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INVERTIBLE SPECTRA OF FINITE TYPE

GUCHUAN LI

Abstract. We describe the necessary and sufficient numerical condition when an element X

in the Picard group of K(2)-local category at prime p > 5 is of finite type, i.e., πkX is finitely
generated as a Zp-module for all k ∈ Z.

1. Introduction

A long-standing open question in chromatic homotopy theory is whether the homotopy groups
of K(n)-local sphere are finitely generated over Zp in each degree ([5], Conjecture 6.5 in [14]
Chapter 5). This is the first problem in the Morava K- and E-theory section of Mark Hovey’s
algebraic topology problem list1. A positive answer would follow from the chromatic splitting
conjecture [2] [14]. One could ask the same question for any invertible spectrum X in K(n)-local
category. At height 2, prime p > 5, Hovey and Strickland show that this is not true for most
elements in the Picard groups [12, Proposition 15.7]. From now on, p > 5 is a fixed prime and
all spectra are K(2)-local. Let PicK(2) be the Picard group of K(2)-local category. We say a
p-local spectrum X is of finite type if πkX is finitely generated as a Zp-module in all degrees k
in Z. A natural question is:

Question 1.1. Which elements of PicK(2) are of finite type?

Hovey and Strickland’s argument is not constructive and does not give a criterion for answering
this question. We answer Question 1.1 by the following necessary and sufficient condition. It is
a condition on coefficients in a “p-adic”-like expansion of a number associated to X .

Let Pic0K(2) be the index 2 subgroup of invertible elements whose (E2)∗ homology is zero in

odd degrees. Since X is of finite type if and only if ΣX is. It is sufficient to analyze which
elements of Pic0K(2) are of finite type. In Corollary 2.6, we give a concrete description of the

map [8, Page 11]

e : Pic0K(2) → H1(G2, (E2/p)
×
0 )

∼= lim
k

Z/pk(p2 − 1).

We denote the Zp-module lim
k

Z/pk(p2 − 1) ∼= Zp ⊕ Z/(p2 − 1) by Z. In Section 2, we will see

that Z is a direct summand in Pic0K(2).

Definition 1.2. For an element α ∈ Z, we define the Z-expansion of α to be the unique expansion
of the following form

α = a0 + (p2 − 1)

∞
∑

i=1

aip
i−1 for ai ∈ Z, 0 6 a0 < p2 − 1, 0 6 ai < p.

We call ai the ith Z-expansion coefficients.

Theorem (Theorem 4.22). Let X ∈ Pic0K(2). Then X is of finite type if and only if the Z-

expansion coefficients {ai} of e(X) contain only either finitely many zero entries or finitely
many nonzero entries.

1https://www-users.cse.umn.edu/ tlawson/hovey/morava.html

1

http://arxiv.org/abs/2110.08397v1
https://www-users.cse.umn.edu/~tlawson/hovey/morava.html


INVERTIBLE SPECTRA OF FINITE TYPE 2

Remark 1.3. Note that e(X) contains only finitely many nonzero entries if and only if e(X) is a
nonnegative integer.

Theorem 1 gives a refinement to the following theorem due to Hovey and Strickland.

Theorem 1.4. [12, Theorem 15.1] Let µ be the unique translation-invariant measure on Z with
µ(Z) = 1. We call µ the Haar measure on Pic0K(2). Then the set

{X ∈ Z ⊂ Pic0K(2) | X is of finite type}

has Haar measure 0 in Pic0K(2).

We will say α ∈ Z has the finiteness property if α satisfies the condition in Theorem 1; that
is, there are either finitely many zero entries or finitely many nonzero entries in α’s Z-expansion
coefficients.

The Z-index e(X) has the following beneficial properties. Let X be a spectrum. We denote

the homotopy cofiber of X
p
−→ X by X/p.

Theorem (Theorem 3.3). Let X, Y be elements in Pic0K(2). Then X/p ≃ Y/p if and only if

e(X) = e(Y ).

Theorem (Theorem 5.2). Let X be an element in Pic0K(2), I2X be the Gross–Hopkins dual of

X (see Definition 5.1), and λ = lim
k

p2k(p+ 1) ∈ Z. Then e(I2X) = 1 + λ− e(X). In particular,

X is of finite type if and only if I2X is of finite type.

Remark 1.5. If e(X) is an integer, then e(I2X) will not be an integer and its Z-expansion
coefficients contain only finitely many zero entries.

The paper is organized as follows: in section 2, we first review some facts about Pic0K(2) and

then give concrete constructions of some elements in it. In section 3, we reduce the problem of
finite type to those elements with concrete constructions. In section 4, we prove our result by
computations based on the constructions and the known computation of π∗LK(2)S

0. In section

5, we apply our result to three interesting examples S0, I2, and S2γ (to be defined later).
Through out this paper, p > 5 is a fixed prime and all spectra are K(2)-local and group

cohomology of Gn are continuous cohomology. We may omit LK(2); that is, when we write S0,

it means LK(2)S
0.

Acknowledgments. I would like to heartily thank Paul Goerss for many helpful conversations
and the feedback on early drafts of this paper. I would like to thank Tobias Barthel for explaining
how the chromatic splitting conjecture implies that the K(n)-local sphere is of finite type.

2. The Picard groups of K(2)-local categories at prime p > 5

The Picard groups of K(n)-local categories is introduced by Hopkins ([19]; see also [10]).

Definition 2.1. [10, Definition 1.2] A K(n)-local spectrum Z is invertible in the K(n)-local
category if and only if there is a spectrum W such that

LK(n)(Z ∧W ) = LK(n)S
0.

The Picard group of K(n)-local category PicK(n) is the group of isomorphism classes of such
spectra, with multiplication given by

(X,Y ) → LK(n)(X ∧ Y ).

The Picard group of K(2)-local categories at prime p > 5 has been computed by Olivier Lader
in his thesis, who attributes the result to Hopkins and Karamanov.
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Theorem 2.2. [13, Theorem 5.3] At height 2, prime p > 5, the Picard group of K(2)-local
category PicK(2) is isomorphic to Zp ⊕ Zp ⊕ Z/2(p2 − 1).

We explore the algebraic structure of Pic0K(2) (see [8] and [12]). Most parts work for general

heights n but we focus on the height 2 case here. Recall that Z denotes lim
k

Z/pk(p2 − 1). The

group Pic0K(2) is a continuous Z-module. In particular, given X ∈ Pic0K(2) and α ∈ Z, there is

an element Xα ∈ Pic0K(2).

The power series exp(p−) =
∞
∑

n=0

pnxn/n! converges for p > 2. We have a short exact sequence

0 −−−−−→ E0
exp(p−)
−−−−−→ E×

0

quotient
−−−−−→ (E0/p)

× −−−−−→ 1.

This gives a long exact sequence

(2.1) · · · → H1(G2, E0)
exp(p−)
−−−−−→ H1(G2, E

×
0 )

e
−→ H1(G2, (E0/p)

×) −→ · · · .

At p > 5, height n = 2, we have

Pic0K(2) = H1(G2, (E2)
×
0 ).

The quotient map

(E2)
×
0 → (E2/p)

×
0

induces the map

e : Pic0K(2)
∼= H1(G2, (E2)

×
0 ) → H1(G2, (E2/p)

×
0 )

∼= Z.

