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1. Overview

1.1. Introduction. Let C be a stable ∞-category. We let K0(C) denote the Grothendieck group
of C: that is, the quotient of the free group generated by symbols [X] (where X ranges over
the set of objects of C) by the relations [X] = [X ′] + [X ′′], where

X ′ →X →X ′′

ranges over all fiber sequences in C. Every exact functor f ∶ C → D between stable ∞-categories
induces a homomorphism of abelian groups f∗ ∶K0(C) →K0(D).

For every object X ∈ C, we have a fiber sequence

X → 0→ ΣX,

which yields the identity [ΣX] = −[X] in K0(C). Applying this identity twice, we obtain
[Σ2X] = [X]. In other words, the exact functor Σ2 ∶ C → C induces the identity map from
K0(C) to itself. Our goal in this paper is to show that this identity is a consequence of a more
general fact concerning the “rotation invariance” of algebraic K-theory.

The collection of all (small) stable ∞-categories can itself be organized into an ∞-category,

which we will denote by CatSt
∞ (the morphisms in CatSt

∞ are given by exact functors between

stable ∞-categories). Moreover, we can regard CatSt
∞ as a symmetric monoidal ∞-category: for

every pair of stable ∞-categories C and D, the tensor product C ⊗D is the universal recipient of
a bifunctor C ×D → C ⊗D which is exact separately in each variable. The unit object of CatSt

∞
is the ∞-category Spfin of finite spectra, and its automorphism group can be identified with
the classifying space Pic(S) for invertible spectra. We may therefore identify the (connected)

delooping BPic(S) with a symmetric monoidal subcategory of CatSt
∞ (the subcategory consisting

of the unit object together with its invertible endomorphisms). Let φ denote the composite map

S1 ≃ U(1) → U
β→ Ω−1(Z ×BU) JC→ BPic(S)

where U = limÐ→U(n) denotes the infinite unitary group, the map β is given by Bott periodicity,

and JC is the complex J-homomorphism. Then φ determines an action of the circle S1 on the
∞-category CatSt

∞ of stable ∞-categories. If C is a stable ∞-category, then the Grothendieck
group K0(C) can be realized as the set of connected components of an infinite loop space K(C),
which we will refer to as the algebraic K-theory space of C. The main result of this paper is the
following:

Theorem 1.1.1. The K-theory construction C ↦K(C) is invariant under the action of S1. In

other words, the functor K ∶ CatSt
∞ → S can be promoted to a S1-equivariant functor, where S1

acts on CatSt
∞ via the map φ and acts trivially on the ∞-category S of spaces.

Remark 1.1.2. In what follows, it will be convenient to abuse notation by identifying S1 with
its singular simplicial set (or any homotopy equivalent Kan complex, such as the simplicial

abelian group BZ). The action of S1 on CatSt
∞ determines a map e ∶ S1 × CatSt

∞ → CatSt
∞. For

every stable ∞-category C ∈ CatSt
∞, evaluation on C yields a map eC ∶ S1 → CatSt

∞, given by
eC(θ) = φ(θ) ⊗ C. Unwinding the definitions, we see that eC is characterized by the fact that
it carries the base point of S1 to the ∞-category C, and carries a generator of π1S

1 ≃ Z to
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the double suspension equivalence Σ2 ∶ C → C. Theorem 1.1.1 immediately implies that the
composite map

S1 eC→ CatSt
∞

K→ S
is nullhomotopic, so that the double suspension equivalence Σ2 ∶ C → C induces a map K(C) →
K(C) which is homotopic to the identity. We may therefore regard Theorem 1.1.1 as a “de-
looping” of the observation that double suspension induces the identity map from K0(C) to
itself.

Remark 1.1.3. The results of this paper were inspired by Dyckerhoff-Kapranov theory of 2-
Segal spaces ([2]) and its relationship with algebraic K-theory ([3]). Our main results generalize
some of the constructions given in [4] and [8] to the setting of an arbitrary stable ∞-category,
which need not be 2-periodic or linear over a commutative ring.

1.2. Outline. The main obstacle to proving Theorem 1.1.1 is that the action of the circle
S1 on CatSt

∞ is defined in a very geometric way (using Bott periodicity and the complex J-
homomorphism), but the definition of the algebraic K-theory space K(C) is purely combinato-
rial. The proof divides naturally into two parts:

(a) In the first part of this paper, we give a purely combinatorial construction of a monoidal
functor φ ∶ S1 → BPic(S) and show that the algebraic K-theory functor C ↦ K(C) is

S1-equivariant (with respect to the resulting action of S1 on CatSt
∞).

(b) In the second part of this paper, we will show that the monoidal functor φ constructed
in (a) agrees (up to homotopy) with the composite map

S1 ≃ U(1) → U
β→ Ω−1(Z ×BU) JC→ BPic(S).

Let us first outline our approach to (a). We will begin in §3 by studying the notion of a
filtered spectrum: that is, a diagram of spectra of the form

⋯ ←X−2 ←X−1 ←X0 ←X1 ←X2 ← ⋯.
The collection of filtered spectra can be organized into an ∞-category Rep(Z) which can be

identified with the Ind-completion of a full subcategory Repfin(Z) of finite filtered spectra (this
is a special case of a general categorical construction which we will discuss in §2). The group

Z of integers acts on both Rep(Z) and Repfin(Z) by “shifting” the filtrations. This action

“deloops” to an action of the circle S1 ≃ BZ on the ∞-category ModRepfin(Z)(CatSt
∞) of stable

∞-categories tensored over Repfin(Z). In §3.6, we will construct a functor

MF ∶ ModRepfin(Z)(CatSt
∞) → CatSt

∞,

which can be regarded as an ∞-categorical version of the theory of equivariant matrix factoriza-
tions. Moreover, we will use the same ideas to construct a monoidal functor φ ∶ S1 → BPic(S)
(hence an action of S1 on CatSt

∞) for which the functor MF is S1-equivariant.
In §4, we will review the definition of the K-theory space K(C) associated to a stable ∞-

category C. Recall that K(C) is given explicitly by the formula K(C) = Ω∣S●(C)≃∣, where S●(C)
denotes the simplicial ∞-category given by the Waldhausen construction of C. The Waldhausen
construction makes sense for very general classes of categories and ∞-categories (see [9] and
[1]). However, the setting of stable ∞-categories has some special features: if C is stable, then

the simplicial ∞-category S●(C) can be refined to a paracyclic ∞-category S
↺
● (C) (that is, a

functor N(∆op

↺) → Cat∞ for a certain category ∆↺; see Definition 4.3.4). In §4.5, we will

show that the construction C ↦ S
↺
● (C) is corepresentable: that is, there exists a (co)paracyclic

object Quiv● ∶ N(∆↺) → CatSt
∞ such that S

↺
Λ (C) ≃ Funex(QuivΛ,C) for any object Λ ∈ ∆↺ and
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any stable ∞-category C (here Funex(QuivΛ,C) denotes the ∞-category of exact functors from

QuivΛ to C). Moreover, we show that each ∞-category QuivΛ can be realized as an ∞-category

of equivariant matrix factorizations MF(Repfin(Λ)). Using the S1-equivariance of the functor
MF, we deduce that the paracyclic Waldhausen construction

S
↺
● ∶ CatSt

∞ → Fun(N(∆op

↺),S)

is S1-equivariant, where the circle S1 acts on the left hand side via the monoidal functor φ
and on the right hand side via an action on ∆↺. From this we will formally deduce that the

K-theory functor K ∶ CatSt
∞ → S is also equivariant, where the circle S1 acts trivially on S.

The last three sections of this paper are devoted to the proof of (b). We first note that
by passing to loop spaces, we can identify the monoidal functor φ ∶ S1 → BPic(S) with an E2-
monoidal functor Φ ∶ Z→ Pic(S). To describe this functor geometrically, it will be convenient to
choose a particularly simple model for the notion of E2-algebra: we will think of Φ as supplying
a construction which assigns an invertible spectrum to every pair (D,n), where D ⊆ C is an
open disk and n ∈ Z is an integer (and exhibits appropriate functorial behavior with respect
to embeddings of disks). In §5, we will show that when restricted to nonnegative integers n,
the functor Φ can be described concretely by the construction (D,n) ↦ Σ∞(SymnD)c: here
(SymnD)c denotes the one-point compactification of the nth symmetric power of D, which
homeomorphic to a sphere of dimension 2n. The proof involves Koszul duality for E2-algebras
and an analysis of the skeletal filtration

CP0 ⊆ CP1 ⊆ CP2 ⊆ ⋯
of CP∞ ≃K(Z,2).

To complete the proof of (b), we wish to show that the E2-monoidal functor Φ described is
homotopic to a composition

Z ≃ Ω2(BU(1)) → Ω2(BU) β→ Z ×BU
JC→ Pic(S),

as a map of E2 spaces. Recall that the complex J-homomorphism JC ∶ Z × BU → Pic(S)
arises concretely from the construction which carries a complex vector space V to the invertible
spectrum Σ∞V c. This bears a close resemblance to the geometric description of Φ given above:
note that if D ⊆ C is an open disk, then the symmetric power SymnD does not canonically
inherit the structure of a complex vector space, but it is a contractible complex manifold and
is therefore essentially equivalent to its tangent space at any point (see §7.1 for a more precise
statement). From this, it is not hard to see that Φ factors as a composition

Z
Φ′

→ Z ×BU
JC→ Pic(S).

The key point is to show that after delooping twice and applying Bott periodicity, the map Φ
corresponds to the natural map BU(1) → BU. In order to prove this, we will need to understand
the Bott map β as a map of E2-spaces: in other words, we will need a description of β which
relates the E2-structure on Ω2(BU) (coming from its presentation as a 2-fold loop space) to the
E2-structure on Z×BU (arising from direct sums of complex vector spaces). We will give such
a description in §6, and apply it in §7 to complete the proof of (b).

1.3. Further Motivation: Fukaya Categories of Surfaces. Let Σ be a symplectic man-
ifold. In favorable cases, one can associate to Σ an A∞-category Fuk(Σ), called the Fukaya
category of Σ. We will not attempt to give a definition of Fuk(Σ) here, except to recall that the
definition requires the consideration of many subtle and difficult analytic questions. However, in
the special case where dim(Σ) = 2, Dyckerhoff-Kapranov ([4]) and Nadler ([8]) have introduced
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purely “combinatorial” versions of the Fukaya category. Let us briefly describe the construction
of [4] (using a slightly different language) and its relationship to the work described here.

(a) Let C be an ∞-category which admits small limits and let ∆cyc denote the cyclic cate-
gory (see Definition 4.2.13). A cyclic object of C is a functor N(∆op

cyc) → C. Dyckerhoff
and Kapranov introduce a special class of cyclic objects of C, which they call 2-Segal
cyclic objects. Furthermore, they show that if Σ is a connected, oriented surface with
nonempty boundary, then one can canonically associate to each 2-Segal cyclic object
X of C an invariant RXΣ, which they call the derived membrane space of Σ.

(b) Let A denote the category of 2-periodic differential graded categories over a field k. Us-
ing the theory of equivariant matrix factorizations, Dyckerhoff and Kapranov construct
a cyclic object E● of Aop, which determines a 2-Segal simplicial object of the associated
∞-category.

(c) Let A be a (pretriangulated) 2-periodic differential graded category and let Σ be a
surface with boundary together with a (sufficiently large) set of marked points M ⊆ Σ.
The formation of derived mapping spaces then gives a cyclic object Map(E●,A) in
the underlying ∞-category of A. Applying their derived membrane space construction,
Dyckerhoff and Kapranov obtain 2-periodic differential graded category RMap(E●,A)Σ

which they refer to as the topological Fukaya category of (Σ,M) with coefficients in A.

In essence, our goal in this paper is to carry out step (b) in the case where the field k is
replaced by a ring spectrum, and to understand the analogue of “2-periodicity” in this more
general context. To understand the role of periodicity in the outline above, let us recall that
in addition to the myriad analytic difficulties one encounters in defining the Fukaya category
Fuk(Σ) due to potential non-smoothness and non-compactness of various moduli spaces of
pseudo-holomorphic disks, one also encounters topological obstructions coming from the need
to choose compatible orientations of those moduli spaces.

Let R be an E2-ring, and let Pic(R) denote a classifying for invertible R-module spectra;
then Pic(R) inherits a monoidal structure and can be written as the loop space of a space
BPic(R). This space carries an action of BPic(S); we will denote the homotopy quotient by
BPic(R)/BPic(S), so that there is a fiber sequence

BPic(R) → BPic(R)/BPic(S) ε→ Ω−2 Pic(S).
If Σ is a symplectic manifold of dimension 2d, then to choose coherent R-orientations of all of
the relevant moduli spaces involved in the definition of Fuk(Σ) one needs a dotted arrow so
that the diagram

Σ //

��

BPic(R)/BPic(S)

ε

��
BU(d) // BU

β // Ω−2(Z ×BU) JC // Ω−2 Pic(S)

commutes up to homotopy, where the left vertical map classifies the tangent bundle of Σ. In
the special case d = 1, the composite map appearing in the lower part of this diagram is given
by delooping the monoidal functor φ ∶ S1 → BPic(S) appearing in the statement of Theorem
1.1.1. Consequently, if we hope to be able to define the Fukaya category Fuk(Σ) “over R” for a
general surface Σ, then we should demand that φ factors (as a monoidal functor) through the
quotient Pic(R)/Pic(S). There is a universal choice for such an R: it is given by applying the
Thom construction to the E2-map

Z ≃ Ω2 BU(1) → Ω2 BU
β→ BU×Z.
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We will denote the resulting ring spectrum by Sper, and refer to it as the 2-periodic sphere
spectrum (see Remark 3.5.13).

In §4.5, we will construct a family of stable ∞-categories Quiv● which corepresent the Wald-
hausen S●-construction. These ∞-categories are closely related to the differential graded cate-
gories E● appearing in [4], with one important difference: rather than getting a cocyclic object

of CatSt
∞, we only get a coparacyclic object of CatSt

∞. To descend Quiv● to a cocyclic object of

CatSt
∞, we would need it to be invariant under the circle group S1 (which acts on the collection

of paracyclic objects of any ∞-category C). However, the main results of this paper assert that
Quiv● is almost invariant under the action of S1: when regarded as a functor from N(∆↺) to

CatSt
∞, it is equivariant if we allow S1 to act on CatSt

∞ via the monoidal functor φ. It follows
that Quiv● descends to a cocyclic stable ∞-category after extension of scalars to the 2-periodic
sphere spectrum Sper. The resulting cocyclic Sper-linear ∞-category can then be regarded as
a refinement of the cocyclic differential graded category E● (one can obtain the latter from the
former extending scalars to the field k). Moreover, it can employed for the same purpose: that
is, the main results of this paper allow us extend the definition of the topological Fukaya cate-
gories of Dyckerhoff-Kapranov to allow coefficients in an arbitrary Sper-linear stable ∞-category
(in the place of 2-periodic differential graded category).

1.4. Acknowledgements. This paper grew out of conversations with Tobias Dyckerhoff and
David Nadler; I am grateful to both of them for sharing their ideas with me. The idea of realizing
the ∞-categories QuivΛ using the formalism of equivariant matrix factorizations was suggested
to me by Anatoly Preygel and David Nadler (and discovered independently by Dyckerhoff-
Kapranov, in the setting of differential graded categories). I am also grateful to Søren Galatius
for suggesting many helpful ways of thinking about Bott periodicity, some of which have made
their way into §6. I would also like to thank the National Science Foundation for supporting
this work under Grant No. 0906194.

1.5. Notation and Terminology. Throughout this paper, we will make extensive use of the
theory of ∞-categories (also known as quasicategories and weak Kan complexes in the literature)
as described in [6] and [7]. We will indicate references to [6] using the letters HTT and references
to [7] using the letters HA. For example, Theorem T.6.1.0.6 refers to Theorem 6.1.0.6 of [6].

We let Sp denote the ∞-category of spectra. We will regard Sp as endowed with the smash
product symmetric monoidal structure (see §H.4.8.2). We will indicate the smash product by

∧ ∶ Sp×Sp→ Sp .

We let S denote the sphere spectrum (the unit object of Sp with respect to the smash product).
If C is an ∞-category containing a pair of objects X and Y , we let MapC(X,Y ) denote the

space of maps from X to Y . If C is stable then we will regard C as enriched over the ∞-category
of spectra and we denote the spectrum of maps from X to Y by MapC(X,Y ). This spectrum

can be described more concretely by the formula

Ω∞−nMapC(X,Y ) = MapC(X,ΣnY ).

If C and D are ∞-categories, we let Fun(C,D) denote the ∞-category of functors from C to
D. If both C and D are stable, we let Funex(C,D) denote the full subcategory of Fun(C,D)
spanned by the exact functors.

2. Categorical Background

2.1. Monoidal ∞-Categories. In this section, we will review some basic facts about the
theory of monoidal ∞-categories and recall some notation which will be needed in the body of
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this paper. For a more detailed discussion of the theory of monoidal ∞-categories, we refer the
reader to [7].

Let C be a monoidal ∞-category. We let Alg(C) denote the ∞-category of associative algebra
objects of C. Given a pair of associative algebras A,B ∈ Alg(C), we let LModA(C), RModB(C),
and ABModB(C) denote the ∞-categories of left A-module, right B-module, and A-B-bimodule
objects of C, respectively. If the monoidal structure on C is symmetric and A is a commutative
algebra object of C, then the ∞-categories LModA(C) and RModA(C) are canonically equivalent
to one another and we will denote either simply by ModA(C).

Let Cat∞ denote the ∞-category of (small) ∞-categories. We will generally identify monoidal
∞-categories with associative algebra objects of Cat∞. If C and D are monoidal ∞-categories,
we let Fun⊗(C,D) denote the ∞-category of monoidal functors from C to D; the underlying
Kan complex of Fun⊗(C,D) can be identified with the mapping space MapAlg(Cat∞)(C,D).

Remark 2.1.1. Let C be an ∞-category. Suppose that C has the structure of a simplicial
monoid: that is, a map of simplicial sets m ∶ C ×C → C which is unital and strictly associa-
tive. Then m exhibits C as a monoidal ∞-category. Moreover, every monoidal ∞-category is
equivalent to one which arises in this way (Example H.4.1.4.7).

Let C be a monoidal ∞-category and let C0 ⊆ C be a full subcategory. Suppose that the
inclusion functor C0 ↪ C admits a left adjoint L ∶ C → C0. We will say that a morphism
f ∶ C → D in C is an L-equivalence if L(f) is an equivalence in C0. We say that the functor L
is compatible with the monoidal structure on C if, for every L-equivalence f ∶ C → D and every
object E ∈ C, the induced maps

C ⊗E →D ⊗E E ⊗C → E ⊗D
are also L-equivalences. If this condition is satisfied, then there is an essentially unique monoidal
structure on C0 for which the functor L ∶ C → C0 is monoidal (see §H.2.2.1). The tensor product
on C0 is then given by (C,D) ↦ L(C ⊗D).

Let C be a monoidal ∞-category with unit object 1. We will say that an object C ∈ C is
invertible if there exists another object C−1 ∈ C and equivalences

C ⊗C−1 ≃ 1 ≃ C−1 ⊗C.
In this case, we will refer to C−1 as the inverse of C; it is uniquely determined up to equivalence.
We let Cinv denote the subcategory of C spanned by the invertible objects and equivalences
between them. The collection of invertible objects of C contains the unit object 1 and is closed
under tensor products, so that Cinv inherits the structure of a monoidal ∞-category.

Let C be a monoidal ∞-category equipped with a unit object 1. We say that an object C ∈ C
is right dualizable if there exists another object C∨ ∈ C together with morphisms

e ∶ C∨ ⊗C → 1 c ∶ 1→ C ⊗C∨

such that the composite maps

C ≃ 1⊗C c⊗idÐ→ C ⊗C∨ ⊗C id⊗eÐ→ C ⊗ 1 ≃ C

C∨ ≃ C∨ ⊗ 1
id⊗cÐ→ C∨ ⊗C ⊗C∨ e⊗idÐ→ 1⊗C∨ ≃ C∨

are homotopic to the identity. In this case, the object C∨ (and the morphisms e and c) are
uniquely determined up to equivalence. We will refer to C∨ as the right dual of C, to the
morphism e as the evaluation map of C, and to the morphism c as the coevaluation map of
C. The collection of right-dualizable objects of C spans a full subcategory Cdual ⊆ C which
contains the unit object 1 and is closed under the formation of tensor products, and therefore
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inherits the structure of a monoidal ∞-category. Note that every invertible object C ∈ C is right
dualizable (with right dual given by C−1), so we have inclusions Cinv ⊆ Cdual ⊆ C.

Let C be a monoidal ∞-category. An action of C on an ∞-categoryM is a monoidal functor
C → Fun(M,M). Giving action of C on M is equivalent to exhibiting M as an ∞-category
left-tensored over C, or exhibiting M as a left C-module in the ∞-category Cat∞.

Let C be a monoidal ∞-category and let M and N be ∞-categories which are left-tensored
over C. We let FunC(M,N) denote the ∞-category of C-linear functors from M to N . The
underlying Kan complex FunC(M,N)≃ can be identified with the mapping space

MapLModC(Cat∞)(M,N).
Let M and N be ∞-categories acted on by a monoidal ∞-category C, and let F ∶ M → N

be a C-linear functor. Suppose that the functor F admits a right adjoint G. Then G can be
regarded as a lax C-linear functor from N to M: in particular, the functor G comes equipped
with canonical maps

φC,N ∶ C ⊗G(N) → G(C ⊗N)
for C ∈ C, N ∈ N . If each of the maps φC,N is an equivalence, then G can be regarded as a
C-linear functor from N to M (and the unit and counit of the adjunction between F and G
are given by C-linear natural transformations). This condition is automatically satisfied if the
object C is right-dualizable: in this case, the map φC,N has a homotopy inverse given by the
composition

G(C ⊗N) ≃ 1⊗G(C ⊗N)
c→ C ⊗C∨ ⊗G(C ⊗N)

φC∨,C⊗N→ C ⊗G(C∨ ⊗C ⊗N)
e→ C ⊗G(N).

It follows that the right adjoint G can always be regarded as a Cdual-linear functor from N to
M.

Suppose that C is a monoidal ∞-category which admits geometric realizations for simplicial
objects, and that the tensor product ⊗ ∶ C ×C → C preserves geometric realizations of simplicial
objects. For every algebra object A ∈ Alg(C), the ∞-category RModA(C) is left-tensored over
C. Given another algebra object B ∈ Alg(C) and a bimodule K ∈ ABModB(C), the construction
M ↦ M ⊗A K determines a C-linear functor ρK from RModA(C) to RModB(C). It follows
from Theorem H.4.8.4.1 that the construction K ↦ ρK induces a fully faithful embedding from

ABModB(C) to FunC(RModA(C),RModB(C)), whose essential image consists of those C-linear
functors which preserve geometric realizations of simplicial objects.

Remark 2.1.2. Let C be a monoidal ∞-category which admits geometric realizations of sim-
plicial objects and for which the tensor product ⊗ ∶ C ×C → C preserves geometric realizations
of simplicial objects. Let A and B be associative algebra objects of C and let K ∈ ABModB(C).
Suppose that the functor ρK ∶ RModA(C) → RModB(C) admits a right adjoint. In this case,
we will denote that right adjoint by N ↦ MorA(K,N). Since ρK is a C-linear functor, the

construction N ↦MorA(K,N) is a lax C-linear functor, which is automatically Cdual-linear.

For the remainder of this section, let us fix a symmetric monoidal ∞-category C. We let
Alg(C) denote the ∞-category of associative algebra objects of C and LMod(C) the ∞-category
of pairs (A,M), where A ∈ Alg(C) and M is a left A-module. Then Alg(C) and LMod(C)
inherit the structure of symmetric monoidal ∞-categories. We let Alg(2)(C) ≃ Alg(Alg(C))
denote the ∞-category of E2-algebra objects of C, and we let LMod(2)(C) = Alg(LMod(C)). We
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will refer to LMod(2)(C) as the ∞-category of central actions in C. The objects of LMod(2)(C)
can identified with pairs (A,M) where A is an E2-algebra object of C and M is an A-algebra:
that is, an associative algebra object of LModA(C). In this case, we will say that A acts centrally
on M .

Remark 2.1.3. Let M be an associative algebra object of C. We will say that a central action

(A,M) ∈ LMod(2)(C) exhibits A as a center of M if, for every E2-algebra B in C, the canonical
map

MapAlg(2)(C)(B,A) → LMod(2)(C) ×Alg(C) {M}
is a homotopy equivalence. If 1 denotes the unit object of C, then 1 can be regarded either as an
associative algebra object of C or as an E2-algebra object of C, and the latter can be identified

with the center of the former (more precisely, the unit object (1,1) of LMod(2)(C) exhibits 1
as the center of itself; this follows immediately from Proposition H.5.3.1.8). In other words, if
A is an E2-algebra object of C, then the data of a central action of A on 1 is equivalent to the
data of a morphism of E2-algebras A→ 1.

Remark 2.1.4. The ∞-category LMod(2)(C) can be identified with AlgO(C) for a suitable ∞-
operad O (given by the operadic tensor product of the ∞-operad governing associative algebras
with the ∞-operad governing left module objects; see §H.2.2.5). In the special case where

C = Cat∞, we can identify LMod(2)(C) with the ∞-category of O-monoidal ∞-categories. The

objects of LMod(2)(Cat∞) are pairs (A,M), where M is a monoidal ∞-category and A is an
E2-monoidal ∞-category equipped with a monoidal functor a ∶ A → M which is central in a
suitable sense. If M0 ⊆ M is a full subcategory for which the inclusion M0 ↪ M admits a
left adjoint L ∶ M → M0 which is compatible with the symmetric monoidal structure on M,

then the results of §H.2.2.1 show that (A,M0) can be regarded as an object of LMod(2)(Cat∞)
(and that L induces a map (A,M)→ (A,M0) in LMod(2)(Cat∞)). In other words, any central
action of A on M induces a central action of A on M0.

2.2. Representations of ∞-Categories. Let C be an essentially small ∞-category. A rep-
resentation of C is a functor ρ ∶ Cop → Sp, where Sp denotes the ∞-category of spectra. The
collection of all representations of C can be organized into an ∞-category Rep(C) = Fun(Cop,Sp).
We will refer to Rep(C) as the ∞-category of representations of C.

Note that Rep(C) can be identified with the stabilization of the ∞-category

P(C) = Fun(Cop,S)
of space-valued presheaves on C. Let j ∶ C → Rep(C) denote the composition of the Yoneda
embedding C → P(C) with the infinite suspension functor Σ∞

+ ∶ P(C) → Rep(C); concretely, the
functor j is given by the formula

j(C)(D) = Σ∞
+ MapC(D,C).

We will refer to the functor j as the stable Yoneda embedding.
We let Repfin(C) denote the smallest stable subcategory of Rep(C) which contains the es-

sential image of the stable Yoneda embedding j. We will say that a representation of C is finite
if it belongs to Repfin(C).
Warning 2.2.1. The term “stable Yoneda embedding” is possibly misleading: the functor
j ∶ C → Rep(C) is never fully faithful (unless C is empty).

Remark 2.2.2. Let C be an essentially small ∞-category. Then the essential image of the
Yoneda embedding C → P(C) consists of compact objects of P(C), and the infinite suspension
functor Σ∞

+ ∶ P(C) → Rep(C) preserves compact objects (since the right adjoint Ω∞ ∶ Rep(C) →
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P(C) commutes with filtered colimits). Consequently, every object of Repfin(C) is compact as
an object of Rep(C).

Proposition 2.2.3. Let C be an essentially small ∞-category. Then the inclusion Repfin(C) ↪
Rep(C) extends to an equivalence of ∞-categories Ind(Repfin(C)) ≃ Rep(C).

Proof. Using Remark 2.2.2 and Proposition T.5.3.5.11, we see that the inclusion f ∶ Repfin(C) →
Rep(C) extends to a fully faithful embedding F ∶ Ind(Repfin(C)) → Rep(C) which preserves
filtered colimits. Since f is right exact, the functor F preserves small colimits and therefore
admits a right adjoint G ∶ Rep(C) → Ind(Repfin(C)) (Corollary T.5.5.2.9). To show that F is an
equivalence, it will suffice to show that the functor G is conservative. Since G is an exact functor
between stable ∞-categories, it will suffice to show that if V is a nonzero object of Rep(C),
then G(V ) ≄ 0. Replacing V by a suspension if necessary, we may assume that there exists an
object C ∈ C such that π0V (C) ≠ 0. Any nonzero element of π0V (C) classifies a nonzero map
j(C) → V , where j ∶ C → Rep(C) is the stable Yoneda embedding, so that G(V ) ≠ 0. �

Corollary 2.2.4. Let C be an essentially small ∞-category. Then an object of Rep(C) is

compact if and only if it is a retract of some object of Repfin(C).

In general, not every compact object of Rep(C) belongs to Repfin(C). However, this is true
if we assume that C has a particularly simple form.

Notation 2.2.5. Let Q be a partially ordered set. We let Rep(Q) denote the ∞-category
Rep(N(Q)) = Fun(N(Q)op,Sp). We will refer to the objects of Rep(Q) as representations of
Q. For V ∈ Rep(Q), we will indicate the value of V on an element λ ∈ Q by Vλ.

Proposition 2.2.6. Let Q be a finite partially ordered set and let V ∈ Rep(Q). The following
conditions are equivalent:

(1) The representation V belongs to Repfin(Q).
(2) The representation V is a compact object of Rep(Q).
(3) For each object λ ∈ Q, the spectrum Vλ is finite.

Proof. The implication (1) ⇒ (2) follows from Remark 2.2.2. We next prove that (2) ⇒ (3).
Let D ⊆ Rep(Q) denote the full subcategory spanned by those objects V for which Vλ is finite
for each λ ∈ Q. Note that the stable Yoneda embedding j ∶ N(Q) → Rep(Q) is given by the
formula

j(λ)µ =
⎧⎪⎪⎨⎪⎪⎩

S if µ ≤ λ
0 otherwise.

From this, we immediately deduce that j carries N(Q) into D. Since D is a stable subcategory

of Rep(Q), we conclude that Repfin(P ) ⊆ D. Because D is closed under retracts, Corollary
2.2.4 implies that D contains all compact objects of Rep(P ). This completes the proof that
(2) ⇒ (3).

We now show that (3) ⇒ (1). For every downward-closed subset P ⊆ Q, consider the
following assertion:

(∗P ) If V ∈ D satisfies Vλ ≃ 0 for λ ∉ P , then V ∈ Repfin(Q).
Note that the implication (3) ⇒ (1) is equivalent to (∗Q). We will show that (∗P ) holds for
all downward-closed subsets P ⊆ Q using induction on the cardinality of P . If P is empty,
then there is nothing to prove. Otherwise, the set P contains a maximal element λ, so that
P ′ = P − {λ} is also closed downwards. Let V ∈ D satisfy Vλ ≃ 0 for λ ∉ P . Let V ′ be
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the representation given by V ′
µ =

⎧⎪⎪⎨⎪⎪⎩

Vλ if µ ≤ λ
0 otherwise.

, so that the identity map id ∶ V ′
λ → Vλ

determines a fiber sequence

V ′ → V → V ′′

in the ∞-category D. Then V ′′
µ ≃ 0 for µ ∉ P ′, so that V ′′ ∈ D by virtue of the inductive

hypothesis. Since Repfin(Q) is closed under extensions, we are reduced to proving that V ′ ∈
Repfin(Q). This is clear, since V ′ belongs to the smallest stable subcategory of Rep(Q) which
contains j(λ). �

The ∞-category Repfin(C) can be characterized by the following universal property:

Proposition 2.2.7. Let C be an essentially small ∞-category. For any stable ∞-category D,
composition with the stable Yoneda embedding j ∶ C → Repfin(C) induces an equivalence of
∞-categories

Funex(Repfin(C),D) → Fun(C,D).

Proof. Without loss of generality, we may assume that D is small. Let E = Ind(D), let
Fun′(Rep(C),E) denote the full subcategory of Fun(Rep(C),E) spanned by those functors which
preserve small colimits, and define Fun′(P(C),E) similarly. We have a commutative diagram
of ∞-categories

Fun′(Rep(C),E) //

��

Fun′(P(C),E)

��
Funex(Repfin(C),E) // Fun(C,E).

The upper horizontal map is an equivalence by virtue of Proposition 2.2.3 and Corollary
H.1.4.4.5, the left vertical map is an equivalence by virtue of Propositions T.5.3.5.10 and
T.5.5.1.9, and the right vertical map is an equivalence by virtue of Theorem T.5.1.5.6. It
follows that composition with j induces an equivalence Funex(Repfin(C),E) → Fun(C,E). To

complete the proof, it will suffice to show that if g ∶ Repfin(C) → E is an exact functor and g ○ f
factors through the essential image of the Yoneda embedding ι ∶ D ↪ E ′, then g factors through
the essential image of ι. This is clear: because g is exact, the collection of objects

{V ∈ Repfin(C) ∶ g(V ) belongs to the essential image of ι}

spans a stable subcategory of Repfin(C) which contains j(C) and is closed under equivalence,

and therefore contains every object of Repfin(C). �

Corollary 2.2.8. Let C be an essentially small ∞-category, let D be a stable ∞-category, and
let f ∶ C → D be a functor. The following conditions are equivalent:

(a) For every stable ∞-category E, composition with f induces an equivalence

Funex(D,E) → Fun(C,E).

(b) The functor f factors as a composition

C j→ Repfin(C) f
′

→ D,

where j denotes the stable Yoneda embedding and f ′ is an equivalence of ∞-categories.
(c) The functor f satisfies the following conditions:
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(i) For every pair of objects C,C ′ ∈ C, the canonical map

MapC(C,C ′) →MapD(f(C), f(C ′)) ≃ Ω∞MapD(f(C), f(C ′))
induces a homotopy equivalence of spectra

Σ∞
+ MapC(C,C ′) →MapD(f(C), f(C ′)).

(ii) The essential image of f generates D as a stable ∞-category. In other words, if
D0 ⊆ D is a stable subcategory which is closed under equivalence and contains the
essential image of f , then D0 = D.

Proof. Note that Proposition 2.2.7 implies that f admits an essentially unique factorization

C j→ Repfin(C) f
′

→ D,
where f ′ is exact. For any stable ∞-category E , Proposition 2.2.7 allows us to identify the
forgetful functor Funex(D,E) → Fun(C,E) with the map Funex(D,E) → Funex(Repfin(C),E)
given by composition with f ′, from which we immediately see that (a) and (b) are equivalent.
The implication (b) ⇒ (c) follows from an elementary calculation. We now prove that (c) ⇒ (b).

Assume first that f satisfies condition (i). For every pair of objects V,W ∈ Repfin(C), the
exact functor f ′ induces a map of spectra

θV,W ∶ Map
Repfin(C)(V,W ) →MapD(f

′(V ), f ′(W )).

We will prove that θV,W is a homotopy equivalence of spectra for each pair of objects V,W ∈
Repfin(C). Let us first regard W as fixed. The collection of those objects V ∈ Repfin(C) for

which θV,W is an equivalence is a stable subcategory of Repfin(C). It will therefore suffice to
show that θV,W is an equivalence when V has the form j(C) for some C ∈ C. Similarly, we may
assume that W = j(C ′) for some C ′ ∈ C. In this case, the desired result follows immediately from
assumption (i). Applying the functor Ω∞, we deduce that f ′ induces a homotopy equivalence
of spaces

MapRepfin(C)(V,W ) →MapD(f ′(V ), f ′(W ))
for V,W ∈ Repfin(C), so that f ′ is fully faithful. In this case, the essential image of f ′ is a stable
subcategory of D which contains the essential image of f and is closed under equivalence.
If f satisfies condition (ii), then f ′ is essentially surjective and therefore an equivalence of
∞-categories. �

2.3. Tensor Products of Stable ∞-Categories. Let C1, . . . ,Cn be a finite collection of stable
∞-categories and let D be a stable ∞-category. We will say that a functor

f ∶ C1 ×⋯ × Cn → D
exhibits D as a tensor product of the stable ∞-categories {Ci}1≤i≤n if it satisfies the following
condition:

(∗) For every stable ∞-category E , composition with f induces a fully faithful embedding

Funex(D,E) → Fun(C1 ×⋯ × Cn,E),
whose essential image is spanned by those functors which are exact separately in each
variable (in particular, the functor f itself is exact separately in each variable).

Remark 2.3.1. If f satisfies condition (∗), then the ∞-category D (and the functor f) are
determined uniquely up to equivalence by the tuple (C1, . . . ,Cn). We will typically denote D
by C1⊗⋯⊗ Cn, and refer to it as the tensor product of the ∞-categories {Ci}1≤i≤n.
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Proposition 2.3.2. Let C1, . . . ,Cn be a finite collection of stable ∞-categories. Then there
exists a stable ∞-category D and a functor f ∶ C1 ×⋯ × Cn → D which exhibits D as a tensor
product of the stable ∞-categories {Ci}1≤i≤n. Moreover, if each Ci is essentially small, then D
is essentially small.

The proof of Proposition 2.3.2 will require a few general remarks.

