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THE SECOND REAL JOHNSON-WILSON THEORY AND
NONIMMERSIONS OF RP n, PART II

NITU KITCHLOO and W. STEPHEN WILSON

(communicated by Donald M. Davis)

Abstract
This paper is a continuation of the study begun in the previ-

ous paper with the same title. We analyze ER(2)16∗+ 8(RP 2n)
and compute ER(2)∗(RP 16K+1), and use these to prove more
nonimmersion theorems for RPn, including many in fairly low
dimensions. In particular, we get 12 new nonimmersion results
for RPn where n < 192, the range included in the tables Don
Davis keeps. These complement the 10 already found in the first
paper.

1. Introduction

This paper is a continuation of [KW], which we refer to as Part I. We make free
use of the notation and results of Part I.

The main theorem of [Dav84] states that for

n = m + α(m)− 1, k = 2m− α(m);

there does not exist an axial map

RP 2K−2k−2 ×RP 2n −→ RP 2K−2n−2,

and so, by [Jam63], RP 2n * R2k for these n and k.
This is proven using the equivalent of E(2)∗(−) by showing that the u2K−1−n = 0

on the right would have to go to a nonzero element on the left. That prevents the
existence of the axial map. In Part I we constructed a purely algebraic surjection

ER(2)16∗(RP 2K−2k−4) −→ E(2)16∗(RP 2K−2k−2),

that allowed us to show the axial map

RP 2K−2k−4 ×RP 2n −→ RP 2K−2n−2

did not exist if we added the restrictions to k and n that n ≡ 7 or 0 mod 8 and
−k − 2 ≡ 1, 2, 5 or 6 mod 8. This improved some nonimmersion results by 2.
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In this paper we are able to include the n ≡ 3 and 4 mod 8 cases by analyzing
ER(2)16∗+8(RP 2n) and constructing a similar algebraic map

ER(2)16∗+8(RP 2K−2k−4) −→ E(2)16∗+8(RP 2K−2k−2)

with the previous restrictions on k.
In order to describe ER(2)16∗+8(RP 2n) properly we need to define and study an

element y ∈ ER(2)8(RP∞). The simple version of our answer, similar to our under-
standing of ER(2)16∗(RP 2n) in Theorem 1.6 of Part I, is:

Theorem 1.1. A 2-adic basis for ER(2)16∗+8(RP 2n) consists of the elements
α2α

kuj, with 0 6 k and 0 < j < n, yuj, with 0 6 j 6 n− 4, and when
n ≡ 3 or 4 modulo 8, no other elements, with yun−3 = 0;
n ≡ 2 or 5 modulo 8, αkyun−3, with yun−2 = 0;
n ≡ 1 or 6 modulo 8, αkyun−3, and yun−2, with yun−1 = 0;
n ≡ 7 or 0 modulo 8, yun−3, yun−2, and yun−1, with yun = 0;

and no others.

In addition to this we need some information about ER(2)∗(−) of products and
then we are able to prove:

Theorem 1.2. When the pair (m,α(m)) is, modulo 8, (0, 3),(5, 6), (4, 7) or (1, 2),
then

RP 2(m+α(m)) * R2(2m−α(m)+1).

Don Davis points out that by combining this with Theorem 1.9 of Part I, we really
have the result for (m,α(m)) equal to (0, 3) and (1, 2) mod 4.

The most interesting pair to us is (m, α(m)) = (0, 3). Let m = 8 + 16 + 2i, then
2(m + α(m)) = 54 + 2i+1 and 2(2m− α(m) + 1) = 92 + 2i+2. With this we get

RP 54+2i+1
* R92+2i+2

.

The lowest dimensional cases are

RP 118 * R220; RP 182 * R348.

However, the importance to us is that it gets on Don Davis’s tables, [Dav]. Notice
also that for these cases there is now only a knowledge gap of 1 between best known
nonimmersions and best known immersions.

Next we move on to compute ER(2)∗(RP 16K+1), analyze ER(2)8∗(RP 16K+1), and
construct an algebraic map

ER(2)8∗(RP 16K+1) −→ E(2)8∗(RP 16K+2)

that allows us to do similar things for nonimmersions when, in our axial maps, −k −
1 ≡ 1 mod 8. The theory E(2)∗(−) cannot make use of the odd spaces because the
top cell is not connected algebraically, but for ER(2)∗(−) the connection is strong
for 16K + 1 and 16K + 9. We have not done the computation for 16K + 9 because,
although there are surely more nonimmersions there, they are not of low enough
dimension to inspire us to do the work, whereas the 16K + 1 case gives lots of nice
new low dimensional results.



REAL JOHNSON-WILSON THEORY AND NONIMMERSIONS OF RP n, PART II 271

Theorem 1.3. A 2-adic basis for ER(2)16∗(RP 16K+1) is given by the elements αkuj,
0 6 k, 0 < j 6 8K + 1, with u8K+2 = 0.

A 2-adic basis for ER(2)16∗+8(RP 16K+1) is given by the elements

α2α
kuj , 0 6 k, 0 < j < 8K;

α2α
ku8K = αk+1yu8K−3;

wαku;

yuj , 0 6 j < 8K, with yu8K = 0.

Using this, we get:

Theorem 1.4. For the mod 8 pairs (m,α(m)) = (6, 6), (1, 4), (2, 6), (5, 4) we have:

RP 2(m+α(m)−1) * R2(2m−α(m))+1.

Let’s look at the numbers. First, the pair (1, 4). The lowest possible nonimmersions
we get from this are

RP 56+2i+1
* R93+2i+2

,

which also implies another new result:

RP 57+2i+1
* R93+2i+2

.

The lowest dimensional examples are:

RP 120 * R221; RP 121 * R221; RP 184 * R349; RP 185 * R349.

The next pair to look at is (5, 4). From this we get

RP 16+2i+1+2j+1
* R13+2i+2+2j+2

.

When i = 3, this is:

RP 32+2j+1
* R45+2j+2

.

The lowest dimensional examples are:

RP 96 * R173; RP 160 * R301.

When i = 4, this is:

RP 48+2j+1
* R77+2j+2

.

which also implies that

RP 49+2j+1
* R77+2j+2

.

The lowest dimensional examples are:

RP 112 * R205; RP 113 * R205; RP 176 * R333; RP 177 * R333.

In the tables, [Dav], the best known results for nonimmersions for RPn for n < 192
are listed. Of these, 95 are solved completely because it is known that RPn immerses
in the next higher dimension. Of the remaining 96 cases, we improve on 12 in this
paper; n = 96, 112, 113, 118, 120, 121, 160, 176, 177, 182, 184, and 185, making for
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a total of 22 when combined with 10 from Part I; n = 48, 62, 80, 94, 110, 126, 144,
158, 174, and 190.

The tables also list what is known for n = d + 2i (d < 2i) for 0 6 d < 64. Of these
64 cases, 24 are known completely. Of the remaining 40, we improve on 10; 6 from
this paper, d =32, 48, 49, 54, 56, and 57, and 4 from Part I; d =16, 30, 46, and 62.

