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HOMOTOPY THEORY OF SPECTRAL SEQUENCES

MURIEL LIVERNET AND SARAH WHITEHOUSE

Abstract. Let R be a commutative ring with unit. We consider the ho-
motopy theory of the category of spectral sequences of R-modules with
the class of weak equivalences given by those morphisms inducing a quasi-
isomorphism at a certain fixed page. We show that this admits a structure
close to that of a category of fibrant objects in the sense of Brown and in
particular the structure of a partial Brown category with fibrant objects.
We use this to compare with related structures on the categories of multi-
complexes and filtered complexes.
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1. Introduction

Spectral sequences are important tools for computing homological and ho-
motopical invariants. Many categories of interest have associated functorial
spectral sequences, generally via an associated filtered chain complex.

The category of spectral sequences has a hierarchy of notions of weak equiv-
alence. For r ≥ 0, we have Er-quasi-isomorphims, that is morphisms which are
isomorphisms from the r+1 page onwards. In this paper we explore underlying
homotopy theories with these weak equivalences.

Various categories with associated functorial spectral sequences, such as fil-
tered complexes or multicomplexes, can be endowed with an r-model category
structure, in which the weak equivalences are the maps inducing an isomor-
phisms from the r+ 1 page of the associated spectral sequence onwards [3, 4].
This motivates a study of the corresponding homotopy theory in the category
of spectral sequences itself.

After some preliminary definitions and discussion in Section 2, we introduce
the category of spectral sequences in Section 3. We study some basic proper-
ties, noting that this category is neither complete nor cocomplete. Therefore
we cannot have model category structures and we will work with a weaker
setting for homotopy theory.

Many such settings, intermediate between a category with weak equivalences
and a model category, have appeared in the literature. Examples include
Waldhausen categories [9], Cartan-Eilenberg categories [6] and categories of
fibrant objects. The latter were introduced and studied by K.S. Brown in [1].
A summary of this theory can be found in [5, I.9]. That setting is the most
relevant for us, but it is not precisely what we need.

In Section 4, we introduce the notion of an almost Brown category. As the
name suggests this is a structure closely related to Brown’s notion of category
of fibrant objects. Like that setting, ours involves two distinguished classes of
morphisms, weak equivalences and fibrations, satisfying certain axioms. We
explore the connections as well as the relationship to the notion of partial
Brown category in the sense of Horel [7].

We show in Theorem 5.3.1 that, for each r ≥ 0, the category of spectral
sequences admits the structure of an almost Brown category with Er-quasi-
isomorphims as weak equivalences and with fibrations characterised by sur-
jectivity conditions. In particular, this means that we have a partial Brown
category with fibrant objects, in the sense of Horel [7]. Indeed, we have a
version with functorial path objects.

These results provide a context in which we can compare the homotopy the-
oretic structure of the category of spectral sequences with previous results es-
tablishing such structures for filtered complexes [3] and for multicomplexes [4].
We make a start on such comparisons in Section 6.
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2. Preliminaries

In this preliminary section, we collect the main definitions that we will
use. We begin with bigraded modules and r-bigraded complexes as these are
underlying definitions for spectral sequences. Then we cover filtered complexes
and multicomplexes, these being the main categories to be compared with
spectral sequences later on.

Throughout this paper, we let R denote a commutative ring with unit.

2.1. Bigraded complexes. In this section we let r ≥ 0 be an integer.

Definition 2.1.1. A bigraded R-module A is a collection of R-modules A =
{Ap,q} with p, q ∈ Z.

Definition 2.1.2. An r-bigraded complex is a bigraded R-module A = {Ap,q}
together with maps of R-modules δr : Ap,q → Ap−r,q+1−r, called differentials,
such that δ2r = 0. A morphism of r-bigraded complexes is a map of bigraded
modules commuting with the differentials.

We denote by r-bCR the category of r-bigraded complexes. The homology of
an r-bigraded complex is a bigraded R-module and the category of r-bigraded
modules has a natural class of quasi-isomorphisms, namely morphisms induc-
ing isomorphisms on homology.

2.2. Filtered complexes. We consider unbounded complexes of R-modules
endowed with increasing filtrations indexed by the integers.

Definition 2.2.1. A filtered R-module (A, F ) is an R-module A together with
a family of submodules of A denoted {FpA}p∈Z indexed by the integers such
that Fp−1A ⊆ FpA for all p ∈ Z. A morphism of filtered modules is a morphism
f : A → B of R-modules which is compatible with filtrations: f(FpA) ⊆ FpB
for all p ∈ Z.

Definition 2.2.2. A filtered complex (A, d, F ) is an unbounded cochain com-
plex (A, d) together with a filtration F of each R-moduleAn such that d(FpA

n) ⊆
FpA

n+1 for all p, n ∈ Z. Note in particular that (FpA, d|Fp
) is a subcomplex of

(A, d). Denote by FCR the category of filtered complexes of R-modules. Its
morphisms are given by morphisms of complexes compatible with filtrations.

Definition 2.2.3. Let f, g : A → B be two morphisms of filtered complexes.
An r-homotopy from f to g is a morphism h : A→ B of graded R-modules of
degree −1, such that dh+hd = g− f and h(FpA) ⊆ Fp+rB for all p. We write

h : f ≃
r g.
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Every filtered complex A has an associated spectral sequence {Er(A), δr}r≥0.
The r-page Er(A) is an r-bigraded complex and may be written as the quotient

Ep,q
r (A) ∼= Zp,q

r (A)/Bp,q
r (A),

where the r-cycles are given by

Zp,n+p
r (A) := FpA

n ∩ d−1(Fp−rA
n+1)

and the r-boundaries are given by Bp,n+p
0 (A) = Zp−1,n+p−1

0 (A) and

Bp,n+p
r (A) := Zp−1,n+p−1

r−1 (A) + dZp+r−1,n+p+r−2
r−1 (A) for r ≥ 1.

