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INTRODUCTION

A central aim of mathematical logic is to understand the relationship between the syntax of a logical
theory T and its semantics. This relationship is particularly strong in the setting of first-order predicate
logic: according to Godel’s celebrated completeness theorem, a first-order sentence ¢ is provable from the
axioms of T' (an a priori syntactic notion) if and only if it is true when interpreted in any model of T' (an
a priori semantic notion). In [9], Makkai proved a stronger form of Godel’s completeness theorem, which
provides a complete recipe for reconstructing the syntax of a first-order theory 7' (up to an appropriate
notion of equivalence) from its semantics. The goal of this paper is to give a new proof of Makkai’s theorem
and a reasonably self-contained exposition of the mathematics that surrounds it.

Before stating Makkai’s result, let us recall an important classical precursor: the Stone duality theorem
for Boolean algebras.

Definition 0.0.1. A Boolean algebra is a partially ordered set (B, <) with the following properties:

e Every finite subset of B has a least upper bound. Equivalently, B contains a least element 0 and
every pair of elements x,y € B have a least upper bound = v y.

e Every finite subset of B has a greatest lower bound. Equivalently, B has a largest element 1 and
every pair of elements x,y € B have a greatest lower bound z A y.

e The distributive law A (y v 2) = (x Ay) v (2 A 2) holds.

e Every element x € B has a complement T, characterized by the identities

AT =0 rvzT=1.

If B and B’ are Boolean algebras, a homomorphism of Boolean algebras from B to B’ is a function y: B - B’
satisfying the identities
n(0)=0  p(xvy)=pu(@)vuy)
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p(1) =1 plzry)=p(@)Apy)-
We let BAlg denote the category whose objects are Boolean algebras and whose morphisms are Boolean
algebra homomorphisms.

For every Boolean algebra B, we let Spec(B) = Hompais(B, {0,1}) denote the set of all Boolean algebra
homomorphisms p : B — {0,1}. Note that Spec(B) can be identified with a subset of the set [1,.5{0,1}
of all functions from B to the two-element set {0,1}. Consequently, the product topology on I1,.5{0,1}
induces a topology on Spec(B), which depends functorially on the Boolean algebra B.

Theorem 0.0.2 (Stone Duality Theorem). The construction B +— Spec(B) determines a fully faithful
embedding Spec : BAlg®® < Top from (the opposite of) the category of Boolean algebras to the category of
topological spaces. The essential image of this functor is the full subcategory Stone € Top whose objects are
Stone spaces: that is, topological spaces which are compact, Hausdorff, and totally disconnected.

The Stone duality theorem can be understood as supplying an equivalence between syntax and semantics
in the setting of propositional logic. Every Boolean algebra B can viewed as a theory of propositional logic,
whose models are the points of the spectrum Spec(B). Theorem implies that B can be recovered (up
to isomorphism) from the set of models Spec(B), together with its topology. Makkai proved a generalization
of the Stone daulity theorem in the setting of coherent logic, where the Boolean algebra B is replaced by a
small pretopos C (see , and the set Spec(B) is replaced by the category of models Mod(C) (Definition
IA.4.5). Roughly speaking, it asserts that a small pretopos C can be recovered (up to equivalence) from its
category of models Mod(C), together with some additional structure that plays the role of a “topology” on
Mod(C). To motivate the precise statement, we need to review a bit of point-set topology.

Construction 0.0.3 (The Stone-Cech Compactification). Let S be a set and let P(S) denote the collection
of all subsets of S, which we regard as a Boolean algebra. We denote the spectrum Spec(P(S)) by £S and
refer to it as the Stone-Cech compactification of S. By definition, the points of 3S can be identified with
Boolean algebra homomorphism : P(S) — {0, 1}, which we refer to as ultrafilters on S (see {1.1)).

Every element s € S determines an ultrafilter §; on S, given by the formula

1 ifsel

ds: P(S) > {0,1} 58(1):{0 ifsel.

The construction s — §, determines a map of sets 6 : S - 5S. One can show that the map ¢ exhibits 8S as
a “universal” compactification of S in the following precise sense (see Proposition :
(*) Let X be a compact Hausdorff space and let f : S - X be a function. Then there is a unique
continuous function f: S - X satisfying fod = f.

Note that an ultrafilter © on a set S can be viewed as a finitely additive {0, 1}-valued measure defined
on the collection of all subsets of S. In the situation of (*), we will indicate the continuous extension f by
the suggestive notation f(u) = [ f(s)du. Assertion (*) can then be understood as articulating a special
feature enjoyed by the underlying set of any compact Hausdorff space X: any map of sets f: S - X can be
“integrated” with respect to an ultrafilter p € S to produce a new point [g f(s)du of X. This integration
procedure is determined by the topology on X: note that it is characterized by the normalization condition
[ f(s)dd; = f(t) and the requirement that fS f(s)du depends continuously p € 3S. Conversely, if the map
f S - X has dense image, then the topology on X can be recovered from the map p — [¢ f(s)dp (since
any continuous surjection of compact Hausdorff spaces 55 — X is a quotient map). We can therefore regard
the construction (f, ) — [4 f(s)dp as a way of encoding the the topology on the set X.

The integration procedure above has an analogue in the setting of coherent logic. If C is a small pretopos
and {M;}ses is a collection of models of C indexed by a set S, then to each ultrafilter p the ultraproduct
of the models My indexed by p (see Theorem [2.1.1)). To emphasize the relationship with the preceding
construction, we will denote this ultraproduct by [ Mdp. For every fixed ultrafilter yu € 55, the construction
{Ms}ses fs Mdp determines a functor

(4 Mod(©)% ~ Mod(€).
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These functors, together with certain natural transformations relating them, determine what we will call
an ultrastructure on the category Mod(C) (see Definition [1.3.1)). Using this structure, one can formulate an
analogue of Theorem (for a more precise formulation, see Theorem [2.3.1)):

Theorem 0.0.4 (Makkai’s Strong Conceptual Completeness Theorem). Let C be a small pretopos. Then
C is equivalent to the category FunUlt(Mod(C ), Set) of ultrafunctors from the category of models Mod(C) to
the category of sets: that is, functors intertwine the ultrastructures on the categories Mod(C) and Set (see

Definition .

In this paper, we give a proof of Theorem which is very different from the proof which appears in
[9). Before describing our strategy, let us briefly comment on the notion of ultrafunctor which appears in
the statement of Theorem [0.0.4] Let M and N be ultracategories, and let F': M — N be a functor. An
ultrastructure on F is a family of isomorphisms F([q Mdp) = [g F(M;)dp, indexed by collections { M} ses
of objects of M and ultrafilters g on S, which are required to satisfy a handful of coherence conditions.
More generally, we introduce notions of left ultrastructure and right ultrastructure on F', which are given
respectively by families of morphisms

0w PO M) > [ FQL)dn s [ FOL)dp > F( [ Moy,

which are not required to be invertible (but are still required to satisfy some coherence conditions; see
Definitions and . We define an ultrafunctor (left ultrafunctor, right ultrafunctor) from M to N
to be a functor F : M — N together with an ultrastructure (left ultrastructure, right ultrastructure) on
F. The collection of ultrafunctors (left ultrafunctors, right ultrafunctors) from M to N can be organized
into a category which we will denote by Fun""* (M, ') (Fun™*""(M, N), Fun®"* (M, N)), so that we have
inclusions

(1) Fun™"" (M, V) 2 Fun""* (M, ) € Fun®V" (M, N).

Remark 0.0.5. To appreciate the distinction between ultrafunctors, left ultrafunctors, and right ultrafunc-
tors, it is instructive to examine the special case where M = {*} is a category having a single object and
a single morphism, and A = Set is the category of sets. In this case, specifying a functor F': M — N is
equivalent to specifying the set X = F(*). In this case:

e The functor F always admits a unique left ultrastructure. Moreover, the construction F — X = F(%)
induces an equivalence of categories Fun™V!*({x}, Set) ~ Set (here we can replace N = Set with any
other ultracategory; see Proposition .

e The unique left ultrastructure on the functor F is an ultrastructure if and only if the set X is finite.
Consequently, the construction F — X = F(*) induces an equivalence of categories Fun""* ({x}, Set) =~
Fin, where Fin ¢ Set denotes the category of finite sets (this is a special case Theorem applied
to the pretopos C = Fin).

e There is a bijective correspondence between right ultrastructures on the functor F' and compact
Hausdorff topologies on the set X. More precisely, the construction F'+— X = F(*) can be upgraded
to an equivalence of categories FunRUlt({*},Set) ~ Comp, where Comp denotes the category of
compact Hausdorff spaces (Example [8.4.10). In particular, the functor F admits a unique right
ultrastructure when the set X is finite, and otherwise admits many different right ultrastructures.

Specializing to this case, we obtain the inclusions Set 2 Fin ¢ Comp.
The bulk of this paper is devoted to the proof of the following generalization of Theorem [0.0.4

Theorem 0.0.6. Let C be a small pretopos and let Shv(C) denote the associated coherent topos. Then
Shv(C) is equivalent to the category of left ultrafunctors FunLUlt(Mod(C),Set).

Let us now outline the contents of this paper. We begin in §1| by defining the notions of ultracategory
(Definition and (left) ultrafunctor (Definition that we will use throughout this paper (beware
that our definitions are somewhat different from those which appear [9]; see Warning . The simplest
examples are given by categories M which admit small products and small filtered colimits: under these
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assumptions, we can regard M as an ultracategory by associating to each family of objects { M} ses of M and

each ultrafilter © on S the categorical ultraproduct /S Msdy = h_r)n (50) [Tses, Ms, where the colimit is taken
(o0

over the collection of subsets Sy ¢ S satisfying pu(Sp) = 1 (partially ordered by reverse inclusion). However,
many of the ultracategories we are interested in cannot be obtained directly in this way. For example, if C
is a small pretopos, then the category of models Mod(C) need not admit products. Nevertheless, one can
still define the ultraproduct of a collection of models {M;},es by the formula [q M,du = h_r)nu(so) [Tses, M,

provided that the product [Tsg, M is formed in the larger category Fun(C, Set) 2 Mod(C) (which admits all
small limits and colimits). In §2| we recall the Los ultraproduct theorem, which asserts (in this context) that
J¢ Msdp is again a model of C, and use it to endow Mod(C) with the structure of an ultracategory (Remark
. We then apply this observation to give a more precise formulation of Theorem (Theorem ,
and deduce some of its consequences:

e From the equivalence Shv(C) = Fun*""*(Mod(C), Set), one can immediately deduce Deligne’s com-
pleteness theorem (Theorem [2.2.10)), which asserts that every coherent topos has “enough points.”
When restricted to Boolean pretopoi, this is essentially equivalent to the classical Godel completeness
theorem.

e In we use some elementary compactness to show that the equivalence of categories Shv(C) =~
Fun™""*(Mod(C), Set) restricts to an equivalence of full subcategories C =~ Fun""*(Mod(C), Set),
thereby obtaining a proof of Makkai’s strong conceptual completeness theorem (see Theorem .

e From the strong conceptual completeness theorem, one can immediately deduce Makkai duality: the
construction C » Mod(C) determines a fully faithful embedding of 2-categories

{Small pretopoi, pretopos functors}°? — {Ultracategories, ultrafunctors};
see Corollary Using Theorem [2.2.2] one can promote this to a fully faithful embedding
{Coherent topoi, geometric morphisms} — {Ultracategories, left ultrafunctors};

see Remark 2.2.91

e Let € be a small exact category and let Fun™®(&, Set) denote the category of regular functors from
€ to the category of sets: that is, functors which preserve finite limits and effective epimorphisms.
In [I0], Makkai proved that the essential image of the Barr embedding

& = Fun(Fun"™#(&, Set), Set)

consists of those functors F : Fun"™® (&, Set) — Set which preserve small products and small filtered
colimits. In §2.4] we give a different (though arguably less elementary) proof, showing that it is an
elementary consequence of the strong conceptual completeness theorem (Theorem [2.4.2)).

Our approach to Theorem [2.2.2] is somewhat roundabout, and depends on having a good general un-
derstanding of ultracategories and (left) ultrafunctors. Heuristically, one can think of ultrastructure on
a category M as playing the role of a (compact Hausdorff) topology on M. In we provide evidence
for this heuristic by showing that if M is a category having only identity morphisms, then endowing M
with an ultrastructure is equivalent to choosing a compact Hausdorff topology on the set X = Ob(M) of
objects of M (Theorem . Moreover, we show that this equivalence identifies the category of left ul-
trafunctors Fun“V'* (M, Set) with the category Shv(X) of set-valued sheaves on X (Theorem . This
equivalence carries the category of ultrafunctors Fun""* (M, Set) ¢ Fun™Y'*(M, Set) to the full subcategory
Loc(X) ¢ Shv(X) consisting of sheaves .# which are locally constant with finite stalks (or, equivalently,
the category of covering spaces X - X with finite fibers); see Theorem We regard this as strong
motivation for allowing left ultrafunctors (as opposed to only ultrafunctors) into the basic vocabulary of our
theory: from the category Shv(X) we can completely recover the topology of a compact Hausdorff space X,
but the category Loc(X) is a much weaker invariant (for example, if X is simply connected, then Loc(X) is
equivalent to the category Fin of finite sets).

Remark 0.0.7. To every Boolean algebra B, one can associate a small pretopos Cp for which the category
of models Mod(Cpg) is equivalent to the spectrum Spec(B), considered as a category having only identity
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morphisms. Under this equivalence, the ultrastructure on Mod(Cpg) corresponds to the the topology on the
spectrum Spec(B). From this observation, one can use Makkai duality to deduce part of the Stone duality
theorem: namely, the assertion that the spectrum functor Spec : BAlg®® — Top is fully faithful. However,
this observation does not really lead to an independent proof of Theorem [0.0.2] since we use Stone duality
(implicitly and explicitly) in proving the main results of this paper.

In §4 we leverage the results of §3] to study ultracategories in general. Let M be any ultracategory,
and let X be a compact Hausdorff space (regarded as an ultracategory having only identity morphisms).
Motivated by the equivalence Fun™"'(X,Set) = Shv(X) of Theorem , it will be useful to think of
FunLUlt(X ,M) as a category of “M-valued sheaves on X.” Fixing M and allowing X to vary, we obtain a
functor X — Fun®"! (X, M)°P from (the opposite of) the category Comp of compact Hausdorff spaces to the
2-category of small categories. This construction can be encoded by fibration of categories Comp », - Comp,
where Comp,, is a category whose objects are pairs (X,Ox), where X is a compact Hausdorfl space
and Ox : X -> M is a left ultrafunctor. In we show that Comp,, is a stack (with respect to the
Grothendieck topology on Comp given by finite jointly surjective families; see Proposition . Moreover,
the construction M ~ Comp,, determines a fully faithful embedding of 2-categories

{Ultracategories, left ultrafunctors} — {Stacks of categories on Comp};

see Theorem [£:3:3] Consequently, it is possible to formulate the theory of ultracategories using the language
of topological stacks. Beware, however, that the construction M ~ Comp,, is not essentially surjective.
However, if we restrict our attention to groupoids, then the essential image has a very simple description:
a stack in groupoids on Comp has the form Comp,, (for some small ultracategory M) if and only if it is
representable by a groupoid internal to the category of compact Hausdorff spaces (Theorem .