It turns out that the part in 2.1 becomes a short exact sequence. We can rewrite it as

(2.2) 0 → Zp → Pic0K(2)
e
−→ Z → 0

This is an exact sequence of continuous Z-modules. The first term Zp is generated by an element
ζ ∈ H1(G2, E0) defined as follows.

Definition 2.3. [6, Section 1.3] The homomorphism ζ is the composition

G2
∼= S2 ⋊Gal(Fp2/Fp)

(det,0)
−−−−→ Z×

p
∼= Zp.

Remark 2.4. We actually define an element ζ in H1(G2,Zp). We will denote its image in
H1(G2, E0) also by ζ. Note that g′(0) originally lives in F×

p and we denote its Teichmuller

lift to Z×
p also by g′(0). Then by choosing the isomorphism

Z×
p
∼= Zp

1 + px →
1

p
log(1 + py),

a concrete formula of ζ ∈ H1,0(G2, (E2)0) is

G2 → Zp ⊂ E0(2.3)

g →
1

p
log(g′(0)−(p+1)det(g)).

There is a splitting map

Z →֒ Pic0K(2)

α → S2α.
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We shall see a concrete construction of S2α in the Section 2 due to [10]. As a continuous Z-
module, Pic0K(2) is generated by two topological generators S2 and S[det] with one relation. For

the definition of the generator S[det], see [1]. The map det : Gn → Z×
p is defined in [6, Section 1.3],

see also [1, Section 3]. The generator S2 can also be realized as a crossed homomorphism
t0 : G2 → E×

0 . We denote (S[det])β by Sβ [det] for β ∈ Z. Now each element X ∈ Pic0K(2) can be

presented as S2α∧Sβ [det] where α, β ∈ Z. To describe the relation, we introduce γ = lim
k

p2k ∈ Z,

a generator of the torsion part Z/(p2 − 1) in Z, and λ = lim
k

p2k(p+ 1) ∈ Z. The relation is

(2.4) S2γλ = Sγ [det].

The relation follows from knowing the image of ζ in the short exact sequence 2.2. This is
explained in Proposition 2.5.

Proposition 2.5. [8, Proposition 3.9] The image of ζ is

exp(pζ) = t−λ
0 det.

We copy the proof from [8] for completeness.

Proof. We exam the diagram

H1(G2,Zp) H1(G2,Z
×
p )

H1(G2, E0) H1(G2, E
×
0 )

exp(p−)

exp(p−)

Plugging in (2.3), we have exp(pζ) as a crossed homomorphism

G2 → Z×
p ⊂ E×

0

g → g′(0)−(p+1)det(g).

Note that t0(g)
λ = g′(0) mod m. Let γ be lim

k
p2k ∈ Z. Then t0(g)

p2k

= g′(0)p
2k

mod mp2k

and we have tγ0 = g′(0)γ = g′(0). Also note that (p+ 1)γ = λ, the image of ζ is tλ0det(g). �

Corollary 2.6. Let X ∈ Pic0K(n) be S2α ∧ Sβ [det] where α, β ∈ Z. Then e(X) = α+ λβ.

Proof. By Proposition 2.5 and the exactness of 2.2, the kernel of the map e is generated by
S−2λS[det]. Therefore, we have

e(S2α ∧ Sβ[det]) = e(S2α) + e(S2λβ) = α+ λβ.

�

Construction of S2α. This appeared in [8] and [10]. The construction works for all heights.
Here we focus on the height 2 case. There is a construction of S2α ∈ Pic0K(2) for a given α ∈ Z.

We introduce some notation for the Z-expansion.

Definition 2.7. Let α ∈ Z with the expansion

α = a0 + (p2 − 1)

∞
∑

i=1

aip
i−1 for ai ∈ Z, 0 6 a0 < p2 − 1, 0 6 ai < p.

Denote
∞
∑

i=1

aip
i−1 ∈ Zp
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by ᾱ. For k > 0, define αk ∈ Z to be

αk = a0 + (p2 − 1)

k
∑

i=1

aip
i−1

and for k > 1, define ᾱk ∈ Z to be

ᾱk =
k

∑

i=1

aip
i−1.

We also need v1-self maps in the construction. A vℓ1-self map of X is a map

f : Σℓ|v1|X → X

such that K(1)∗(v
ℓ
1) is given by multiplying vℓ1 (see [16]). We work in large primes so S0/p has

a unique v1-self map. We will abuse notation and write vℓ1 for powers of this unique map.
We will construct S2α as a homotopy limit of generalized Moore spectra. The generalized

Moore spectra are constructed by Hopkins and Smith ([11]), explained and discussed in [16,
Chapter 6] and [12, Section 4]. Here we will follow the notation in [12] and make specific choices
for our purposes. Let S0/p denote the cofiber of p : S0 → S0. In general, S0/pk denotes the
cofiber of pk : S0 → S0. If S0/pk admits a vℓ1-self map, let S0/(pk, vℓ1) denote the cofiber of
vℓ1 : Σ

ℓ|v1|S0/pk → S0/pk.

Recall that from the computation of K(2) local spheres at p > 5, S0/pk+1 admits a vp
k

1 -self

map and hence S0/(pk+1, vp
k

1 ) exists. Also S0/(pk+1, vp
k

1 ) admits a vp
k

2 -self map. These vp
k

2 -self
maps are weak equivalence (in K(2)-local category) so we can make the following definition.

Definition 2.8. Given α ∈ Z, S2α is defined as holimΣ2αkS0/(pk+1, vp
k

1 ). The maps in the
inverse system are

Σ2αk+1S0/(pk+2, vp
k+1

1 )
q
→ Σ2αk+1S0/(pk+1, vp

k

1 )
v
ak+1pk

2 → Σ2αkS0/(pk+1, vp
k

1 ),

where the first map q is the quotient and the second map is the v
ak+1p

k

2 -self maps.

The construction of S2α gives the splitting map

g : R → Pic0K(2)

α → S2α.

such that e ◦ g = idPic0
K(2)

. In particular, the group morphism g is injective.

3. Reduction modulo p

In this section, we show that X ∈ Pic0K(2) has finite type if and only if πkS
2e(X)/p is a finite

dimensional Fp vector space for all k ∈ Z. The case X = LK(2)S
0 is explained in [5].

Proposition 3.1. Let X ∈ PicK(2) and define X/p as X ∧ S0/p. Then X is of finite type if
and only if πkX/p is finite for all k ∈ Z.

Proof. The only if part follows from the long exact sequence

· · · → πkX
p
−→ πkX → πkX/p → πk+1X → · · · .

The if part follows from the fact that π∗X is p-complete when πkX/p is finite for all k ∈ Z. In
this case, we can show πkX/pi is also finite for all k ∈ Z inductively by the cofiber sequences

X/p → X/pi+1 → X/pi.
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Then the lim1 term vanishes and we have

π∗X ∼= limπ∗X/pi.

�

Now we focus on X/p for X ∈ PicK(2). The following theorem tells that after reduction

modulo p, the two topological generators S2 and S[det] of PicK(2) become the same up to a
Z-suspension.

Theorem 3.2. [9]; see also [8, Theorem 3.11] Let λ = lim p2k(p + 1) ∈ Z. Then there is an
equivalence

S2λ/p = Σ2λS0/p ≃ S[det]/p.