Given an element a ∈ Zr(A), we denote by [a]r its image in Er(A). For
[a]r ∈ Er(A), we have δr([a]r) = [da]r.

2.3. Multicomplexes.

Definition 2.3.1. A multicomplex or ∞-multicomplex A is a bigraded R-
module A = {Ap,q}p,q∈Z endowed with a family of maps {di : A → A}i≥0 of
bidegree (−i, 1 − i) satisfying for all l ≥ 0,

(1)
∑

i+j=l

(−1)ididj = 0.

Let n ≥ 1 be an integer. An n-multicomplex is a multicomplex with di = 0 for
all i ≥ n.

For 1 ≤ n ≤ ∞, a (strict) morphism of n-multicomplexes is a map f of
bigraded R-modules of bidegree (0, 0) satisfying dif = fdi for all i ≥ 0. We
denote by n-mCR the category of n-multicomplexes and strict morphisms.

3. The category of spectral sequences

3.1. Definitions and basic properties.

Definition 3.1.1. A spectral sequence (A,ψ) is a family of r-bigraded com-
plexes (Ar, dr), for r ≥ 0, together with a family of isomorphisms of bigraded
R-modules ψr : H∗(Ar) → Ar+1 for r ≥ 0, called characteristic maps.

A morphism of spectral sequences is a family of morphisms fr : Ar → Br of
r-bigraded complexes, for r ≥ 0, which is compatible with characteristic maps.
We denote by SpSeR the category of spectral sequences.

Note that SpSeR is a subcategory of the product category
∏

r≥0 r-bCR .
We will often omit the characteristic maps in the notation.

Note that a morphism of spectral sequences f : (A,ψ) → (B,ϕ) is com-
pletely determined by the 0-page, f0 : A0 → B0, since fi+1 = ϕiH∗(fi)ψ

−1
i , for

all i ≥ 0. Furthermore, it is clear that the following proposition holds.

Proposition 3.1.2. The category of spectral sequences is an additive category.
�
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Remark 3.1.3. There are various conventions for spectral sequences. We
have chosen ours to be compatible with the conventions for filtered complexes
and multicomplexes in previous work on related model category structures
in [3, 4]. The differential on the r-page has bidegree (−r, 1−r). Of course, it is
straightforward to translate our results to the standard setting of a homological
spectral sequence where the corresponding bidegree is (−r, r − 1) or that of a
cohomological spectral sequence where it is (r, 1− r).

Remark 3.1.4. The category of spectal sequences SpSeR is neither complete
nor cocomplete. Indeed, as in the following examples, cokernels and kernels
do not exist in general in SpSeR. Thus it is not a pre-abelian category.

We write Rp,n for the ring R in bidegree (p, n). We denote by R(p, n)
the spectral sequence with the ring R concentrated in bidegree (p, n) and all
differentials zero.

Example 3.1.5. Let S be the spectral sequence given by S0 = R0,0 ⊕ R1,0

with d0 = 0, S1 = R0,0 ⊕ R1,0 with d1 = 1R : R1,0 → R0,0 and S≥2 = 0. The

morphism of spectral sequences f : R(0, 0) → S determined by f 0,0
0 = f 0,0

1 =
1R : R0,0 → R0,0 has no cokernel.

Example 3.1.6. Let T be the spectral sequence given by T0 = R0,0 ⊕ R0,1

with d0 = 1R : R0,0 → R0,1 and T≥1 = 0. The morphism of spectral sequences
π : T → R(0, 0) such that π0,0

0 = 1R : R0,0 → R0,0 and πi = 0 for i > 0 has no
kernel.

3.2. Pullback of surjections.

Definition 3.2.1. A morphism of spectral sequences f : A → B is called a
surjection if the morphism fr is bidegreewise surjective for every r ≥ 0. We
write Sur for the class of surjective morphisms in SpSeR.

Lemma 3.2.2. The category of spectral sequences SpSeR admits pullbacks
of surjections along any map and this preserves surjections. Moreover, such
pullbacks are computed pagewise.

Proof. Let

A

p

��

U
g

// B

be a diagram of spectral sequences where p is a surjection. For m ≥ 0, let Xm

be the pullback in the category of m-bigraded complexes of the m-page of the
spectral sequence. Since the category of m-bigraded complexes is abelian, and
pm is surjective we have a short exact sequence of m-bigraded complexes
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0 // Xm
// Um ⊕Am

gm−pm
// Bm

// 0

which yields a long exact sequence in homology. The map H∗(gm − pm) is
isomorphic to the map (gm+1 − pm+1) : Um+1 ⊕ Am+1 → Bm+1, hence surjec-
tive, so that H∗(Xm) is isomorphic to Ker(gm+1 − pm+1) = Xm+1. Hence the
collection X = (Xm)m≥0 is a spectral sequence.

