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 ON c. s. s. COMPLEXES.*

 By DANIEL M. KAN.

 1. Introduction. It was indicated in [3] how the usual notions of

 homotopy theory may be defined for cubical complexes which satisfy a certain

 extension condition. In the same manner (see [9]) these notions may be

 defined for complete semi-simplicial (c. s. s.) complexes which satisfy the

 following c. s. s. version of the extension condition. The notation used will

 be that of [2] except that the face and degeneracy operators will be denoted

 by SE and vji (instead of e and ,7ni).

 Definition (1.1). A c.s.s. complex K is said to satisfy the extentsionl
 condition if for every pair of integers (k, n) with 0 < k ? !n alnd for every

 n (t - 1)-simplices vO,( , 0k-1,i k+1, , anE K such that opej-' crgji for
 i < j and i #7L Ik j, there exists an n-simplex X E K such that aoc = -U for

 i 0, , , ,n.

 Let AI be the category of c. s. s. complexes and c. s. s. maps and let AR

 be its full subcategory generated by the c. s. s. complexes which satisfy the

 extension condition.

 Many interesting c. s. s. complexes do not satisfy the extension con-

 dition; for example the finite c. s. s. complexes (finite = with only a finite

 number of non-degenerate simplices). The definitions of some homotopy

 notions, such as the homology groups, apply to all c. s. s. complexes, but the

 definition of the homotopy groups of [9], for instance, cannot be carried

 over to c. s. s. complexes which are not in AE.

 In order to extend the definitions of all homotopy notions defined on

 the category AE to the whole category A one needs what will be called an

 H-pair, i.e., a pair (Q, q) consisting of

 (i) a functor Q: As-> A&E,

 (ii) a natural transformation q: E -> Q (where E: A -A denotes

 the identity functor), satisfying the following conditions:

 (a) The functor Q maps homotopic maps into homotopic maps.

 (b) Let K C AR, then the map qK: K-> QK is a homotopy equivalence.

 * Received September 20, 1956.

 449

This content downloaded from 
������������128.151.124.135 on Tue, 17 Aug 2021 10:22:03 UTC������������ 

All use subject to https://about.jstor.org/terms



 450 DANIEL M. KAN.

 (c) Let K E A and let f: QK -* QK be a map such that cominutativity

 holds in the diagram

 QK

 qK
 K I

 qK
 QK

 Then f is a homotopy equivalence.

 In view of condition (a) every homotopy notion on the category A,

 yields by composition with the functor Q a homotopy notion on the whole

 category A. Condition (b) implies that on the category Ao the homotopy
 notions induced by the functor Q coincide with the original ones. Condition

 (c) essentially ensures the uniqueness of the homotopy notions induced by

 Q; if (R, r) is another H-pair, then Q and R induce the same homotopy
 notions. In particular QK and RK have the same homotopy type, even if

 K does not satisfy the extension condition.

 An example of an H-pair is the following. Let S I: AeB- be the

 functor which assigns to a c. s. s. complex K the simplicial singular complex

 S I K I of the geometrical realization 1 K I of K and let j: E -> I be the
 natural transformation which assigns to a c. s. s. complex K the natural

 embedding jK: K S1 SK I. Then it is readily seen that the pair (Sj 1,j)
 is an H-pair.

 Although the existence of an H-pair is sufficient in order to do homotopy

 theory on the whole category A, it is sometimes convenient to have an

 H-pair which (unlike the pair (S I ' j)) may be defined in terms of c. s. s.

 complexes and c. s. s. maps only. Such an H-pair (Ex', e) will be defined

 in this paper. A useful property of the functor Ex: A- AE is that it
 preserves fibre maps.

 The main tool used in the definition of the functor ExZ is what we

 call the extension Ex K of a c. s. s. complex K, which is in a certain sense

 dual to the subdivision Sd K of K. More precisely: let K and L be c. s. s.

 complexes, then there exists (in a natural way) a one-to-one correspondence

 between the c.s.s. maps SdK- L and the c.s.s. maps K-XExL. In the

 terminology of [6] this means that the functor Ex is a right adjoint of the

 functor Sd.

 The simplicial approximation theorem may be generalized to c. s. s. com-

 plexes roughly as follows: let K, LE A, K finite, then everv continuous

 map f: K L I is homotopic with the geometrical realization of a c. s. s.
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 ON C. S. S. COMPLEXES. 451

 map g: Sd" K -L for some n. Using the adjointness of the functors Sd
 and Ex a dual theorem may be obtained which involves a c. s. s. map

 h: K -* Ex" L instead of g: Sdn K -> L. This dual theorem may be streng-
 thened as follows: let K E A and L E A E, then every continuous map f:

 I K I - L I is homotopic with the geometrical realization of a c. s. s. map
 h: K -* L. It is essentially because of this property that, as far as homotopy

 theory is concerned, the c. s. s. complexes which satisfy the extension condition

 "behave like topological spaces."

 The paper is divided into two chapters. In Chapter I the definitions

 and results are stated; most of the proofs are given in Chapter II.

 The results of this paper were announced in [5].

 Chapter I. Definitions and results.

 2. The standard simplices and their subdivision. For each integer

 n ? 0 let [n] denote the ordered set (0, , n). By a map a: [m] -* [n]
 we mean a monotone function, i.e., a funietion such that a(i) ? a(j) for
 0 ? i S j c m_

 For each integer n ? 0 the standard n-simplex A[n] is the c. s. s. com-

 plex defined as follows. A q-simplex of A[n] is a map a: [q] -, [n]. For

 each map /3: [p] -* [q] the p-simplex ,Bf is defined as the composite map

 [pI > [q] [n].

 For each map a: [mn] -) [n] let Aa: A[m] -+A[n] be the c. s.s. map
 which assigns to a q-simplex TE A[m] the composite map

 T a

 [q] [] [].

 The subdivision of A [n] is the c. s. s. complex Y'[n] defined as follows.

 A q-simplex of A'[n] is a sequence (ao, , cr,,) where the ai are non-
 degenerate simplices of A[n] (i. e., the map ai: [dim ai] -+ [n] is a mono-

 morphism) and art lies on ai,, (i.e.. cir- = cri,a for some a) for all i. For

 each map /: [p]j- [q] we have (ao, .O , a,q)8 =- (o(o), - ., a(p)) .
 The subdivision of Aa is the c. s. s. map A'a: A'[m] --'[n] given by

 a (To. , . Tq)- (aO,~ . . q), where ari is the unique non-degenerate sim-
 plex of A [n] for which (see [2]) there exist an epimorphism yt: [dim ri
 -e [dim ea] such that commutativity holds in the diagram
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 452 DANIEL M. KAN.

 Ti

 [dim TI] - - [m]

 (2.1) {yi
 ari

 [dimi ai] >[n]

 For each integer n ? 0 let 8[n]: A'[n] ->& [n] be the c. s. s. map which

 assigns to a q-simplex ((Tr,. ,- q) E A'[n] the q-simplex ac E[n], i. e.. the

 map cr: [q]- [n], given by a(i)= i(dim cr), O < i? q.