In §f] we specialize to the study of left ultrafunctors F' : M — Set taking values in the category of
sets. For every ultracategory M, let Stoneas € Comp,, denote the full subcategory spanned by those pairs
(X,0x), where X is a Stone space. Combining the results of § and we construct a fully faithful
embedding Fun™V*(M, Set) - Fun(Stone’y, Set) (Theorem @ . In the case where M admits small
filtered colimits, the essential image of this embedding admits a simple description: it is the full subcategory
Fung(Stone’y), Set) ¢ Fun(Stone}},Set) spanned by those functors Stonel; — Set which preserve finite
products and small filtered colimits (Theorem . It follows from this description that, under some
mild set-theoretic assumptions, the category of left ultrafunctors FunLUlt(/\/l, Set) is a Grothendieck topos
(Proposition [5.4.5)).

The virtue of Theorem [5.2.1]is that it allows us describe left ultrafunctors F : M — Set (which are functors
equipped with a large amount of additional structure) in terms of ordinary functors % : Stonej‘/’l — Set (which
are a priori more amenable to study using standard category-theoretic tools). To make use of this in practice,
we need to know something about the structure of the category Stoneps. In we specialize to the situation
where M = Mod(C) is the category of models of a small pretopos C. In this case, the category Stoneaq
admits a concrete description which is independent of the theory of ultracategories: according to Theorem
there is a fully faithful embedding T : Stoneys — Pro(C) into the category Pro(C) of pro-objects of
C, whose essential image is the full subcategory Pro™?(C) ¢ Pro(C) of weakly projective pro-objects of C
(Definition [6.2.2).

In we combine the preceding ideas to obtain a proof of Theorem Our strategy is inspired by the
work of Bhatt-Scholze on pro-étale sheaves in the setting of algebraic geometry (and earlier work of Scholze
in the rigid-analytic setting). For any small pretopos C, we can equip the category of pro-objects Pro(C)
with a Grothendieck topology and consider the category Shv(Pro(C)) of set-valued sheaves on Pro(C). This
category of sheaves is generally very large (for example, it is not a Grothendieck topos), but contains a
more manageable category Shv®®(Pro(C)) of continuous sheaves (Definition |7.1.4) which is equivalent to
the category of sheaves on C itself (Corollary [7.L.E). The equivalence of Theorem [0.0.6] can then be realized
as a composition

Shv(C) = Shv*™(Pro(C)) SN FunO(StoneK}I)Od(c), Set) =~ Fun™""*(Mod(C), Set).
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Here the essential point is to show that any functor Stoneﬁ’o ae) Set which preserves finite products and

small filtered colimits extends (uniquely) to a continuous sheaf on the category Pro(C) (Proposition [7.2.5)),
which we prove by exploiting the relationship between ultraproducts and elementary embeddings in the
category Mod(C).

By definition, an ultrastructure on a category M is given by a collection of ultraproduct functors [q(e)dp :
M > M and natural transformations relating them, which are required to satisfy some axioms (expressing
the commutativity of various diagrams). This is a large amount of data which can be somewhat cumbersome
to work with. We close this paper by explaining an alternative approach to the theory of ultracategories
which is in some ways more efficient. In we introduce the notion of an wltracategory envelope (Definition
8.2.2)). By definition, an ultracategory envelope is a category & satisfying a few simple axioms (which do
not refer to any additional structure on &), which determine an ultrastructure on a certain full subcategory
E° c £. We show that the construction £ — £ induces a bijection from equivalence classes of ultracategory
envelopes (considered as abstract categories) to equivalence classes of ultracategories (considered as categories
with additional structure). In particular, every ultracategory M can be identified with Env(M)®® for an
essentially unique ultracategory envelope Env(M), which we refer to as the envelope of M. The category
Env(M) admits a number of (equivalent) realizations, which we describe in

Remark 0.0.8. The theory of ultracategory envelopes developed in §§ will play no role in our proof of
Makkai’s strong conceptual completeness theorem. As we will see, ultracategory envelopes are very well
adapted to describing right ultrafunctors between ultracategories, while our approach is based on the clas-
sification of left ultrafunctors from Mod(C) to Set. However, one of the original motivations for the work
described in this paper was to find a formulation (and proof) of Makkai’s theorem which could be adapted
easily to the setting of higher category theory. For this purpose, the formalism of ultracategory envelopes is
much more convenient than the explicit approach of I} We will return to this point in a future work.

For the convenience of the reader, we include some appendices which review the categorical background
which is used in the body of this paper.

Warning 0.0.9. The definitions of ultracategory and ultrafunctor that we use in this paper are somewhat
different from the definitions which appear in [9] (see Warning [1.0.4]). For us, an object of the category
Fun""(Mod(C), Set) is a functor F': Mod(C) — Set together with a collection of isomorphisms

o F( [ Mdp) = [ PO )dp

for which a relatively small number of diagrams are required to commute (see Definition . Makkai’s
definition is similar, but requires a much larger number of diagrams to commute. As a consequence, our
category of ultrafunctors Fun V" (Mod(C), Set) is a priorilarger than the category of ultrafunctors introduced
by Makkai. Consequently, our version Theorem can be viewed as a slight strengthening of Makkai’s
original result: it shows that every ultrafunctor F' : Mod(C) — Set in the sense of this paper is also an
ultrafunctor in the more restrictive sense of Makkai (since it is given by evaluation at an object C € C).

Acknowledgements. I would like to thank Bhargav Bhatt, Dustin Clausen, and Ieke Moerdijk for many
useful conversations related to the subject of this paper. This work was supported by the National Science
Foundation under grant DMS-1810917.

Conventions. We use the following notations:

We write Set for the category of sets.

We write Fin for the category of finite sets (regarded as a full subcategory of Set).

We write Top for the category of topological spaces.

We write Comp for the category of compact Hausdorff spaces (regarded as a full subcategory of
Top).

o We write Stone for the category of Stone spaces (regarded as a full subcategory of Comp).

If X is a topological space, we let Shv(X) denote the category of set-valued sheaves on X. For each object
F € Shv(X), we let #(U) denote its value on an open subset U € X and .%, its stalk at a point x € X



8 ULTRACATEGORIES

(given by the direct limit lim . F(U), taken over the collection of all open neighborhoods U of the point
—>T
z). Every continuous map of topological spaces f: X — Y induces pushforward and pullback functors

f+ :Shv(X) - Shv(Y) f*:Shv(Y) - Shv(X),
satisfying the formulae
(L)) =Z(f V) (D= )
for Z € Shv(X) and ¢ € Shv(Y), respectively. Given a sheaf 4 on Y, we sometimes denote its pullback f*¥
by ¢ |x (primarily in the case where X is a subspace of Y'). We will need the following elementary fact:

Proposition 0.0.10 (Proper Base Change). Let f : X — Y be a continuous map of compact Hausdorff
spaces and let & be a set-valued sheaf on X. Let y €Y be a point and let X, = Yy} be the fiber of f over
y. Then the canonical map

(f« F)y = (FIx,)(Xy)

is a bijection.

Concretely, Proposition [0.0.10| asserts that every global section of .7 |x, can be extended to a section of
Z over an open set of the form f~1(U), where U is an open neighborhood of the point y € Y'; moreover any
two extensions coincide over f~1(V'), for some smaller open neighborhood V' of the point y.

Warning 0.0.11. Throughout this paper, we will generally ignore set-theoretic issues when working with
categories that are not necessarily small. However, our notion of ultrastructure introduces set-theoretic issues
of a new kind (which we will also disregard). By definition, an ultrastructure on a category M counsists of a
collection of functors
[z M5 > M,
indexed by the collection of all sets S and all choices of ultrafilter © on S. Consequently, this is a proper
class of data even if we assume that the category M is small. One can address this (within the framework
of Zermelo-Fraenkel set theory, say) as follows:
(a) We assume throughout this paper that we have chosen a strongly inaccessible cardinal &.
(b) We say that a mathematical object (like a set or a topological space) is small if it has cardinality < «.
All mathematical objects other than categories are assumed to be small unless otherwise specified.
(¢) Whenever we speak of the ultraproduct [q Mydu of a family of objects {M,}ses, we assume that S
is small.
Of course, this is just for convenience; none of the results of this paper depend on the existence of a strongly
inaccessible cardinal in an essential way.

1. ULTRACATEGORIES

Let {M,}ses be a collection of nonempty sets. Every ultrafilter © on S determines an equivalence relation
~, on the Cartesian product [T g M, given by the formula

({zs}ses 2u {ystses) & p({seS:xs=ys}) = 1.

We will refer to the quotient ([T,eg Ms)/ =, as the ultraproduct of {Ms}ses with respect to p and denote it
by /. g Msdp. This quotient can be characterized by a universal mapping property: it is the direct limit
lim ([T M),
1(So)=1 €5

taken over the collection of all subsets Sy € S satisfying p(Sp) = 1, partially ordered by reverse inclusion (see
Example [1.2.6)). This observation allows us to make sense of ultraproducts in a more general setting:

Construction 1.0.1 (Categorical Ultraproducts). Let M be a category which admits small products and

small filtered colimits. Suppose we are given a collection of objects { M} ses of M, together with an ultrafilter

1 on the set S. We let jS Mdy denote the direct limit h_r)n (50) 1(I’[SESO M), where the product and direct
Hn(S0)=
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limit are computed in the category M. We will refer to [ s Mydp as the categorical ultraproduct of { M} ses
with respect to p.

This section is devoted to the following:

Question 1.0.2. What are the essential properties of the ultraproduct construction {Mj}ses — fs Mgdu?

g

In §1.2] we partially address Question [I.0.2] by observing that the categorical ultraproduct construction
has the following features:

(a) If {M;}ses is a collection of objects of M indexed by a set S and ds, is the principal ultrafilter
associated to an element sy € S, then there is a canonical isomorphism eg s, : fs Mgbs, = My,
(Example [1.2.7)).

(b) If { Nt }ter is a collection of objects of M indexed by a set T', ve = {Vs}ses is a collection of ultrafilters
on T indexed by a set S, and p is an ultrafilter on S, then there is a canonical map

AW,.:[TNtd(fsz/sdu)%fs([TNths)dlh

which we call the categorical Fubini transformation; here [q v dp denotes the ultrafilter on T' given
by the formula (fqvsdp)(To) = p({s € S:vs(Tp) = 1}) (see Proposition .
In we place these observations into an axiomatic framework by introducing the notion of an wultra-
category. For any category M, we define an ultrastructure on M to be a collection of functors

/s(.)d'u tM% > M,

indexed by the collection of all sets S and all ultrafilters i on S, together with natural transformations eg
and A, ,, as in (a) and (b) above (which are required to satisfy a few additional axioms). We define an
ultracategory to be a category M together with an ultrastructure on M (Definition |1.3.1)).

If M is a category which admits small products and small filtered colimits, then the categorical ultra-
product of Construction determines an ultrastructure on M, which we will refer to as the categorical
ultrastructure. However, there are interesting examples of ultrastructures which do not arise in this way:

(1) Let C be a pretopos and let Mod(C) denote the category of models of C, which we regard as a
full subcategory of Fun(C, Set). It follows from the Los ultraproduct theorem that the full subcat-
egory Mod(C) ¢ Fun(C,Set) is closed under the formation of ultraproducts (see Theorem [2.1.1)).
Consequently, the categorical ultrastructure on Fun(C, Set) induces an ultrastructure on the cate-
gory Mod(C), which usually cannot be obtained by applying Construction directly to Mod(C)
(because the category Mod(C) generally does not have products).

(2) Let X be a set, regarded as a category having only identity morphisms. In §3} we will show that there
is a bijective correspondence between the set of ultrastructures on X and the collection of compact
Hausdorff topologies on X (Theorem . These ultrastructures never arise from Construction
1.0.1] except in the trivial case where X has a single point.

Remark 1.0.3. Example (1) illustrates a general phenomenon. If M is an ultracategory containing a
collection of objects { M, }ses and p is an ultrafilter on S, then the ultraproduct [q Mydp (given by the ultra-

structure on M) need not coincide with the categorical ultraproduct lim (50) 1(1'[ ses, M) of Construction
H(S0)=
1.0.1f (in fact, the categorical ultraproduct might not even be defined, since M need not admit products

or filtered colimits). However, we will show in that one can always obtain [ Mdu by applying Con-
struction inside a larger category which contains M (Theorem [4.2.7). We will see in §§] that there is
a canonical choice for this enlargement, which we will denote by Env(M) and refer to as the ultracategory
envelope of M.

For our purpose, the main virtue of axiomatizing the notion of ultracategory is that it allows us to precisely
formulate what it means for a functor to “commute with ultraproducts.” Let M and N be ultracategories,
and let F': M — N be a functor. We define an ultrastructure on F to be a collection of isomorphisms

o F( [ Mydn > [ FOM)dp,
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parametrized by all collections of objects {M;}ses of M and all ultrafilters p on S, satisfying a few natural
constraints (see Definition . We define an ultrafunctor from M to N to be a pair (F,{o,}), where
F is a functor from M to N and {0} is an ultrastructure on M. The collection of all ultrafunctors from
M to N forms a category FunUlt(./\/l,J\/' ), which we will study in We also introduce a larger category
FunLUlt(M,N ) of left ultrafunctors from M to N, which is defined in a similar way except that we do not
require the morphisms o, to be isomorphisms (there is also a dual notion of right ultrafunctor, which we will

study in §g).
Warning 1.0.4. The theory of ultracategories developed in this paper is inspired by the work of Makkai
([A)). However, our definition of ultracategory differs from Makkai’s definition in two respects:

e By our definition, an ultrastructure on a category M is completely determined by the ultraproduct
functors

[z M >

together with certain natural maps

st [ Moy = Moy Byt [ Ned( [ vidw) > [ ([ Nedv)ap.

In [9], an ultrastructure consists of much more data (involving natural transformations between very
complicated iterated ultraproducts).

e Our definition includes certain axioms that the maps egs s, and A, ,, are required to satisfy. These
axioms do not appear in [9].