We claim that this is the pullback of the diagram in the category of spec-
tral sequences. For the universal property, given maps of spectral sequences
Y → A, Y → U making the diagram commute, we get a unique map of m-
bigraded complexes fm : Ym → Xm making the diagram of m-pages commute,
because Xm is the pullback on the m-page. Noting that the forgetful functor
from m-bigraded complexes to bigraded modules preserves pullbacks, we see
that H(fm) ∼= fm+1 so that f = (fm) is the required unique map of spectral
sequences.

Note that

Xm = {(u, a) | gm(u) = pm(a), u ∈ Um, a ∈ Am},

so that the induced map π1 : X → U is a surjection. �

Remark 3.2.3. The category SpSeR does not admit general pullbacks of
epimorphisms, as shown by the following proposition and example.

Proposition 3.2.4. A morphism f : A → B of spectral sequences such that
f0 : A0 → B0 is surjective is an epimorphism.

Proof. Let i, j : B → X be morphisms of spectral sequences such that if = jf .
In particular, we have i0f0 = j0f0 and since f0 is surjective, we have i0 = j0.
Thus i = j. �

Example 3.2.5. Let us consider the morphism π : T → R(0, 0) of Example
3.1.6. It is an epimorphism because π0 is surjective, but the pullback of π
along the map 0 → R(0, 0) does not exist, because π does not admit a kernel.

4. Homotopy theory without model category structures

The goal of this paper is to describe the homotopy theory of spectral se-
quences with respect to Er-quasi-isomorphism (see Definition 5.1.1). We can-
not expect to have a model category structure on the category of spectral
sequences with this class of maps as the class of weak equivalences since we
have seen that this category is neither complete nor cocomplete.

Thus we will work with a weaker structure. Many variants are available in
the literature; we will work with something close to what is known as a Brown
category. In this section we introduce the homotopy theoretic material needed
to achieve our goal.
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4.1. Almost Brown categories. In this section we assume that the reader
is familiar with the language of model categories, in particular with the notion
of acyclic fibrations and fibrant objects.

Definition 4.1.1. An almost Brown category is a category C with finite prod-
ucts and a final object e together with two distinguished classes of maps called
weak equivalences (W) and fibrations (F ib), satisfying the following axioms.

(A) Let f and g be composable morphisms. If any two of f , g and gf are
weak equivalences, then so is the third. (That is, the class of weak
equivalences satisfies the two-out-of-three property.) All isomorphisms
are weak equivalences.

(B) The composite of two fibrations is a fibration. All isomorphisms are
fibrations.

(C) The pullback of an acyclic fibration along any map exists and is an
acyclic fibration.

(D) Any morphism u : X → Y in C can be factored u = pi with p a fibration
and i right inverse to an acyclic fibration.

(E) Any object of C is fibrant.

In addition, if axiom (D) holds functorially, we will say that C is an almost
Brown category with functorial factorization.

Definition 4.1.2. A functor F : C → D between almost Brown categories is
called left exact if it preserves finite products, the class of fibrations, the class
of acyclic fibrations and pullback of acyclic fibrations.

We recall that given an object B of C, a path space for B is an object BI

together with maps

B
ι

// BI
(∂−,∂+)

// B × B

where ι is a weak equivalence, (∂−, ∂+) a fibration and the composite is the
diagonal map. Note that axiom (D) of Definition 4.1.1 implies the existence
of a path space for any object in an almost Brown category.

We next recall the original definition of K.S. Brown in [1].

Definition 4.1.3. A Brown category is a category with finite products and
a final object e together with two distinguished classes of maps called weak
equivalences (W) and fibrations (F ib), satisfying the following axioms.

(A) Let f and g be composable morphisms. If any two of f , g and gf are
weak equivalences, then so is the third. All isomorphisms are weak
equivalences.

(B) The composite of two fibrations is a fibration. All isomorphisms are
fibrations.
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(C ′) The pullback of a fibration along any map exists and is a fibration. The
pullback of an acyclic fibration along any map exists and is an acyclic
fibration.

(D′) For any object B there exists at least one path space BI .
(E) Every object is fibrant.

Remark 4.1.4. In a Brown category C, axiom (D′) is equivalent to axiom
(D). This is due to the factorization lemma, which is proved by using the
axiom that the pullback of a fibration along any map exists and is a fibration.
Concretely, any morphism u : A→ B factorizes as

A
(1A,ιu)

//

u

55A×B B
I

∂+π2
// B

where the object A×B B
I is called the mapping path space of u, the first map

is a weak equivalence right inverse to an acyclic fibration and the second map
is a fibration.

The following corollary is a direct consequence of the remark above.

Corollary 4.1.5. A Brown category is an almost Brown category. �

Remark 4.1.6. If C is a model category, then the subcategory Cf of fibrant
objects of C is a Brown category. If all objects of C are fibrant, then it is
a Brown category, hence an almost Brown category. A right Quillen functor
between two model categories whose objects are all fibrant is a left exact
functor in the sense of Definition 4.1.2.

Unfortunately, in our examples we do not have all the axioms of a Brown
category, since we usually do not have pullbacks of fibrations, however we have
path objects and the factorization induced by them, that is the mapping path
space of a morphism.

4.2. Comparison with partial Brown categories of fibrant objects.

In [7], Horel introduced the notion of a partial Brown category of cofibrant
objects and in Remark 2.4 of loc. cit. it is noted that all the results dualize
to the case of interest for us. This gives a setting for homotopy theory closely
related to the one we have presented above and we compare the two here.

We start by making explicit the dual to Horel’s Definition 2.2. The notation
C[1] denotes the arrow category of C.