We are fairly confident that ER(2)∗(−) will not give any more results in these low
dimensions. Before attacking the present cases in this paper, computer computations
were made on all of the cases we believed we could approach below 192 and we have
now proven all of the results that seemed to be there.

Thanks to the Fields Institute for Mathematics for supporting the second author
for a week of intense computation (by hand) for this paper. Also, thanks to Martin
Bendersky, Don Davis and Jesús González for their support and inspiration. Special
thanks to the referee for a very careful reading and numerous helpful suggestions.

2. Injections

ER(2)∗(X) has already been computed for X = RP∞, RP 2n, and RP∞ ∧RP∞.
However, we need a more detailed analysis.

Theorem 2.1. The map ER(2)16∗+8(RP∞)→ E(2)16∗+8(RP∞) is an injection with
cokernel given by v4

2u{1−3}.

Proof. Recall that a 2-adic basis for E(2)∗(RP∞) is given by

vi
2α

kuj , 0 6 i < 8, 0 6 k, 1 6 j.

The elements of degree 8 mod 16 are

v4
2αkuj , 0 6 k, 1 6 j.

From Theorem 8.1 of Part 1 we can read off the elements of ER(2)16∗+8(RP∞). From
the x1-torsion we have

α2α
kuj , 0 6 k, 1 6 j.

From the x3-torsion we have

wαku, k > 0, and wuj , 1 < j.

Mapping these elements to E(2)∗(RP∞) we have

α2α
kuj −→ 2v4

2αkuj ≡ v4
2αk+1uj+1

plus higher filtration terms
wαku −→ v4

2αk+1u

and
wuj −→ v4

2αuj ≡ v4
2uj+2, j > 1,

modulo higher terms. From this we can see the injection and that the only terms
missed are v4

2u{1−3}.

Theorem 2.2. The map ER(2)16∗+8(RP∞ ∧RP∞)→ E(2)16∗+8(RP∞ ∧RP∞) is
an injection with cokernel given by v4

2u
{1−3}
1 u

{1−3}
2 .
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Proof. We have both E(2)∗(RP∞ ∧RP∞) and ER(2)∗(RP∞ ∧RP∞) written down
in Theorem 17.1 of Part I. A 2-adic basis for E(2)∗(RP∞ ∧RP∞) is given by

vs
2α

kui
1u2, 0 6 s < 8, 0 6 k, 0 < i;

vs
2u

i
1u

j
2, 0 6 s < 8, 0 < i, 1 < j.

The elements in degree 16∗+ 8 are those with s = 4. We can also write down
ER(2)∗(RP∞ ∧RP∞) and the map to E(2)∗(RP∞ ∧RP∞) in degrees 16∗+ 8: From
the x1-torsion we get

α2α
kui

1u2 −→ 2v4
2αkui

1u2 ≡ v4
2αk+1ui+1

1 u2;

α2u
i
1u

j
2 −→ 2v4

2ui
1u

j
2 ≡ v4

2ui+1
1 uj+2

2 , 0 < i, 1 < j,

all modulo higher filtrations. From the x3-torsion we get:

wαku1u2 −→ v4
2αk+1u1u2, 0 6 k;

wui
1u
{1,2,3}
2 −→ v4

2ui+2
1 u

{1,2,3}
2 , 1 < i;

wu1u
j
2 −→ v4

2u1u
j+2
2 , 1 < j.

From this we see the injection and that the only elements missed are those stated.
Note that there are no elements in degrees 16∗+ 8 divisible by x.

Corollaries 8.3 and 17.3 of Part I give us an isomorphism for these spaces in degrees
16∗ so we get:

Corollary 2.3. The map ER(2)8∗(X)→ E(2)8∗(X) is an injection for X = RP∞

and RP∞ ∧RP∞.

Not much more work is required to prove:

Proposition 2.4. The map ER(2)16∗+i(X)→ E(2)16∗+i(X) is an injection for X =
RP∞ and RP∞ ∧RP∞ when i = 0, 1, 2, 3, 4, 5 and 8.

From this we know that there are no elements divisible by x in any of these degrees.

3. y, a new element

We need to introduce a new element that we have good control over. We know we
have an isomorphism of ER(2)16∗(RP∞) and E(2)16∗(RP∞) and that we have the
same relation, 0 = 2u +F αu2 +F u4, in both. We can use this to solve for u4 as

u4 = −F (2u)−F (αu2) = 2ug + αu2h,

where g and h are invertible power series. As it stands, g and h are not uniquely
determined, but if we insist that none of the terms of h be divisible by 2 (we can
move such terms to g) then we can make our choice of g and h unique.

Recall that in E(2)∗(−) we have set v8
2 = 1. We now multiply this relation, when

viewed only as being in E(2)∗(RP∞), by v4
2 , which is a unit in E(2)∗(−), to get a
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relation
v4
2u4 = v4

2(2ug + αu2h) = (2v4
2)ug + (v4

2α)u2h.

The image of the element α2 from ER(2)∗ in E(2)∗ is 2v4
2 and the image of w is

v4
2α so, in this relation, all of the terms on the right hand side are in the image from

ER(2)∗(RP∞) and we can use them to define a new element

y = α2ug + wu2h

that reduces to v4
2u4 ∈ E(2)8(RP∞). (The lack of uniqueness of g and h would

not affect anything here. It does not matter whether we convert 2v4
2 to α2 or v4

2α
to w if we have a v4

22α that could be factored either way because α2α = 2w ∈
ER(2)∗, [KW07].)

Although we struggled with this element a great deal in our original computations
and then managed to eliminate it for our work in Part I, it was only with the work
of Bruner, Davis and Mahowald in [BDM02, DM] that we realized its importance
for our work with nonimmersion theorems.

The element y has many interesting properties. We collect a few here.

Theorem 3.1. There is an element y ∈ ER(2)8(RP∞) that maps to v4
2u4 ∈

E(2)8(RP∞). We have relations:

y2 = u8, αy = wu4, wy = αu4, 2y = α2u
4, α2y = 2u4,

α3y = α1u
4, α1y = α3u

4, xy = xwu2h, x3y = 0.

Proof. We have already constructed y with the property that it reduces to v4
2u4. The

first five relations take place in degrees 8∗ where we have we can prove the relations
by substituting v4

2u4 for y, 2v4
2 for α2 and v4

2α for w. They all follow quickly then. The
next relation is in degree 4 modulo 16 and we have an injection here too as well from
Proposition 2.4 so it also follows by replacing αi with 2v2i

2 . Only the next relation
requires anything else. It is in degree −4 modulo 16 and we do not have an injection
in this degree. We have to resort to the definition (which we could also have used for
the other relations)

α1y = α1(α2ug + wu2h) = (α1α2)ug + (α1w)u2h =

(2α3)ug + (αα3)u2h = α3(2ug + αu2h) = α3u
4.