Notation 2.3.3. Let PrL denote the ∞-category whose objects are presentable ∞-categories
and whose morphisms are colimit-preserving functors. We will regard PrL as endowed with the
symmetric monoidal structure described in §H.4.8.1. Given a pair of presentable ∞-categories
C and D, we denote their tensor product by C ⊗̂D. It is characterized by the existence of
a bifunctor ⊗ ∶ C ×D → C ⊗̂D with the following universal property: for any ∞-category E
which admits small colimits, composition with the functor ⊗ induces an equivalence from the
full subcategory of Fun(C ⊗̂D,E) spanned by those functors which preserve small colimits to
the full subcategory of Fun(C ×D,E) spanned by those functors which preserve small colimits
separately in each variable.

Let PrL
St denote the full subcategory of PrL spanned by the presentable stable ∞-categories.

Then PrL
St inherits a symmetric monoidal structure from the symmetric monoidal structure

on PrL (see §H.4.8.2), with the same tensor product (but a different unit). Moreover, the
stabilization functor C ↦ Sp(C) determines a symmetric monoidal functor from PrL to PrL

St,
which is left adjoint to the lax symmetric monoidal inclusion PrL

St ↪ PrL.

Proof of Proposition 2.3.2. Without loss of generality we may assume that each Ci is small, so
that Ind(Ci) is a presentable stable ∞-category. Let us abuse notation by identifying each Ci
with its essential image in Ind(Ci). Let D̂ denote the tensor product

Ind(C1)⊗̂⋯⊗̂ Ind(Cn).

(here the tensor product is formed in PrL
St, though it agrees with the tensor product in PrL for

n > 0). Let D denote the smallest stable subcategory of D̂ which is closed under equivalence
and contains the essential image of the composite map

f ∶ C1 ×⋯ × Cn ↪ Ind(C1) ×⋯ × Ind(Cn)
⊗→ D̂.

It follows immediately from the construction that D is essentially small and that the functor
f ∶ C1 ×⋯ × Cn → D is exact separately in each variable.

To complete the proof, we must show that for every stable ∞-category E , composition with
f induces a fully faithful embedding

Funex(D,E) → Fun(C1 ×⋯ × Cn,E),

whose essential image is spanned by those functors which are separately exact in each variable.
In the case n = 0, this follows immediately from Proposition 2.2.7. We will therefore assume
that n > 0. In this case, Lemma H.5.3.2.11 implies that objects of the form {C1 ⊗⋯⊗Cn}Ci∈Ci
form a set of compact generators for D̂. It follows that D is comprised of compact objects of
D̂, and that the induced map Ind(D) ↪ D̂ is an equivalence of ∞-categories.

Without loss of generality, we may assume that E is essentially small. Let E ′ = Ind(E), and

let us abuse notation by identifying E with its essential image in E ′. Let Fun′(D̂,E ′) denote

the full subcategory of Fun(D̂,E ′) spanned by those functors which preserves small colimits, let
Fun′(Ind(C1) × ⋯ × Ind(Cn),E ′) denote the full subcategory of Fun(Ind(C1) × ⋯ × Ind(Cn),E ′)
spanned by those functors which preserve small colimits separately in each variable, and let
Fun′(C1 ×⋯×Cn,E ′) denote the full subcategory of Fun(C1 ×⋯×Cn,E ′) spanned by those functors
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which are exact separately in each variable. We have a commutative diagram

Fun′(D̂,E ′) //

��

Fun′(Ind(C1) ×⋯ × Ind(Cn),E ′)

��
Funex(D,E ′) // Fun′(C1 ×⋯Cn,E ′)

where the vertical maps and the upper horizontal map are equivalences of ∞-categories. It
follows that the upper horizontal map is also an equivalence of ∞-categories. To complete
the proof, it will suffice to show that an exact functor g ∶ D → E ′ factors through the stable
subcategory E ⊆ E ′ if and only if the composite functor

C1 ×⋯ × Cn
f→ D g→ E ′

factors through E . This is clear, since g−1(E) is a stable subcategory of D which is closed under
equivalence and contains the essential image of f . �

Remark 2.3.4. Let C1, . . . ,Cn be essentially small stable ∞-categories, let D be an essentially
small stable ∞-category, and let

f ∶ C1 ×⋯ × Cn → D
be a functor which is exact separately in each variable. The proof of Proposition 2.3.2 shows
that f exhibits D as a tensor product of the stable ∞-categories {Ci}1≤i≤n if and only if the
following pair of conditions is satisfied:

(a) The ∞-category D is generated (as a stable ∞-category) by the essential image of f (in
other words, if D′ ⊆ D is a stable subcategory which contains the essential image of f
and is closed under equivalence, then D′ = D).

(b) The functor f induces an equivalence of presentable stable ∞-categories

Ind(C1)⊗̂⋯⊗̂ Ind(Cn) → Ind(D).
Remark 2.3.5. Let {D}1≤j≤n be a finite collection of stable ∞-categories. Suppose that, for
each 1 ≤ j ≤ n, we are given a functor

fj ∶ ∏
1≤i≤mj

Ci,j → Dj

which exhibits Dj as the tensor product of a collection of stable ∞-categories {Ci,j}1≤i≤mj . Let
g ∶ D1 ×⋯ × Dn → E be a functor which exhibits E as the tensor product of the Dj . Using the
criterion of Remark 2.3.4, we see that the composite functor

∏
i,j

Ci,j
{fj}Ð→∏

j

Dj
g→ E

exhibits E as a tensor product of the collection of stable ∞-categories {Ci,j}.

Construction 2.3.6. Let Cat∞ denote the ∞-category of small ∞-categories. We will regard
Cat∞ as endowed with the symmetric monoidal structure given by the Cartesian product of ∞-
categories. Let Cat×∞ denote the associated ∞-operad: the objects of Cat×∞ are finite sequences
{Ci}1≤i≤m of small ∞-categories, and a morphism from {Ci}1≤i≤m to {Dj}1≤j≤n in Cat×∞ is a
map of finite pointed sets α ∶ {1, . . . ,m,∗} → {1, . . . , n,∗} together with a collection of functors

fj ∶ ∏
α(i)=j

Ci → Dj .

We let CatSt⊗
∞ denote the subcategory of Cat×∞ whose objects are sequences {Ci} where each Ci is

stable, and whose morphisms are pairs (α,{fj}) where each of the functors fj is exact separately
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in each variable. Then CatSt⊗
∞ is an ∞-operad whose underlying ∞-category is the subcategory

CatSt
∞ ⊆ Cat∞ spanned by the stable ∞-categories and exact functors. It follows from Proposition

2.3.2 and Remark 2.3.5 that the ∞-operad CatSt⊗
∞ determines a symmetric monoidal structure

on CatSt
∞. In other words, the forgetful functor q from the ∞-category CatSt⊗

∞ to the ordinary
category of finite pointed sets is a coCartesian fibration (Proposition 2.3.2 implies that q is
a locally coCartesian fibration, and Remark 2.3.5 implies that the collection of q-coCartesian
morphisms is closed under composition). The underlying tensor product functor

⊗ ∶ CatSt
∞ ×CatSt

∞ → CatSt
∞

is the tensor product of stable ∞-categories defined above.

By construction, the inclusion CatSt
∞ ↪ Cat∞ is a lax symmetric monoidal functor (where we

regard Cat∞ as a symmetric monoidal ∞-category via the Cartesian product).

Proposition 2.3.7. The construction C ↦ Repfin(C) determines a symmetric monoidal functor

Cat∞ → CatSt
∞, whose right adjoint agrees with the inclusion CatSt

∞ ↪ Cat∞ (as a lax symmetric
monoidal functor).

Proof. It will suffice to show that the inclusion CatSt⊗
∞ ↪ Cat×∞ admits a left adjoint relative to

the category of finite pointed sets (see §H.7.3.2). We claim that such a left adjoint exists and
is given on the level of objects by the formula

(C1, . . . ,Cn) ↦ (Repfin(C1), . . . ,Repfin(Cn)).
To prove this, it will suffice to show that for every collection of small ∞-categories {Ci}1≤i≤n and

every small stable ∞-category D, if Fun′(Repfin(C1) × ⋯ ×Repfin(Cn),D) denotes the full sub-

category of Fun(Repfin(C1)×⋯×Repfin(Cn),D) spanned by those functors which are exact sep-

arately in each variable, then composition with the stable Yoneda embeddings Ci → Repfin(Ci)
induces an equivalence of ∞-categories

Fun′(Repfin(C1) ×⋯ ×Repfin(Cn),D) → Fun(C1 ×⋯ × Cn,D).
This follows from Proposition 2.2.7. �

Corollary 2.3.8. The construction C ↦ Rep(C) determines a symmetric monoidal functor
Cat∞ → PrL

St.

Proof. Combine Proposition 2.3.7 with Remark 2.3.4. Alternatively, one can argue that the
construction C ↦ Rep(C) is given by composing the symmetric monoidal functor

Cat∞ → PrL

C ↦ P(C)
(see Corollary H.4.8.1.12) with the stabilization functor C ↦ Sp(C). �

Corollary 2.3.9. Let C be an essentially small (symmetric) monoidal ∞-category. Then the
∞-category Rep(C) inherits the structure of a (symmetric) monoidal ∞-category.

Remark 2.3.10. In the situation of Corollary 2.3.9, we will indicate the (symmetric) monoidal
structure on Rep(C) by

⋆ ∶ Rep(C) ×Rep(C) → Rep(C).
We will refer to ⋆ as the Day convolution product. It is characterized up to equivalence by the
following:

(a) The convolution product ⋆ preserves small colimits separately in each variable.
(b) The stable Yoneda embedding j ∶ C → Rep(C) is a (symmetric) monoidal functor.
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Concretely, the Day convolution product is given by the formula

(V ⋆W )C = limÐ→
C→C′⊗C′′

VC′ ∧WC′′ ,

where ∧ indicates the smash product of spectra.
Note that the full subcategory Repfin(C) ⊆ Rep(C) contains the unit object and is closed

under the convolution product, and therefore inherits the structure of a (symmetric) monoidal
∞-category.

Variant 2.3.11. Let C be a monoidal ∞-category and let M be an ∞-category which is left
tensored over C. Then Rep(M) inherits the structure of an ∞-category left-tensored over
Rep(C). We will indicate the action of Rep(C) on Rep(M) by

⋆ ∶ Rep(C) ×Rep(M) → Rep(M).
Concretely, this convolution product is given by

(V ⋆W )M = limÐ→
M→C⊗N

VC ∧WN .

2.4. Graded Spectra. Let A be an arbitrary set. We let Ads denote the constant simplicial
set associated to A (so that the n-simplices of Ads can be identified with A for every integer
n ≥ 0). Note that there is a canonical isomorphism of simplicial sets

Ads ≃ (Ads)op.

We will regard Ads as an ∞-category and we let

Rep(Ads) = Fun((Ads)op,Sp) ≃ Fun(Ads,Sp) ≃ ∏
α∈A

Sp

denote the ∞-category of representations of Ads. We will refer to the objects of Rep(Ads) as
A-graded spectra and to Rep(Ads) as the ∞-category of A-graded spectra. If X is an A-graded
spectrum and α ∈ A, we will denote the value of X on α by Xα. In the special case A = Z, we
will simply refer to the objects of Rep(Zds) as graded spectra and to Rep(Zds) as the ∞-category
of graded spectra.

Remark 2.4.1. Let A be a set. An A-graded spectrum X = {Xα}α∈A belongs to the full

subcategory Repfin(Ads) ⊆ Rep(Ads) if and only if it satisfies the following pair of conditions:

(a) For each index α ∈ A, the spectrum Xα is finite.
(b) For all but finitely many indices α ∈ A, the spectrum Xα vanishes.

Equivalently, an A-graded spectrum X is finite if and only if the sum ⊕α∈AXα is a finite
spectrum.

Let G be a group. Then the multiplication on G endows Gds with the structure of a monoidal
∞-category, so that Rep(Gds) inherits the structure of a monoidal ∞-category (Corollary 2.3.9).
We will indicate the monoidal structure on Rep(Gds) by

⊗ ∶ Rep(Gds) ×Rep(Gds) → Rep(Gds).
Concretely, it is given by the formula

(X ⊗ Y )g = ⊕
g=g′g′′

Xg′ ∧ Yg′′ .

Note that the ∞-category Repfin(Gds) of finite G-graded spectra contains the unit object of
Rep(Gds) and is closed under tensor products, and therefore inherits the structure of a monoidal
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∞-category. If the group G is abelian, then Rep(Gds) and Repfin(Gds) can be regarded as
symmetric monoidal ∞-categories.

The construction G ↦ Rep(Gds) depends functorially on G. There are two special cases of
this observation which will be of interest to us:

● For any group G, the inclusion of the identity element {e} ↪ G induces monoidal
functors

ρ ∶ Sp ≃ Rep({e}) → Rep(Gds) ρfin ∶ Spfin ≃ Repfin({e}) → Repfin(Gds),
given concretely by

ρfin(X)g = ρ(X)g =
⎧⎪⎪⎨⎪⎪⎩

X if g = e
0 otherwise.

These functors are fully faithful and are symmetric monoidal when G is abelian. We
will generally abuse notation by identifying each spectrum X with its image ρ(X) in
Rep(Gds).

● For any group G, the projection map G→ {e} induces monoidal functors

Und ∶ Rep(Gds) → Rep({e}) ≃ Sp Undfin ∶ Repfin(Gds) → Repfin({e}) ≃ Spfin,

given concretely by Undfin(X) = Und(X) = ⊕g∈GXg. We will refer to Und(X) as the

underlying spectrum of a G-graded spectrum X. If G is abelian, then Und and Undfin

can be regarded as symmetric monoidal functors.

Definition 2.4.2. Let C be a stable ∞-category. A local grading of C is an equivalence from C
to itself. We will use the term locally graded ∞-category to refer to a pair (C, T ), where T is a
local grading of C.

We will prove the following result at the end of this section:

Proposition 2.4.3. Let C be a monoidal ∞-category. Then the evaluation functor F ↦ F (1)
induces an equivalence of ∞-categories

Fun⊗(Zds,C) ≃ Cinv .

Corollary 2.4.4. Let C be a stable ∞-category. Then the following types of data are equivalent:

● Equivalences T ∶ C → C.
● Monoidal functors Zds → Fun(C,C).
● (Left or right) actions of Zds on the ∞-category C.
● Monoidal functors Zds → Funex(C,C).

● Exact monoidal functors Repfin(Zds) → Funex(C,C).

● (Left or right) actions of Repfin(Zds) on C for which the action map C ×Repfin(Zds) → C
is exact in each variable.

Remark 2.4.5. In what follows, we will refer to any of the types of data described in Corollary
2.4.4 as a local grading of C.
Notation 2.4.6. Let C be a stable ∞-category equipped with a local grading, given by a
monoidal functor α ∶ Zds → Fun(C,C). For each integer n and each object C ∈ C, we let C(n)
denote the image of C under the functor α(−n) ∈ Fun(C,C).
Remark 2.4.7. Let C be a stable ∞-category. Heuristically, we should think that a local
grading of C is a structure which allows us to view each object C ∈ C as equipped with an
“internal grading” of some sort. For each integer n ∈ Z, we should imagine that the object
C(n) ∈ C is obtained by from C by “shifting the grading by n”.
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Example 2.4.8. The monoidal structure on Rep(Zds) determines a left action of Repfin(Zds)
on Rep(Zds), which we can identify with a local grading of Rep(Zds). If X is a graded spectrum
and n is an integer, then the graded spectrum X(n) is given by the formula X(n)m =Xm+n.

Remark 2.4.9. Let C be a (locally small) stable ∞-category equipped with a local grading.

Then the action of Repfin(Zds) allows us to view C as enriched over the ∞-category Rep(Zds)
of graded spectra. Concretely, if C and D are objects of C, then there is a graded spectrum of
maps from C to D given by the prescription

n↦MapC(C,D(n)).

Notation 2.4.10. The collection of all locally graded stable ∞-categories can itself be orga-
nized into an ∞-category Catgd

∞ , which we define as the ∞-category ModRepfin(Zds)(CatSt
∞) of

Repfin(Zds)-module objects of CatSt
∞. The symmetric monoidal structure on CatSt

∞ induces a

symmetric monoidal structure on Catgd
∞ , whose tensor product is given by

(C,D) ↦ C ⊗Repfin(Zds)D .

We now supply some examples of locally graded stable ∞-categories.

Definition 2.4.11. Let G be a group. A G-torsor is a set X equipped with a right action of G
for which there exists a G-equivariant isomorphism G ≃ X (equivalently, the action of G on X
is free and has only one orbit). The collection of all G-torsors forms a groupoid; we will denote
the nerve of this groupoid by Tors(G).

Remark 2.4.12. Let G be a group and let Tors0(G) denote the full subcategory of Tors(G)
spanned by G (regarded as a torsor via the right translation action of G on itself). Note that
the nerve of Tors0(G) is isomorphic (as a simplicial set) to the classifying space BG and that
the inclusion Tors0(G) ↪ Tors(G) is a homotopy equivalence of Kan complexes. In particular,
the Kan complex Tors(Z) is homotopy equivalent to (the singular simplicial set of) the circle
S1.

Construction 2.4.13. Let G be a group and let T be a G-torsor. The right action of G on
T induces a right action of the ∞-category Rep(Gds) on Rep(T ds). Concretely, this action
supplies a functor

⊗ ∶ Rep(T ds) ×Rep(Gds) → Rep(T ds)

(X ⊗ Y )t = ⊕
g∈G

(Xtg−1 ∧ Yg).

Note that the induced action of Repfin(Gds) on Rep(T ds) restricts to an action of Repfin(Gds)
on Repfin(T ds). The construction T ↦ Repfin(T ds) determines a functor

Tors(G) → RModRepfin(Gds)(CatSt
∞).

Construction 2.4.14. Let G be an abelian group and suppose that we are given a pair of
G-torsors T and T ′. We let T +G T ′ denote the quotient of T × T ′ by the equivalence relation
given by

(s, s′) ≃ (t, t′) if (∃g ∈ G)[s = tg, s′ = t′g−1].
There are evident commutativity and associativity isomorphisms

T +G T ′ ≃ T ′ +G T (T +G T ′) +G T ′′ ≃ T +G (T ′ +G T ′′)

which endow Tors(G) with the structure of a symmetric monoidal category.
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For T,T ′ ∈ Tors(G), we can identify (T +G T ′)ds with the relative tensor product of T ds

with T ′ds over Gds (in the ∞-category Cat∞). Applying Proposition 2.3.7, we obtain canonical
equivalences

Repfin((T +G T ′)ds) ≃ Repfin(T ds) ⊗Repfin(Gds) Repfin(T ′ds).

More precisely, we can view the construction T ↦ Repfin(T ds) as a symmetric monoidal functor

from Tors(G) into ModRepfin(Gds)(CatSt
∞).

Specializing to the case G = Z, we obtain a symmetric monoidal functor

µ ∶ Tors(Z) → Catgd
∞ .

Remark 2.4.15. Let C be an associative algebra object of the ∞-category Catgd
∞ of graded

stable ∞-categories: that is, a stable monoidal ∞-category for which the tensor product ⊗ ∶
C ×C → C is exact in each variable which is equipped with a central action of Z (or equivalently

an exact central action of the symmetric monoidal ∞-category Repfin(Zds)). Then we can
regard the ∞-category

RModC(CatSt
∞) ≃ RModC(Catgd

∞ )
as left-tensored over Catgd

∞ . Composing with the map µ ∶ Tors(Z) → Catgd
∞ of Construction

2.4.14, we obtain an action of Tors(Z) on RModC(CatSt
∞), which we will denote by µC .

Example 2.4.16. Taking C = Repfin(Zds) in Remark 2.4.15, we obtain an action of the

monoidal ∞-category Tors(Z) on the ∞-category Catgd
∞ itself. This action determines a map

a ∶ Tors(Z) × Catgd
∞ → Catgd

∞ .

Composing with the forgetful functor Catgd
∞ → CatSt

∞, we obtain a map

ρ ∶ Catgd
∞ → Fun(Tors(Z),CatSt

∞),

given by ρ(E)(T ) = Repfin(T ds)⊗Repfin(Zds)E . Recall that the Kan complex Tors(Z) is homotopy

equivalent to the classifying space BZ ≃ S1, so that Fun(Tors(Z),CatSt
∞) can be identified with

the free loop space of CatSt
∞ (whose objects are given by a stable ∞-category E together with

an equivalence from E to itself). Using Corollary 2.4.4, we see that ρ is an equivalence of
∞-categories.

Remark 2.4.17. The map ρ ∶ Catgd
∞ → Fun(Tors(Z),CatSt

∞) of Example 2.4.16 is equivariant

with respect to the action of Tors(Z), which acts on Catgd
∞ via the map µ of Remark 2.4.15

and on Fun(Tors(Z),CatSt
∞) via its translation action on itself. It follows that the (homotopy)

fixed points for the action of Tors(Z) on Catgd
∞ can be identified with the constant maps from

Tors(Z) into CatSt
∞.

Remark 2.4.18. Let C be as in Remark 2.4.15. Using the description of the action of Tors(Z)
on Catgd

∞ given by Remark 2.4.17, we conclude that the (homotopy) fixed points for the action of

Tors(Z) on RModC(Catgd
∞ ) can be identified with RModC′(CatSt

∞), where C′ ≃ Spfin⊗Repfin(Zds) C
denotes the image of C in Alg(CatSt

∞) under the map induced by the symmetric monoidal functor

Undfin ∶ Repfin(Z) → Spfin.

We conclude this section with the proof of Proposition 2.4.3.

Proof of Proposition 2.4.3. We first claim that Fun⊗(Zds,C) is a Kan complex. Suppose that
α ∶ F → F ′ is a (monoidal) natural transformation between monoidal functors F,F ′ ∶ Zds → C.
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For every integer n, the induced map α(n) ∶ F (n) → F ′(n) is an equivalence; it has a homotopy
inverse is given by the composition

F ′(n) ≃ F ′(n) ⊗ F (−n) ⊗ F (n) α(−n)→ F ′(n) ⊗ F ′(−n) ⊗ F (n) ≃ F (n).

Note that for any monoidal functor F ∶ Zds → C, each object F (n) ∈ C is invertible with
inverse F (−n). It follows that the evaluation functor F ↦ F (1) takes values in the subcategory

Cinv ⊆ C. We may therefore replace C by Cinv and thereby reduce to the case where C is a Kan
complex and every object of C is invertible. In this case, we can identify C and Zds grouplike
associative algebra objects of the ∞-category S ⊆ Cat∞ of spaces. Recall that the formation of
loop spaces induces a fully faithful embedding

Ω ∶ S≥1
∗ → Alg(S)

whose essential image spanned by the grouplike associative algebra objects of S (here S≥1
∗

denotes the ∞-category of pointed connected spaces). Let BZ,BC ∈ S≥1
∗ denote preimages of

Zds and C under these equivalences. Since the element 1 ∈ Z ≃ π1BZ classifies a homotopy
equivalence S1 → BZ, it follows that the composite map

Fun⊗(Zds,C) ≃ MapS≥1
∗
(BZ,BC) ≃ MapS≥1

∗
(S1,BC) ≃ Ω BC ≃ C

is also a homotopy equivalence. �

3. Equivariant Matrix Factorizations

Let X be a smooth algebraic variety defined over a field k equipped with an action of the
multiplicative group Gm, and let f ∶ X → A1 be a nonconstant Gm-equivariant map. One can
associate to the pair (X,f) a triangulated category MF(X,f), called the category of equivariant
matrix factorizations of X. Concretely, it is given by the Verdier quotient

DbGm
(X0)/Dperf

Gm
(X0)

where X0 denotes the fiber f−1{0}, DbGm
(X0) denotes the Gm-equivariant bounded derived

category of coherent sheaves on X0, and Dperf
Gm

(X0) denotes the full subcategory of DbGm
(X0)

spanned by the perfect complexes.
Our goal in this section is to discuss a generalization of the construction (X,f) ↦MF(X,f)

to the setting of stable ∞-categories. Our generalization will take the following form:

(a) In place of the algebraic variety X, we consider a stable ∞-category C, which should

be viewed as playing the role of the equivariant derived category DbGm
(X). However,

we do not assume that C arises in this way. Consequently, our construction is more
general in two respects: we do not work over a ground field k or even over the integers
(for our applications in §4, it is important that our construction works “over the sphere
spectrum”), and we do not assume that C arises from an algebro-geometric object
(loosely speaking, we permit X to be a “noncommutative” variety).

(b) In place of the Gm-equivariant map f ∶X → A1, we consider an action of the monoidal

∞-category Repfin(Z) on C, where Repfin(Z) is the ∞-category of finite filtered spectra

(see §3.1). After extension of scalars to a field k, the monoidal ∞-category Repfin(Z)
can be identified with (an enhancement of) the equivariant derived category DbGm

(A1),
which acts on the equivariant derived category DbGm

(X) whenever we have a Gm-

equivariant map f ∶X →A1.
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(c) In place of the equivariant derived category DbGm
(X0), we consider the ∞-category

of modules RModA(C). Here A is a certain commutative algebra object of Repfin(Z)
which (after extension of scalars to a field k) corresponds to the Gm-equivariant sheaf
of commutative algebras on A1 which corresponds to the affine morphism {0} ↪A1.

(d) In place of the the Verdier quotient DbGm
(X0)/Dperf

Gm
(X0), we define MF(C) to be the

∞-category obtained from RModA(C) by extension of scalars along a certain morphism
of graded E2-rings S[β] → S[β±1].

We begin in §3.1 by studying the ∞-category Rep(Z) of filtered spectra and its full subcate-

gory Repfin(Z) (both of which can be obtained as a special case of the constructions of §2.2). In
§3.2 we will discuss the relationship between the theories of filtered spectra and graded spectra
(where the latter were defined in §2.4) and define the algebra A. In §3.3 we will gather some
general facts about bimodules over A, and in §3.4 we will apply these facts to construct a graded
E2-ring S[β] which “acts” on any ∞-category of the form RModA(C). In §3.5 we will consider
the localization S[β±1] and use it to construct a monoidal functor φ ∶ Tors(Z) → BPic(S)
(which we will eventually prove to be equivalent to map appearing in the statement of Theorem
1.1.1). In §3.6 we will use extension of scalars along the map S[β] → S[β±1] to define a functor

MF ∶ RModRepfin(Z)(CatSt
∞) → CatSt

∞

and show that it is equivariant with respect to suitable actions of Tors(Z) on both sides.

3.1. Filtered Spectra. Let Z denote the set of integers. We let N(Z) denote the nerve of Z
as a linearly ordered set: concretely, it is the simplicial set whose n-simplices are sequences of
integers (a0, . . . , an) which satisfy a0 ≤ a1 ≤ ⋯ ≤ an. We let

Rep(Z) = Rep(N(Z)) = Fun(N(Z)op,Sp)
denote the ∞-category of representations of N(Z). We will refer to Rep(Z) as the ∞-category
of filtered spectra, and we will refer to the objects of Rep(Z) as filtered spectra.

Remark 3.1.1. By definition, a filtered spectrum is a diagram

⋯ ←X−2 ←X−1 ←X0 ←X1 ←X2 ← ⋯
in the ∞-category Sp of spectra. We can think of this diagram as supplying a decreasing
filtration of the colimit limÐ→X−n.

Notation 3.1.2. Since the group structure on Z is compatible with its linear ordering, the
nerve N(Z) inherits the structure of a simplicial commutative monoid; in particular, it can be
regarded as a symmetric monoidal ∞-category. It follows that the ∞-category Rep(Z) of filtered
spectra inherits the structure of a symmetric monoidal ∞-category (Corollary 2.3.9). We will
indicate the symmetric monoidal structure on Rep(Z) by ⍟ ∶ Rep(Z) × Rep(Z) → Rep(Z);
concretely, it is given by the formula

(X ⍟ Y )n = limÐ→
n≤n′+n′′

Xn′ ∧ Yn′′ .

We will denote the unit object of Rep(Z) by S; concretely, it is given by the formula

Sn =
⎧⎪⎪⎨⎪⎪⎩

S if n ≤ 0

0 otherwise.

Remark 3.1.3. There is an evident inclusion of simplicial sets ι ∶ Zds ↪ N(Z), whose image is
the simplicial subset of N(Z) whose n-simplices are tuples (a0, a1, . . . , an) satisfying a0 = ⋯ = an.
This inclusion induces a symmetric monoidal functor I ∶ Rep(Zds) → Rep(Z), given by left Kan
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extension along ι. Concretely, the functor I is given by the formula (IX)n = ⊕m≥nXm. The
functor I determines an action of the ∞-category Rep(Zds) on Rep(Z). In particular, we can
regard Rep(Z) as a graded ∞-category, with shift functors X ↦X(n) described by the formula
X(n)m =Xm+n.

Composition with the inclusion map ι ∶ Zds ↪ N(Z) determines a restriction functor Res ∶
Rep(Z) → Rep(Zds). This functor is right adjoint to I, and therefore inherits the structure of a
lax symmetric monoidal functor. In particular, the restriction functor Res carries commutative
algebra objects of Rep(Z) to commutative algebra objects of Rep(Zds).

Notation 3.1.4. We let S[t] ∈ Rep(Zds) denote the graded spectrum Res(S), given concretely
by the formula

S[t]n =
⎧⎪⎪⎨⎪⎪⎩

S if n ≤ 0

0 otherwise.

Since the restriction functor Res is lax symmetric monoidal, we can regard S[t] as a commutative
algebra object of Rep(Zds).
Remark 3.1.5. The graded spectrum S[t] can be identified with the free associative algebra
object of Rep(Zds) generated by the shifted sphere spectrum S(1).

Proposition 3.1.6. The restriction functor Res ∶ Rep(Z) → Rep(Zds) induces a symmetric
monoidal equivalence of ∞-categories

θ ∶ Rep(Z) ≃ ModS(Rep(Z)) →ModS[t](Rep(Zds)).
Proof. We first show that θ is fully faithful. Let X and Y be filtered spectra; we wish to show
that the induced map

φX,Y ∶ Map
Rep(Z)(X,Y ) →Map

ModS[t](Rep(Zds))(θ(X), θ(Y ))

is a homotopy equivalence of spectra. Let us regard Y as fixed. The construction X ↦ φX,Y
carries colimits in Rep(Z) to limits in Fun(∆1,Sp). Consequently, the collection of those filtered
spectra X for which φX,Y is a stable subcategory of Rep(Z) which is closed under colimits. It
will therefore suffice to show that φX,Y is an equivalence when X has the form S(n) for some
integer n. In this case, we observe that both sides can be identified with the spectrum Y−n.

Since θ is fully faithful and commutes with colimits, the essential image of θ is closed under
colimits in ModS[t](Rep(Zds)). Since Rep(Zds) is generated under small colimits by objects of

the form S(n), it follows that ModS[t](Rep(Zds)) is generated under small colimits by objects
of the form S[t](n) ≃ θ(S(n)). From this we deduce that θ is essentially surjective.

To complete the proof, it will suffice to show that the lax symmetric monoidal functor θ
is actually symmetric monoidal. Since θ preserves unit objects by construction, it suffices to
verify that for each pair of filtered spectra X and Y , the canonical map

ψX,Y ∶ θ(X) ⊗S[t] θ(Y ) → θ(X ⍟ Y )
is an equivalence of S[t]-modules in Rep(Zds). Regarding Y as fixed, we observe that the
collection of those filtered spectra X for which ψX,Y is an equivalence is a stable subcategory
of Rep(Z) which is closed under colimits. We may therefore assume without loss of generality
that X has the form S(m) for some integer m. Similarly, we may assume that Y has the form
S(n) for some integer n. The desired result now follows from a simple computation (note that
the domain and codomain of ψX,Y can both be identified with S[t](m + n)). �

We now turn our attention to the full subcategory Repfin(Z) ⊆ Rep(Z) spanned by the finite
filtered spectra.
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Notation 3.1.7. For each integer n, let Rep(Z)≤n denote the full subcategory of Rep(Z)
spanned by those filtered spectra X for which Xm ≃ 0 for m > n. Note that Rep(Z)≤0 is
contains the unit object of Rep(Z) and is closed under tensor products, and therefore inherits
the structure of a symmetric monoidal ∞-category (one can describe Rep(Z)≤0 as the essential
image of the fully faithful embedding Rep(Z≤0) → Rep(Z) induced by the inclusion of partially
ordered monoids Z≤0 ↪ Z).

Proposition 3.1.8. Let X ∈ Rep(Z) be a filtered spectrum. Then X ∈ Repfin(Z) if and only if
the following three conditions are satisfied:

(a) There exists an integer n such that X ∈ Rep(Z)≤n.
(b) For each integer n, the spectrum Xn is finite.
(c) For n≪ 0, the map Xn →Xn−1 is an equivalence of spectra.

Proof. Let C ⊆ Rep(Z) denote the full subcategory spanned by those filtered spectra X which
satisfy conditions (a), (b), and (c). It is easy to see that C is a stable subcategory of Rep(Z)
which contains each S(n), so that Repfin(Z) ⊆ C. Conversely, suppose that X ∈ C; we will

show that X ∈ Repfin(Z). Replacing X by a shift if necessary, we may assume that the map
Xi →Xi−1 is an equivalence for i ≤ 0. Choose an integer n such that X ∈ Rep(Z)≤n. We proceed
by induction on n; if n < 0, then X ≃ 0 and there is nothing to prove. Otherwise, we define a
filtered spectrum X ′ by the formula

X ′
m =

⎧⎪⎪⎨⎪⎪⎩

Xn if m ≤ n
0 otherwise.

Since Xn is finite, it is easy to see that X ′ ∈ Repfin(Z). We have a fiber sequence

X ′ →X →X ′′

where X ′′ ∈ Rep(Z)≤n−1. Applying the inductive hypothesis, we conclude that X ′′ ∈ Repfin(Z).
Since Repfin(Z) is closed under extensions, it follows that X ∈ Repfin(Z) as desired. �

Remark 3.1.9. It follows from Proposition 3.1.8 that the full subcategory Repfin(Z) ⊆ Rep(Z)
is closed under retracts, and therefore contains all compact objects of Rep(Z).
Definition 3.1.10. Let C be a stable ∞-category. A local filtration on C is a right action of
the monoidal ∞-category N(Z) on C. We will say that C is locally filtered if it is equipped with
a local filtration.

Warning 3.1.11. The notion of locally filtered stable ∞-category (introduced in Definition
3.1.10) is completely unrelated to the notion of filtered ∞-category (studied in §T.5.3.1).

Remark 3.1.12. Let C be a stable ∞-category. The following types of data are equivalent:

(a) (Right or left) actions of Repfin(Z) on C for which the action map C ×Repfin(Z) → C is
separately exact in each variable.

(b) Exact monoidal functors Repfin(Z) → Funex(C,C).
(c) Monoidal functors N(Z) → Funex(C,C).
(d) Monoidal functors N(Z) → Fun(C,C).
(e) (Right or left) actions of the monoidal ∞-category N(Z) on C.

We will generally abuse terminology and refer to any of these types of data as a local filtration
on C.
Notation 3.1.13. We let Catfilt

∞ denote the ∞-category ModRepfin(Z)(CatSt
∞). We will refer to

Catfilt
∞ as the ∞-category of locally filtered stable ∞-categories.



24 ROTATION INVARIANCE IN ALGEBRAIC K-THEORY

Remark 3.1.14. Using the symmetric monoidal inclusion functor Zds ↪ N(Z), we can regard
every locally filtered stable ∞-category C as a locally graded stable ∞-category C. However, a
local filtration on C supplies more data: in addition to the shift functors C ↦ C(n) for n ∈ Z, it
supplies natural maps C(n) → C(m) for m ≤ n (together with a copious amount of additional
coherence data).

Remark 3.1.15. Let C be a stable ∞-category. Heuristically, one can think of a local filtration
on C a datum which allows us to view the objects C ∈ C as equipped with filtrations. The
operation C ↦ C(n) should be thought of as “shifting filtrations by n”, and the natural maps
C(n) → C(m) for m ≤ n reflect the idea that each stage of the filtration of C is contained in
each earlier stage.

Example 3.1.16. Let T be a Z-torsor. Then there is a canonical linear ordering on T , where
we write t ≤ t′ if t′ = t+n for some nonnegative integer n. We let N(T ) denote the nerve of T as
a linearly ordered set: that is, the simplicial set whose k-simplices are tuples (t0, . . . , tk) ∈ T k+1

satisfying t0 ≤ t1 ≤ ⋯ ≤ tk. We let Rep(T ) denote the ∞-category Rep(N(T )) = Fun(N(T )op,Sp)
of representations of N(T ) and Repfin(T ) ⊆ Rep(T ) the full subcategory spanned by the finite

respresentations. The action of Z on T induces an action of Repfin(Z) on Repfin(T ), which we

can regard as a local filtration on the stable ∞-category Repfin(T ). Note that we can identify

Repfin(T ) with the relative tensor product

Repfin(T ds) ⊗Repfin(Zds) Repfin(Z),

formed in the symmetric monoidal ∞-category CatSt
∞.