Definition 4.2.1. A partial Brown category of fibrant objects is a category C,
with two subcategories wC and fC whose maps are called respectively the weak
equivalences and acyclic fibrations such that the following axioms are satisfied.

(1) Both wC and fC contain the isomorphisms of C and fC is contained in
wC.
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(2) The weak equivalences satisfy the two-out-of-three property.
(3) The pullback of an acyclic fibration along any map exists and is an acyclic

fibration.
(4) There are three functors f, w, s from wC[1] → wC[1] such that for each

weak equivalence g we have g = f(g) ◦ w(g), s(g) ◦ w(g) = 1 and f(g)
and s(g) are in fC[1].

The following proposition is immediate.

Proposition 4.2.2. If C is an almost Brown category with functorial factor-
ization, then C is a partial Brown category of fibrant objects. �

Definition 4.2.3. Let C and D be partial Brown categories of fibrant objects.
A functor C → D is called left exact if it preserves weak equivalences, acyclic
fibrations and pullbacks of acyclic fibrations.

Proposition 4.2.4. If C and D are almost Brown categories with functorial
factorization, then a left exact functor F : C → D is also left exact as a functor
of partial Brown categories.

Proof. We need to check that F preserves weak equivalences. Let u be a weak
equivalence and factorize this as u = pi with p an acyclic fibration and i right
inverse to an acyclic fibration. Then F (u) = F (p)F (i) and since F preserves
acyclic fibrations, F (p) is an acyclic fibration and F (i) is right inverse to an
acyclic fibration. This implies that F (i) is a weak equivalence and thus so is
F (u). �

5. Almost Brown category structures on spectral sequences

In this section we again fix an integer r ≥ 0.

5.1. Er-quasi-isomorphisms and r-fibrations.

Definition 5.1.1. A morphism of spectral sequences f : A → B is called an
Er-quasi-isomorphism if the morphism fr : Ar → Br is a quasi-isomorphism
of r-bigraded complexes, or equivalently if the morphisms fk are isomorphisms
for k > r.

A morphism of spectral sequences f : A → B is called an r-fibration if the
morphisms fk are surjective for 0 ≤ k ≤ r.

We denote by Er the class of Er-quasi-isomorphisms of SpSeR. This class
contains all isomorphisms of SpSeR and satisfies the two-out-of-three property.

We denote by F ibr the class of r-fibrations of SpSeR. This class contains
all isomorphisms and is stable under composition.

Note that acyclic fibrations are those maps that are surjective at the k-page
of the spectral sequence for k ≤ r and isomorphisms for k > r. In particular
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the class of acyclic fibrations coincides with the class of surjective Er-quasi-
isomorphisms, that is Er ∩ F ibr = Er ∩ ∩sF ibs = Er ∩ Sur.

It is clear that we have inclusions:

Er ⊂ Er+1, F ibr+1 ⊂ F ibr and Er ∩ F ibr ⊂ Er+1 ∩ F ibr+1

for all r ≥ 0.

5.2. Mapping path space construction for spectral sequences. In this
section we define a functorial r-path and an explicit r-mapping path space for
any morphism in the category of spectral sequences.

Definition 5.2.1. Let Λr be the spectral sequence Re−⊕Re+ ⊕Ru where e±
are in bidegree (0, 0) and u is in bidegree (−r, 1− r), with all differentials zero
except at the r-page of the spectral sequence where dr(e−) = −u, dr(e+) = u.
The r+1-page of the spectral sequence is then concentrated in bidegree (0, 0)
with a single R-module, free of rank 1, generated by e+ + e−.

Note that we can consider Λr ⊗A for any spectral sequence A and that this
is again a spectral sequence.

We next define a collection of functorial paths indexed by an integer r ≥ 0
on the category of spectral sequences, giving rise to the corresponding notions
of r-homotopy.

Definition 5.2.2. The r-path of a spectral sequence A is the spectral sequence
P (r;A) = Λr ⊗ A. Explicitly, the pages of the spectral sequence P (r;A) are
given by

Pm(r;A)
p,q :=

{
Ap,q

m ⊕Ap+r,q+r−1
m ⊕ Ap,q

m , if 0 ≤ m ≤ r

Ap,q
m , if m > r

with the differentials Dm : Pm(r;A) → Pm(r;A) of bidegree (−m, 1−m) given
by

Dm :=



dm 0 0
0 (−1)m+r+1dm 0
0 0 dm


 for m < r, Dr :=



dr 0 0
−1 −dr 1
0 0 dr




and Dm = dm for m > r.

We have a factorisation of the diagonal map

R
ι

// Λr

(∂−,∂+)
// R× R

and thus morphisms of spectral sequences

A
ιA

// P (r;A)
∂+

A
//

∂−

A

// A ; ∂±A ◦ ιA = 1A,
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given by ∂−A (x, y, z) = x, ∂+A (x, y, z) = z and ιA(x) = (x, 0, x) on the m-page of
the spectral sequence for m ≤ r and by the identity maps for m > r. We will
often omit the subscripts of these maps when there is no danger of confusion.

The use of the term r-path is justified below. In particular, ιA is an Er-
quasi-isomorphism. Furthermore (∂+A , ∂

−
A) : P (r;A) → A×A is an r-fibration.

In addition ∂+A and ∂−A are acyclic r-fibrations.

Definition 5.2.3. The r-path of a morphism f : (A, dAm) → (B, dBm) of spectral
sequences is the morphism of spectral sequences P (r; f) : (P (r;A), DA

m) →
(P (r;B), DB

m) given by

P (r; f)m := (fm, (−1)mfm, fm),

for m ≤ r and P (r; f) = fm for m > r.