This uses the relations in the coefficient ring, 2α3 = α1α2 and αα3 = α1w, from
[KW07].

y = α2ug + wu2h,

so, since xα2 = 0, we get the next relation. Since x3w = 0, the last one follows.

We know E(2)∗(−) and ER(2)∗(−) for RP∞ and RP∞ ∧RP∞. From Theorem 3.4
of Part I we know that we have a Künneth theorem for RP∞ ∧RP∞. The standard
map RP∞ ×RP∞ → RP∞ induces a coproduct that can be computed from the
formal group law; i.e. u→ u1 +F u2. However, things are much nicer than that:

Theorem 3.2. The coproduct of u, up to a unit, is u1 − u2. The coproduct of y, up
to a unit, is

y1 − 2α2u
3
1u2 + 3α2u

2
1u

2
2 − 2α2u1u

3
2 + y2.
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Proof. Because we have injections in degrees 8∗, it is enough to prove this for the
image in E(2)∗(−). The first statement is well-known and comes from the fact that 0 =
[2](X) = X +F X. This implies that X +F Y is divisible by X − Y (because plugging
in Y = X gives zero) and so X +F Y = (X − Y )g where g is a power series in X and
Y that is invertible, i.e. a unit. Since the coproduct is given by the formal group law,
we have u→ u1 +F u2 = (u1 − u2) up to a unit.

To compute the coproduct of y up to a unit we can just compute for u4. Up to a
unit this is u4

1 − 4u3
1u2 + 6u2

1u
2
2 − 4u1u

3
2 + u4

2. Multiply this by v4
2 and replace v4

2u4
i

with yi and 2v4
2 with α2.

4. Rewriting ER(2)∗(RP ∞)

We would like to rewrite our answer for ER(2)16∗+8(RP∞) using our new element
y. Recall, from Theorem 8.1 of Part I, our description of ER(2)∗(RP∞).

The x1-torsion generators are given by

αiα
kuj , 0 6 i < 4, 0 6 k 1 6 j,

where α0 = 2.
The x3-torsion generators are given by:

wεαku, ε + k > 0; wuj , 1 < j; and uj , 3 < j.

The only x7-torsion generators are

u{1–3}.

From y = α2ug + wu2h it is easy to see that we can replace the x3-torsion gener-
ators, wuj , 1 < j, using yuj−2.

We would also like to replace some of the x1-torsion generators,

α2α
kuj ,

with αk+1yuj−3. This last element is not x1-torsion, though. When we are in ER(2)∗

(RP 2n) and j is big enough, this can be x1-torsion;

y = α2ug + wu2h,

α2ug = y − wu2h,

α2u = yg−1 − wu2hg−1,

α2u
3 = yu2g−1 − wu4hg−1.

We know that wu4 = αy, so this is

α2u
3 = yu2g−1 − αyhg−1.

The lead term (i.e. the term with lowest filtration) here is αy and the whole right
hand side must be x1-torsion even if the lead term isn’t. When the higher filtration
terms are all zero, we can replace α2α

kuj with αk+1yuj−3.
This is enough to give us what we want.
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5. ER(2)16∗+8(RP 2n)

We have, for ER(2)16∗+8(−), a theorem similar to Theorem 13.4 of Part I for
ER(2)16∗(−).

Theorem 5.1. For all n > 3 there is a short exact sequence

0←− ER(2)16∗+8(RP 2n−2)←− ER(2)16∗+8(RP 2n)

←− ER(2)16∗+8(RP 2n/RP 2n−2)←− 0. (5.2)

We have elements α2α
kuj ∈ ER(2)16∗+8(RP 2n), 0 6 k, 0 < j < n. We also have ele-

ments yuj for 0 6 j 6 n− 4.
Depending on n modulo 8 there are other elements in ER(2)16∗+8(RP 2n).
For n = 8K + 4 and 8K + 3 there are no other elements and yu8K+1 = 0.
For n = 8K + 2 there is an x5-torsion element, z16K−38, that reduces to v2u

8K+2

in the Bockstein spectral sequence such that

x2αkz16K−38 = αkyu8K−1

with yu8K = 0.
For n = 8K + 1 there is an x5-torsion element, z16K−22, that reduces to v2u

8K+1

in the Bockstein spectral sequence such that

x2αkz16K−22 = αkyu8K−2,

and an x7-torsion element, z16K−4 that reduces to v6
2u8K+1 in the Bockstein spectral

sequence such that

x2uz16K−22 = x4z16K−4 = yu8K−1

with yu8K = 0.
For n = 8K there are x7-torsion elements, z16K−20 and z16K−18, that reduce to

v6
2u8K−1 and v3

2u8K respectively in the Bockstein spectral sequence such that

x4z16K−20 = yu8K−3,

x4uz16K−20 = yu8K−2

and

x4u2z16K−20 = x6z16K−18 = yu8K−1

with yu8K = 0.
For n = 8K + 7 there are x7-torsion elements, z16K−36 and z16K−34, that reduce

to v6
2u8K+6 and v3

2u8K+7 respectively in the Bockstein spectral sequence such that

x4z16K−36 = yu8K+4,

x4uz16K−36 = yu8K+5

and

x4u2z16K−36 = x6z16K−34 = yu8K+6

with yu8K+7 = 0.



REAL JOHNSON-WILSON THEORY AND NONIMMERSIONS OF RP n, PART II 277

For n = 8K + 6 there is an x5-torsion element, z16K−8, that reduces to v2u
8K+6

in the Bockstein spectral sequence such that

x2αkz16K−8 = αkyu8K+3,

and an x7-torsion element, z16K−36 that reduces to v6
2u8K+6 in the Bockstein spectral

sequence such that

x2uz16K−8 = x4z16K−36 = yu8K+4

with yu8K+5 = 0.
For n = 8K + 5 there is an x5-torsion element, z16K+10, that reduces to v2u

8K+5

in the Bockstein spectral sequence such that

x2αkz16K+10 = αkyu8K+2,

with yu8K+3 = 0.

This gives us our Theorem 1.1.

Proof. We have computed the Bockstein spectral sequence for all of the spaces
RP 2n−2, RP 2n, and RP 2n/RP 2n−2. From this we can just read off the elements
in degree 16∗+ 8. In every case, the x1-torsion elements α2α

kuj for j < n− 1 corre-
spond using the map induced by RP 2n−2 → RP 2n. Likewise for the elements wαku,
and yuj , 0 6 j 6 n− 5 so we will ignore these elements. In the proof we are constantly
using the fact that we already know all of the groups. We also make use of the fact
that the map ER(2)∗(RP 2n/RP 2n−2)→ ER(2)∗(RP 2n) was computed explicitly in
(13.1) of Part I.

First note that α0α
kun−1 = 2αkun−1 = αk+1un.