 LEMMA (2. 2). For each map a,: [m] [n] commutatirity holds ini the

 diacgranm

 Acc

 A[M}] - [n]

 (2. 2a) 8[m] f [n]

 A'[m] - ^[M4] > '[n]

 Proof. It follows from the definitions that for every q-simplex

 (To7 . . . Tq) C A'[m] and each integer i with 0 < i ? q,

 (AcO OS[m])(T, *o' , Tq)((i) =aT(dim Ti),

 (8[n] o A'a)(To, * * , 'rq)(i) = 8[n](o, ( , Tq)(i) = ri(dim o)

 where at is the unique nlon-degenerate simplex of A [n] for which there exists

 an epimorphism yi such that commutativity holds iii diagram (2.1). Because
 yi is onto,

 TXr ( dim Tij) =- iyi ( dim 7-j) ? i ( dim a ) .

 Hence commutativity holds in diagram (2.2a).

 3. The extension of a c. s. s. complex. The extensiont of a c. s. s. com-
 plex K is the c. s. s. complex Ex K defined as follows. An n-simplex of Ex K

 is a c. s. s. map a: Y'[n] -* K. For each map a: [m] .- [n] the ni-simplex

 rOa is the composite map

 A'a or

 A'[Mn] - A'[nt] - K.
 Similarly the extension of a c. s. s. miap f: K L is the c. s. s. map Ex f:
 Ex K-- Ex L which assigns to every nz-simplex aTE Ex K the composite map

 (T f
 AY [n K L.T
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 ON C. S. S. COMPLEXES. 453

 Clearly the funietion Ex so defined is a covariant functor Ex: A > .

 By Ex" we shall mean the functor Ex applied n times.

 For c. s. s. complex K define a monomorphism eK: K -> Ex K as follows.

 For every n-simplex a E K, (eK)o is the composite map

 8 [n] a
 A'[n] --> /v [n] .> K,

 where qa: A[n] -> K is the unique map such that 4aa = cra for all a C A[n].
 It follows from Lemma (2. 2) that the function e is a natural transformation

 e: E-* Ex (where E: 8 --> denotes the identity functor), i.e., for every

 c. s. s. map f: K L commutativity holds in the diagram

 f
 K - > L

 eK EeL
 Ex f 4

 ExK -> ExL

 We shall denote by enK: K Ex" K the composite monomorphism

 eK e (Ex K) e (Exn-1 K)
 K > ExK 3. 3 Ex" K.

 LEMIMA (3. 1). The functor Ex: A6 ->A maps homotopic maps into

 hoomotopic maps.

 The proof will be given in Section 9.

 AIn important property of the functor Ex is that if it is twice applied

 to a c.s.s. complex K, then the resulting complex Ex2 K partially satisfies

 the extension condition; if po, ,pk-1,Pk+i5, . Pn C Ex2 K are n (n - 1)-
 simplices which "match" and which are in the image of Ex K under the

 map e (Ex K) : Ex K-> Ex2 K, then there exists an n-simplex p C Ex2 K (not
 necessarily in the image of ExK) such that pet= p for i Ick. An exact

 foriiiulation is given in the following lemma.

 LE.1MMA (3. 2). Let K A. Then for every pair of integers (k, n) with

 0 ? k, < -it aand for it (n - 1)-simplices T7o, * * * lrk-in Tk+1,i . . . Tn e Ex K such

 that rijl-- Tj&i for i < j anzd i#lh j, there exists an n-simplex p CE x2 K
 such that pEi -(e(ExK)) T for i =-- O, .*,k, . ,fn.

 The proof will be given in Section 10.

 Another useful property of the functor Ex is that it preserves fibre

 maps. This is stated in Lemma (3.4).
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 454 DANIEL M. KAN.

 Definition (3.3). A c.s.s. map f: K-)L is called a fibre map if for

 each pair of integers (k, n) with 0 k< < nt, for every iib (n - 1) -simplices

 70- **Tk_j7k+l- * j, TEc K such that TiE'-l Tjci for i< j and i=/=lc#j
 and for every n-simplex p E L such that Pei fTi for i 0, n,k,* ,

 there exists an n-simplex r E K such that fTr p and T-e -r for i =0, *
 kl , n. Let 4E L be a 0-simplex. Then the counter image of 4 and

 its degeneracies is called the fibre of f over 4. It is denoted by F(f, q).

 LEMMA (3.4). Let f: K->L be a fibr-e map antd let 0 EL be a
 0-simplex. Then Exf: ExK-*ExL is a fibre map and Ex(F(f,o))

 F(Exf, (eL)cp).

 The proof will be given in Section 11.

 Let f: K -- A [O] be a fibre map, then it follows readily from the fact
 that A [0] has only one simplex in every dimension that K E 3E. Conversely

 KE 93E implies that the (unique) map f: K->A[O] is a fibre map. As

 Ex&[O] -A[0] Lemma (3.4) thus implies

 COROLLARY (3. 5). If KE 3jE, then ExK E 6E.

 The following lemmas relate the homology groups of K and Ex K and,

 if K E AB, their homotopy types.

 LEMMA (3.6). Let KE RS. Then the map eK: K -ExK induces

 isomorphisms of the homology groups, i.e., (eK)*: H*(K) HE*(Ex K).

 The proof will be given in Section 12.

 LEMMA (3.7). Let KE 4E. Then the map eK: K->ExK is a homo-
 topy equivalence.

 The proof will be given in Section 13.

 4. The functor Ex. Let K be a c. s. s. complex. Consider the sequence

 eK e (Ex K) e (Ex2 K)
 K >o Ex K --Ex2K ) Ex' K

 and let Ex, K be the direct limit of this sequence. The n-simplices of

 Ex, K then are the pairs (a, q) where a e Ex1 K is an n-simplex; two

 n-simplices (a, q) and (r, p + q) are considered equal if and only if

 ( eP(EXq K) )a = T. For each map a: [m] -* [n], (a, q)a - (aa, q). Similarly
 for a c.s.s. map f: K-L let Ex* f: Ex K-Ex' L be the induced map

 given by f (a, q) - (fa, q). Clearly the function Exo so defined is a covariant

 functor.
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 ON C. S. S. COMPLEXES. 455

 For a c. s. s. complex K denote by eZ K: K-> Ex' K the limit mono-

 morphism

 eK e(ExK)

 K >ExK .- * Ex
 i. e., (e- K) r ( (eK)c, 1) for every simplex a E K. Naturality of the

 function ew follows immediately from the naturality of e.

 THEOREM (4. 1). The functor Ex, inaps hoontotopic maps into homo-

 topic naps.

 The proof is similar to that of Lemma (3. 1) (see Section 9), using

 Ex- and e* instead of Ex and e.