Remark 3.1.17. By virtue of Remark 2.4.15, we can regard the ∞-category Catfilt
∞ as equipped

with an action of the monoidal ∞-category Catgd
∞ , so that the monoidal functor µ ∶ Tors(Z) →

Catgd
∞ of Construction 2.4.14 induces an action of Tors(Z) on Catfilt

∞ . This action determines a
map

Tors(Z) × Catfilt
∞ → Catfilt

∞

which is given concretely by (T,C) ↦ Repfin(T ) ⊗Repfin(Z) C (where the relative tensor product

is formed in the ∞-category CatSt
∞ of stable ∞-categories).

3.2. Associated Graded Spectra. Let X be a filtered spectrum given by a diagram

⋯ ←X−2 ←X−1 ←X0 ←X1 ←X2 ← ⋯
For each integer n, we let gr(X)n denote the cofiber of the map Xn+1 → Xn. The collection
{gr(X)n}n∈Z can be regarded as a graded spectrum, which we will denote by gr(X). We
will refer to gr(X) as the associated graded spectrum of X. We will regard the construction
X ↦ gr(X) as a functor from Rep(Z) to Rep(Zds).

Our goal in this section is to prove the following result:

Proposition 3.2.1. There exists a symmetric monoidal structure on the functor gr ∶ Rep(Z) →
Rep(Zds). Moreover, this symmetric monoidal structure can be chosen in such a way that the
composite map

Rep(Zds) I→ Rep(Z) gr→ Rep(Zds)
is homotopic to the identity (as a symmetric monoidal functor), where I is the functor described
in Remark 3.1.3.

The proof of Proposition 3.2.1 will require some preliminaries.
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Definition 3.2.2. Let X be a filtered spectrum and let n be an integer. We will say that X
is concentrated in degree n if Xm ≃ 0 for m ≠ n.

Proposition 3.2.3. Let n be an integer and let Rep(Z)=n denote the full subcategory of Rep(Z)
spanned by those filtered spectra which are concentrated in degree n. Then the construction
X ↦Xn induces an equivalence of ∞-categories Rep(Z)=n → Sp.

Proof. Without loss of generality we may assume that n = 0. Note that the inclusion ι ∶ {0} ↪
Z≤0 induces a functor ι∗ ∶ Rep(Z≤0) ≃ Rep(Z)≤0 → Sp, given by X ↦X0. The functor ι∗ admits
a left adjoint ι! (given by left Kan extension along ι) and ι∗ (given by right Kan extension along
ι), both of which are fully faithful. Concretely, these are given by the formulae

ι!(E)n =
⎧⎪⎪⎨⎪⎪⎩

E if n ≤ 0

0 otherwise.
ι∗(E)n =

⎧⎪⎪⎨⎪⎪⎩

E if n = 0

0 otherwise.

Note that for any object X ∈ Rep(Z)≤0, the unit map u ∶ X → ι∗ι
∗X induces an equivalence

X0 ≃ (ι∗ι∗X)0, so that u is an equivalence if and only if X is concentrated in degree zero. It
follows that ι∗ is homotopy inverse to the restriction ι∗∣Rep(Z)=0

. �

Notation 3.2.4. Let S denote the sphere spectrum. We let A denote an inverse image of S
under the equivalence of ∞-categories Rep(Z)=0 → Sp. In other words, A is a filtered spectrum
which is characterized up to equivalence by the formula

An =
⎧⎪⎪⎨⎪⎪⎩

S if n = 0

0 otherwise.

Proposition 3.2.5. There exists an (essentially unique) commutative algebra structure on the
filtered spectrum A for which the unit map S→ A restricts to an equivalence S0 → A0.

Proof. Let ι∗, ι∗, and ι! be as in the proof of Proposition 3.2.3. The composite functor ι∗ι
∗ is

left adjoint to the inclusion Rep(Z)=0 ↪ Rep(Z)≤0. We may therefore regard Rep(Z)=0 as a
localization of Rep(Z)≤0. Using the description of the convolution product on Rep(Z)≤0 given
in Notation 3.1.2, we see that the symmetric monoidal structure on Rep(Z)≤0 is compatible
with the localization ι∗ι

∗ and therefore induces a symmetric monoidal structure on Rep(Z)=0

for which the equivalence Rep(Z)=0 ≃ Sp of Proposition 3.2.3 is symmetric monoidal. By
construction, the filtered spectrum A ∈ Rep(Z)=0 can be identified with the image of S under
this symmetric monoidal functor. �

Remark 3.2.6. Under the identification Rep(Z) ≃ ModS[t](Rep(Zds)) of Proposition 3.1.6,
the map S → A of Proposition 3.2.5 corresponds to a map ε ∶ S[t] → S of commutative alge-
bra objects of in the ∞-category Rep(Zds) of graded spectra. This map exhibits S[t] as an
augmented commutative algebra object of Rep(Zds); roughly speaking, the augmentation ε is
given by “sending t to zero.”

In what follows, we will always regard A as equipped with the commutative algebra struc-
ture described in Proposition 3.2.5. Using this commutative algebra structure, we will regard
ModA(Rep(Z)) as a symmetric monoidal ∞-category.

Proposition 3.2.7. Let I ∶ Rep(Zds) → Rep(Z) be the functor described in Remark 3.1.3.
Then the composite functor

Rep(Zds) I→ Rep(Z) ⍟AÐ→ModA(Rep(Z))
is an equivalence of symmetric monoidal ∞-categories.
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Proof. Proposition 3.1.6 supplies equivalences

ModA(Rep(Z)) ≃ ModA(ModS[t](Rep(Zds))) ≃ ModRes(A)(Rep(Zds)).
The desired result now follows from the observation that the unit map S → Res(A) is an
equivalence of graded spectra. �

Remark 3.2.8. The unit map S→ A fits into a fiber sequence

S(1) γ→ S→ A,
where γ ∶ S(1) → S denotes the image under the stable Yoneda embedding of the unique
morphism −1 → 0 in N(Z). It follows that for any filtered spectrum X, we obtain a fiber
sequence

X(1) γX→ X → A⍟X.
In particular, we have fiber sequences of spectra Xn+1 →Xn → (A⍟X)n, so that we can identify
the associated graded spectrum gr(X) with Res(A⍟X).
Example 3.2.9. The filtered spectrum A⍟A is given levelwise by

(A⍟A)n =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

S0 if n = 0

S1 if n = −1

0 otherwise.

Remark 3.2.10. For every integer n, the object S(n) is invertible in Rep(Z), with inverse
given by S(−n). In particular, each S(n) is a (right and left) dualizable object of Rep(Z).
Using the fiber sequence

S(1) γ→ S→ A
of Remark 3.2.8, we see that A is also a (right and left) dualizable object of Rep(Z), with dual

Σ−1 A(−1) ≃ fib(γ∨ ∶ S→ S(−1)).
Note that the left action of A on itself determines a right action of A on its dual Σ−1 A(−1) (see
§H.4.6.2). By virtue of Proposition 3.2.7, this action is unique.

Remark 3.2.11. The equivalence Rep(Zds) ≃ ModA(Rep(Z)) admits a right adjoint, given by
the composition

ModA(Rep(Z)) → Rep(Z) Res→ Rep(Zds).
It follows that this composite functor is also an equivalence of symmetric monoidal ∞-categories.

Proof of Proposition 3.2.1. Using Remark 3.2.8, we see that the associated graded functor gr
is given by the composition

Rep(Z) A⍟Ð→ModA(Rep(Z)) → Rep(Z) Res→ Rep(Zds),
where the first map is evidently symmetric monoidal and the composition of the second and third
map is symmetric monoidal by virtue of Remark 3.2.11. The functor gr ○I can be obtained by
composing the equivalence of Proposition 3.2.7 with its right adjoint, and is therefore homotopic
to the identity. �

Remark 3.2.12. Proposition 3.2.7 supplies an equivalence of ∞-categories

Rep(Zds) ≃ ModA(Rep(Z)).
Under this equivalence, the full subcategory Repfin(Zds) ⊆ Rep(Zds) corresponds to the full

subcategory ModA(Repfin(Z)) ⊆ ModA(Rep(Z)). This follows immediately from the character-

ization of Repfin(Z) supplied by Proposition 3.1.8.
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3.3. Koszul Duality and A-Bimodules. Let C be a monoidal ∞-category. Assume that
for every associative algebra object A ∈ Alg(C) and every pair of right A-modules M,N ∈
RModA(C), there exists another object MorA(M,N) ∈ C which classifies morphisms from M to
N in the following sense: for every object C ∈ C we have a canonical homotopy equivalence

MapC(C,MorA(M,N)) ≃ MapRModA(C)(C ⊗M,N).

In the special case M = N , the object B = MorA(M,M) inherits the structure of an associative
algebra object of C. Moreover, there is a canonical left action of B on M ∈ RModA(C), so that
M can be regarded as an B-A-bimodule object of C.

Example 3.3.1. Let A be an associative algebra object of C equipped with a map of associative
algebras ε ∶ A → 1. Using ε, we can regard the unit object 1 as a right A-module. We let
D(A) = MorA(1,1). We will refer to D(A) as the Koszul dual of A. By construction, the unit
object 1 is equipped with the structure of an D(A)-A-bimodule.

Remark 3.3.2. Our convention in this paper differs slightly from that of [7], in which the
opposite algebra D(A)rev is referred to as the Koszul dual of A.

Definition 3.3.3. Let Catgd
∞ be the ∞-category of locally graded stable ∞-categories, with unit

object Repfin(Zds) and the symmetric monoidal structure on C is given by the relative tensor
product

(M,N) ↦M⊗Repfin(Zds)N .

We will regard the ∞-category Repfin(Z) of finite filtered spectra as an associative algebra object

of Catgd
∞ , equipped with an augmentation given by the associated graded functor gr ∶ Repfin(Z) →

Repfin(Zds) of §3.2. We let Θ denote the Koszul dual of Repfin(Z) (as an augmented associative

algebra in Catgd
∞ ).

Remark 3.3.4. By construction, Θ is an associative algebra object of Catgd
∞ : in other words,

it is a stable monoidal ∞-category equipped with a central and exact action of Repfin(Zds). It

follows from Remark 2.4.15 that the ∞-category RModΘ(CatSt
∞) ≃ RModΘ(Catgd

∞ ) inherits an
action of the monoidal ∞-category Tors(Z).

It follows immediately from the definitions that as a monoidal ∞-category, Θ can be identified
with the ∞-category Funex

Repfin(Z)(Repfin(Zds),Repfin(Zds)) of exact Repfin(Z)-linear functors

from Repfin(Zds) to itself. The next result will be helpful in describing this ∞-category more
explicitly.

Proposition 3.3.5. Let C be a stable ∞-category equipped with a local filtration, which we
will identify with a right action of Repfin(Z) on C. Then there is a canonical equivalence of
∞-categories

Funex
Repfin(Z)(Repfin(Zds),C) ≃ RModA(C).

Proof. Proposition 3.2.7 supplies a Repfin(Z)-linear equivalence of ∞-categories

Repfin(Zds) ≃ LModA(Repfin(Z)).

In particular, the unit object S ∈ Repfin(Zds) can be regarded as a right A-module in Repfin(Z).
Consequently, for any Repfin(Z)-linear functor F ∶ Repfin(Zds) → C, the image F (S) inherits
the structure of a right A-module. We therefore have an evaluation functor

Funex
Repfin(Z)(Repfin(Zds),C) → RModA(C).
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We claim that this evaluation functor is always an equivalence. To prove this, we are free
to enlarge C (replacing it by Ind(C) if necessary) to reduce to the case where C admits small
colimits. In this case, we have equivalences

Funex
Repfin(Z)(Repfin(Zds),C) ≃ FunLRep(Z)(Rep(Zds),C) ≃ RModA(C),

where FunLRep(Z)(Rep(Zds),C) denotes the ∞-category of colimit-preserving Rep(Z)-linear func-

tors from Rep(Zds) to C, and the second equivalence is supplied by Theorem H.4.8.4.1. �

Combining Propositions 3.3.5 and 3.2.7, we obtain the following:

Corollary 3.3.6. There is a canonical equivalence of ∞-categories

Θ ≃ ABModA(Repfin(Z)).
Remark 3.3.7. Under the equivalence of ∞-categories given by Corollary 3.3.6, the monoidal
structure on Θ corresponds to the relative tensor product (M,N) ↦M⍟AN on the ∞-category

ABModA(Repfin(Z)) ⊆ ABModA(Rep(Z)).
Variant 3.3.8. We can view the ∞-category Rep(Z) of all filtered spectra as an associative al-
gebra in the ∞-category ModRep(Zds)(PrL) of presentable ∞-categories tensored over Rep(Zds),
with an augmentation given by the functor gr ∶ Rep(Z) → Rep(Zds). In this setting, the Koszul
dual of Rep(Z) can be identified with the ∞-category ABModA(Rep(Z)) of all A-A-bimodule
objects of Rep(Z). In particular, the monoidal ∞-category ABModA(Rep(Z)) is equipped with
a central action of Rep(Zds).

Combining Proposition 3.3.5 and Remark 2.1.2 (and using the fact that the monoidal functor

µ ∶ Tors(Z) → Catgd
∞ of Construction 2.4.14 takes invertible values), we obtain the following:

Corollary 3.3.9. Let C be a locally filtered stable ∞-category. Then the ∞-category RModA(C)
inherits a right action of the monoidal ∞-category Θ. Moreover, the construction

C ↦ RModA(C)
is Tors(Z)-equivariant, where the actions of Tors(Z) on Catfilt

∞ and RModΘ(CatSt
∞) are given in

Remarks 3.1.17 and 3.3.4, respectively.

Remark 3.3.10. One can show that the monoidal ∞-categories Θ and Repfin(Z) are equivalent
to one another. We will not need this fact and will not prove it here. For our purposes, an
identification of Θ with Repfin(Z) would merely create the potential for unnecessary confusion;

the ∞-categories Θ and Repfin(Z) will have very different roles to play in the constructions

of the next few sections. We should also note that although Θ and Repfin(Z) are equivalent
as monoidal ∞-categories, they are not equivalent as algebras over the symmetric monoidal
∞-category Repfin(Zds).
3.4. The Graded Algebra S[β]. Let A be a graded E2-ring: that is, an E2-algebra object
of the ∞-category Rep(Zds) of graded spectra. Then the ∞-category RModA(Rep(Zds)) of
graded A-module spectra is a monoidal ∞-category equipped with a central action of Zds, as
is the full subcategory

RModfin
A (Rep(Zds)) ⊆ RModA(Rep(Zds))

spanned by the compact objects. Our goal in this section is to show that the monoidal ∞-
category Θ of §3.3 is of this form (Proposition 3.4.8).

We begin by studying the larger ∞-category ABModA(Rep(Z)) of all A-A bimodules. Ac-
cording to Variant 3.3.8, we can view ABModA(Rep(Z)) as equipped with a central action
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of Rep(Zds). This central action exhibits ABModA(Rep(Z)) as an ∞-category enriched over
Rep(Zds). In other words, we can associate to each pair of bimodules M,N ∈ ABModA(Rep(Z))
a graded spectrum Mapgd(M,N) classifying morphisms from M to N : concretely, it can be
described by the formula

Mapgd(M,N)k = Map
ABModA(Rep(Z))(M,N(k)).

Definition 3.4.1. We define a graded spectrum S[β] by the formula

S[β] = Mapgd(A,A).
Note that since ABModA(Rep(Z)) can be regarded as an associative algebra object of the ∞-
category ModRep(Zds)(PrL), the graded spectrum S[β] inherits the structure of an E2-algebra

object of Rep(Zds) (see §H.4.8.5).

Our first goal is to analyze the structure of the graded spectrum S[β].

Proposition 3.4.2. Let M,N ∈ ABModA(Rep(Z)). Suppose that M is concentrated in degrees
≤ 0 and that N is concentrated in degrees ≥ 0. Then the canonical map

φM,N ∶ Map
ABModA(Rep(Z))(M,N) →Map

Sp
(M0,N0)

is an equivalence of spectra.

Proof. Let g ∶ ABModA(Rep(Z)) → Rep(Zds) be the composition of the forgetful functor with
the restriction functor, let f be its left adjoint, and let T = f ○ g ∶ ABModA(Rep(Z)) →
ABModA(Rep(Z)) be the corresponding monad. Then M is given by the geometric realiza-
tion of a simplicial object [n] ↦ Tn+1M . It will therefore suffice to show that each of the maps
φTn+1M,N is an equivalence of spectra. We may therefore assume without loss of generality that

M has the form f(M ′), where M ′ ∈ Rep(Zds)≤0. In this case, the domain of φM,N is given by

Map
ABModA(Rep(Z))(f(M

′),N) ≃ Map
Rep(Zds)(M

′, g(N))

≃ ∏
k∈Z

Map
Sp

(M ′
k,Nk)

from which the desired result follows immediately. �

Corollary 3.4.3. For every integer n, the forgetful functor

θ ∶ ABModA(Rep(Z)) ×Rep(Z) Rep(Z)=n → Sp

X ↦Xn

is an equivalence of ∞-categories.

Proof. It follows from Proposition 3.4.2 that θ is fully faithful. Since θ preserves small colimits,
it follows that the essential image of θ is closed under colimits and desuspensions. It will
therefore suffice to show that the sphere spectrum S belongs to the essential image of θ. This
is clear, since S ≃ θ(A(−n)). �

It follows from Corollary 3.4.3 that each of the filtered spectra A(n) admits an essentially
unique A-A-bimodule structure.

Construction 3.4.4. Let m ∶ A⍟A → A denote the multiplication map. It follows from
Example 3.2.9 that the cofiber of m can be described by the formula

cofib(m)n =
⎧⎪⎪⎨⎪⎪⎩

S2 if n = −1

0 otherwise.
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In particular, the bimodule cofib(m) is concentrated in degree −1 and is equivalent to Σ2 A(1)
as a graded spectrum, and is therefore equivalent to Σ2 A(1) as a bimodule (Corollary 3.4.3).
We therefore have a fiber sequence of A-bimodules

A⍟A m→ A
β→ Σ2 A(1).

We will refer to β as the anchor map. Note that β classifies a map of spectra S−2 → S[β]1,
which we will also denote by β. Using the algebra structure on S[β], we obtain maps

βn ∶ S−2n → S[β]n
for n ≥ 0.

Our next result describes the structure of S[β] as a graded spectrum:

Proposition 3.4.5. For each integer n ≥ 0, the map βn ∶ S−2n → S[β]n is an equivalence of
spectra. For n < 0, the spectrum S[β]n vanishes.

Proof. For n ≤ 0, this follows immediately from Proposition 3.4.2. To complete the proof, it will
suffice to show that for n ≥ 0, multiplication by β induces an equivalence Σ−2S[β]n → S[β]n+1.
This follows immediately from the existence of a fiber sequence

Map
ABModA(Rep(Z))(Σ

2 A(1),A(n + 1))

��
Map

ABModA(Rep(Z))(A,A(n + 1))

��
Map

ABModA(Rep(Z))(A⍟A,A(n + 1)),

since the third term vanishes for n ≠ −1. �

Remark 3.4.6. Proposition 3.4.5 is equivalent to the assertion that the map β exhibits S[β] as
the free associative algebra generated by S−2(−1) in the ∞-category of graded spectra. However,
it does not supply a description of the E2-algebra structure on S[β].

We will say that an object X ∈ ABModA(Rep(Z)) is finite if it is finite when regarded as
an object of Rep(Z). Note that this is equivalent to the condition that the sum ⊕n∈ZXn is
a finite spectrum, by virtue of Remark 3.2.12. In what follows, we will identify the monoidal
∞-category Θ with the full subcategory of ABModA(Rep(Z)) spanned by the finite objects.

Warning 3.4.7. Every compact object of ABModA(Rep(Z)) is finite, but the converse fails:
for example, the filtered spectrum A itself is finite, but is not compact when regarded as an
object of ABModA(Rep(Z)).

Note that the construction M ↦M ⊗S[β] A determines a monoidal functor

F ∶ RModS[β](Rep(Zds)) → ABModA(Rep(Z)).

The functor F has a right adjoint G ∶ ABModA(Rep(Z)) → RModS[β](Rep(Zds)), given by the
formula

G(N) = Mapgd(A,N).
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Proposition 3.4.8. Let RModfin
S[β](Rep(Zds)) be the full subcategory of RModS[β](Rep(Zds))

spanned by the compact objects. Then the functor F induces a (monoidal) equivalence of ∞-
categories

F ′ ∶ RModfin
S[β](Rep(Zds)) → Θ .

Proof. We first show that F ′ is fully faithful. Fix a pair of objects

M,N ∈ RModfin
S[β](Rep(Zds));

we wish to show that the canonical map

φM,N ∶ Map
RModS[β](Rep(Zds))(M,N) →Map

ABModA(Rep(Z))(FM,FN)

is an equivalence of spectra. Let us regard N as fixed. The collection of those M for which
F (M) ∈ Θ and the map φM,N is an equivalence is a stable subcategory of RModS[β](Rep(Zds))
which is closed under retracts. Consequently, it will suffice to show that this subcategory
contains a set of compact generators for RModS[β](Rep(Zds)). We may therefore assume

without loss of generality that M has the form ΣkS[β](n) for some integers k and n, in which
case both sides can be identified with the spectrum Σ−kN−n.

We now prove that F ′ is essentially surjective. Let M ∈ Θ; we wish to show that M belongs
to the essential image of F ′. Replacing M by a shift M(k) if necessary, we may assume that M
is concentrated in degrees ≥ 0. If M ≃ 0, there is nothing to prove. Otherwise, there exists some
largest integer n ≥ 0 such that Mn ≠ 0. We will proceed by induction on n. Let M ′′ denote the
graded spectrum given by

M ′′
k =

⎧⎪⎪⎨⎪⎪⎩

Mk if k = n
0 otherwise.

It follows from Corollary 3.4.3 that M ′′ can be regarded as an A-bimodule object of Rep(Z)
in an essentially unique way. Using Proposition 3.4.2, we conclude that the identity map from
Mn to M ′′

n extends (in an essentially unique way) to a morphism of bimodules M →M ′′. This
map of bimodules fits into a fiber sequence

M ′ →M →M ′′.

Since M ′ is concentrated in degrees < n, it belongs to the essential image of F ′ by virtue of the
inductive hypothesis. It will therefore suffice to show that M ′′ belongs to the essential image
of F ′. This is clear: we have M ′′ = F ′(M ′′

n (−n) ⊗ S[β]). �

3.5. The Monoidal Functor φ: Categorical Description. Let X be a graded spectrum
equipped with the structure of a right module over the graded E2-ring S[β] of §3.4. We will
say that M is periodic if multiplication by β induces an equivalence of graded spectra

β ∶M → Σ2M(1).
We let RModper

S[β](Rep(Zds)) denote the full subcategory of RModS[β](Rep(Zds)) spanned by

the periodic right S[β]-modules.

Construction 3.5.1. Since S[β] is an E2-algebra, we can regard the sequence

S[β] β→ Σ2S[β](1) β→ Σ4S[β](2) β→ ⋯
as a diagram of right S[β]-modules. Let us denote the colimit of this diagram by S[β±1].

If M is a right S[β]-module, we let M[β−1] denote the right S[β]-module given by M ⊗S[β]
S[β±1] (where the tensor product is formed in the monoidal ∞-category RModS[β](Rep(Zds)).
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Remark 3.5.2. Using the description of S[β] supplied by Proposition 3.4.5, we conclude that
the graded spectrum S[β±1] is given by S[β±1]n ≃ S−2n for every integer n.

Lemma 3.5.3. The construction M ↦M[β−1] is left adjoint to the inclusion

RModper
S[β](Rep(Zds)) ↪ RModS[β](Rep(Zds)).

Proof. Note that M[β−1] can be identified with the colimit of the sequence

M
β→ Σ2M(1) β→ Σ4M(2) β→ ⋯

In particular, its homotopy groups are given by

πsM[β−1]t ≃ limÐ→πs−2kMt+k.

From this description, we immediately deduce that M[β−1] is periodic. To complete the proof,
it will suffice to show that if N is periodic, then the canonical map

MapRModS[β](Rep(Zds))(M[β−1],N) →MapRModS[β](Rep(Zds))(M,N)
is a homotopy equivalence. In fact, we claim that each of the maps

MapRModS[β](Rep(Zds))(Σ2k+2M(k + 1),N) →MapRModS[β](Rep(Zds))(Σ2kM(k),N),
is a homotopy equivalence; this follows from our assumption that β induces an equivalence
Σ−2N(−1) → N . �

Lemma 3.5.4. The localization functor M ↦M[β−1] is compatible with the monoidal structure
on RModS[β](Rep(Zds)), in the sense of Definition H.2.2.1.6.

Proof. Let L ∶ RModS[β](Rep(Zds)) → RModS[β](Rep(Zds)) be the functor given by M ↦
M[β−1], and let f ∶ M → M ′ be a morphism of S[β]-modules which is an L-equivalence. We
wish to show that for every right S[β]-module N , the induced maps

g ∶M ⊗S[β] N →M ′ ⊗S[β] N h ∶ N ⊗S[β] M → N ⊗S[β] M ′

are also L-equivalences. We will show that h is an L-equivalence; the proof for g is similar.
Without loss of generality we may assume that M ′ = M[β−1]. In this case, we can identify h
with the canonical map

N ×S[β] M → N ⊗S[β] M ⊗S[β] S[β±1],
which is an L-equivalence by virtue of Lemma 3.5.3. �

It follows from Lemma 3.5.4 that the ∞-category RModper
S[β](Rep(Zds)) inherits a monoidal

structure, whose tensor product

(M,N) ↦ (M ⊗S[β] N)[β]−1 ≃M ⊗S[β] N[β−1] ≃M ⊗S[β] N
coincides with the tensor product on RModS[β](Rep(Zds)) (however, it has a different unit

object: the graded spectrum S[β±1]). The construction M ↦ M[β−1] can be regarded as a
monoidal functor from RModS[β](Rep(Zds)) to RModper

S[β](Rep(Zds)), or as a lax monoidal

functor from RModS[β](Rep(Zds)) to itself. In particular, S[β±1] = S[β][β−1] inherits the

structure of an associative algebra object of RModS[β](Rep(Zds)).

Proposition 3.5.5. The forgetful functor

g ∶ RModS[β±1](Rep(Zds)) → RModS[β](Rep(Zds))
is a fully faithful embedding, whose essential image consists of the periodic right S[β]-modules.
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Proof. The functor g admits a right adjoint f , given by f(M) =M ⊗S[β] S[β±1] ≃M[β−1]. To
prove that g is fully faithful, it will suffice to show that the counit map v ∶ f ○ g → id is an
equivalence. In other words, we must show that if M admits the structure of an S[β±1]-module,
then the action map

vM ∶M[β−1] ≃M ⊗S[β] S[β±1] →M

is an equivalence. This is clear, since M is periodic as a right S[β]-module and vM is left
homotopy inverse to the map M →M[β−1]. To complete the proof, it will suffice to show that
a right S[β]-module N is periodic if and only if the unit map N → (g ○ f)(N) = N[β−1] is an
equivalence, which follows from Lemma 3.5.3. �

Remark 3.5.6. Since S[β] is an E2-algebra object of Rep(Zds), the symmetric monoidal
∞-category Rep(Zds) acts centrally on RModS[β](Rep(Zds)). Combining Lemma 3.5.4 with

Remark 2.1.4, we conclude that Rep(Zds) also acts centrally on the ∞-category

RModper
S[β](Rep(Zds)) ≃ RModS[β±1](Rep(Zds)).

Consequently, we can view S[β±1] as an E2-algebra object of Rep(Zds), and the natural map
S[β] → S[β±1] as a morphism of E2-algebras (see Corollary H.5.1.2.6).

Proposition 3.5.7. The composite functor

f ∶ Sp↪ Rep(Zds) ⊗S[β±1]Ð→ RModS[β±1](Rep(Zds))
is an equivalence of monoidal ∞-categories.

Proof. Note that the functor f admits a right adjoint g, given on objects by the formula
g(M) = M0. For every spectrum X, the unit map X → (g ○ f)(X) = (X ⊗ S[β±1])0 is given
by the smash product of X with the unit map S → S[β±1]0, and is therefore an equivalence.
This proves that f is fully faithful. To complete the proof, it will suffice to show that g
is conservative. Since g is an exact functor between stable ∞-categories, this is equivalent
to the assertion that if M ∈ RModS[β±1](Rep(Zds)) satisfies g(M) ≃ 0, then M ≃ 0. This
is clear: for each integer n, multiplication by a suitable power of β induces an equivalence
Mn ≃ Σ−2nM0 = Σ−2ng(M) ≃ 0. �

Combining Proposition 3.5.7 with Remark 2.1.3, we obtain the following result:

Corollary 3.5.8. The central action of Rep(Zds) on the ∞-category RModper
S[β](Rep(Zds))

factors (in an essentially unique way) through an E2-monoidal functor Φ ∶ Rep(Zds) → Sp.

Remark 3.5.9. When regarded as a monoidal functor, Φ is given by composing the map

(● ⊗ S[β±1]) ∶ Rep(Zds) → RModS[β±1](Rep(Zds))

with the equivalence RModS[β±1](Rep(Zds)) ≃ Sp of Proposition 3.5.7. Concretely, we have

Φ(X) = (X ⊗ S[β±1])0 ≃ ⊕
n∈Z

Σ2nXn.

Remark 3.5.10. The data of the functor Φ of Corollary 3.5.8 is equivalent to the data of an
E2-monoidal functor Zds → Sp. Note that such a functor automatically factors through the
Kan complex Pic(S) = Spinv ⊆ Sp. Using Remark 3.5.9, we see that the map Zds → Pic(S) is
given, at the level of objects, by n↦ S2n.

The next result characterizes the E2-monoidal functor Φ:
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Proposition 3.5.11. The functor Φ ∶ Rep(Zds) → Sp of Corollary 3.5.8 admits a right adjoint
Ψ ∶ Sp → Rep(Zds). Moreover, the functor Ψ is given (as a lax E2-monoidal functor) by
X ↦X ⊗ S[β±1].

Proof. The functor Φ preserves small colimits and therefore admits a right adjoint Ψ by Corol-
lary T.5.5.2.9. Since Φ is an E2-monoidal functor, the functor Ψ is lax E2-monoidal. In
particular, Ψ(S) can be regarded as an E2-algebra object of Rep(Zds). It follows immediately
from Remark 3.5.9 that the functor Ψ preserves small colimits and is therefore Sp-linear; it is
therefore given by Ψ(X) = X ⊗ Ψ(S). We will complete the proof by showing that Ψ(S) is
equivalent to S[β±1] as an E2-algebra object of Rep(Zds).

Let A denote the algebra S[β±1] regarded as an regarded as an associative algebra object
of RModS[β±1](Rep(Zds)). Then we have an evident central action α of S[β±1] on A. The

equivalence RModS[β±1](Rep(Zds)) ≃ Sp of Proposition 3.5.7 carries A to the sphere spectrum,

so that α determines a central action of Φ(S[β±1]) on S in the ∞-category of spectra. By
virtue of Remark 2.1.3, the central action of Φ(S[β±1]) on S is classified by a map of E2-rings
Φ(S[β±1]) → S, which we can identify with a map S[β±1] → Ψ(S) of E2-algebras in Rep(Zds).
The map ρ exhibits Ψ(S) as a S[β±1]-module; by virtue of Proposition 3.5.7 it will suffice to
show that the unit map

S ≃ S[β±1]0 → Ψ(S)0

is an equivalence. This is clear, since the construction X ↦ Ψ(X)0 is right adjoint to the
composite functor

Sp↪ Rep(Zds) Φ→ Sp

and is therefore an equivalence of ∞-categories. �

Remark 3.5.12. From the description of the functor Φ supplied by Remark 3.5.9, we see that
Φ restricts to an E2-monoidal functor Repfin(Zds) → Spfin. Passing to ∞-categories of modules,

we obtain a monoidal functor Catgd
∞ → CatSt

∞. We let φ denote the composite map

Tors(Z) µ→ Catgd
∞ → CatSt

∞,

where µ is the symmetric monoidal functor of Construction 2.4.14. More informally, the functor
φ is given by

φ(T ) = RModS[β±1](Repfin(T ds)).
Then the action of Tors(Z) on the ∞-category

RModRModS[β±1]
(Rep(Zds))(CatSt

∞) ≃ CatSt
∞

described in Remark 2.4.15 is given pointwise by the formula

(T,C) ↦ φ(T ) ⊗ C .

Remark 3.5.13. Let Sper denote the E2-algebra given by the image of S[β±1] under the
symmetric monoidal functor Und ∶ Rep(Zds) → Sp, so that as a spectrum Sper is given by the
sum ⊕n∈Z S

−2n. We will refer to Sper as the 2-periodic sphere spectrum. We let RModSper

denote the monoidal ∞-category of right Sper-module spectra, and RModfin
Sper the smallest full

subcategory of RModSper that contains Sper itself. We will say that a stable ∞-category C is
2-periodic if it is right-tensored over the ∞-category RModSper . Note that if C is a 2-periodic
stable ∞-category, then the double suspension functor Σ2 ∶ C → C is homotopic to the identity
(but the converse need not be true).
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We have canonical equivalences

RModSper ≃ Sp ⊗̂Rep(Zds)(RModS[β±1] Rep(Zds))
≃ Ind(Spfin)⊗̂Ind(Repfin(Zds)) Ind(RModfin

S[β±1](Rep(Zds)))
≃ Ind(Spfin⊗Repfin(Zds) RModfin

S[β±1](Rep(Zds))).
We therefore obtain a fully faithful embedding

Spfin⊗Repfin(Zds) RModfin
S[β±1](Rep(Zds)) ↪ RModSper ,

and it is not difficult to see that the essential image of this embedding is the ∞-category
RModfin

Sper . Using Remark 2.4.18, we see that the ∞-category RModRModfin
Sper

(CatSt
∞) of 2-

periodic stable ∞-categories can be identified with the ∞-category of (homotopy) fixed points

for the action of Tors(Z) on CatSt
∞ via the monoidal functor φ of Remark 3.5.12.

3.6. The Construction C ↦ MF(C). In this section, we will describe a construction which
associates to each locally filtered stable ∞-category C another stable ∞-category MF(C), which
we call the ∞-category of equivariant matrix factorizations in C (Construction 3.6.6). Our goals
are twofold:

(a) To describe the structure of MF(C) in sufficiently concrete terms that it is possible to
do calculations in MF(C) (Remark 3.6.7).

(b) To show that the formation of equivariant matrix factorizations is given by a functor

MF ∶ Catfilt
∞ → CatSt

∞

which is equivariant with respect to the action of S1 ≃ Tors(Z) (see Proposition 3.6.10).

We begin with some general remarks. Recall that the constructionn M ↦M0 determines a
monoidal equivalence of ∞-categories

RModS[β±1](Rep(Zds)) ≃ Sp

(Proposition 3.5.7). It follows that the construction

M ↦M[β−1]0 ≃ limÐ→Σ−2kMk

determines a monoidal functor from RModS[β](Rep(Zds)) → Sp. Note that this functor pre-
serves compact objects, and therefore restricts to a monoidal functor

Θ ≃ RModfin
S[β](Rep(Zds)) → Spfin,

which we will view as a morphism between associative algebra objects of the ∞-category CatSt
∞.

Notation 3.6.1. Let C be a stable ∞-category equipped with a right action of Θ. We will
indicate this action by a functor

⊗S[β] ∶ C ×Θ→ C .
Then C inherits an action of Repfin(Zds) (via the central action of Repfin(Zds) on Θ), and
may therefore be regarded as a graded stable ∞-category. Moreover, for every object C ∈ C,
multiplication by β ∈ π−2S[β]1 induces a map C → Σ2C(1), which we will also denote by β.

Construction 3.6.2. Let C be a stable ∞-category equipped with a right action of Θ. We let
C[β−1] denote the relative tensor product C ⊗Θ Spfin formed in the ∞-category CatSt

∞. Here we

regard Spfin as a left Θ-module via the monoidal functor M ↦ limÐ→Σ−2kMk.

Remark 3.6.3. In the situation of Construction 3.6.2, there is an evident functor C → C[β−1]
which we will denote by C ↦ C[β−1]. Since the monoidal functor Θ → Spfin is essentially
surjective, the functor C ↦ C[β−1] is also essentially surjective.
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Remark 3.6.3 allows us to understand what the objects of the ∞-category C[β−1] look like.
Our next goal is to understand the morphisms in C[β−1]. For this, it will be convenient to
work in the Ind-completion Ind(C[β−1]). Recall that the construction C ↦ Ind(C) determines

a symmetric monoidal functor from CatSt
∞ to the ∞-category PrL

St of presentable stable ∞-
categories. In particular, if C is an essentially small stable ∞-category equipped with a right
action of Θ, then Ind(C) inherits an action of Ind(Θ) ≃ RModS[β](Rep(Zds). Moreover, using
Theorem H.4.8.4.6 we obtain an equivalence

Ind(C[β−1]) = Ind(C ⊗Θ Spfin)
≃ Ind(C)⊗̂RModS[β](Rep(Zds)) Sp

≃ Ind(C)⊗̂RModS[β](Rep(Zds)) RModS[β±1](Rep(Zds))
≃ RModS[β±1](Ind(C)).

