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ON c.s.s. COMPLEXES.*

By DaxNierL M. Kanw.

1, Introduction. It was indicated in [3] how the usual notions of
homotopy theory may be defined for cubical complexes which satisfy a certain
extension condition. In the same manner (see [9]) these notions may be
defined for complete semi-simplicial (c.s.s.) complexes which satisfy the
following c.s.s. version of the extension condition. The notation used will
be that of [2] except that the face and degeneracy operators will be denoted
by €t and %/ (instead of e,¢ and #,7).

Definition (1.1). A c.s.s. complex K is said to satisfy the extension
condition if for every pair of integers (k,n) with 0 =%k =n and for every
n (n—1)-simplices ao,* * *, 01, 0ks1," * *,00 € K such that o/ =ojet for
t<j and i5£k~j, there exists an n-simplex o € K such that gt =o; for
i=0, - k-, n

Let B be the category of c.s.s. complexes and c.s.s. maps and let dg
be its full subcategory generated by the c.s.s. complexes which satisfy the
extension condition.

Many interesting c.s.s. complexes do not satisty the extension con-
dition; for example the finite c.s.s. complexes (finite = with only a finite
number of non-degenerate simplices). The definitions of some homotopy
notions, such as the homology groups, apply to all c.s.s. complexes, but the
definition of the homotopy groups of [9], for instance, cannot be carried
over to c.s.s. complexes which are not in Jp.

In order to extend the definitions of all homotopy notions defined on
the category dx to the whole category & one needs what will be called an
H-pair, i.e., a pair (@, q) consisting of

(1) a functor Q: 3 - Bg,
(ii) a natural transformation ¢: E— @ (where E: 4 —> & denotes
the identity functor), satisfying the following conditions:

(a) The functor © maps homotopic maps into homotopic maps.
(b) Let K€ &z, then the map ¢K: K— QK is a homotopy equivalence.

* Received September 20, 1956.
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450 DANIEL M. KAN.

(¢) Let K€ & and let f: QK — QK be a map such that commutativity

holds in the diagram
QK
y

K f

K
\QK

Then f is a homotopy equivalence.

In view of condition (a) every homotopy notion on the category J&
yields by composition with the functor ¢ a homotopy notion on the whole
category 4. Condition (b) implies that on the category 3z the homotopy
notions induced by the functor @ coincide with the original ones. Condition
(c) essentially ensures the uniqueness of the homotopy notions induced by
Q@; if (R,r) is another H-pair, then ¢ and B induce the same homotopy
notions. In particular QK and RK have the same homotopy type, even if
K does not satisfy the extension condition.

An example of an H-pair is the following. Let S| |: 8 — J& be the
functor which assigns to a c.s.s. complex K the simplicial singular complex
S| K| of the geometrical realization | K| of K and let j: E— | | be the
natural transformation which assigns to a c.s.s. complex K the natural
embedding jK: K— 8| K |. Then it is readily seen that the pair (S| |,7)
is an H-pair.

Although the existence of an H-pair is sufficient in order to do homotopy
theory on the whole category &, it is sometimes convenient to have an
H-pair which (unlike the pair (S| |,7)) may be defined in terms of c.s.s.
complexes and c.s.s. maps only. Such an H-pair (Ex*,e®) will be defined
in this paper. A useful property of the functor Ex*: 8 — 5 is that it
preserves fibre maps.

The main tool used in the definition of the functor Ex* is what we
call the extension ExK of a c.s.s. complex K, which is in a certain sense
dual to the subdivision SA K of K. More precisely: let K and L be c.s.s.
complexes, then there exists (in a natural way) a one-fo-one correspondence
between the c.s.s. maps Sd K — L and the c.s.s. maps K— ExL. In the
terminology of [6] this means that the functor Ex is a right adjoint of the
functor Sd.

The simplicial approximation theorem may be generalized to c.s.s. com-
plexes roughly as follows: let K,L€ 8, K finite, then every continuous
map f: | K |—> | L| is homotopic with the geometrical realization of a c.s.s.
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ON C.S.S8. COMPLEXES. 451

map g: Sd"K— L for some n. Using the adjointness of the functors Sd
and Ex a dual theorem may be obtained which involves a c.s.s. map
h: K— Ex" L instead of g: Sd"K — L. This dual theorem may be streng-
thened as follows: let K€ 3 and L€ B35, then every continuous map f:
| K|—|L| is homotopic with the geometrical realization of a c.s.s. map
h: K— L. 1t is essentially because of this property that, as far as homotopy
theory is concerned, the c.s.s. complexes which satisfy the extension condition
“behave like topological spaces.”

The paper is divided into two chapters. In Chapter I the definitions
and results are stated; most of the proofs are given in Chapter II.

The results of this paper were announced in [5].

Chapter I. Definitions and results.

2. The standard simplices and their subdivision. For each integer
n=0 let [n] denote the ordered set (0,- - -,n). By a map a:[m]— [n]
we mean a monotone function, i.e., a function such that «(z) =a(j) for
I=i=j=m

For each integer n = 0 the stundard n-simplex A[n] is the c.s.s. eom-
plex defined as follows. A g-simplex of A[n] is a map ¢:[g] = [n]. For
each map B:[p]— [¢q] the p-simplex ¢f is defined as the composite map

B o
[p] — [g] —> [n].

For each map a:[m]—> [n] let Aa: A[m]—> A[n] be the c.s.s. map
which assigns to a g-simplex r€ A[m] the composite map

T «
l¢] —> [m] — [n].

The subdivision of A [n] is the c.s.s. complex A’[n] defined as follows.
A g-simplex of A’[n] is a sequence (oo, - -,0,) Where the o, are non-
degenerate simplices of A[n] (i.e., the map o;: [dimo;] — [n] is a mono-
morphism) and o; lies on o4, (i.e.. oy=03.a for some a) for all ¢. For
each map B: [p] — [¢] we have (o0," - *,0¢) 8= (dp(0)," * ", 08m)-

The subdivision of Aa is the c.s.s. map A’a: A’[m]— A’[n] given by
Aa(ry, * *,7q) = (00," * *,04), Where o; is the unique non-degenerate sim-
plex of A[n] for which (see [2]) there exist an epimorphism v;: [dim =;]
— [dim ;] such that commutativity holds in the diagram
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452 DANIEL M. KAN.

[dim =] _n—) [m]

(2. 1) Yi [+

[dim a;] _w__) [n]

For each integer n =0 let 8[n]: A’[n] — A[n] be the c.s.s. map which
assigns to a g¢-simplex (oo,* - *,04) € A’[n] the g-simplex ¢ € A[n], i.e., the
map o: [g] = [n], given by o(¢{) =0i(dimo;), 0=0i=gq.