 An important property of the functor Ex* is:

 THEOREM (4.2). Ex- K C AE for all objects KC A6, i.e., Ex- is a
 functor E0: A > AB.

 This follows immediately from Lemma (3. 2) and the definition of Ex .

 Another useful property of the functor Ex is that it preserves fibre

 maps.

 THEOREM (4.3). Let f: K-.>L be a fibre nmap and let 4 EL be a

 0-simplex. Then Exw f: ExX K-> Ex4 L is a fibre maap and Ex* (F (f, +))

 F(Ex f (e, I L))

 This follows immediately from Lemma (3. 4).

 We shall now relate the homology groups of K anld ExX K and, if K E SE,

 their homotopy types.

 THEOREM (4.4). Let KE A. Then the map eI K: K->Ex K induces
 isomorphisms of the homology groups, i. e., (el K) *: H* (K) H H*(Exw K).

 This follows immediately from Lemma (3. 6).

 Similarly, Lemma (3. 7) implies.

 THEOREM (4.6). Let KE AE. Then the map eK:K->ExoK is a

 homotopy equivalence.

 Let K be a c. s. s. complex which does not satisfy the extension condition.

 Then the homotopy type of Ex* K cannot be related to the homotopy type

 of K because the latter has (not yet) been defined. However the homotopy

 type of Ex- K may be related to K as follows:
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 456 DANIEL M. KAN.

 THEOREM -(4.6). Let K E A and let f: Ex,K Ex-K be a c.s. s.

 mi1ap such that coii?mutativity holds in the diagram?

 ExX K

 Thent f is a homotopy equivalence.

 The proof will be given in Section 14.

 5. Homotopy notions induced on.

 Definition (5.1). A pair (Q, q) where Q: < -> AE is a covarianit

 functor and q: E Q a natural tralnsformation (E denotes the identitv

 functor E: .3 -> p3), is called an H-pair if the following conditions are

 satisfied.

 (a) The funictor Q: A -> E maps homotopic maps into homotopic maps

 (b) Let K E E. Then the map qK: K - QK is a homotopy equivalence

 (c) Let KE j and let f: QK->QK be a c.s.s. map such that com-

 muLtativity holds in the diagram

 QK
 qK

 K If
 qK4

 QK

 Then f is a homotopy equivalence.

 Example (5. 2). The pair (Ex-, e-) is an H-pair; this follows directly

 from Theorems (4.1), (4.5) and (4.6).

 A more exact formulation of the statements about H-pairs imiade iil

 the introduction will be given in Theorems (5. 4), (5.5) and (5. 8).

 Definition (5.3). By a homnotopy notion on the category . (resp. 4E)
 with values in a category X we mean a functor AT: 5 - (resp. N: AB E>
 such that for two maps f,g E . (resp. .SE) f g implies Nf - Ng.
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 ON C. S. S. COMPLEXES. 45i

 THEOREM (5.4). Let N: J6E->X be a homotopy notion on 23E and

 let (Q, q) be an H-pair. Then the composite functor

 Q N
 3 ->jE

 is a homotopy notion on P.

 This is an immediate consequence of condition (5. la).

 Let J: AvE -> 2 be the inclusion functor and let N: AE be a homo-
 topy notion on AE. We then want to compare the composite functor

 J Q Nr
 JE-> 23 > C3E >X

 i. e., the restriction to 23E of the homotopy notion on 23 induced by the

 functor Q, with the original homotopy notion N on AE. The following
 theorem then asserts that these functors differ only by a natural equivalence.

 THEOREM (5. 5). Let N: 2 E -* be a ilomotopy notiont on 23E and
 let (Q, q) be an H-pair. Then the function 7 Nq: N --l NQJ is a nlatural

 equivalence.

 This follows immediately from condition (5. 1b).

 In order to prove the uniqueness of the homotopy notioins oli 2 iniduced

 by an H-pair (Q, q) we need the following lemma

 LEMMA (5.6). Let (Q,q) anid (R,r) be Il-pairs and let KE 23. Then

 the maps QrK: QK-* QRK and RqK: RK -> RQK are homotopy equivalences.

 The proof will be given in Section 15; use will be made of condition

 (5. ic).

 Let (Q, q) and (R, r) be 11-pairs and consider the following commu-

 tative diagram

 qQK
 QK- QQK

 IrQK QrQK qK

 qRQK
 (5.7) RQK - > QRQK QI

 RqK QRqE QrK

 qRK -
 RK QRK
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 4058 DANIEL M. KAN.

 It follows from Lemma (5. 6) and condition (5. lb) that all maps involved

 in diagram (5. 7) are homotopy equivalences; application of a homotopy

 notion N: AE -+ to this diagram thus yields a diagram in X consisting

 only of equivalences. If we put Q = R and q = r then it follows from the

 commutativity of diagram (5. 7) that

 (NQqK)-l o NqQK = (NqQK)-l o NQqK o (NQqK)'l o NqQK - iNQK.

 Consequently

 (NRqK)-l o NrQK Q'(NqRK)-l o NQrK o (NQqK)-l o NqQK

 =(NqRK)'l o NQrK.

 Hence the following uniqueniess theorem holds.

 THEOREM (5. 8). Let N: AE X be a honmotopy notion on .E and
 let (Q, q) and (R, r) be H-pairs. Then the function h: NQ -) NR givent by

 hK = (NRqK)-l o NrQK = (AT qRK)-1 o NQrK

 i5s a natural equivalence.

 6. The simplicial singular complex of the geometrical realization. We

 shall now use the results of Section a in order to compare the simplicial

 singular complex of the geometrical realization of a c. s. s. complex K with

 Ex- K.

 Let al be the category of topological spaces and continuous miiaps anid

 let I 1: &- a be the geometrical realization functor which assigns to a
 c. s. s. complex K its geometrical realization l K I in the sense of J. Mlilnor
 (see [8]) ; I K I is a CW-complex of which the n-cells are in onle-to-onie
 correspondenice with the noin-degenerate n-simplices of K.

 Let S: a -) SE be the simplicial sintgular funictor which assigns to a

 topological space X its simplicial singular complex SX (see [2]); an ?n-

 simplex of SX is any continuous map cr: A[n] ' X and for every map

 a: [m] -> [n] the n-simplex oao is the composite map

 I A[m]| I JA[n], -- X.

 The functor S maps homotopic maps into homotopic maps.

 For every c. s. s. complex K let jK: K -R S I K I be the natural mono-
 morphism which assigns to an n-simplex a E K the simplex I sc I: | i[n] I
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 ON C. S. S. COMPLEXES. 459

 .XKI of S IK, where qba: An[nIK is the unique c.s.s. map such that
 4aa= o- (r for all a E A [n].

 The following results are due to J. Milnor ([8]).

 THEOREM (6. 1). The functor I I: a maps homotopic maps into
 homotopic maps.

 COROLLARY (6. 2). The functor S | : Ai -* AR aps homotopic maps
 into homotopic maps.

