> (T, V) in Int "V, the arrow

/ ® ' / ' : (X®X',U' ® U)^(Y® Y',V ® V)

in Int y is defined to be the following composite

V® V >X'®X®V® V

>Y®X'®V®U-

which is diagrammatically represented as below.

f®'f

•X'®Y® U® V

•Y®Y'®U'®U,

PROPOSITION 4-2. The above tensor product enriches \xvtir with the structure of
monoidal category, and the functor N:"^^- Int y is then (strong) monoidal.
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456 ANDRE JOYAL, ROSS STREET AND DOMINIC VERITY

Proof. The following two diagrammatic equalities (whose verification using the
axioms we leave to the reader) mean that ®' is a functor.

Balance

II

The calculation that it is associative is the following purely balanced diagrammatic
observation.

This completes the proof that I n t ^ is a monoidal category. The fact that N
preserves tensor product and unit is obvious.
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Traced monoidal categories 457

5. The tortile structure on
For each pair (X, U), (X', V) of objects of IntTT, let

c(x, u), <*<. w) • (X, U) ®' (X't V) - (X',V) ®' (X, U)

be the arrow in Int y given by the composite in "V of the following four arrows

X®X'®U'®U U'

X'®U®X® V

>X'®X®U®U

>X' ®X® U® U.

Diagrammatically, this is as follows.

For each object (X, U) of Int V, let

be the arrow in Int "V given by the composite in "V of the three arrows

v,x * hc,v

x®u—>u®x—>u®x—>x®u,

which is represented by the following diagram.

Of course, the dual (X, U)w of (X, U) is (U,X). The counit (or 'exact pairing') is
the arrow e: (U,X) ®'(X, C7)->(/,/) in I n t ^ given by the arrow \U®6X:U®X^
U®X in V. The unit TJ: (/,/)-> (X, U) ®'(U,X) is the arrow 1^ ® 6tf: X® U->

It seems helpful here to also describe the dual on maps. The dual/v : (Y, F)v -»• (X,
U)v of an arrow / : (X, U)-+(Y, V) in Int y is the following composite in y:

0V®1 C f C

V®X >V®X >X®V >Y®U U®Y.
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458 ANDRE JOYAL, ROSS STREET AND DOMINIC VERITY

Or, diagrammatically,

PROPOSITION 5-1. The arrows c(X< U)t (X, u.), d(X V) enrich the monoidal category Int "V
with a tortile structure, and the fully faithful monoidal functor N: "V ^•J.nt'f is then
traced.

Proof. The naturality of c is expressed by the commutativity of the square

{X, U) ®' (X', If)—*—»(X', V) ®' (X V)

f®'f

which is proved diagrammatically as follows.

One of the braiding conditions is the commutativity of the triangle

(X, U) ®' (X\ U') ®' (X", U")—c-—>{X", U") ®' (X U) ®' (X': U')

\®'c /c®'\

(X, U) ®' (X"; U") ®' (X', U'
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Traced monoidal categories

which is proved diagrammatical^ (with a few steps missing) as follows.

459

The commutativity of the other braiding triangle

(X, U) ®' (X', U') ®' (X", U") c ) (X', U') ®' (X", U") ®' {X, U)

c®'l\ /\®'c

amounts to the following equality of diagrams whose verification we leave to the
reader in the interest of saving some space.

The invertibility of c can be proved directly, but, at any rate, it is a consequence of
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460 ANDRE JOYAL, ROSS STREET AND DOMINIC VERITY

the other axioms on a tortile monoidal category. To complete the proof that lnt'f"
is balanced, we must see that the diagram

c(x, u), {x; u')
(X, V) ®' (X\ U') • (X', U') ®' (X, U)

C(X\ [/'), IX, U)

(X, U) ®' (X', U') i (X', V) ®' (X, U)

commutes. This amounts to the following equality which, again, we leave to the
reader.

+1

We now turn our attention to the duality conditions. Commutativity of the
triangle

(U,X)

(U,X)

is proved by the following equality, and the other duality triangle is left to the
reader.

- l
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Traced monoidal categories 461

To verify the formula for the dual of a map, we shall prove the commutativity of
the square

which comes down to the following diagrammatic calculation where we start with the
lower leg of the square. Lemmas 2-2 and 2-3 are used.

+ 1

+1

Trace
swapping

With this, we are in a position to verify the remaining non-trivial tortility
condition dw X) = (#(;f,£/))v (the condition 6(I n = 1 is trivially true). This is just the
following obvious equality.