LeMMma (2.2). For each map a:[m]— [n] commutativity holds in the
diagram

Aa
A[m] ———— A[n]
(2.2a) 3[m] 8[n]
Aa

A[m] ————— A'[n]

Proof. It follows from the definitions that for every g-simplex
(705 * *,7¢) € A’[m] and each integer ¢ with 0 =i=g,

(Aaod[m])(ro," - +,7g)(4) = amy(dim 7y),
(8[”‘] ° A’a)(ﬂb ] Tq)(") = S[n] (00, - - 0'(1)(":) = "'i(.dim 0’5),

where o; is the unique non-degenerate simplex of A[n] for which there exists
an epimorphism y; such that commutativity holds in diagram (2.1). Because
vi is onto,

ar;(dim Ti) = oi'y,-(dim ri) = o'i(dim o’i).

Hence commutativity holds in diagram (2.2a).

3. The extension of a c.s.s. complex. The extension of a c.s.s. com-
plex K is the c.s.s. complex Ex K defined as follows. An n-simplex of Ex K
is a c.s.s. map o: A’[n] > K. For each map a:[m]— [n] the m-simplex
oa is the composite map

Aa I
A'[m] A'[n] K.

Similarly the extension of a c.s.s. map f: K— L is the c.s.s. map Exf:
Ex K — Ex L which assigns to every n-simplex o€ Ex K the composite map

o
AN[n]——> K——L.
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ON C.8.8. COMPLEXES. 453

Clearly the function Ex so defined is a covariant functor Ex: 8 — 3.
By Ex* we shall mean the functor Ex applied n times.

For c.s.s. complex K define a monomorphism eK : K — Ex K as follows.
For every n-simplex o€ K, (¢K)o is the composite map

8[n] b0
A’[n] —— A[n] K,

where ¢o: A[n] = K is the unique map such that ¢ox =oa for all a€ A[n].
It follows from Lemma (2.2) that the function e is a natural transformation
¢: F— Ex (where E: 34— 3 denotes the identity functor), i.e., for every
c.s.s. map f: K— L commutativity holds in the diagram

K — L

10K leL
Exf

ExK ——Ex L

We chall denote by ¢"K: K — Ex" K the composite monomorphism

eK e(ExK) e(Ex"*K)

K ExK Ex" K.

Lemma (3.1). The functor Ex: 3 —> 3 maps homotopic maps into
homotopic maps.

The proof will be given in Section 9.

An important property of the functor Ex is that if it is twice applied
to a c.s.s. complex K, then the resulting complex Ex*K partially satisfies
the extension condition; if po,* * *,pr-1,prs1,- - ", pn € Ex*K are n (n—1)-
simplices which “match” and which are in the image of Ex K under the
map e(ExK): ExK — Ex?K, then there exists an n-simplex p € Ex*K (not
necessarily in the image of ExK) such that pef=p; for i%k. An exact
formulation is given in the following lemma.

LevmMa (3.2). Let K€ 8. Then for every pair of integers (k,n) with
0=k =wn and for n (n—1)-simplices ro," * *, i1, Tis1," * *, T € BXK such
that i3 =7jet for 1 < j and ik 5% §, there exists an n-simplex p € Ex* K

n

such that pet = (e(ExK))r, for i=0,- - -, k,- * -,n.

The proof will be given in Section 10.

Another useful property of the functor Ex is that it preserves fibre
maps. This is stated in Lemma (3.4).
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454 DANIEL M. KAN.

Definition (3.3). A c.s.s. map f: K— L is called a fibre map if for
each pair of integers (k,n) with 0 =k =n, for every n (n—1)-simplices
Tos® * *»Thets Theny > 7Tn € K such that meil=rjt for 1< j and i5ks%]
and for every n-simplex p€ L such that pef —fr, for i=0,- - -, k,- - -,m,
there exists an n-simplex 7€ K such that fr==p and ref=r; for ¢=0,- - -,
k- - -,n. Let ¢€ L be a O-simplex. Then the counter image of ¢ and
its degeneracies is called the fibre of f over ¢. It is denoted by F(f,4).

Lemma (3.4). Let f: K—>L be a fibre map and let ¢€L be a
0-simplex. Then Exf: ExK—ExL is a fibre map and Ex(F(f,¢))
=F(Exf, (eL)¢).

The proof will be given in Section 11.

Let f: K— A[0] be a fibre map, then it follows readily from the fact
that A[0] has only one simplex in every dimension that K € 3g. Conversely
K€ dp implies that the (unique) map f: K— A[0] is a fibre map. As
ExA[0] = A[0] Lemma (3.4) thus implies

CoroLLARY (8.5). If K€ B, then ExK € Jg.

The following lemmas relate the homology groups of K and Ex K and,
if K € B, their homotopy types.

Lemma (3.6). Let K€ 3. Then the map eK: K—> ExK induces
isomorphisms of the homology groups, i.e., (eK)y: H (K)<H,(ExK).

The proof will be given in Section 12.

LemMma (3.7). Let K€ 35 Then the map eK: K—> ExK is a homo-
topy equivalence.

The proof will be given in Section 13.

4, The functor Ex~. Let K be a c.s.s. complex. Consider the sequence

eK e(ExK) e(Ex*K)
K > ExK Ex*K———Ex*K—>- - -

and let Ex* K be the direct limit of this sequence. The n-simplices of
Ex~ K then are the pairs (o,¢q) where ¢€ Ex?K is an n-simplex; two
n-simplices (0,9) and (7,p+ ¢) are considered equal if and only if
(e#(Ex?K))o=r. For each map a:[m]— [n], (o, ¢)a = (09, ¢). Similarly
for a c.s.s. map f: K— L let Ex* f: Ex® K— Ex® L be the induced map
given by f (o, q) = (fo, q). Clearly the function Ex* so defined is a covariant
functor.

This content downloaded from
128.151.124.135 on Tue, 17 Aug 2021 10:22:03 UTC
All use subject to https://about.jstor.org/terms



ON C.S8.8. COMPLEXES. 455

For a c.s.s. complex K denote by e K: K~ Ex* K the limit mono-
morphism

eK e(ExK)
K > Ex K - ->Ex*K

i.e, (e*K)o= ((eK)o,1) for every simplex o€ K. Naturality of the
function e follows immediately from the naturality of e.

TuEOREM (4.1). The functor Ex® maps homotopic maps into homo-
topic maps.

The proof is similar to that of Lemma (3.1) (see Section 9), using
Ex* and e* instead of Ex and e.

An important property of the functor Ex= is:

TurorEM (4.2). Ex* K€ dg for all objects K€ 8, i.e, Ex® is a
functor E*: 8> B 5.