 THEOREM (6.3). Let KEAE. Then the mnap jK: K-SIKI is at
 homotopy equivalence.

 It is also readilv verified that

 THEOREM (6.4). Let KE E and let f: S KIS IKI bea c.s.s. malp
 such that coni mutativity holds in the diagram.

 S 1 K 1

 jK

 K

 jK~~ K
 Then f is a homotopy equivalence.

 It follows from Corollary (6.2) and Theorems (6.3) and (6.4) that

 the pair (S I I, j) is an H-pair. Application of Lemma (5. 6) and Theorem
 (5. 8) now yields

 LEMMA (6.5). Let KE A. Then the maps

 SlEjKl: SE Kj->ESIKlt, Sle,*K|: S|Kt>S EsxKj,

 Ex-X j: Ex- K->Exo S I K |, Exo e10K: Ex,* K-Ex,= Ex- K

 are homotopy equivalences.

 THEOREM (6.6). Let N: A- Xbe a homotopy notion on A,. Then

 the function h: N Ex -> NS I I given by

 hK= (NS I e0 KI)-loNjEx K= (Ne0 S I K I)-'oNExw jK
 is a natural equivalence.

 Theorem (6. 6) asserts that the homotopy notions on A induced by the

This content downloaded from 
������������128.151.124.135 on Tue, 17 Aug 2021 10:22:03 UTC������������ 

All use subject to https://about.jstor.org/terms



 460 DANIEL M. EAN.

 functor Ex, are equivalent with these induced by the functor S I In
 particular we have

 COROLLARY (6.7). Let K E P. Then1 Ex" K antd S I K I have the
 same homotopy type.

 7. Extension and subdivision. The subdivision of a c. s. s. complex K

 is a c. s. s. complex Sd K defined as follows. Let K denote the c. s. s. com-

 plex of which the q-simplices are pairs (cr, t) such that cr E K, t E &,[dim a]

 and dim, =- q, while for a map y: [p] -> [q] the p-simplex (,4 )y is given
 by (ar, t)y = (q, ty). Define a relation on K by calling two simplices

 (a,5 ), ('r, p) C K equivalent if there exists a map a: [dim T] -> [dim a] such
 that T = or and e = 'a (p) and let - denote the resulting equivalence
 relation. Then Sd K is the collapsed complex Sd K = K/ (p-).

 A c.s.s. map f: K->L clearly induces a c.s.s. map 1: K->L (given

 by 7 (a, e) = (fcr, .) ) which is compatible with the relation '. The sub-
 division of f then is defined as the collapsed map Sd f: Sd K -> Sd L. Clearly

 the function Sd: . -> so defined is a covariant functor. By Sdn: -> J

 we shall mean the functor Sd applied n times.

 The functors Ex and Sd are closely related. With a c. s .s. map f:

 SdK-->L we may associate a c.s.s. map Pf: K ->ExL as follows. Let
 c E K be an nt-simplex and let c: K -* Sd K be the collapsing map. Then

 (/8f)o is the n-simplex of Ex L, i. e., the c. s. s. map (pf) c: A'[n] -> L. given
 by ( (ftf)a)= (f o c) (or,). The function P is natural, i. e., for every two
 maps a: K'-*K and b: L--L'

 /3(bofoSda) =Exboflfoa.

 An important property of the function A is

 LEMMA (7. 1). Let K, LE M. Then the function 8 establishes a one-

 to-one correspondence between the c.s.s. maps SdK -*L and the c.s..s. maps
 K -> Ex L.

 Lemma (7.1) is an immediate consequence of the results of [7]. It

 can also be verified by a straightforward computation

 For every c.s.s. complex K define an epimorphism dK: K--*K as

 follows. Let dK: K -> K be the map given by

 K (a, 4) (Oa ? 8[dim a])$,

 where +cr: A[dim a] -> K is the (unique) map such that Oc = ao for all
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 ON C. S. S. COMPLEXES. 461

 a E A [dim cr]. Then dK maps equivalent simplices of K into the same

 simplex of K and dK: Sd K-> K is defined as the map obtained by collapsing

 dK. By dnK: Sd K -* K we shall mean the composite epimorphism

 d(Sdn-IK) dK
 Sdn K )Sdn-1 Ke*- * * >Sd K - - K

 It is readily verified that the function d is a natural transformation d: Sd -> E.

 The natural transformations e: E-* Ex and d: Sd -> E are also closely

 related. In fact a simple computation yields

 LEMIMA (7.2). Let KC E. Thent P,(dK)=-eK.

 Remark (7.3). Lemma (7. 1) states that, in the terminology of [6],

 the functor Sd is a left adjoint of the functor Ex.

 Remark (7. 4). The ordered sets [n] and the maps or: [mi -> [n]

 form a category which will be denoted by 'i. The subdivided standard

 simplices A'[n] and the maps A'a: '[m] ->'[n] now may be considered

 as the images of the objects [n] and maps a: [m] -* [n] of the category IV
 under a covariant functor A': IV- P. It then may be verified that the

 functors Sd and Ex may be obtained by the general method of [7], Section 3

 by puttinig 3 = j and X -/'.

 Let K E P. A q-simplex of Ex- K is a pair (a, n) where cr E EXn K is a

 q-simplex. As Ex" K - Exn-l(Ex K) it follows that the pair (r, n - 1) is a

 q-simplex of Ex* (Ex K). It is readily verified that this correspondence

 yields an isomorphism i: Ex, K-> Ex,* (Ex K) such that commutativity

 holds in the diagram

 e- K

 K ->ExwK

 (7.3) {eK I
 e 0 (Ex k') N

 ExK Ex-(ExK)

 In view of Lemma (6. 5) the maps S I e K i and S I el (ExK) j are homo-
 topy equivalences. Consequently the maps I eo K I and I eI (Ex K) I are
 homotopy equivalences and it follows from the commutativity in diagram

 (7.3) that

 LEMIMA (7.4). Let K EC . Then the continuous map |eK : IK
 - I Ex K I is a homotopy equivalence.

 The following can be shown using standard methods.
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 462 DANIEL M. KAN.

 LEMMA (7. 5). Let KE A. Then the continuous map I dK I: i SdKI
 K K is a homotopy equivalence.

 8. C. s. s. approximation theorems. We shall now give an exact for-

 mulation of the c. s. s. approximation theorems mentioned in the introduction.

 THEOREM (8. 1). Let KE A and let ME AR. Then for every con-

 tinuous map f: 1K I- I M there exists a c. s. s. map h: K -M M such that
 h I a-f.

 Let L E A and let Mll Ex- L. Then Theorem (8. 1) implies

 COROLLARY (8. 2). Let K, LE A . Theni for every continuotus map
 f: IK I I L I there exists a c.s.s. map hI: K Exo L such that the
 diagram

 f

 IEx LI

 is commutative up to homotopy, i. e., h I eL of.