1.1. Ultrafilters. We begin with a brief review of the theory of ultrafilters, which will play an essential role
throughout this paper.

Definition 1.1.1. Let S be a set and let P(S) denote the Boolean algebra of all subsets of S. An wltrafilter
on S is a Boolean algebra homomorphism

w:P(S)—{0,1}.
Remark 1.1.2. Let S be a set and let P(.S) denote the collection of all subsets of S. To each ultrafilter u
on S, we can associate a subset U,, € P(S) given by
U, ={SocS:pu(Sy) =1}.
The construction p — U, determines a bijection from the set of ultrafilters on S to the collection of subsets
U c P(S) with the following properties:

(a) The subset U is closed under finite intersections. That is, the set S belongs to U, and for every pair
So, 51 € U, the intersection Sy N S also belongs to U.
(b) For every subset Sy €5, exactly one of the sets Sy and S \ Sy belongs to U.

Example 1.1.3 (Principal Ultrafilters). Let S be a set. Then each element s € S determines an ultrafilter
ds on S, given by the formula

1 ifSESO

5s: P(S) - {0,1} 58(50):{0 if s ¢ So.

We will refer to d5 as the principal ultrafilter associated to s. We will say that an ultrafilter p on S is principal
if it has the form 6§, for some s € S.

Construction 1.1.4 (Pushforward of Ultrafilters). Let f:.S — T be a map of sets and let x be an ultrafilter
on S. We define an ultrafilter f,p on T by the formula (f.u)(To) = p(f1(Ty)). We will refer to f.u as the
pushforward of u along f.

Remark 1.1.5. Suppose that f :.S — T is an injective map of sets. Then the pushforward map f, is an
injection

{Ultrafilters on S} - {Ultrafilters on T'},
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whose image consists of those ultrafilters u on T satisfying u(f(5)) = 1.
In particular, if S =T} is a subset of T and p is an ultrafilter on T satisfying u(7p) = 1, then p restricts
to an ultrafunctor g : {Subsets of Tp} - {0,1}.

We will need a generalization of Construction

Construction 1.1.6 (Composition of Ultrafilters). Let S and T be sets, and let {v;}ses be a collection of
ultrafilters on T" indexed by the set S. For each ultrafilter 2 on T, we let [ vsdp denote the ultrafilter on T
given by the formula

([Susdu)(To) = u({se S vs(Ty) =1}).

Example 1.1.7. Let f:S — T be a map of sets and let p be an ultrafilter on S. Then the pushforward
ultrafilter f.u of Construction is given by the formula f,p = [g d(s)dp. This follows from the calculation

([, 5rdin) (o)

p({s€S:d5(To) =1})

= p({seS:f(s)eTp})
= u(f'T0)
= (fur)(To).

Example 1.1.8. Let S and T be sets and let {v;}ses be a collection of ultrafilters on T indexed by S. Let s
be an element of S and let §,, denote the corresponding principal ultrafilter. Then the composite ultrafilter
[ vsdds, is equal to vy, .

Remark 1.1.9 (Associativity). Let T be a set, let {v;}ses be a collection of ultrafilters on T', let {pr}rer
be a collection of ultrafilters on S, and let A be an ultrafilter on R. Then we have an equality

/R([SVsdur)dx\zfsl/sd(medA).

Both sides coincide with the ultrafilter p on T' given by the formula
p(To) = A({r € R: o ({s € S 1 ,(Tp) = 1}) = 1}).

We will need the following existence result, which asserts that every filter on a set S can be extended to
an ultrafilter.

Proposition 1.1.10. Let S be a set and let U be a collection of subsets of S which is closed under finite
intersections. If @ ¢ U, then there exists an ultrafilter p on S such that 1(So) =1 for each SoeU.

Proof. Let @ be the collection of all subsets V € P(.S) which are closed under finite intersections and satisfy
@ ¢ V. Let us regard () as a partially ordered set with respect to inclusion. Applying Zorn’s lemma, we
deduce that U € @ is contained in a maximal element V € Q). Define u: P(S) - {0,1} by the formula

1 ifSypeV
0 otherwise.

1(So) :{

We will complete the proof by showing that u is an ultrafilter on S: that is, that the set ) satisfies conditions
(a) and (b) of Remark [[.1.2] Condition (a) is immediate. To prove (b), let Sy be any subset of S; we must
show that V contains either Sy or the complement S \ Sy (it cannot contain both, since V is closed under
finite intersections and does not contain @). Suppose otherwise, and set V, =V u{SonI:I€V}. Then V, is
a subset of P(S) which is closed under finite intersections and properly contains V. Invoking the maximality
of V, we conclude that & € V,: that is, we can choose a set I € V such that SynI = @. By the same reasoning,
we can choose a set J € V such that (S\Sp)nJ =@. Since V is closed under finite intersections, we conclude
that @ =1 nJ eV, contradicting our assumption that ¥ belongs to Q. O
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1.2. The Ultraproduct Construction. In this section, we discuss the categorical ultraproduct of Con-
struction [1.0.1] in more detail. With an eye toward future applications, we work in a slightly more general
setting.

Notation 1.2.1. Let g be an ultrafilter on a set S and set U, = {Sp € S : u(So) = 1} (Remark [1.1.2). We
regard U, as a partially ordered set with respect to inclusions. Note that since U, is closed under finite
intersections, the opposite partially ordered set L{Zp is directed.

Construction 1.2.2 (Categorical Ultraproducts). Let M* be a category and let M ¢ M* be a full sub-
category. We will say that M has ultraproducts in M* if the following conditions are satisfied:
e For every collection {M;}scs of objects of M indexed by a set S, there exists a product [J,cg M in
the category M™.
e For every collection {M;}ses of objects of M indexed by a set S and every ultrafilter u on S, the
diagram
(Soeut,?)~ ([T M)
s€Sy
admits a colimit (in the category M™) which belongs to the subcategory M € M™. In this case, we
denote this colimit by [q Mydu and refer to it as the categorical ultraproduct of {M}ses indexed by
L.
Notation 1.2.3. Let M™ be a category and let M ¢ M* be a full subcategory which has ultraproducts in
M™. Fix a set S and an ultrafilter u on S. For every collection of objects {M}s of M, the categorical
ultraproduct |, g Msdp comes equipped with a family of maps

qio; H MS—>[SMSd/UL,

SGSO

indexed by those subsets Sy € S satisfying 11(Sg) = 1. In the special case Sy = S, we will denote qf“ simply
by g : [ses Ms = [ Modp.

Suppose we are given a collection { fs : My - N,} of morphisms in M, indexed by a set S. We let [¢ fodp
denote the unique morphism from [¢ Mydu to [ Nedp in the category M with the property that, for every
subset Sy € S satisfying 1(Sp) = 1, the diagram

HSESO f?

HSESO MS HSES() NS

quo quo
Js fsdp
[S Mgdp ;’fgjvsd/u

commutes (in the category M™). The constructions

(Mws = [[Medn  {Fdses = [ fodp

determine a functor [ s(o)dpu M5 - M, which we will refer to as the categorical ultraproduct functor. By
construction, for each subset Sp € S satisfying u(So) = 1, the construction

{M}oes = (¢%: T] M, — [S M,dp)

s€Sy

is a natural transformation of functors.

Warning 1.2.4. Let M" be a category and let M ¢ M™ be a subcategory which has ultraproducts in
M. For any ultrafilter y on a set S, the ultraproduct functor [¢(e)dp : M?® - M is given by the formula

Js Msdp = h—n>1u(So)=l [Tses, Ms. Beware that the products appearing in this formula are formed in the

category M", and need not belong to M. In particular, the ultraproduct functors |, g(®)dp: M5 > M are
not necessarily intrinsic to M: they depend on the structure of the larger category M™.



ULTRACATEGORIES 13

Example 1.2.5. Let M be a category which admits small products and small filtered colimits. Then M
has ultraproducts in itself.

Example 1.2.6 (Ultraproducts of Sets). Let {M;}ses be a collection of sets indexed by a set S, let p be an
ultrafilter on S, and let [¢ Mydu be the categorical ultraproduct of Construction Let g, : [Tges My —
[ Msdp be the map of Notation so that we can identify ¢, with a filtered direct limit of projection
maps

7T502HM9—> H M.
seS seSy

If each of the sets M is nonempty, then each of the maps 7g, is surjective and therefore g, is also surjective.
In this case, we can identify [¢ M,dp with the quotient of the Cartesian product [T,.5 M by an equivalence
relation =, given explicitly by

({Ts}ses “u {Ys}ses) = (n({se S ws=y.}) =1).

Beware that if one of the sets M, is empty, then the map g, need not be surjective: in this case, the
Cartesian product [T,.g M; is empty, but the ultraproduct /. ¢ Msdp need not be.

Example 1.2.7 (Principal Ultrafilters). Let M* be a category and let M ¢ M™ be a full subcategory
which has ultraproducts in M*. Let S be a set containing an element sg € S, and let d5, denote the principal
ultrafilter associated to sg. Then the partially ordered set ngso ={Sy €S :59¢€ Sy} has a least element, given
by the singleton {sg}. It follows that, for any collection of objects { M, }scs, we have a canonical isomorphism

657501/Msd(550 ~ [] M= M,,.
S se{so}

The construction {M;}ses = €g,s, determines a natural isomorphism eg s, : [o(®)dds, 5 evy, of functors
from M?® to M; here evy, : M?® = M denotes the evaluation functor {Ms}ses = M.

We now make an elementary observation concerning iterated ultraproducts.

Proposition 1.2.8. Let M™* be a category and let M ¢ M™ be a full subcategory which has ultraproducts
in M*. Let {M;}s1 be a collection of objects of M indexed by a set T, let vy = {Vs}ses be a collection
of wltrafilters on T indexed by a set S. Let p be an ultrafilter on S and let [qvodp denote the composite
ultrafunctor of Construction[I.1.6, Then there is a unique morphism

Bt [ Ml [ vy > [ ([ Midvi)ap

in the category M with the following property:

(%) Let SocS and Ty € T be subsets such that u(Sp) =1 and vs(Ty) =1 for each s € Sy (so that we also
have ([gvsdu)(To) =1). Then the diagram

T
{qu }seSO

ier, M — > [ses(J7 Mydvs)
| Jo
[ Med([gvedp) By Js(J7 Mydvyg)dp
commutes (in the category M™).

Proof. From the definition of the ultraproduct fT Md(/. s Vsdpt) as a colimit, we see that there is a unique

morphism
AM,V-:[TMtd([SVst) - [S(/TMths)d,u

for which the diagram of (*) commutes in the special case where Sy = {s € S : v4(Tp)}. It follows immediately
from the definitions that the diagram commutes in general. O
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Notation 1.2.9 (Categorical Fubini Transformation). In the situation of Proposition [1.2.8] we will refer to
the map A, ,, as the categorical Fubini transformation. Note that is depends functorially on {M; }ser: that

is, we can regard A as a natural transformation of functors from M” to M, fitting into a diagram

HyVe

{fT(.)st}seS H fs(o)du
Auve

MT

.[T(')d(fs vsdp)
1.3. Ultracategories. We now place the constructions of §I.2]into an axiomatic framework.

Definition 1.3.1. Let M be a category. An ultrastructure on M consists of the following data:

(1) For every set S and every ultrafilter p on .S, a functor
/; (o)dp: M® > M

We will denote the value of this functor on an object {M;}ses € M® by fs Mdu, and refer to it as
the wltraproduct of {Ms}ses with respect to p.
(2) For every family of objects {M;}ses and every element sg € S, an isomorphism

€S,s0 * [ngd§so = Mso;

here s, denotes the principal ultrafilter associated to sg. We require that, for fixed S and s,
these isomorphisms depend functorially on {Ms}ses: that is, they determine a natural isomorphism
€550 ¢ Jg(®)dds, = evy,, where evy, : M?® = M denotes the evaluation function {Ms}ses > Ms,.

(3) For every family of objects {M; }+r indexed by a set T, every family vy = {vs}ses of ultrafilters on
T indexed by a set S, and every ultrafilter p on S, a morphism

Byt [ Md( [ vedp) > [ ([ Miav)d

which we call the Fubini transformation.
For fixed S, T, p, and v,, we require that these morphisms depend functorially on the family
{M;}ier. That is, they determine a natural transformation of functors

P ROLY R DR K ROLALY

of functors from M” to M, fitting into a diagram

{(Jr(®)dve}aes ” Js(®)du
AHW.

M M.
fT(')d(fs vsdp)
These data are required to satisfy the following axioms:

(A) Let {M;}+er be a collection of objects of M indexed by a set T, let vs = {vs}ses be a collection of
ultrafilters on 7" indexed by a set S, and let ds, be the principal ultrafilter on S associated to an
element sg € S. Then the Fubini transformation

ssywat [ Md( [ i) > [ ([ Midv,)ds,
0 T S s Jr
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is the inverse of the isomorphism

[(f Mtdys)désoﬂfMtduso:fMtd(f vyds,, ).
S T T T S

(B) Let {M;}ser be a collection of objects of M indexed by a set T, let f:S — T be a monomorphism
of sets, and let p be an ultrafilter on a set S, so that the pushforward ultrafilter f.(u) is given by
J505¢s)dp (see Example [1.1.7). Then the Fubini transformation

A,“sf(.):fTMtd(f*u)%fS(fTMtd@(s))dﬂ

is an isomorphism.

(C) Let {M;}ier be a collection of objects of M indexed by a set T, let {vs}ses be a collection of
ultrafilters on T indexed by a set S, let {y,}rcgr be a collection of ultrafilters on S indexed by a set
R, and let A be an ultrafilter on R. Let p denote the ultrafilter on T' given by p = fR([S vsdp )dA =
Jsvsd([g prdX) Then the diagram of Fubini transformations

A/\,fs vsdie

Jr Midp Jr(Jr Med([gvsdpr))dA

AledeVo /RAM%Vod)‘

Js Uz Midvs)d( [ prdX) A Jr([s(J7 Midvs)dpi, )dA

commutes in the category M.

An wultracategory is a category M together with an ultrastructure on M.

Warning 1.3.2. To avoid an unmanagable profusion of notation, we adopt the convention of using the same
symbols [¢(e)du, €s.s,, and A, ,, for the data appearing in Definition for all ultracategories that we
consider. This convention creates some danger of confusion: for example, if M and A are two ultracategories,
then the symbol eg 5, is used to denote both an isomorphism in the functor category Fun(MS,M) (which
is supplied by the ultrastructure on M) and an isomorphism in the functor category Fun(N SN ) (which is
supplied by the ultrastructure on N).