This follows immediately from Lemma (3.2) and the definition of Ex*.
Another useful property of the functor Ex® is that it preserves fibre
maps.

TarEOREM (4.3). Let f: K— L be a fibre map and let ¢€ L be a
0-simplex. Then Ex* f: Ex® K— Ex* L is a fibre map and Ex= (F(f,¢))
=F(Ex®f, (e~ L)¢).

This follows immediately from Lemma (3.4).
We shall now relate the homology groups of K and Ex* K and, if K € Sg,
their homotopy types.

THEOREM (4.4). Let K€ 8. Then the map e® K: K — Ex* K induces
isomorphisms of the homology groups, i.e., (¢ K),: Hy(K) = H,(Ex* K).

This follows immediately from Lemma (3.6).

Similarly, Lemma (3.7) implies.

TueoREM (4.5). Let K€ 5. Then the map eK: K—>Ex* K is a
homotopy equivalence.

Let K be a c.s.s. complex which does not satisfy the extension condition.
Then the homotopy type of Ex* K cannot be related to the homotopy type
of K because the latter has (not yet) been defined. However the homotopy
type of Ex* K may be related to K as follows:
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456 DANIEL M. KAN.

THEOREM (4.6). Let K€ B and let f: Ex* K—>Ex* K be a c.s.s.
map such that commutativity holds in the diagram

Ex* K
K
K f
K
Ex* K

Then f is a homotopy equivalence.

The proof will be given in Section 14.

5. Homotopy notions induced on 3.

Definition (5.1). A pair (Q,q) where @: d—> 35 is a covariant
functor and ¢: E— @ a natural transformation (F denotes the identity
functor E: 3 —> d), is called an H-pair if the following conditions are
satisfied.

(a) The functor Q: 3 — Br maps homotopic maps into homotopic maps
(b) Let K € 3g. Then the map ¢K : K — QK is a homotopy equivalence

(¢) Let K€ & and let f: QK — QK be a c.s.s. map such that com-
mutativity holds in the diagram

QK
y’

K f

T

Then f is a homotopy equivalence.

QK

Example (5.2). The pair (Ex=,e*) is an H-pair; this follows directly
from Theorems (4.1), (4.5) and (4.6).

A more exact formulation of the statements about H-pairs made in
the introduction will be given in Theorems (5.4), (5.5) and (5.8).

Definition (5.3). By a homotopy notion on the category & (resp. dr)
with values in a category 4 we mean a functor N: 8 — 2 (resp. N: 35— %)
such that for two maps f,g€ B8 (resp. Bg) f==g implies Nf = Ng.
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ON C.S.S. COMPLEXES. 457

TrHEOREM (5.4). Let N: éE—>3 be a homotopy notion on Bg and
let (@,q) be an H-pair. Then the composite functor
N
33— dr—9
is a homotopy notion on 3.

This is an immediate consequence of condition (5.1a).
Let J: 3r—> & be the inclusion functor and let N: & E—)? be a homo-
topy notion on dz. We then want to compare the composite functor
N
Bp—> 8 — d—9
i.e., the restriction to 3 of the homotopy notion on & induced by the

functor @, with the original homotopy notion N on &z The following
theorem then asserts that these functors differ only by a natural equivalence.

TaEorEM (5.5). Let N: dg—§ be a homotopy notion on Bp and
let (Q,q) be an H-pair. Then the function Ng: N—>NQJ is a natural
equivalence.

This follows immediately from condition (5.1b).

In order to prove the uniqueness of the homotopy notions on & induced
by an H-pair (@, q) we need the following lemma

LemMa (5.6). Let (Q,q) and (R,r) be H-pairs and let K€ 8. Then
the maps QrK : QK — QRK and RqK : RK — RQK are homotopy equivalences.

The proof will be given in Section 15; use will be made of condition
(5.1c).

Let (Q,q) and (RB,r) be H-pairs and consider the following commu-
tative diagram

90K
QK ————— QQK

QK QrQK QqK
JL qRQK ¥
(5.7) RQK —————— QRQK QK
TN Ar
RgK QRgK QrK

gRK
RK ——— QRK
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458 DANIEL M. KAN.

It follows from Lemma (5.6) and condition (5.1b) that all maps involved
in diagram (5.7) are homotopy equivalences; application of a homotopy
notion N: 85— § to this diagram thus yields a diagram in § consisting
only of equivalences. If we put § =R and g =r then it follows from the
commutativity of diagram (5.7) that

(NQgK)™ o NgQK — (NqQK)™ o NQqK o (NQqK)™ o NgQK = ixqx.
Consequently
(NRgK)*o NrQK = (NqRK) o NQrK o (NQqK)* o NqQK
= (NgRK)*oNQrK.

Hence the following uniqueness theorem holds.

TrrorEM (5.8). Let N: dg—> § be a homotopy notion on Bz and
let (Q,q) and (RB,r) be H-pairs. Then the function h: NQ — NR given by

hK = (NRqK)" o NrQK — (NgRK)" o NQrK

is a natural equivalence.

6. The simplicial singular complex of the geometrical realization. We
shall now use the results of Section 5 in order to compare the simplicial
singular complex of the geometrical realization of a c.s.s. complex A with
Ex= K.

Let @ be the category of topological spaces and continuous maps and
let ||: 3> be the geometrical realization functor which assigns to a
c.s.s. complex K its geometrical realization | K | in the sense of J. Milnor
(see [8]); | K| is a CW-complex of which the n-cells are in one-to-one
correspondence with the non-degenerate n-simplices of K.

Let S: @ — 35 be the simplicial singular functor which assigns to a
topological space X its simplicial singular complex SX (see [2]); an =n-
simplex of SX is any continuous map o:|A[n]|—>X and for every map
a:[m]— [n] the n-simplex oa is the composite map

Aal o
|a[m]| —— | Aln]}—— X.

The functor § maps homotopic maps into homotopic maps.

For every c.s.s. complex K let jK: K— S| K | be the natural mono-
morphism which assigns to an n-simplex ¢ € K the simplex |¢o|:|A[n]]
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ON cC.8.8. COMPLEXES. 459

— | K| of S| K|, where ¢o: A[n] — K is the unique c.s.s. map such that
¢oa =aa for all a€ A[n].
The following results are due to J. Milnor ([8]).

THEOREM (6.1). The functor | |: 3 — @ maps homotopic maps into
homotopic maps.

COROLLARY (6.2). The functor S| |: 8 > g maps homotopic maps
into homotopic maps.

TurorEM (6.3). Let K€ 3g. Then the map jK: K—>S8|K| is o
homotopy equivalence.