/ - I

That N: "V-+\nbir preserves the braiding and twist is clear from the definitions
of these arrows in Int "V. To see that N preserves trace we must see that, for all arrows
f:A® U^B® U in IT, the canonical trace of/: (A ®U,I)->{B ®U,I) in Int^" is
N(Tru(f)). That is, we must see that the following composite in Inff is equal to

(A,I) >{A,I) ®' (U,I) ®' (I, U) >(B,1) ®' (U,I) ®' (I, U)

' (I, U) ®' (U, ' (I, U) ®' (U,
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462 A N D R E J O Y A L , R O S S STREET AND DOMINIC V E R I T Y

This comes down to the following diagrammatic equality.

Let TortMon denote the 2-category whose objects are tortile monoidal categories,
whose arrows are balanced strong monoidal functors, and whose 2-cells are monoidal
natural transformations. Let TraMon be the 2-category whose objects are traced
monoidal categories, whose arrows are traced strong monoidal functors, and whose
2-cells are monoidal natural transformations. The existence of canonical trace
(Proposition 3-1) means we have an inclusion of TortMon in TraMon.

PROPOSITION 5-2. Suppose Y is a traced monoidal category and "W is a tortile
•monoidal category. Then, for all traced monoidal functors F: Y -> "W, there exists a
balanced monoidal functor K: Int Y^-W which is unigue up to monoidal natural
isomorphism with the property KN S F. Moreover, the inclusion of the 2-category
TortMon in TraMon has a left biadjoint with unit having component at Y given by
N: Y^IntY.

Proof. Given F, we shall construct K. On the object (X, U) of Int Y, put K{X,
U)=FX® (FU)v. For / : (X, U) -> (Y, V) in Int Y, put K(f): K(X, U)-+K(Y, V) equal
to the composite

FX®FUV

>FY®FV

There is a slight abuse of notation here in that, as well as the usual omission of the
associativity constraints, we have omitted the structural isomorphisms F(X ® V) =
F(X)®F(V),F(Y)®F(U)^F(Y®U); this simplification can be justified by co-
herence, but the unconvinced reader should have no problem inserting these
isomorphisms. The diagram for K(f) is as follows.
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Traced monoidal categories 463

That K: IntT^'->W is a functor amounts to the following obvious equalities, the
second of which uses the fact that F preserves trace

The canonical isomorphism <f>: K(X, U) ® K(X', U') ^ K(X ®X',U'® X') given by
the composite

FX®FU" FX{

»F(X®X')®F(U'®U)V,

together with the obvious / = K(I, I), equip K with the structure of monoidal functor.
To see this, we need to prove commutativity of the following diagram.

K{X, U) ® K(X', If) > X(Z ® Z', CT® U)

Kf®Kf K(f®f)

K(Y,V)®K(Y',V) 1®C®\K{Y®Y',V'®V).

This follows from the obvious diagrammatic equality:

We must see that K is braided; that is, that the following square commutes.

K(X, U) ® K{X\ If) 19e9\ K(X ® X', V® U)

K{X', If) ® K(X, U)

Kc

K(X' ®X,U®U') .
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464 ANDRE JOYAL, ROSS STREET AND DOMINIC VERITY

This follows from the obvious diagrammatic equality:

To complete the proof that K is balanced, we must see that K preserves twists. This
follows from the diagrammatic equality:

Clearly KN ^ F. We leave it to the reader to check that K is unique up to
isomorphism, but note that each object (X, U) of lnff can be written as (X, U) =
(X,I) ® (/, U) =N(X) ®N(Uy. The astute reader will realize that this uniqueness
follows from the last sentence of the proposition which amounts to the assertion that
restriction along N gives an equivalence between the category of balanced monoidal
functors if: Int "̂ ->-T "̂ and the category of traced monoidal functors F: "V -*"W. To
prove this equivalence it remains to show that, for all balanced monoidal functors K,
L-.lnfV ->iV, restriction along N gives a bijection between monoidal natural
transformations a.:K->L and monoidal natural transformations ft:KN->LN. The
inverse bijection takes /? to the natural transformation a whose component at (X, U)
is the composite

K{X,U)- »KN(X)(g>KN{Uy LN(X)®LN(Uy

where (~yu)
v = Pu- We leave the few remaining details to the reader who should refer

to [JS1; proposition 7-1] to see that any such a (and hence any such /?) is invertible.

6. Some examples of traced monoidal categories

Every full subcategory of a tortile monoidal category (in particular, of a compact
closed category) provides an example of a traced monoidal category by Propositions
2-4 and 31. In particular, the free traced monoidal category T+ on a single generating
object is a full subcategory of the free tortile monoidal category T on a single
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Traced monoidal categories 465

generating object. Recall from [Sm], [FY2], or [JS4] that the objects of Fare words
in the symbols — and + , and that the arrows are tangles on ribbons. Then T+ is the
full subcategory of T consisting of the objects which are words on the single symbol
+ . The construction of this paper leads us to a tortile monoidal category Int T+

equivalent to T. The point is that every word in —, + is canonically isomorphic to
one in which all the pluses come before the minuses.