Notation 1.3.3. Let M be an ultracategory. Suppose we are given a collection of objects { M, }ier of M,
a map of sets f: S - T, and an ultrafilter  on S. We let A, : [ Myd(fipr) = [g My(sydp denote the
composite map

fMd(f ) fMd(fa dyp) @ f(fMd(S Yy LEes0 fM d

* = (s I (s - s .

it H it SJ‘()'u STff()'“ Sf()”

We will refer to A, 5 as the ultraproduct diagonal map. Note that axiom (B) of Definition is equivalent
to the requirement that if f is an injective map of sets, then A, ; is an isomorphism in M.

Example 1.3.4 (Ultrapowers). Let M be an ultracategory and let u be an ultrafilter on a set S. For each
object M € M, we let M* = [, g Mdp denote the object of M obtained by applying the ultraproduct functor
[S(O)dy to the constant map S — M taking the value M. We will refer to M* as the ultrapower of M by
. Applying the construction of Notation in the case where T = {t} is a singleton and f:S — T is the
constant map taking the value t, we obtain a map

M:fTMd(f*u)efSMdM:M“.

We will denote this map by A, : M — M* and refer to it as the ultrapower diagonal. Beware that A, is
generally not an isomorphism.

We will frequently make use of the following elementary observation concerning Notation
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Proposition 1.3.5. Let M be an ultracategory. Suppose we are given a family of objects {M;}ier of M

indezed by a set T, a pair of composable maps R N ER T, and an ultrafilter A on R. Then the composite
map
Agn,s Axg
fT Myd(f 0 g)A —— fs Mj(syd(g:A) — /RM(fogxr)d/\
coincides with the ultraproduct diagonal Ay fog.

Proof. Note that the morphisms Ay 40 Ay (n)r and Ay o4 are given by clockwise and counterclockwise
composition around the diagram

B (06 4a Jser s
Jr Mid(fog)X Js(fr Myddy5y)d(g. M) . Js My(5yd(g.))
AX5(fog)(e) A3y Ay
Jr B8y 870y 4
Jr(Jr Midd(sog)(e))dA Tr(s(fp Meddy(s))dég(ryd Jr(Js My(syddg(ry)dA
fR €3,9(r)dA fR €5,9(r)dA
5 JR T8 og)(ry
Jr(Jr Midd(sog)(ry)dA Jr M(fog)(rydA.

It will therefore suffice to show that this diagram commutes. For the squares on the right, this follows by
functoriality; the upper left square commutes by axiom (C') of Definition and the triangle in the lower
left commutes by axiom (A). O

Proposition has a counterpart for identity maps:

Corollary 1.3.6. Let M be an ultracategory, let {Ms}ses be a collection of objects of M indexed by a set
S, and let p be an ultrafilter on S, which we identify with the pushforward of itself along the identity map
idg : S = 5. Then the ultraproduct diagonal map

Au,idsz/szMsd,u_’/szMsdﬂ

of Notation|1.3.4 is the identity map.

Proof. It follows from axiom (B) of Definition that A, 44 is an isomorphism. Consequently, to show
that A, iqg is the identity map, it will suffice to show that A, a5 © Auiag = Apidg, Which is a special case
of Proposition [1.3.5 O

We close this section by showing that ultraproducts satisfy the axiomatics of Definition

Proposition 1.3.7. Let M™* be a category and let M € M™ be a full subcategory which has ultraproducts
in M. Then the functors [q(e)dp : M5 = M of Construction (together with the isomorphisms
€s,s, of Fxample m and the categorical Fubini transformations A, ., of Proposition determine an
ultrastructure on M.

Example 1.3.8 (The Categorical Ultrastructure). Let M be a category which admits small products and
small filtered colimits. Applying Proposition in the case M* = M, we obtain an ultrastructure on
the category M, which we will refer to as the categorical ultrastructure on M. We will show later that the
categorical ultrastructure is “initial” among all possible ultrastructures on M (see Example .

Proof of Proposition[1.5.7, We must argue that M satisfies axioms (A), (B), and (C) of Definition [I.3.1]
We consider each in turn.
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(A) Let {M;}+er be a collection of objects of M, let vy = {Vs}ses be a collection of ultrafilters on T indexed
by a set S, and let p be an ultrafilter on S. Recall that the categorical Fubini transformation

AW,.:'/TMtd(sz/sdu)»fS(fTMtdys)du

is characterized by the following requirement: if Sy € .S and Ty € T are subsets with the property
that 1(Sp) =1 and v4(Tp) = 1 for each s € Sy, then the diagram

{QZS}SGSO
HteTo M > HseSo _[T M,

To So
qus vsdu Lqu
Apve

Jr Mid([gvsdp) ——— [5(Jp Midvs)du

commutes. In the special case where p = d5, is the principal ultrafilter associated to some element
s0 €S, we can take Sy = {sp} to obtain a commutative diagram

Mieq, My ———— [ Mydvs,

-1
€s,s0
ADssgove

Jr Mid([gvedp) — [o([7 Midvg)dés,

for any subset Ty € T satisfying vs,(Tp) = 1. Passing to the direct limit over Tp, we obtain the desired
identity.

(B) Let {M;}ier be a collection of objects of M indexed by a set T, let f:.S < T be a monomorphism
of sets, and let p be an ultrafilter on S. We wish to show that the ultraproduct diagonal

Apge fT Mid(fep) = fs Mj(sydp

of Notation is an isomorphism. This follows from the observation that the construction Sy —
f(Sp) induces a cofinal map of partially ordered sets L{Zp - UCJZ‘:(M .

(C) Let {M;}ier be a collection of objects of M indexed by a set T, let {vs}ses be a collection of
ultrafilters on T indexed by a set S, let {1, }rcr be a collection of ultrafilters on S indexed by a set
R, and let A be an ultrafilter on R. Set p = [p([gvsdp,)dN = [qvsd( [ prdX, and let Ty € T be a
subset with p(Tp) =1. Set So ={se S:v,(Tp) =1} and Ro={r € R: 1,(Sp) = 1}, so that A(Rp) = 1.
We then have a cubical diagram

HteTo Mt HreRo HteTo Mt

\To \
A g vsdue

[T Mtdp \ fR([T Mtd(fs Vsd///fr))d/\

Afp prdave

HseSo HteTo Mt l HreRo HSESO HteTO Mt fR App,vadA

. T

fs(fT MthS)d(_[R frdX) fR(fs(_[T Midvs)dp,)dA

It then follows by a diagram chase that we have an identity
A © AL drw, © G50 = (fR A @A) 0 Ay 1 udp © 4"

in the set Hom g+ (Ier, Me, [ ([ (J7 Medvg)dp, )dX). Since the maps {q.° : [T;er, My — [ Mydp}
exhibit the categorical ultraproduct [, Mdp as a direct limit of the diagram {[T;er, M} o(To)=15 it

A*,u.
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follows that we must also have the identity
Ao AIR prdAve = (_[R Ay, vdA) o A/\Js Vediie

in Homq ([ Mydp, [5([s(J7 Midvg)dp,)dN).
]

1.4. Ultrafunctors. We now introduce some terminology for articulating the relationship between different
ultracategories.

Definition 1.4.1 (Ultrafunctors). Let M and N be categories with ultrastructure and let F': M - N be
a functor. A left ultrastructure on F' consists of the following data:

(*) For every collection of objects { M} ses of the category M and every ultrafilter p on S, a morphism
0u: F(fg Mydp) — [¢ F(M,)dp in the category N.
These morphisms are required to satisfy the following conditions:

(0) For every collection of morphisms {fs: Ms; - M.} in the category M and every ultrafilter p on S,
the diagram

F(fg Madp) —" [ F(M,)dp
lF(fs fsdu) lfs F(fs)du
F([s Mldp) —— [ F(M{)du
commutes. In other words, we can regard o, as a natural transformation
0w Fo [()an— [ (&)dpoF®

of functors from M* to N.
(1) For every collection {M,}ses of objects of M indexed by a set S and every element sy € S, the

diagram
s,
F(fs Msdaso) - /S F(Ms)d550
F(M,,)

commutes (in the category N ).
(2) For every collection {M;}ier of objects of M indexed by a set T, every collection vy = {vs}ses of
ultrafilters on T indexed by a set .S, and every ultrafilter u on S, the diagram

Ofgvsdu

F(fp Myd([gvsdp)) Jr F(My)d([gvsdp)

lF(Aum.) lAu,V.

F([s(fr Midvs)dp) - JsF(z Mtd”s)dﬂm)fs(fT F(My)dvs)dp

commutes (in the category A).

An wultrastructure on F is a left ultrastructure {o,} for which each of the maps o, is an isomorphism. A
left ultrafunctor from M to N is a pair (F,{o,}), where F' is a functor from M to N and {o,} is a left
ultrastructure on F. An ultrafunctor from M to N is a right ultrafunctor (F,{o,}) for which each o, is an
isomorphism.

Definition 1.4.2. Let M and A be categories with ultrastructure, let F, I’ : M — N be functors from M
to NV, and suppose that F' and F’ are equipped with left ultrastructures {o,} and {o},}, respectively. We
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will say that a natural transformation u: F' — F' is a natural transformation of left ultrafunctors if, for every
collection of objects {M;}scs of M and every ultrafilter 4 on S, the diagram

F(fs Msdp) L>[SF(MS)dN
Lu(fs Mdp) lfs w(Ms)dp
F'([s Msdp) s Js F'(M)du

commutes (in the category N).

We let Fun™"" (M, N) denote the category whose objects are left ultrafunctors (F, {o,}) from M to N
and whose morphisms are natural transformations of left ultrafunctors, and we let FunUlt(M,N ) denote the
full subcategory of FunLUlt(./\/l,./\/' ) spanned by the ultrafunctors from M to N.

Remark 1.4.3 (Colimits of Left Ultrafunctors). Let M and AN be ultracategories. Suppose that we are
given a diagram {F,} in the category Fun™V! (M, N) with the property that, for every object M € M, the
diagram {F, (M)} admits a colimit in . Then:
o The construction (M € M) lim F, (M) determines a functor F': M — N.
e There is a unique left ultrastructure on F for which each of the natural maps po : Fp, — Fis a
natural transformation of left ultrafunctors.
e The maps p, exhibit F' as a colimit of the diagram {F,} in the category of left ultrafunctors
Fun™"" (M, N).
In particular, if the ultracategory N admits small colimits, then the category FunLUlt(M,N ) also admits
small colimits, which are preserved by the forgetful functor Fun™"" (M, N) - Fun(M,N).

Warning 1.4.4. The analogue of Remark for ultrafunctors (as opposed to left ultrafunctors) is false.
If {F,} is a diagram in the category Fun""*(M,N) of ultrafunctors which admits a pointwise colimit F :
M — N, then F inherits a left ultrastructure (by virtue of Remark [1.4.3]) given by maps

o F( [ Modpe) = lim Fol([ Mode) =limy [ Fa(M)dp > [ (tim Fu(M)dps) = [ F(M,)dp

But these maps are generally not invertible, because the ultraproduct functors on A" need not preserve
colimits.

Construction 1.4.5 (Composition of Left Ultrafunctors). Let M, M’ and M" be ultracategories. Let
(F,{o,}) be a left ultrafunctor from M to M’, and let (F’,{c},}) be a left ultrafunctor from M’ to M".
Then the composite functor F’ o F' admits a left ultrastructure, which associates to each collection of objects
{M;}ses of M and each ultrafilter  on S the composite map

(F’oF)(fSMsdu) MF’(fSF(Ms)d,u)i/S(F’OF)(Ms)du.

Note that if {0, } and {},} are ultrastructures, then this construction determines an ultrastructure on the
functor F’ o F. We therefore obtain composition laws

FunLUlt(M',M") % FunLUlt(/\/l,M') N FunLUlt(M,/\/l")
FunUlt(./\/l',M") % FunUlt(./\/l,M') = FunUlt(./\/l,M").

Remark 1.4.6. We can use Construction m to construct (strict) 2-categories Ult c Ult" as follows:

e The objects of Ult and Ult" are ultracategories.

e For every pair of ultracategories M and N, the category of morphisms from M to N in Ult is given
by FunV"*(M, N), and the category of morphisms from M to A in Ult" is given by Fun™"" (M, N).

e The composition laws on Ult and Ult" are given by Construction
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More informally: Ult" is the 2-category in which objects are ultracategories, 1-morphisms are left ultrafunc-
tors, and 2-morphisms are natural transformations of left ultrafunctors. The 2-category Ult is the (non-full)
subcategory of Ult" whose morphisms are ultrafunctors.

Remark 1.4.7. Let M and N be ultracategories and let F': M — N be an ultrafunctor. If F is an equiva-
lence of categories having homotopy inverse G : N' = M, then G inherits the structure of an ultrafunctor and
can be regarded as a homotopy inverse of F' in the 2-category Ult. Beware that the analogous statement is

not necessarily true if we assume only that F is a left ultrafunctor (though in this case, G still inherits the
structure of a right ultrafunctor; see Remark [8.1.4]).

We give some examples of (left) ultrafunctors.

Proposition 1.4.8. Let M and N be categories which admit small products and small filtered colimits, and
equip M and N with the category ultrastructures of Example [I.3.8 Let F : M — N is a functor which
preserves small filtered colimits, then F can be regarded as a left ultrafunctor from M to N'. If F preserves
small filtered colimits and small products, then it can be regarded as an ultrafunctor from M to N.

Proposition is an immediate consequence of the following more general (and more precise) assertion:

Proposition 1.4.9. Let M* and Nt be categories and let M € M™ and N € N* be full subcategories which
admit ultraproducts in M* and N*, respectively. Let F'* : M* — N be a functor which carries M into N'
and satisfies the following additional condition:

(%) For every collection of objects {Ms}ses of M and every ultrafilter n on S, the maps

F(q): P[]0 > F*( f Modp)

sel

exhibit F*([g Mdp) as a colimit of the diagram {F*([1ee; M)} (=1 in the category N

Let F = F*|p, which we regard as a functor from M to N, and regard M and N as equipped with the
ultrastructures give by Proposition|1.3.1 Then:

(a) For every collection of objects {Ms}ses of M and every ultrafilter yu on S, there is a unique map
0u: F(fg Mydp) — [g F(Ms)dp having the property that, for each subset So € S with u(So) =1, the

diagram
F+(HseSO Ms) — HseSo F(MS)
lf‘“(qf“) quo
F([g Msdp) — Js F(Ms)dp
commautes.

e morphisms {o,} of (a) determine a left ultrastructure on the functor F.
b) Th hi u determi left ultrastruct th tor F
(c) If F* preserves small products, then {c,} is an ultrastructure on F (that is, each of the maps

o F(fg Mydp) — [ F(M,)dp is an isomorphism,).