For n ≡ 4 mod 8, there is nothing else in ER(2)16∗+8(RP 2n−2). All that is left
of (5.2) is αkz2n ∈ ER(2)16∗+8(RP 2n/RP 2n−2) and α2α

kun−1 and yun−4 in
ER(2)16∗+8(RP 2n). Since there are no elements of higher filtration, we can use Sec-
tion 4 to replace α2α

kun−1 with αk+1yun−4. Note that αkyun−4 is represented by
v4
2αkun in the Bockstein spectral sequence. The long exact sequence forces αkz2n →

αkyun−4, but so does our direct computation using (13.1) of Part I.
Because uz2n = 0, we must have yun−3 = yu8K+1 = 0. Because z2n maps to yu8K ,

this element goes to zero in ER(2)16∗+8(RP 2n) when n ≡ 3, 2, 1, and 0 modulo 8.
For n ≡ 3 mod 8, ER(2)16∗+8(RP 2n/RP 2n−2) = 0. We must have αkyun−4 →

x2αkun−1v2. (Technically, we need to worry that perhaps yun−4 goes to x2α3kun−1v2

for some k. If this is the case, then the boundary homomorphism on x2un−1v2 must
be nontrivial but we can check that there is nowhere for it to go. Consequently we
will ignore this kind of possibility in the rest of this proof.)

For n ≡ 2 mod 8, things are a little more complicated. The only elements in
ER(2)16∗+8(RP 2n/RP 2n−2) are x2wαkz2n−18 and we can compute directly that they
go to x2αk+1unv2. The element αkyun−4 must go to x2αkun−1v2. The only possibil-
ity left is for x2unv2 to go to x4un−1v6

2 . Recall from above that this last element is
yun−3.
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For n ≡ 1 mod 8, we compute the map to ER(2)16∗+8(RP 2n) directly and we have

wαkz2n−18 −→ αk+1yun−4;

x2wαkz2n −→ x2αk+1unv2.

Keep in mind that this last represents αk+1yun−3. The element yun−4 must map to
x4v6

2un−2, x2v2u
n = yun−3 to x4v6

2un−1, and x4v6
2un = yun−2 to x6v3

2un−1.
For n ≡ 0 mod 8 we compute x6z2n−18 → x6unv3

2 = yun−1 and wαkz2n →
αk+1yun−4. That leaves yun−4 → x4un−2v6

2 , x4un−1v6
2 = yun−3 → x4un−1v6

2 , and
x4unv2

2 = yun−2 → x6un−1v3
2 .

Because yun−1 is hit above, we must have yu8K−1 = 0 below.
For n ≡ 7 mod 8, we compute x4z2n−18 → x4unv6

2 = yun−2 and x6z2n → x6unv3
2 =

yun−1. That leaves x4un−1v2
2 = yun−3 → x4un−1v6

2 and αkyun−2 → x2αkun−1v2.
Because yun−2 and yun−1 are hit above, we must have yu8K+5 = 0 below.
For n ≡ 6 mod 8, we compute x2αkz2n−18 → x2αkunv2 = αkyun−3 and x4z2n →

x4unv6
2 = yun−2. All that is left is αkyun−4 → x2αkun−1v2.

Because yun−3 and yun−2 are hit above, we must have yu8K+3 = 0 below.
The n ≡ 5 mod 8 case is simple again with αkz2n−18 → αkyun−4 and x2αkz2n →

x2αkunv2 = αkyun−3.

6. Algebraic maps

We can now see, from Theorem 5.1 and Theorem 1.6 of Part I, that we have purely
algebraic maps, no topology used or implied, of

ER(2)8∗(RP 2n) −→ E(2)8∗(RP 2n+2), n ≡ 1, 2, 5, 6 mod 8.

These maps are neither injective nor surjective. However, they are close enough to
surjective for our purposes since the only elements they miss are the v4

2u{1−3}. These
low powers of u are never involved with our nonimmersion results.

7. Last of the even spaces

The goal of this section is to prove Theorem 1.2.
We begin again with the main theorem of [Dav84]: for

n = m + α(m)− 1, k = 2m− α(m),

there does not exist an axial map

RP 2n ×RP 2K−2k−2 −→ RP 2K−2n−2,

and so RP 2n * R2k. This is proven by using the equivalent of E(2)∗(−) and showing
that the u2K−1−n = 0 on the right would have to go to a nonzero element on the left.
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That same element would prevent the existence of an axial map,

RP 2n+2 ×RP 2K−2k−2 −→ RP 2K−2n−2,

and likewise
RP 2n+2 ×RP 2K−2k−2 −→ RP 2K−2n−4.

Furthermore, if u2K−1−n went to nonzero then we must also have u2K−1−n−1 = 0
going to a nonzero element. If n + 1 ≡ 3 mod 8, then, from Theorem 1.1, we know
yu2K−1−n−5 = 0 in ER(2)∗(RP 2K−2n−4) and if −k − 2 ≡ {1, 2, 5, 6} mod 8, we have
a purely algebraic surjection ER(2)∗(RP 2K−2k−4) −→ E(2)∗(RP 2K−2k−2). Our ele-
ment yu2K−1−n−5 maps to v4

2u2K−1−n−1. We know v4
2 is a unit, so the result of Davis

shows that this element maps nontrivially to E(2)∗(RP 2n+2 ×RP 2K−2k−2). This
obstruction can be written in terms of a 2-adic basis. We show that the same 2-adic
basis exists in ER(2)∗(RP 2n+2 ×RP 2K−2k−4) and so our ER(2)∗(−) obstruction
improves the result.

When this is accomplished, we will have a proof of the following:

Proposition 7.1. When n = m + α(m)− 1 and k = 2m− α(m), with n + 1 ≡ 3
mod 8 and −k − 2 ≡ {1, 2, 5, 6} mod 8, there is no axial map

RP 2n+2 ×RP 2K−2k−4 −→ RP 2K−2n−4,

and so RP 2n+2 * R2k+2.

To derive the proof of Theorem 1.2 from this we have to untangle some equations
to get our (m,α(m)) pairs. We have

n + 1 = m + α(m) ≡ 3 mod 8

and
−k − 2 = −2m + α(m)− 2 ≡ {1, 2, 5, 6} mod 8.

The equation for k gives

2m− α(m) ≡ {5, 4, 1, 0} mod 8.

The equation for n gives
m + α(m) ≡ 3 mod 8.

Adding, we have
3m ≡ {0, 7, 4, 3} mod 8.

Multiply by 3 to get
m ≡ {0, 5, 4, 1} mod 8.

Substituting into
α(m) ≡ −m + 3 mod 8,

we get
α(m) = {3, 6, 7, 2}

and this gives us (m,α(m)) pairs (0, 3),(5, 6), (4, 7) and (1, 2) mod 8.
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To complete our proof of Theorem 1.2, all we have to do is show that the 2-
adic basis elements for E(2)∗(RP 2n+2 ×RP 2K−2k−2) that the obstruction can be
written in terms of, i.e. those ui

1u
j
2 with i + j big, also form a 2-adic basis for

ER(2)∗(RP 2n+2 ×RP 2K−2k−4) and that the same powers of u1 and u2 are zero
in each.