In particular, this implies that X/p is determined by e(X) ∈ Z.

Theorem 3.3. Let X, Y be elements in Pic0K(2). Then X/p ≃ Y/p if and only if e(X) = e(Y ).

Proof. In Section 2, we see that an element X ∈ Pic0K(2) can be presented as S2α∧Sβ [det] where

αβ ∈ Z. By Theorem 3.2 and Corollary 2.6, we have

X/p ≃ S2α+2βλ/p = S2e(X)/p.

Therefore, we have X/p ≃ Y/p if and only if e(X) = e(Y ). �

Now for a given element X ∈ Pic0K(2), Property 3.1 tells us that X is of finite type if and only

if X/p is, and Theorem 3.3 implies that X/p ≃ S2e(X)/p. Hence, the question if X is of finite
type rededuces to the question if S2e(X)/p is of finite type. We have the following corollary.

Corollary 3.4. Given X ∈ Pic0K(2), X is of finite type if and only if S2e(X)/p is of finite type.

4. computation of π∗S
2α/p

In this section, we give a computation of π∗S
2α/p for any α ∈ Z. Our computation is based on

the homotopy limit construction of α spheres and the known computation of π∗LK(2)S
0/p. The

latter is computed by Shimomura and Yabe [17] and explained by Behrens [4]. See also Lader’s
thesis [13] for a more group theoretical computation of π∗LK(2)S

0/p. (We will often omit the
LK(2) in the following discussion.)

We compute πnS
2α/p = πn holimΣ2αkS0/(p, vp

k

1 ) via the short exact sequence

0 → lim1 πn+1Σ
2αkS0/(p, vp

k

1 ) → πn holimΣ2αkS0/(p, vp
k

1 ) → limπnΣ
2αkS0/(p, vp

k

1 ) → 0.

Because πnΣ
2αkS0/(p, vp

k

1 ) is finite for all n ∈ Z, the lim1 term vanishes and

πnS
2α/p ∼= limπnΣ

2αkS0/(p, vp
k

1 ).

We compute π∗S
0/(p, vp

k

1 ) via the homotopy fixed point spectral sequence

Es,t
2 = Hs(G2, Et(S

0/(p, vp
k

1 ))) ⇒ πt−s(S
0/(p, vp

k

1 )).

There is no room for differentials and nontrivial extensions for degree reasons because

Es,t
2 = 0 when 2(p− 1) ∤ t or s > 4,

dr : E
s,t
r → Es+r,t+r−1

r .

For all nontrivial group πmLK(2)S
0/(p, vk1 ), there is a unique pair (s, t) such that m = t− s and

πmLK(2)S
0/(p, vk1 )

∼= Hs(G2, Et/(p, v
k
1 )).

Therefore, we will not distinguish elements in the E2 page and elements in the homotopy groups.
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We list the result of π∗S
0/p below as Theorem 4.3. We need to compute the map in the

inverse limit

fk+1 : Σ
2αk+1S0/(1, pk+1)

q
→ Σ2αk+1S0/(1, pk)

v
ak+1pk

2 → Σ2αkS0/(1, pk).

where α = a0+a12(p
2−1)+a22(p

2−1)p+ · · · . Algebraically this is the quotient map composed

with the multiplication of v
ak+1p

k

2

π∗fk+1 : H
s(G2, E∗Σ

2αk+1S0/(1, pk+1) → Hs(G2, E∗Σ
2αkS0/(1, pk))

x → v
ak+1p

k

2 x.

Therefore, the computation of π∗S
α/p reduces to the computation of the limit, which we will

explain in this section. We will need some computational results about π∗S
0/(p, vp

k

1 ). We follow
the notation in [4], for readers who are familiar with Shimomura’s notations, there is a dictionary
in [4] between the names. The algebraic descriptions are convenient for limit computations, but
pictures of the result are much easier to digest, the author encourages readers to see figures in
[4]. In this section, all the differentials are really v1-Bockstein spectral sequence differentials. In
particular, we only list the leading term with respect to v1-power in the formula. For example,
the differential

dvsp
n

2 = vbn1 vsp
n−pn−1

2 h0

really means

dvsp
n

2 = avbn1 vsp
n−pn−1

2 h0 + higher v1 terms

for some a ∈ F×
p in the v1-Bockstein spectral sequence.

Definition 4.1. Let A be the Fp−algebra generated by 6 elements {1, h0, h1, g0, g1, h0g1 = h1g0}.
We denote this basis as B. We assign bidegrees (homological degree, internal degree) to elements
in A as follows

|1| = (0, 0), |h0| = (1, 2(p− 1)), |h1| = (1,−2(p− 1)),

|g0| = (2, 2(p− 1)), g1 = |2,−2(p− 1)|, |h0g1| = (3, 0).

Theorem 4.2. [15, Theorem 3.2] We have

Hs(G2, (E2/(p, v1))t) = Fp[v
±1
2 ]⊗A⊗ Λ[ζ].

Let G1
2 denote the kernel of the homomorphism in (2.3) ζ : G2 → Zp. Then G2 = G1

2⋊Zp and

Hs(G1
2, (E2/p)t) = Hs(G1

2, (E2/p)t)⊗ Λ[ζ].

Theorem 4.3 ([17],[4]). There exists a complex (C0, d) such that H∗(C0, d) = H∗(G1
2, (E2/p)∗)

where C0 := A⊗Fp[v
±1
2 ]⊗Fp[v1] and differentials given in table 1 are v1 linear. The Fp−generators

are listed in table 2.
Let C be C0 ⊗ Λ(ζ). Then we have

H∗(C, d) = H∗(G2, (E2)∗/p).
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Table 1. differentials in C0 [17, Section 4], [4, Theorem 3.2]

dvsp
n

2 = vbn1 vsp
n−pn−1

2 h0 p ∤ s, n > 1

dvs2 = v1v
s
2h1 p ∤ s

dvsp
n

2 h0 = vAn+2
1 v

spn− pn−1
p−1

2 g1 s 6≡ 0,−1 mod p, n > 0

dvsp
n−pn−2

2 h0 = v
pn−pn−2+An−2+2
1 v

spn−pn−1− pn−2
−1

p−1

2 g1 ∀s, n > 2

dvsp2 h1 = vp−1
1 vsp−1

2 g0 ∀s

dv
spn− pn−1

−1
p−1

2 g1 = vbn1 v
spn− pn−1

p−1

2 h0g1 s 6≡ −1 mod p, n > 1

dvs2g0 = v1v
s
2h0g1 s 6≡ −1 mod p

We follow the notation in [4] to define bn and An as follows

bn =

{

pn−1(p+ 1)− 1, n > 1,

1, n = 0;

An =

{

(pn − 1)(p+ 1)/(p− 1), n > 1,

0, n = 0.