Proof of Proposition[1.].9 Assertion (a) follows immediately from (*), and (c) is clear. To prove (b), we
show that that the maps {c,,} satisfy condition (2) of Definition [I.4.1] (conditions (0) and (1) are immediate
from the definitions). Fix a collection of objects {M;}er of M indexed by a set T, a collection of ultrafilters
{Vs}ses on T indexed by a set S, and an ultrafilter 1 on the set S. Set A = [y vsdu. We wish to show that
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the diagram 7 :

Jr F(Mg)dA Js(J7 F(My)dvs)d
]fs ovsdp
ox [s F(fr Mydvg)dp
F(fp Myd\) 2202 L B[ [ Myduy)dp)

commutes (in the category N). Let u,v : F( [ Myd)\) 3 [( [ F(My;)dvs)dp be the maps given by clockwise
and counterclockwise composition around the diagram o. To show that u = v, it will suffice (by virtue of
(%)) to show that u and v agree after precomposition with F(q/\o) F(Ier, My) » F(Jp Mid)), for every
subset Tp € T with A(Tp) = 1. Set Sp = {s € S : vs(Tp) = 1}, so that u(Sp) = 1. We are then reduced to
verifying the commutativity of the diagram

A

fTF(Mt) m fS(fT (M)dvg)d
ap°
40
; seSg(fTF(Mt)dVS) fs ousdp
aeS Ovg
0 qio
o HteTo F(Mt HseSo F(fT Mths) - fs F([T Mths)dPJ
] F({ng}.ge ) T
F*(Tyer, My) > F* (Ies, (7 Midvy))
F(Auve)

F(fp Md)) F(fs(Jr Midvs)dp)

in the category N'*. Note that the inner region of the diagram commutes by the construction of the maps
oy, , the upper region commutes by the construction of the Fubini transformation for the ultrastructure on
N, the lower region commutes by the construction of the Fubini transformation for the ultrastructure on
M, the region on the left commutes by the construction of oy, the region on the upper right commutes by
functoriality, and the region on the lower right commutes by the construction of o,,. (|

Remark 1.4.10. Let M* and N be categories which admit small products, let M ¢ M* and N ¢ N'*
be full subcategories which admit ultraproducts in M* and N, and let Fun'(M™*,N'*) denotes the full
subcategory of Fun(M,N') spanned by those functors which carry M into N and satisfy condition (%)
of Proposition [[.4.9] Then the construction F* ~ (F,{o,}) of Proposition determines a functor
Fun'(M*,N*) - Fun"U" (M, ).

2. ULTRACATEGORIES AND LOGIC

Let C be a small pretopos. Recall that a model of C is a functor M : C - Set which preserves finite limits,
finite coproducts, and effective epimorphisms (Definition [A.4.5). We let Mod(C) denote the full subcategory
of Fun(C, Set) spanned by the models of C. In we recall the Los ultraproduct theorem, which (in this
context) asserts that the category of models of C is closed under the formation of ultraproducts in Fun(C, Set)
(Theorem . In particular, the category Mod(C) inherits an ultrastructure (Remark , SO we can
consider (left) ultrafunctors F : Mod(C) — Set. In we give a precise statement of the main result
of this paper (Theorem , which establishes an equivalence between the category of left ultrafunctors
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Fun™""*(Mod(C), Set) with the topos of sheaves Shv(C). In we apply this result to deduce Makkai’s
strong conceptual completeness theorem, which supplies an equivalence of the category of ultrafunctors
Fun""(Mod(C), Set) with the pretopos C itself (Theorem [2.3.1). In §2.4f we apply the strong conceptual
completeness theorem to prove another result of Makkai, which characterizes the essential image of the Barr

embedding of a small exact category £ (Theorem [2.4.2]).

2.1. The Los Ultraproduct Theorem. We now recall the classical Los ultraproduct theorem in a form
which is convenient for our applications. Note that, for any category C, the functor category Fun(C, Set)
admits small limits and colimits. In particular, for any collection of functors {Ms : C > Set}ses and any
ultrafilter 12 on S, we can form the categorical ultraproduct [¢ Mydp (in the category Fun(C, Set)), which is
described concretely by the formula

(J.Mean)(©) = [[(M(O)du= tm ] M.(C).

1(S0)=15€50

Theorem 2.1.1 (Los Ultraproduct Theorem). Let C be a pretopos and let {Ms}ses be a collection of models
of C. For every ultrafilter 1 on S, the ultraproduct [¢ Msdp (formed in the category Fun(C,Set)) is also a
model of C.

Remark 2.1.2. Let C be a pretopos. Theorem asserts that the category of models Mod(C) has
ultraproducts in the larger category Fun(C,Set), in the sense of Construction Applying Proposition
we obtain an ultrastructure on the category Mod(C).

Theorem 2.1.1] is an immediate consequence of the following feature of the category of sets:

Proposition 2.1.3. Let S be a set and let  be an ultrafilter on S. Then the ultraproduct functor fs(')dﬂ :

Set® - Set of Construction is a pretopos functor: that is, it preserves finite limits, finite coproducts,
and effective epimorphisms.

Proof. By construction, the ultraproduct functor [4(e)du can be written as a filtered direct limit of functors
of the form {M;}ses = [lses, Ms. Since each of these functors preserves finite limits, initial objects, and
effective epimorphisms, it follows that [ (e)du preserves finite limits, initial objects, and effective epimor-
phisms. To complete the proof, it will suffice to show that for every pair of objects { M} ses, {Ns}ses € Set”,
the canonical map

(LMsdp)u(/;Nsdu) - fS(MsuNs)d,u
is bijective. It follows from the left exactness of the ultraproduct functor that we can identify [¢ Mydp and
Js Nedp with disjoint subsets of [¢(M, 1 N,)dp; we wish to show that every element z € [o(M, u Ny)dp
belongs to one of these subsets. Without loss of generality, we may assume that x is represented by an
element {z}ses, € [Tses, (Ms 1 Ny) for some subset So € .S with 1(Sp) = 1. Then we can write Sp = S_uS,,
where S_ = {se Sy:xs¢e My} and S, = {s€Sy:xs € Ng}. We then have pu(S-) + u(S;) = u(Sp) = 1. Without
loss of generality, we may assume that u(S_) = 1. In this case, 2 can also be represented by the tuple

{xs}seS, € H M, c H (.2\4S I Ns)
seS_ seS_

and therefore belongs to the image of the ultraproduct [ Mdp. O

Proof of Theorem[2.1.1l Let {M,}ses be a collection of models of C and let p be an ultrafilter on the index
set S. Then the ultraproduct [qMgdu (formed in the category Fun(C,Set)) can be identified with the
composition

s S€E d d
o Medees s T o 0

The first map is a pretoos functor by virtue of our assumption that each M is a model of C, and the second
map is a pretopos functor by virtue of Proposition It follows that the composite map is also a pretopos
functor. |

We close this section by noting another consequence of Proposition [2.1.3
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Corollary 2.1.4. Let M be an ultracategory. Then the category of left ultrafunctors FunLUlt(M, Set) admits
finite limits, which are preserved by the forgetful functor FunLUlt(M,Set) — Fun(M,Set). Moreover, the
full subcategory Fun"" (M, Set) is closed under finite limits.

Proof. Let {F,} be a finite diagram in the category of left ultrafunctors Fun™*(M, Set), and define F :
M - Set by the formula (M) = lim F, (M). For any collection of objects { M, }ses of M and any ultrafilter
pon S, we have a diagram

lim Fo(fg Madp) —=lim _[g Fo(M,)dp,

where the bottom horizontal map is supplied by the left ultrastructures on the functors F,, and the right verti-
cal map is a bijection by virtue of Proposition It follows that there is a unique map o, : F/(fq Msdp) -
/. o F(M,)dp which renders the diagram commutative. Moreover, if each F,, is an ultrafunctor, then the bot-
tom horizontal map is bijective, so that o, is an isomorphism. We leave it to the reader to verify that the
collection of maps {0, } is a left ultrastructure on F' (hence an ultrastructure in the case where each Fy, is
an ultrafunctor), and that the projection maps F — F, exhibit F as a limit of the diagram {F,} in the
category of left ultrafunctors Fun™Y"* (M, Set). O

2.2. Statement of the Main Theorem. We are now ready to formulate the main result of this paper.

Construction 2.2.1 (The Evaluation Map). Let C be a pretopos. For each object C ¢ C, evaluation at C
determines a functor Fun(C, Set) — Set which preserves small limits and colimits. We let eve denote the
restriction of this evaluation functor to the category Mod(C) ¢ Fun(C, Set), given on objects by evg (M) =
M(C). Invoking Proposition we see that eve can be regarded as an ultrafunctor from Mod(C) to
the category of sets, where Mod(C) is endowed with the ultrastructure of Remark Moreover, the
construction C — evg determines a functor

ev: C - Fun""(Mod(C), Set),
which we will refer to as the evaluation map (see Remark [1.4.10).
Theorem 2.2.2. Let C be a small pretopos and let
ev : C - Fun""(Mod(C), Set) € Fun™V" (Mod(C), Set)

denote the evaluation map of Construction|2.2.1 Then:

(1) Let T : Mod(C) — Set be a left ultrafunctor, and define a functor Fr : C°® — Set by the formula
F1(C) = Homp,,ron (vod(ey,sey (€Ve, T). Then Fr is a sheaf on C (with respect to the coherent
topology of Deﬁmtion.

(2) The construction T — Fr induces an equivalence of categories Fun™U'"*(Mod(C),Set) — Shv(C),
where Shv(C) is the topos of sheaves on C (with respect to the coherent topology).

We will prove Theorem [2.2.2] in {7}

Corollary 2.2.3. Let C be a small pretopos. Then the category of left ultrafunctors FunLUlt(Mod(C),Set)
is a (coherent) Grothendieck topos.

Notation 2.2.4. If X and ) are Grothendieck topoi, we let Fun*(X,)) denote the full subcategory of
Fun(X,)) spanned by those functors f* : X — ) that preserve small colimits and finite limits (in other
words, Fun*(X,Y) denotes the category of geometric morphisms from Y to X).

Example 2.2.5. Let M and N be ultracategories, and assume that the categories FunLUlt(./\/l,Set) and
Fun™V'"* (W, Set) are Grothendieck topoi. For every left ultrafunctor F : M — N, precomposition with F'

induces a map
Fun""" (\, Set) - Fun"Y"* (M, Set)
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which preserves small colimits (by Remark [1.4.3]) and finite limits (by Corollary [2.1.4). We therefore obtain
a map
Fun™""* (M, N') - Fun* (Fun™""* (W, Set), Fun™""* (M, Set)).

Corollary 2.2.6. Let C be a small pretopos and let X be a Grothendieck topos. Then composition with the
evaluation map ev : C - Fun""*(Mod(C), Set) ¢ Fun*""*(Mod(C), Set) induces a fully faithful embedding

Fun* (Fun™""*(Mod(C), Set), X) - Fun(C, X),
whose essential image is spanned by the pretopos functors from C to X.

Proof. Combine Theorem with Corollary O

Corollary 2.2.7. Let C be a small pretopos, let M be an ultracategory, and assume that FunLUlt(./\/l,Set)
is a Grothendieck topos. Then the comparison map

6 : Fun™U" (M, Mod(C)) - Fun* (Fun™V"*(Mod(C), Set ), Fun™V* (M, Set))
of Example [2.2.5 is an equivalence of categories.

Proof. Unwinding the definitions, we see that 6 fits into a commutative diagram

Fun"U" (M, Mod(C)) —%— Fun* (Fun"""(Mod(C), Set ), Fun"V* (M, Set))

Fun™" (M, Fun(C, Set)) Fun(C, Fun""" (M, Set))

where the bottom horizontal map is an equivalence of categories. It will therefore suffice to show that
this diagram is a pullback square. Using Corollary 2:2.6] we are reduced to proving the following concrete
statement:

(+) Let F : C -» Fun"V""(M, Set) be a functor. Then F is a pretopos functor if and only if, for each
object X € M, the functor
Fx :C - Set Fx(C)=F(C)(X)
is a pretopos functor (that is, a model of C).
This is clear, since colimits and finite limits in the category Fun™U* (M, Set) are computed pointwise (Remark

and Corollary [2.1.4)). O
Example 2.2.8. In the situation of Corollary suppose that M = Mod(D) for some other small

pretopos D. Combining the identifications
Fun"!*(Mod(C), Set) = Shv(C) Fun"V'"*(Mod(D), Set) = Shv(D)
of Theorem [2.2.2| with Corollary we obtain an equivalence of categories
Fun™""*(Mod(C), Mod(D)) =~ Fun*(Shv(D), Shv(C)).

Remark 2.2.9. Let Ult" denote the strict) 2-category whose objects are ultracategory and whose mor-
phisms are left ultrafunctors (Remark , and let Ult{j c Ult" denote the full subcategory spanned by
those ultracategories of the form Mod(C), where C is a small pretopos. It follows from Corollary that
the construction M ~ Fun“V*(M, Set) determines a fully faithful embedding from Ult§ to the (strict)
2-category of topoi and geometric morphisms. By virtue of Theorem the essential image of this
embedding is the 2-category of coherent topoi (see Proposition [C.6.4)).

Theorem [2.2.2 immediately implies the following classical result of Deligne:

Theorem 2.2.10 (Deligne’s Completeness Theorem). Let X be a coherent Grothendieck topos. Then X has
enough points. In other words, if f: X —Y is a morphism in X with the property that u*(f) is bijective for
every point u* € Fun*(X,Set), then f is an isomorphism in X .
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Proof. By virtue of Proposition and Theorem [2.2.2] we may assume without loss of generality that
X = FunLUlt(Mod(C),Set) for some small pretopos C, so that f is a natural transformation between left
ultrafunctors X,Y : Mod(C) — Set. If f is not an isomorphism, then there exists some model M € Mod(C)
for which the map X (M) — Y (M) is not bijective. Evaluation at M determines a functor

u* s X = Fun™"" (Mod(C), Set) - Fun(Mod(C), Set) — Set

such that u*(f) is not bijective. Since small colimits and finite limits in Fun™""*(Mod(C), Set) are computed
pointwise (Remark and Corollary [2.1.4)), the functor u* is a point of the topos X. O

We note the following easy consequence of Deligne’s theorem, which will be useful in the next section:

Corollary 2.2.11. Let C and D be pretopoi and let A : D — C be a functor. Assume that C is small and that
for each model M of C, the composite functor M o X € Fun(D,Set) is a model of D. Then X is a pretopos
functor.