The basis for E(2)∗(RP 2n+2 ×RP 2K−2k−2), in degrees 16∗+ 8, is given by
v4
2αkui

1u2 with i 6 n + 1 and v4
2ui

1u
j
2 with i 6 n + 1 and 1 < j 6 2K−1 − k − 1.

We need to discuss the obstruction just a little in order to be careful with our
comparison. Recall from Theorem 3.2 that the coproduct of v4

2u2K−1−n−1 is, up
to a unit, (u1 − u2)2

K−1−n−1. The algorithm, Remark 15.3 of Part I, never lowers
the powers of the u’s, so the obstruction must be a linear combination of the 2-
adic basis elements v4

2ui
1u

j
2 with i 6 n + 1, 1 < j 6 2K−1 − k − 1, and i + j > 2K−1 −

n− 1. (The missing v4
2u
{1,2,3}
1 u

{1,2,3}
2 never figure in here.)

We now proceed to show that the elements of the same name in
ER(2)∗(RP 2n+2 ×RP 2K−2k−4) are part of its 2-adic basis. This is easy for most
of these elements. Consider the elements ui

1u
j
2y2 with 3 < i 6 n + 1 and

for 3 < j 6 2K−1 − k − 6. These reduce nontrivially (and independently) to v4
2ui

1u
j+4
2

in E(2)8∗(−). That’s not quite enough, though. We also need the elements
ui

1u
2K−1−k−5
2 y2 for 3 < i 6 n + 1. For the submodules of our groups generated by

the ui, in the range of our obstruction where ui
1u

j
2 has i + j big, we have identical

2-adic bases. In addition, we need un+2
1 uj

2y2 = 0 and ui
1u

2K−1−k−4
2 y2 = 0. The two

groups are really isomorphic as Z(2)[α, u1, u2]-modules.
The following result finishes off what we need.

Proposition 7.2. When q ≡ 1, 2, 5 or 6 modulo 8 and m 6 8K and 8K + 8 < q,
the element um

1 uq−3
2 y2 ∈ ER(2)∗(RP 2m ∧RP 2q) is nonzero. When i > 4, we have

ui
1u

q−2
2 y2 = 0. When m ≡ 3 mod 8, um+1

1 uj
2y2 = 0.

Proof. The element yuq−3 is represented in the spectral sequence for ER(2)∗(RP 2q)
by x2v2u

q (from Theorem 5.1) so the element um
1 uq−3

2 y2 is represented by x2um
1 v2u

q
2.

Thus it is enough to show that the element v2u
m
1 uq

2 survives in the spectral sequence
to E3. In Theorem 19.2 of Part I, we have computed the entire E2-term of the
spectral sequence and this term is there with no restrictions on q. There can be no
differentials on this element since it is the product of two honest elements (this does
use the restriction on q).

All we need to do now is show that this element is not in the image of d2. The
differential d2 has degree 35 ≡ −13. Our element um

1 uq
2v2 has degree −16(m + q)− 6

so the source that would have to hit it would have to have degree −16(m + q)− 41;
in particular, it must be odd degree. From Theorem 19.2 of Part I, the odd degree
elements in the E2-term of our Bockstein spectral sequence are:

v2s
2 αkz−16q−17;

v2s
2 ui

1z−16q−17, 0 < i < m;

and v2s+1
2 αkum−1

1 z−16q−17.
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The only elements with degree equal to −9 modulo 16 are

v4
2αkz−16q−17

and v4
2ui

1z−16q−17, 0 < i < m.

In the proof of Proposition 19.3 of Part I, we showed that d2 must be trivial on
z−16q−17 when m 6 8K. The differential d2 also commutes with multiplication by α
and u1. We also know that since d2(v4

2) = 0, d2 commutes with multiplication by v4
2 .

Consequently, d2 is trivial on all of the elements listed above when m 6 8K.
For the next statement of the proof we use the fact that uq−2

2 y2 is divisible by x4

and that x3u4
1 = 0. For the final statement we use the fact that um+1

1 is divisible by
x4 and that x3y2 = 0.

This completes the proof of Theorem 1.2.

8. ER(2)∗(RP 16K+1)

We begin our computation by setting up the Bockstein spectral sequence.
E1 is just E(2)∗(RP 16K+1), which is nothing more than

E(2)∗(RP 16K)⊕ E(2)∗(S16K+1).

So we have a 2-adic basis (it isn’t really necessary to use this notation for the torsion
free part and so it isn’t necessary to go to the 2-adic completion of ER(2); it is just
convenient notation now), letting 2 = α0,

E1:

vi
2α

kuj , 0 6 i < 8, 0 6 k, 0 < j 6 8K;

vi
2α

q
0α

kι16K+1, 0 6 i < 8, 0 6 q, 0 6 k.

All of the first part is even degree and all of the second part is odd degree. The
differential d1 is even degree, so it is induced by the maps

RP 16K −→ RP 16K+1 −→ S16K+1

where we already know it. Thus we can just read off our d1 from Theorem 13.2, Part I,
for the RP 16K part and Section 5 Part I for the S16K+1 part.

d1(v2s−5
2 αkuj) = 2v2s

2 αkuj ≡ v2s
2 αk+1uj+1, j < 8K

(modulo higher powers of u).

d1(αq
0v

2s+1
2 αkι16K+1) = αq+1

0 v2s−2
2 αkι16K+1.

E2 is given by

v2s
2 αku, 0 6 k; v2s

2 uj , 1 < j 6 8K; v2s+1
2 αku8K , 0 6 k;

v2s
2 αkι16K+1.

We confront a new problem now. The differential d2 has degree 35 and we have
both odd and even degree elements so it could be nonzero. If so, by naturality it must
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have its source in the RP 16K part and its target in the S16K+1 part. Furthermore,
the source cannot be something in the image from the E2 for ER(2)∗(RP∞) because
we know that d2 is zero on all of those elements. All we are left with for possible
sources is

v2s+1
2 αku8K , 0 6 k.

The differential d2 is trivial on v2
2 and α so it commutes with multiplication by these

elements. Since v2
2 is a unit, if there is a d2 then it must be nonzero on v2u

8K ,
which has degree −6− 16(8K) ≡ 16K − 6. The degree of the target must be this
plus 35, or 16K + 29 ≡ 16K − 19. The possible targets have degrees −12s− 32k +
16K + 1. Working modulo 16, we need −3 ≡ −12s + 1, so we see that s = 3 and
we have 16K − 19 ≡ −36− 32k + 16K + 1, which gives −19 ≡ −36− 32k + 1 mod-
ulo 48. This is 16 ≡ −32k, which suggests the solution of k = 1 (other alternatives
are k = 3q + 1).

If there is a d2, we would conjecture that it starts with

d2(v2u
8K) = v6

2αι16K+1,

and this would lead to

d2(v2s+1
2 αku8K) = v6+2s

2 αk+1ι16K+1.

We now know what to look for. If we can show that the element αι16K+1 is in the
image from S16K+1 and that x2 times it must be zero, then our conjectured d2 is
correct.