Table 2. Generators for H∗(C0, d)

vj1 j > 0

vj1h0 j > 0

vj1v
spn−pn−1

2 h0 p ∤ s, n > 1 0 6 j 6 bn − 1

vs2h1 p ∤ s

vj1v
sp−1
2 g0 ∀s 0 6 j 6 p− 2, pk − 1

vj1v
spn− pn−1

p−1

2 g1 s 6≡ 0,−1 mod p, n > 0 0 6 j 6 An + 1

vj1v
spn−pn−1− pn−2

−1
p−1

2 g1 ∀s, n > 2 0 6 j 6 pn − pn−2 +An−2 + 1

vj1v
spn− pn−1

p−1

2 h0g1 s 6≡ −1 mod p, n > 0 0 6 j 6 bn − 1

For S0/(p, vp
k

1 ), we have H∗(G1
2, E∗S

0/(p, vp
k

1 )) = H∗(C/vp
k

1 , d), which can be computed from
H∗(C, d) via the long exact sequence

· · · → Hs(C, d)
×vpk

1−−−→ Hs(C, d)
q
−→ Hs(C/vp

k

1 , d) → · · · .
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The Fp-generators of H
∗(C0/v

pk

1 , d) are listed in Table 3, where the elements are divided into

two subsets: the upper half Coker part (the cokerel of vp
k

1 ), and the lower half Ker part (the

kernel of vp
k

1 ). While the elements in the Coker part have straightforward names, we need to
keep track of the boundary connecting morphism to name the elements in the Ker part. For

example, vj1v
spn−pn−1

2 h0 with p ∤ s, n > 1, max{0, bn − pk} 6 j 6 pk − 1 is in the kernel of

×vp
k

1 : H1(C0, d) → H1(C0, d)

when k > 1. Let ∂ be the boundary connecting morphism

∂0 : H
0(C0/v

pk

1 , d) → H1(C0, d).

in the long exact sequence

H0(C0, d)
vpk

1−−→ H0(C0, d) → H0(C0/v
pk

1 , d)
∂0−→ H1(C0, d)

vpk

1−−→ H1(C0, d) → · · ·

By the snake lemma and the following differential in C0, for p ∤ s, n > 1

d0(v
spn

2 ) = vbn1 vsp
n−pn−1

2 h0,

we have

∂(vj−bn+pk

1 vsp
n

2 ) = vj1v
spn−pn−1

2 h0.

After reindexing the power of v1, we name the corresponding Fp−generators in the Ker part of

H0(C0/v
pk

1 ) as vj1v
spn

2 with p ∤ s, n > 1 and max{0, pk − bn} 6 j 6 pk − 1. Similarly, the first
row in the Ker part comes from the differential

dvs2 = v1v
s
2h1.

Denote the result of H∗(C0/v
pk

1 , d) as X1, then X1 ⊗ Λ(ζ) gives the E2 page and in this case

also the E∞ page of the ANSS that converges to π∗S
0/(p, vp

k

1 ).
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Table 3. Generators for H∗(C0/(v
pk

1 ), d)

Names Coker part

(1, k) vj1 0 6 j 6 pk − 1

(h0, k) vj1h0 0 6 j 6 pk − 1

(vsp
n−pn−1

2 h0, k) vj1v
spn−pn−1

2 h0 p ∤ s, n > 1 0 6 j 6 min{bn −
1, pk − 1}

(vs2h1, k) vs2h1 p ∤ s

(vsp−1
2 g0, k) vj1v

sp−1
2 g0 ∀s 0 6 j 6 min{p −

2, pk − 1}

(v
spn− pn−1

p−1

2 g1, k) vj1v
spn− pn−1

p−1

2 g1 s 6≡ 0,−1mod p, n > 0 0 6 j 6 min{An +
1, pk − 1}

(v
spn−pn−1− pn−2

−1
p−1

2 g1, k) vj1v
spn−pn−1− pn−2

−1
p−1

2 g1 ∀s, n > 2 0 6 j 6 min{pn −
pn−2+An−2+1, pk−
1}

(v
spn− pn−1

p−1

2 h0g1, k) vj1v
spn− pn−1

p−1

2 h0g1 s 6≡ −1 mod p, n > 0 0 6 j 6 min{bn −
1, pk − 1}

Ker part

vp
k−1

1 vs2 p ∤ s

vj1v
spn

2 p ∤ s, n > 1 max{0, pk − bn} 6

j 6 pk − 1

vj1v
spn

2 h0 s 6≡ 0,−1mod p, n > 0 max{0, pk − An −
2} 6 j 6 pk − 1

vj1v
spn−pn−2

2 h0 ∀s, n > 2 max{0, pk − (pn −
pn−2 +An−2 +2)} 6

j 6 pk − 1

vj1v
sp
2 h1 ∀s max{0, pk−p+1} 6

j 6 pk − 1

vp
k−1

1 vs2g0 s 6≡ −1 mod p

vj1v
spn− pn−1

−1
p−1

2 g1 s 6≡ −1 mod p, n > 1 max{0, pk − bn} 6

j 6 pk − 1
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The essential computation is done by Shimomura and Yabe [17]. The author learned it from
Behrens’s paper [4]. The idea of organizing the result as a chain complex goes back to Henn,
Karamanov and Mahowald.

We introduce some notation before going into the computation of lim
k

π∗Σ
2αkS/(p, vp

k

1 ). In

Definition 2.7, for an element α ∈ Z, we have defined a p-adic number ᾱ and its truncation ᾱk.

We use the notation v−2α
2 to name elements in the limit lim

k
π∗Σ

2αkS/(p, vp
k

1 ).

Definition 4.4. Let x ∈ B and

(4.1) α = a0 + a1(p
2 − 1)) + a2p(p

2 − 1) + a3p
2(p2 − 1) + · · · .

Then for m, ℓ ∈ Z, define an element

vm1 vℓ−2α
2 x ∈ lim

k
H∗,∗(S2αk/p, vp

k

1 ) = lim
k

yk

by setting

(4.2) yk = vm1 vℓ−a1−a2p−···−akp
k−1

2 ∈ H∗,∗−2a0(S0/p, vp
k

1 )

and yk+1 → yk is given by multiplying v
ak+1p

k

2 . We will denote ℓ− a1− a2p− · · ·− akp
k−1 by ℓk.

We use the following notation to describe the power of v1.

Definition 4.5. For k ∈ N, define the map Jk from Z×R×B to subsets of natural numbers N
by

(l, α, x) 7→ {j ∈ N | vj1v
ℓk
2 x 6= 0 ∈ H∗(C0/(v

pk

1 ), d)}.

Theorem 4.6. Given α ∈ Z, we have a Fp-basis of π∗S
2α/p as follows

{ζǫvj1v
ℓ−2α
2 x | ǫ = 0, 1, ℓ ∈ Z, x ∈ B, j ∈ lim

k→∞
inf Jk(ℓ, α, x)}.

Proof. The above gives a Fp-basis of lim
k

π∗Σ
2αkS0/(p, vp

k

1 ) by the definition of Jk. The theorem

follows from

π∗S
2α/p = lim

k
π∗Σ

2αkS0/(p, vp
k

1 )

as we discussed in the beginning. �

Note that if π∗S
2α/p is a finitely generated Zp-module if and only if (π∗S

2α/p)/ζ is a finitely
generated Zp-module. We will drop ζ in later analysis.

Definition 4.7. We say an element (ℓ, α, x) ∈ Z × R × B is stable if there exists K ∈ Z+ and
for all k > K, we have Jk(ℓ, α, x) = JK(ℓ, α, x). Otherwise, we say (ℓ, α, x) is unstable.

Given an α ∈ Z, we say an element vj1v
ℓ−2α
2 x ∈ π∗S

2α/p is α-stable if (ℓ, α, x) is stable.
Otherwise, we will call the element α-unstable.