Note that since the multiplication map S[β±1] ⊗S[β] S[β±1] → S[β±1] is an equivalence, the
forgetful functor RModS[β±1](Ind(C)) → Ind(C) is a fully faithful embedding. It follows that

there exists a fully faithful embedding C[β−1] → Ind(C), given by the composition

C[β−1] ↪ Ind(C[β−1]) ≃ RModS[β±1](Ind(C)) → Ind(C).
Unwinding the definitions, we see that this fully faithful embedding carries an object C[β−1] ∈
C[β−1] to the Ind-object of C represented by the direct system

C
β→ Σ2C(1) β→ Σ4C(2) β→ ⋯.

In what follows, we will often identify C[β−1] with its essential image in Ind(C), and for C ∈ C
we identify C[β−1] with the Ind-object given by

C
β→ Σ2C(1) β→ Σ4C(2) β→ ⋯.

Remark 3.6.4. Let C be a stable ∞-category equipped a right action of Θ. Then the above
discussion supplies the following informal description of the ∞-category C[β−1]:

● The objects of C[β−1] have the form C[β−1], where C is an object of C.
● Morphism spaces in C[β−1] are given by

MapC[β−1](C[β−1],D[β−1]) ≃ MapInd(C)(C[β−1],D[β−1])
≃ MapInd(C)(C,D[β−1])
≃ limÐ→MapC(C,Σ2nD(n)).

Remark 3.6.5. The construction C ↦ C[β−1] determines a functor RModΘ(CatSt
∞) → CatSt

∞.
This functor is equivariant with respect to the action of the monoidal ∞-category Tors(Z),
where Tors(Z) acts on RModΘ(CatSt

∞) as in Remark 3.3.4 and on CatSt
∞ via the monoidal

functor φ of Remark 3.5.12.

Construction 3.6.6. Let C be a locally filtered stable ∞-category (which we identify with a

right action of Repfin(Z) on C), so that RModA(C) inherits an action of the monoidal ∞-category

Θ ≃ ABModA(Repfin(Zds)). We define a new stable ∞-category MF(C) by the formula

MF(C) = RModA(C)[β−1].
We will refer to MF(C) as the ∞-category of equivariant matrix factorizations in C.

Remark 3.6.7. Let C be as in Construction 3.6.6. Using Remark 3.6.4, we can describe the
∞-category MF(C) more informally as follows:
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● The objects of MF(C) are right A-module objects of C. If C is an object of RModA(C),
we will denote its image in MF(C) by C[β−1].

● Given a pair of right A-module objects C,D ∈ C, the mapping space

MapMF(C)(C[β−1],D[β−1])
is given by the filtered colimit

limÐ→
n

MapRModA(C)(C,Σ
2nD(n)),

where the transition maps are determined by the morphism β ∶ A → Σ2 A(1) in

ABModA(Rep(Z)).
Remark 3.6.8. Let C be a locally filtered stable ∞-category, and let us indicate the right
action of Repfin(Z) on C by

⍟ ∶ C ×Repfin(Z) → C .
Recall that the anchor map β ∶ A→ Σ2 A(1) in ABModA(Rep(Z)) fits into a fiber sequence

A⍟A→ A
β→ Σ2 A(1).

It follows that for every object C ∈ RModA(C), we have a fiber sequence

C ⍟A→ C
βC→ Σ2C(1)

in the ∞-category RModA(C).
Remark 3.6.9. Let C be as in Remark 3.6.8. Suppose that C ∈ RModA(C) is a free A-module:
that is, it has the form C0⍟A for some object C0 ∈ C. In that case, the natural map C⍟A→ C
admits a section (as a morphism of right A-modules). Combining this observation with Remark
3.6.8, we conclude that the map

βC ∶ C → Σ2C(1)
is nullhomotopic. It follows that all of the maps in the sequence

C → Σ2C(1) → Σ4C(2) → ⋯
are nullhomotopic in RModA(C), so that C[β−1] is a zero object of the ∞-category MF(C).

Combining Remark 3.6.5 with Corollary 3.3.9, we obtain the following:

Proposition 3.6.10. The construction C ↦MF(C) determines a functor MF ∶ Catfilt
∞ → CatSt

∞.

Moreover, this functor is Tors(Z)-equivariant, where Tors(Z) acts on Catfilt
∞ as in Remark

3.1.17 and on CatSt
∞ via the monoidal functor φ ∶ Tors(Z) → CatSt

∞ of Remark 3.5.12.

More informally, Proposition 3.6.10 asserts that for every Z-torsor T and every locally filtered
stable ∞-category C, there is a canonical equivalence of stable ∞-categories

MF(Repfin(T ) ⊗Repfin(Z) C) ≃ φ(T ) ⊗MF(C) = RModS[β±1](Repfin(T ds)) ⊗MF(C).

4. K-Theory

Let C be an arbitrary ∞-category. For each integer n ≥ 0, we can consider the Kan complex
Fun(∆n,C)≃ whose objects are diagrams

X0 →X1 → ⋯→Xn

in C. This Kan complex depends contravariantly on the simplex ∆n; we therefore obtain a
simplicial Kan complex

T●(C) = Fun(∆●,C)≃.
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The simplicial Kan complex T●(C) is an example of a complete Segal space, and the construction
C ↦ T●(C) determines an equivalence between the homotopy theory of ∞-categories and the
homotopy theory of complete Segal spaces (see [5]).

Assume now that the ∞-category C is pointed and admits finite colimits. In this case, one
can introduce a refinement of the simplicial space T●(C). For each n ≥ 0, one can associate an
∞-category Sn(C) which parametrizes commutative diagrams

X0,0
// X0,1

��

// X0,2
//

��

⋯ //

��

X0,n

��
X1,1

// X1,2
//

��

⋯ //

��

X1,n

��
X2,2

// ⋯ //

��

X2,n

��⋯ // ⋯

��
Xn,n

in which each square is required to be a pushout and each object Xi,i appearing along the
diagonal is required to be a zero object. Such a diagram canonically determined by the chain
of morphisms

X0,1 →X0,2 → ⋯→X0,n,

so we have canonical equivalences

Sn(C) ≃ Fun(∆n−1,C) Sn(C)≃ ≃ Tn−1(C).
However, the above description exhibits some extra functoriality: the simplicial Kan complex
T●(C) is weakly equivalent to the shift of another simplicial set S●(C)≃, which contain face
and degeneracy maps which are not visible in T●(C): the “extra” face maps are given by the
construction which assign to a diagram

X1 →X2 →X2 → ⋯→Xn

the associated diagram of cofibers

X2/X1 →X2/X1 → ⋯→Xn/X1.

Following [9] and [1], we define the Waldhausen K-theory of the ∞-category C to be the geo-
metric realization ∣S●(C)≃∣ of the simplicial Kan complex S●(C)≃.

If the ∞-category C is stable, then there is even more functoriality. Given a point of Sn(C)
corresponding to a sequence

X1 →X2 → ⋯→Xn

as above, we note that each cofiber Xi/X1 is equipped with a natural map to the suspension
of X1. This construction is functorial and gives rise to a map σ ∶ Sn(C) → Sn(C), which carries
a diagram

X1 →X2 →X2 → ⋯→Xn

to another diagram

X2/X1 →X2/X1 → ⋯→Xn/X1 → Σ(X1).
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The map σ is an equivalence of ∞-categories: in fact, the (n + 1)st iterate of σ is given by the
construction which assigns to each diagram

X1 →X2 →X2 → ⋯→Xn

the induced diagram of double suspensions

Σ2(X1) → Σ2(X2) → ⋯ → Σ2(Xn),
which gives a homotopy equivalence from Sn(C) to itself because the suspension functor on C is
assumed to be an equivalence. Elaborating on this argument, one can show that the simplicial

∞-category S●(C) can be refined to a paracyclic ∞-category S
↺
● (C), which we will call the

paracyclic Waldhausen construction on C.
Our main goal in this section is to show that the paracyclic Waldhausen construction S

↺
● de-

termines an S1-equivariant functor from the ∞-category CatSt
∞ of stable ∞-categories (equipped

with the S1-action via the monoidal functor φ of Remark 3.5.12) to the ∞-category of para-
cyclic ∞-categories (equipped with an S1-action which we will describe in §4.3). This has two
immediate corollaries:

(a) The formation of algebraic K-theory C ↦ K(C) is invariant under the action of S1

on CatSt
∞ (this is the statement of Theorem 1.1.1, modulo the geometric description of

the monoidal functor φ): this follows from the fact that the geometric realization of
paracyclic spaces is an S1-equivariant construction (see Remark 4.2.12).

(b) If C ∈ CatSt
∞ is a homotopy fixed point for the action of S1 (in other words, if C is linear

over the 2-periodic sphere spectrum Sper of Remark 3.5.13), then the paracyclic Kan

complex S
↺
● (C) is a homotopy fixed point for the action of S1 on paracyclic spaces:

that is, it descends to a cyclic space (which is a suitable input for the 2-Segal machinery
described in [4]; see §1.3 for a brief discussion).

Let us now outline the contents of this section. We will begin in §4.1 with a discussion
the Waldhausen construction in the setting of ∞-categories. In §4.2 we review the theory of

paracyclic spaces, and in §4.3 we define the paracyclic Waldhausen construction S
↺
● and show

that it refines the classical Waldhausen construction S●. To analyze the paracyclic Waldhausen
construction, we observe that it is corepresentable: that is, there is a coparacyclic object Quiv●

of the ∞-category CatSt
∞ such that the paracyclic Waldhausen construction S

↺
● is given by

S
↺
● (C) ≃ Funex(Quiv●,C).

To show that the functor S
↺
● (C) is S1-equivariant, it will suffice to show that the the construc-

tion ● ↦ Quiv● is S1-equivariant. We will prove this in §4.6 using the fact that Quiv● has a
description in terms of equivariant matrix factoriations (which we establish in §4.5) applied to
suitable locally filtered stable ∞-categories (which we study in §4.4).

4.1. The Waldhausen Construction. In this section, we give a brief review of the construc-
tion of the Waldhausen K-theory of a pointed ∞-category C which admits finite colimits. For
a more detailed discussion, we refer the reader to [1].

Definition 4.1.1. Let P be a linearly ordered set. We let P [1] denote the set {(x, y) ∈ P ×P ∶
x ≤ y}. We regard P [1] as a partially ordered subset of the Cartesian product P × P .

Let C be a pointed ∞-category which admits finite colimits. An P -gapped object of C is a
map X ∶ N(P [1]) → C with the following properties:

(a) For every element p ∈ P , X(p, p) is a zero object of C.
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(b) For every triple p, q, r ∈ P satisfying p ≤ q ≤ r, the diagram

X(p, q) //

��

X(p, r)

��
X(q, q) // X(q, r)

is a pushout square in C. In other words, we have a fiber sequence

X(p, q) →X(p, r) →X(q, r).
We let SP (C) denote the full subcategory of Fun(N(P [1]),C) spanned by the P -gapped

objects of C. When P has the form [n] = {0 < 1 < ⋯ < n} for some nonnegative integer n, we
will denote SP (C) simply by Sn(C). The construction [n] ↦ Sn(C) depends functorially on
the linearly ordered set [n], and therefore determines a simplicial ∞-category S●(C). We will
refer to S●(C) as the Waldhausen construction on C, and we let S●(C)≃ denote its underlying
simplicial Kan complex.

Remark 4.1.2. Let n ≥ 0 be an integer. Then the construction i↦ (0, i+1) determines a map

of partially ordered sets ι ∶ [n] → [n + 1][1]. Composition with ι induces a map of ∞-categories
Sn+1(C) → Fun(∆n,C) which depends functorially on [n]. According to Lemma H.1.2.2.4, this
functor is an equivalence of ∞-categories. It follows that the simplicial space S●+1(C)≃ can be
identified with the complete Segal space associated to the ∞-category C.
Remark 4.1.3. Let C be a pointed ∞-category which admits finite colimits. Then S0(C) is
the full subcategory of C spanned by the zero objects. In particular, it is a contractible Kan
complex.

Definition 4.1.4. Let C be a pointed ∞-category which admits finite colimits. We let K(C)
denote the fiber product

S0(C)≃ ×∣S●(C)≃∣ S0(C)≃,
formed in the ∞-category S of spaces. We will refer to K(C) as the K-theory space associated
to C.
Remark 4.1.5. In the situation of Definition 4.1.4, the space S0(C)≃ is contractible (Remark
4.1.3). We may therefore identify the natural map S0(C)≃ → ∣S●(C)≃∣ with a base point of
∣S●(C)≃∣, and K(C) with the based loop space Ω∣S●(C)≃∣.
4.2. Cyclic and Paracyclic Objects. In his section, we review the theory of cyclic and
paracyclic objects of an ∞-category C (such as the ∞-category S of spaces).

Definition 4.2.1. A parasimplex is a nonempty linearly ordered set Λ equipped with an action
of the group Z (which we will indicate by + ∶ Λ ×Z→ Λ) which satisfies the following axioms:

(a) For each λ ∈ Λ, we have λ < λ + 1.
(b) For every pair of elements λ,λ′ ∈ Λ, the set {µ ∈ Λ ∶ λ ≤ µ ≤ λ′} is finite.

If Λ and Λ′ are parasimplices, then we will say that a map f ∶ Λ → Λ′ is paracyclic if it is
Z-equivariant and nondecreasing.

We let ∆↺ denote the category whose objects are parasimplices and whose morphisms are

paracyclic maps. We will refer to ∆↺ as the parasimplex category.

Definition 4.2.2. Let C be an ∞-category. A paracyclic object of C is a functor X ∶ N(∆op

↺) →
C. A paracyclic space is a paracyclic object of the ∞-category S of spaces, and a paracyclic
∞-category is a paracyclic object in the ∞-category Cat∞ of ∞-categories.
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Example 4.2.3. Let n be a positive integer. Then the set 1
n
Z = { a

n
∶ a ∈ Z} is a parasimplex

(when equipped with its usual ordering and action of Z by translation). Conversely, every
parasimplex Λ is isomorphic to 1

n
Z for a unique positive integer n (the integer n can be char-

acterized as the cardinality of the set {µ ∈ Λ ∶ λ ≤ µ < λ + 1} for any choice of element λ ∈ Λ).

Remark 4.2.4. Let Λ be a parasimplex. We can define a new parasimplex Λ∨ as follows:

● The elements of Λ∨ are symbols λ∨, where λ ∈ Λ.
● The linear ordering of Λ∨ is given by

λ∨ ≤ µ∨⇔ µ ≤ λ.
● The action of Z on Λ∨ is given by

λ∨ + n = (λ − n)∨.
The construction Λ ↦ Λ∨ determines a covariant equivalence from the parasimplex category
∆↺ to itself. Note that there is a canonical isomorphism Λ ≃ (Λ∨)∨ which depends functorially

on Λ (given by λ↦ (λ∨)∨).

Remark 4.2.5. For every parasimplex Λ, the map λ ↦ λ + 1 is a paracyclic map from Λ to
itself. This construction determines a natural transformation from the identity functor of ∆↺
to itself.

Example 4.2.6. Let Q be a nonempty finite linearly ordered set. We let QZ denote the
product Q × Z, which we regard as equipped with the reverse lexicographic ordering (so that
(q, n) ≤ (q′, n′) if and only if either n < n′, or n = n′ and q ≤ q′). Then QZ is a parasimplex, if
we regard QZ as equipped with the action of Z given by the formula (q,m) + n = (q,m + n).

Let ∆ denote the category of combinatorial simplices: that is, the objects of ∆ are the
linearly ordered sets [n] = {0 < 1 < ⋯ < n} for n ≥ 0, and the morphisms are nondecreasing
functions. The construction Q ↦ QZ determines a faithful functor ∆ → ∆↺. It follows from

Example 4.2.3 that this functor is essentially surjective (note that [n]Z ≃ 1
n+1

Z for each n ≥ 0).

Remark 4.2.7. Let C be an ∞-category. The construction of Example 4.2.6 determines a
forgetful functor from paracyclic objects of C to simplicial objects of C.

Proposition 4.2.8. The construction Q↦ QZ induces a right cofinal functor N(∆) → N(∆↺).

Corollary 4.2.9. Let C be an ∞-category which admits small colimits, let X be a paracyclic
object of C, and let Y● be the associated simplicial object of C. Then the canonical map

∣Y●∣ → limÐ→
Λ∈∆↺

X(Λ)

is an equivalence in C.

Proof of Proposition 4.2.8. Fix a parasimplex Λ. We wish to show that the category

C = ∆×∆↺
(∆↺)/Λ

has weakly contractible nerve. Unwinding the definitions, we can identify the objects of C with
pairs (Q,α), where Q is a nonempty finite linearly ordered set and α ∶ QZ → Λ is nondecreasing
Z-equivariant map. Let C0 ⊆ C be the full subcategory spanned by those pairs (Q,α) for which
the restriction α∣Q×{0} is injective. The inclusion C0 ↪ C admits a left adjoint and therefore
induces a weak homotopy equivalence N(C0) → N(C). It will therefore suffice to show that
N(C0) is weakly contractible.
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Let P denote the collection of all nonempty subsets S ⊆ Λ such that µ ≤ λ + 1 for each
λ,µ ⊆ S. We regard P as a partially ordered set with respect to inclusions. The construction

(Q,α) ↦ α(Q × {0})

determines an equivalence from the category C0 to the partially ordered set P . It will therefore
suffice to show that N(P ) is weakly contractible.

For every pair of elements λ,µ ∈ Λ with λ ≤ µ, let Λλ,µ denote the set {ν ∈ Λ ∶ λ ≤ ν ≤ µ} and
let Pλ,µ denote the subset of P consisting of those sets S which are contained in Λλ,µ. Then
N(P ) can be written as a filtered colimit of simplicial sets of the form N(Pλ,µ). It will therefore
suffice to show that each N(Pλ,µ) is weakly contractible. We proceed by induction on the size
of the set Λλ,µ. If µ ≤ λ + 1, then Pλ,µ has a largest element (given by the set S = Λλ,µ) and
there is nothing to prove. Otherwise, let µ′ denote the predecessor of µ in Λ, and observe that
there is a pushout diagram

N(Pµ−1,µ′) //

��

N(Pµ−1,µ)

��
N(Pλ,µ′) // N(Pλ,µ).

It follows from the inductive hypothesis that the simplicial sets N(Pµ−1,µ′), N(Pµ−1,µ), and
N(Pλ,µ′) are weakly contractible, so that N(Pλ,µ) is also weakly contractible. �

Construction 4.2.10. Let Λ be a parasimplex and let T be a Z-torsor. We let T +Z Λ denote
the quotient of T ×Λ by the equivalence relation

(t, λ) ≃ (t′, λ′) if (∃n ∈ Z)[t = t′ + n and λ = λ′ − n]

We will denote the image of a pair (t, λ) in T +Z Λ by [t, λ]. Then T +Z Λ can be regarded as
a parasimplex, with the action of Z given by [t, λ] + n = [t + n,λ] and linear ordering given by

[t, λ] ≤ [t′, λ′] if and only if (∃n ∈ Z)[t = t′ + n and λ + n ≤ λ′].

The construction (T,Λ) ↦ T +Z Λ determines a (left) action of the monoidal category of Z-
torsors on the category ∆↺ of parasimplices. For any ∞-category C, we obtain an induced left

action of the monoidal ∞-category Tors(Z) on the ∞-category Fun(N(∆op

↺),C) of paracyclic

objects of C, given by the formula

(T ⊗X)Λ =X−T+ZΛ

where −T denotes an inverse of T in the symmetric monoidal ∞-category Tors(Z).

Remark 4.2.11. The action of the monoidal category of Z-torsors on ∆↺ induces an action

the monoidal ∞-category Tors(Z) on the ∞-category N(∆↺). In fact, we can be more precise:

the simplicial set N(∆↺) carries a strict action of the simplicial abelian group BZ, which is

homotopy equivalent to Tors(Z). This action is determined by a functor

a ∶ BZ ×N(∆↺) → N(∆↺)

which is the identity on objects, and is given on morphisms by the formula

(n, f ∶ Λ→ Λ′) ↦ f + n

where f + n ∶ Λ→ Λ′ is the map of parasimplices given by (f + n)(λ) = f(λ) + n.
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Remark 4.2.12. Let C be an ∞-category which admits small colimits. Then the colimit
functor

limÐ→ ∶ Fun(N(∆op

↺),C) → C

is Tors(Z)-equivariant, where we endow C with the trivial action of Tors(Z). This follows
immediately from the observation that the projection map ∆↺ → ∗ is Tors(Z)-equivariant.

Definition 4.2.13 (The Cyclic Category). For every pair of parasimplices Λ and Λ′, the set
Hom∆↺

(Λ,Λ′) carries an action of the group Z, given by the formula (f + n)(λ) = f(λ) + n.

We define a category ∆cyc as follows:

● The objects of ∆cyc are parasimplices Λ.
● Given a pair of objects Λ,Λ′ ∈ ∆cyc, we let Hom∆cyc(Λ,Λ′) be the quotient set

Hom∆↺
(Λ,Λ′)/Z.

We will refer to ∆cyc as the cyclic category. If C is an arbitrary ∞-category, we will refer to
Fun(N(∆op

cyc),C) as the ∞-category of cyclic objects of C. In the special case C = S, we will
refer to Fun(N(∆op

cyc),C) as the ∞-category of cyclic spaces.

Remark 4.2.14. Unwinding the definitions, we see that the nerve N(∆cyc) can be identified
with the quotient of N(∆↺) by the action of the simplicial abelian group BZ described in

Remark 4.2.11. Since the action of BZ on N(∆↺) is free, we can identify N(∆cyc) with the

(homotopy) quotient of N(∆↺) by the action of the monoidal ∞-category Tors(Z). It follows

that for any ∞-category C, we can identify the ∞-category of cyclic objects Fun(N(∆op
cyc),C)

with the (homotopy) fixed points for the action of Tors(Z) on the ∞-category of paracyclic
objects Fun(N(∆op

↺),C).

Remark 4.2.15. Let C be an ∞-category which admits small colimits, so that the construction

limÐ→ ∶ Fun(N(∆op

↺),C) → C

is Tors(Z)-equivariant (Remark 4.2.12). Passing to homotopy fixed points on both sides (and
using the fact that the action of Tors(Z) ≃ S1 on C is trivial), we obtain a map

Fun(N(∆op
cyc,C)) → Fun(BS1,C).

More informally: if X is a cyclic object of C, then the geometric realization of X (which
can be computed as the colimit of the underlying simplicial object) can be regarded as an
S1-equivariant object of C.

4.3. The Paracyclic Waldhausen Construction. Let C be a stable ∞-category. Our goal

in this section is to define the paracyclic Waldhausen construction S
↺
● (C) (Definition 4.3.4)

and to show that it refines the usual Waldhausen construction of §4.1 (Remark 4.3.5).

Definition 4.3.1. Let Λ be a parasimplex. We let Λ
[1]
↺ denote the subset

{(λ,µ) ∈ Λ ×Λ ∶ λ ≤ µ ≤ λ + 1} ⊆ Λ ×Λ.

We regard Λ
[1]
↺ as a partially ordered subset of Λ ×Λ.

Let C be a stable ∞-category. A paracyclic Λ-gapped object of C is a functor X ∶ N(Λ[1]
↺ ) → C

which satisfies the following conditions:

(a) For every element λ ∈ Λ, the objects X(λ,λ),X(λ,λ + 1) ∈ C are zero.
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(b) For every triple of elements λ,µ, ν ∈ Λ satisfying λ ≤ µ ≤ ν ≤ λ + 1, the diagram

X(λ,µ) //

��

X(λ, ν)

��
X(µ,µ) // X(µ, ν)

is a pushout square. In other words,we have a fiber sequence

X(λ,µ) →X(λ, ν) →X(µ, ν)
in the ∞-category C.

We let S
↺
Λ (C) denote the full subcategory of Fun(N(Λ[1]

↺ ),C) spanned by the paracyclic Λ-

gapped objects.

Remark 4.3.2. Let Q be a nonempty finite linearly ordered set. The construction (q, q′) ↦
((q,0), (q′,0)) determines a map of partially ordered sets ι ∶ Q[1] → (QZ)[1]↺ . For every stable

∞-category C, composition with ι induces a functor

θ ∶ S↺QZ
(C) → SQ(C).

Proposition 4.3.3. Let Q be a nonempty finite linearly ordered set and let C be a stable ∞-

category. Then the map θ ∶ S↺QZ
(C) → SQ(C) of Remark 4.3.2 is a trivial Kan fibration.

Proof. It follows immediately from the definitions that θ is a categorical fibration. It will
therefore suffice to show that θ is an equivalence of ∞-categories. Choose a least element
q0 ∈ Q, and write Q = {q0} ∐Q+. Let θ′ ∶ SQ(C) → Fun(N(Q+),C) be the functor given by the
formula (θ′X)(q) = (q0, q), so that θ′ is an equivalence of ∞-categories by virtue of Remark
4.1.2. It will therefore suffice to show that the composite map

θ′ ○ θ ∶ S↺QZ
(C) → Fun(N(Q+),C)

is a trivial Kan fibration.
Set Λ = QZ, let λ0 = (q0,0) ∈ Λ, and write

Λ = {⋯ < λ−1 < λ0 < λ1 < ⋯}.

For every pair of integer i, j ∈ Z with i ≤ j, let Λ
[1]
i,j denote the subset of Λ

[1]
↺ consisting of those

pairs (µ, ν) such that λi ≤ µ ≤ λj . Let S
↺
i,j (C) denote the full subcategory of Fun(N(Λ[1]

i,j ),C)
spanned by those functors X ∶ N(Λ[1]

i,j ) → C which satisfy the following pair of conditions:

(a) For each µ ∈ Λ with λi ≤ µ ≤ λj , the objects X(µ,µ),X(µ,µ + 1) ∈ C are trivial.
(b) For every triple µ,µ′, µ′′ ∈ Λ with λi ≤ µ ≤ µ′ ≤ λj and µ ≤ µ′ ≤ µ′′ ≤ 1 + µ, the diagram

X(µ,µ′) //

��

X(µ,µ′′)

��
X(µ′, µ′) // X(µ′, µ′′)

is a pushout square in C.
Then the ∞-category S

↺
Λ (C) is given by the inverse limit of a tower of restriction maps

⋯ → S
↺
−1,2(C)

φ2→ S
↺
−1,1(C)

φ1→ S
↺
0,1(C)

φ0→ S
↺
0,0(C).
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Moreover, the map θ′ ○ θ factors as a composition

S
↺
Λ (C) → S

↺
0,0(C)

ψ→ Fun(N(Q+),C).

It follows from Proposition T.4.3.2.15 that the functor ψ is a trivial Kan fibration. It will
therefore suffice to show that each of the maps φi is a trivial Kan fibration. We will treat the
case where i = 2n is even; the case where i is odd follows by a similar argument. We wish to

show that the map S
↺
−n,n+1(C) → S

↺
−n,n(C) is a trivial Kan fibration. For this, let P ⊆ Λ

[1]
−n,n+1

denote the union of Λ
[1]
−n,n with {(λn+1, λn+1)}, and let P ′ = Λ

[1]
−n,n+1 − {(λn+1,1 + λn+1)}. We

observe that S
↺
−n,n+1(C) is the full subcategory of Fun(N(Λ[1]

−n,n+1),C) spanned by those functors
X which satisfy the following conditions:

● The restriction X ∣
N(Λ[1]

−n,n)
belongs to S

↺
−n,n(C).

● The restriction X ∣N(P ) is a right Kan extension of X ∣
N(Λ[1]

−n,n)
.

● The restriction X ∣N(P ′) is a left Kan extension of X ∣N(P ).
● The functor X is a right Kan extension of X ∣N(P ′).

The assertion that φi is a trivial Kan fibration now follows from three applications of Proposition
T.4.3.2.15. �

Definition 4.3.4. Let C be a stable ∞-category. The construction

Λ↦ S
↺
Λ (C)

determines a functor from ∆op

↺ to the category of Kan complexes, which we will denote by

S
↺
● (C). We will refer to S

↺
● (C) as the paracyclic Waldhausen construction on C.

Remark 4.3.5. Composition with the functor [n] ↦ [n]↺ determines a map

F ∶ Fun(∆op

↺,Cat∞) → Fun(∆op,Cat∞).

For any stable ∞-category C, the construction of Remark 4.3.2 supplies a map of simplicial
∞-categories

F (S↺● (C)) → S●(C).
It follows from Proposition 4.3.3 that this map is a trivial Kan fibration in each degree. We

may therefore regard the paracyclic Waldhausen construction S
↺
● (C) as a refinement of the

classical Waldhausen construction S●(C).

Remark 4.3.6. Let C be a stable ∞-category. Combining Remark 4.3.5 with Corollary 4.2.9, we
see that the K-theory space of C can be computed from the paracyclic Waldhausen construction
using the formula

K(C) ≃ Ω( limÐ→
Λ∈∆↺

S
↺
Λ (C)≃).

4.4. Representations of a Parasimplex. Let Λ be a parasimplex, which we regard as fixed
throughout this section. We let N(Λ) denote the nerve of Λ as a linearly ordered set (that is, the
simplicial set whose n-simplices are sequences (λ0, . . . , λn) in Λ satisfying λ0 ≤ λ1 ≤ ⋯ ≤ λn).
We let Rep(Λ) = Fun(N(Λ)op,Sp) denote the ∞-category of representations of N(Λ), and
jΛ ∶ N(Λ) → Rep(Λ) the stable Yoneda embedding. We will refer to the objects of Rep(Λ) as
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Λ-filtered spectra. For V ∈ Rep(Λ), we let Vλ denote the value of V on an element λ ∈ Λ, so
that the stable Yoneda embedding is given by

jΛ(µ)λ =
⎧⎪⎪⎨⎪⎪⎩

S if λ ≤ µ
0 otherwise.

Remark 4.4.1. The action of Z on Λ determines an action of N(Z) on the ∞-category Rep(Λ).
In other words, we can view Rep(Λ) as a locally filtered stable ∞-category. In particular, we
have shift functors V ↦ V (n) which can be described concretely by the formula

V (n)λ = Vλ+n.
Since Rep(Λ) is a presentable stable ∞-category, the action of N(Z) on Rep(Λ) extends to

a (right) action of Rep(Z) on Rep(Λ). We will denote the action map by

⍟ ∶ Rep(Λ) ×Rep(Z) → Rep(Λ).
On objects, this action is given by the formula

(V ⍟W )λ = limÐ→
λ≤µ+n

Vµ ∧Wn.

Remark 4.4.2. Every parasimplex Λ is (noncanonically) isomorphic to Z as a linearly ordered
set, so that Rep(Λ) is equivalent to Rep(Z) as an ∞-category. However, this equivalence is
usually not compatible with the structure described in Remark 4.4.1.

We next show that there is a good supply of A-modules in the ∞-category Rep(Λ).

Notation 4.4.3. Fix an object λ ∈ Λ. We let Rep(Λ)≥λ, Rep(Λ)>λ, Rep(Λ)≤λ, and Rep(Λ)<λ
denote the full subcategories of Rep(Λ) spanned by those objects V for which Vµ ≃ 0 unless
µ ≥ λ, µ > λ, µ ≤ λ, or µ < λ, respectively.

Proposition 4.4.4. Let X be an object of Rep(Λ). Suppose that there exists an element λ ∈ Λ
such that X ∈ Rep(Λ)≤λ ∩Rep(Λ)>λ−1. Then X admits the structure of a right A-module.

Proposition 4.4.5. Let X,Y ∈ RModA(Rep(Λ)). Suppose that there exists an element λ ∈ Λ
such that Y ∈ Rep(Λ)≤λ and Y ′ ∈ Rep(Λ)>λ−1. Then the canonical map

MapRModA(Rep(Λ))(Y,Y ′) →MapRep(Λ)(Y,Y ′)
is a homotopy equivalence.

Corollary 4.4.6. Fix λ ∈ Λ, and let C = Rep(Λ)≤λ ∩Rep(Λ)>λ−1. Then the projection map

RModA(Rep(Λ)) ×Rep(Λ) C → C
is an equivalence of ∞-categories. In other words, every object of C admits an essentially unique
A-module structure.

Proof. Full and faithfulness follows from Proposition 4.4.5, and essential surjectivity follows
from Proposition 4.4.4. �

Proof of Proposition 4.4.4. Note that for X ∈ Rep(Z)≤0 and Y ∈ Rep(Λ)≤λ, the convolution
product Y ⍟X also belongs to Rep(Λ)≤λ. We may therefore regard Rep(Λ)≤λ as right-tensored
over the ∞-category Rep(Z)≤0.

Let P = {µ ∈ Λ ∶ λ−1 < µ ≤ λ}, and let C = Fun(N(P )op,Sp). Consider the restriction functor
L ∶ Rep(Λ)≤λ → C. Note that L has a fully faithful right adjoint whose essential image is the
intersection Rep(Λ)≤λ∩Rep(Λ)>λ−1. Moreover, a map Y → Y ′ in Rep(Λ)≤λ is an L-equivalence
if and only if it induces equivalences Yµ → Y ′

µ for λ − 1 < µ ≤ λ. Using the description of the
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action of Rep(Z) on Rep(Λ) given in Remark 4.4.1, we see that for each X ∈ Rep(Z)≤0, the
functor Y ↦ Y ⍟X carries L-equivalences to L-equivalences, so that the ∞-category C inherits
an action of Rep(Z)≤0. Remark 4.4.1 shows that this action factors through the monoidal
functor

Rep(Z)≤0 → Sp

X ↦X0.

Since this functor carries A to the sphere spectrum, it follows that each object of C admit
an (essentially unique) action of A. The right adjoint to L is weakly Rep(Z)≤0-enriched, and
therefore carries A-modules to A-modules; it follows that every object of the essential image
Rep(Λ)≤λ ∩Rep(Λ)>λ−1 admits the structure of an A-module. �

The proof of Proposition 4.4.5 will require the following lemma:

Lemma 4.4.7. Let Y,Z ∈ RModA(Rep(Λ)). Suppose that there exists an element λ ∈ Λ such
that Z ∈ Rep(Λ)≤λ and Y ∈ Rep(Λ)>λ. Then the mapping space MapRModA(Rep(Λ))(Z,Y ) is
contractible.

Proof. The collection of those objects Z ∈ RModA(Rep(Λ)≤λ) for which the mapping space
MapRModA(Rep(Λ))(Z,Y ) is contractible is closed under small colimits. Since RModA(Rep(Λ)≤0)
is generated under small colimits by objects of the form A⍟Z0 for Z0 ∈ Rep(Λ)≤λ, we may
assume without loss of generality that Z has the form Z0⍟A. In this case, we have a homotopy
equivalence

MapRModA(Rep(Λ))(Z,Y ) ≃ MapRep(Λ)(Z0, Y ).
The latter space vanishes, because Z0 is a left Kan extension of its restriction to the subset
{µ ∈ Λ ∶ µ ≤ λ} ⊆ Λ, on which the functor Y vanishes. �

Proof of Proposition 4.4.5. Let Y ∈ RModA(Rep(Λ)). Then we have a cofiber sequence

Σ1Y (1) → Y ⍟A→ Y

in RModA(Rep(Λ)). Consequently, for any object Y ′ ∈ RModA(Rep(Λ)), we obtain a fiber
sequence of spaces

MapRModA(Rep(Λ))(Y,Y ′) →MapRep(Λ)(Y,Y ′) →MapRModA(Rep(Λ))(Σ1Y (1), Y ′).
It will therefore suffice to show that if Y ∈ Rep(Λ)≤λ and Y ′ ∈ Rep(Λ)>λ−1, then the mapping
space MapRModA(Rep(Λ)(Σ1Y (1), Y ′) is contractible. This follows from Lemma 4.4.7. �

Notation 4.4.8. Let E be a spectrum. For each λ ∈ Λ, we let E[λ] denote the Λ-filtered
spectrum given by the formula

E[λ]µ =
⎧⎪⎪⎨⎪⎪⎩

E if λ = µ
0 otherwise.

It follows from Corollary 4.4.6 that E[λ] can be regarded as an A-module in an essentially
unique way.

Remark 4.4.9. Let λ ∈ Λ and let λ− denote its predecessor in Λ (that is, the largest element
µ ∈ Λ such that µ < λ). Then we have a fiber sequence

jΛ(λ−) → jΛ(λ) → S[λ].
It follows that S[λ] belongs to Repfin(Λ).
Proposition 4.4.10. Let X ∈ RModA(Rep(Λ)). The following conditions are equivalent:

(a) Each of the spectra Xλ is finite and Xλ ≃ 0 for all but finitely many values of λ.
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(b) The object X belongs to the smallest stable subcategory of RModA(Rep(Λ)) which is
closed under equivalence and contains the objects {S[λ]}λ∈Λ.

(c) The image of X in Rep(Λ) belongs to the full subcategory Repfin(Λ).

Proof. We first show that (a) ⇒ (b). Let D denote the smallest stable subcategory of the ∞-
category RModA(Rep(Λ)) which is closed under equivalence and contains the objects {S[λ]}λ∈Λ.
We will show that if X satisfies (a), then X ∈ D. Let P = {λ ∈ Λ ∶ Xλ ≄ 0}. Condition (a)
implies that P is finite; we will proceed by induction on the cardinality of P . If P = ∅, then
X ≃ 0 and there is nothing to prove. Otherwise, let λ be the largest element of P , and let
E = Xλ. Then condition (a) implies that E is a finite spectrum, so that E[λ] belongs to D.
Using Proposition 4.4.5, we see that the identity map id ∶ E[λ]λ →Xλ extends (in an essentially
unique way) to a morphism u ∶ E[λ] → X in RModA(Rep(Λ)). We are therefore reduced to
proving that the cofiber cofib(u) belongs to D, which follows from the inductive hypothesis.