If we look carefully at ER(2)∗(S16K+1), we see that there are a number of known
2-torsion free elements, namely all of wεαkι16K+1, α{1,3}αkι16K+1 and α2ι16K+1. If
we look at

RP 16K −→ RP 16K+1 −→ S16K+1,

we know that ER(2)∗(RP 16K) is all torsion, so our torsion free elements must all
inject into ER(2)∗(RP 16K+1). From this we know that the element αι16K+1 is in
ER(2)∗(RP 16K+1), but we don’t yet know if x2 kills it.

For that we need the diagram:

RP 16K

²²

= // RP 16K

²²
RP 16K+1

²²

// RP 16K+2

²²

// S16K+2

=

²²
S16K+1 // RP 16K+2/RP 16K // S16K+2.

(8.1)

Each row and column is a cofibration giving rise to a long exact sequence. Our
goal is to show that x2αι16K+1 in ER(2)∗(RP 16K+1) is zero. It is the image of the
same named element in ER(2)∗(S16K+1). From Corollary 9.3 of Part I we know that



REAL JOHNSON-WILSON THEORY AND NONIMMERSIONS OF RP n, PART II 283

the element
z16K−16 ∈ ER(2)∗(RP 16K+2/RP 16K)

maps to xι16K+1 in ER(2)∗(S16K+1). Consequently, xαz16K−16 must map to our
element of interest, x2αι16K+1.

Rather than go through S16K+1 on our way to RP 16K+1, we can now go through
RP 16K+2. The element z16K−16 maps to u8K+1 ((13.1) Part I) and so xαz16K−16 maps
to xαu8K+1. Since 2x = 0, we can use the relation ((1.3) Part I) on αu2 and we will get
xu8K+3 plus even higher terms, but we know that u8K+3 is zero in ER(2)∗(RP 16K+2)
(Theorem 1.6, Part I). So it follows that we have x2αι16K+1 = 0 in ER(2)∗(RP 16K+1)
and we can compute our d2 as we conjectured.

Although uz16K−16 maps to u8K+2, it comes from S16K+2 and so goes to zero in
ER(2)∗(RP 16K+1).

We get more information out of that computation. It shows us that u8K+1 is repre-
sented in the spectral sequence by xι16K+1 because both come from z16K−16. Multiply
u8K by α2, and in E(2)∗(RP 16K+2) this is v4

2αu8K+1. Consequently, α2α
ku8K is rep-

resented by v4
2αk+1u8K+1 and in RP 16K+1 this is represented by v4

2αk+1xι16K+1.
From our discussion in Section 4 we can replace this α2α

ku8K with αk+1yu8K−3.
We now have our
E3:

v2s
2 αku, 0 6 k; v2s

2 uj , 1 < j 6 8K; v2s
2 ι16K+1.

The differential d3 is even degree again, so the even and odd degree parts don’t
mix. In S16K+1, d3 takes v2

2 to αv4
2 but this element is not there, so there is no d3 on

the odd part. On the even part we already know the d3 differentials:

d3(v{6,2}
2 αku) = v

{0,4}
2 αk+1u;

d3(v{6,2}
2 uj) = v

{0,4}
2 αuj = v

{0,4}
2 uj+2, 1 < j 6 8K − 2.

We get
E4:

v
{0,4}
2 u{1–3}; v

{6,2}
2 u{8K−1,8K}; v2s

2 ι16K+1.

Our d4 is odd degree again and so must go from the RP 16K part to the S16K+1

part if at all. The differential d4 has degree 21 and must be zero on things in the
image from RP∞, so a nonzero differential must start out on

v
{6,2}
2 u8K−1

and hit one of
v2s
2 ι16K+1.

The source degrees are −36− 16(8K − 1) = 16K − 20 and 16K + 4. Adding 21 to
see what degree our target would have to be, we get 16K + 1 and 16K + 25. Since
v4
2 commutes with d4, if we have a d4 it must be

d4(v6
2u8K−1) = ι16K+1; d4(v2

2u8K−1) = v4
2ι16K+1.

In our discussion of d2 we showed that ι16K+1 lives in ER(2)∗(RP 16K+1). So,
because it comes from ER(2)∗(S16K+1), it has no differential on it. The only question
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is what differential hits it. We have already computed d1, d2, and d3, so we know that
x3ι16K+1 6= 0 in ER(2)∗(RP 16K+1). If x4ι16K+1 = 0, then ι16K+1 must be hit by d4

and our differential must be as above.
The argument here is the same as before using the diagram (8.1). The element

z8K−16 maps to xι16K+1 in S16K+1 so we want to study x3z8K−16 and we will again
get to RP 16K+1 by way of RP 16K+2 where x3z16K−16 maps to x3u8K+1 = 0 (because
x3u4 = 0).

This computes our d4 and we have left for our
E5:

v
{0,4}
2 u{1–3}; v

{6,2}
2 u8K ; v

{2,6}
2 ι16K+1.

d5 is once again even degree and the dimensions don’t work for the odd part so it
is zero there and RP 8K determines it is zero on the even part.

We have to consider the possibility of a d6 which is of degree 7. Again, it must
go from even to odd by naturality. It would commute with v4

2 , so if d6 is nonzero on
v2
2u8K , it will be nonzero on the other element. The degree here is −12 + 16K. Add

7 to look for the target to get −5 + 16K. Elements that are in odd degrees are in
degrees 16K + 1− 12 and 16K + 1− 36, so there can be no d6.

All we have left is d7, and we know, for starters, that d7(v4
2u1−3) = u1−3. We can

also read off from RP 8K that d7(v2
2u8K) = v6

2u8K .
The only issue remaining is how d7 works on

v
{2,6}
2 ι16K+1.

The element yu8K−1 is represented by x4v6
2u8K+1 in the Bockstein spectral se-

quence for ER(2)∗(RP 16K+2) and by x6v3
2u8K in the Bockstein spectral sequence for

ER(2)∗(RP 16K) (Theorem 5.1).
It must pass through ER(2)∗(RP 16K+1) nontrivially and it must be divisible by x4

in here. The only even degree candidates for such an element in the Bockstein spectral
sequence for ER(2)∗(RP 16K+1) are x{4,6}v6

2u8K and x5v
{2,6}
2 ι16K+1. The degree of

yu8K−1 is 16K ± 24, which is 8 mod 16. Checking x{4,6}v6
2u8K and x5v

{2,6}
2 ι16K+1,

we see that, modulo 16, their degrees are 8,−10, 0, and 8 respectively so the only
possibilities are x4v6

2u8K and x5v6
2ι16K+1. However, modulo 48, these are −20− 36 +

16K and −36− 36 + 16K, or, 16K − 8 and 16K − 24, so it must be represented by
x5v6

2ι16K+1 and so our last undecided differential must be d7(v2
2ι16K+1) = v6

2ι16K+1.
From Theorem 5.1 we already have yu8K = 0 in ER(2)∗(RP 16K+2) and so it is

also zero in ER(2)∗(RP 16K+1).
This concludes our computation of ER(2)∗(RP 16K+1) using the Bockstein spectral

sequence and we collect our results here.