It is also readily verified that

THEOREM (6.4). Let K€ &8 andlet f: S|K|—> 8| K| be a c.s.s. map
such that commutativity holds in the diagram

e

K f

}\‘
S|K|

Then f is a homotopy equivalence.

It follows from Corollary (6.2) and Theorems (6.3) and (6.4) that
the pair (S| |,j) is an H-pair. Application of Lemma (5.6) and Theorem
(5.8) now yields

LemMMa (6.5). Let K€ 8. Then the maps

S|jK|:8|K|->8|S|K|, S|e*K|:8|K|->8|Ex*K|,

Ex* jK: Ex*K—>Ex*S§|K|, Ex?e*K:Ex*K—>Ex*Ex*K
are homotopy equivalences.

TraEoREM (6.6). Let N: 35— % be a homotopy notion on Bg. Then
the function h: N Ex>—> NS | | given by

hK — (NS|e* K|)*oNjEx* K= (Ne* S| K |)oNEx* jK
s a natural equivalence.

Theorem (6.6) asserts that the homotopy notions on & induced by the

This content downloaded from
128.151.124.135 on Tue, 17 Aug 2021 10:22:03 UTC
All use subject to https://about.jstor.org/terms



460 DANIEL M. KAN.

functor Ex® are equivalent with these induced by the functor §| |. In
particular we have

COROLLARY (6.7). Let K€ S. Then Ex* K and S|K| have the
same homotopy type.

7. Extension and subdivision. The subdivision of a c.s.s. complex K
is a c.s.s. complex Sd K defined as follows. Let K denote the c.s.s. com-
plex of which the g-simplices are pairs (o,£) such that o€ K, £€ A’[dim o]
and dim ¢ = g, while for a map y: [p] — [¢] the p-simplex (o,&)y is given
by (o,é)y=(o,&y). Define a relation on K by calling two simplices
(0, €), (r,p) € K equivalent if there exists a map «:[dimr]— [dime] such
that r=oca and £é¢=A’a(p) and let ~ denote the resulting equivalence
relation. Then Sd K is the collapsed complex Sd K =EK/(~).

A c.s.s. map f: K— L clearly induces a c.s.s. map f: K— L (given
by f(o,£&) = (fo,€)) which is compatible with the relation ~. The sub-
division of f then is defined as the collapsed map Sdf: Sd K — Sd L. Clearly
the function Sd: 8 — B so defined is a covariant functor. By Sd*: 4 — 3
we shall mean the functor Sd applied » times.

The functors Ex and Sd are closely related. With a c.s.s. map f:
Sd K — L we may associate a c.s.s. map Bf: K— ExL as follows. Let
a€ K be an n-simplex and let ¢: E— Sd K be the collapsing map. Then
(Bf)o is the n-simplex of Ex L, i.e., the c.s.s. map (Bf)c: A’[n] — L, given
by ((Bf)o)é= (foc)(o,&). The function B is natural, i.e., for every two
maps a: K> K and b: L—> L'

B(bofoSda) =Exbopgfoua.

An important property of the function 8 is

Lemma (7.1). Let K,L€ 3. Then the function B8 establishes a one-
to-one correspondence between the c.s.s. maps Sd K — L and the c.s.s. maps
K — Ex L.

Lemma (7.1) is an immediate consequence of the results of [7]. Tt
can also be verified by a straightforward computation

For every c.s.s. complex K define an epimorphism dK: K — K as
follows. Let dK: E— K be the map given by

dK (0,¢) = (¢o08[dima])§,
where ¢o: A[dimo] — K is the (unique) map such that ¢oa =2z for all
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@€ A[dimo]. Then dK maps equivalent simplices of K into the same

simplex of K and dK: Sd K — K is defined as the map obtained by collapsing

dK. By d"K: Sd"K —> K we shall mean the composite epimorphism
d(8Sd+* K) dK

Sd" K ——————8d"* K-> - -->SdK——K

It is readily verified that the function d is a natural transformation d:8d— E.
The natural transformations ¢: E— Ex and d: Sd— Z are also closely
related. In fact a simple computation yields

LemMa (7.2). Let K€ 3. Then B(dK) =eK.

Remark (7.3). Lemma (7.1) states that, in the terminology of [6],
the functor Sd is a left adjoint of the functor Ex.

Remark (7.4). The ordered sets [n] and the maps a: [m]— [n]
form a category which will be denoted by Q. The subdivided standard
simplices A’[n] and the maps A’a: A’[m]— A’[n] now may be considered
as the images of the objects [n] and maps a:[m]—> [n] of the category
under a covariant functor A’: Q— 4. It then may be verified that the
functors Sd and Ex may be obtained by the general method of [7], Section 3
by putting 3 =3 and I—=A4"

Let K€ 8. A ¢-simplex of Ex* K is a pair (o,n) where 0 € Ex"K is a
g-simplex. As Ex” K = Ex**(ExK) it follows that the pair (s,n—1) is a
g-simplex of Ex®(ExK). It is readily verified that this correspondence
yields an isomorphism i: Ex®* K — Ex*(ExK) such that commutativity
holds in the diagram

e K
K — > Ex*K
(7.3) leK ](i
e (ExK) :

ExK —— Ex* (Ex K)

In view of Lemma (6.5) the maps S|e® K | and §|e* (ExK)| are homo-
topy equivalences. Consequently the maps |e* K| and |e* (ExK)| are
homotopy equivalences and it follows from the commutativity in diagram
(7.3) that

LevmA (7.4). Let K€ 8. Then the continuous map |eK|: | K|
— | ExK | is a homotopy equivalence.

The following can be shown using standard methoﬂs.
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Lemma (7.5). Let K€ 8. Then the continuous map |dK |: | SdK |
— | K | is a homotopy equivalence.

8. C.s.s. approximation theorems. We shall now give an exact for-
mulation of the c.s.s. approximation theorems mentioned in the introduction.

THEOREM (8.1). Let K€ B and let M€ Sg. Then for every con-
tinuous map f: | K |— | M| there exists a c.s.s. map h: K— M such that

|h]=f.

Let Le 3 and let M =Ex® L. Then Theorem (8.1) implies

CoroLLARY (8.2). Let K,L€ &d. Then for every continuous map
f:|K|—>|L| there exists a c.s.s. map h: K—>Ex* L such that the
diagram

| K| ———| L]
Al J oL |
| Ex= L |

is commutative up to homotopy, i.e., |h|=|e2L|of.

Proof of Theorem (8.1). Let 3M: S|M|— M be a homotopy inverse
of the map jM: M—> S |M|. Consider the diagram '

| K| ——— |8 | K || e——| K|
Jf _ 1!Sf| , llhl
|73 | |73 |
| M | ——— S| M || e—| I} |
where h: K — M is the composite map

iK Sf M
K S|K| S|M|—— M.