The above definitions give rise to a functorial path P (r;−) : SpSeR →
SpSeR in the category of spectral sequences.

We would like to use this for the factorization of any morphism u : A→ B of
spectral sequences in the spirit of Remark 4.1.4. We remark that the r-mapping
path space P (r; u) := A×B P (r;B) of u exists and takes the following form

P (r; u)p,qm :=

{
Ap,q

m ⊕Bp+r,q+r−1
m ⊕ Bp,q

m , if 0 ≤ m ≤ r,

Ap,q
m , if m > r,

with differentials Dm : P (r; u)m → P (r; u)m of bidegree (−m,−m + 1) given
by

Dm =



dAm 0 0
0 (−1)m+r+1dBm 0
0 0 dBm


 for m < r, Dr =



dAr 0 0
−ur −dBr 1B
0 0 dBr




and Dm is induced by dAm for m > r. The factorization of u as

A
i

// P (r; u)
p

// B

takes the following form

im(a) =

{
(a, 0, um(a)), if 0 ≤ m ≤ r,

a, if m > r
and

pm(a, b
′, b) =

{
b, if 0 ≤ m ≤ r,

um(a), if m > r.

The map i is right inverse to an acyclic fibration, namely the projection of
P (r; u) onto A. It is clear from the formulas that p is an r-fibration and that
the factorization is functorial.
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5.3. Homotopy theory of spectral sequences.

Theorem 5.3.1. The category of spectral sequences together with the class Er
of Er-quasi-isomorphisms and the class F ibr of r-fibrations is an almost Brown
category with functorial factorization. Hence it is a partial Brown category of
fibrant objects.

Proof. Axioms (A), (B) and (E) are clearly satisfied. Let us show axiom (C).
Let p : C → B be an acyclic r-fibration and let u : A → B be a morphism in
SpSeR. Any acyclic r-fibration is surjective, and by Lemma 3.2.2, the pullback
of p along u exists and is the spectral sequence X whose m-page is described
by Xm = {(a, c) ∈ Am × Cm) | um(a) = pm(b)} with induced map π1 : X → A
the projection to the first factor. The proof of that lemma shows that if pr is
a quasi-isomorphism so is the r-page (π1)r of π1. Axiom (D) follows from the
mapping path space construction of Section 5.2. �

Notation 5.3.2. We write (SpSeR)r for the almost Brown category of spectral
sequences with the structure specified in Theorem 5.3.1.

Recall that we have inclusions:

Er ⊂ Er+1, F ibr+1 ⊂ F ibr and Er ∩ F ibr ⊂ Er+1 ∩ F ibr+1

for all r ≥ 0. Thus, for r ≤ s, the identity functor Id : (SpSeR)r → (SpSeR)s
preserves weak equivalences and acyclic fibrations, but not fibrations. There-
fore it is not left exact as a functor of almost Brown categories, but it is left
exact when viewed as a functor of the corresponding partial Brown categories.

5.4. r-homotopies. As in classical homotopy theory, the functorial r-path
P (r;−) : SpSeR → SpSeR yields a natural notion of homotopy: for f, g :
A → B two morphisms of spectral sequences, an r-homotopy from f to g
is given by a morphism of spectral sequences h : A → P (r;B) such that

∂−B ◦ h = f and ∂+B ◦ h = g. We use the notation h : f ≃
r g. An r-homotopy

equivalence is a morphism of spectral sequences f : A → B such that there

exists a morphism g : B → A satisfying f ◦ g ≃
r 1B and g ◦ f ≃

r 1A.

Proposition 5.4.1. The notion of r-homotopy defines an equivalence rela-
tion on the set of morphisms between two given spectral sequences, which is
compatible with the composition.

Proof. Unravelling the definition we have that if f, g : (A, dAm) → (B, dBm) are

two morphisms of spectral sequences, then f ≃
r g if and only if there exists

a collection of morphisms ĥm : Am → Bm of bigraded modules, of bidegree
(r, r − 1), for all 0 ≤ m ≤ r, satisfying

{
(−1)m+r+1dBmĥm − ĥmd

A
m = 0, if 0 ≤ m < r,

−dBr ĥr − ĥrd
A
r = fr − gr,
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and H∗(ĥm) = ĥm+1 for 0 ≤ m < r. The proposition then follows. �

Denote by Sr the class of r-homotopy equivalences of SpSeR. This class is
closed under composition and contains all isomorphisms. In addition, we have
Sr ⊆ Sr+1 and Sr ⊆ Er, for all r ≥ 0.

Proposition 5.4.2. The localized category SpSeR[S
−1
r ] is canonically isomor-

phic to the quotient category SpSeR/≃r .

Proof. The proof is classical, and requires that the morphism from a spectral
sequence A to its path space ιA : (A, dm) −→ (P (r;A), Dm), is not only an
Er-quasi-isomorphism but also an r-homotopy equivalence. We prove this
statement. Recall that (ιA)m(x) = (x, 0, x) for m ≤ r and (ιA)m = 1A for
m > r. Since ∂−A ιA = 1A, it suffices to define an r-homotopy from 1P (r;A) to

ιA∂
−
A . Consider the morphism ĥm : P (r;A) → P (r;A) of bidegree (r, r − 1)

defined by ĥm(x, y, z) = (0, 0,−y) for 0 ≤ m ≤ r. It is clear that for m < r we

have (−1)m+r−1Dmĥm − ĥmDm = 0, H∗(ĥm) = ĥm+1 and

(−Drĥr− ĥrDr)(x, y, z) = (0, y, dry)+(0, 0,−dry−x+z) = (x, y, z)−(x, 0, x).