Theorem 8.2. The Bockstein spectral sequence for ER(2)∗(RP 16K+1) is as follows.
E1:

vi
2α

kuj , 0 6 i < 8, 0 6 k, 0 < j 6 8K;

vi
2α

q
0α

kι16K+1, 0 6 i < 8, 0 6 q, 0 6 k.

d1(v2s−5
2 αkuj) = 2v2s

2 αkuj ≡ v2s
2 αk+1uj+1, j < 8K
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(modulo higher powers of u).

d1(αq
0v

2s+1
2 αkι16K+1) = αq+1

0 v2s−2
2 αkι16K+1.

E2:

v2s
2 αku, 0 6 k; v2s

2 uj , 1 < j 6 8K; v2s+1
2 αku8K , 0 6 k ;

v2s
2 αkι16K+1.

d2(v2s+1
2 αku8K) = v6+2s

2 αk+1ι16K+1.

E3:

v2s
2 αku, 0 6 k; v2s

2 uj , 1 < j 6 8K; v2s
2 ι16K+1.

d3(v{6,2}
2 αku) = v

{0,4}
2 αk+1u;

d3(v{6,2}
2 uj) = v

{0,4}
2 αuj = v

{0,4}
2 uj+2, 1 < j 6 8K − 2.

E4:
v
{0,4}
2 u{1–3}; v

{6,2}
2 u{8K−1,8K}; v2s

2 ι16K+1.

d4(v{6,2}
2 u8K−1) = v

{0,4}
2 ι16K+1.

E5 = E6 = E7:

v
{0,4}
2 u{1–3}; v

{6,2}
2 u8K ; v

{2,6}
2 ι16K+1.

d7(v4
2u{1−3}) = u{1−3};

d7(v2
2u8K) = v6

2u8K .

d7(v2
2ι16K+1) = v6

2ι16K+1.

We identify all of the elements in degree 8∗. This completes the proof of Theo-
rem 1.3.

Theorem 8.3. A 2-adic basis for the elements in ER(2)8∗(RP 16K+1) is given by the
following.

From the x1-torsion elements we have αkuj, 0 < k, 1 < j 6 8K, representing ele-
ments with the same name. Also, α2α

kuj, 0 6 k, 0 < j < 8K, is represented by
2v4

2αkuj ≡ v4
2αk+1uj+1 modulo higher powers of u.

From the x2-torsion we have αku8K+1, k > 0, is represented by αkxι16K+1 and
α2α

ku8K = αk+1yu8K−3 is represented by v4
2αk+1xι16K+1.

From the x3-torsion we have αk+1u represents the element with the same name
and v4

2αk+1u represents wαku.
The elements uj, 3 < j 6 8K, represent the elements with the same name and

v4
2uj, 3 < j 6 8K, represents yuj−4.

From the x4-torsion we have xι16K+1 represents u8K+1 and v4
2xι16K+1 represents

yu8K−3.
From the x7-torsion we have u{1−3} represents elements of the same name and

x4v6
2u8K represents yu8K−2. Finally, x5v6

2ι16K+1 represents yu8K−1.
We also have u8K+2 = 0 = yu8K .
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Proof. We can find all of the elements in degrees 8∗ by looking at the Bockstein
spectral sequence. If we check the elements that are x1-torsion, i.e. the image of
d1, the elements in degrees 8∗ are just 2v

{0,4}
2 αkuj , and these are, modulo higher

filtrations, v
{0,4}
2 αk+1uj+1, 0 < j < 8K. These can be written as αiα

kuj with i = 0
and 2, 0 < j < 8K.

Elements in degree 8∗ coming from the x2-torsion are represented by x times
v
{0,4}
2 αk+1ι16K+1. In our computation of d2 in the Bockstein spectral sequence, we

showed that z16K−16 mapped to xι16K+1. We also showed it mapped to u8K+1. This
was only x2-torsion if we multiplied by αk+1. This gives us our αk+1u8K+1, which is
2αku8K .

From the proof of Theorem 5.1, we know that wαkz16K−16 maps to αk+1yu8K−3

and is represented by v4
2αk+1u8K+1, or, x times v4

2αk+1ι16K+1. This identifies our
remaining 8∗ degree elements coming from the x2-torsion.

The only elements that come from the x3-torsion are again standard elements,
wεαku with ε + k > 0, uj with 3 < j 6 8K, and yuj with 0 6 j 6 8K − 4.

From the x4-torsion, we get xv
{0,4}
2 ι16K+1 in the expected degrees. We have already

identified each of these as u8K+1 and yu8K−3 respectively.
Of course our x7-torsion u{1−3} is standard.
We have only the x7-torsion elements v6

2u8K and v6
2ι16K+1 remaining to consider.

The only elements in the appropriate degrees are x4 times the first and x5 times the
second. We have already identified the last one as yu8K−1. We have not identified the
necessary element yu8K−2 which we now see must be x4v6

2u8K .
We have already shown u8K+2 = 0 = yu8K .

We have a corollary:

Corollary 8.4. There is a purely algebraic map

ER(2)8∗(RP 16K+1) −→ E(2)8∗(RP 16K+2)

which only misses the elements v4
2u{1−3}.

9. Axial maps and odd spaces

Recall that Don Davis uses E(2)∗(−) to show that the axial map

RP 2K−2k−2 ×RP 2n −→ RP 2K−2n−2

does not exist when n = 2(m + α(m)− 1) and k = 2(2m− α(m)), giving him

RP 2(m+α(m)−1) * R2(2m−α(m)).

From the previous section, we know that there is an algebraic map, which for our
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purposes is surjective enough when −2k − 2 ≡ 2 mod 16:

ER(2)∗(RP 2K−2k−3) −→ ER(2)∗(RP 2K−2k−2).

We will be able to use our standard tricks to show that

RP 2(m+α(m)−1) * R2(2m−α(m))+1

when

−k − 1 ≡ 1 ≡ −2m + α(m)− 1 mod 8

and

m + α(m)− 1 = n = {3, 4, 7, 0}.
Presumably one could compute ER(2)∗(RP 16K+9) and prove a similar theorem

with −k − 1 = 5. Although the results are probably new they are not of sufficiently
low dimensions to interest us.

Before we proceed, let’s check out the numbers here. We have

2m− α(m) ≡ −2 mod 8;
m + α(m) ≡ {4, 5, 0, 1}.

Adding, we get

3m ≡ {2, 3, 6, 7}.
Multiply by 3 (always mod 8);

m ≡ {6, 1, 2, 5}.
Then

α(m) ≡ {6, 4, 6, 4}.
This is Theorem 1.4 in the introduction.
The rest of the paper is dedicated to the proof that there is no axial map

RP 2K−2k−3 ×RP 2n −→ RP 2K−2n−2

so that the derivation of Theorem 1.4 in this section holds. This proof breaks up into
two separate pieces. The case for n ≡ 7 or 0 is done in the next two sections and
n ≡ 3 or 4 is done in the last section.