In particular, if lim
k→∞

inf Jk(ℓ, α, x) = ∅, we say the element (ℓ, α, x) is stable to trivial.

Example 4.8. When ℓ−ᾱ = 0, we know α is an integer, then all elements (ℓ, α, x) are stable. When

ℓ− ᾱ =

∞
∑

k>0

(p−2)pk+p−1, we have interesting α-unstable elements. For example, set ℓ = 0 and

ᾱ =

∞
∑

k>0

pk. Then vj1v
−2α
2 g1 and vj1v

−2α
2 h0g1 are two unstable elements. Because when k is large,

we have lk = − pk−1
p−1 . Then when k > 0, we have Jk(0, α, g1) = {max{0, pk−bk} = 0 6 j 6 pk−1}
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and lim inf
k→∞

Jk(0, α, g1) = N. This gives an infinite v1-tower on v−2α
2 g1. The element vj1v

−2α
2 h0g1

has similar situations.

Because S2α is of finite type if and only if S2α−2a0 is of finite type, we can now assume that
a0 = 0, i.e., α = (p2 − 1)(a1 + a2p+ · · · ). We begin with a technical numerical lemma.

Lemma 4.9. Let α ∈ Z and ℓ ∈ Z. If ℓ − ᾱ 6= 0, then for any K > 0, there exists k > K such
that ℓk = spn where p ∤ s and n < k.

Proof. We prove this by contradiction. Note that if an integer a is not divisible by pk, then
a = spn where p ∤ s and n < k. So assume the statement for ℓk is not true. Then for all
k > K, ℓk is divisible by pk. This implies that ℓ− ᾱ = 0 and is a contradiction to the condition
ℓ− ᾱ 6= 0. �

The key observation is the following lemma.

Lemma 4.10. The subgroup of α-unstable elements in π∗S
2α/p is a finitely generated Fp[v1]-

submodule.

Proof. By definition 4.7, we need to show there are only finitely many pair (ℓ, x) ∈ Z × B such
that (ℓ, α, x) is unstable. Note that there are only 6 elements in B. We discuss case by case on
x ∈ B. We prove that for a fixed x ∈ B, α ∈ Z, there are only finitely many ℓ ∈ Z such that
(ℓ, α, x) is unstable. From now on, we can assume that ℓ + α 6= 0. By Lemma 4.9, there exists
some k0 such that pk0 > |ℓ|, and ℓk0 = spn where p ∤ s, n < k0.

Case 1: x = 1
Since pk0 | ℓk − ℓk0 for k > k0, we have ℓk = skp

n where p ∤ sk. When k > k0, we have
k > n and pk > bn, somax{0, pk−bn} = pk−bn. Then Jk(ℓ, α, 1) = {pk−bn 6 j 6 pk−1}
and lim inf

k→∞
Jk(ℓ, α, 1) = ∅.

Case 2: x = h0

(1) If s 6= −1 mod p, for k > k0, we have ℓk = skp
n where sk 6= 0, −1 mod p. In this

case, we havemax{0, pk−An−2} = pk−An−2. Then Jk(ℓ, α, h0) = {pk−An−2 6

j 6 pk − 1} and lim inf
k→∞

Jk(ℓ, α, h0) = ∅.

(2) If s = −1 mod p, then we write s = s′p− 1 and consider two sub cases.
(a) If p ∤ s′ + ak0+1, then for k > k0, we have ℓk = s′kp

n+1 − pn where p ∤ s′k and
hence Jk(ℓ, α, 1) = {0 6 j 6 min{bn+1 − 1, pk − 1}}. Because k > k0 > n, we
have min{bn+1 − 1, pk − 1} = bn+1 − 1 which is independent of k. Therefore,
(ℓ, α, h0) is stable in this case.

(b) If p | s′ + ak0+1, then for k > k0, we have ℓk = s′kp
n+2 − pn and max{0, pk −

(pn−pn−2+An−2+2)} = pk−(pn−pn−2+An−2+2). Then Jk(ℓ, α, h0) = {pk−
(pn−pn−2+An−2+2) 6 j 6 pk−1}. In this case, we have lim inf

k→∞
Jk(ℓ, α, h0) =

∅.
Case 3: x = h1

(1) If n > 0, for k > k0, we have max{0, pk − p + 1} = pk − p + 1 and Jk(ℓ, α, h1) =
{pk − p+ 1 6 j 6 pk − 1}. We have lim inf

k→∞
Jk(ℓ, α, h1) = ∅.

(2) If n = 0, for k > k0, we have Jk(ℓ, α, h1) = {0} which is independent of k and
(ℓ, α, h1) is stable in this case.

Case 4: x = g0
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(1) If ℓk0 = −1 mod p, we have min{p− 2, pk − 1} = p− 2, and then Jk(ℓ, α, g0) = {0 6

j 6 p − 2}. Note that Jk(ℓ, α, g0) is independent of k so (ℓ, α, g0) is stable in this
case.

(2) If ℓk0 6= −1 mod p, then Jk(ℓ, α, g0) = {pk − 1} and lim inf
k→∞

Jk(ℓ, α, g0) = ∅.

In the following Case 5 and Case 6, considering the condition that ℓ− ᾱ 6=
∞
∑

k>0

(p−2)pk+

(p − 1), we can assume this condition because at most one ℓ ∈ Z fails this condition.
With this condition, there exists a k0 such that

ℓ− ᾱ = spk0 − pk0−1 − pk0−2 − · · · − 1 mod pk0+1

and s 6= −1 mod p.
Case 5: x = g1

(1) If s 6= 0 mod p, then for k > k0 + 1, we have ℓk = skp
k0 − pk0−1 − pk0−2 − · · · − 1

with sk 6= 0, −1 mod p, and min{Ak0 + 1, pk − 1} = Ak0 + 1. Then Jk(ℓ, α, g1) =
{0 6 j 6 Ak0 + 1}, which is independent of k. Therefore, (ℓ, α, g1) is stable in this
case.

(2) If s = 0 mod p and s = −p mod p2, then for k > k0 + 1, we have ℓk = skp
k0+2 −

pk0+1−pk0−1−pk0−2−· · ·−1, and min{pk0+2−pk0+Ak0+1, pk−1} = pk0+2−pk0+
Ak0 +1. Then Jk(ℓ, α, g1) = {0 6 j 6 pk0+2 − pk0 +Ak0 +1}, which is independent
of k. Therefore, (ℓ, α, g1) is stable in this case.

(3) If s = 0 mod p and s 6= −p mod p2, then for k > k0 + 1, we have ℓk = skp
k0+1 −

pk0−1−pk0−2−· · ·−1 with sk 6= −1 mod p, and Jk(ℓ, α, g1) = {max{0, pk−bk0+1} 6

j 6 pk − 1}. We have lim inf
k→∞

Jk(ℓ, α, g1) = ∅.

Case 6: x = h0g1
For k > k0 + 1, we have ℓk = skp

k0 − pk0−1 − pk0−2 − · · · − 1 with sk 6= −1 mod p,
and min{bk0 − 1, pk − 1} = bk0 − 1. Then Jk(ℓ, α, h0g1) = {0 6 j 6 bk0 − 1}, which is
independent of k. Therefore, (ℓ, α, h0g1) is stable in this case.