As in the proof of Proposition 5.4.1 this implies that ιA is an r-homotopy
equivalence. �

In section 6, we will compare this notion of homotopy for spectral sequences
with notions for filtered complexes and multicomplexes.

5.5. Generation of r-fibrations and acyclic r-fibrations. This section
is devoted to the description of r-fibrations and acyclic r-fibrations as maps
having the right lifting property with respect to a set of morphisms in SpSeR.
We adopt the language of model categories. For I a class of maps in SpSeR,
we say that a morphism of spectral sequences f is I-injective if it has the right
lifting property with respect to I.

To describe the generating sets, we first introduce some basic objects.

Definition 5.5.1. Let p, n ∈ Z. For all r ≥ 0, let Dr(p, n) be the spectral
sequence defined as follows:





Dr(p, n)i = Rp,n ⊕ Rp−r,n+1−r, di = 0, for 0 ≤ i < r,

Dr(p, n)r = Rp,n 1
−→ Rp−r,n+1−r,

Dr(p, n)i = 0, for i > r.

For all r ≥ 1 define

Sr(p, n) := Dr−1(p− 1, n− 1)⊕Dr−1(p+ r − 1, n+ r − 2)

For all r ≥ 1 define a morphism of spectral sequences

ϕr : Dr(p, n) −→ Sr(p, n)
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via the identity on R whenever it is bigradedly defined.

Definition 5.5.2. Let (A,ϕ) be a spectral sequence.

(1) A sequence of elements (ap,n0 , . . . , ap,nm+1) with ap,ni ∈ Ap,n
i is said to be

compatible if for every 0 ≤ i ≤ m, dia
p,n
i = 0 and ap,ni+1 = ϕi([a

p,n
i ])

where [ap,ni ] is the class of ap,ni in H∗(Ai).
(2) Denote by Dp,n

r (A) the R-submodule of A×(2r+2) consisting of pairs

(ap,n0 , . . . , ap,nr ); (bp−r,n+1−r
0 , . . . , bp−r,n+1−r

r )

of compatible sequences satisfying dra
p,n
r = bp−r,n+1−r

r . This yields a
functor, denoted by Dp,n

r : SpSeR → ModR.

The following proposition is a direct consequence of the definitions.

Proposition 5.5.3. Let (A,ϕ) be a spectral sequence.

(1) There is a one-to-one correspondence between infinite compatible se-
quences (ap,n0 , . . . , ap,nm , . . .) and morphisms of spectral sequences R(p, n) →
A.

(2) We have Dp,n
r = HomSpSeR

(Dr(p, n),−), that is, Dp,n
r is represented by

Dr(p, n). �

Definition 5.5.4. Let Ir and Jr be the sets of morphisms of SpSeR given by

Ir := {ϕr+1 : Dr+1(p, n) −→ Sr+1(p, n)}p,n∈Z and Jr := {0 −→ Dr(p, n)}p,n∈Z .

Let I ′r and J ′
r be the sets of morphisms of SpSeR given by

I ′r := ∪r−1
k=0Jk ∪ Ir and J ′

r := ∪r
k=0Jk.

Proposition 5.5.5. A morphism of spectral sequences is an r-fibration if and
only if it has the right lifting property with respect to J ′

r.

Proof. Let f : (A,ϕ) → (B,ψ) be a morphism of spectral sequences. It is clear
that if f is Jr-injective then fr is bidegreewise surjective. It is also clear that f
is J0-injective if and only if f0 is bidegreewise surjective. Assume that for every
0 ≤ i ≤ r we have that fi is bidegreewise surjective. Let (b0, . . . , br; b

′
0, . . . , b

′
r)

in Dp,n
r (B). Since fr is surjective, there exists ar ∈ Ar such that fr(ar) = br

hence fr(drar) = b′r. We set a′r = drar. Pick ur−1 a cycle in Ar−1 such that
ϕ([ur−1]) = ar. Hence ψ([fr−1(ur−1)]) = fr(ar) = br = ψ[br−1] and there exists
y ∈ Br−1 such that fr−1(ur−1) = br−1+dr−1y. And y = fr−1(x) for some x since
fr−1 is surjective. Hence br−1 = fr−1(ur−1 − dr−1x) and ar−1 = ur−1 + dr−1(x)
satisfies the required conditions. By induction, we obtain that there exists
(a0, . . . , ar; a

′
0, . . . , a

′
r) in Dp,n

r (A) such that for all i we have fi(ai) = bi and
fi(a

′
i) = b′i, giving the required lift. �

Note that this proposition can be stated as f : A → B is an r-fibration if
and only if for every 0 ≤ k ≤ r and for every p, n ∈ Z, Dp,n

k (f) is surjective.
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Proposition 5.5.6. A morphism of spectral sequences is an acyclic r-fibration
if and only if it has the right lifting property with respect to I ′r.