10. The 16∗ cases

By now our arguments should seem fairly standard. Don Davis has computed the
obstruction to the axial map

RP 2K−2k−2 ×RP 2n −→ RP 2K−2n−2

in E(2)∗(RP 2K−2k−2 ×RP 2n). We will show that the same 2-adic basis that the
obstruction lives in is also in ER(2)∗(RP 2K−2k−3 ×RP 2n) and that the same powers
of u1 and u2 are zero.

We assume throughout that 2K − 2k − 3 is equal to 1 mod 16.
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In the case of n ≡ 7 or 0 mod 8, we have isomorphisms

ER(2)16∗(RP 2n) −→ E(2)16∗(RP 2n).

We use the fact that u2K−1−n is zero in ER(2)∗(RP 2K−2n−2).
All we have to do now is show that the elements corresponding to a 2-adic basis

where Davis’s obstruction lives also exist in

ER(2)16∗(RP 2n ∧RP 2K−2k−3).

As in previous cases, because the algorithm always increases the number of u’s and
because the coproduct of u can be computed as u1 − u2 up to a unit, we just need
the elements ui

1u
j
2 to be nonzero when i + j is big. (We don’t really have to worry

about the αui
1u2 terms because they don’t have enough u’s in them.)

Most of the ui
1u

j
2 are obviously nonzero and independent because they reduce to

E(2)∗(−). The only elements this doesn’t work for are taken care of by the following
theorem.

Theorem 10.1. When n 6 8M < 8M + 8 < 8K, in

ER(2)16∗(RP 2n ∧RP 16K+1),

the element un
1u8K+1

2 is nonzero.

If this element is nonzero, since the elements ui
1u

8K+1
2 are defined and un−i

1 times
them is nonzero, they too are all nonzero.

We already know that un+1
1 = 0 = u8K+2

2 , so the 2-adic basis for big products of u1

and u2 are the same for both cohomology theories and their respective spaces (n ≡ 7
or 0 modulo 8).

This result, proven in the next section, will complete the proof of the nonexistence
of the axial map mentioned at the end of the last section for the n = 7, 0 cases.

11. Products with an odd space

We study the Bockstein spectral sequence for

ER(2)∗(RP 2n ∧RP 16K+1)

where 2n < 16K + 1. The E1-term is, as usual, just

E(2)∗(RP 2n ∧RP 16K+1).

This has a few more pieces than we are used to because

E(2)∗(RP 16K+1) ' E(2)∗(RP 16K)⊕ E(2)∗(S16K+1).

Since E(2)∗(S16K+1) is free, it doesn’t affect the Tor term, only the tensor product
term. So our E1 is, from Theorem 14.3 of Part I,

E(2)∗(RP 2n)⊗ E(2)∗(RP 16K)⊕ E(2)∗(RP 2n)⊗ E(2)∗(S16K+1)

⊕Σ−16(8K)−1E(2)∗(RP 2n).

Keep in mind that

E(2)∗(RP 2n)⊗ E(2)∗(S16K+1) ' Σ16K+1E(2)∗(RP 2n).
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The −16(8K)− 1 looks silly and can be replaced with 16K − 1 since we are work-
ing modulo 48.

We need our 2-adic basis for our E1-term:

vs
2α

kui
1u2, 0 6 k, 0 < i 6 n, s < 8;

vs
2u

i
1u

j
2, 0 < i 6 m, 1 < j 6 8K, s < 8;

and

vs
2α

kui
1ι16K+1, 0 6 k, 0 < i 6 n, s < 8;

vs
2α

kui
1z16K−17, 0 6 k, 0 6 i < n, s < 8.

We know that xι16K+1 represents u8K+1
2 , so xun

1 ι16K+1 represents un
1u8K+1

2 . There
can be no differential on un

1 ι16K+1 because it is a product of elements. All we have
to do is show that it is not in the image of d1. Since d1 is even degree, we only have
to worry about it on the odd degree elements, since un

1 ι16K+1 is odd degree.
d1 has degree 18, so if d1 is to hit un

1 ι16K+1, it must start on some αkui
1z16K−17

because they are the only elements in the appropriate degree mod 16. Since d1 com-
mutes with α, we would have to have ui

1z16K−17 hitting un
1 ι16K+1 and since d1 com-

mutes with multiplication by u1, we would have to have d1 be nontrivial on z16K−17.
In the Bockstein spectral sequence for ER(2)∗(RP 16M+16 ×RP 16K+2), with

8M + 8 < 8K, we have, from Theorem 19.2 of Part I, that d1(z16K−33) = 0. From
Theorem 1.2 of [GW], z16K−33 maps to u1z16K−17 in the spectral sequence for
RP 16M+16 ×RP 16K . Since this passes through the spectral sequence for
RP 16M+16 ×RP 16K+1, z16K−33 maps to u1z16K−17 here as well, so
d1(u1z16K−17) = 0; i.e. u1 multiplied times d1(z16K−17) is zero. All elements killed by
multiplication by u1 go to zero under the map to RP 8M ×RP 16K+1, and so in here,
our d1(z16K−17) = 0 and our result follows by naturality.

This concludes our proof for the n = 7, 0 cases.

12. The 16∗ + 8 cases

We continue to assume that 2K − 2k − 3 is equal to 1 mod 16.
We now switch to the cases of n ≡ 3, 4 mod 8. We now have yu2K−1−n−4 = 0 in

ER(2)∗(RP 2K−2n−2) and this maps to v4
2u2K−1−n = 0 in E(2)∗(RP 2K−2n−2). We

know from [Dav84] that this goes to nonzero in E(2)∗(RP 2n ×RP 2K−2k−2). We
will, as usual, show that the 2-adic basis elements of whose terms this obstruction
can be written also live in ER(2)∗(RP 2n ×RP 2K−2k−3).

The discussion now is nearly identical to that for the even products we studied
first in this paper. The end result that we need to complete the work is:

Theorem 12.1. When m 6 8M and 8M + 8 < 8K, the element

um
1 u8K−3

2 y2 ∈ ER(2)∗(RP 2m ∧RP 16K+1)

is nonzero. When i > 4, ui
1u

8K−2
2 y2 = 0. When n ≡ 3 or 4 modulo 8, un+1

1 uj
2y2 = 0.

Proof. We have already written down the E1-term for this. The element that repre-
sents um

1 u8K−3
2 y2 is v4

2xum
1 ι16K+1. All we have to do is show that v4

2um
1 ι16K+1 is not
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the target of a d1. If there is such a differential for 8M + 8, just as in the last case,
d1(z−16n−17) must be nonzero and u1 times the target must be zero. All such target
elements go to zero when we map down to m 6 8M < 8M + 8 and so the differential
is trivial there.

For the last statements, we note that u8K−2
2 y2 is divisible by x4 and x3 kills u4

1

and that un+1
1 is divisible by x4 and x3 kills y2.

This concludes the proof of the final cases.
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