Clearly commutativity holds in the rectangle at the left and the definition
of h implies that the rectangle at the right is commutative up to homotopy.
It follows from Lemma (6.6) that the maps S |;K | and S| jM | and there-
fore the maps |jK | and | jM | are homotopy equivalences. Hence |k |==f.

A c.s.s. complex K is called finite if it has only a finite number of
non-degenerate simplices.
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Tueorem (8.3). Let K,L€ 3 and let K be finite. Then for every
continuous map f: |K|—>|L| there exists an integer n >0 and a c.s.s.
map h: K— Ex"L such that the diagram

is commutative up to homotopy, i.e., |h|==]|e*L |of.

Proof. Application of Corollary (8.2) yields a c.s.s. map A’: K
— Ex* L such that |h'|=<|e® L|of. As K is finite only a finite number
of non-degenerate simplices of Ex® L are in the image of K under »’. Hence
there exists an integer n such that the map A’: K — Ex® L may be factorized

h b

K— Ex*,—> Ex* L

where b is the embedding map which assigns to a simplex o€ Ex* L the
simplex (o,n) € Ex* L. By an argument similar to that used in the proof
of Lemma (7.4) it follows that || is a homotopy equivalence. The
theorem now follows from the fact that the map e* L: L — Ex* L may be
factorized
erL b
L— Ex"L— Ex~ L.

In order to obtain the dual theorem, involving the functor Sd instead
of Ex, we need the following lemma

LemmA (8.4). Let K,L€d. Then for every c.s.s. map h: K—ExL
the diagram

K| ——

Ex L |
et i
|87 |
|SdK|———— |L|
is commutative up to homotopy, i.e., |eL |o|Bh|=|h|o|dK |.

The proof will be given in Section 16.
Applying Lemma (8.4) n times to Theorem (8.3) we get
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TuroreM (8.5). Let K,L€ & and let K be finite. Then for every
continuous map f: | K |— | L | there exists an integer n > 0 and a c.s.s. map
g: Sd"K — L such that the diagram

| K || L]
]ldwl/gl
|Sd"K |

is commutative up to homotopy, i.e., |g|=fo|d"K |.

Chapter II. Proofs.

9. Proof of Lemma (3.1). Let fo,f;: K—> L€ & be maps such that
fo==f1. Using the terminology of [4] this means that there exists a c.s.s.
map f,: I X K— L such that foeK =f, (e=0,1). It is readily verified
that the functor Ex commutes with the cartesian product, i.e., that for every
two c.s.s. complexes 4 and B

Ex(4 X B) = (Ex 4)X (ExB).

Straightforward computation shows that commutativity holds in the diagram

«(ExK)
ExK — IX(ExK)
1Ex(zK) ) el X igxk
i

Ex(I X K) —> (ExI) X (ExK)
where 1 is the identity. Hence
(Exfr) o (eI X ipxx) © (Ex K) = (Ex f;) o (Ex(eK)) = Ex(f; 0 eK) = Exf,
ive, (Exfr)o (el Xinxx): Exf,=Exf,.

10. Proof of Lemma (3.2). We shall first investigate the structure
of ExK.

A map a:[m]—>[n] was defined as a monotone function. By a
function ¢:[m]—> [n] we shall mean merely a function which thus need
not be monotone. A permutation =:[m]—> [m] is a function which is one-
to-one onto.
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Let #: [m] — [m] be a permutation. Then = induces an automorphism
7’2 A’[m] = A’[m] as follows. For each map o: [q] — [m] let o: [q] — [m]
be & map and let ¢:[g] — [¢] be a permutation such that commutativity
holds in the diagram

[g] ————> [m]

[ T
[q] —————> [m]

Clearly such a map o™ and permutation ¢ exist. It is easily seen that

(a) o7 is unique;
(b) if o is a monomorphism, then so is o™;
(¢) if o lies on 7, then o7 lies on 7.
We now define the automorphism »’: A’[m] — A’[m] by
7 (00," * *50¢) = (oo™, * *,0¢").
-Let ¢:[m]—[n] be a function. Then { induces a c.s.s. map {’:
A’[m]— A’[n] as follows. There clearly exists a permutation =: [m] — [m]

and a unique map a«:[m]—> [n] such that commutativity holds in the
diagram
[m]
L ¢

@
[m] ———[n]

The c.s.s. map ¢': A’[m] — A’[n] is now defined as the composite map

/ Aa

™
A'[m] ——— A [m] ———— A'[n].
It is readily verified that

(a) the c.s.s. map ¢’ is independent of the choice of the permutation =;
(b) if ¢ is a permutation, then this definition of ¢’ coincides with the
above one;
(e) if ¢ is a map, then ¢’ =A’¢;
(@) if 9:[1]—>[m] s a function, then ({P)’ is the composite map;
Y 4
A'[l]—> A’[m] —> A'[n].
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Ex K is a c.s.s. complex. This means that for every n-simplex ¢ € Ex K
and every map «: [m] — [n] there is given an m-simplex oz € Ex K such that

(1) oen=0 where &:[n]— [n] is the identity;

(ii) if B:[1]—> [m] is a map, then (oa)B=0(aB).

Now let o€ ExK be an n-simplex and let ¢: [m]— [n] be a function.
Then the composite map

A[m]—— A'[n] —0—>K

is an m-simplex of Ex K which will be denoted by o¢. If 9:[l1]—>[m] is
also a function, then clearly (o¢)® =0 (¢3). Thus ExK has more structure
than a c.s.s. complex. 1t is this additional structure which will be used
in the proof of Lemma (3.2).

Proof of Lemma (3.2). Let A C A[n] be the subcomplex generated
by the non-degenerate (n—1)-simplices €’ - -, &, &#1,- - -, e» and let
A: A—> Ex K be the c.s.s. map such that Ae! =7, Then we must define a
c.8.8. map p: A’[n] > Ex K such that for each 154k commutativity holds
in the diagram

' Yy
A'[n—1) ———— A"[n]

(10.1) 8[n—1] ExK

A
At

Aln—1] ———— A

For each simplex (oo, * -, 0q) € A’[n] define a function ¢(oo," - *,0¢):
[q]— [n] by
&(oo,* * 7, 0q) (1) = 0i(dim oy), g5 € or €,
E(oos* - "5 0q) (1) =k, gi=¢* Or €.
Then there exists a permutation ¢: [¢] = [¢] and a unique mapo: [q] = [n]
such that commutativity holds in the diagram

[q]
3 ;(‘70" . ',Uq)

[9) ——— [n]
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It is easily seen that ¢ € A. We now define p(ao,* * *,0,) = (Ac)¢. It may
be verified by direct computation that this definition is independent of the
choice of the permutation ¢.