�

Lemma 4.10 reduces the question whether S2α is of finite type to the question whether there
are finitely many α-stable Fp-generators v

j
1v

ℓ−2α
2 x in a given bidegree (s, t).

We now divide elements of H∗(C0/v
pk

1 , d) into subsets of v1 towers. First we divide the
elements into subsets by rows, that is, we denote the subset of elements in a row by the name
in the first column in Table 3. For example, the first row in the table is vj1, 0 6 j 6 pk − 1, then

we define a subset (1, k) to be {vj1 | 0 6 j 6 pk − 1}. The name 1 indicates that it consists of

v1 towers starting at 1 and k indicates that these elements are from S0/(p, vp
k

1 ). Similarly the

name for the second row is (h0, k). For the third row, the subset (vsp
n−pn−1

2 h0, k) can be divided
into smaller subsets with respect to n. If n0 is an integer, we denote

{x ∈ (vsp
n−pn−1

2 h0, k) | x is of the form vj1v
spn0−pn0−1

2 h0}

by (vsp
n0−pn0−1

2 h0, k). Then we have

(vsp
n−pn−1

2 h0, k) =
∞
∪

m=1
(vsp

m−pm−1

2 h0, k).
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Table 4. Dividing the third row into subrows

Names Coker part

(vsp
n−pn−1

2 h0, k) vj1v
spn−pn−1

2 h0 p ∤ s, n > 1 0 6 j 6 min{bn − 1, pk − 1}

(vsp
1−1

2 h0, k) vj1v
sp−1
2 h0 p ∤ s 0 6 j 6 min{b0 − 1, pk − 1}

(vsp
2−p

2 h0, k) vj1v
sp2−p
2 h0 p ∤ s 0 6 j 6 min{b1 − 1, pk − 1}

· · ·

(vsp
n0−pn0−1

2 h0, k) vj1v
spn0−pn0−1

2 h0 p ∤ s 0 6 j 6 min{bn0 − 1, pk − 1}

· · ·

Example 4.11. The element v31v
2p−1
2 h0 is in (vsp

1−1
2 h0, k) ⊂ (vsp

n−pn−1

2 , k). This is because

v31v
2p−1
2 h0 belongs to the third row in the Coker part. The power of v2 is 2p− 1 = 2p1 − p1−1

so it is in (vsp
1−1

2 h0, k).

We have divided elements in H∗(C0/v
pk

1 , d) into subsets by rows, and each row may divide
into smaller subsets, which we will call subrows. The length of the v1-tower is determined by
which (sub)rows the element lie in. Now we will group elements in π∗S

2α/p into (sub)rows in a
similar way, which gives an alternative description of α-stable.

Definition 4.12. Given an α ∈ Z, an element vm1 vℓ−α
2 x ∈ π∗S

2α/p is α-stable if there exists

k0 ∈ Z+ and for all k > k0, we have the elements vm1 vℓ−ᾱk

2 x ∈ π∗S
2αk/p, vp

k

1 are in the subset
(y, k) where y is fixed. Otherwise, we will call the element α-unstable.

It is straightforward to check that Definition 4.12 is equivalent to Definition 4.7.

Example 4.13. Let α be an integer n ∈ Z. Then all elements vm1 vℓ−2n
2 x are n-stable by definition.

We are trying to decide if S2α/p is of finite type. By Lemma 4.10, we need only to focus on
stable elements.

Definition 4.14. We define subset (y) of the α-stable elements by

(y) = {x = lim
k→∞

xk ∈ π∗S
2α/p | x is α-stable, xk ∈ (y, k) when k is large}.

By the definition of α-stable, all stable elements lie in some subsets defined above.

Example 4.15. In π−1S
2λ, the element h0v

−λ
2 is in (h0v

sp1−1
2 ). The reason is as follows. When

k > 1, we have h0v
−λk

2 = h0v
− pk−1

−1
p−1 p−1

2 in (h0v
sp1−1
2 , k). By Definition 4.12, the element h0v

−λ
2

is λ-stable and by Definition 4.14, it is in (h0v
sp1−1
2 ).

Because the following lemma, we will focus on the Coker part.

Lemma 4.16. No stable element in the Ker part will survive in the limit.

Proof. We can check this row by row. The results in the table 3 shows that for any element
in the Ker part, its v1 tower’s range does not overlap when k goes to infinity. For example,
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non trivial elements in the second row of the Ker part, of the form vj1v
spn

2 , has j in the range
max{0, pk−bn} 6 j 6 pk−1. When k >> n, the range is A(k) := {j ∈ Z | 0, pk−bn 6 j 6 pk−1},
and A(k) ∩A(k + 1) = 0, so no element survives. �

If π∗S
2α is not finite at some stem, then there exists a bidegree (s, t) such that Hs,t(S2α) is

not finite. If this happens, because there are only finitely many subsets, there must be a subset
so that infinitely many elements of this subset survive in the limit at this bidegree.

We check each row for the possibility to have infinitely many elements survive in the limit at
some bidegree. Some forms can be easily excluded.

Lemma 4.17. There are only finitely many elements in the subsets (1), (h0), (v
s
2h1), (v

sp−1
2 g0)

that survive at a fixed degree (s0, t0).

Proof. From the table 3, if the length of the v1 tower in this form is bounded by a finite number,
then there are only finite elements of a fixed bidegree. For example, for elements in (vs2h1), the
length of the v1 tower is bounded by 1. �

Now we will focus on the rest rows that possibly have infinite length v1 towers. By the

Lemma 4.17 and Lemma 4.16, there are only four possible rows: (vsp
n−pn−1

2 h0), (v
spn− pn−1

p−1

2 g1),

(v
spn−pn−1− pn−2

p−1

2 g1) and (v
spn− pn−1

p−1

2 h0g1). We shall analyse, row by row, the conditions on α
such that at some (s, t), there are infinitely many elements of one of the four rows that survive
in the limit. Since shifting by an integer degree will not change the property of finiteness, we
assume a0 = 0 from now on.

In each case, the question of whether πkS
2α/p has infinitely many elements in a certain subset

at some stem k reduces to an elementary numerical question.

We shall start with the row (vsp
n−pn−1

2 h0).

Theorem 4.18. If there are infinitely many elements in H1,2t(p−1)(E2S
α/p) in (vsp

n−pn−1

2 h0)
then in the expansion of α, infinitely many ais are nonzero and infinitely many ais are zero.
Moreover, the converse statement is also true.

Proof. Let ℓ0 be the unique integer in ( t−1
p+1 − 1, t−1

p+1 ]. Then |vℓ02 h0| 6 2t(p− 1) < |vℓ0+1
2 h0|. At

the bidegree (1, 2t(p− 1)), elements with the base h0 are v
(p+1)ℓ+j0
1 vℓ0−ℓ−α

2 h0 where ℓ ∈ N and
j0 = t − 1 − (p + 1)ℓ0. By the assumption, we can assign infinitely many m ∈ Z+ a distinct

nonzero element v
(p+1)ℓm+j0
1 vℓ0−ℓm−α

2 h0 in (v
spn

m−pnm−1

2 h0) ⊂ (vsp
n−pn−1

2 h0) where nm ∈ Z. We
can assume that if m > m′, then ℓm > ℓm′ . This gives following two restrictions on ℓm and α.