The implication (b) ⇒ (c) follows immediately from Remark 4.4.9. We will complete the
proof by showing that (c) ⇒ (a). Note that since X is a left A-module, the image of X in

Rep(Λ) is a retract of X⍟A. It will therefore suffice to show that for every object Y ∈ Repfin(Λ),
the spectra (Y ⍟A)λ are finite for all λ ∈ Λ, and vanish for all but finitely many values of λ. The
collection of those objects Y ∈ Rep(Λ) which satisfy this condition spans a stable subcategory
of Rep(Λ). We may therefore assume without loss of generality that Y has the form jΛ(µ) for
some µ ∈ Λ, in which case the result follows immediately from the formula

(jΛ(µ) ⍟A)λ =
⎧⎪⎪⎨⎪⎪⎩

S if µ − 1 < λ ≤ µ
0 otherwise.

�

4.5. Quiver Representations. Let Λ denote a parasimplex. The construction C ↦ S
↺
Λ (C)

determines a functor from the ∞-category CatSt
∞ of stable ∞-categories to the ∞-category of

spaces. It is not hard to show that this functor is corepresentable: that is, there exists a stable

∞-category QuivΛ and a point η ∈ S↺Λ (QuivΛ) which induces homotopy equivalences

S
↺
Λ (C) ≃ MapCatSt

∞
(QuivΛ,C)

for all every stable ∞-category C. To see this, note that we may assume without loss of generality

that Λ = 1
n+1

Z for some positive integer n (Example 4.2.3) in which case S
↺
Λ (C) is a classifying

space for diagrams

X1 → ⋯→Xn

in C; it then follows from Proposition 2.2.7 that the functor S
↺
Λ is corepresented by the ∞-

category Repfin(Q) where Q is the finite linearly ordered set {1 < 2 < . . . < n}. However, this
answer is somewhat unsatisfying because it fails to reflect the symmetry inherent in the problem.
For example, the parasimplex Λ has a large automorphism group (which we can identify with

1
n+1

Z), but none of the resulting automorphisms of Repfin(Q) arise from automorphisms of Q
itself.

Our goal in this section is to offer a different construction of the corepresenting object for

the functor S
↺
Λ , for which the functoriality in Λ will be more readily apparent.

Definition 4.5.1. Let Λ be a parasimplex and let Repfin(Λ) denote the ∞-category of Λ-
filtered spectra, which we regard as a locally filtered stable ∞-category as in Remark 4.4.1.
Note that the shift operation X ↦X(1) carries the full subcategory Repfin(Λ) to itself, so that
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Repfin(Λ) inherits the structure of a locally filtered stable ∞-category. We let QuivΛ denote

the ∞-category MF(Repfin(Λ)) of equivariant matrix factorizations of Repfin(Λ).

The main result of this section asserts that the stable ∞-category QuivΛ corepresents the

functor S
↺
Λ ∶ CatSt

∞ → Cat∞. The first step will be to construct a point of the space S
↺
Λ (QuivΛ).

This will require us to construct some objects of QuivΛ.

Construction 4.5.2. Let Λ be a parasimplex and let jΛ ∶ N(Λ) → Rep(Λ) denote the stable
Yoneda embedding. Given a pair of elements λ,µ ∈ Λ with λ ≤ µ, we let J○Λ(λ,µ) denote the
cofiber of the induced map jΛ(λ) → jΛ(µ). More concretely, J○Λ(λ,µ) is the Λ-filtered spectrum
given by the formula

J○Λ(λ,µ)ν =
⎧⎪⎪⎨⎪⎪⎩

S if λ < ν ≤ µ.
0 otherwise.

We will regard the construction (λ,µ) ↦ J○Λ(λ,µ) as defining a functor

J○Λ ∶ N(Λ[1]
↺ ) → Rep(Λ).

Note that we have canonical equivalences

J○Λ(λ,λ) ≃ 0 J○Λ(λ − 1, λ) ≃ jΛ(λ) ⍟A .

Proposition 4.5.3. Let J○Λ be as in Construction 4.5.2. Then the fiber over J○Λ of the forgetful
functor

Fun(N(Λ[1]
↺ ),RModA(Rep(Λ))) → Fun(N(Λ[1]

↺ ),Rep(Λ))
is a contractible Kan complex.

More informally, Proposition 4.5.3 asserts that the functor J○Λ admits an essentially unique

lift to a functor J
○
Λ ∶ N(Λ[1]

↺ ) → RModA(Rep(Λ)).

Proof of Proposition 4.5.3. We show more generally that for every simplicial set K equipped

with a map N(Λ∨[1]
↺ ), every lifting problem of the form

K0

��

// RModA(Rep(Λ))

��
K //

88

Rep(Λ)
admits a solution provided that the left vertical map is injective. Proceeding one simplex at a
time, we may reduce to the case where K = ∆n and K0 = ∂∆n. In this case, the desired result
follows from either Proposition 4.4.4 (if n = 0) or Proposition 4.4.5 (if n > 0). �

Construction 4.5.4. Let Λ be a parasimplex and let us denote the canonical map

RModA(Repfin(Λ)) → RModA(Repfin(Λ))[β−1] = QuivΛ

by X ↦ X[β−1]. Note that the functor J
○
Λ carries N(Λ[1]

↺ ) into RModA(Repfin(Λ)). We

JΛ ∶ N(Λ[1]
↺ ) → QuivΛ denote the functor given by

JΛ(λ,µ) = J○Λ(λ,µ)[β−1].

Proposition 4.5.5. The functor JΛ of Construction 4.5.4 is a paracyclic Λ-gapped object of
the stable ∞-category QuivΛ, in the sense of Definition 4.3.1.
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Proof. We will verify that JΛ satisfies conditions (a) and (b) of Definition 4.3.1:

(b) Suppose we are given λ,µ, ν ∈ Λ satisfying

λ ≤ µ ≤ ν ≤ λ + 1;

we must show that the diagram

JΛ(λ,µ) //

��

JΛ(λ, ν)

��
JΛ(µ,µ) // JΛ(µ, ν)

is a pushout square in QuivΛ. In fact, we claim that the diagram

J
○
Λ(λ,µ) //

��

J
○
Λ(λ, ν)

��
J
○
Λ(µ,µ) // J

○
Λ(µ, ν)

is already a pushout square in RModA(Rep(Λ)). This is clear, because the diagram

J○Λ(λ,µ) //

��

J○Λ(λ, ν)

��
J○Λ(µ,µ) // J○Λ(µ, ν)

is a pushout square in Rep(Λ).
(a) Let λ ∈ Λ; we wish to prove that the objects JΛ(λ,λ) and JΛ(λ − 1, λ) vanish. In the

first case, this is clear (since J○Λ(λ,λ) is already a zero object of Rep(Λ)). To handle
the second case, we first note that J○Λ(λ − 1, λ) is equivalent to jΛ(λ) ⍟A as an object

of Rep(Λ). Using Corollary 4.4.6, we see that J
○
Λ(λ − 1, λ) is a free left A-module, so

that

JΛ(λ − 1, λ) ≃ J○(λ − 1, λ)[β−1] ≃ 0

by virtue of Remark 3.6.9.

�

We can now formulate the main result of this section:

Theorem 4.5.6. Let C be a stable ∞-category and let Λ be a parasimplex. Then composition
with the functor JΛ induces an equivalence of ∞-categories

Funex(QuivΛ,C) → S
↺
Λ (C),

and therefore a homotopy equivalence

Funex(QuivΛ,C)≃ → S
↺
Λ (C)≃.

Remark 4.5.7. The stable ∞-category QuivΛ depends functorially on Λ: that is, the construc-

tion Λ ↦ QuivΛ determines a functor N(∆↺) → CatSt
∞. The map JΛ ∶ N(Λ[1]

↺ ) → QuivΛ given

by Construction 4.5.4 also depends functorially on Λ (that is, the maps JΛ can be extended to

a natural transformation of functors from N(∆↺) into CatSt
∞). Consequently, if C is a stable
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∞-category, then the homotopy equivalence Funex(QuivΛ,C)≃ ≃ S↺Λ (C) supply an identification

S
↺
● (C) ≃ Funex(Quiv●,C), where S

↺
● (C) denotes the paracyclic Waldhausen construction of §4.

The proof of Theorem 4.5.6 will require some preliminaries.

Proposition 4.5.8. Let λ ∈ Λ, and let X be an object of LModA(Rep(Λ)<λ+1). For λ ≤ µ ≤ λ+1,
composition with the anchor map βX ∶X → Σ2X(1) induces an equivalence of spectra

Map
RModA(Rep(Λ))(J

○
Λ(λ,µ),X) →Map

RModA(Rep(Λ))(J
○
Λ(λ,µ),Σ2X(1)).

Proof. We have a fiber sequence of right A-modules

X ⍟A→X
βX→ Σ2X(1).

It will therefore suffice to show that the spectrum

Map
RModA(Rep(Λ))(J

○
Λ(λ,µ),X ⍟A)

is trivial. Note that the dual of A is equivalent to Σ−1 A(−1) as a left A-module (Remark
3.2.10). We therefore have

Map
RModA(Rep(Λ))(J

○
Λ(λ,µ),X ⍟A) ≃ Map

Rep(Λ)(Σ
−1 A(−1) ⍟A J

○
Λ(λ,µ),X)

≃ Map
Rep(Λ)(J

○
Λ(λ,µ),ΣX(1))

≃ fib(ΣXµ+1 → ΣXλ+1).
This spectrum vanishes by virtue of our assumption that X ∈ Rep(Λ)<λ+1. �

Corollary 4.5.9. Let λ ∈ Λ and let X be an object of RModA(Repfin(Λ)) whose image in
Rep(Λ) belongs to Rep(Λ)<1+λ. For λ ≤ µ ≤ 1 + λ, the canonical map

Map
RModA(Rep(Λ))(J

○
Λ(λ,µ),X) →Map

QuivΛ(JΛ(λ,µ),X[β−1]).

is a homotopy equivalence of spectra.

Corollary 4.5.10. Let λ,µ ∈ Λ satisfy λ ≤ µ ≤ λ+ 1. Let X be an object of RModA(Repfin(Λ))
whose image in Rep(Λ) is contained in the intersection Rep(Λ)<λ+1 ∩Rep(Λ)>λ. Then we have
a canonical homotopy equivalence of spectra

Map
QuivΛ(JΛ(λ,µ),X[β−1]) ≃ Map

Rep(Λ)(J
○
Λ(λ,µ),X).

Proof. Combine Corollary 4.5.9 with Proposition 4.4.5. �

Remark 4.5.11. In the situation of Corollary 4.5.10, we have a canonical fiber sequence of
spectra

Map
Rep(Λ)(J

○
Λ(λ,µ),X) →Xµ →Xλ.

Since Xλ ≃ 0 by assumption, Corollary 4.5.10 supplies an equivalence

Map
QuivΛ(JΛ(λ,µ),X[β−1]) ≃Xµ.

Proof of Theorem 4.5.6. Without loss of generality, we may assume that Λ = 1
n
Z for some

positive integer n (Example 4.2.3). Using Proposition 4.3.3 and Remark 4.1.2, we deduce that
the construction

S
↺
Λ (C) → Fun(∆n−2,C)

X ↦ (X(0, 1

n
) →X(0, 2

n
) → ⋯ →X(0, n − 1

n
))
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is an equivalence of ∞-categories (where we agree to the convention that ∆n−2 = ∅ when n = 1).
It will therefore suffice to show that the sequence

JΛ(0, 1

n
) → JΛ(0, 2

n
) → ⋯ → JΛ(0, n − 1

n
)

determines a map ∆n−2 → QuivΛ which satisfies conditions (i) and (ii) of Corollary 2.2.8:

(i) Let 0 ≤ i, j ≤ n − 2. We wish to show that the canonical map

Σ∞
+ Map∆n−2(i, j) →Map

QuivΛ(JΛ(0, i + 1

n
), JΛ(0, j + 1

n
))

is an equivalence of spectra. This follows immediately from the calculation of Remark
4.5.11.

(ii) Let C denote the smallest stable subcategory of QuivΛ which contains the objects

{JΛ(0, i
n
)}1≤i≤n−1 and is closed under equivalence. We wish to prove that C = QuivΛ.

To prove this, it will suffice to show that for each object M ∈ RModA(Repfin(Λ)), the

object M[β−1] ∈ QuivΛ is contained in C. Using Proposition 4.4.10, we may assume

without loss of generality that M has the form J
○
Λ( i

n
, i+1
n

) for some integer i. Note that
for each i, the canonical map

β ∶ J○Λ( i
n
,
i + 1

n
) → Σ2J

○( i − n
n

,
i + 1 − n

n
)

induces an equivalence in QuivΛ. We are therefore free to modify i by a multiple of n
and thereby reduce to the case where 0 ≤ i < n. Using the fiber sequence

JΛ(0, i
n
) → JΛ(0, i + 1

n
) →M[β−1],

we are reduced to proving that C contains the objects JΛ(0, i
n
) for 0 ≤ i ≤ n. This

follows from the definition of C if 0 < i < n; to handle the exceptional cases we note that
JΛ(0,0) and JΛ(0,1) are zero objects of QuivΛ (Proposition 4.5.5).

�

4.6. Equivariance for Z-Torsors. Let Λ be a parasimplex and let T be a Z-torsor. Then the
simplicial set N(T +Z Λ) can be identified with the relative tensor product of N(T ) with N(Λ)
over N(Z) (formed in the ∞-category Cat∞). This induces an equivalence of stable ∞-categories

Repfin(T +Z Λ) ≃ Repfin(T ) ⊗Repfin(Z) Repfin(Λ).

In other words, we can regard the construction Λ↦ Repfin(Λ) as a Tors(Z)-equivariant functor

from N(∆↺) to Catfilt
∞ , where the action of Tors(Z) on N(∆↺) and Catfilt

∞ are given by Con-

struction 4.2.10 and Remark 3.1.17, respectively. Combining this observation with Proposition
3.6.10, we obtain the following:

Proposition 4.6.1. The construction Λ ↦ QuivΛ determines a Tors(Z)-equivariant functor

from N(∆↺) to CatSt
∞ (where Tors(Z) acts on CatSt

∞ via the monoidal functor φ of Remark
3.5.12.

More informally, Proposition 4.6.1 asserts that for every Z-torsor T and every parasimplex
Λ, we have a canonical equivalence of stable ∞-categories

QuivT+ZΛ ≃ φ(T ) ⊗QuivΛ .
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Corollary 4.6.2. The paracyclic Waldhausen construction S
↺
● ∶ CatSt

∞ → Fun(N(∆op

↺),Cat∞)
can be promoted to a Tors(Z)-equivariant functor, where Tors(Z) acts on the ∞-categories CatSt

∞
and Fun(N(∆op

↺),Cat∞) via Remark 3.5.12 and Construction 4.2.10, respectively.

Proof. At the level of objects we have

(T ⊗ S↺● (C))Λ ≃ S
↺
−T+ZΛ(C)

≃ MapCatSt
∞
(Quiv−T+ZΛ,C)

≃ MapCatSt
∞
(φ(−T ) ⊗QuivΛ,C)

≃ MapCatSt
∞
(QuivΛ, φ(T ) ⊗ C)

≃ S
↺
Λ (φ(T ) ⊗ C).

�

Corollary 4.6.3. The K-theory construction C ↦ K(C) determines a Tors(Z)-equivariant

functor K ∶ CatSt
∞ → S, where Tors(Z) acts on CatSt

∞ via Remark 3.5.12 and acts trivially on S.

Proof. Combine Corollary 4.2.9, Corollary 4.6.2, and Remark 4.2.12. �

Corollary 4.6.4. Let C be a 2-periodic stable ∞-category (see Remark 3.5.13). Then the

paracyclic Waldhausen construction S
↺
● (C) can be refined to a cyclic ∞-category Scyc

● (C). More
precisely, there exists a commutative diagram of ∞-categories

RModRModfin
Sper

(CatSt
∞)

Scyc
● //

��

Fun(N(∆op
cyc),Cat∞)

��
CatSt

∞
S
↺

● // Fun(N(∆op

↺),Cat∞).

Proof. Combine Corollary 4.6.2 with Remark 3.5.13. �

Remark 4.6.5. It follows from Corollary 4.6.4 and Remark 4.2.15 that if C is a 2-periodic
stable ∞-category, then the K-theory space K(C) comes equipped with a canonical action of
the circle group S1.

5. Symmetric Powers of Disks

In §3.5, we constructed an E2-monoidal functor

Φ ∶ Zds → Pic(S).
Our definition of Φ was essentially combinatorial: it arose from the observation that the ∞-
category of spectra is equivalent to (graded) modules over the graded E2-algebra S[β±1] (Propo-
sition 3.5.7), and therefore inherits a central action of the ∞-category Rep(Zds) of graded
spectra.

Our goal in this section is to supply an alternative description of the E2-monoidal functor
Φ, or at least of the restriction Φ≥0 = Φ∣Zds

≥0
, which is more geometric in nature. Heuristically,

we can think of an E2-monoidal functor F from Zds
≥0 to Pic(S) as a family of functors {FD ∶

Zds
≥0 → Pic(S)}, where D ranges over all 2-dimensional open disks, having the property that

every embedding
D1 ∐D2 ∐⋯ ∐Dn ↪D
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determines a commutative diagram

(Zds
≥0)n

+ //

∏FDi
��

Zds
≥0

FD

��
Pic(S)n ∧ // Pic(S).

The main result of this section (Theorem 5.1.14) asserts that the E2-monoidal functor Φ≥0

corresponds to the family of functors {FD} given by the formula

FD(n) = Σ∞(SymnD)c,
where Symn(D) denotes the nth symmetric power of D and (SymnD)c ≃ S2n denotes its
one-point compactification.

We begin in §5.1 by making the above description of E2-algebras more explicit. For this,
we introduce a colored operad O (whose colors are open disks D in the complex plane) whose
algebras in a symmetric monoidal ∞-category C are closely related to E2-algebras in C (Propo-
sition 5.1.5). Using the colored operad O, we can turn the heuristic construction above into a
precise definition of an E2-monoidal functor F ∶ Zds

≥0 → Pic(S).
Our goal for the remainder of the section is to show that the E2-monoidal functors F and

Φ≥0 are equivalent to one another. The functor Φ≥0 is closely related to the graded E2-ring S[β]
and its localization S[β±1] (see Proposition 3.5.11). Consequently, the problem of describing
the functor Φ≥0 in a “geometric” way is related to the problem of describing S[β] in a geometric
way. Recall that the graded spectrum S[β] can be described by the formula

S[β]n ≃
⎧⎪⎪⎨⎪⎪⎩

S−2n if n ≥ 0

0 otherwise.

It follows that S[β] can be identified as the “associated graded” of the function spectrum SCP∞
+ ,

where SCP∞
+ is equipped with the filtration induced by the skeletal filtration

CP0 ↪CP1 ↪CP2 ↪ ⋯.
The fundamental observation is that this identification S[β] ≃ grSCP∞

can be promoted to an

equivalence of graded E2-rings (Proposition 5.4.9). Here the E2-structure on grSCP∞

arises
from an E2-coalgebra structure on the filtered space {CPn}n≥0, which we will discuss in §5.2.
The proof of Proposition 5.4.9 will be given in §5.4 using a concrete description of {CPn}n≥0 as
obtained from a 2-fold bar construction in the setting of filtered spaces, which we discuss in §5.3.
In §5.5, we will exploit the identification of S[β] with grSCP∞

to show that the E2-monoidal
functors F and Φ≥0 are equivalent to one another.

5.1. The Colored Operad O. Let tE2 denote the topological operad of little 2-cubes: that
is, the operad whose n-ary operations is the space of rectilinear embeddings

∐
1≤i≤n

(−1,1)2 ↪ (−1,1)2.

This topological operad has many equivalent incarnations (for example, we can replace cubes
by disks). Note however that for any topological operad which is weakly equivalent to tE2,

the space of n-ary operations must be weakly homotopy equivalent to the space Confn(R2)
of (labelled) configurations of n distinct points in R2. Since these configuration spaces have
nontrivial fundamental groups (given by the pure braid groups), the operad tE2 cannot be
equivalent to a topological operad whose spaces of operations are discrete. This is often a
technical nuisance: for many applications, it is much easier to work with operads in sets (where
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one does not need to worry about continuity) than operads in topological spaces. Our goal in
this section is to review a construction from §H.5.4.5 which will enable us to replace the operad
tE2 in topological spaces with a (colored) operad O in sets (in fact, in sets of cardinality ≤ 1)
whose categories (and ∞-categories) of algebras are almost the same (Proposition 5.1.5).

Definition 5.1.1. Let C be the set of complex numbers. We will say that an open subset
D ⊆ C is a disk if it is homeomorphic to R2. We define a colored operad O as follows:

● The colors of O are open disks D ⊆ C.
● Given a collection of colors {Di}1≤i≤n and another color D′, there is at most one opera-

tion {Di} →D′ in O, which exists if and only if the disks Di are disjoint and contained
in D′.

Remark 5.1.2. An open subset D ⊆ C is a disk (in the sense of Definition 5.1.1) if and only
if it is simply connected. In particular, we do not require that D is an open ball with respect
to the usual metric on C (though, for our applications, restriction to disks of this special type
would make no difference).

Notation 5.1.3. In what follows, we will not distinguish between the colored operad O of
Definition 5.1.1 and the associated ∞-operad (given by Construction H.2.1.1.7). For any sym-
metric monoidal ∞-category (or ordinary category) C, we let AlgO(C) denote the ∞-category
(or ordinary category of O-algebra objects of C).

Remark 5.1.4. If C is a symmetric monoidal ∞-category, then a O-algebra object A of C is
given by the following data:

(1) For every open disk D ⊆ C, an object A(D) ∈ C.
(2) For every open disk D ⊆ C and every finite collection of disjoint open disks {Di ⊆ D},

a morphism µ ∶ ⊗iA(Di) → A(D) in C.
The multiplication maps µ are required to satisfy an associative law up to coherent homotopy.

The following result is a special case of Theorem H.5.4.5.9:

Proposition 5.1.5. Let C be a symmetric monoidal ∞-category. Then there is a fully faithful
embedding AlgE2

(C) → AlgO(C), whose essential image consists of those O-algebra objects A ∈
AlgO(C) which satisfy the following condition:

(∗) For every inclusion D ⊆ D′ of open disks in C, the induced map A(D) → A(D′) is an
equivalence in C.

Example 5.1.6. Using Proposition 5.1.5, we can identify the ∞-category AlgE2
(S) of E2-

spaces with the full subcategory of Fun(N(O⊗),S) spanned by those functors with the following
properties:

(a) For every inclusion D ⊆ D′ of open disks in C, the map A(D) → A(D′) is a homotopy
equivalence.

(b) For every object (D1, . . . ,Dn) ∈ O⊗, the canonical maps (D1, . . . ,Dn) → (Di) in O⊗

induce a homotopy equivalence

A(D1, . . . ,Dn) → A(D1) ×⋯ ×A(Dn).

Let C and D be symmetric monoidal ∞-categories. For any ∞-operad O, we can view the
Cartesian product C ×O as an ∞-operad. Moreover, the ∞-category of lax O-monoidal functors
from C to D is isomorphic to the ∞-category AlgC ×O(D). We will be interested in the special
case where O is the colored operad of Definition 5.1.1 and C is the discrete simplicial set Zds

≥0,
regarded as a symmetric monoidal ∞-category via the addition on C.
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Definition 5.1.7. We define a colored operad O[Z≥0] as follows:

● The colors of O[Z≥0] are pairs (D,n) where D ⊆ C is an open disk and n ≥ 0 is a
nonnegative integer.

● Given a set of objects {(Di, ni)}1≤i≤m and another color (D′, n), there is at most one
operation {(Di, ni)} → (D′, n) in O[Z≥0], which exists if and only if the disks Di are
disjoint, each disk Di is contained in D, and n = n1 +⋯ + nm.

We will need the following consequence of Proposition 5.1.5:

Proposition 5.1.8. Let C be a symmetric monoidal ∞-category. Then the ∞-category of E2-
monoidal functors from Zds

≥0 to C can be identified with the full subcategory of AlgO[Z≥0](C)
spanned by those algebras A which satisfy the following condition:

(∗) For every open disk D ⊆ C containing smaller disjoint open disks {Di}i∈I and any
collection of nonnegative integers {ni}i∈I , the induced map

⊗
i∈I
A(Di, ni) → A(D,∑

i∈I
ni)

is an equivalence in C.

Proof. It follows from the above discussion that we can identify AlgO[Z≥0](C) with the ∞-

category of lax O-monoidal functors from Zds
≥0 to C. Under this identification, the algebras

which satisfy (∗) correspond to the O-monoidal functors from Zds
≥0 to C: that is, the morphisms

from Zds
≥0 to C in the ∞-category AlgO(Cat∞). The desired result now follows from Proposition

5.1.5 (note that any O-algebra which arises from a commutative algebra automatically satisfies
condition (∗) appearing in the statement of Proposition 5.1.5 ). �

Propositions 5.1.5 and 5.1.8 can be useful for building examples of E2-algebras and E2-
monoidal functors. The basic paradigm is this: suppose we are given a symmetric monoidal
∞-category C (such as the ∞-category of spaces, with the Cartesian product) which receives a
symmetric monoidal functor F from an ordinary category C0 (such as the ordinary category of
topological spaces, which the Cartesian product). If A is a O-algebra object of C0 having the
property that F (A) ∈ AlgO(C) satisfies condition (∗) of Proposition 5.1.5, then we can identify
F (A) with an E2-algebra object of C. We will now apply this idea in a simple special case;
more elaborate examples will appear in the sections which follow.

Definition 5.1.9. Let Top∗ denote the category whose objects are pointed topological spaces
(X,x) for which there exists an open set U ⊆ X which contains {x} as a (strong) deformation
retract. We regard Top∗ as a symmetric monoidal category with respect to the formation of
smash products.

The construction (X,x) ↦ (Sing(X), x) determines a symmetric monoidal functor from the
ordinary category Top∗ to the ∞-category S∗ of pointed spaces (equipped with the symmetric
monoidal structure given by the formation of smash products). Consequently, we can regard the
construction (X,x) ↦ Σ∞ Sing(X) as determining a symmetric monoidal functor N(Top∗) →
Sp.

Remark 5.1.10. The technical requirement that our pointed spaces have base points which
are strong deformation retracts of neighborhoods of themselves guarantees that the natural
maps

Sing(X) ∧ Sing(Y ) → Sing(X ∧ Y )
are weak homotopy equivalences of simplicial sets, so that the construction X ↦ Σ∞ Sing(X)
determines a symmetric monoidal functor N(Top∗) → Sp as asserted (of course, this requirement
is almost always satisfied in practice).
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Notation 5.1.11. Let X be a locally compact topological space. We let Xc denote the one-
point compactification of X, and we let vX denote the “point at ∞” in Xc (that is, the unique
point of Xc which does not belong to X).

For any open embedding U ↪X, we let Coll ∶Xc → U c denote the “collapse” map given by

Coll(x) =
⎧⎪⎪⎨⎪⎪⎩

x if x ∈ U
vU otherwise.

Construction 5.1.12. We define a O[Z≥0]-coalgebra object T of Top∗ as follows:

● If D ⊆ C is an open disk and n ≥ 0 is an integer, we let T (D,n) denote the pointed
topological space Symn(D)c (which is homeomorphic to a sphere of dimension 2n),
with base point given by the “point at infinity.”

● If D ⊆ C is an open disk containing disjoint disks {Di}i∈I and we are given nonnegative
integers {ni}i∈I with sum n, then we associate the map of pointed topological spaces

T (D,n) → ⋀
i∈I
T (Di, ni)

given by the collapse determined by the natural open immersion

∏
i∈I

Symni(Di) ↪ Symn(D).

Composing with the symmetric monoidal functor N(Top∗) → Sp of Definition 5.1.9, we
obtain an algebra object Σ∞(T ) ∈ AlgO[Z≥0](Spop).

Proposition 5.1.13. The algebra Σ∞(T ) ∈ AlgO[Z≥0](Spop) of Construction 5.1.12 satisfies

condition (∗) of Proposition 5.1.8, and therefore classifies an E2-monoidal functor ρ ∶ Zds
≥0 →

Spop.

Proof. It suffices to show that for every open disk D ⊆ C containing smaller disjoint disks
{Di}i∈I and every collection of nonnegative integers {ni}i∈I with sum n, the collapse map

f ∶ Symn(D)c →⋀
i∈I

Symni(Di)c

is a homotopy equivalence. This follows from the observation that f is equivalent to the collapse
map associated to an open immersion R2n ↪R2n. �

Note that the discrete simplicial set Zds
≥0 is canonically isomorphic to its opposite. We may

therefore identify ρ with an E2-monoidal functor from Zds
≥0 into Sp, which assigns to each integer

n the sphere S2n. It follows that ρ factors through the subcategory Pic(S) = Spinv. We can
now give a precise formulation of our main result:

Theorem 5.1.14. The E2-monoidal functor ρ of Proposition 5.1.13 is homotopic to the com-
position

Zds
≥0 ↪ Zds j→ Rep(Zds) Φ→ Sp,

where Φ is the E2-monoidal functor appearing in the statement of Corollary 3.5.8.

The proof of Theorem 5.1.14 will be given in §5.5.
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5.2. The Skeletal Filtration of CP∞. For each n ≥ 0, we let CPn denote complex projective
space of dimension n: that is, the quotient of Cn+1 − {0} by the action of the multiplicative
group C×. For each n > 0, there is a canonical embedding CPn−1 ↪ CPn; we let CP∞ denote
the direct limit of the sequence

CP0 ↪CP1 ↪CP2 ↪ ⋯
We will regard CP∞ as a CW complex with a single cell of every even dimension 2n, given by
the complement of CPn−1 in CPn (where we agree to the convention that CP−1 = ∅.

The diagonal map

δ ∶ CP∞ →CP∞ ×CP∞

exhibits CP∞ as a commutative coalgebra in the category of topological spaces (and therefore
also in the ∞-category S of spaces). However, the map δ is not cellular (with respect to the
product cell decomposition of CP∞ ×CP∞): for n > 0, it does not carry CPn into the union

⋃a+b=nCPa ×CPb ⊆ CP∞ ×CP∞. Of course, the cellular approximation theorem guarantees
that δ is homotopic to a cellular map

δ′ ∶ CP∞ →CP∞ ×CP∞ .

Since the comultiplication δ is commutative and associative, the comultiplication δ′ is commu-
tative and associative up to homotopy. For example, if we let δ′′ denote the composition of δ′

with the automorphism of CP∞ ×CP∞ given by swapping the two factors, then δ′ and δ′′ are
both homotopic to δ and we can therefore choose a homotopy h ∶ CP∞ ×[0,1] → CP∞ ×CP∞.
Using cellular approximation again, we can assume that h is a cellular map. Using the fact
that the product CP∞ ×CP∞ has only even-dimensional cells, we conclude that h restricts to
a homotopy

hn ∶ CPn ×[0,1] → ⋃
a+b=n

CPa ×CPb

for each n ≥ 0. We can summarize the situation by saying that δ′ yields a homotopy commutative
comultiplication on the filtered space

CP0 ↪CP1 ↪CP2 ↪ ⋯
(and a similar argument shows that δ′ is associative up to homotopy).

In this section, we will study the problem of promoting δ′ to a coherently commutative and
associative multiplication on the filtered space {CPn}n≥0. Before we can state our main result,
we need to introduce a bit of terminology.

Definition 5.2.1. A filtered space is a functor N(Z) → S, where N(Z) denotes the nerve of Z
regarded as a linearly ordered set. The collection of all filtered spaces can be organized into
an ∞-category Sfilt = Fun(N(Z),S). Note that we can identify Sfilt with the ∞-category of
presheaves P(N(Z)op), which inherits a symmetric monoidal structure from the addition on Z.
Concretely, this symmetric monoidal structure is given by the Day convolution product

⍟ ∶ Sfilt ×Sfilt → Sfilt

(X ⍟ Y )n = limÐ→
a+b≤n

Xa × Yb.

Example 5.2.2. The construction

n↦
⎧⎪⎪⎨⎪⎪⎩

Sing● CPn if n ≥ 0

∅ otherwise.

determines an object of Sfilt; we will abuse notation by denoting this object by {CPn}n≥0.
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We can now state the first main result of this section:

Theorem 5.2.3. The filtered space {CPn}n∈Z has the structure of an E2-coalgebra in the ∞-

category Sfilt of filtered spaces.

For our purposes in this paper, we will be interested less in the statement of Theorem 5.2.3
than in its proof, which will produce a specific E2-coalgebra structure on {CPn}n∈Z, which is
closely related to the E2-monoidal functor ρ introduced in §5.1.

Remark 5.2.4. The construction {Xn}n∈Z ↦ limÐ→Xn determines a symmetric monoidal functor

Sfilt → S. Consequently, any E2-coalgebra structure on the filtered space {CPn}n∈Z determines
an E2-coalgebra structure on the space CP∞. However, Proposition H.2.4.3.9 implies that CP∞

admits a unique E2-coalgebra structure (up to a contractible space of choices). It follows that
any E2-coalgebra structure on the filtered space {CPn}n∈Z can be regarded as a refinement
of the standard coalgebra structure on CP∞, given by the diagonal embedding δ ∶ CP∞ →
CP∞ ×CP∞.

Remark 5.2.5. The amount of commutativity described in Theorem 5.2.3 is optimal: one can
show that there does not exist an E3-coalgebra structure on the filtered space {CPn}n∈Z.

We will prove Theorem 5.2.3 using the general paradigm described in §5.1. Namely, we will
first construct a O-coalgebra in an ordinary category and use it to produce a O-coalgebra in
the ∞-category Sfilt which satisfies the hypotheses of Proposition 5.1.5. We begin by describing
the ordinary category we will use.

Definition 5.2.6. A filtered topological space is a topological space X equipped with an in-
creasing sequence

⋯ ⊆X−2 ⊆X−1 ⊆X0 ⊆X1 ⊆X2 ⊆ ⋯
of closed subspaces with the following properties:

(a) The spaces Xn are empty for n≪ 0.
(b) The space X is a direct limit of the subspaces Xi (in the category of topological spaces).
(c) Each of the closed embeddings Xi ↪Xi+1 exhibits Xi as a deformation retract of some

open neighborhood of its image.

If Y = ⋃Yn is another filtered topological space, then we will say that a continuous map
f ∶X → Y is filtration-preserving if it carries each Xn into Yn. We let Topfilt denote the category
whose objects are filtered topological spaes and whose morphisms are filtration-preserving maps.
We will regard Topfilt as a symmetric monoidal category, where the tensor product of a filtered
topological space X = ⋃Xn with Y = ⋃Yn is given by the product X × Y with the filtration
given by subspaces

(X × Y )n = ⋃
a+b=n

Xa × Yb ⊆X × Y ;

here we endow X × Y with the topology which is dictated by condition (b) (in all cases of
interest to us here, this topology will coincide with the product topology).

There is an evident symmetric monoidal functor N(Topfilt) → Sfilt, which carries a filtered
topological space X = ⋃Xn to the diagram {Sing●Xn}n∈Z. In what follows, we will generally
abuse notation by not distinguishing between a filtered topological space and its its image in
Sfilt; in particular, we will regard {CPn}n∈Z as a filtered space (here by convention we agree
that CPn = ∅ for n < 0).

Remark 5.2.7. In the situation of Definition 5.2.6, assumption (c) is not needed to define the

category of filtered topological spaces or to construct the forgetful functor θ ∶ N(Topfilt) → Sfilt.
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However, it is needed to ensure that the functor θ is symmetric monoidal (it follows from
condition (c) that each (X × Y )n can be identified with the homotopy colimit of the diagram
{Xa × Yb}a+b≤n).

Notation 5.2.8. For any topological space X and any integer n ≥ 0, we let Symn(X) denote
the topological space obtained by forming quotient of Xn by the action of the symmetric group
Σn. By convention, we define Symn(X) to be the empty set if n < 0.

We will identify the points of Symn(X) with (non-continuous) functions χ ∶ X → Z≥0 satis-
fying ∑x∈X χ(x) = n. Note that a choice of base point v ∈X determines continuous maps

j ∶ Symn(X) → Symn+1(X),
given by

j(χ)(x) =
⎧⎪⎪⎨⎪⎪⎩

χ(x) if x ≠ v
χ(x) + 1 if x = v.

Example 5.2.9. Let C[x] denote a polynomial ring in one variable over C. For each integer
n ≥ 0, let Poly≤n denote the subspace of C[x] consisting of polynomials of degree n. We will
identify CPn with the quotient of Poly≤n −{0} by the action of C×. The multiplication on C[x]
determines maps

CPa1 ×CPa2 ×⋯ ×CPan →CPa1+⋯+an .