We now show that the function p: A’[n] - Ex K so defined is a c.s.s.
map. Let 8:[p]— [¢] be a map. Then there exists a permutation y:
[p]1= [p] and a unique map y:[p]— [¢] such that commutativity holds
in the diagram

[p] — (4]

1 [ Z(Ufn' . '900)
7 (/4
(7] — [q] > [n]
The function ¢((oo," - *,04)B) is the composite function
B {(ao," * *,09)
[»] [q] — [n]

and consequently p((oo,* * *,04)8) = (A(oy))y. As commutativity also
holds in the diagram A

A'B
A[p] —4'[q]
¥ ¢’
Aly Ao
A'[p] A'[q] — K

it follows that
A(oy))y=2AcoAyoy’ =Aoo¢ oA’ = ((Ao)7)B
i.e., the function p: A’[n] > Ex K is a c.s.s. map.

It thus remains to show that commutativity holds in diagram (10.1).
Let (70)' - ';Tq) € A’[n—l]. Then

A'et (To, s, m) = (o, ¢, €'rq).

If ¢4k, then clearly efr;54 & and efr;5%¢, for all j and it follows from the
definitions of the maps p and 8[n] that

(poAet) (0, * *57g) = ()‘°8[n] °A’€i) (r0* * *57a)-
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Application of Lemma (2.2) now yields
(pod'et) (ro,* + +;7q) = (Ao Aet08[n—1]) (ro," - ", 7q).

This completes the proof.

11. Proof of Lemma (8.4). Let k& be an integer with 0 =k =n, let
Tos® * "5 Th-1yThens * "> Tn € EXK be n (n—1)-simplices such that rf!==rget
for t<j and ¢4k~ and let p€ ExL be an n-simplex such that (Exf)=
—pet for =0, - -,k,- - -,n. Then in order to prove the first part of
Lemma (8.4) we must show that there exists a c.s.s. map r: A’[n] > K
such that for each integer ¢4 % commutativity holds in the diagram

T
A'[n—1]———— K

(11.1) At

P

A'[n) ——1L
For each simplex (oo, * -,0,) € A’[n] for which there exists an integer
i5%k and a simplex (o,%, - -,04') € A’[n—1] such that A% (o, - -, 0q)
= (00,* * *,04) define

7(0'0:' . ',O'q)=1't(0'o‘,' . ',qu).

This definition is independent of the choice of 4. If j is another such
integer and ¢ < j then there exists a simplex (oo, - -, 0,%) € A'[n—2]
such that A'e (0%, - -, 04%) = (o0’," + -,04) and A'é(aot,: - -, 05Y)

= (o'oj,' : "oqj)'

Hence
i(aot," + -, 0q) = 1i(A'(a0¥, - -, 0qt)) =mie (oob, - -, 0q9)
= 7!“ (“0”) ce :“q”) = TI(A’J (coij: Tt oqij) ) = Tf(a'o PR "'qi) .

It is readily verified that the function r so defined on all simplices of A’[n]
which are in the image of A’[n—1] under a map A’e! with 154k, (i.e., those
simplices (ao,- - *,04) € A’[n] for which o454 ¢, or &), commutes with all
operators 8:[p]— [¢] and is such that commutativity holds in the upper
left triangle of diagram (11.1).

It thus remains to show that r can be extended over all of A’[n] (i.e.,
over the simplices (o0, - -,04) € A’[n] for which g;=¢, or &) to a c.s.s.
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map in such a manner that commutativity also holds in the lower right
triangle of diagram (11.1). For each non-degenerate simplex (oo, - -, 0q)
with o;=¢, let T(go,- - -,0,) denote the triple (I,m,q) where I is the
smallest integer such that ¢;(i¢) =% for some ¢ and m =dimo;. Order these
triples lexicographically. It is readily verified that

(1) if T(oo- - *,0¢) = (I,m,q) and dim;, <m—1 or I=0,m >0,
then there exists a simplex (oy/,* - *,04.1") € A’[n] such that (oo, * -, 0q0.1)¢€
=(°’0,' : ':o'q) and T(UO’:' ) ',0'04»1’) = (l:m_l:q‘l"l) <(l;m;Q)'

(ii) if T(oo * ",00) =(l,m,q) and dime,=m—1,l1<q or
l=m =0, then (a) T'((o0," * *,0q)€) < (I, m,q) for i5£l,q, (b) o 7%
and hence 7( (oo, - *,0q)€?) has already been defined, (¢) T'((oo,* * *,0¢)¢€!)
> (l,m,q) and (d) if T(o," - *,04) = (I,m, q), then (ay,- - -,04)€! is not
a face of (oo, - -,0¢).

(iii) if T(oo * *,0¢) = (g,n,¢q) and dimo;;=n—1, then (a)
T((ao,* - *,09)€*) < (g,1n,q) for i54¢q, (b) ogy=¢and (c) if T'(oy," - -,0)
= (¢,n,9), then (oo," - *,04-1) is not a face of (oy’,- - *,07).

We now extend r as follows. Let (I,m,q) be a triple and suppose that
T has already been extended over all non-degenerate simplices (oo, * *, gg-1, €)
and their faces for which T (oo, * *,04-1,€) < (I,m,q) and over some non-
degenerate simplices (oq,- * *,04-1,€) and their faces for which T'(oy,- - -,
0g¢-1,€) = (I,m, q) in such a manner that r commutes with all face operators
and that commutativity holds in the lower right triangle of diagram (11.1).
Let (0o, * *,0¢-1, &x) be a non-degenerate simplex such that T'(ao,* - -, ag-1, €n)
= (I, m,q) and on which r has not yet been defined. It then follows from
(i) that dime; y=m —1 or I=m =0 and from (ii) or (iii) that r already
has been defined on all faces of (ao,* - *,0q-1,€1) €xcept (o0, - *, Tgs, €n)el.
Because f is a fibre map there exists a ¢-simplex y € K such that

p(oo, * soen &) =fy,  7((00, * ;00 ) €t) =yet (15%k).
Now define

T("'O}' : ’,O'q-l,fn) =1y, 7((‘70" : ':”q—l’ﬁn)‘l) =yel.

It is readily verified that the function r so extended commutes with all face
operators and is such that commutativity holds in the lower right triangle
of diagram (11.1). Thus using induction on the triples (I,m,q) = may be
extended over all non-degenerate simplices (oo, * *,4-1,€) € A’[n] and their
faces. As every non-degenerate simplex (oo,* * -,0q-2,€) € A’[n] is a face
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of a non-degenerate simplex (oo, * *,0q-2, €% ¢,) it follows that r may: be
extended over -all non-degenerate simplices of A’[n] in such a manner that r
commutes with all face operators and that commutativity holds in diagram
(11.1). Extensions of r over the degenerate simplices of A’[n] (which is
always possible in a unique way) now yields the desired c.s.s. map =:
A'[n] > K.