 Proof of Theorem (8. 1). Let jM: S I M Al be a homotopy inverse
 of the map jM: Al - S I Al . Consider the diagram

 K I j I I jK I

 Jf Iifi1 jISf I M hI

 I M - >| S I AlIi I <- I

 where h: K ->M is the composite map

 jK Sf 21
 I >S1 I K ->s Mw1.

 Clearly commutativity holds in the rectangle at the left and the definition

 of h implies that the rectangle at the right is commutative up to homotopy.

 It follows from Lemma (6. 6) that the maps S I jK I and S I jM I and there-

 fore the maps I jK I and I jM I are homotopy equivalences. Hence I h I c f.
 A c. s. s. complex K is called finite if it has only a finite number of

 non-degenerate simplices.
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 ON C. S. S. COMPLEXES. 463

 THEOREM (8. 3). Let K, L E 21 and let K be finite. Then for every

 continuous map f: j K I L I there exists an integer n > 0 and a c. s. s.
 map h: K -- Exn L such that the diagram

 f
 K 1 L

 Exn L

 is commutative up to homotopy, i. e., j h j - I enL of.

 Proof. Application of Corollary (8. 2) yields a c. s. s. map h': K

 Exw L such that I h' | e0 L of. As K is finite only a finite number
 of non-degenerate simplices of Ex* L are in the image of K under h'. Hence

 there exists an integer n such that the map h': K -* Ex, L may be factorized

 h b
 K- ExnL- Exo L

 where b is the embedding map which assigns to a simplex or E EXn L the

 simplex (o, n) E Exo L. By an argument similar to that used in the proof

 of Lemma (7. 4) it follows that I b I is a homotopy equivalence. The
 theorem now follows from the fact that the map ec L: L -. Exo L may be

 factorized

 enL b

 L > Exn L > Ex, L.

 In order to obtain the dual theorem, involving the functor Sd instead

 of Ex, we need the following lemma

 LEMMA (8.4). Let K,L E. Then for every c.s.s. map 7i: K-ExL

 the diagram

 hit

 Kj - -E ExLi

 I dK P-lh h
 jSdK - LI

 is commutative up to homotopy, . e., I eL I o 1 8-3h I - I h I o I dK 1.

 The proof will be given in Section 16.

 Applving Lemma (8.4) n times to Theorem (8. 3) we get
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 464 DANIEL M. KAN.

 THEOREM (8. 5). Let K, LE . and let K be finite. Then for every

 continuous map f: I K | I L I there exists an integer n > 0 and a c. s. s. map
 g: SdnhK - L such that the diagram

 f
 K - IL

 T dnK 9 g
 I SdnK

 is commutative up to homotopy, i. e., g f o IdnK

 Chapter II. Proofs.

 9. Proof of Lemma (3. 1). Let fo, fl: K -* L E j be maps such that

 f . Using the terminology of [4] this means that there exists a c. s. s.

 map f,: IXK ->L such that foeK =fe (E 0,1). It is readily verified
 that the functor Ex commutes with the cartesian product, i. e., that for every

 two c. s. s. complexes A and B

 Ex(A X B) = (Ex A) X (ExB).

 Straightforward computation shows that commutativity holds in the diagram

 E (Ex K)
 ExK - > IX(ExK)

 Ex (EK) eI X iEXK

 Ex(IXK) > (ExI)X(ExK)

 where i is the identity. Hence

 (Ex f') o (eI X iE, K) o E(Ex K) (Ex fi) o (Ex(eK)) Ex(fi o EK) = Ex fe,

 i. e., (Ex fI) o (eI XiE x K): Ex f0, - Ex f1.

 10. Proof of Lemma (3. 2). We shall first investigate the structure

 of ExK.

 A map a: [m] -* [n] was defined as a monotone function. 1W) a

 function g: [m] -+ [n] we shall mean merely a function which thus need
 not be monotone. A permutation 7r: [m] -> [m] is a function which is one-
 to-one onto.
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 ON C. S. S. COMPLEXES. 465

 Let ir: [m] -e [m] be a permutation. Then w induces an automorphism

 I*: AI[m] -e Y[m] as follows. For each map a: [q] -e [m] let er: [q] -e [m]

 be a map and let 46: [q] -e [q] be a permutation such that commutativity

 holds in the diagram

 [q]- > [m]

 Clearly such a map oir and permutation q exist. It is easily seen that

 (a) grT is unique;

 (b) if a is a monomorphism, then so is g";

 (c) if gr lies on Tv then at lies on T7r.

 We now define the automorphism ir': A'[m] A- [m] by

 7r (ro . , or,,) ( .f v ? ).

 Let g: [m] -e [n] be a function. Then C induces a c. s. s. map C':
 &#[m] - A'[n] as follows. There clearly exists a permutation 7r: [m] e+ [m]
 and a unique map a: [mn] -* [n] such that commutativity holds in the

 diagram

 [rnJ

 [m] ~-' [n]

 The c. s. s. map C': A'[m] -> A'[n] is now defined as the composite map

 7r''

 A [7] A[ml A [n]

 It is readily verified that

 (a) the c. s. s. map C' is independent of the choice of the permutation 7r;

 (b) if C is a permutation, then this definition of C' coincides with the

 above one;

 (c) if C is a map, then g'=A'C;

 (d) if t: [1] - [in] is a function, then (CO)' is the composite map;

 Of C'
 2 [I] > A [m] > Y[n]

 2
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 466 DANIEL M. KAN.

 Ex K is a c. s. s. complex. This means that for every n-simplex a E Ex K

 and every map ca: [m] -e [n] there is given an m-simplex aa C Ex K Such1 that

 (i) oUn = a where e,o: [n] -+ [n] is the identity;

 (ii) if 8: [1] -e [mi] is a map, then (ax),8 oa(afi).

 Now let a C Ex K be an n-simplex and let g: [m] e-* [n] be a funlction.

 Then the composite map

 Y [M] -- > Y[n] K

 is an m-simplex of Ex K which will be denoted by at. If 6: [1] [m] is
 also a function, then clearly (ar) =a (tO). Thus Ex K has more structure
 than a c. s. s. complex. It is this additional structure which will be used

 in the proof of Lemma (3.2).

 Proof of Lemma (3. 2). Let AC,& [n] be the subcomplex generated
 by the non-degenerate (n - 1) -simplices ? , S'l,ek+1< ,en and let

 A: A --Ex K be the c.s.s. map such that Aes Ti. Then we must define a

 c. s. s. map p: A'[n] -* Ex K such that for each i =, k commutativity holds
 in the diagram

 Al In- 1 ]Y '[n]

 (10.1) 8[n-J ExRK

 For each simplex (So, . . . , Oq) C A'[n] define a function g(go< o . , aq)

 [q] -e [n] by
 t(go> O,aq)(i) =a(dima.r), a7Sek or e,n

 c (go., vq) (i) IC., ae =--@ c*or c,,.