Proof. Assume first that f : A → B is I ′r-injective. Then fk is bidegreewise
surjective for every 0 ≤ k ≤ r − 1. Let us show that fr is surjective on cycles.
Let br ∈ Bp+r,n+r−1

r be such that dr(br) = 0. One can then build a sequence
(b0, . . . , br−1, br; 0, . . . , 0) inDp+r,n+r−1

r (B) which yields a commutative diagram

Dr+1(p, n)

ϕr+1

��

0
// A

f

��

Sr+1(p, n)
br

// B

This diagram admits a lift, giving rise to an element (a0, . . . , ar; 0, . . . , 0) in
Dp+r,n+r−1

r (A) satisfying drar = 0 and fi(ai) = bi for 0 ≤ i ≤ r. This proves
that fr is surjective on cycles, and thus that fr+1 is surjective.

Let us show that fr is surjective. Let br ∈ Bp+r,n+r−1
r . One can choose

compatible sequences: (b0, . . . , br; b
′
0, . . . , b

′
r) in Dp+r,n+r−1

r (B) and from the
first part a lift a′ = (a′0, . . . , a

′
r) of (b′0, . . . , b

′
r) since drb

′
r = drdrbr = 0, which

yields again a commutative diagram

Dr+1(p, n)

ϕr+1

��

a′
// A

f

��

Sr+1(p, n)
br

// B

admitting a lift. This gives an element ar ∈ Ar such that drar = a′r and
fr(ar) = br. As a consequence f is J ′

r-injective, and thus an r-fibration.
We have proved that fr+1 is surjective. Let us show that fr+1 is injective.

Let ar+1 ∈ Ar+1 be such that fr+1(ar+1) = 0 and (a0, . . . , ar+1; a
′
0, . . . , a

′
r+1) ∈

Dr+1(A) which represents ar+1. Since fr+1(ar+1) = 0, we have fr+1(a
′
r+1) = 0

and there exist br, cr ∈ Br such that dr(br) = f(ar) and dr(cr) = fr(a
′
r). This

induces the following diagram denoted (∗)

Dr+1(p, n)

ϕr+1

��

ar+1
// A

f

��

Sr+1(p, n)
(cr ,br)

// B

which admits a lift. In particular, there exists αr with drαr = ar. Hence
[ar] = [0], that is ar+1 = 0.

Conversely, assume f is an acyclic r-fibration. Consider the diagram (∗).
Since fr+1(ar+1) = 0 and fr+1 is an isomorphism we deduce that ar+1 = 0 so
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that ar is a boundary, as well as a′r. We conclude that a lift exists using the
fact that Dr(f) is surjective. �

6. Comparisons with filtered complexes and multicomplexes

In this section we compare (SpSeR)r with corresponding structures on fil-
tered complexes and multicomplexes. In previous work [3] we have established
model category structures on these categories where the weak equivalences
are the Er-quasi-isomorphisms. Thus we are able to compare the underlying
almost Brown category structures with (SpSeR)r.

6.1. Filtered complexes. Let FCR be the category of filtered complexes and
let (FCR)r denote this category with the r-model structure of [3, Theorem
3.16]. We consider it as an almost Brown category where the weak equivalences
are the Er-quasi-isomorphisms and the fibrations are the maps such that Z0(f)
is surjective and Ei(f) is surjective for 0 ≤ i ≤ r.

Proposition 6.1.1. The spectral sequence functor E : (FCR)r → (SpSeR)r
preserves weak equivalences and is a left exact functor of almost Brown cate-
gories.

Proof. It is clear that E preserves finite products, weak equivalences, fibrations
and acyclic fibrations. For the pullback condition, consider the diagram:

A

p

��

U
g

// B

in (FCR)r where p is an acyclic fibration. The pullback in FCR is

X = Ker(p− g : U ⊕ A→ B) = {(u, a) | g(u) = p(a), u ∈ U, a ∈ A},

with d(u, a) = (du, da), since FCR is a pre-abelian category. Using the sur-
jectivity of Ei(p) for all i, the same proof as in Lemma 3.2.2 shows that the
associated spectral sequence has

E(X)i = {(u, a) |E(g)(u) = E(p)(a), u ∈ E(U)i, a ∈ E(A)i}.

That is, it has the pagewise pullback of i-bigraded complexes as its i-page and,
by Lemma 3.2.2, this is the pullback in SpSeR. �

Recall the notion of r-homotopy between morphisms of filtered complexes
from Definition 2.2.3.

Proposition 6.1.2. The spectral sequence functor E : (FCR)r → (SpSeR)r
preserves r-homotopy.
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Proof. The notion of r-homotopy between morphisms f, g : A → B of filtered
complexes can be formulated in terms of a version ΛFC

r of Λr in filtered com-
plexes. Let ΛFC

r = Re−⊕Re+⊕Ru where e−, e+ are in degree 0 and filtration
0 and u is in degree 1 and filtration −r. The differential is determined by
d(e−) = −u, d(e+) = u. And we have morphisms ∂−, ∂+ : ΛFC

r → R given by
projection to Re− and Re+ respectively. Then giving an r-homotopy from f
to g is equivalent to giving a morphism of filtered complexes h : A→ ΛFC

r ⊗B
such that ∂−B ◦ h = f and ∂+B ◦ h = g.

The associated spectral sequence E(ΛFC
r ) is Λr as in Definition 5.2.1 and

more generally E(ΛFC
r ⊗ A) ∼= Λr ⊗ E(A). Thus an r-homotopy h between f

and g gives rise to an r-homotopy E(h) between E(f) and E(g). �

6.2. Multicomplexes. Recall that we write n-mCR for the category of n-
multicomplexes and strict morphisms. Here 2 ≤ n ≤ ∞, where the case
n = ∞ is the category of multicomplexes. An n-multicomplex has an associ-
ated functorial spectral sequence, described explicitly in [8]. Indeed there is
a totalization functor to filtered complexes and then we take the associated
spectral sequence. That is, we have a commutative diagram:

n-mCR SpSeR

FCR

E′

Tot
E

Note that we write E ′ = E ◦ Tot for the composite functor, but we will
often drop the dash and just write Ei for the pages of the spectral sequence
associated to a multicomplex.