Taking a1 = a2 = ⋯ = an = 1 and making use of the commutativity of C[x], we obtain a contin-
uous map hn ∶ Symn(CP1) →CPn which is easily seen to be a homeomorphism. Moreover, the
homeomorphisms hn fit into a commutative diagram

Symn(CP1)

��

hn // CPn

��
Symn+1(CP1) hn+1 // CPn+1

where the left vertical map is determined by the base point of CP1 (that is, the point given by

the image of CP0 →CP1, represented by the constant polynomial 1 ∈ C[x]).

Remark 5.2.10. Let X be a topological space equipped with a base point v ∈ X. We let
Sym∗(X) denote the direct system of topological spaces

Sym0(X) ↪ Sym1(X) ↪ Sym2(X) ↪ ⋯,
and we let Sym∞(X) denote the direct limit limÐ→Symn(X). In all of the examples that we

consider below, this sequence will satisfy condition (c) of Definition 5.2.6 so that we can regard
Sym∗(X) as a filtered topological space.

In the special case where X can be written as the disjoint union of closed subspaces X0 and
X1 with X0 ∩X1 = {v}, we have canonical closed embeddings

Syma(X0) × Symb(X1) ↪ Syma+b(X)
which induce a homeomorphism Sym∞(X0) × Sym∞(X1) ≃ Sym∞(X). Under this homeomor-
phism, we can identify each individual symmetric power Symn(X) with the union

⋃
a+b=n

Syma(X0) × Symb(X1),

so that Sym∗(X) is the tensor product of Sym∗(X0) with Sym∗(X1) in the category Topfilt.
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Construction 5.2.11. We define a O-coalgebra C in the category Topfilt of filtered topological
spaces as follows:

● For any open disk D ⊆ C, we let C(D) be the filtered topological space Sym∗(Dc).
(note that Example 5.2.9 shows that C(D) is noncanonically homeomorphic to the
filtered topological space {CPn}n∈Z and therefore satisfies condition (c) of Definition
5.2.6).

● Given an open disk D ⊆ C and a collection of disjoint open disks Di contained in D,
the induced map C(D) → ⍟iC(Di) is given by the composition

C(D) = Sym∗(Dc) α→ Sym∗((∐iDi)c)
β≃⍟

i

Sym∗(Dc
i ) =⍟

i

C(Di),

where α is induced by the collapse map Coll ∶Dc → (∐iDi)c and β is the identification
given by Remark 5.2.10.

Proof of Theorem 5.2.3. Let C ∈ AlgO(Topfiltop) be the coalgebra of Construction 5.2.11. Ap-

plying the symmetric monoidal functor N(Topfilt) → Sfilt, we obtain a O-coalgebra object Sfilt

whose underlying filtered space is Sym∗(Cc) = Sym∗(CP1) ≃ {CPn}n∈Z. To complete the
proof, it will suffice to show that this O-coalgebra satisfies condition (∗) of Proposition 5.1.5

(so that it arises from an E2-coalgebra object of Sfilt). To prove this, we must show that for
every inclusion D ↪ D′ of open disks in C, the collapse map Coll ∶ D′c → Dc induces a homo-
topy equivalence Symn(D′c) → Symn(Dc). This follows from the fact that the collapse map
Coll ∶D′c →Dc is itself a homotopy equivalence. �

5.3. Koszul Duality and the Skeletal Filtration. Let C be a symmetric monoidal ∞-
category. We let Algaug

E2
(C) denote the ∞-category of augmented E2-algebra objects of C, and

we let CoAlgaug
E2

(C) = Algaug
E2

(Cop)op denote the ∞-category of augmented E2-coalgebra objects

of C. If C admits geometric realizations of simplicial objects, then the ∞-categories Algaug
E2

(C)
and CoAlgaug

E2
(C) are related by the 2-fold bar construction

Bar(2) ∶ Algaug
E2

(C) → CoAlgaug
E2

(C);
we refer the reader to §H.5.2.3 for more details.

In the special case where C = S, the two-fold bar construction Bar(2) assigns to each E2-
space X the two-fold delooping of its group completion. In particular, if we regard the set of
nonnegative integers Z≥0 as an E2-space (with the discrete topology and E2-structure given by
addition of integers), then we have

Bar(2)(Z≥0) ≃K(Z,2) ≃ CP∞ .

Our goal in this section is to prove a filtered analogue of this statement. To formulate our
result, let us regard Z≥0 as a filtered topological space by considering the family of subsets

{0} ↪ {0,1} ↪ {0,1,2} ↪ ⋯
The addition law on Z≥0 respects this filtration, so that we obtain a commutative algebra
in the category Topfilt of filtered topological spaces, hence also in the ∞-category Sfilt. Let
A ∈ AlgE2

(Sfilt) denote the underlying E2-algebra of this commutative algebra. Note that A
admits a unique augmentation. Our goal in this section is to prove the following result:

Theorem 5.3.1. The two-fold bar construction Bar(2)(A) ∈ CoAlgaug
E2

(Sfilt) is equivalent to

{CPn}n≥0, equipped with the E2-coalgebra structure given by Construction 5.2.11.

To prove Theorem 5.3.1, it will be convenient to replace A by an equivalent E2-algebra object
of Sfilt for which the relationship with Construction 5.2.11 is more apparent.
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Construction 5.3.2. For every topological space X, we let X+ denote the disjoint union
X ∐ {v}. We define a O-algebra object A′ of Topfilt as follows:

● For every open disk D ⊆ C, we let A′(D) denote the filtered topological space given by
Sym∗(D+).

● For every open disk D ⊆ C and every finite collection {Di} of disjoint open disks
contained in D, the map ⍟iA

′(Di) → A′(D) is given by the composition

⍟
i

A′(Di) =⍟
i

Sym∗(Di+)
β≃ Sym∗((∐iDi)+)

γ→ Sym∗(D+) = A′(D),

where β is the identification described in Definition 5.2.6 and γ is induced by the
continuous map ∐iDi →D.

Remark 5.3.3. Let us abuse notation by identifying the O-algebra A′ of Construction 5.3.2
with its image in AlgO(Sfilt). ThisO-algebra satisfies condition (∗) of Proposition 5.1.5: that is,
every inclusion of open disks D ↪D′ induces a homotopy equivalence Symn(D+) ≃ Symn(D′

+).
Consequently, the O-algebra A′ arises from an E2-algebra object of Sfilt, which we will also
denote by A′.

Remark 5.3.4. For any topological space X, we have canonical homeomorphisms

Symn(X+) ≃ ∐0≤m≤n SymmX.

In particular, the projection map X → ∗ induces a continuous map Symn(X+) → Symn(∗+) ≃
{0, . . . , n}, which is a homotopy equivalence whenever X is contractible. Since any open disk

in C is contractible, we conclude that A′ ∈ AlgE2
(Sfilt) is equivalent to the E2-algebra A whose

definition precedes the statement of Theorem 5.3.1.

Our next step is to relate the algebra A′ of Construction 5.3.2 with the coalgebra C of
Construction 5.2.11. Recall that for any category C, the collection of all morphisms in C can be
organized into a category TwArr(C) (called the twisted arrow category of C), where a morphism
from (f ∶X → Y ) to (f ′ ∶X ′ → Y ′) in TwArr(C) is a commutative diagram

X
f //

��

Y

X ′ f ′ // Y ′.

OO

If C is a symmetric monoidal category, then TwArr(C) inherits a symmetric monoidal structure;
moreover, we have a symmetric monoidal forgetful functor

TwArr(C) → C ×Cop

(f ∶X → Y ) ↦ (X,Y ).

Construction 5.3.5. For every locally compact Hausdorff space X, there is canonical contin-
uous bijection X+ → Xc, which is a homeomorphism if and only if X is compact. Note that if
j ∶ U ↪X is an open immersion, then the diagram

U+ //

��

U c

X+ // Xc

Coll

OO

commutes.
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We define a O-algebra object T in the symmetric monoidal category TwArr(Topfilt) as
follows:

● For every open disk D ⊆ C, we let T (D) denote the map of filtered spaces given by
applying Sym∗ to the canonical map D+ →Dc.

● Given an open disk D ⊆ C and a collection of disjoint open subdisks Di ⊆D, we assign
the map ⊗i T (Di) → T (D) in TwArr(Topfilt) given by the commutative diagram of
filtered topological spaces

⍟i Sym∗(Di+) //

��

⍟i Sym∗(Dc
i )

Sym∗(D+) // Sym∗(Dc)

OO

obtained by applying Sym∗ to the commutative diagram

(∐Di)+ //

��

(∐Di)c

D+ // Dc.

OO

Remark 5.3.6. The forgetful functor TwArr(Topfilt) → Topfilt ×(Topfilt)op carries the O-

algebra T of Construction 5.3.5 to the pair (A′,C) ∈ AlgO(Topfilt) ×AlgO(Topfiltop).

The construction C ↦ TwArr(C) can be generalized to the setting of ∞-categories; we refer
the reader to §H.5.2.1 for details. Applying the symmetric monoidal functor

N(TwArr(Topfilt)) → TwArr(Sfilt)

to the O-algebra T , we obtain a O-algebra object of TwArr(Sfilt) which we will also denote by
T . It is clear that this algebra satisfies condition (∗) of Proposition 5.1.5 and can therefore be

identified with an E2-algebra object of TwArr(Sfilt). Let

Bar(2) ∶ Algaug
E2

(Sfilt) → CoAlgaug
E2

(Sfilt)

denote the 2-fold bar construction described in §H.5.2.3, so that the algebra T can be iden-

tified with a morphism ψ ∶ Bar(2)A′ → C in CoAlgaug
E2

(Sfilt). Theorem 5.3.1 is an immediate
consequence of the following more precise result:

Theorem 5.3.7. The map ψ ∶ Bar(2)A′ → C described above is an equivalence in the ∞-category
CoAlgE2

(Sfilt) of E2-coalgebras in filtered spaces.

Proof. Let C ′ denote the filtered space given by Bar(2)(A′). Note that since A′
n = ∅ for n < 0,

the filtered space C ′ has the same property; we may therefore identify C ′ with a diagram

C ′
0 → C ′

1 → C ′
2 → ⋯

in the ∞-category Fun(N(Z≥0),S). We wish to show that the map ψ ∶ C ′ → C is an equivalence
of filtered spaces. The proof will take place in several steps.

Step (1): We claim that each of the spaces C ′
i is simply connected. Note that as an associative

algebra object of Sfilt, A is freely generated by the filtered space

∅ ⊆ {1} ⊆ {1} ⊆ {1} ⊆ ⋯.
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It follows that A′ has the same property. Invoking Corollary H.5.2.2.13, we see that

the 1-fold bar construction B = Bar(1)(A′) can be identified with the filtered space

∗ → S1 → S1 → S1 → ⋯.
Let 1 denote the unit object of Sfilt, given by

1n =
⎧⎪⎪⎨⎪⎪⎩

∗ if n ≥ 0

∅ otherwise.

We will identify B with the relative tensor product 1⍟A′ 1, so that B can be regarded
as a commutative algebra object of Sfilt.

For each n ≥ 0, let τ≤n ∶ Sfilt → Sfilt be the n-truncation functor, which carries a
filtered space {Xm}m∈Z to its truncation {τ≤nXm}m∈Z. The explicit description of B
supplied above shows that the canonical map B → 1 induces an equivalence τ≤0B ≃ 1.
From this, we deduce the existence of equivalences

τ≤0(B ⍟B ⍟⋯⍟B) ≃ 1

for arbitrarily many tensor factors. It follows that if X is any 1-truncated filtered space,
then the canonical map

X0 ≃ MapSfilt(1,X) →MapSfilt(B ⍟B ⍟⋯⍟B,X)

is fully faithful. If X is a commutative algebra object of Sfilt, we conclude that the
induced map

∗ ≃ MapCAlg(Sfilt)(1,X) →MapCAlg(Sfilt)(B,X)
is also a fully faithful: that is, the diagram

B //

��

1

��
1 // 1

is a pushout square in CAlg(τ≤1 Sfilt). This shows that τ≤1(1⍟B 1) is equivalent to 1,
which is equivalent to the simple connectivity of the spaces C ′

n.
Step (2): Let C ′

∞ = limÐ→nC
′
n. For every filtered space X, let H∗(X) denote the bigraded abelian

group given by (a, b) ↦ Ha(Xb;Z). We will regard H∗(X) as a module over Z[x]
(where x has degree (0,1)), with multiplication by x given by the maps Xb → Xb+1.
The explicit description of B above supplies an isomorphism H∗(B) = Z[x, ε], where ε
has bidegree (1,1) and satisfies ε2 = 0. The identification C ′ ≃ 1⊗B 1 yields a spectral
sequence

TorZ[x,ε]
s (Z[x],Z[x])t ⇒ H∗(C ′).

Using the projective resolution

⋯ → Z[x, ε] ε→ Z[x, ε] ε→ Z[x, ε]

of Z[x, ε], we see that the groups TorZ[x,ε]
s (Z[x],Z[x])t are given by Z[x] when t = s

and zero otherwise. Using this, we deduce that our spectral sequence degenerates and
yields isomorphisms

H∗(C ′
n;Z) ≃

⎧⎪⎪⎨⎪⎪⎩

H∗(C ′
∞;Z) if ∗ ≤ 2n

0 if ∗ > 2n.
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Since C ′
n is simply-connected, the map ψn ∶ C ′

n → Cn = CPn is a homotopy equivalence
if and only if the upper vertical map in the commutative diagram

H∗(C ′
n;Z) //

��

H∗(CPn;Z)

��
H∗(C ′

∞;Z) // H∗(CP∞;Z)

is an isomorphism. This is automatic for ∗ > 2n (since the domain and codomain
both vanish). For ∗ ≤ 2n, the vertical maps are isomorphisms. Consequently, to show
that ψ is an equivalence of filtered spaces, it will suffice to show that the induced map
C ′
∞ →CP∞ is a homotopy equivalence.

Step (3): For every filtered space {Xn}, let X∞ denote the colimit limÐ→Xn. The construction

{Xn} ↦ X∞ determines a colimit-preserving symmetric monoidal functor Sfilt → S.
Consequently, we can identify C ′

∞ with the 2-fold bar construction

Bar(2)(A′
∞) ≃ Bar(2)(A∞) ≃ Bar(2)(Z≥0)

(formed in the ∞-category S). Note that the inclusion Z≥0 ↪ Z induces a homotopy
equivalence on 1-fold bar constructions (and therefore also on 2-fold bar constructions),

so we can identify C ′
∞ with the Eilenberg-MacLane space Bar(2)(Z) ≃K(Z,2). Conse-

quently, to show that ψ∞ ∶ C ′
∞ → C∞ = CP∞ is a homotopy equivalence, it will suffice

to show that it induces an isomorphism H2(C ′
∞;Z) → H2(CP∞,Z).

Step (4): Let T̃ ∈ AlgO(TwArr(Sfilt)) be a O-algebra object which witnesses an identifica-

tion of C ′ with the 2-fold bar construction on A′ (so that T̃ has image (A′,C ′) ∈
AlgO(Sfilt ×Sfiltop)). Let D ⊆ C be the standard unit disk. For every disk D′ ⊆ C
disjoint from D, the composite map

A′(D′)∞ → A′(C)∞ → C ′(C)∞ → C ′(D)∞
can be identified with the composition

A′(D′)∞ ↪ A′(D)∞ ×A′(D′)∞ → C ′(D)∞ ×C ′(D′)∞ → C ′(D)∞
and is therefore canonically nullhomotopic. Composing with the inclusions

D′ ↪ Sym1(D′
+) = A′(D′)1 C↪ Sym1(C+) = A′(C)1,

we obtain a canonical map

θ ∶ cofib((limÐ→
D′

D′) →C) → C ′(D)∞,

where the colimit on the left is taken over all open disks in C which are disjoint from
D. Consequently, to show that ψ∞ induces a surjection on H2, it will suffice to show
that the composite map

cofib((limÐ→
D′

D′) →C) → C ′(D)∞ → C(D)∞

induces a surjection on H2. This composite map is obtained by applying the same
procedure to the O-algebra T of TwArr(Sfilt). Unwinding the definitions, we see that
it is given by a composition

cofib((limÐ→
D′

D′) →C) α→Dc = C(D)1
β→ C(D)∞.
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Note that β can be identified with the canonical inclusion CP1 ↪ CP∞ (Example
5.2.9), and is therefore an isomorphism on H2. We note that Dc is given by the cofiber
of the canonical inclusion C −D ↪ C; consequently, to prove that α is an equivalence
it suffices to show that the natural map limÐ→D′

D′ → C − D is an equivalence in the

∞-category of spaces. This is equivalent to the assertion that C −D is a homotopy
colimit of the diagram {D′}D′∩D=∅; here D denotes the closed unit disk in C. This

follows from the observation that for every point x ∈ C−D, the partially ordered set of
open disks containing x and disjoint from D has weakly contractible nerve (in fact, it
is the opposite of a filtered partially ordered set); see Theorem H.A.3.1.

�

5.4. A Geometric Description of S[β]. Let S[β] denote the graded E2 algebra introduced
in §3.4. Our goal in this section is to prove that S[β] can be identified with the associated
graded algebra of a filtered E2-algebra, obtained by applying Spanier-Whitehead duality to the
E2-algebra in filtered spaces {CPn} introduced in §5.2 (Proposition 5.4.9). We begin with a
general discussion of Spanier-Whitehead duality.

Notation 5.4.1. Let C be a symmetric monoidal ∞-category with unit object 1. Suppose
that the monoidal structrue on C is closed. Then for each object C ∈ C, the functor D ↦
MapC(C ⊗ D,1) is representable by an object of C. We will denote such an object by C∨

and refer to it as the weak dual of C. The construction C ↦ C∨ determines a lax symmetric
monoidal functor from Cop to C (see §H.5.2.5); in particular, for every pair of objects X,Y ∈ C
we have a canonical map

X∨ ⊗ Y ∨ → (X ⊗ Y )∨

which is an equivalence if either X or Y is dualizable.

Example 5.4.2 (Duality in Spectra). If C is the ∞-category of spectra, then the construction
X ↦X∨ of Notation 5.4.1 is given by Spanier-Whitehead duality.

Example 5.4.3 (Duality in Graded Spectra). Let C be the ∞-category Rep(Zds) of graded
spectra. For any graded spectrum X, we have canonical equivalences

(X∨)n ≃ Map
Rep(Zds)(S(−n),X

∨)
≃ Map

Rep(Zds)(S(−n) ⊗X,S)
≃ Map

Rep(Zds)(X,S(n))

≃ (X−n)∨.

Example 5.4.4. Let Rep(Z) be the ∞-category of filtered spectra and let j ∶ N(Z) → Rep(Z)
denote the stable Yoneda embedding. We let S = limÐ→n j(n) ∈ Rep(Z) be the constant diagram

taking the value S. For each integer n, we let E(n) ∈ Rep(Z) be the cofiber of the canonical
map j(n − 1) → S, given concretely by the formula

E(n)m =
⎧⎪⎪⎨⎪⎪⎩

S if m ≥ n
0 otherwise.

Note that as a functor, E(n) is a right Kan extension of its restriction to {m} ⊆ N(Z)op, so for
any filtered spectrum X we have a canonical equivalence

Map
Rep(Z)(X,E(n)) ≃X∨

n .
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Writing S = lim←ÐnE(−n), we obtain an equivalence Map
Rep(Z)(X,S) ≃ X∨

∞, where X∞ =
limÐ→nXn. Using the fiber sequences

j(−n) → S → E(1 − n),
we obtain equivalences

(X∨)n ≃ Map
Rep(Z)(j(n),X

∨)
≃ Map

Rep(Z)(j(n) ⍟X; j(0))
≃ Map

Rep(Z)(X, j(−n))

≃ fib(X∨
∞ →X∨

1−n).
Remark 5.4.5. Let X be a filtered spectrum and let X∨ be the weak dual of X in the ∞-
category Rep(Z). It follows from Example 5.4.4 that the associated graded spectrum of X∨ is
given by

gr(X∨)n = cofib((X∨)n+1 → (X∨)n)
≃ fib(X∨

−n →X∨
1−n)

≃ cofib(X1−n →X−n)∨

≃ gr(X)∨n.
It is not difficult to see that this identification is induced by the symmetric monoidal structure
on the functor gr ∶ Rep(Z) → Rep(Zds): in other words, the associated graded functor gr
commutes with (weak) duality.

Construction 5.4.6. Composition with the functor Σ∞
+ ∶ S → Sp induces a symmetric monoidal

functor
Sfilt → Fun(N(Z),Sp) ≃ Fun(N(Z)op,Sp) = Rep(Z).

Composing this functor with the weak duality functor Rep(Z)op → Rep(Z), we obtain a lax

symmetric monoidal functor ψ ∶ (Sfilt)op → Rep(Z).
Remark 5.4.7. Using the description of the duality functor on Rep(Z) given in Example 5.4.4,
we see that ψ can be described concretely by the formula

ψ({Xn}n∈Z)m = (Σ∞X/Xm−1)∨,
where X/Xm−1 denotes the cofiber X ∐Xm−1 ∗. It follows that the associated graded spectrum
is given by

(grψ({Xn}n∈Z))m = Σ∞(Xm/Xm−1)∨.
Example 5.4.8. Let C denote the filtered space {CPn}n∈Z. For each n ≥ 0, the cofiber
Cn/Cn−1 can be identified with the sphere S2n. It follows that the associated graded spectrum
of ψ(C) is given by

gr(ψ(C))n ≃
⎧⎪⎪⎨⎪⎪⎩

S−2n if n ≥ 0

0 otherwise.

Since the functor ψ is lax symmetric monoidal, Construction 5.2.11 supplies the graded
spectrum gr(ψ(C)) of Example 5.4.8 with the structure of a graded E2-algebra. We can now
state the main result of this section:

Proposition 5.4.9. Let C = {CPn} be as in Example 5.4.8. Then there is a canonical equiv-
alence of graded E2-rings gr(ψ(C)) ≃ S[β], where S[β] is the graded E2-algebra introduced in
§3.4.
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Proof. Let S[t] be the E∞-algebra in Rep(Zds) described in Notation 3.1.4: that is, the image
of the unit object of Rep(Z) under the forgetful functor G ∶ Rep(Z) → Rep(Zds). Let F be left
adjoint to G (given by left Kan extension along the inclusion (Zds)op ↪ N(Z)op ), so that S[t]
is the image of the unit object under the composition functor

Rep(Z) G→ Rep(Zds) F→ Rep(Z) gr→ Rep(Zds).
Note that the restriction map g ∶ Sfilt → ∏n∈Z S admits a left adjoint f (given by left Kan
extension along the inclusion Zds ↪ N(Z)) which fits into a commutative diagram

Sfilt

��

g // ∏n∈Z S
f //

��

Sfilt

��
Rep(Z) G // Rep(Zds) F // Rep(Z)

where the vertical maps are given by levelwise composition with the functor Σ∞
+ (together with

the identification of N(Z) with N(Z)op). It follows that S[t] can be identified with the image

of the unit object of Sfilt under the (lax symmetric monoidal) composite functor

Sfilt g→ ∏
n∈Z
S f→ Sfilt Σ∞

+→ Rep(Z) gr→ Rep(Zds).

Since unit object 1 of Sfilt is the filtered space given by the formula

1(n) =
⎧⎪⎪⎨⎪⎪⎩

∗ if n ≥ 0

∅ if n < 0,

an easy calculation gives an identification (f ○ g)(1) ≃ A of E∞-algebras of Sfilt, where A is the
commutative algebra described in §5.3. We may therefore write S[t] ≃ gr(Σ∞

+ A). The unique
augmentation ε0 ∶ S[t] → S in CAlg(Rep(Zds)) can be obtained by applying the symmetric

monoidal functor gr ○ψ0 to the augmentation A→ 1 in Sfilt.

Let Bar(2)(S[t]) denote the E2-coalgebra object of Rep(Zds) obtained by applying a 2-
fold bar construction to S[t] (regarded as an augmented E2-algebra in Rep(Zds). Since both

Σ∞
+ ∶ Sfilt → Rep(Z) and gr ∶ Rep(Z) → Rep(Zds) are symmetric monoidal functors which

preserve small colimits, Theorem 5.3.1 supplies an equivalence of E2-coalgebras

Bar(2)(S[t]) ≃ Bar(2)(gr(Σ∞
+ A)) ≃ gr(Σ∞

+ Bar(2)(A))) = gr(Σ∞
+ C).

Remark 5.4.5 implies that we can identify the graded algebra gr(ψ(C)) with the dual of

gr(Σ∞
+ C) ≃ Bar(2)(S[t]). Applying the results of §H.5.2.5, we see that the E2-algebra gr(ψ(C))

can be identified with the Koszul dual of S[t]: that is, gr(ψ(C)) is a final object of the ∞-
category of E2-algebra objects B of Rep(Zds) equipped with maps B ⊗ S[t] → S (note that
compatibility with ε0 is automatic, since the mapping space MapAlgE2

(Rep(Zds))(S[t], S) is con-

tractible). Using the results of §H.4.8.5, we can instead regard gr(ψ(C)) as universal among
those E2-algebra objects B of Rep(Zds) for which there is a monoidal functor

Rep(Z) ⊗RModB(Rep(Zds)) → Rep(Zds)
extending the associated graded functor gr ∶ Rep(Z) → Rep(Zds) of Proposition 3.2.1; here the
tensor product is formed in the ∞-category ModRep(Zds)(PrL) of locally graded presentable
stable ∞-categories. This is equivalent to the data of a colimit-preserving monoidal functor

RModB(Rep(Zds)) → ABModA(Rep(Z))
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(see Variant 3.3.8), which are classified by morphisms B → S[β] of E2-algebras in Rep(Zds). �

5.5. A Geometric Model for Φ. Our goal in this section is to prove Theorem 5.1.14, which
asserts that the diagram of E2-monoidal functors

Zds
≥0

��

ρ // Pic(S)

��
Zds // Rep(Zds) Φ [r]// Sp

commutes up to (canonical) homotopy. First, we need to introduce a bit of terminology.

Notation 5.5.1. Let Topgr
∗ denote the full subcategory of the product ∏n∈Z Top∗ spanned by

those sequences of pointed spaces {Xn}n∈Z such that Xn ≃ ∗ for n ≪ 0. We will regard Topgr
∗

as a symmetric monoidal category with the tensor product given by

{Xi}i∈Z ⊗ {Yj}j∈Z = { ⋁
i+j=n

Xi ∧ Yj}n∈Z.

There is an evident symmetric monoidal functor

gr ∶ Topfilt → Topgr
∗

which is given on objects by the formula

gr({Xn}n≥0)m =Xm/Xm−1.

Remark 5.5.2. There is an evident lax symmetric monoidal functor

ψgr ∶ N(Topgr
∗ )op → Rep(Zds),

given on objects by the formula

ψgr({Xn}n∈Z)m = Σ∞(Sing(Xm))∨.

It is not hard to see that this functor fits into a commutative diagram of lax symmetric monoidal
functors

N(Topfilt)op ψ //

gr

��

Rep(Z)

gr

��
N(Topgr

∗ )op
ψgr // Rep(Zds),

where ψ is as in Construction 5.4.6.

Let C be the O-coalgebra object of Topfilt described in Construction 5.2.11. We let C+

denote the O[Z≥0]-coalgebra in Topfilt given by the formula

C+(D,m)n = C(D)n−m = Symn−m(Dc).

In other words, C+ carries each color (D,m) to the filtered space

Sym0(Dc) ↪ Sym1(Dc) ↪ Sym2(Dc) ↪ ⋯.

where the filtration begins in degree −m. The associated graded coalgebra grC+ is then given
by the formula

(grC+(D,m))n = Symn−m(D)c ∈ Top∗ .
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Let T be the O[Z≥0]-coalgebra of Construction 5.1.12. Using the commutative diagram of
Remark 5.5.2, we deduce that (Σ∞T )∨ ∈ AlgO[Z≥0](Sp) is equivalent to the image of C+ under
the composition of lax symmetric monoidal functors

N(Topfilt)op → (Sfilt)op ψ→ Rep(Z) gr→ Rep(Zds) e→ Sp,

where e is given by evaluation at 0 ∈ Z. Combining this observation with Proposition 5.4.9, we
obtain the following:

Lemma 5.5.3. Let B ∈ AlgO[Z≥0](Rep(Zds)) be the algebra given on objects by the formula

B(D,n) = S[β](D) ⊗ j(−n);

here we abuse notation by identifying S[β] with the corresponding O-algebra object of Rep(Zds).
Then the image of B under the lax symmetric monoidal evaluation functor

Rep(Zds) → Sp

X ↦X0

corresponds, under the equivalence of Proposition 5.1.8, to the E2-monoidal functor Zds
≥0 → Sp

obtained by composing ρ with Spanier-Whitehead duality.

Notation 5.5.4. For any E2-algebra R ∈ AlgE2
(Rep(Zds)), the functor

X ↦Map(X,R)

determines a lax E2-monoidal functor from Rep(Zds)op to Sp, which we will denote by θR. Note
that θR is a covariant functor of R.

If B is as in Lemma 5.5.3, then we have

B(D,n)0 ≃ Map
Rep(Zds)(j(0), S[β](D) ⊗ j(−n))

≃ Map
Rep(Zds)(j(n), S[β](D))

≃ θS[β](j(n))(D).

Consequently, Lemma 5.5.3 can be reformulated as follows:

Lemma 5.5.5. The composition of ρ with Spanier-Whitehead duality is homotopic (as a lax
E2-monoidal functor) to the composition

(Zds
≥0)op j→ Rep(Zds)

θS[β]Ð→ Sp .

Similarly, we can use Notation 5.5.4 to reformulate Proposition 3.5.11:

Lemma 5.5.6. The composition

Rep(Zds)op ΦÐ→ Spop ∨→ Sp

is equivalent, as a lax E2-monoidal functor, to the map θS[β±1].

Proof of Theorem 5.1.14. Since the functors Φ ○ j and ρ both take values in finite spectra, it
will suffice to show that they are equivalent (on Zds

≥0) after applying Spanier-Whitehead duality.
By virtue of Lemmas 5.5.5 and 5.5.6, we are reduced to proving that the functors

n↦Map
Rep(Zds)(j(n), S[β]) n↦Map

Rep(Zds)(j(n), S[β
±1])
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are equivalent (as lax E2-monoidal functors from (Zds
≥0)op to Sp). The localization map S[β] →

S[β±1] induces a lax E2-monoidal natural transformation from the left hand side to the right
hand side. To show that it is an equivalence, it suffices to observe that the natural map

S[β]n → S[β±1]n ≃ lim←Ð
m

Σ2mS[β]n+m

is an equivalence for n ≥ 0, which follows from the description of S[β] given in Proposition
3.4.5. �

6. A Model for Bott Periodicity

Let K denote the (periodic) complex K-theory spectrum. For every finite CW complex X,
the abelian group K0(X) can be identified with the Grothendieck group of complex vector
bundles on X. In particular, every complex vector bundle E on X determines an element
[E] ∈ K0(X). Let O(1) denote the (holomorphic) complex line bundle on S2 = CP1. Then
[O(1)]−1 can be regarded as an element of the group β ∈K0

red(S2) ≃ π2K. The celebrated Bott
periodicity theorem asserts that multiplication by β induces an equivalence from the spectrum
K to Ω2K.

The zeroth space of K is given by Ω∞K = Z×BU. Bott periodicity then supplies a canonical
homotopy equivalence of spaces

(Z ×BU) → Ω2(Z ×BU).
In fact, this is a map of infinite loop spaces. In order to establish Theorem 1.1.1, we will
need a concrete understanding of the Bott periodicity map as a map of 2-fold loop spaces.
More precisely, let us regard the disjoint union ∐n≥0 BU(n) as an E∞-space and let us identify
Z×BU with its group completion. For every positive integer m, we can identify the m-fold bar
construction

Bar(m)(∐n≥0 BU(n)) ≃ Bar(m)(Z ×BU)
with the m-connective cover τ≥m(Ω∞−mK). Using Bott periodicity, we obtain homotopy equiv-
alences of pointed spaces

Bar(2)(∐n≥0 BU(n)) ≃ τ≥2(Ω∞−2K)
β≃ τ≥2(Ω∞K)
≃ τ≥2(Z ×BU)
≃ BU .

Let us denote the composite map by β, and refer to it as the Bott map.
Our goal in this section is to give an explicit geometric construction of β. The main obstacle

is that the E2-structures on the spaces ∐n≥0 BU(n) and Ω2(Z×BU) are of very different natures:
in the first case, the E2-structure comes from the formation of direct sums of complex vector
spaces, and in the second it comes the description of Ω2(Z × BU) as a 2-fold loop space.
Consequently, the concrete description of the map Z×BU→ Ω2(Z×BU) given above (obtained
by tensor product with O(1)) is not immediately useful for describing the delooping β. We will
instead proceed indirectly in two steps:

(a) In §6.1 we show that the Bott map β is characterized (up to a scalar factor) by the
fact that it “commutes” (up to homotopy) with the multiplicative action of BU(1)
(Proposition 6.1.1).

(b) In §6.5, we give an a priori unrelated construction of a map

B ∶ Bar(2)(∐n≥0 BU(n)) → Z ×BU,
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which commutes with the action of BU(1). To make this construction explicit, we will
need to choose particular models for the space Z ×BU (which we describe in §6.2) and
for the two-fold bar construction (which we describe in §6.4, using some notation which
we establish in §6.3).

It will then follow from (a) that we have B = k β for some integer k; the proof that k = 1
will be given in §7 (see Corollary 7.2.3).

6.1. Abstract Characterization of the Bott Map. The formation of tensor products of
complex vector spaces determines an action of the space BU(1) ≃ CP∞ on the disjoint union
∐n≥0 BU(n). Since tensor products distribute over direct sums, this action is given by a map of
spaces

BU(1) →MapAlgE∞
(∐n≥0 BU(n),∐n≥0 BU(n)).

It follows that BU(1) also acts on the group completion Z × BU, its identity component BU,

and the 2-fold bar construction Bar(2)(∐n≥0 BU(n)). Since the Bott map β ∶ K → Ω2K is a
map of K-modules, it is equivariant with respect to the action of BU(1): in particular, it gives
a homotopy commutative diagram

BU(1) ×Bar(2)(∐n≥0 BU(n)) id×β //

a

��

BU(1) ×BU

��
Bar(2)(∐n≥0 BU(n)) β // BU .

This is almost sufficient to characterize the Bott map, up to homotopy:

Proposition 6.1.1. Suppose that θ ∶ Bar(2)(∐n≥0 BU(n)) → Z × BU is a map of spaces for
which the diagram

BU(1) ×Bar(2)(∐n≥0 BU(n)) id×θ //

a

��

BU(1) × (Z ×BU)

��
Bar(2)(∐n≥0 BU(n)) θ // Z ×BU .

commutes up to homotopy. Then γ is homotopic to an integral multiple of the Bott map β.

Proof. Since β is a homotopy equivalence, we can assume without loss of generality that θ
factors as a composition

Bar(2)(∐n≥0 BU(n)) β→ BU
γ→ Z ×BU .

Let ι denote the canonical inclusion of BU into Z×BU, and let us abuse notation by identifying
γ and ι with the classes that they represent in the abelian group K0(BU). We wish to prove
that γ is an integral multiple of ι.

Let KQ denote the rationalization of complex K-theory. For each integer n ≥ 0, let ιn and
γn denote the images of ι and γ in the group K0

Q(BU(n)). We will prove the following:

(∗) For each n > 0, there exists a rational number q such that γn = qιn in K0
Q(BU(n)).

Since ιn is a nonvanishing element of the vector space K0
Q(BU(n)) for n > 0, it follows that the

rational number q appearing in (∗) is independent of n. Note that the image of ι under the
composite map

K0(BU) →K0(BU(1)) =K0(CP∞) →K0(CP1) ≃ π0K ⊕ π2K
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is equal to the Bott class β ∈ π2K. Since the map K0(CP1) →K0
Q(CP1) is injective, it follows

that the image of γ in K0(CP1) is given by the product qβ, from which it follows that q is an
integer. Since the map

K0(BU) → lim←ÐK
0
Q(BU(n))

is injective, we conclude that γ = qι as desired.
It remains to prove (∗). It follows from our hypothesis on θ that the diagram

BU(1) ×BU

��

id×γ // BU(1) × (Z ×BU)

��
BU

γ // Z ×BU

commutes up to homotopy, where the vertical maps are given by the multiplication on K-
theory. For each complex vector bundle E on a space X, let [E] denote the associated element
of K0(X). Let En denote the tautological vector bundle on BU(n) and let L denote the
tautological line bundle on BU(1). Then K0

Q(BU(n)) can be identified with the power series

ring Q[[x1, . . . , xn]], where each xi is obtained by applying the Adams operation ψi to the
class [En] − n. Under this identification, γn corresponds to some power series f(x1, . . . , xn).
Invoking the homotopy commutativity of the above diagram (after applying the canonical map
K0(BU(1) ×BU) →K0

Q(BU(1) ×BU(n))), we obtain the relation

f(x1, . . . , xn)[L] = f(x1[L], x2[L]2, . . . , xn[L]n)

in the power series ring Q[[t, x1, . . . , xn]] ≃ K0
Q(BU(1) ×BU(n)), where t = [L] − 1. For every

sequence of integers e1, . . . , en ≥ 0, let ce1,...,en denote the coefficient xe11 x
e2
2 . . . xenn in the power

series f(x1, . . . , xn). Extracting coefficients, we obtain the equation

ce1,...,en(1 + t) = ce1,...,en(1 + t)e1+2e2+⋯+nen

in the power series ring Q[[t]]. In particular, the coefficient ce1,...,en must vanish unless e1 = 1
and ei = 0 for i > 1. It follows that we have f(x1, . . . , xn) = qx1 = qιn for some rational number
q ∈ Q, which completes the proof of (∗). �

6.2. The Homotopy Type Z ×BU. Let VectC denote the category whose objects are finite-
dimensional complex vector spaces and whose morphisms are C-linear maps. We let Vect≃C
denote the subcategory of VectC whose morphisms are C-linear isomorphisms. We will regard
Vect≃C as a topologically enriched category: for every pair of complex vector spaces V and
W , we endow IsoC(V,W ) = HomVect≃C

(V,W ) with the topology determined by its inclusion

as a subspace of the vector space HomC(V,W ) of linear maps from V to W . Let N(Vect≃C)
denote the homotopy coherent nerve of Vect≃C; it is a Kan complex (since every morphism in
Vect≃C is invertible) whose geometric realization is homotopy equivalent to the disjoint union

∐n≥0 BU(n). Our goal in this section is to give an analogous description of the space Z×BU ≃
Ω∞K obtained from ∐n≥0 BU(n) by group completion. Roughly speaking, the idea is to allow
pairs of vector spaces (V,W ) which represent the “formal difference” W − V .