Proof. We must show that the functor A preserves finite limits, finite coproducts, and effective epimorphisms.
We give the proof for finite limits; the other properties follow by a similar argument. Suppose we are given
a finite diagram { D, } in the category D having limit D = LiLna D,. We wish to show that the canonical map
u:AD) — lim | A(D,) is an isomorphism in the category C. By virtue of Theorem (and Corollary
, it will suffice to show that M (u) is an isomorphism for each model M of C. Since M preserves finite
limits, we can identify M (u) with the canonical map (M o A\)(D) — Lina(M o0 A)(Dy). This map is an
isomorphism by virtue of our assumption that M o A is a model of D. O

2.3. Application: Strong Conceptual Completeness. We now turn to the original version of Makkai’s
strong conceptual completeness theorem.

Theorem 2.3.1 (Makkai). Let C be a small pretopos. Then the evaluation map ev : C — Fun"" (Mod(C), Set)
of Construction [2.2.1] is an equivalence of categories.

Remark 2.3.2. Theorem is actually slightly stronger than the version proved by Makkai in [9], since
our category of ultrafunctors FunUlt(Mod(C ), Set) is a priori larger than the one introduced by Makkai; see

Warning [0.0.9

Before giving the proof of Theorem let us note some of its consequences. Let C and D be pretopoi
and let A : D - D be any functor. Then precomposition with A induces a map A* : Fun(C, Set) - Fun(D, Set)
which preserves small limits and colimits. Applying Remark we see that A* induces an ultrafunctor
from Mod(C) to Fun(D, Set), which we will also denote by A*. Note that if A is a pretopos functor, then we
can regard \* as an ultrafunctor from Mod(C) to Mod(D).

Corollary 2.3.3 (Makkai Duality). Let C and D be pretopoi and let Fun"™*P(D,C) denote the category
of pretopos functors from D to C. If C is small, then the construction A — X* induces an equivalence of
categories

Fun"™*P(D, ¢) ~ Fun""(Mod(C), Mod(D)).
Proof. Tt follows from Theorem that the construction A = \* induces an equivalence of categories
Fun(D,C) - Fun(D, Fun"" (Mod(C)), Set) ~ Fun""*(Mod(C), Fun(D, Set)).

Under this equivalence, the full subcategory Fun""*(Mod(C),Mod(D)) € Fun""*(Mod(C), Fun(D, Set)) can
be corresponds to the full subcategory of Fun(D,C) spanned by those functors A with the property that for
each model M of C, the composition M o X is a model of D. By virtue of Corollary this subcategory
coincides with Fun"™"*P(D, (). O

Remark 2.3.4. Let Ult denote the (strict) 2-category whose objects are ultracategories and whose mor-
phisms are ultrafunctors (Remark [1.4.6)) It follows from Corollary that the construction C » Mod(C)
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determines a fully faithful embedding of 2-categories {Small pretopoi}°? — Ult. This embedding fits into a
commutative diagram

{Small pretopoi}°P _CrMod©) Ult

LCHShv(C) L

{Coherent topoi} ——— Ult",

where the bottom horizontal map is the fully faithful embedding of Remark (with homotopy inverse
given by M > Fun™U"*( M, Set)).

Corollary 2.3.5 (Makkai-Reyes Conceptual Completeness Theorem). Let C and D be small pretopoi and
let A:D — C be a pretopos functor. If the induced map Mod(C) — Mod(D) is an equivalence of categories,
then X\ is an equivalence of categories.

Proof. Combine Corollary [2:3.3] with Remark [T.4.7] O
We will deduce Theorem [2:3.1] from Theorem [2:2.2] together with the following observation:

Lemma 2.3.6. Let C be a small pretopos and let F' : Mod(C) — Set be a functor equipped with a left
ultrastructure {0, }. Suppose that, for every collection of models {Ms}ses of C and every ultrafilter p on
S, the map o, : F(fg Mydp) — [¢ F(M)dup is surjective. Then F is a quasi-compact object of the topos
Fun™"" (Mod(C), Set).

Proof. Let {Fs}ses be the collection of all quasi-compact subobjects of F (in the Grothendieck topos
Fun™""*(Mod(C), Set)). We regard S as partially ordered by inclusion (so that s < s’ if and only if F ¢ Fy/).
Since the collection of quasi-compact subobjects of F' is closed under finite unions, the partial ordering on
S is directed. Applying Proposition [1.1.10] we can choose an ultrafilter p on S such that, for every ¢ € .S, we
have p({seS:s>t})=1.

Assume that F' is not quasi-compact. Then, for each s € S, we have Fs ¢ F'. We can therefore choose a
model M of C and an element xs € F(M) which does not belong to Fs(M;). Let = denote the image of
{s}ses in the ultraproduct [¢ F(M;)dp. Using the surjectivity of the map o, : F([g Msdp) - [ F(My)dp,
we conclude that there is an element y € F/( [ M dp) satisfying o, (y) = 2. Then y belongs to Fy([q Mdp)
for some t € .S. Using the commutativity of the diagram

Ft(fs Mdy) L[s Fy(Ms)dp

l l

F([s Msdﬂ) i>fS F(Ms)d,ua

we see that x can be lifted to an element ¥ of the ultraproduct fs Fy(M;)du. Choose a subset Sp € S
satisfying 1(So) = 1 and a tuple {Zs € F1 (M) }ses, representing . Shrinking S if necessary, we may assume
that Ts = x5 for each s € Sy and that Sy € {s€.S:s>t}. Then, for any element s € Sy, we conclude that

xs =Ty € Fy(Ms) € Fs(My),
contradicting our choice of z,. O

Proof of Theorem[2.3.1 Let C be a small pretopos; we wish to prove that the evaluation map ev : C —
Fun""(Mod(C), Set) is an equivalence of categories. Let 6 : Fun"""*(Mod(C), Set) - Shv(C) be the equiv-
alence of Theorem so that the composition 6 o ev : C — Shv(C) is the Yoneda embedding. Applying
Theorem we see that the evaluation map ev is a fully faithful embedding, whose essential image con-
sists of those ultrafunctors F : Mod(C) — Set which are quasi-compact and quasi-separated when viewed as
objects of the topos Fun™""(Mod(C), Set). We will complete the proof by showing that every ultrafunctor
F is quasi-compact and quasi-separated as an object of FunLUlt(Mod(C ),Set). The quasi-compactness of
F follows from Lemma [2.3.6, To prove that F' is quasi-separated, we must show that for every pair of
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Fy xp Fy is quasi-compact. It follows from Theorem that the topos Fun™""*(Mod(C), Set) is generated
(under small colimits) by objects of the form eve, for C' € C. We may therefore assume without loss of
generality that Fy and F} belong to the essential image of the evaluation functor, and therefore belong to
the subcategory Fun""(Mod(C),Set) ¢ Fun*""*(Mod(C), Set). In this case, the fiber product Fy xp F is
also an ultrafunctor (Corollary , and is therefore quasi-compact by Lemma [2.3.6 ([l

quasi-compact objects Fp, I € FunLUlt(Mod(C),Seti equipped with maps Fy — F < [}, the fiber product

2.4. Application: The Image of the Barr Embedding. Let £ be a regular category (Deﬁnition.
Recall that a functor M : & — Set is said to be regular if it preserves finite limits and carries effective
epimorphisms in € to surjections in the category of sets. We let Fun"® (&, Set) denote the full subcategory
of Fun(&, Set) spanned by the regular functors. For every object F € £, we let evg : Fun™8 (&, Set) — Set
denote the functor given by evaluation at E, so that evg(M) = M(FE). The construction E ~ evg is called
the Barr embedding, due to the following result of [3]:

Theorem 2.4.1 (Barr). Let £ be a small regular category. Then the construction E — evg induces a fully
faithful embedding

& < Fun(Fun'®(&, Set), Set).

We refer the reader to for a proof of Theorem (which is essentially identical to Barr’s original
proof).

If £ is an exact category, then the essential image of the Barr embedding admits a simple description,
given by the following result of Makkai:

Theorem 2.4.2 (Makkai). Let £ be a small exact category (Definition . Then the functor ev :
& — Fun(Fun'®® (&, Set), Set) is a fully faithful embedding, whose essential image consists of those functors
F :Fun"™®(&,Set) — Set which preserve small products and small filtered colimits.

In this section, we observe that Theorem [2.4.2| can be deduced from Makkai’s strong conceptual com-
pleteness theorem (the reverse is also true: see Remark [6.0.2]). The proof is based on the following general
category-theoretic fact:

Proposition 2.4.3. Let £ be a small reqular category. Then there ezists a small pretopos C and a fully
faithful regular functor h : € — C such that precomposition with h induces an equivalence of categories
Mod(C) ¢ Fun'®(C, Set) — Fun'*®(&, Set). Moreover, if the category & is exact, then an object C € C belongs
to the essential image of f if and only if the evaluation functor

eve : Mod(C) — Set M~ M(C)
commutes with finite products.

Remark 2.4.4. For any regular category &, the full subcategory Fun"™®(&,Set) € Fun(&,Set) is closed
under small products and small filtered colimits. In the situation of Proposition the existence of
an equivalence Mod(C) ~ Fun"®(&, Set) guarantees that the category Mod(C) also admits small products.
Moreover, if C € C belongs to the essential image of h, then the evaluation functor eve : Mod(C) — Set can
be identified with the evaluation functor evg : Fun"®(&,Set) — Set for some object E € £, and therefore
commutes with small products (not just finite products).

Proof of Proposition[2.4.3 Let us regard the category £ as equipped with the regular topology of Definition
and let Shv(€) denote the associated category of sheaves. Let h: & - Fun(€°P, Set) be the Yoneda
embedding. Since the regular topology on £ is subcanonical (Corollary , we can regard h as a functor
from £ to Shv(€). Note that the topos Shv(€) is coherent, and that the functor h takes values in the
full subcategory Shveen(€) ¢ Shv(&) of coherent objects (Proposition [C.6.3). Let C ¢ Shveon(€) denote
a small subcategory which is equivalent to Shv..,(£) and contains the essential image of h. Then C is a
small pretopos (Corollary , and we can regard h as a regular functor from £ to C. We claim that
precomposition with i induces an equivalence of categories 6 : Mod(C) — Fun"™®(&, Set). To prove this, we
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observe that 6 fits into a commutative diagram

Fun*(Shv(&), Set)

TR

6 Fun™® (&, Set),

Mod(C)

where the left and right vertical maps are equivalences by virtue of Corollary and Corollary
respectively. It follows that the category Mod(C) admits small products (Remark [2.4.4)).
We now prove the following:

(*) Let C € C be an object for which the evaluation functor eve : Mod(C) — Set preserves finite products.
Then there exists an object E € £ and an effective epimorphism hg — C in the pretopos C.

To prove (*), we first note that Shv (&) is generated by objects of the form hg. We can therefore choose a
collection of objects {F;}ier of €& and maps {u; : hg, = C};er for which the induced map [[;.; hg, - C is an
effective epimorphism in the topos Shv(€). Since C is a quasi-compact object of Shv(€), we may assume
without loss of generality that the set I is finite. We claim that one of the maps w; is an effective epimorphism.
Assume otherwise. Then, for each i € I, we can apply Deligne’s completeness theorem (Theorem [2.2.10) to
choose a model M; € Mod(C) for which the map of sets M;(u;) : M;(hg,) - M;(C) is not surjective. For
each i € I, choose an element x; € M;(C) which does not belong to the image of M;(u;). Let M denote the
product [1;c; M;, formed in the category Mod(C). Our assumption that the evaluation functor eve preserves
finite products guarantees that the canonical map M (C) — [1,c; M;(C) is bijective. We can therefore choose
an element x € M (C) having image x; under each of the projection maps M (C) - M;(C). Since the maps
u; induce a surjection [];.; M (hg,) - M(C), there exists an index j € I such that = belongs to the image of
the map M (u;): M(hg;) - M(C). Using the commutativity of the diagram

uj)

M(hg,) —) o ()

l M (uy) l

M;(hpg,) ——= M;(C),

we conclude that x; belongs to the image of M;(u;), contradicting our choice of z;. This completes the
proof of ().
We next prove:

(#") Let E' be an object of £ and let C € C be a subobject of hgr. If the evaluation functor eve commutes
with finite products, then C' belongs to the essential image of h.

To prove ("), we note that (*) guarantees the existence of an object E € £ and an effective epimorphism
v:hg > C. Then C can be identified with the image of the composite map hg % C < hpr. Since the
functor h is fully faithful, we can assume that this map has the form h,,, for some map u: E - E’ in £. The
regularity of the functor A then implies that C' = Im(h,,) is isomorphic t0 hp(y)-

Now assume that the category £ is exact, and let C' € C be any object for which the evaluation functor
eve : Mod(C) — Set preserves finite products. Using (*), we can choose an object F € £ and an effective
epimorphism v: hg - C'in C. Let D = hg xc hg € hpxg be the equivalence relation on hp determined by v.
Then the evaluation functor evp is given by the fiber product evy,,, Xev. €Vh,, and therefore preserves small
products. It follows from (+') that we can assume D = hp for some subobject R ¢ E x F in the category
E. Tt is easy to see that R is an equivalence relation on E. Since £ is exact, the equivalence relation R is
effective: that is, there exists an effective epimorphism E - E/R in £ such that R = E'xpp I (as subobjects
of E'x F). Because the functor h is regular, we can identify hg r with the quotient of hg by the equivalence
relation hr = hg Xey hp: that is, with the object C' € C. It follows that C' belongs to the essential image of
h, as desired. O
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Remark 2.4.5. Let £ be a small regular category and let h: £ - C be as in Proposition Then the
equivalence 6 : Mod(C) ~ Fun'®® (&, Set) is an equivalence of ultracategories, where we endow Mod(C) with
the ultrastructure of Remark and Fun'®®(&,Set) with the categorical ultrastructure. To see this, we
observe that 6 can be written as the composition of the inclusion map Mod(C) < Fun™®(C,Set) (which
has an evident ultrastructure, where we endow Fun'®(C, Set) with the categorical ultrastructure) with the

.. oh I . ..
restriction functor Fun"™®(C,Set) — Fun'®(&,Set) (which preserves small products and filtered colimits,
and therefore inherits an ultrastructure from Proposition [[.4.9]

Proof of Theorem[2.4.2 Let € be a small exact category. According to Theorem the construction
E — evg induces a fully faithful embedding ev : £ - Fun(Fun'®(&,Set),Set). It will therefore suffice
to show that if F' : Fun"™®(&,Set) — Set is a functor which preserves small products and small filtered
colimits, then there is a natural isomorphism F' ~ evg for some E € £ (the converse is clear, since small
products and small filtered colimits in the category Fun™®8 (&, Set) are computed pointwise). Note that we
can use Proposition to endow F' with the structure of an ultrafunctor (where Fun'®(&,Set) and Set
are equipped with the categorical ultrastructures of Example .