The second part of Lemma (3.4) is obvious.

12. Proof of Lemma (3.6). We shall use the theory of acyclic models
of Eilenberg-MacLane (see [1]). The models will be the complexes A[n]
and A’[n]. Let Cy: 3 > 3% be the augmented chain functor. As the map
¢K: K— Ex K induces a one-to-one correspondence between the 0-simplices
of K and those of ExK it is sufficient to prove that

(a) the functor C,: 3 — 0% is representable in dimension > 0,
Ex C,
(b) the composite functor 4 ———> 3 ——> 3% is representable in
dimension > 0, and

(¢) for every integer n=0,
Hy(A[n]) =H,(ExA[n]) =0,  H,(&[n]) =H,(ExA’[n]) =0.

Let K€ 3, for every n-simplex ¢ € K let ¢o: A[n] > K be the unique
c.s.s. map such that ¢oa =oca for all a € A[n] and let ¢, be the generator
of C,A[n] corresponding to the identity map e,:[n]— [n], i.e., the only
non-degenerate n-simplex of A[n]. Then it is easily seen that the function
o—> (0,¢,) yields a representation of the functor C,.

Let K€ 3, let v: A’[n] > K be an n-simplex of ExK and let « be
the generator of C,ExA’[n] corresponding with the identity map u,:A’[n]
— A’[n]. Then it is easily seen that the function r— (r,+’) yields a repre-
sentation of the functor C,Ex.

For every integer n =0 the (unique) map A[n]— A[0] is a homotopy
equivalence in &4. Combining this with Lemma (3.1) and the fact that
A[0] =ExA[0] and H,(A[0]) =0 we get Hy(A[n]) =H,(ExA[n]) =0.
If for each integer =0 the map §[n]: A’[n]—>A[n] is a homotopy
equivalence, then H,(A'[n]) =H,(A[n]) =0, and Lemma (3.1) implies
H,(ExA'[n]) =H,(ExA[n]) =0. It thus remains to show that S[n] is
a homotopy equivalence.

For each integer ¢ with 0 =i=n let B;: [z] — [n] be the map given
by Bi(j) =j, 0=j=+. Define a function 8[n]: A[n]—> A’[n] by 8[n]c
— (Bowor, * *»Bow), dimo—g. As for every map a:[p]->[q],
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(¥[nJo)a= (Bow," * *5Bo@%=(Boato);” * * *5Boarp) =¥[n] (o),
it follows that &’[n] is a c.s.s. map. The composite map

¥[n] §[n]
A[n] —— A'[n] ——> A[n]

is the identity because for ¢ € A[n] and 0 = 1= dime
(3[n]¥[n]0) (3) = Bow (9 (1)) = o (4).
It thus remains to prove that the composite map

8[n] & [n]
A[n]—— A[n] —— A'[n]
is homotopic with the identity u,: A’'[n] — A’[n].
For each simplex o€ A[n], let = Bo@mo). Define a function &:
A[1] X &'[n] - &'[n] by

h(‘o"lo’ ' 'ﬂq_l: (‘70" . ':"a))=(50:' ' ':Eq):
h(‘l"?o' HRE L (‘70:' ' '9°q))= (“0" : ')"G))
h(ﬁ")o' . ..,’i-l,qi*l. . ..,)q-l’ (0‘0,‘ . .,a.q))=__ (Vo:’ . ':'fbalu;' . .";,.'q).

A straightforward computation shows that the function % so defined is a
c.s.s. map. It is now easily verified that A is the required homotopy.

13. Proof of Lemma (8.7). Use will be made of the following c.s.s.
analogues of two theorems of J. H. C. Whitehead ([10]).

TrEOREM (13.1). Let K,L€ B35 be connected and let ¢€ K be a
0-simplex. Then a c.s.s. map f: K— L is a homotopy equivalence if and
only if f induces isomorphisms of all homotopy groups, i.e., fyu: mu(K ;)
=m(L;fp), n=1.

THEOREM (13.2). Let K,L€ B35 be simply connected. Then a c.s.s.
map f: K— L is a homotopy equivalence if and only if f induces tsomor-
phisms of all homology groups, t.e., fy: Hy(K) = H,(L).

We also need the following lemma

LemMA (13.3). Let K€ 3g and let ¢ € K be a O-simplex. Then
(eK)y: m(K;¢) =m(ExK; (eK)¢).

Proof of Lemma (8.7). In this proof we shall freely use the results
of [9] Clearly K may be supposed to be minimal. Let = —w,(K). Then
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there exists a fibre map p: K— K(m 1) with simply connected fibre F.
Let ¢: F— K be the inclusion map, then it follows from the naturality of ¢
that commutativity holds in the diagram

g p
F K K(m,1)

leF leK le(K(qr,l))
Exgq Exp
ExF ExK ExK (1)

By Lemma (3.4) Exp is a fibre map with ExF as a fibre. Hence in order
to prove that ¢K is a homotopy equivalence it is, in view of the exactness
of the homotopy sequence of a fibre map, the “five lemma” and Theorem
(13.1), sufficient to prove that e# and e(K (x,1)) are homotopy equivalences.

As F is simply connected, so is ExF (Lemma (13.3)). Hence it
follows from Lemma (8.6) and Theorem (13.2) that eF is a homotopy
equivalence.

There exists a fibre map ¢t: W(K (#,0)) > K(,1) with K (=, 0) as fibre
and, as above, in order to prove that ¢(K(x,1)) is a homotopy equivalence
it suffices to prove that e(W (K (x,0))) and e(K (w, 0)) are so. As W(K{(x,0))
is contractible and a fortiori simply connected the argument applied to F
yields that e(W (K (m,0))) is a homotopy equivalence. It is also readily
verified that e (K (w,0)) is an isomorphism. Hence e(K (x,1)) is a homotopy
equivalence.

This completes the proof of Lemma (3.7).

Proof of Lemma (13.3). For a definition of the fundamental group
see [9].

Let o€ A[n] be a non-degenerate g-simplex, i.e., the map o: [¢] = [n]
is a monomorphism. Then ¢ is completely determined by the set (¢(0),- - -,
o(q)), the image of [¢] under . We shall often write (¢(0),- - -.0o(q))
jinstead of o.