Construction 6.2.1. We define a category Vect±C as follows:

● The objects of Vect±C are pairs (V,W ), where V and W are finite-dimensional complex
vector spaces.

● A morphism from (V,W ) to (V ′,W ′) in Vect±C is given by a triple (f, g,U) where
f ∶ V ↪ V ′ and g ∶W ↪W ′ are injective C-linear maps and U ⊆ V ′ ⊕W ′ is a subspace
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with the property that the maps

f ⊕ π1∣U ∶ V ⊕U → V ′

g ⊕ π2∣U ∶W ⊕U →W ′

are isomorphisms; here π1 ∶ V ′ ⊕W ′ → V ′ and π2 ∶ V ′ ⊕W ′ →W ′ denote the projection
maps onto the first and second factor, respectively.

● Given a triple of objects (V,W ), (V ′,W ′), (V ′′,W ′′) ∈ Vect±C, a morphism (f, g,U)
from (V,W ) to (V ′,W ′), and a morphism (f ′, g′, U ′) from (V ′,W ′) to (V ′′,W ′′), the
composition of (f ′, g′, U ′) with (f, g,U) is defined to be the triple

(f ′ ○ f, g′ ○ g,U ′ + Im(U)),
where Im(U) denotes the image of U under the injective linear map

f ′ ⊕ g′ ∶ V ′ ⊕W ′ → V ′′ ⊕W ′′.

For every pair of objects (V,W ), (V ′,W ′) ∈ Vect±C, we regard the set of morphisms

HomVect±
C
((V,W ), (V ′,W ′))

as a subset of the product

HomC(V,V ′) ×HomC(W,W ′) ×Grd(V ′ ⊕W ′),
where Grd(V ′ ⊕W ′) denotes the Grassmannian parametrizing subspaces of V ′ ⊕W ′ having
dimension d = dim(V ′)−dim(V ). We will endow HomVect±

C
((V,W ), (V ′,W ′)) with the subspace

topology. The composition law on Vect±C is continuous with respect to these topologies, so we
can regard Vect±C as topologically enriched category. We will denote the homotopy coherent
nerve of Vect±C by N(Vect±C).

Remark 6.2.2. We will think of objects (V,W ) ∈ Vect±C as “formal differences” W − V of
finite-dimensional vector spaces V and W . Note that any morphism (V,W ) → (V ′,W ′) in
Vect±C supplies isomorphisms

V ′ ≃ V ⊕U W ′ ≃W ⊕U
for some finite-dimensional vector space U , so that the “formal differences” W ′ −V ′ and W −V
should be identified.

Remark 6.2.3. The construction W ↦ (0,W ) induces an equivalence from the topologically
enriched category Vect≃C to the full subcategory of Vect±C spanned by those objects (V,W )
where V ≃ 0. In particular, we obtain a natural map of simplicial sets

N(Vect≃C) → N(Vect±C),
where the left hand side is homotopy equivalent to ∐n≥0 BU(n).

Warning 6.2.4. The simplicial set N(Vect±C) is an ∞-category, but it is not a Kan complex
(unlike the simplicial set N(Vect≃C) ).

Remark 6.2.5. Let (V,W ) and (V ′,W ′) be objects of Vect±C. There are no morphisms from
(V,W ) to (V ′,W ′) in Vect±C unless dim(V ′) − dim(V ) = dim(W ′) − dim(W ) ≥ 0. If this condi-
tions is satisfied, then the mapping space MapVect±

C
((V,W ), (V ′,W ′)) is acted on transitively

by the product GL(V ′) ×GL(W ′); moreover, the stabilizer of any morphism

(f, g,U) ∶ (V,W ) → (V ′,W ′)
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can be identified with GL(U) (embedded diagonally in the product GL(V ′) × GL(W ′)). In
particular, there is a homeomorphism

MapVect±
C
((V,W ), (V ′,W ′)) ≃ (GL(V ′) ×GL(W ′))/GLn(C).

where n = dim(V ′) − dim(V ) = dim(W ′) − dim(W ).

Remark 6.2.6. The topologically enriched category Vect±C admits a symmetric monoidal struc-
ture, given on objects by the construction

(V,W ), (V ′,W ′) ↦ (V ⊕ V ′,W ⊕W ′).
Consequently, we can view N(Vect≃C) as a symmetric monoidal ∞-category.

We can now state the main result of this section:

Proposition 6.2.7. The identification N(Vect≃C) ≃ ∐n≥0 BU(n) extends to a weak homotopy
equivalence N(Vect±C) ≃ Z ×BU.

Proof. For each integer d, let Vect
(d)
C denote the full subcategory of Vect±C spanned by those

pairs (V,W ) where dim(W ) − dim(V ) = d. Then N(Vect±C) is given by the disjoint union

∐d∈Z N(Vect
(d)
C ). We will show that each of the simplicial sets N(Vect

(d)
C ) is weakly homotopy

equivalent to BU.
Let us now regard d as fixed. We define a category C as follows:

● The objects of C are finite-dimensional complex vector spaces having dimension ≥ d.
● If V and W are finite-dimensional complex vector spaces, a morphism from V to W in
C is an injective linear map f ∶ V →W together with an ordered collection of elements
w1, . . . ,wn ∈W whose images form a basis for the quotient coker(f) =W /f(V ).

● Given morphisms (f, v1, . . . , vm) ∶ U → V and (g,w1, . . . ,wn) ∶ V → W of C, we define
their composition to be the morphism

(g ○ f, g(v1), . . . , g(vm),w1, . . . ,wn) ∶ U →W.

We will regard C as a topologically enriched category and denote its homotopy coherent nerve
by N(C). Note that the construction V ↦ dim(V ) determines a left fibration of simplicial sets
ψ ∶ N(C) → N(Z≥d) whose fiber over an integer n can be identified with the classifying space
BGLn(C) ≃ BU(n), so that N(C) is weakly homotopy equivalent to BU.

The construction V ↦ (Cdim(V )−d, V ) determines a functor C → Vect
(d)
C . We claim that the

induced map of ∞-categories N(C) → N(Vect
(d)
C ) is left cofinal. To prove this, we must show

that for each object (V,W ) ∈ Vect
(d)
C , the fiber product

D = N(C) ×
N(Vect

(d)
C

) N(Vect
(d)
C )(V,W )/

is weakly contractible. Note that ψ induces a left fibration ψ′ ∶ D → Z≥d, so that D is weakly
homotopy equivalent to the homotopy colimit of the diagram n ↦ ψ′−1{n}. Unwinding the
definitions, we see that ψ′−1{n} can be identified with the quotient of the mapping space
MapVect±

C
((V,W ), (Cn−d,Cn)) by the (free) action of the general linear group GLn(C). Using

Remark 6.2.5, for n ≥ dim(V ) we obtain a homotopy equivalence

ψ′−1{n} ≃ GLn−d(C)/GLn−dim(V )(C).

It follows that ψ′−1{n} is 2(n−dim(V ))-connected, so that Dgpd ≃ limÐ→n ψ
′−1{n} is contractible.

Since the map N(C) → N(Vect
(d)
C ) is left cofinal, it induces a homotopy equivalence from

N(C)gpd ≃ BU to N(Vect
(d)
C )gpd; let us regard this homotopy equivalence as a map ιd ∶ BU →
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N(Vect±C)gpd. If d ≥ 0, then the functor C → Vect
(d)
C carries the full subcategory of C spanned

by vector spaces of dimension d into the full subcategory Vect≃C ⊆ Vect±C, so that the diagram

BU(d) //

��

BU

ιd

��
N(Vect≃C) // N(Vect±C)gpd

commutes up to homotopy. Passing to the disjoint union as d varies, we obtain a homotopy
commutative diagram

∐d≥0 BU(d) //

��

BU×Z

��
N(Vect≃C) // N(Vect±C)gpd

where the vertical maps are homotopy equivalences. �

6.3. Digression: Topological Categories. In §6.2, we proved that the codomain Z × BU
of the Bott map β can be represented (up to weak homotopy equivalence) as the homotopy
coherent nerve of a topologically enriched category Vect±C (Proposition 6.2.7). In §6.5, we will
use this description to construct a map

B ∶ Bar(2)(∐n≥0 BU(n)) → Z ×BU

which we will later show to be homotopic to β. Unfortunately, it is not so easy to realize the
domain of the map B as the homotopy coherent nerve of a topologically enriched category.
Instead, it will be convenient to consider the following more general notion:

Definition 6.3.1. A topological category is category C in which the collection of objects Ob(C)
and the collection of morphisms Mor(C) have been equipped with topologies for which the source
and target functions define continuous maps Mor(C) → Ob(C), the formation of identity maps
is given by a continuous function Ob(C) → Mor(C), and the composition law Mor(C) ×Ob(C)
Mor(C) →Mor(C) is continuous.

If C is a topological category, we let N●(C) denote the simplicial set given by the nerve of the
underlying discrete category: that is, the simplicial set whose n-simplices are given by strictly
commutative diagrams

C0 → C1 → ⋯→ Cn

in the category C. The topologies on Ob(C) and Mor(C) determine topologies on the sets Nn(C),
which allow us to regard N●(C) as a simplicial topological space. We let Sing● N●(C) denote
the simplicial Kan complex obtained by levelwise application of the singular complex functor
Sing● ∶ Top → Set∆. Let ∣Sing● N●(C)∣ denote the geometric realization of this simplicial Kan
complex: that is, the simplicial set whose n-simplices are given by SingnNn(C).

Warning 6.3.2. Let C be a category enriched in topological spaces. We can (and will) identify
C with a topological category for which the space of objects Ob(C) is equipped with the discrete
topology. We will use the notation N(C) to denote the homotopy coherent nerve of C. This is a
simplicial set (in fact, an ∞-category) rather than a simplicial space, and is different from the
nerve N●(C) of Definition 6.3.1. However, there is a close relationship between the two:

(a) By definition, an n-simplex of the simplicial set N(C) consists of a sequence of ob-
jects X0,X1, . . . ,Xn ∈ C together with a collection of continuous maps ∣N(Pi,j)∣ →
MapC(Xi,Xj), where Pi,j denotes the partially ordered set of subsets of [n] having
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least element i and greatest element j. These maps are required to be compatible in
the sense that the diagrams

∣N(Pi,j)∣ × ∣N(Pj,k)∣

∪
��

// MapC(Xi,Xj) ×MapC(Xj ,Xk)

��
∣N(Pi,k)∣ // MapC(Xi,Xk)

must commute (in the category of topological spaces).
(b) By definition, an n-simplex of the simplicial set ∣Sing● N●(C)∣ consists of a sequence of

objects X0,X1, . . . ,Xn together with continuous maps

∣∆n∣ →MapC(Xi−1,Xi)

for 1 ≤ i ≤ n.

There is a canonical map of simplicial sets ∣Sing● N● C ∣ → N(C), which is given on n-simplies
by carrying data of type (b) to data of type (a) using the maps of partially ordered sets

Pi,j → ∏
i<k≤j

[n]

S ↦ {maxS ∩ [k]}i<k≤j .
This map is always a weak homotopy equivalence of simplicial sets (see [?]).

Notation 6.3.3. Let C be a topological category, and suppose we are given a functor of
topological categories F ∶ C → Vect±C. Then F induces a map

∣Sing● N● C ∣ → ∣Sing● N● Vect±C ∣ ∼→ N(Vect±C) ≃ Z ×BU,

which determines an element of the abelian group K0(∣Sing● N● C ∣). We will denote this element
by [F ].

The following result will be needed in §7.3:

Proposition 6.3.4. Let C be a topological category. Suppose that we are given topological
functors F ′, F,F ′′ ∶ C → Vect±C which fit into an exact sequence

0→ F ′ → F → F ′′ → 0

in the following sense:

(a) For every object C ∈ C, if we set

F ′(C) = (V ′
C ,W

′
C) F (C) = (VC ,WC) F ′′(C) = (V ′′

C ,W
′′
C),

then we are given exact sequences of vector spaces

0→ V ′
C → VC → V ′′

C → 0

0→W ′
C →WC →W ′′

C → 0

where the maps depend continuously on the object C (note that since the collection of
objects of Vect±C is equipped with the discrete topology, the constructions

C ↦ V ′
C , VC , V

′′
C ,W

′
C ,WC ,W

′′
C

are locally constant functions on the space of objects of C).
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(b) For every morphism C →D in C, the associated maps

(f ′, g′, U ′) ∶ (V ′
C ,W

′
C) → (V ′

D,W
′
D)

(f, g,U) ∶ (VC ,WC) → (VD,WD)
(f ′′, g′′, U ′′) ∶ (V ′′

C ,W
′′
C) → (V ′′

D ,W
′′
D)

in Vect±C have the property that the diagrams

V ′(C)

f ′

��

// V (C)

f

��

// V ′′(C)

f ′′

��
V ′(D) // V (D) // V ′′(D)

W ′(C)

g′

��

// W (C)

g

��

// W ′′(C)

g′′

��
W ′(D) // W (D) // W ′′(D)

commute, the maps V ′
D ⊕W ′

D → VD ⊕WD → V ′′
D ⊕W ′′

D carry U ′ into U and U into U ′′

(it then follows that the the sequence 0→ U ′ → U → U ′′ → 0 is also exact).

Then [F ] = [F ′] + [F ′′] in the K-group K0(∣Sing● N● C ∣).

Warning 6.3.5. In the situation described in Proposition 6.3.4, the maps F ′ → F and F → F ′′

are usually not natural transformations between functors from C to Vect±C.

Proof of Proposition 6.3.4. The exact sequence of functors 0→ F ′ → F → F ′′ → 0 determines a
topological functor α ∶ C → E , where E is the topological category category whose objects are
pairs of exact sequences

(0→ V ′ → V → V ′′ → 0,0→W ′ →W →W ′′ → 0)
and whose morphisms are given by the type of data described in (b) above. Then the functors
F ′, F , and F ′′ can be identified with G′ ○ α, G ○ α, and G′′ ○ α, where

G′,G,G′′ ∶ E → Vect±C

are the topological functors given on objects by

G′(0→ V ′ → V → V ′′ → 0,0→W ′ →W →W ′′ → 0) = (V ′,W ′)
G(0→ V ′ → V → V ′′ → 0,0→W ′ →W →W ′′ → 0) = (V,W )

G′′(0→ V ′ → V → V ′′ → 0,0→W ′ →W →W ′′ → 0) = (V ′′,W ′′).
It will therefore suffice to establish the identity [G] = [G′] + [G′′] in K0(∣N● Sing● E ∣).

There is an evident topological functor γ ∶ Vect±C ×Vect±C → E , given on objects by

γ((V ′,W ′), (V ′′,W ′′)) = (0→ V ′ → V ′ ⊕ V ′′ → V ′′ → 0,0→W ′ →W ′ ⊕W ′′ →W ′′ → 0).
We have equaltiies of topological functors

G′ ○ γ = π1 G ○ γ = ⊕ G′′ ○ γ = π2,

where π1, π2 ∶ Vect±C ×Vect±C → Vect±C are projection onto the first and second factor respec-
tively, and ⊕ denotes the functor from Vect±C ×Vect±C to Vect±C given by the direct sum. We
therefore tautologically have the identity

[G ○ γ] = [G′ ○ γ] + [G′′ ○ γ]
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in the K-group K0(∣Sing● N●(Vect±C ×Vect±C)∣). Consequently, to complete the proof, it will
suffice to show that the functor γ induces a weak homotopy equivalence of simplicial sets

∣Sing● N●(Vect±C ×Vect±C)∣ → ∣Sing● N● E ∣.
To prove this, it is convenient to factor γ as a composition

Vect±C ×Vect±C
γ′→ D γ′′→ E ,

where D is a topological category whose objects are pairs of exact sequences

0→ V ′ → V → V ′′ → 0

0→W ′ →W →W ′′ → 0

together with chosen sections of the projection maps V → V ′′ and W → W ′′. We claim that
the maps γ′ and γ′′ both induce weak homotopy equivalences at the level of classifying spaces.
We conclude by applying following pair of observations:

● For each integer m ≥ 0, the functor γ′ induces a weak homotopy equivalence of simplicial
sets

SingmN●(Vect±C ×Vect±C) → SingmN●(D).
This follows from the fact that the associated map

Singm(Vect±C ×Vect±C) → Singm(D)
is an equivalence of ordinary categories.

● For each integer n ≥ 0, the functor γ′′ induces a homotopy equivalence of Kan complexes

Sing● Nn(D) → Sing● Nn(E).
This follows from the fact that the map of topological spaces Nn(D) → Nn(E) is a fiber
bundle whose fibers are affine spaces.

�

6.4. The Double Bar Construction. For every pointed space X, we can regard the 2-fold
loop space Ω2X as an E2-space. The construction X ↦ Ω2X determines a functor

Ω2 ∶ S∗ → AlgE2
(S).

This functor admits a left adjoint, given by the two-fold bar construction Bar(2) ∶ AlgE2
(S) →

S∗. Our goal in this section is to give an explicit description of this 2-fold bar construction
which will be convenient for our applications in §6.5 and §7. Let us begin by introducing a bit
of terminology.

Definition 6.4.1. Let O denote the colored operad introduced in Definition 5.1.1. We let O⊗

denote the category obtained by applying Construction H.2.1.1.7 to O. In other words, we let
O⊗ denote the nerve of the category whose objects are finite sequences (D1, . . . ,Dm), where
each Di is an open disk in C, where a morphism from (D1,D2, . . . ,Dm) to (D′

1, . . . ,D
′
n) is

given by a map of pointed finite sets α ∶ {1, . . . ,m,∗} → {1, . . . , n,∗} with the property that for
1 ≤ j ≤ n, the disks {Di}α(i)=j are disjoint and contained in D′

j .

A topological O-operad is a topologically enriched category C⊗ equipped with a functor C⊗ →
O⊗ for which the induced map of homotopy coherent nerves q ∶ N(C⊗) → N(O⊗) is a coCartesian
fibration which exhibits N(C⊗) as an ∞-operad. In this case, the map q is classified by an algebra
A ∈ AlgO(Cat∞). We will refer to A as the classifying O-algebra of C⊗. We will say that a
topological O-operad is special if its classifying O-algebra satisfies condition (∗) of Proposition
5.1.5 (so that we can identify A with an E2-algebra object of Cat∞).
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Example 6.4.2. Let C be a topologically enriched category. Suppose that C is equipped with
a symmetric monoidal structure which is compatible with its topological enrichment (that is,
for which the tensor product functor ⊗ ∶ C ×C → C is continuous with respect to the topologies
on the morphism spaces in C). We can then define a topological O-monoidal category O[C]⊗
as follows:

● The objects of O[C]⊗ are finite sequences ((C1,D1), . . . , (Cm,Dm)), where each Ci is
an object of C and each Di ⊆ C is an open disk.

● The space of morphisms from an object

((C1,D1), . . . , (Cm,Dm))
to another object

((C ′
1,D

′
1), . . . , (C ′

n,D
′
n))

in O[C]⊗ is given by the disjoint union

∐
α
∏

1≤j≤n
MapC(⊗α(i)=jCi,C ′

j)

where the coproduct is taken over all morphisms α from (D1, . . . ,Dm) to (D′
1, . . . ,D

′
n)

in the category O⊗.

A topological O-monoidal category of this form is automatically special.

Remark 6.4.3. The inclusion S ↪ Cat∞ admits a left adjoint, which assigns to every ∞-
category C its groupoid completion Cgpd. The groupoid completion Cgpd can be characterized
(up to homotopy equivalence) by the fact that it is a Kan complex equipped with a weak

homotopy equivalence C → Cgpd. Note that the construction C ↦ Cgpd commutes with products;
consequently, if C is an En-monoidal ∞-category for some 0 ≤ n ≤ ∞, then Cgpd can be regarded
as an En-space.

Remark 6.4.4. Since N(Vect±C) is a symmetric monoidal ∞-category, the groupoid comple-
tion N(Vect±C)gpd admits the structure of an E∞-space. The calculation π0 N(Vect±C)gpd ≃ Z
shows that the E∞-structure on N(Vect±C)gpd is grouplike. It follows that the canonical map
∐n≥0 BU(n) ≃ N(Vect≃C) → N(Vect±C)gpd factors through the group completion of ∐n≥0 BU(n),
which is the product Z × BU. It is not difficult to see that the underlying map Z × BU →
N(Vect±C)gpd is the homotopy equivalence constructed in Proposition 6.2.7. We may there-
fore summarize Proposition 6.2.7 as follows: the inclusion of symmetric monoidal ∞-categories
N(Vect≃C) ↪ N(Vect±C) exhibits the groupoid completion of N(Vect±C) as the group completion
of N(Vect≃C).

Construction 6.4.5 (Explicit 2-Fold Bar Construction). We let O○ denote the subcategory
of O⊗ defined as follows:

● An object (D1, . . . ,Dm) ∈ O⊗ belongs to O○ if and only if the disks (D1, . . . ,Dm) are
disjoint.

● A morphism (D1, . . . ,Dm) → (D′
1, . . . ,D

′
n) in O⊗ between objects of O○ is a morphism

in O○ if and only if the map of pointed finite sets α ∶ {1, . . . ,m,∗} → {1, . . . , n,∗} has
the property that if 0 ∈Di, then α(i) ≠ ∗.

Suppose that we are given a functor of topological categories q ∶ C⊗ → O⊗ (here we need not
assume that the topology on the space of objects of C⊗ is discrete). We let Θ(C⊗) denote the
simplicial set

∣Sing● N●(O○ ×O⊗ C⊗)∣.

The significance of Construction 6.4.5 is contained in the following result:
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Proposition 6.4.6. Let C⊗ → O⊗ be a special topological O-monoidal category and let A ∈
AlgE2

(Cat∞) be its classifying algebra. Then the simplicial set Θ(C⊗) is naturally weakly ho-

motopy equivalent to the 2-fold bar construction Bar(2)(Agpd) on the groupoid completion of
A.

To prove Proposition 6.4.6, we note that Warning 6.3.2 supplies a canonical weak homotopy
equivalence

Θ(C⊗) → N(O○ ×O⊗ C⊗).
The simplicial set N(O○ ×O⊗ C⊗) is an ∞-category equipped with a coCartesian fibration q ∶
N(O○ ×O⊗ C⊗) → O○ which is classified by a map A′ ∶ O○ → Cat∞ given by the restriction of the
O-algebra A. Using Proposition T.3.3.4.2, we see that the weak homotopy type of N(O○ ×O⊗ C⊗)
can be identified with the groupoid completion (limÐ→A

′)gpd ≃ limÐ→A
gpd∣N(O○). Consequently,

Proposition 6.4.6 is an immediate consequence of the following more general statement:

Proposition 6.4.7. Let A be an E2-space, which we will identify with a functor from N(O⊗)
to the ∞-category S which satisfies conditions (a) and (b) of Example 5.1.6. Then the two-fold

bar construction Bar(2)(A) is canonically equivalent to the colimit of the functor A∣O○ .

Proof. For each object A ∈ AlgE2
(S) ⊆ Fun(N(O⊗),S), we let F (A) denote the colimit of A∣O○ .

We regard F (A) as a pointed space via the canonical map A(∅) → F (A). The construction
A↦ F (A) determines a functor F ∶ AlgE2

(S) → S∗; we wish to show that this functor coincides
with the 2-fold bar construction.

We first construct a natural transformation of functors F → Bar(2). Recall that the 2-fold
bar construction Bar(2) ∶ AlgE2

(S) → S∗ is left adjoint to the construction Ω2 ∶ S∗ → AlgE2
(S).

If (X,x) is a pointed Kan complex, we can identify Ω2X with the functor N(O⊗) → S which
assigns to each n-tuple of disks (D1, . . . ,Dn) the product ∏1≤i≤nMap∗(Sing(Dc

i ),X)), where
Map∗(Sing(Dc

i ),X) denotes the simplicial set of pointed maps from the singular simplicial
set of Dc

i into X (here Dc
i ≃ S2 denotes the 1-point compactification of Di). For each tuple

(D1, . . . ,Dn) ∈ O⊗, the construction

(f1, . . . , fn) ↦
⎧⎪⎪⎨⎪⎪⎩

fi(0) if 0 ∈Di

x otherwise

determines a map Ω2(X)(D1, . . . ,Dn) → X, which is functorial with respect to morphisms
in O○. We therefore obtain a map of pointed spaces F (Ω2X) → X. Specializing to the case

X = Bar(2)(A) and composing with the unit map A → Ω2 Bar(2)(A), we obtain a map λA ∶
F (A) → Bar(2)(A) which depends functorially on A ∈ AlgE2

(S).
We wish to prove that the map λA is a homotopy equivalence for every E2-space A. Note

that the fully faithful embedding AlgE2
(S) ↪ Fun(N(O⊗),S) preserves sifted colimits, from

which we immediately deduce that the functor F commutes with sifted colimits. The 2-fold

bar construction Bar(2) commutes with all colimits (since it is a left adjoint). It follows that
the collection of those objects A ∈ AlgE2

(S) for which λA is an equivalence is closed under
sifted colimits. Let Free ∶ S → AlgE2

(S) be a left adjoint to the forgetful functor (which assigns
to every space S the free E2-space Free(S) generated by S). The ∞-category AlgE2

(S) is
generated under sifted colimits by objects of the form Free(S), where S is a finite set. It will
therefore suffice to show that λA is an equivalence in the special case where A = Free(S) for
some finite set S, which we will henceforth assume.

For every Hausdorff topological space X, let X(n) denote the open subset of Xn consisting of
n-tuples (x1, . . . , xn) of distinct points of X. Let ConfnS(X) denote the quotient of Sn×X(n) by
the (free) action of the symmetric group Σn. More informally, ConfnS(X) is the configuration
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space which parametrizes unordered n-tuples of points of X which are labelled by the elements
of S, and we let ConfS(X) denote the disjoint union ∐n≥0 ConfnS(X). Note that the free E2-
algebra A generated by S can be identified with the functor N(O⊗) → S given by

A(D1, . . . ,Dm) = ∏
1≤i≤m

Sing ConfS(Di) ≃ Sing ConfS(∐1≤i≤mDi).

Let J be the subcategory of O○ containing all objects and those morphisms (D1, . . . ,Dm) →
(D′

1, . . . ,D
′
n) for which the underlying map of pointed finite sets α ∶ {1, . . . ,m,∗} → {1, . . . , n,∗}

has the property that α−1{j} has exactly one element for 1 ≤ j ≤ n. Note that the construction

(D1, . . . ,Dm) ↦ ∏1≤i≤m Sing Conf1
S(Di) determines a functor A0 ∶ J → S. We first claim:

(∗) The functor A∣O○ is a left Kan extension of A0 (along the inclusion J ↪ O○).

To prove (∗), we must show that for every object (D1, . . . ,Dm) in O○, we can identify
Conf(D1 ∪ . . . ∪Dm) with the homotopy colimit of the diagram of spaces

limÐ→
D′

1,...,D
′
n

∏
1≤j≤n

Conf1
S(D′

j),

where the colimit is taken over the partially ordered set P of all collections of disjoint disks
D′

1, . . . ,D
′
n which are contained in the union D1 ∪ . . . ∪Dm. Note that each of the products

∏1≤j≤nConf1
S(D′

j) can be identified with the open subset of Conf(D1 ∪ . . . ∪Dm) consisting of
those S-labelled configurations which contain exactly one point belonging to each D′

j . Using

Theorem H.A.3.1, we are reduced to showing that for every point γ ∈ ConfS(D1∪ . . .∪Dm), the

partially ordered set Pγ = {(D′
1, . . . ,D

′
n) ∈ P ∶ γ ∈ ∏1≤j≤nConf1

S(D′
j)} is weakly contractible.

This follows from the observation that the opposite partially ordered set P op
γ is filtered.

It follows from (∗) that we can identify the space F (A) with the colimit

limÐ→
(D1,...,Dm)∈J

A0(D1, . . . ,Dm).

For any Hausdorff topological space X, we can identify Conf1
S(X) with the product S × X.

Using Theorem H.A.3.1 again, we see that for every open set U ⊆ C the colimit limÐ→D⊆U
A0(D)

(taken over the partially ordered set of all disks D contained in U) can be identified with
S × Sing(U) ∈ S. In particular, we can identify the 2-fold suspension Σ2(S+) with the pushout
of the diagram

A0(∅) ← limÐ→
D⊆C−{0}

A0(D) → limÐ→
D⊆C

A0(D),

which is the colimit of the restriction A0∣J 0
where J 0 ⊆ J is the full subcategory spanned by

those tuples (D1, . . . ,Dm) where m ≤ 1. It follows from Proposition H.5.2.3.15 that the 2-fold

bar construction Bar(2)(A) can also be identified with Σ2(S+). Moreover, an analysis of the
proof of Proposition H.5.2.3.15 shows that this identification is given by the composite map

limÐ→
(D1,...,Dm)∈J 0

A0(D1, . . . ,Dm) α→ limÐ→
(D1,...,Dm)∈J 0

A0(D1, . . . ,Dm) λA→ Bar(2)(A).

To complete the proof, it will suffice to show that the map α is a homotopy equivalence. In fact,
we claim that the inclusion J 0 ⊆ J is left cofinal. To prove this, consider an arbitrary tuple
(D1, . . . ,Dm) ∈ J ; we wish to prove that the ∞-category I = J 0 ×J J (D1,...,Dm)/ is weakly
contractible. We consider two cases:

● If one of the disks Di contains 0 ∈ C, then I can be identified with the nerve of the
partially ordered set of all disks D ⊆ C which contain Di; this partially ordered set has
a smallest element (given by the disk Di itself) and is therefore weakly contractible.
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● Suppose none of the disks Di contains 0 ∈ C. For 1 ≤ i ≤m, let Qi denote the partially
ordered set of disks D ⊆ C which contain Di, and let Q′

i be the subset of Q consisting
of those disks D which do not contain 0. Unwinding the definitions, we see that I is
given by the join

⋁
1≤i≤n

N(Qi) ∐N(Q′
i) N(Q′

i)▷.

It will therefore suffice to show that each N(Qi) ∐N(Q′
i) N(Q′

i)◁ is weakly contractible.

This follows from the fact that N(Qi) and N(Q′
i) are individually weakly contractible

(since Qi and Q′
i both have a smallest element given by the disk Di).

�

6.5. A Model for the Bott Map. Our goal in this section is to construct a map

B ∶ Bar(2)(∐n≥0 BU(n)) → Z ×BU,

and to prove that it is homotopic to a constant multiple k β of the Bott map β (Remark 6.5.6).
Our first goal is to describe the domain of B in a convenient way. We have already noted that
the space ∐n≥0 BU(n) can be modeled explicitly by the homotopy coherent nerve N(Vect≃C).
However, it will be convenient to use a slightly different (but weakly equivalent) simplicial set.

Notation 6.5.1. Let V be a finite-dimensional vector space over C and let End(V ) denote the
vector space of endomorphisms of V . For every subset D ⊆ C, we let EndD(V ) denote the open
subset of End(V ) consisting of those endomorphisms φ ∶ V → V such that every eigenvector of
φ lies in D.

Proposition 6.5.2. Let D ⊆ C be an open disk and let V be a finite-dimensional vector space
over C. Then the subset EndD(V ) ⊆ End(V ) is contractible.

Proof. Without loss of generality, we may assume that 0 ∈ D. Since D is contractible, we can
choose a homotopy h ∶D×[0,1] →D such that h∣D×{0} = idD and h∣D×{1} = 0. Let φ ∈ EndD(V ).
Then V decomposes as a direct sum of generalized eigenspaces V1⊕⋯⊕Vm where each Vi is the
generalized eigenspace for some eigenvalue λi ∈ V . For t ∈ [0,1], let φt be the endomorphism
of V which is given on Vi by φ∣Vi + (h(λi, t) − λi) idVi . It is not difficult to see that φt depends
continuously on t and f , so that the construction (t, φ) ↦ φt determines a homotopy from the
identity map on EndD(V ) to a map EndD(V ) → End{0}(V ). It will therefore suffice to show
that the space End{0}(V ) is contractible. This is clear: for each φ ∈ End{z}(V ), the construction
t↦ tφ determines a continuous path from 0 to φ in End{0}(V ). �

Construction 6.5.3. We define a category (Vect
≃
C)⊗ as follows:

● The objects of (Vect
≃
C)⊗ are finite sequences

((V1,D1, φ1), . . . , (Vm,Dm, φm))

where each Vi is a finite-dimensional vector space over C, each Di is an open disk in
C, and each φi is an endomorphism Vi whose eigenvalues belong to Di.

● A morphism from ((V1,D1, φ1), . . . , (Vm,Dm, φm)) to ((V ′
1 ,D

′
1, φ

′
1), . . . , (V ′

n,D
′
n, φ

′
n))

consists of a map of finite pointed sets α ∶ {1, . . . ,m,∗} → {1, . . . , n,∗} together with a
collection of vector space isomorphisms

fj ∶ ⊕
α(i)=j

Vi → V ′
j
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for which the diagrams

⊕α(i)=j Vi
fj //

⊕φi
��

V ′
j

φ′j

��
⊕α(i)=j Vi

fj // V ′
j

commute.

We regard the collection of objects of (Vect
≃
C)⊗ as equipped with the topology given by its

description as the disjoint union of the spaces

∏
1≤i≤m

EndDi(Vi)

where ((D1, V1), . . . , (Dm, Vm)) ranges over all objects of O[Vect≃C]⊗. Similarly, we regard the

collection of morphisms in (Vect
≃
C)⊗ as endowed with the topology given by its description as

a disjoint union of spaces of the form

( ∏
1≤j≤n

IsoC( ⊕
α(i)=j

Vi, V
′
j )) × ( ∏

1≤i≤m
EndDi(Vi)).

These topologies allow us to view (Vect
≃
C)⊗ as a topological category equipped with a forgetful

functor (Vect
≃
C)⊗ → O⊗.

Remark 6.5.4. There is an evident forgetful functor

(Vect
≃
C)⊗ → O[Vect≃C]⊗,

which induces a map of simplicial sets

Θ(Vect
≃
C)⊗ → Θ(O[Vect≃C]⊗).

It follows immediately from Proposition 6.5.2 that this map is a weak homotopy equivalence.
Using Proposition 6.4.6, we see that Θ(O[Vect≃C]⊗) is canonically weakly homotopy equivalent

to the 2-fold bar construction Bar(2)(∐n≥0 BU(n)).

Construction 6.5.5 (The Bott Map). We define a functor of topological categories

B ∶ O○ ×O⊗(Vect
≃
C)⊗ → (Vect±C)op

as follows:

● On objects, the functor B is given by the formula

B((V1,D1, φ1), . . . , (Vm,Dm, φm)) = ( ⊕
1≤i≤m

Vi, ⊕
1≤i≤m

Vi).

● Suppose we are given a morphism

((V1,D1, φ1), . . . , (Vm,Dm, φm)) → ((V ′
1 ,D

′
1, φ

′
1), . . . , (V ′

n,D
′
n, φ

′
n))

in the categoryO○ ×O⊗(Vect
≃
C)⊗, given by a map of pointed finite sets α ∶ {1, . . . ,m,∗} →

{1, . . . , n,∗} and a collection of C-linear isomorphisms fj ∶ ⊕α(i)=j Vi → V ′
j . We let

B(α,{fj}) denote the morphism

( ⊕
1≤j≤n

V ′
j , ⊕

1≤j≤n
V ′
j ) → ( ⊕

1≤i≤m
Vi, ⊕

1≤i≤m
)

in Vect±C given by the triple (ι, ι,E), where

ι ∶ ⊕
1≤j≤n

V ′
j ↪ ⊕

1≤i≤m
Vi



ROTATION INVARIANCE IN ALGEBRAIC K-THEORY 85

is the direct sum of the isomorphisms {f−1
j }1≤j≤n and E is the graph of the map

⊕
α(i)=∗

φi ∶ ⊕
α(i)=∗

Vi → ⊕
α(i)=∗

Vi

(note that this map is an isomorphism, since all the eigenvalues of φi belong to the disk
Di which is forbidden to contain 0 ∈ C when α(i) = ∗).