 Then there exists a permutation 4: [q] -> [q] and a unique map a: [q] -* [n]

 such that commutativity holds in the diagram

 [q]

 I 4 [] (ao) * Q)

 tq] ) [nI
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 ON C. S. S. COMPLEXES. 467

 It is easily seen that cr E A. We now define p , = (As)+. It may

 be verified by direct computation that this definition is independent of the

 choice of the permutation 4.

 We now show that the function p: '[n] -->Ex K so defined is a c. s. s.

 map. Let 3: [p] -+ [q] be a map. Then there exists a permutation 0:
 [p] -4 [p] and a unique map y: [p] -e [q] such that commutativity holds
 in the diagram

 [P] - [q]

 [PI [q] - [n]

 The function ((a,,, ,,o),8) is the composite function

 A t~~~(Uo,~ . . *, ) q)
 [P]I -> q] -qn]

 and consequently p ( (Tao, * , aq),i) (A (cry) )q. As commutativity also
 holds in the diagram

 A,

 A'[p ] > ']

 A [P] A'[q] qK
 it follows that

 A(9ry))i,b AU ?0',y&? '=AO' ? r4',-A' ((a) 7r) P

 i. e., the function p: A'[n] -+ ExK is a c. s. s. map.

 It thus remains to show that commutativity holds in diagram (10. 1).

 Let (T0, .* *,Tq) E A'[n I]. Then

 AY? (70o * * - T q) -- (C'T70, e rq)

 If i 7 c., then clearly S7J # S and rTj #p en for all j and it follows from the
 definitions of the maps p and 8 [n] that
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 468 DANIEL M. KAN.

 Application of Lemma (2. 2) now yields

 (poAC') (T0, *, * Tq) (XoAEi oS[n-f1] ) (ro, 7.Tq).

 This completes the proof.

 11. Proof of Lemma (3. 4). Let k be an integer with 0<k ic<n, let

 Ton * * * n Tk,-j Tk+i, * * * n E Ex K be n (n - 1)-simplices such that TriS1 -ri
 for i < j and i k 7# j and let p E ExL be an n-simplex such that (Exf)Ts

 psi for i =--, , *k, ,n. Then in order to prove the first part of

 Lemma (3. 4) we must show that there exists a c. s. s. map r: Y'[n] -e K

 such that for each integer i , k commutativity holds in the diagram

 '[n I] --K

 (I1. ) ^te~~~~Yi /T f

 -l[n L

 For each simplex (ao, , orq) E A'[n] for which there exists an integer

 i#7k and a simplex (aoi, ,aqi) A'[n -1] such that AYci(woi, . rgi)
 -(cfo, * orq) define

 T(47oo *,orq) .T (Oo,< v q

 This definition is independent of the choice of i. If j is another such

 integer and i < j then there exists a simplex (ao", * q*j*, Eq)E '[n-2]
 such that A''1 ( * *, o_ii) -(O ** aqa) and ACt'(oi, Crq'U)

 Hence

 ((?o4. . . T (A'S-' (0.0, * aqqJ) ) Ti1 .j- (a0io, * - * aqij)

 T> sij * fij) nt ij (soi *** qij) ) j (0, n 2?2)

 It is readily verified that the function T so defined on all simplices of Y'[n]
 which are in the image of A'[n- 1] under a map A'Y with iOk #c, (i. e., those

 simplices (aO, , oq) E A'[n] for which crq + c,e or e"), commutes with all
 operators f8: [p] -* [q] and is such that commutativity holds in the upper

 left triangle of diagram (11. 1).

 It thus remains to show that T can be extended over all of A'[n] (i. e.,

 over the simplices (o, . * *aq) E A"[n] for which orq X= or S') to a c. s. s.
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 ON C. B.S. COMPLEXES. 469

 map in such a manner that commutativity also holds in the lower right

 triangle of diagram (11. 1). For each non-degenerate simplex (aTo,. a,7q)
 with aq=-=e, let T(co, , o) denote the triple (1,m,q) where I is the
 smallest integer such that cr (i) = k for some i and m = dima . Order these

 triples lexicographically. It is readily verified that

 (i) if T(oro, *, aq) = (I,m,q) and dim.1 <rm -1 or I-0,m >0,

 then there exists a simplex (ao) - E+) E A'[n] such that ( -O', ,q+i) E
 -(ao * * * , aq) and T(oro'y * *,q+) = (1, m -1, q + 1) < (1, m, q).

 (ii) if T(o!o,. , *O) =(I, m, q) and dim a,, m -1, I < q or
 I =m =0, then (a) T(( O(*o, * ,aq)E4) < (1,rn,q) for il1, q, (b) a,q_-i'k
 and hence r( (oro, *(Tq)eql) has already been defined, (c) T(r((To, (rq)E)
 > (1, m, q) and (d) if T(ao' * _q') < (1, m, q), then (oo,* aq) 1 is not
 a face of ((ro',* ,Orq').

 (iii) if T((o, *,(Tq) (q, n, q) and dim =l - n -1, then (a)

 T((ro., * - * qaq)eS) < (q, n, q) for i =, q, (b) q-r 1 ek and (c) if T(Tro'* , uq')
 _ (q,n,q), then (aoy , aq-1) is not a face of ( -o', * aq ).

 We now extend T as follows. Let (1, m, q) be a triple and suppose that

 Thas already been extended over all non-degenerate simplices (ro,. * *; aqi (en)

 and their faces for which T((o, * , fq-1C) < (1, m, q) and over some non-
 degenerate simplices ((o, , aq1, ,_n) and their faces for which T (aO,

 Oq- n) =-- (1, m, q) in such a manner that T commutes with all face operators
 and that commutativity holds in the lower right triangle of diagram (11. 1).

 Let ((o, , rq-1, fn) be a non-degenerate simplex such that T((To, q * * * Cr1l, Cn)

 - (1, m, q) and on which T has not yet been defined. It then follows from

 (i) that dim-a1 n -1 or 1= m 0 and from (ii) or (iii) that T already

 has been defined on all faces of ( -ro, . , Cr-1 n) except (ao, , i En)el.
 Because f is a fibre map there exists a q-simplex 0 E K such that

 f} (a0, n (Tq-1" en ) 2-- fon T ( (ao, * a fq-lp fn ) {i') #>Ei ( i 7&/- k) .

 Now define

 T (a*o, * aq-1, f1t)- 1 T ( (00,. , eq-l, e)C1) _

 It is readily verified that the function T so extended commutes with all face

 operators and is such that commutativity holds in the lower right triangle

 of diagram (11.1). Thus using induction on the triples (1,m,q) T may be

 extended over all non-degenerate simplices (a,,, ,2_, e,) E A'[n] and their
 faces. As every non-degenerate simplex (aoT,* c -,e S) C A'[n] is a face
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 470 DANIEL M. KAN.

 of a non-degenerate simplex (ao, eq c nk ) it follows that r may -be
 extended over all non-degenerate simplices of A'[n] in such a manner that v

 commutes with all face operators and that commutativity holds in diagram

 (11. 1). Extensions of X over the degenerate simplices of A'[n] (which is

 always possible in a unique way) now yields the desired c. s. s. map r:

 A [n] ->K.
 The second part of Lemma (3.4) is obvious.