Choose a small pretopos C and a regular functor h : £ - C satisfying the requirements of Proposition [2.4.3
Then precomposition with /& induces an equivalence of ultracategories H : Mod(C) — Fun"®®(&, Set) (Remark

. Consequently, the composite functor Mod(C) LR Fun™® (&, Set) L, Set admits an ultrastructure, and
is therefore given by evaluation on some object C' € C (Theorem . It will therefore suffice to show that
C belongs to the essential image of h. This follows from Proposition since the functor F o H commutes
with finite products. O

Remark 2.4.6. Let h : £ - C be as in the proof of Theorem Note that there is a asymmetry
between the statements of Theorems [2.3.1]and [2:4.2] The first supplies an equivalence of C with the category
FunUlt(Mod(CLSet), whose objects are functors F' : Mod(C) — Set equipped with additional structure.
The second supplies an equivalence of the smaller category £ with a full subcategory of Fun(Mod(C), Set)
spanned by functors F' which satisfy certain conditions: namely, that F' preserves small products and small
filtered colimits. This apparent discrepancy can be resolved by observing that a functor F' : Mod(C) —
Set which preserves small products and small filtered colimits admits a unigue ultrastructure (namely, the
ultrastructure supplied by Proposition 1.4.9? . This is a special case of a more general result about categorical
ultrastructures, which we will prove in (see Corollary .

3. ULTRACATEGORIES AND TOPOLOGY

Recall that every set X can be regarded as a category, having the elements of X as objects and no non-
identity morphisms. Of course, categories of this form are not very interesting. However, we will show in this
section that they can nevertheless carry interesting ultrastructures. Our principal results can be summarized
as follows:

(a) Let X be a set, regarded as a category having only identity morphisms. Then there is a canonical
bijection

{Ultrastructures on X} ~ {Compact Hausdorff topologies on X }.

(b) Let X be a compact Hausdorff space, and let .# be a sheaf of sets on X. Then the construction
x — F, can be regarded as a left ultrafunctor from X (equipped with the ultrastructure determined
by its topology) to the category Set (equipped with the categorical ultrastructure of Example|1.3.8]).
Moreover, this construction determines an equivalence of categories Fun™V'* (X, Set) ~ Shv(X).

(¢) The equivalence of (b) restricts to an equivalence of categories Fun""*(X,Set) ~ Loc(X), where
Loc(X) ¢ Shv(X) is the full subcategory spanned by those sheaves which are locally constant with
finite fibers.

We begin in by giving a precise formulation of (a) (Theorem . The proof is given in using
some standard facts about Stone-Cech compactifications which we review in In we give a precise
formulation of (b) by associating to each left ultrafunctor G : X — Set a certain sheaf of sets #g on X,
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and asserting that the construction G — .#¢ is an equivalence of categories (Theorem [3.4.4)); assertion (c)
is then an easy consequence (Theorem [3.4.11]). The main step of the proof is to show that the stalk of the
sheaf .Z ¢ at a point € X can be identified with the value of the functor G at = (Proposition , which

we prove in

Remark 3.0.1. Let Comp denote the category of compact Hausdorff spaces and let G : Comp — Set denote
the forgetful functor, which associates to each compact Hausdorff space X its underlying set. Theorem
is essentially a reformulation of the classical fact that the functor G is monadic: that is, it admits a
left adjoint F (the Stone-Cech compactification functor of and induces an equivalence of Comp with
the category of algebras over the monad G o F (see, for example, § VI.9 of [8]). Equipping a set X with
the structure of an algebra for this monad is equivalent to specifying an ultrastructure on X, almost by
definition. Our Theorem admits a similar interpretation: it is equivalent to the monadicity of a functor
G* : Comp* — Set™ which can be described as follows:

e The objects of the category Comp™ are pairs (X,.#), where X is a compact Hausdorff space and .%
is a sheaf of sets on X; here a morphism from (X,.%) to (X’,.#") is given by a continuous function
f:X — X’ together with a map of sheaves f*.#' - .% on X.

e The objects of the category Set™ are pairs (X,.%), where X is a set with the discrete topology and
Z is a sheaf of sets on X, with morphisms defined in a similar way.

e The functor G* carries a pair (X,.%) to (X45¢, .F | yais ), where X9 denotes the underlying set of
X endowed with the discrete topology, and .Z | xaie denotes the pullback of .# to Xdisc,

More informally, the functor G* is given on a pair (X, %) by “forgetting” everything except for the underlying
set of X and the collection of stalks { % }sex.

3.1. Ultrasets. We begin by observing that, when working with categories having only identity morphisms,
our notion of ultracategory becomes dramatically simpler: since every morphism is an isomorphism and
every diagram commutes, axioms (A), (B), and (C) of Definition are automatically satisfied. We can
therefore rephrase Definition [1.3.1] as follows:

Definition 3.1.1. Let X be a set. An ultrastructure on X consists of the following data:

(1) For every map of sets f:.S - X and every ultrafilter z on S, an element [¢ f(z)du € X.
This data is required to satisfy the following conditions:

(2) For every map of sets f:.S - X and every element sq € S, we have [ f(s)dds, = f(s0).

(3) For every map of sets f: T — S, every family v = {Vs}ses of ultrafilters on T, and every ultrafilter
i on S, we have an identity

[ @ [ vawy = [ ([ v

An ultraset is a set X together with an ultrastructure on X.

Definition 3.1.2. Let X and Y be ultrasets. A morphism of ultrasets from X to Y is a function g: X - Y
which satisfies the following condition: for every map of sets f: S — X and every ultrafilter 4 on S, we have
an identity

o [ = [ (g° H(s)dn
We let USet denote the category whose objects are ultrasets and whose morphisms are morphisms of ultrasets.

Remark 3.1.3. Let X and Y be ultrasets. Then we can regard X and Y as ultracategories having only
identity morphisms. The category FunUlt(X ,Y') of ultrafunctors from X to Y has only identity morphisms,
and its objects can be identified with morphisms of ultrasets from X to Y. In other words, we can identify
the category USet of Deﬁnitionwith a full subcategory of the 2-category Ult of ultracategories (Remark
[1.4.6), whose objects are small ultracategories having only identity morphisms.

Proposition 3.1.4. Let X be an ultraset. Then there is a unique topology on X for which a subset K ¢ X
is closed if and only if it satisfies the following condition:
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(*) For every map of sets f:S — K and every ultrafilter 1 on S, the point [q f(s)dp belongs to K.

Proof. Tt is clear that the collection of subsets of X satisfying condition () is stable under intersections. We
will show that it is also stable under finite unions. Suppose that we are given a finite collection of subsets
{K; € X }ie1, where each K; satisfies condition (). Set K = U;e; K;; we wish to show that K also satisfies
(#). Let f:S — K be any map of sets and let x be an ultrafilter on S. For each i € I, set S; = f~1(K;).
Since p is an ultrafilter, there exists i € I such that u(S;) = 1. In this case, u restricts to an ultrafilter u; on
the set .S;, and we have

[ 1S)dn= [ )i e i e K
by virtue of our assumption that K; satisfies (x). O

Note that if g: X — Y is a morphism of ultrasets, then it is automatically continuous if we equip X and
Y with the topology of Proposition We can therefore regard Proposition [3.1.4] as supplying a functor
from the category of ultrasets USet to the category Top of topological spaces. We can now state our first
result:

Theorem 3.1.5. The construction of Proposition determines a fully faithful functor USet — Top,
whose essential image is the full subcategory Comp € Top spanned by the compact Hausdorff spaces.

We will prove Theorem in

Remark 3.1.6. Let f: X - Y be a morphism of ultrasets, and regard X and Y as equipped with the
topology of Definition [3.1.2l Then f is a closed map: that is, for every closed subset K < X, the image
f(K) €Y is closed. To prove this, we observe that any function g : S — f(K) can be written as f og for
some function g: S — K. It follows that for every ultrafilter y on S, we have

[oo()du= [ 1@)du= £ [ Fs)du) € £(5)

by virtue of our assumption that K is closed.

3.2. Digression: The Stone-Cech Compactification. Let S be a set. We let 3S denote the set of all
ultrafilters on S. Then S can be identified with the spectrum of a Boolean algebra (namely, the Boolean
algebra P(.S) of all subsets of S), and therefore inherits the structure of a topological space; this topological
space is called the Stone-Cech compactification of S. In this section, we recall the construction of the space
BS and review its universal property (Proposition .

Notation 3.2.1. Let S be a set. For each subset Sy ¢ S, pushforward along the inclusion Sy = S induces a
monomorphism Sy < 8S. In what follows, we will often abuse notation by identifying 55y with its image
under this monomorphism: by virtue of Remark this image is given {u € S : u(Sp) = 1} € 8S. With
this convention, we have

B(SonS1) =(BSo)n(BS1) B(SouSt) =(BSo)u(BS1)  B(SN So) = (BS)~ (BS0).

Construction 3.2.2 (The Topology on 3S5). Let S be a set. We will regard the collection of ultrafilters 5.5 as
a topological space by equipping it with the topology generated by sets of the form 85y = {u € 85 : u(Sp) =1}
for Sy € S. Since these sets are closed under the formation of finite intersections, they comprise a basis for
the topology on 35S.

Proposition 3.2.3. Let S be a set. Then the Stone-Cech compactification 58S is a Stone space (with respect
to the topology of Construction . That is, BS is a compact Hausdorff space having a basis of closed
and open sets.

Proof. For every pair of distinct ultrafilters p,v € 85, we can choose some subset Sy € S such that u(Sy) #
v(Sp). Then 85y and S(S \ Sy) are complementary open sets containing p and v. This immediately implies
that 8.5 is Hausdorff. Moreover, each of the basic open sets 35Sy € 8.5 is also closed, since it is the complement
of the basic open set 8(S \ Sp).
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To complete the proof, it will suffice to show that the topological space 55 is compact. To prove this,
suppose we are given a covering of 3.5 by a collection of basic open sets {354 }aca. Let U denote the collection
of all subsets of S which can be written as a finite intersection of sets of the form S\ S,. By assumption,
every ultrafilter p on S satisfies u(S,) = 1 for some index a, so we have pu(J) =0 for J = (SN S,) € U.
Invoking Proposition we conclude that ¢ contains the empty set. In other words, we can choose a
finite subset Ay € A such that Naea, (S Sa) = @, so that Ugea, So =S. It follows that 35 is covered by the
finite collection of subsets {3Sa }aca,- O

Corollary 3.2.4. Let S be a set. Then the construction (So € S) +~ (8So € 8S) induces a bijection
{Subsets of S} ~ {Closed and open subsets of 55}.

Proof. Note that for any subset Sy € S and any element s € S, the principal ultrafilter §5 is contained in
BSo ={pepS:u(Sy) =1} if and only if s € I. Tt follows that if Sy and S; are distinct subsets of S, then
BSo # $S1 (as subsets of 8S). We will complete the proof by showing that if U ¢ S is closed and open,
then U = 85, for some Sy € S. The assumption that U is open guarantees that we can write U = U 85, for
some collection {S, € S}aea. The assumption that U is closed guarantees that U is compact (since 85 is
compact by Proposition , so we can assume without loss of generality that A is finite. Then U = 35Sy
for So = Ugea Sa- (]

Corollary 3.2.5. Let S be a set and let p be an ultrafilter on S. Then p is principal if and only if is an
isolated point of the topological space BS.

Proof. By virtue of Corollary the point p is isolated in BS if and only if there exists a subset Sy € S
such that {u} = {v € 8BS : v(Sy) = 1}. The set Sy must be nonempty, so we can choose some point s € S.
Then the principal ultrafilter d5 belongs to {v € 85 : v(Sp) =1} = {u}, so that p = Js. O

Remark 3.2.6. Let S be a set. Then the collection of principal ultrafilters {0s}ses is dense in the Stone-
Cech compactification 3S. To see this, we observe that every nonempty open subset U ¢ 35S contains a
nonempty set of the form Sy for Sy € S, and therefore contains the point J, for any element s € Sy.

The Stone-Cech compactification 8S can be characterized (up to homeomorphism) by the following
universal mapping property:

Proposition 3.2.7. Let S be a set, and let § : S — (S be the map which associates to each s € S the principal
ultrafilter 65 € 8S. Then, for any compact Hausdorff space X, composition with § induces a bijection

Hommop (85, X) - Homget (S, X).
Here Hommop (85, X) denotes the collection of continuous maps from BS to X.

Proof. Let f:S — X be any map of sets. We wish to show that there is a unique continuous map f:85 > X
satisfying f = f o §. We will prove the existence of f; uniqueness is immediate from Remark For each
subset Sy € S, let f(Sop) denote the closure of the subset f(Sy) € X. We first prove the following:

(*) For every ultrafilter 41 on S, the intersection M, (s,)-1 f(So) consists of a single point of X.

To prove (), we first observe that for every finite collection of sets Sy, ..., S, €c S satisfying u(S1) = u(S2) =
o= u(Sy) =1, we have

®¢f(sln"'msn) Ef(Sl)ﬂﬁf(Sn)

Consequently, the closed sets {f(So)},(s,)-1 have the finite intersection property. Since X is compact,

it follows that the intersection M, (g,)-1.f(So) is nonempty. Suppose we are given a pair of points z,y €
Mu(So)=1 m If = # y, then we can choose disjoint open sets U,V ¢ X satisfying x € U and y € V. Then
FHU) N fFYV) = @, so either u(f2(U)) = 0 or pu(f~1(V)) = 0. Without loss of generality, we may
assume that p(f~1(U)) = 0. Then U is an open neighborhood of  which does not intersect f(S - f~1(U)),
contradicting our assumption that x belongs to M, (sy)=1 m. This completes the proof of (x).
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For each ultrafilter y on S, let [g f(s)dp denote the unique point of the intersection Nu(se)=1 £ (So)-
Note that if g = d; is the principal ultrafilter associated to an element ¢ € S, then p({t}) = 1, so we have

[ f(s)due f({t}) = {f(t)}; that is, we have [¢ f(s)dd; = f(t). We will complete the proof by showing that
the function

f:BS—>X  f(u)= fs f(s)dp
is continuous. Let p be an ultrafilter on S and let U ¢ X be an open neighborhood of the point [q f(s)du; we

wish to show that 7_1 (U) contains an open neighborhood of . Choose an open neighborhood V' of the point
[ f(s)dp satisfying V cU, and set Sop =S8~ f~1(V). Then f(Sp) is disjoint from V', so the point Js f(s)dp
is not contained in the closure m. It follows that u(Sp) = 1, so that we can regard I as an open
neighborhood of 4 in 3S. If v belongs to this neighborhood, we have f(v) = Js f(s)dve f(So) € VcUu. O

Example 3.2.8 (Composition of Ultrafilters). Let S and T be sets. Suppose we are given a map of sets
f:S — BT, which we can identify with a collection of ultrafilters {v}.s on 7. Define f: 3S — 3T by the
formula f(p) = [4vsdp (see Construction . Then f is the continuous extension of Proposition
that is the unique continuous function satisfying f(8s) = f(s) for s € S (see Example . To verify the
continuity of f, it will suffice to show that for every closed and open subset 5T, € ST, the inverse image

f (BTo) is a closed and open subset of 45; this follows from the calculation

T BT = {weBS:f(u)epTo}

{pepS: f(u)(Ty) =1}
{peBS:u({seS:vs(Tp)=1}) =1}
BSo,

where Sp = {s€ 5 :v,(Tp) =1}.