It is more interesting to find examples which are not obviously full subcategories
of tortile monoidal categories so that the construction of this paper will provide new
examples of tortile monoidal categories. For this we are indebted to Steve Bloom for
making the connection with iteration and hence with our own notion of iterative
bicategory [CJSV]. It should suffice here to give an illustrative example where
bicategories can be avoided.

Let Mel denote the category whose objects are (small) sets and whose arrows are
relations. Recall that a relation R: X -»• Y is a subset R £ X x Y, and that composition
of relations R:X^ Y, S: Y^Z is given by SR = {(x,z): 3y(x,y)eR and (y,z)eS). The
compositional identities are the diagonal relations A^. The category Mel becomes
monoidal with addition X+Y (disjoint union) of sets as the tensor product. In fact,
X + Y is both the coproduct and product of the objects X and Y in the category Mel.
It follows that arrows in Mel between multiple tensor products can be written as
matrices of arrows between the components. For example, a relation R
Y+U can be written as a matrix

where the entries are relations A: X-^Y,B: V^Y,C: X^*U,D: V-+U. Composition
of relations between decomposed sets is just given by matrix multiplication using
union for addition, and composition for multiplication, on the matrix entries. Note
that the braiding X + Y - ^ y + X i s represented by the matrix

0 Ay

*x 0

This braiding is a symmetry so the twist is the identity.
For a relation R: U^- P o n a set U, write R* for the smallest reflexive, transitive

relation containing R. The construction RH>R* has the following easily verified
properties of an iteration operation [BE].

LEMMA 6-1. For relations R,P: U^V,S: V-+U, the following equations hold:

(i) (R U 8)* = {R*S)*R* for U = V;

(ii) (RS)* = AV[JR(SR)*S;

(iii) R* = Av (JRR* for U = V;

(iv) R*R = RR* for U = V;

(v) (RS)*R = R(SR)* ;

(vii) R c p implies R* c p*.
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We require another equality called the pairing identity [BE].

LEMMA 6-2. If R: X+ U^-X + U is a relation given by the matrix

[C D\

then R*: X+U^X+U is the relation given by the matrix

T E EBD* 1
[D*CE D*[)D*CEBD*\

where E= (A \JBD*C)*.

(Note also that, by Lemma 61 (i), E = (A*BD*C)* A*.)

PROPOSITION 6-3. Consider Sfcel as a symmetric monoidal category where the tensor
product is disjoint union of sets. A trace is given as follows:

Tru
XiY(R)=A{)BD*C:X^Y for R = P ^ 1 : X+U-+ Y+U.

Proof. The axioms for a trace are proved by calculations using Lemmas 6-1 and 6-2.

Sliding:

[C DP] [PC PDy

tightening:

Q Tr \)P = Q(A [)BD*C)P = QAP U QBD*CP = Trl

vanishing:

( XL M

Trv\P A B
LQ C D.

= Zr U M)*Q U (M U A7D*C) (4 U £D*C)* (P U JSD*Q)

= L () ND*Q V (M (J ND*C) E(P U 51**^) (using E as in Lemma 5-2)

= 2/ U J f ^ P UMEBD*Q U ND*CEP U A7(i>* U D*CEBD*) Q

= i U i / ^ P U iW2P U MF<9 U A7// Q (for appropriate P , (?, H)

= L\)[ME\JNG MFUNHW

F FV PI \ L M N
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superposing:

/[A 0 0
Tr 0 0 A

U0 A 0J

yanking:

TA B 0-ITA 0 0
\C D 0 0 0 A | |= Tr
.0 0 Q1L0 A 0

'A 0 B
0 Q 0
IG 0 D

~

0 ^HB0^[c 0 ] =

1 = 0 U A0*A = A. I

0
0 Ql

It is therefore possible to form the compact closed category Int 0tel from the traced
monoidal category 0tel. The objects of \r\tffiel can be called integer sets in contrast to
the objects of £%el which are natural sets. The cardinality of the integer set (X, U) is
defined to be the difference #(X, U) = #X—#U of the cardinalities of X, U.

An explicit description of Int&el may be of interest. The objects are pairs (X, U)
of sets. Arrows R: (X, U)->(Y, V) can be depicted as diagrams of relations:

Composition in Int &el is given by:

X- u
D

V

H

D .

V

X-

= E(BG)*A

C<uD(GB)*GA

z+

D(GB)*H

w

Tensor product is given by:

D

X'-

A'

V

c
•U'

D' =

X+X'

= \A 0]
L0 A'\

Y+Y'

It follows from Lemma 6-1 (vii) that inclusion of relations is compatible with
composition in Yntlftel, and it is clear that it is also compatible with the tensor
product. So Int&el becomes a monoidal 2-category whose 2-cells are merely
inclusions.
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