(1) ℓ0 − ℓm − α ≡ smpnm − pnm−1 mod pnm+1 with p ∤ sm
(2) (p+ 1)ℓm + j0 6 pnm−1(p+ 1)− 2

The the first restriction comes from the assumption that those elements are in (v
spn

m−pnm−1

2 h0),
that is, the power of v2 is of the form spnm− pnm−1; the second restriction comes from the bound

on the length of v1 towers: since nontrivial elements in (v
spn

m−pnm−1

2 h0) are {vj1v
spn

m−pnm−1

2 h0}

with 0 6 j 6 pnm−1(p+1)−2, if v
(p+1)ℓm+j0
1 vℓ0−ℓm−α

2 h0 6= 0, then we have the second restriction.
From the assumption, we have ℓm > 0; from the second restriction, we have lm 6 pnm−1. The
first restriction tells us

ℓm + αnm
= pnm−1 + ℓ0

Plugging ℓm = pnm−1 + ℓ0 − αnm
into the restriction 0 < ℓm < pnm−1, we have αnm

<
pnm−1 + ℓ0. There exists nM > logpℓ0 + 1. The condition p ∤ sm shows that anM+1 6= 0. Recall
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that αnm
=

nm
∑

i=1

aip
i−1 and 0 6 ai < p. When m > M , pnM + anm

pnm−1 6 αnm
< pnm−1 + ℓ0

is equivalent to anm
= 0. The condition p ∤ sm shows that anm+1 6= 0. So the two restrictions

are equivalent to anm
= 0 and anm+1 6= 0. Hence, for each m > M ∈ Z+, we have anm

= 0 and
anm+1 6= 0, and there are infinitely many are nonzero coefficients and there are infinitely many
zero coefficients in the Z-expansion of α.

The above proof shows that the converse statement is true. In fact, if there are infinitely many
ais are nonzero and there are infinite ais are zero, then we can assign each m ∈ Z+ a different
number nm ∈ Z+ such that anm

= 0 and anm+1 6= 0. Let lm = pnm−1−αnm
+ ℓ0, then check the

table, we will have v
(p+1)ℓm+j0
1 vℓ0−ℓm−α

2 h0 are survived elements. Therefore, we have infinitely

many elements in (vsp
n−pn−1

2 h0) ⊂ H1,2t(p−1)(E2S
2α/p). �

Theorem 4.18 shows that if S2α is not of finite type, then the homotopy groups are not finitely
generated in all possible nontrivial degrees. We state it as Corollary 4.19

Corollary 4.19. If there are infinitely many elements in H1,t0(E2S
2α/p) in (vsp

n−pn−1

2 h0) at
some bidegree (1, t0), then at all bidegree (1, 2t(p− 1)) (t ∈ Z) there are infinitely many elements

in H1,t0+2k(p2−1)(E2S
2α/p) of the form vsp

n−pn−1

2 h0.

With the same approach, one could do with the elements of other forms. We state the results
as follows.

Theorem 4.20. If there are infinitely many elements in

(v
spn− pn−1

−1
p−1

2 g1), or

(v
spn−pn−1− pn−2

−1
p−1

2 g1), or

(v
spn− pn−1

p−1

2 h0g1)

at some bidegree (s, t), then in the Z-expansion coefficients of α, infinitely many ais are nonzero
and infinitely many ais are zero. Moreover, the converse statement is also true.

Summing up all the cases together, we have the main theorem as follows.

Theorem 4.21. If there are infinitely many elements in Hs,t0(E2S
2α/p) at some bidegree (s, t0),

then in the expansion of α, infinitely many ais are nonzero and infinitely many ais are zero.
Moreover, the converse statement is also true.

Theorem 3.4 and Theorem 4.21 answer the Question 1.1.

Theorem 4.22. For any X ∈ Pic0K(2), let ei(X) be the ith coefficient in the Z-expansion of

e(X). Then πkX is finitely generated for all degrees k ∈ Z if and only if either only finitely
many ei(X)’s are zeros, or only finitely many ei(X)’s are nonzeros.

Proof. From Theorem 3.4, πkX is finitely generated for all degrees k ∈ Z if and only if πkS
e(X)/p

is. Then the result follows from the contrapositive of Theorem 4.21. �

At the end of this section, we state a Corollary of Lemma 4.10.

Corollary 4.23. Let X be an element in PicK(2). Then the set of v1-free elements in π∗X is
finitely generated as a Zp[v1]-module.
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Proof. We first show the statement for X/p ≃ S2e(X)/p. All v1-free elements have infinite v1-
towers. The length of v1-tower on an element x in π∗S

2e(X)/p is determined by the form and level
of x if x is e(X)-stable. By Lemma 4.10, the set of unstable elements in π∗S

2e(X)/p is finitely
generated as an Fp[v1]-module. Except for the form 1 and h0 (ζ and ζh0), all other forms have
finite length v1-towers and are v1-torsion. The length of v1-tower on a stable element is the same
as the length of v1-tower of the form that this element stables to. The v1-towers are finite on all
stable elements but at most finitely many exceptions (1, h0, ζ, and ζh0). Therefore, the v1-free
elements must belong to the finitely many v1-towers in those exceptional cases or be unstable
elements. So the set of v1-free elements in π∗X/p is finitely generated as an Fp[v1]-module. In
particular, this is also true for π∗X/(pπ∗X). Since π∗X is p-complete, this implies that the set
of v1-free elements in π∗X is finitely generated as a Zp[v1]-module.

�

5. examples

In this section, we examine Theorem 4.22 with three examples: LK(2)S
0, I2S

0 and LK(2)S
2γ

where I2S
0 is the Gross-Hopkins dual of the K(2)-local sphere (see [7] for the definition of I2)

and γ = lim
k

p2k ∈ Z as before is a generator of the torsion part in PicK(2).

(1) For X = LK(2)S
0, e(X) = 0 and ei(X) = 0 for all i and there are only finitely many

nonzero ei(X)s. Theorem 4.22 implies that LK(2)S
0 satisfies the finitely generated prop-

erty, which agrees with the known computation.

(2) For X = I2S
0, in large prime case, I2S

0 = Sn2−n ∧ S[det]. Since integer shifts does not
change the finitely generated property, it is enough to consider S[det]. From Theorem

3.2, we have e(S[det]) = λ = (p + 1) +

∞
∑

k=0

(p2 − 1)pk and ei(X) = 1 for all i > 1.

Therefore, there are only finitely many zero ei(X)s. Theorem 4.22 implies that LK(2)S
0

satisfies the finitely generated property.

(3) For X = LK(2)S
2γ , e(X) = 1 +

∞
∑

k=0

(p2 − 1)p2k. There are infinitely many zero ei(X)s

(when i > 1 is odd) and infinitely many nonzero ei(X)s (when i > 1 is even). Theorem
4.22 implies that πkLK(2)S

2γ is not finitely generated for some stem k. In fact, in

π−2p3+2p2+4p−7S
2γ , we have linearly independent elements vjk1 vmk−γ

2 h0 for all k > 0

where mk = −p2k+1 + p2k+2−1
p2−1 , jk = (p+ 1)(mk −m0).

As an application, we have the following theorem about Gross–Hopkins duality at prime p > 5,
height 2. The (non-local) Brown–Comenetz dual of the sphere IQ/Z is the spectrum representing
the generalized cohomology theory

X → Hom(π−∗X,Q/Z).