We write (n-mCR)r for the category of n-multicomplexes and strict mor-
phisms with the r-model structure of [4, Theorem 3.30]. We use the same
notation for the corresponding almost Brown category where the weak equiv-
alences are the Er-quasi-isomorphisms and the fibrations are the maps f such
that Ei(f) is surjective for 0 ≤ i ≤ r.

Proposition 6.2.1. The spectral sequence functor E ′ : (n-mCR)r → (SpSeR)r
preserves weak equivalences and is a left exact functor of almost Brown cate-
gories.

Proof. It is clear that E ′ preserves finite products, weak equivalences and fi-
brations. For the pullback condition, consider the diagram:

A

p

��

U
g

// B
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in n-mCR. The pullback in n-mCR exists and it is

X = Ker(p− g : U ⊕ A→ B) = {(u, a) | g(u) = p(a), u ∈ U, a ∈ A},

with di(u, a) = (diu, dia) for all i ≥ 0. Indeed, the category n-mCR has a
description as a module category given in [4, Proposition 4.4] and so it is
abelian.

Let Yi denote the pullback in i-bigraded complexes of

Ei(A)

Ei(p)
��

Ei(U)
Ei(g)

// Ei(B)

and note that E0(X) ∼= Y0 as 0-bigraded complexes.
Now suppose that p is an acyclic fibration, in particular Ei(p) is surjective

for all i, and assume that En(X) ∼= Yn as n-bigraded complexes.
As in Lemma 3.2.2, we have Yn+1

∼= ker(En+1(p) − En+1(g)) and the ar-
gument of that proof also shows that we have an isomorphism of underlying
bigraded R-modules En+1(X) ∼= Yn+1. It remains to check that this can be
upgraded to an isomorphism of (n + 1)-bigraded complexes and this can be
seen from the explicit description of the differentials in the spectral sequence
of a multicomplex in [8].

Then E ′(X) has the pagewise pullback of i-bigraded complexes as its i-page
and, by Lemma 3.2.2, this is the pullback in SpSeR. �

Remark 6.2.2. Note that the proof shows that E ′ preserves pullbacks along
any map of any map p such that Ei(p) is surjective for all i.

Remark 6.2.3. Note that in this multicomplex case E ′ also reflects the weak
equivalences and fibrations.

Proposition 6.2.4. For n = ∞, the spectral sequence functor E ′ : (n-mCR)r →
(SpSeR)r preserves the r-path.

Proof. The r-path for multicomplexes was defined in [2, Definition 3.14]. From
the explicit description of the spectral sequence of a multicomplex, it is straight-
forward to see that the spectral sequence corresponding to the multicomplex
Pr(A) is P (r;E(A)). We have E(ιA) = ιE(A), E(δ

−
B) = δ−

E(B) and E(δ+B) =

δ+
E(B). �

Proposition 6.2.5. The spectral sequence functor E ′ : (n-mCR)r → (SpSeR)r
preserves r-homotopy.

Proof. We start with the case n = ∞. Here an r-homotopy between morphisms
of multicomplexes f, g : C → D is defined in [2, Definition 3.16] as an ∞-
morphism of multicomplexes h : C → Pr(D) such that ∂−D ◦h = f and ∂+D ◦h =
g.
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We write tCR for the category of multicomplexes with ∞-morphisms. By [2,
Theorem 3.8], we have a totalisation functor Tot : tCR → FCR. We can refine
the commutative diagram given earlier to

n-mCR ∞-mCR tCR SpSeR

FCR

in i Ẽ

Tot
E

where in and i are inclusions of subcategories and the Tot discussed earlier can
be obtained as the composite of the inclusions and the Tot on tCR.

Thus, using Proposition 6.2.4, we have a morphism of spectral sequences
E(h) : E(C) → E(Pr(D)) = P (r;E(D)). Since E(∂−D) = ∂−

E(D) and E(∂+D) =

∂+
E(D), it follows from Section 5.4 that E(h) is an r-homotopy between E(f)

and E(g).
For n < ∞, an r-path object for n-multicomplexes was given in [4, Defini-

tion 5.5], giving rise to a notion of r-homotopy. Let us write P n
r for the r-path

in n-multicomplexes, in order to distinguish it from Pr, the r-path in multi-
complexes. These r-paths can be expressed in the form P n

r (C) = Λn
r ⊗ C and

Pr(C) = Λr⊗C. The two can be compared in the category of multicomplexes,
since there is a natural transformation P n

r → Pr such that P n
r (C) = Λn

r ⊗C →
Pr(C) = Λr ⊗ C is α ⊗ 1C, where α is the identity in bidegrees where this is
possible and zero otherwise.

Let h : C → Pr(D) be an r-homotopy from f to g in n-mCR. Then (α ⊗
1D)◦h gives an r-homotopy from f to g in multicomplexes. In other words, the
inclusion of n-multicomplexes into multicomplexes preserves homotopy. �

Remark 6.2.6. The inclusion in of n-multicomplexes into multicomplexes also
reflects homotopy. Indeed i(P n

r ) gives another functorial path for multicom-
plexes and so gives rise to an equivalent notion of homotopy.
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