We first prove that (eK)y: m(K;¢) > = (ExK; (eK)¢) is a mono-
morphism. Let a € =, (K ;¢) be such that (eK)4,a=1 and let 7€a. Then
there exists a 2-simplex p€ ExK such that pe?=(eK)r and pe®=pe
= (eK)¢n°. Iterated application of the extension condition yields 4 3-
simplices ;,7s, 72,74 € K such that

1€l = P((l)’ (0’ 1)’ (0: 1, 2)) 5 1€ = P((l), (1: 2)) (0: 1, 2)) ; T = 4’"’0710
72" =11€%; To€® = P((z)) (1’ 2)’ (O, 1, 2)) 3 Taf = 4’"0"70
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st =o€l 1a€® = p((2),(0,2),(0,1,2)); 7o =y’

T =735 T = p((O), (0: 1); (0: 1, 2)) 3 Teel == P((O); (0, 2)’ (0, 1, 2))
Then

T4€%® == 746%* == 73¢"¢" == 13€%" = ¢7°

7ol = 146%% = p((0), (0,1)) =0
T4e’e® = 146% = p((0), (0, 2)) = ¢n".

Consequently ¢ =1.

We now show that (ek)y:m(K;¢) > m(ExK; (eK)$) is an epi-
morphism. Let ¢y € b€ m(ExK; (eK)¢). Define a c.s.5. map p:A'[R] > K
by P((O): (0, 1)) = lﬁ((O), (0,1)), P((l)) (0, 1)) = ‘/’((1): (0, 1))5

P((l)) (1: 2): (0: 1:2)) = P((2): (05 2); (0) 1, 2)) =‘P((2): (1: 2); (0) 1, 2)) = 4”70’70)

and extend p over ((0),(0,1),(0,1,2)), ((0),(0,2),(0,1,2)) and ((1),(0,1),
(0,1,2)) by iterated application of the extension condition. Then

pe® = (eK ) ¢’ pet = (eK)p((0), (0,2)), pet=r1

Consequently there exists an element a € =, (K, ¢) such that p((0), (0,2)) € a
and (eK),a=="0.

14. Proof of Theorem (4.6). Clearly K may suppose to be connected.
Let ¢ € Ex* K be a 0-simplex, then in view of Theorem (13.1) it suffices
to prove that fy: ma(Ex® K;¢) =m(Ex* K;f¢) for all n=1. We shall
only give a proof for n=1. The proof for n > 1 is similar although more
complicated.

Let a€x, (Ex® K;¢) and let = be a representant of a. Suppose there
exists a 2-simplex p€ Ex* K such that

(14.1) pe® = 1e%°, pet =r, pe? =fr.

Then clearly fya=a. Hence it suffices to show that for every 1-simplex
€ Ex® K there exists a 2-simplex p € Ex* K satisfying condition (14.1).

Let 7€ Ex* K be a 1-simplex and let n be the smallest integer n=0
such that r==(y,n) (by r=(y,0) we mean r= (¢* K)y). If n=0, then
by hypothesis p==ry' is the desired 2-simplex. Now suppose it has already
been proved that if n < m, then there exists a 2-simplex p satisfying (14.1a).
Then we must show that this is also the case if n=m.

Define, using the notation of Section 13, a R2-simplex 9 € Ex"K as
follows.
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'0((0): (0’ 1): (0: 1, 2)) - 0«0): (0) 2)’ (0)' 1, 2)) = ‘/’((0)) (0: 1))’71
0((1): (0: 1): (0: 1, 2)) = t,((1)3 (1: 2): (0: 1, 2)) = ‘P((1)> (0: 1))"71
t9’((2)’ (03 2)3 (O: 1, 2)) = 0((2)3 (1) 2): (0, 1, 2)) = '/’((09 1))’70711'
Then it is readily verified that
O = (e(Ex"* K))y((1), (0,1)),  d¢* = (e(Ex"* K))y((0),(0,1)), e’ =y.
By the induction hypothesis there exist 2-simplices py,p; € Ex* K such that
poe’ = (‘P( (09 1) )’70’ n— 1), poe’ = ("eo’ n)’ P°€2 = f(0¢°, n)
p1e® = ('P((O, 1))’709"'—1): pret = (”51: n): P1€2=f(0€1’ n).

Application of the extension condition then yields 3-simplices «,A € Ex* K
such that

ke’ =po, Kke'=—p;, k=] (0: n))
A’ = (Fe%% n), Aet=(F,n), A =rxe’.
It then follows bj direct computation that Ae® is the desired 2-simplex, i.e.,

AP =1e%° APl =1, Aee®={r.

15. Proof of Lemma (5.7). Consider the commutative diagram

QK
41'0/ I qNK

RQK QRK

K
RgK 1 rK
qRK

RK

It follows from Definition (5.1b) that the maps rQK and ¢RK are homotopy
equivalences. Let «K (resp. BK) be a homotopy inverse of rQK (resp. gRK).
Then the following diagram is commutative up to homotopy

P I

RQK

qK
K QRK
BK
RK
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i.e., gk =~aKoRgK orK and rK =< BKo(QrKoqK. Consequently

gK = (aK o RgK) o (BK o QrK) o 4K,
1K == (Ko QrK) o (aK o RgK) oK.

Application of the homotopy extension theorem (which holds for objects of
Bg; see [9]) yields c.s.s. maps s: QK — QK, ¢t: RK— RK such that

s== (aKoRqK) o(BK o QrK), t== (BKoQrK) o (aK o R¢K)
and
$(gK)o = (¢K)o, t(rK)o= (K)o

for every simplex ¢ € K. It then follows from condition (5.1c) that s and ¢
are homotopy equivalences. Thus «K oRgK and SK oQrK are homotopy
equivalences and because aK and SK are also homotopy equivalences, so are
RgK and QrK.

16. Proof of Lemma (8.4). Let igxr: L— ExL be the identity map
and let pL = B-%g z. Consider the diagram

|dK |
| K |e |SdK |
| Sd Al
|SdeL |
| |SAEx L | e———|SdL| |8
dExL| ZARNE
leL]

||

|ExL|¢

In view of the naturality of d commutativity holds in the upper left triangle
and the trapezium and because of the naturality of g8 and the fact that
(Lemma (7.2)) dL=B"(eL), commutativity also holds in both triangles
which have | uL | as lower edge. It follows from Lemma (7.4) and (7.5)
that the maps |dL|, |eL| and |dExL| are homotopy equivalences. The
commutativity in the trapezium and the smallest triangle involving |uL |
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therefore implies that the maps | SdeL | and | uL | are also homotopy equiva-
lences. Consequently the lower triangle is commutative up to homotopy and
|h|o|dK |=|dExL|o|Sdh|==|eL|o|pL|o|Sdh|=<|eL|o|B?h|.

THE WEIZMANN INSTITUTE OF SCIENCE, REHOVOTH, ISRAEL
CorLuMBIA UNIVERSITY, NEW YORK, N.Y.
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