Passing to classifying spaces, we obtain a map of simplicial sets

Θ((Vect
≃
C)⊗) → ∣Sing● N●(Vect±C)∣.

We can identify the domain of this map with Bar(2)(∐n≥0 BU(n)) (Remark 6.5.4) and its
codomain with Z × BU (Proposition 6.2.7 and Warning 6.3.2). We therefore obtain a map

of spaces Bar(2)(∐n≥0 BU(n)) → Z ×BU, which we will also denote by B.

Remark 6.5.6. All of the linear-algebraic constructions above are compatible with the for-
mation of tensor products by 1-dimensional complex vector spaces. It follows that the map

B ∶ Bar(2)(∐n≥0 BU(n)) → Z×BU satisfies the hypothesis of Proposition 6.1.1, and is therefore
homotopic to an integral multiple of the Bott map β.

7. Comparing the Geometric and Combinatorial Definitions of φ

In §3.5, we introduced a monoidal functor

φ ∶ Tors(Z) → BPic(S)
which determines an action of the circle group S1 ≃ Tors(Z) on the ∞-category CatSt

∞ of stable
∞-categories. In §4, we proved that the algebraic K-theory functor C ↦ K(C) determines an

S1-equivariant map CatSt
∞ → S, where the circle group acts on CatSt

∞ via φ and trivially on S.
To complete the proof of Theorem 1.1.1, it remains only to show that the monoidal functor φ
is homotopic (as a map of 1-fold loop spaces) to the composition

Tors(Z) ≃ U(1) → U(∞) β→ Ω−1(Z ×BU) JC→ BPic(S),
where β denotes the Bott periodicity map and JC the complex J-homomorphism.

In what follows, it will be convenient to take loop spaces and consider instead the E2-monoidal
functor Φ = Ω(φ) ∶ Zds → Pic(S). In §5, we proved that on nonnegative integers, the functor Φ
could be identified with the E2-map ρ ∶ Zds

≥0 → Pic(S) of Proposition 5.1.13, given informally by

n↦ Σ∞ Symn(D)c

where D ranges over open disks in the complex numbers. In §7.1, we will use this description
to show that the map ρ factors (up to homotopy) through the complex J-homomorphism
JC ∶ Z×BU→ Pic(S): roughly speaking, the idea is that each Symn(D) is a contractible complex
manifold and can therefore be exchanged (without loss of homotopic-theoretic information) for
its tangent space at any point. From this, it will follow that Φ∣Zds

≥0
is homotopic (as a morphism

of E2-spaces) to a composition

Z≥0
α→ Z ×BU

JC→ Pic(S).
Using the Bott periodicity, we can identify α with a map

α ∶ BU(1) ≃ Bar2 Z≥0 → BU .

Our goal will then be to show that α is homotopic to the one induced by the inclusion U(1) ↪ U :
that is, to show that α corresponds to the element [O(1)]−1 ∈K0(BU(1)), where O(1) denotes
the tautological line bundle on BU(1) ≃ CP∞. We will give a proof of this statement in §7.2,
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using our explicit description of Bott periodicity from §6 together with a certain commutative
diagram which we construct in §7.3.

7.1. Complex Disks. Let Vect≃C denote the topologically enriched category whose objects
are finite-dimensional complex vector spaces and whose morphisms are C-linear isomorphisms,
as in §6.2. For every finite-dimensional complex vector space V , let V c denote the one-point
compactification of V . We regard the construction V ↦ V c determines a symmetric monoidal
functor from Vect≃C to the (topologically enriched) category whose objects are pointed spaces
which are homeomorphic to a sphere (with the symmetric monoidal structure given by the
formation of smash products). It follows that the construction V ↦ Σ∞V c can be regarded as
a symmetric monoidal functor from the ∞-category N(Vect≃C)op to the ∞-category Pic(S). We
will denote this functor by

JC ∶ N(Vect≃C) → Pic(S);
it is a model for the complex J-homomorphism.

Note that if V is complex vector space, then the spectrum JC(V ) = Σ∞V c depends only
on the underlying topological space of V , not on its vector space structure. We will use this
observation to enlarge the domain of definition of the functor JC.

Definition 7.1.1. An embeddable complex disk is a complex analytic manifold D which satisfies
the following conditions:

● As a topological space, D is homeomorphic to R2n for some integer n (we will refer to
n as the dimension of D).

● There exists a holomorphic open embedding D ↪Cn.

If D and D′ are embeddable complex disks, we let Emb(D,D′) denote the collection of all
holomorphic open embeddings of D into D′. We will endow Emb(D,D′) with the compact-
open topology. We let DiskC denote the category whose objects are embeddable complex disks
and whose morphisms are holomorphic open embeddings, which we regard as a topologically
enriched category.

Remark 7.1.2. If D and D′ are embeddable complex disks of dimensions n and n′, respectively,
then the Cartesian product D ×D′ is an embeddable complex disk of dimension n + n′. The
formation of products determines a symmetric monoidal structure on the category DiskC which
is compatible with its topological enrichment. Consequently, the homotopy coherent nerve
N(DiskC) inherits the structure of a symmetric monoidal ∞-category.

Every finite-dimensional vector space V can be regarded as an embeddable complex disk.
Moreover, if V and W are finite-dimensional complex vector spaces, then we can regard the
space IsoC(V,W ) of C-linear isomorphisms from V to W as a subspace of the space Emb(W,V )
of holomorphic open embeddings of W into V . Consequently, we have a faithful topologically-
enriched forgetful functor Vect≃C → Discop

C which induces a symmetric monoidal functor of
∞-categories θ ∶ N(Vect≃C) → Discop

C .

Construction 7.1.3. For every embeddable complex disk D, we let Dc denote the one-point
compactificaton of D. The construction D ↦ Σ∞Dc determines a symmetric monoidal functor
from the ∞-category N(Discop

C ) to the ∞-category Pic(S) ⊆ Spop. Since Pic(S) is a Kan

complex, this induces a symmetric monoidal functor from N(DiskC)gpd to Pic(S) which we
will denote by J+C ∶ N(Discop

C )gpd → Pic(S). We will refer to J+C as the enhanced complex
J-homomorphism.

Remark 7.1.4. Note that the composite map

N(Vect≃C) ↪ N(Discop
C )

J+C→ Pic(S)
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agrees with the usual complex J-homomorphism JC.

Remark 7.1.5. Let D ⊆ C be an open disk in the complex plane. For each integer n ≥ 0,
the complex structure on D induces a complex structure on the symmetric power SymnD. We
note that SymnC is biholomorphic to Cn, so that the inclusion D ⊆ C induces a holomorphic
open immersion SymnD ↪Cn and a homeomorphism of D with C induces a homeomorphism
SymnD ≃ R2n. We may therefore regard SymnD as an embeddable complex disk.

The coalgebra T ∈ CoAlgO[Z≥0](Top∗) of Construction 5.1.12 arises from a O[Z≥0]-coalgebra

in the ordinary category Discop
C , or in the ∞-category N(Discop

C ). The image of this coalgebra

in the groupoid completion (Discop
C )gpd satisfies condition (∗) of Proposition 5.1.8, and can

therefore be identified with an E2-monoidal functor ρ0 ∶ Zds
≥0 → N(DiskC)gpd. It follows from

Theorem 5.1.14 that we have a commutative diagram of E2-monoidal functors

Zds
≥0

��

ρ0 // N(Discop
C )gpd

J+C

��
Zds // Rep(Zds) Φ // Pic(S),

where Φ is the E2-monoidal functor of Corollary 3.5.8. More informally: the restriction Φ∣Zds
≥0

factors (as an E2-monoidal functor) through the enhanced complex J-homomorphism J+C.

We can now state the main result of this section:

Proposition 7.1.6. The canonical map θ ∶ N(Vect≃C) → N(Discop
C ) is a weak homotopy equiv-

alence of simplicial sets.

Warning 7.1.7. The functor θ ∶ N(Vect≃C) → N(Discop
C ) is not an equivalence of ∞-categories,

because the ∞-category N(DiskC) is not a Kan complex. For example, there exists an open
embedding from the standard unit disk {z ∈ C ∶ ∣z∣ < 1} to the complex plane C, but there does
not exist an open embedding from C to the standard unit disk.

Remark 7.1.8. Proposition 7.1.6 is equivalent to the assertion that the composite map

N(Vect≃C) θ→ N(Discop
C ) θ′→ N(Discop

C )gpd

is a homotopy equivalence of Kan complexes.

It follows from Proposition 7.1.6 that the enhanced complex J-homomorphism J+C is deter-
mined by the usual J-homomorphism JC (up to contractible choice). In particular, we have
the following:

Corollary 7.1.9. Let Φ ∶ Rep(Zds) → Pic(S) be the E2-monoidal functor of Corollary 3.5.8.
Then the restriction Φ≥0 = Φ∣Zds

≥0
is given by the composition

Zds
≥0

ρ0→ N(Discop
C )gpd ∼← N(Vect≃C) JC→ Pic(S),

where ρ0 is defined in Remark 7.1.5 and the equivalence is supplied by Remark 7.1.8.

The remainder of this section is devoted to the proof of Proposition 7.1.6. First, we need to
introduce an auxiliary notion.

Definition 7.1.10. We will say that an complex disk D of dimension n is small if there exists
a holomorphic open embedding D ↪ Cn whose image is a bounded convex set. Let DiskCsm

denote the the full subcategory of DiskC spanned by the small complex disks.



88 ROTATION INVARIANCE IN ALGEBRAIC K-THEORY

Let M denote the ∞-category

N(DiskCsm) ×Fun({0},N(DiskC)) Fun(∆1,N(DiskC))
whose objects are pairs (φ ∶D0 ↪D) where φ is a holomorphic open embedding of embeddable
complex disks and D0 is small. The construction (φ ∶ D0 ↪ D) ↦ D determines a forgetful
functor β ∶ M → N(DiskC); we let N denote the fiber product M×N(DiskC) N(Vect≃C) whose
objects are pairs (φ ∶ D0 ↪ V ) where D0 is a small complex disk and V is a finite-dimensional
complex vector space. We will deduce Proposition 7.1.6 from the following pair of assertions:

Lemma 7.1.11. The forgetful functor β ∶ M → N(DiskC) is a trivial Kan fibration.

Lemma 7.1.12. The forgetful functor (φ ∶ D0 ↪ V ) ↦ D0 determines a trivial Kan fibration
N → N(DiskCsm).

Proof of Proposition 7.1.6. We have a pullback diagram

N //

��

M

β

��
N(Vect≃C) θ // N(DiskC).

Lemma 7.1.11 implies that the vertical maps are trivial Kan fibrations. Consequently, to prove
that θ is weak homotopy equivalence, it will suffice to show that the inclusion N ↪ M is a
weak homotopy equivalence. Note that the forgetful functor

(φ ∶D0 ↪D) ↦D0

M→ N(DiskCsm)
admits a right adjoint (given on objects by D0 ↦ (idD0 ∶ D0 ↪ D0)) and is therefore a weak
homotopy equivalence. It will therefore suffice to show that the composite map

N ↪M→ N(DiskCsm)
is a weak homotopy equivalence, which follows from Lemma 7.1.12. �

We will deduce Lemmas 7.1.11 and 7.1.12 from the following:

Lemma 7.1.13. Let V and W be complex vector spaces of the same dimension n. Let D
be a bounded convex open subset of V and let D′ be an arbitrary open subset of W . Then
differentiation at any point v ∈D induces a homotopy equivalence

Emb(D,D′) →D′ × IsoC(V,W ).

Proof of Lemma 7.1.11. Since the map β is a coCartesian fibration, it will suffice to show that
the fibers of β are contractible Kan complexes. Fix an embeddable complex disk D of dimension
n, choose a holomorphic embedding of D into a vector space W , and set C = β−1{D}. We first
observe that C is nonempty (for any point z ∈ D, any sufficiently small open ball around
z determines an object of C). It will therefore suffice to show that for any pair of objects
C,C ′ ∈ C, the mapping space MapC(C,C ′) is contractible. Let us write

C = (φ ∶D0 ↪D) C ′ = (φ′ ∶D′
0 ↪D),

so that we have a homotopy fiber sequence

MapC(C,C ′) → Emb(D0,D
′
0)

γ→ Emb(D0,D).
It will therefore suffice to show that γ (which is induced by composition with φ′) is a homotopy
equivalence. Since D0 is small, it can be identified with a convex bounded open subset of some
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complex vector space V . Using Lemma 7.1.13, we see that γ is a homotopy equivalence if and
only if the induced map

D′
0 × IsoC(V,W ) →D × IsoC(V,W )

is a homotopy equivalence, which is clear. �

Proof of Lemma 7.1.12. The forgetful functor α ∶ N → DiskCsm is a Cartesian fibration; it will
therefore suffice to show that each fiber of α is a contractible Kan complex. Let us therefore fix
a a small complex disk D and set C = α−1{D}. Since D is small, there exists a holomorphic open
embedding D ↪ V where n is the dimension of D; this proves that C is nonempty. Moreover,
we may assume without loss of generality that the image of D in V is bounded and convex. To
complete the proof, it will suffice to show that the mapping space MapC(C,C ′) is contractible
for every pair of objects C,C ′ ∈ C. Let us write

C = (φ ∶D ↪W, ) C ′ = (φ′ ∶D ↪W ′),
for some complex vector spaces W and W ′, so that we have a homotopy fiber sequence

MapC(C,C ′) → IsoC(W,W ′) γ→ Emb(D,W ′).
Consequently, to complete the proof it will suffice to show that γ (which is given by composition
with φ′) is a homotopy equivalence.

Fix a point v ∈ V , and let w = φ(v) ∈W . The desired result now follows from Lemma 7.1.13
together with the observation that the map

IsoC(W,W ′) →W ′ × IsoC(V,W ′)
f ↦ (f(w), f ○ φ′v)

is a homotopy equivalence, where φ′v ∶ V →W is the map given by differentiating φ at the point
v. �

Proof of Lemma 7.1.13. It will suffice to show that for every compact Hausdorff space K, every
closed subset A ⊆ B, and every commutative diagram

A
f //

��

Emb(D,D′)

��
B

g //

f

88

D′ × IsoC(V,W ),
it is possible to compatibly modify f and g by a homotopy so that there exists an extension as
indicated by the dotted arrow in the diagram. Let us identify g with a pair of maps g′ ∶ B →D′

and g′′ ∶ B → IsoC(V,W ).
We may assume without loss of generality that v = 0. For each real number t ∈ (0,1], let

ft ∶ A→ Emb(D,D′) gt ∶ B →D′ × IsoC(V,W )
be given by

ft(a)(z) = f(a)(tz) gt(b) = (g′(b), tg′′(b)).
The pair (ft, gt) is homotopic to (f, g) (the homotopy given by {(ft′ , gt′)}t′∈[t,1]). Consider the
map

A ×D × [0,1] →W

(a, z, s) ↦ sft(a)(z) + (1 − s)g′(a) + t(1 − s)g′′(a)(z).
For t sufficiently small, this map classifies a homotopy from ft to another map f ′ ∶ A →
Emb(D,D′) satisfying f ′(a)(z) = g′(a) + tg′′(a)(z), compatible with the identity homotopy
from gt to itself. We may therefore replace (f, g) by (f ′, gt) and thereby reduce to the case
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where f satisfies f(a)(z) = g′(a) + g′′(a)(z), in which case we can define f by the formula

f(b)(z) = g′(b) + g′′(b)(z). �

7.2. A Commutative Diagram. Let DiskC denote the (topologically enriched) category of
embeddable complex disks (Definition 7.1.1) and let Z≥0 be the set of nonnegative integers.
In the previous section, we constructed a homotopy equivalence of E∞-spaces N(DiskC)gpd ≃
∐n≥0 BU(n) (Proposition 7.1.6) and an E2-monoidal functor ρ0 ∶ Zds

≥0 → N(DiskC)gpd. Taken
together, these determine a map of spaces

CP∞ ≃ Bar(2)(Zds
≥0)

ρ0→ Bar(2)(N(DiskC)gpd) ≃ Bar(2)(∐n≥0 BU(n)) ≃ BU .

Our goal in this section is to show that this composite map classifies the K-theory class [O(1)]−
1 ∈K0(CP∞), thereby completing the proof of Theorem 1.1.1.

Let O[DiskC]⊗ and O[Z≥0]⊗ be the categories (topologically enriched in the former case) be
defined as in Example 6.4.2. The objects of the category O[Z≥0]⊗ are given by finite sequences
((D1, n1), . . . , (Dm, nm)) where each Di is an open disk in C and each ni is a nonnegative
integer, and the objects of O[DiskC]⊗ are given by finite sequences ((D1, U1), . . . , (Dm, Um))
where each Di is an open disk in C and each Ui is an embeddable complex disk. The E2-
monoidal functor ρ0 ∶ Zds

≥0 → N(DiskC) of Remark 7.1.5 arises from a map of topological O-
monoidal categories O[Z≥0]⊗ → O[DiskC]⊗ which we will also denote by ρ0, given on objects
by the formula

ρ0((D1, n1), . . . , (Dm, nm)) = ((D1,Symn1 D1), . . . , (Dm,SymnmDm)).

We will prove the following result in §7.3:

Proposition 7.2.1. There is a commutative diagram of topological categories (over O⊗)

O[Z≥0]⊗

ρ0

��

Conf⊗
π′oo ξ //

��

(Vect
≃
C)⊗

π

��
O[DiskC]⊗ DiskC

⊗ ξ0 //π′′oo O[Vect≃C]

with the following properties:

(a) The functors π, π′, and π′′ induce maps of simplicial spaces

N● Conf⊗ → N●O[Z≥0]⊗ N● DiskC
⊗ → N●O[DiskC]⊗ N●(Vect

≃
C)⊗ → N●O[Vect≃C]

which are are levelwise homotopy equivalences. In particular, they induce weak homo-
topy equivalences of simplicial sets

Θ(Conf⊗) → Θ(O[Z≥0]⊗) Θ(DiskC
⊗) → Θ(O[DiskC]⊗) Θ((Vect

≃
C)⊗) → Θ(O[Vect≃C])

(b) The induced map

Θ(O[DiskC]⊗) ∼← Θ(DiskC
⊗) → Θ(O[Vect≃C])

is a left homotopy inverse to the map induced by the inclusion of symmetric monoidal
topological categories Vect≃C ↪ DiskC.

(c) Let B ∶ Θ(Vect
⊗) → ∣Sing● N● Vect±C)∣ be as in Construction 6.5.5. Under the weak

homotopy equivalence

Θ(Conf⊗) ∼→ Θ(O[Z≥0]⊗) ≃ Bar(2) Z≥0 ≃ CP∞,
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the composite map

Θ(Conf⊗) Θ(ξ)→ Θ(Vect
⊗) → ∣Sing● N● Vect±C)∣ ≃ Z ×BU

corresponds to the element of K0(CP∞) given by [O(1)] − 1, where O(1) denotes the
tautological line bundle on CP∞.

The proof of Proposition 7.2.1 will be given in §7.3. Let us assume Proposition 7.2.1 for the
moment, and show that it completes the proof of our main result.

Corollary 7.2.2. The composite map

Bar(2) Z≥0
ρ0→ Bar(2) DiskC

gpd ∼← Bar(2)(∐n≥0 BU(n)) B→ BU

is homotopic to the canonical map

CP∞ ≃ BU(1) → BU,

corresponding to the element [O(1)] − 1 in K0(CP∞).

Proof. Combine Proposition 7.2.1 with Proposition 6.4.6. �

Corollary 7.2.3. The map B ∶ (∐n≥0 BU(n)) → BU is homotopic to the Bott periodicity map
β.

Proof. According to Remark 6.5.6, we have B = k β for some integer k. Let us identify B and
β with elements of the group K0(BU). We have normalized the Bott map so the adjoint map

∐n≥0 BU(n) → Ω2 BU

carries BU(n) to the connected component of Ω2 BU corresponding to the element

nβ ∈ π0Ω2 BU ≃K0
red(S2),

where β is the K-theory class [O(1)] − 1. In particular, the composition

Z≥0
ρ0→ π0(∐n≥0 BU(n)) β→ π0(Ω2 BU) =K0

red(S2)
is given by n↦ nβ. It follows that the composite map

Z≥0
ρ0→ π0(∐n≥0 BU(n)) B→ π0(Ω2 BU) ≃K0

red(S2)
is given by n↦ knβ. Using Corollary 7.2.2, we see that this composition is also given by

Z≥0 ↪ Z→ π0Ω2(CP∞) → π0Ω2(BU) ≃K0
red(S2),

where the the map CP∞ → BU classifies the line bundle O(1) on CP∞, which is given by
n↦ nβ. It follows that k = 1, as desired. �

Corollary 7.2.4. The E2-monoidal functor ρ0 ∶ Z≥0 → N(DiskC)gpd of Remark 7.1.5 fits into
a commutative diagram

Z≥0
ρ0 //

��

N(DiskC)gpd

��
Ω2(BU(1)) // Ω2(BU)

where the right vertical map is given by Bott periodicity.

Proof. Combine Corollaries 7.2.2 and 7.2.3. �
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Corollary 7.2.5. The E2-monoidal functor Φ ∶ Rep(Zds) → Sp of Corollary 3.5.8 is given by
the composite map

Zds ≃ Ω2(BU(1)) → Ω2(BU) β→ Z ×BU→ JC→Pic(S)
where β is given by Bott periodicity and JC denotes the complex J-homomorphism.

Proof. Combine Corollaries 7.2.4 and 7.1.9. �

7.3. Configuration Spaces. Our goal in this section is to prove Proposition 7.2.1. We begin
by constructing the auxiliary categories and functors which appear in the statement of Propo-
sition 7.2.1. The verification of assertions (a) and (b) is relatively straightforward, while the
proof of (c) is more involved.

Construction 7.3.1 (Construction of the Topological Category DiskC
⊗

). The objects of

DiskC
⊗

are given by finite sequences

((D1, U1, p1), (D2, U2, p2), . . . , (Dm, Um, pm))
where each Di is an open disk in C, each Ui is an embeddable complex disk, and each pi is a

point of disk Ui. We endow the collection of all objects of DiskC
⊗

with the topology given by
its presentation as a disjoint union

∐U1 ×U2 ×⋯ ×Um,
indexed by the collection of all sequences {(Di, Ui)}.

A morphism from {(Di, Ui, pi)}1≤i≤m to {(D′
j , U

′
i , pj)}1≤j≤n in DiskC

⊗
is a morphism from

{(Di, Ui)} to {(D′
j , U

′
j)} in the category O[DiskC]⊗ having the property that for each 1 ≤ j ≤ n,

the associated holomorphic embedding

∏
i↦j

Ui ↪ Vj

carries the point {(pi)} to p′j . We endow the collection of all morphisms in DiskC
⊗

with the
topology given by its presentation as a disjoint union of topological spaces of the form

MapO[DiskC]⊗({(Di, Ui)},{(D′
j , U

′
j)}) ×∏Ui.

There is an evident forgetful functor π′′ ∶ DiskC
⊗ → O[DiskC]⊗, given on objects by the

formula

π′′({(Di, Ui, pi)}) = {(Di, Ui)}.
The induced map of simplicial spaces

N● DiskC
⊗ → N●O[DiskC]⊗

is levelwise a fiber bundle with contractible fibers (given by products of complex disks) and
therefore a levelwise homotopy equivalence.

To define the functor ξ0 ∶ DiskC
⊗ → O[Vect≃C]⊗, we need to make a collection of arbitrary

(but harmless) choices. Let us choose, for each embeddable complex disk U ∈ DiskC, a finite-
dimensional complex vector space VU and a holomorphic open embedding ιU ∶ U ↪ VU . The
functor ξ0 is then given on objects by the formula ξ0({(Di, Ui, pi)} = {Di, VUi}. Suppose we
are given a morphism

f ∶ {(Di, Ui, pi)}1≤i≤m → {(D′
j , U

′
j , p

′
j)}1≤j≤n
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in DiskC
⊗

whose underlying map of pointed finite sets we denote by α ∶ {1, . . . ,m,∗} →
{1, . . . , n,∗}. We then define ξ0(f) to be the morphism in O[Vect≃C]⊗ given by α together
with the vector space isomorphisms

⊕
α(i)=j

VUi ≃ VU ′
j

which are obtained by differentiating the holomorphic open embedding ∏α(i)=j Ui ↪ U ′
j at

the point p = {pi}α(i)=j ∈ ∏α(i)=j Ui; here we identify the tangent space to ∏α(i)=j Ui with

⊕α(i)=j VUi using the embeddings ιUi , and the tangent space of U ′
j at p′j with VU ′

j
using the

embedding ιU ′
j
.

Proof of Part (b) of Proposition 7.2.1. The inclusion O[Vect≃C]⊗ ↪ O[DiskC]⊗ lifts to a topo-
logical functor

ν ∶ O[Vect≃C]⊗ → DiskC
⊗
,

given on objects by the formula ν({(Di, Vi)}) = {(Di, Vi,0)}. It now suffices to observe that
the composite functor ξ0 ○ ν is canonically isomorphic to the identity functor on O[Vect≃C]⊗
(the isomorphism being given by the differentials of the embeddings ιV ∶ V ↪ VV at zero). �

Construction 7.3.2 (Construction of the Topological Category Conf⊗). We define Conf⊗ to
be the fiber product

O[Z≥0]⊗ ×O[DiskC]⊗ DiskC
⊗
.

More concretely, the objects of Conf⊗ are given by sequences

((D1, n1, P1), (D2, n2, P2), . . . , (Dm, nm, Pm))
where each Di is an open disk in C, each ni is a nonnegative integer, and each Pi is a point
of the symmetric power SymniDi. Let π′ ∶ Conf⊗ → O[Z≥0]⊗ be the projection onto the first
factor. As in Construction 7.3.1, we see that the induced map of simplicial topological spaces

N● Conf⊗ → N●O[Z≥0]⊗

is levelwise a fiber bundle whose fibers are complex disks, and therefore a levelwise homotopy
equivalence.

At this point, it will be convenient to be a bit more specific about some of the arbitrary
choices made in Construction 7.3.1. For each integer n ≥ 0, let Poly<n be the subspace of
the polynomial ring C[z] consisting of polynomials having degree < n. Let us identify the
symmetric power Symn(C) with the space zn + Poly<n of monic polynomials of degree n (via
the Σn-equivariant map (a1, . . . , an) ↦ ∏(z − an)). We will henceforth assume that for every
open disk D ⊆ C and every integer n ≥ 0, the vector space VSymn(D) appearing in Construction
7.3.1 has been chosen to be Poly<n and the embedding ιSymn(D) is chosen to be the composite
map

Symn(D) ↪ Symn(C) ≃ zn +Poly<n
s→ Poly<n,

where s is given by subtracting zn.
If P ∈ zn +Poly<n is a monic polynomial of degree n, we let φP denote the unique endomor-

phism of Poly<n which fits into a commutative diagram

Poly<n

φP

��

P−1
// 1
P

C[z]/C[z]

z

��
Poly<n

P−1
// 1
P

C[z]/C[z].
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More concretely, the endomorphism φP is given by the formula

φP (zi) =
⎧⎪⎪⎨⎪⎪⎩

zi+1 if i < n − 1

zn − P if i = n − 1.

The composite functor

Conf⊗ → DiskC
⊗ ξ0→ O[Vect≃C]⊗

is then given on objects by the formula

{(Di, ni, Pi)} ↦ {(Di,Poly<ni)}.

A simple calculation shows that this functor lifts to a map ξ ∶ Conf⊗ → (Vect
≃
C)⊗ given on objects

by {(Di, ni, Pi)} ↦ {(Di,Poly<ni , φPi)}. This completes the construction of the commutative
diagram described in Proposition 7.2.1.

The proof of part (c) of Proposition 7.2.1 will require some preliminaries.

Proof of Part (c) of Proposition 7.2.1. Let C denote the opposite of the topological category
given by the fiber product O○ ×O⊗ Conf⊗. In what follows, we will use Proposition 6.4.6 to
identify CP∞ with the classifying space ∣Sing● N● C ∣. Let F ∶ C → Vect±C denote the topological
functor given by the composition

C ξ→ (O○ ×O⊗(Vect
≃
C)⊗)op B→ Vect±C .

We wish to prove that [F ] = [O(1)]−1 ∈K0(CP∞). We will verify this identity by constructing
four other topological functors G,H,L,L0 ∶ C → Vect±C which satisfy the following requirements:

(i) There is an exact sequence 0→ L0 → G→ F → 0 (in the sense of Proposition 6.3.4).
(ii) There is an exact sequence 0→H → G→ L→ 0 (in the sense of Proposition 6.3.4).
(iii) We have an identity [L0] = 1 ∈K0(CP∞).
(iv) We have an identity [L] = [O(1)] ∈K0(CP∞).
(v) We have an identity [H] = 0 in K0(CP∞).

Assuming that (i) through (v) have been verified, we invoke Proposition 6.3.4 twice to
compute

[F ] = [G] − [L0]
= ([H] + [L]) − [L0]
= [O(1)] − 1.

Let us begin by describing the functor F a bit more explicitly. Unwinding the definitions,
we can identify objects of the topological category C with finite sequences {(Di, ni, Pi)}1≤i≤m,
where the Di are disjoint open disks in C, the ni are nonnegative integers, and each Pi is a
point of SymniDi which we will identify with a monic polynomial of degree ni in one variable
Z. The functor F is given on objects by the formula

F ({(Di, ni, Pi)}1≤i≤m) = (⊕Poly<ni ,⊕Poly<ni).

For every monic polynomial P ∈ C[z], we let VP denote the vector space 1
P

C[z]/C[z]. We
will regard VP as a finite-dimensional subspace of C(z)/C[z]. Note that if we are given a pair
of monic polynomials P and Q, then we have natural inclusion maps

VP ↪ VPQ ↩ VQ,
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which induce an isomorphism VP ⊕ VQ → VPQ if P and Q are relatively prime to one another.
Note that if C = {(Di, ni, Pi)} is an object of C, then the polynomials Pi are pairwise relatively
prime; we therefore have a canonical isomorphism of complex vector spaces

ψC ∶ ⊕Poly<ni → VP

({Qi}1≤i≤m) ↦∑
Qi
Pi

where P = ∏Pi. A morphism from C = {(Di, ni, Pi)}1≤i≤m to C ′ = {(D′
j , n

′
j , P

′
j)}1≤j≤m′ consists

of a map of pointed sets α ∶ {1, . . . ,m′,∗} → {1 . . . ,m,∗} satisfying some additional conditions;
we note that F (α) is the morphism from (⊕Poly<ni ,⊕Poly<ni) to (⊕Poly<n′j ,⊕Poly<n′j)
given by (ρ, ρ,E), where ρ fits into a commutative diagram

⊕Poly<ni
ρ //

ψC

��

⊕Poly<n′j

ψC′

��
VP // VP ′

where P = ∏Pi and P ′ = ∏P ′
j and E is the graph of the automorphism of ⊕α(j)=∗ Poly<n′j

given by multiplication by z on the vector space VP ′/P .
Let us now consider a slight variation on the above. For every monic polynomial P in C[z],

let V +
P denote the quotient 1

P
C[z]/zC[z], so that we have a canonical exact sequence

0→C→ V +
P → VP → 0.

For each object C = {(Di, ni, Pi)} in C with P = ∏Pi, we have a vector space isomorphism

ψ+C ∶ C⊕⊕Poly<ni → V +
P

(c,{Qi}) ↦ c +∑
Qi
Pi
.

We define a functor G ∶ C → Vect±C as follows:

● On objects, the functor G is given by

G({(Di, ni, Pi)}) = (⊕Poly<ni ,C⊕⊕Poly<ni).

● Suppose that we are given a morphism from an object C = {(Di, ni, Pi)}1≤i≤m to another
object C ′ = {(D′

j , n
′
j , P

′
j)}1≤j≤m′ as above, corresponding to a map of pointed finite sets

α ∶ {1, . . . ,m′,∗} → {1 . . . ,m,∗}. Then G(α) is given by the triple (ρ, ρ+,E), where ρ
and E are defined as above for the functor F and the injection ρ+ is chosen to guarantee
the commutativity of the diagram

C⊕⊕Poly<ni
ρ+ //

ψ+C

��

⊕Poly<n′j

ψ+
C′

��
V +
P

// V +
P ′

where P = ∏Pi, P
′ = ∏P ′

j , and the lower horizontal map is induced by the inclusion
1
P

C[z] ↪ 1
P ′C[z].
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It follows immediately from the construction that the functor G fits into an exact sequence

0→ L0 → G→ F → 0,

where L0 ∶ C → Vect±C denotes the constant functor taking the value (0,C). This completes the
verification of (i) and (iii).

We next define the functor L ∶ C → Vect±C:

● On objects, the functor L is given by L({(Di, ni, Pi)}) = (0,C).
● Suppose that we are given a morphism from an object C = {(Di, ni, Pi)}1≤i≤m to another

object C ′ = {(D′
j , n

′
j , P

′
j)}1≤j≤m′ as above, corresponding to a map of pointed finite sets

α ∶ {1, . . . ,m′,∗} → {1 . . . ,m,∗}. Then the induced map L(α) ∶ (0,C) → (0,C) is the
isomorphism given by multiplication by the complex number ∏α(j)=∗ Pj(0). Note that
this complex number is invertible, since the disk D′

j is forbidden to contain 0 ∈ C when

α(j) = ∗.

Since the functor L factors through the full subcategory of Vect≃C ⊆ Vect±C consisting of pairs
(0,W ) where W has dimension 1, the induced map [L] ∶ CP∞ → Z × BU factors through
BU(1). It therefore classifies a complex line bundle on CP∞ which is given by some power
O(r) = O(1)⊗r of the tautological line bundle O(1). We claim that r = 1; this follows (after
suitably unwinding the definitions) from the fact that for any open disk D ⊆ C not containing
zero, the value of L on the morphism {(D,1, λ)} → {∅} in C is given by multiplication by −λ,
and the map

C× →C×

λ↦ −λ
has degree 1 (we can obtain a slightly weaker result without doing any calculation at all; see
Remark 7.3.3).

We define a functor H ∶ C → Vect±C as follows:

● On objects, the functor H is given by

H({(Di, ni, Pi)}) = (⊕Poly<ni ,⊕Poly<ni).

● Suppose that we are given a morphism from an object C = {(Di, ni, Pi)}1≤i≤m to another
object C ′ = {(D′

j , n
′
j , P

′
j)}1≤j≤m′ as above, corresponding to a map of pointed finite sets

α ∶ {1, . . . ,m′,∗} → {1 . . . ,m,∗}. Then H(α) is given by the triple (ρ, ρ,E0), where ρ is
defined as above and E0 is the graph of the identity map from ⊕α(j)=∗ Poly<n′j to itself.

Let H ′ ∶ C → Vect±C be the constant functor taking the value 0. There is an evident natural
transformation of topological functors H ′ →H, given on objects by the maps

(0,0, U) ∶ (0,0) → (⊕Poly<ni ,⊕Poly<ni)

where U is the graph of the identity map from ⊕Poly<ni to itself. From this, we see that
[H] = [H ′] = 0, which proves (v).

We now complete the proof by constructing an exact sequence

0→H → G→ L→ 0.

To every object C = ({Di, ni, Pi)}1≤i≤m ∈ C with P = ∏Pi, we assign the pair of exact sequences

0→⊕Poly<ni
id→⊕Poly<ni → 0→ 0

0→⊕Poly<ni
u→C⊕⊕Poly<ni

v→C→ 0
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where u fits into a commutative diagram

⊕Poly<ni
u //

ψC

��

C⊕⊕Poly<ni

ψ+C
��

VP
z // V +

P

and v is given by the composition

C⊕ ⊕
Poly<ni

ψ+C→ 1

P
C[z]/zC[z] µ→C,

where µ carries (the residue class of) a rational function Q
P

to the complex number Q(0).
An elementary calculation shows that this construction satisfies requirements (a) and (b) of
Proposition 6.3.4, so that (ii) is satisfied. �

Remark 7.3.3. The proof of Proposition 7.2.1 requires us to calculate the degree r of a
certain line bundle on CP∞. If we omit this calculation, then the rest of the proof shows that
[F ] = [O(r)] − 1 ∈ K0(CP∞) for some integer r. The proof of Corollary 7.2.3 then shows that
kr = 1, where k is the unique integer such that B = k β. From this, we can conclude that
k = r ∈ {1,−1}, so the map

CP∞ ≃ Bar(2) Zds
≥0

ρ0→ Bar(2)(∐nBU(n)) β→ BU

corresponds either to [O(1)] − 1 or 1 − [O(−1)] in K0(CP∞). These maps are not homotopic
to one another, but become so after taking 2-fold loop spaces and composing with the complex
J-homomorphism JC (since complex conjugation on K-theory carries [O(1)] to [O(−1)] and
anticommutes with the Bott map). Consequently, to prove Corollary 7.2.5, it is not necessary
to verify that r = 1.
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