 12. Proof of Lemma (3. 6). We shall use the theory of acyclic models

 of Eilenberg-MacLane (see [1]). The models will be the complexes A[n]

 and A'[n]. Let C.: A --- & be the augmented chain functor. As the map
 eK: K - Ex K induces a one-to-one correspondence between the 0-simplices

 of K and those of Ex K it is sufficient to prove that

 (a) the functor C.: A6 -> O is representable in dimensioii > 0,
 Ex Ca

 (b) the composite functor A - A - + O is representable in

 dimension > 0, and

 (c) for every integer n>_ 0,

 H* (A [n] ) ==H* (ExA [n] ) 0, H* (A'[n] H* (ExA'[n]) = 0.

 Let K E A, for every n-simplex a E K let 4a,: A [n] -* K be the unique

 c. s. s. map such that qbaa- = for all a E A [n] and let en' be the generator

 of C,A[n] corresponding to the identity map En: [n] -> [n], i.e., the only
 non-degenerate n-simplex of A [n]. Then it is easily seen that the function

 (+ (fnl,') yields a representation of the functor 0a.
 Let KE A, let T: A'[n] -K be an n-simplex of ExK and let I.' be

 the generator of CaEx A'[n] corresponding with the identity map ,,: A'[n]

 -> A' [n]. Then it is easily seen that the function r- (T, tn') yields a repre-

 sentation of the functor C.Ex.
 For every integer nO the (unique) map A[n] - [0] is a homotopy

 equivalence in A. Combining this with Lemma (3. 1) and the fact that

 A[0] ExA[0] and H*(A[0]) - we get H*(A[n]) H*(ExA[n])=O.
 If for each integer n > 0 the map 8 [n]: A'[n] -->A [n] is a homotopy

 equivalence, then H* (A'[nj) H1* (A [n] = 0, and Lemma (3. 1) implies
 H*(ExA'[n]) H*(ExA[n]) 0. It thus remains to show that 8[n] is

 a homotopy equivalence.

 For each integer i with 0 ? i ? n let fli: [i] - [n] be the niap given
 by j8i(j) =j, 0?j?i. Define a function S'[n]: A[n]->A'[n] *by 8[n]>

 (/3r(o)y . ,3a(q)) dim r =- q. As for every map a: rp] -- [ql,
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 ON C. S. S. COMPLEXES. 471

 (Vt[n]C) tX(pa0,(o)) * * yl a(q) ax- (,83av(o) I * * * , flaai(p) )8 n a

 it follows that 8'[n] is a c. s. s. map. The composite map

 8'[n] 8[n]

 -> An [n] - A[n]

 is the identity because for E a [n] and 0 ? i.? dim a

 (S[n]8'[n]a) (i) = /38a() (a(i)) = a(i).

 It thus remains to prove that the composite map

 8[n]
 A'[n] - * A[n] -> [n]

 is homotopic with the identity t.: ' [n] -*A'[n].
 For each simplex a EA[n], let a- 7a(dlmc(). Define a function h:

 A [1] X A[n] - At[n] by

 h ( **q-1 ( IO * ag) ) (

 h .*q-1, (OO, * ,o q) )=_ (O, * .q))

 h ( o .1-s0...v-n(,0 * *, rq) ) (.Oo) a,, a, +1) . . .

 A straightforward computation shows that the function h so defined is a

 c. s. s. map. It is now easily verified that h is the required homotopy.

 13. Proof of Lemma (3. 7). Use will be made of the following c. s. s.

 analogues of two theorems of J. H. C. Whitehead ([10]).

 THEOREM (13. 1). Let K, L E AB be conntected and let 4 E K be a

 0-simplex. Then a c. s. s. map f: K -* L is a homotopy equivalence if and

 only if f induces isonmorphisms of all homotopy groups, i.e., f*: 7r.(K;S5)
 7rtn(L ;fo)), it _ 1.

 THEOREM (13. 2). Let K, L E AE be simply connected. Then a c. s. s.
 map f: K->L is a homotopy equivalence if and only if f induces isomor-

 phisms of all homology groups, i. e., f*: H* (K) - HH* (L).

 We also need the following lemma

 LEMMA (13. 3). Let K E AE and let 4 c K be a 0-simplex. Then

 (eK)*: r1(K;4.) ir,1(ExK; (eK)4().

 Proof of Lemma (3. 7). In this proof we shall freely use the results

 of [9] Clearly K may be supposed to be minimal. Let 7r 7r1(K). Then
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 472 DANIEL M. YAN.

 there exists a fibre map p: K -- K (ir, 1) with simply connected fibre F.
 Let q: F - K be the inclusion map, then it follows from the naturality of e

 that commutativity holds in the diagram

 q p
 F K K - > K(7r, 1)

 eF EeK ExpK{e(K(r1))
 NV Exq 'V Exp v

 Ex F - Ex K--- ExK(7r, 1)

 By Lemma (3.4) Ex p is a fibre map with Ex F as a fibre. Hence in order

 to prove that eK is a homotopy equivalence it is, in view of the exactness

 of the homotopy sequence of a fibre map, the "five lemma" and Theorem

 (13. 1), sufficient to prove that eF and e(K(ir, 1)) are homotopy equivalences.

 As F is simply connected, so is ExF (Lemma (13.3)). Hence it

 follows from Lemma (3.6) and Theorem (13.2) that eF is a homotopy

 equivalence.

 There exists a fibre map t: W (K(7r, 0) ) K(7r, 1) with K(7r, 0) as fibre
 and, as above, in order to prove that e (K(.r, 1)) is a homotopy equivalence

 it suffices to prove that e(W(K(7r, O))) and e(K(7r, O)) are so. As W(K(r., O))

 is contractible and a fortiori simply connected the argument applied to F

 yields that e(W(K(7r,O))) is a homotopy equivalence. It is also readily

 verified that e (K (7r, 0) ) is an isomorphism. Hence e (K (r, 1) ) is a homotopy

 equivalence.

 This completes the proof of Lemma (3. 7).

 Proof of Lemmia (13. 3). For a definitionl of the fundamenital group

 see [9].

 Let -aE A [n] be a non-degenerate q-simplex, i. e., the map a: [q] -- [n]
 is a monomorphism. Then a is completely determined by the set (a (0), -

 .a(q)), the image of [q] under a. We shall often write (or(O), . (q))
 instead of a.