The (non-local) Brown–Comenetz dual of a spectrum X is defined to be IQ/Z(X) := F (X, IQ/Z).
However, if we start with a K(n)-local spectrum X , the Brown–Comenetz dual IQ/Z(X) may
not be K(n)-local any more. The Gross–Hopkins dual is a K(n)-version Brown–Comenetz dual
(see [18] and [3]).

Definition 5.1. Let LnX be the localization of X with respect to the nth Morava E-theory.
Let MnX be the nth monochromatic layer of X ; that is, the fiber of LnX → Ln−1X . The height
n Gross–Hopkins dual of X is defined to be

InX := F (MnX, IQ/Z).

Denote InS
0 by In.
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While InX is automatically K(n)-local ([18, Proposition 2.2]), the trade off is that it is
usually very hard to compute π∗InX from π∗X . If X ∈ PicK(n), then InX = X−1In ∈ PicK(n).
Because In is dualizable in K(n)-local category and we have InX = DnXIn where DnX is
F (X,LK(n)S

0). As an application of Theorem 1, we show the following theorem.

Theorem 5.2. Let I2 be the Gross–Hopkins dual at prime p > 5, height 2, X ∈ PicK(2), and

λ = lim
k

p2k(p2 − 1) ∈ Z. Then e(I2X) = 2 + λ − e(X). In particular, X is of finite type if and

only if I2X is of finite type.

Proof. The statement e(I2X) = 2 + λ− e(X) follows from the facts:

(1) e is a group homomorphism;
(2) there is an equivalence

I2X ≃ D2X ∧ I2

where D2X is the K(2)-local Spanier–Whitehead dual of X and I2 is the Gross–Hopkins
dual of the K(2)-local sphere;

(3) e(D2X) = −e(X);

(4) I2 ≃ Σ22−2S[det].

We have

e(I2X) = e(D2X ∧Σn2−nS[det]) = e(D2X) + 22 − 2 + e(S[det])

= −e(X) + 2 + λ.

Next we will show that X is of finite type if and only if I2X is of finite type. By Theorem 1,
this is equivalent to the statement that e(X) has the finiteness property if and only if e(I2X) =
2 + λ − e(X) has the finiteness property. We can ignore the integer shift 2 when considering
finiteness property. Because I2(I2X) = X , we only need to show one direction. Assume that
X is of finite type, we will prove I2(X) is of finite type. The rest is an elementary numerical
analysis.

Case 1: e(X) has finitely many nonzero entries in its Z-expansion coefficients. If e(X) = 0,
then e(I2X) = λ. This has finitely many zero entries in its coefficients. If e(X) 6= 0, then the
coefficients of −e(X)’s Z-expansion ek(D2X) will always be p−1 when k > K0 for some K0 ∈ Z.
The coefficients of λ are always 1. So the ith coefficients of λ−e(X)’s Z-expansion will be always
be 1 when k > K0 + 1. Then e(I2X) has finitely many zero entries.

Case 2: e(X) has finitely many zero entries in its Z-expansion coefficients. Note that e(X) +
e(I2X) = λ and the coefficients of the Z-expansion of λ are 1. We argue by contradiction. If
there are infinitely many zero entries and infinitely many non zero entries in the coefficients of
the Z-expansion of e(I2X), then there are infinitely many places where the nonzero coefficient
followed by a zero one. Let mth coefficient of e(I2X) be one of such places; i.e., em(I2X) 6= 0
and em+1(I2X) = 0. Now considering the sum e(X)m + e(I2X)m, we have two cases. If in the
sum e(X)m + e(I2X)m > 2pm(p2 − 1), then at the m+ 1th coefficients of the equation

e(X) + e(I2X) = λ,

we have
em+1(X) + em+1(I2X) + 1 = 1 or p+ 1.

In this case, em+1(I2X) = 0 implies that em+1(X) = 0.
If in the sum e(X) + e(I2X) < 2pm(p2 − 1), then we have

em(X) + em(I2X) < p.

From the equatoin
e(X) + e(I2X) = λ,
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we have
em(X) + em(I2X) + ǫ = 1 or p+ 1

where ǫ = 0 or 1. So we have
em(X) + em(I2X) 6 1.

The condition em(X) 6= 0 implies that em(X) = 1 and em(X) = 0.

In both cases, one such places would force a zero in e(X). This would imply that there
infinitely many zero entries in e(X), contradicted to the assumption. �

Remark 5.3. We know LK(2)S
0 is of finite type from the computation. We would like to have

some features that may be generalized to higher height cases. During the computation, one
observation is that in the computation of π∗LK(2)S

0, for all elements x with |x| = (t, s), t−s < −1

in the E2 page of the ANSS, the v1 tower on x can not pass the line t − s = 1, i.e., vk1x = 0
for k|v1| + t − s > 0. This phenomenon together with the symmetric of the E2 page from
Gross-Hopkins duality implies the finitely generated property of π∗LK(2)S

0. There might be a
conceptual algebraic argument of this phenomenon that works for higher heights.

References

[1] Tobias Barthel, Agnès Beaudry, Paul G. Goerss, and Vesna Stojanoska. Constructing the determinant sphere
using a tate twist. arXiv preprint arXiv:1810.06651, 2018.

[2] Tobias Barthel, Agnès Beaudry, and Eric Peterson. Homology of inverse limits and the algebraic chromatic

splitting conjecture. in preparation.
[3] Tobias Barthel, Agnès Beaudry, and Vesna Stojanoska. Gross–Hopkins duals of higher real K-theory spectra.

2017. arXiv:1705.07036.
[4] Mark Behrens. The homotopy groups of SE(2) at p ≥ 5 revisited. Adv. Math., 230(2):458–492, 2012.

[5] Ethan S. Devinatz. Towards the finiteness of π∗LK(n)S
0. Adv. Math., 219(5):1656–1688, 2008.

[6] P. Goerss, H.-W. Henn, M. Mahowald, and C. Rezk. A resolution of the K(2)-local sphere at the prime 3.
Ann. of Math. (2), 162(2):777–822, 2005.

[7] Paul G. Goerss and Hans-Werner Henn. The Brown-Comenetz dual of the K(2)-local sphere at the prime 3.
Adv. Math., 288:648–678, 2016.

[8] Paul G Goerss and Michael J Hopkins. Comparing dualities in the k(n)-local category. arXiv preprint

arXiv:2011.02011, 2020.
[9] M. J. Hopkins and B. H. Gross. The rigid analytic period mapping, Lubin-Tate space, and stable homotopy

theory. Bull. Amer. Math. Soc. (N.S.), 30(1):76–86, 1994.
[10] Michael J. Hopkins, Mark Mahowald, and Hal Sadofsky. Constructions of elements in Picard groups. In

Topology and representation theory (Evanston, IL, 1992), volume 158 of Contemp. Math., pages 89–126.
Amer. Math. Soc., Providence, RI, 1994.

[11] Michael J. Hopkins and Jeffrey H. Smith. Nilpotence and stable homotopy theory. II. Ann. of Math. (2),
148(1):1–49, 1998.

[12] Mark Hovey and Neil P. Strickland. Morava K-theories and localisation. Mem. Amer. Math. Soc.,
139(666):viii+100, 1999.

[13] Olivier Lader. Une résolution projective pour le second groupe de morava pour p ≥ 5 et applications. PhD
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