 We first prove that (eK)*: 7r1(K;4,) -4'r1(ExK; (eK)q,) is a mono-
 mofrphism. Let a E iri(K ; 4) be such that (eK) *a =1 and let r E a. Then
 there exists a 2-simplex p E Ex K such that pee-(eK)r and pe?0 =e

 =- (eK) 4orq0. Iterated application of the extension condition yields 4 3-
 simplices T17 rn, T2, T4 K K such that

 T1L1 = p((l), (O 1), (0, 1, 2)); T1E2 p((l), (1, 2), (O, 1, 2)); T 1C3- =

 T2(0 7T14E; T2f2 =-p((2), (l, 2), (O, , 2)); T2(3 = s4v7n
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 ON C. S. S. COMPLEXES. 473

 T3C -- T2C1; Taf2 =p((2), (0, 2), (0, 1, 2)); T83C _ 40?10

 T4f Tf ; T,c -p((0), (0, 1), (O, 1, 2)); T42 p((O), (O, 2), (0, 1, 2)).

 Then

 tie3I0 t4E0C2 0Tat0a2 _8E3 C0 0-

 T C1 rT&E2 ==p((o), (0 1)) -a

 T4CC2 E2 = p((O), (0, 2)) = 0

 Consequently a=-1.

 We now show that (ek)*: 7r1(K; 7)-'r1(ExK; (eK)#) is an epi-

 morphism. Let vfrE bE 7r1(ExK; (eK)>:). Define a c.s. s. map p:A' [2] -+K
 by p((0), (0, 1))-+((0), (02 1)), p((j), (O., 1)) - (j1) (O, 1)),

 p((l), (1, 2), (0, 1,2)) = p((2), (0, 2), (0, 1, 2)) = p((2), (1, 2), (0, 1, 2)) = O?X7?,

 and extend p over ((0), (0, 1), (0, 1, 2)), ((0), (0, 2), (0, 1, 2)) and ((1), (0, 1),
 (0, 1, 2)) by iterated application of the extension condition. Then

 pC' = (eK) OnO, p' = (eK)p((O), (0, 2)), pC2 =_

 Consequently there exists an element a C 7r1 (K, 4) such that p((O), (0, 2)) E a
 and (eK)*a=-b.

 14. Proof of Theorem (4. 6). Clearly K may suppose to be connected.

 Let 4)E Ex' K be a 0-simplex, then in view of Theorem (13. 1) it suffices

 to prove that f*: 7rn(Ex K;4) -r(Ex- K;f4) for all n_ 1. We shall
 only give a proof for n 1. The proof for n > 1 is similar although more
 complicated.

 Let a C 7ru1(Ex K;) and let T be a representant of a. Suppose there
 exists a 2-simplex p C Ex- K such that

 (14.1) pe0 TC070, P 1 p T P2 =fT.

 Then clearly f*a a. Hence it suffices to show that for every 1-simplex
 T C Ex, K there exists a 2-simplex p C Ex- K satisfying condition (14. 1).

 Let T C Ex- K be a 1-simplex and let n be the smallest integer n ? 0
 such that T- (q, n) (by r= (q,0) we mean T= (elK) /). If n 0, then
 by hypothesis p = -r71 is the desired 2-simplex. Now suppose it has already

 been proved that if n < m, then there exists a 2-simplex p satisfying (14. la).
 Then we must show that this is also the case if n = m.

 Define, using the notation of Section 13, a 2-simplex i C Exn K as
 follows.
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 474 DANIEL M. KAN.

 0((O), (O, 1), (0, 1, 2)) = O((0), (0, 2), (0 1, 2)) - ((0), (0, 1))V1

 6((I), (O., 1), (02 1, 2))-@ ((1), (12 2), (02 12 2)) - ((1)1 (O., 1)3nv

 O((2), (0, 2), (0, 1, 2)) =- ((2), (1, 2), (0, 1, 2)) = ((0, 1))qOl.

 Then it is readily verified that

 tiO = (e(Exn-1 K))q((1), (0, 1)), Ocl = (e(Ex-1 K))i((0), (0, 1)), te2

 By the induction hypothesis there exist 2-simplices po,, p E Exl K such that

 Poo0 (( (0, 1) )70,n n1), poe' (OE,n), poE2 =f( 0, n)

 p =(Jfr( (0, 1) )qO, n - 1), P'(l n), p.E2 = f(OJ', n).

 Application of the extension condition then yields 3-simplices K, A E Exc K
 such that

 KE0 =pOy KMl =p, KXE3 f(O, n),

 XEo _- (9E,10, n), Ae' - (0, n), XE2 = XE2.

 It then follows by direct computation that AO is the desired 2-simplex, i.e.,

 AE3E0 _ TE0V)0, AE3Ee T= XE3E2 fr.

 15. Proof of Lemma (5. 7). Consider the commutative diagram

 QK
 QrK

 rQKt I qK
 RQK K QRK

 RK 1rK qRK

 RK

 It follows from Definition (5. ib) that the maps rQK and qRK are homotopy

 equivalences. Let aK (resp. /3K) be a homotopy inverse of rQK (resp. qRK).
 Then the following diagram is commutative up to homotopy

 QK

 I \ QrK
 a~K I qK

 RQK K QRK
 * RqK j rK /

 RK
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 ON C. S. S. COMPLEXES. 475

 i. e., qK ^aK o RqK o rK and rK /fK o QrK o qK. Consequently

 qKcX (aK o RqK) o (K o QrK) o qK,

 rKB (/3ICo QrK) o (aK o RqK) o rK.

 Application of the homotopy extension theorem (which holds for objects of

 A,; see [9]) yields c.s.s. maps s: QK-QK, t: RK -*RK such that

 8s (KoKRqK) o(PKoKQrK), t- (,3KoQrK) o (KoRqK)
 and

 s (qK) o f (qK) a. t (rK) a = (rK7)a

 for every simplex -a E K. It then follows from condition (5. lc) that s and t

 are homotopy equivalences. Thus aK o RqK and /K o QrK are homotopy

 equivalences and because cK and /K are also homotopy equivalences, so are

 RqK and QrK.

 16. Proof of Lemma (8. 4). Let iE. L: L -* Ex L be the idenitity map
 and let pL -= 3E L Consider the diagram

 jKj~~~ IdKI

 / Sdhl

 / saeLI
 )hI 1SdEx L L I- SdL L

 dExLj L dLI

 I Ex Lj I IeLI Lf

 In view of the naturality of d commutativity holds in the upper left triangle

 and the trapezium and because of the naturality of /8 and the fact that
 (Lemma (7.2)) dL (eL), commutativity also holds in both triangles

 which have I ,1 as lower edge. It follows from Lemma (7.4) and (7.5)
 that the maps I dL 1, I eL I and d ExL I are homotopy equivalences. The
 commutativity in the trapezium and the smallest triangle involving I PL I
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 476 DANIEL M. KAN.

 therefore implies that the maps I Sd eL I and 1,FL I are also homotopy equiva-
 lences. Consequently the lower triangle is commutative up to homotopy and

 I h 1o 0 dKI = IdExL o Sdh IeLI o I L I o Sdh I eL I oI-lh .

 THE WEIZMANN INSTITUTE OF SCIENCE, REHOVOTH, ISRAEL

 COLUMBIA UNIVERSITY, NEW YORK, N. Y.
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