3.3. The Proof of Theorem We now turn to the proof of Theorem [3.1.5] We begin by using
Proposition [3.2.7] to explicitly construct an ultrastructure on each compact Hausdorff space X.

Proposition 3.3.1. Let X be a compact Hausdorff space. For every map of sets f : S - X and every

ultrafilter o on S, let [¢ f(s)du be defined as in the proof of Proposition |3.2.7. Then the construction
(f,p) = [g f(s)dp determines an ultrastructure on X (in the sense of Definition .

Proof. The identity [q f(s)dds, = f(s0) follows immediately from the definitions. We will verify condition (3)
of Definition Suppose we are given a map of sets f: T — X and a family of ultrafilters v, = {Vs}ses On
T. Using Proposition we see that there is a unique continuous map f: 8T — X satisfying f(d;) = f(t)
for each t € T, given by the formula f(v) = [r f(t)dv. Similarly, there is a unique continuous map g : S - T
satisfying g(ds) = v, for s € S, given by the formula g(u) = [4 vsdp (Example . Since the composition

fog:BS — X is continuous, we have

| @ [ van)

?(fs vsdp)
@)
(o)1)
[Tom)dn

[ Fwddn

[ rwydvdp.
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Example 3.3.2. Let T be a set. The Stone-Cech compactification 37T is a compact Hausdorff space (Propo-
sition , and therefore inherits an ultrastructure from Proposition Concretely, this ultrastructure
associates to each collection {v}ses of ultrafilters on T and each ultrafilter p on S the composite ultrafilter
fs s Vsdp defined in Construction This follows from the calculation of Example

Remark 3.3.3. Let X be a compact Hausdorff space, and regard X equipped with the ultrastructure of
Proposition Then the topology of X agrees with the topology of Proposition [3.1.4] That is, a subset
K ¢ X is closed if and only if, for every map f:S — K and every ultrafilter 1 on S, the point [ f(s)du
belongs to K. One direction is clear: if K is closed, then {y € S : [g f(s)du € K} is a closed subset of 35
which contains every principal ultrafilter, and therefore coincides with 85 (Remark . Conversely, if K
is closed in the sense of Proposition and we choose f : S — K to be surjective, then the construction
(neBS) ([ f(s)du e X) determines a continuous surjection f:BS - X having image K, so that K is
closed (since S is compact and X is Hausdorff).

Remark 3.3.4. Let X be an ultraset, let f: T — X be a map of sets, and let f : 3T — X be the map
given by f(v) = [, f(t)dv. Then f is a morphism of ultrasets, in the sense of Definition (where we
regard BT as equipped with the ultrastructure of Example . This is precisely the content of axiom (3)
of Definition (for a more general version of this argument, see Proposition .

Proposition 3.3.5. Let X be an ultraset, and regard X as equipped with the topology of Proposition|3.1.4).
Then X is a compact Hausdorff space.

Proof. Choose a surjection of sets f: T — X, and define f : 3T - X via the formula f(v) = [ f(t)dv. Then

f is a morphism of ultrasets (Remark . Note that the topology on BT provided by Proposition

agrees with the topology of Proposition (Remark 3.3.3). Applying Remark we see that f is a
closed map of topological spaces. Since it is surjective, it is a quotient map. Consequently, to show that

X is a compact Hausdorfl space, it will suffice to show that the fiber product S = (8T) xx (8T) has closed
image in the product (8T) x (8T).

Let us view the embedding ¢ : S < (8T) x (8T') as a collection of pairs {(vs, V;)}ses of ultrafilters on T,
indexed by S. Then g extends to a continuous map g: S — (8T) x (8T), given by the formula

9(0) = ([ vadp, [ vido)

(see Example [3.2.8). Since g is a continuous map between compact Hausdorff spaces, it has closed image.
It will therefore suffice to show that g and g have the same image: that is, that g takes values in the fiber
product (8T) xx (BT) € (BT) x (ST). This follows from the calculation

Iovdiy = [ s@a( [ ved)
L F@ydvdn
[ s e
| fwa [ vian)

I vian.

O

Proof of Theorem[3.1.5 By virtue of Proposition the functor USet — Top takes values in the full
subcategory Comp < Top spanned by the compact Hausdorff spaces. Moreover, every compact Hausdorff
space belongs to the image, by Proposition m (and Remark . It will therefore suffice to show that
the functor is fully faithful. In other words, it will suffice to show that if X and Y are ultrasets, then every
continuous function f: X — Y is a morphism of ultrasets (in the sense of Definition . Choose a map
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of sets g: S — X, and define functions
gx:pS—>X  gy:pS->Y
by the formulae
ax( = [odn Gy = [(Fog)(s)dn.

We wish to show that gy = f o gx. Note that the functions gy and gy are both morphisms of ultrasets
(Remark [3.3.4), and are therefore continuous. It follows that both gy and f o gy are continuous functions
from BS to Y. Since they agree on the dense subset of 55 consisting of principal ultrafilters (Remark
and the topology on Y is Hausdorff (Proposition , it follows that they coincide everywhere. ]

3.4. Sheaves as Left Ultrafunctors. Let X be a topological space and let .# be a sheaf of sets on X.
For each point x € X, let .%, denote the stalk of .% at the point x, given by the direct limit h_H)l w F(U)

(where the colimit is taken over all open neighborhoods of the point ). We can then ask the following:

Question 3.4.1. Is it possible to reconstruct a sheaf % from the collection of stalks {.%,}.cx, together
with some additional data?

The goal of this section is to give an affirmative answer to Question [3:4:1] in the special case where X is a
compact Hausdorfl space. In this case, we can identify the topology on X with an ultrastructure (Theorem
, which associates to each map f : S — X and each ultrafilter x on S a point x = /S f(s)du. Let
¢, be an element of of the stalk #,. Then we can write ¢, as the germ of a section ¢y € F(U), for
some open neighborhood U of the point 2. Our assumption x = [q f(s)dp then guarantees that the set
Su ={seS: f(s) e U} satisfies u(Sy) = 1. For each s € Sy, the section ¢y determines an element ¢, of
the stalk .7 ¢(,y. Individually, these germs are not determined by ¢,: they depend also on the choice of the
section ¢y. However, they are well-defined “almost everywhere,” in the sense of the ultrafilter u: that is, the
image of {@}ses, in the ultraproduct |, s f(s) di depends only on ¢,. This construction determines maps

Uu:yfsf(S)du_’[Syf(S)dr“?

which supply a left ultrastructure on the functor x — % ,. We will address Question by showing
that this left ultrastructure determines the sheaf .#: more precisely, the preceding construction induces
an equivalence from the category Shv(X) of set-valued sheaves on X to the category of left ultrafunctors
Fun™"" (X, Set) (Theorem . To carry out the details, it will actually be more convenient to work with
the inverse equivalence.

Construction 3.4.2. Let X be a compact Hausdorff space and let G : X — Set be a left ultrafunctor,
with left ultrastructure {o,}. For every open subset U ¢ X, we let .# (U) denote the subset of [T,y G(x)
consisting of those tuples ¢o = {P; }rev satisfying the following condition:

(*) For every map of sets f:S — U ¢ X and every ultrafilter p on S satisfying [¢ f(s)du € U, we have

an equality q,({d(s)}ses) = O'M((ﬁfs f(s)dn) in the ultraproduct JsG(f(s))dp. That is, {@5(s)}ses
and ¢ [ F(s)dp have the same image under the maps

TTGU ) * [ GG [ F(s)dn).

Note that if {¢, }.cv satisfies condition (%) and V' € U is an open subset of U, then the tuple {¢; }rev
also satisfies condition (*). It follows that the construction U ~ % ¢ (U) determines a presheaf (of sets) on
the topological space X.

We begin with an elementary observation:

Lemma 3.4.3. Let X be a compact Hausdorff space and let G : X — Set be a left ultrafunctor. Then the
construction U » F ¢ (U) determines a sheaf of sets on X.
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Proof. Let ¢4 denote the sheaf of sets on X given by the formula 4(U) = [,y G(z). By construction,
the presheaf .# is contained in ¢. It will therefore suffice to show that if {U,} is a collection of open
subsets of X having union U = U, Uy, and ¢, € 4(U) is a section having the property that its image in each
4 (U, ) belongs to Z¢(U,), then ¢ belongs to F(U). Write ¢ = {ps }zev for some collection of elements
¢z € F,. Suppose that f:S - U c X is a map of sets and that p is an ultrafilter on S with the property
that [ f(s)dp belongs to U; we wish to prove the identity

0u({D5(s)bses) = 0u( ), p(s)dn)

in the ultraproduct [4 G(f(s))du. Choose an index a such that [¢ f(s)du belongs to the subset U, € U.
Set Sp = {seS: f(s) €eUy}. Then u(Sy) =1, so we can replace S by Sy and f by f|s,. In this case, the
relevant identity follows from our assumption that {¢, }zer, belongs to F¢(Uy). O

We can now give a precise statement of our main result.

Theorem 3.4.4. Let X be a compact Hausdorff space. Then the construction G - F ¢ induces an equiva-
lence of categories Fun™"" (X, Set) - Shv(X).

Variant 3.4.5. Recall that a category M is said to be compactly generated if it admits small colimits and
is generated under filtered colimits by a small collection of compact objects. Equivalently, M is compactly
generated if there exists an equivalence M ~ FunlCX(C, Set), for some small category C which admits finite
limits (which can then be identified with the opposite of the category of compact objects of M). If M is
compactly generated and X is a compact Hausdorff space, then Theorem determines equivalence from
the category of left ultrafunctors FunLUlt(X ,M) to the category Shv(X; M) of M-valued sheaves on X,
given by the composition

FunLUlt(X, M)

R

Fun™V" (X, Fun'®*(C, Set))
~  Fun'™(C, Fun™""" (X, Set))
- Fun'™(C,Shv(X))
~  Shv(X;Fun'®(C,Set))
~  Shv(X;M).
One can also describe this equivalence directly, using a variant of Construction [3.4.2
Let X be a compact Hausdorff space containing a point y and let G : X — Set be a left ultrafunctor. For
every open subset U € X containing y, the construction {¢; }zev = ¢, determines a map F(U) - G(y).

These maps are compatible as U varies, and therefore induce a map of sets #¢g, - G(y). The main
ingredient in our proof of Theorem [3.4.4]is the following result, whose proof we defer to §3.5}

Proposition 3.4.6. Let X be a compact Hausdorff space and let G : X — Set be a left ultrafunctor. Then,
for each point y € X, the preceding construction induces a bijection F g, - G(y).

Corollary 3.4.7. Let X be a compact Hausdorff space and let o : G — H be a natural transformation of
left ultrafunctors G, H : X — Set. Then « is an isomorphism if and only if, for each open subset U € X, the
induced map Fo(U) > Fg(U) is an isomorphism.

Corollary 3.4.8. Let X be a compact Hausdorff space. Then the functor FunLUlt(X, Set) — Shv(X) pre-
serves small colimits.

Proof. Since small colimits Shv(X) are computed stalkwise, it will suffice to show that for each point € X,
the functor G » % ¢, commutes with small colimits. By virtue of Proposition [3.4.6] this is equivalent to
the evaluation functor G — G(x), which preserves small colimits by virtue of Remark [1.4.3 |

Corollary 3.4.9. Let X be a compact Hausdorff space and let G : X — Set be a left ultrafunctor. Then
every subsheaf of F ¢ has the form F¢q,, for some uniquely determined subobject Gy € G in the category of
left ultrafunctors Fun®""* (X, Set).
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Proof. Let ¢ be a subsheaf of & ¢. For each x € X, let Go(x) denote the inverse image of the stalk ¥, ¢ F ¢
under the bijection of Proposition By virtue of Proposition [3.4.6] it will suffice to show that the left
ultrastructure on G restricts to a left ultrastructure on Gg. In other words, it will suffice to show that for
every map of sets f:.S - X and every ultrafilter ;1 on S, the map

0 G [ 1))~ [ G(1())dn

given by the left ultrastructure on G carries each element 7 € Go( [ f(s)dp) into the subset

[LGotsNdue [ 1))

It follows from the definition of G that there exists an open subset U ¢ X containing the point [ f(s)du
and a tuple

be = {ba}ocv €9(U) € F(U)
such that ¢ f(au = 1 Set So = {s € S : f(s) € U}, so that p(Sp) = 1. The definition of F¢ then
gives Uu(¢fs F(s)dn) = qfo({qbf(s)}sego). By construction, we have ¢, € Go(x) for each x € U, so that
050 ({@f(s) }ses,) belongs to the subset [¢ Go(f(s))duc [ G(f(s))dp. O

Corollary 3.4.10. Let X be a compact Hausdorff space. Then the construction G — % ¢ induces a fully
faithful functor Fun®""* (X, Set) - Shv(X).

Proof. Let G,H : X — Set be left ultrafunctors, and let o : F¢ — % g be a morphism of sheaves on X.
Let T'(«) denote the graph of a, considered as a subobject of the product Fgx F gy ~ Faxp. By virtue
of Corollary we can write I'(a) = F4 for some subobject G' ¢ G x H in Fun™V! (X, Set). Since
projection map 7 : G’ - G induces an isomorphism of sheaves .%o — .% g, Corollaryshows that 7 is an
isomorphism of left ultrafunctors. It follows that G’ can be identified with the graph of a morphism G - H
which is a lift of a. The uniqueness is immediate from Proposition [3.4.6] (|

Proof of Theorem[3.].} Let X be a compact Hausdorff space. Then the construction G — % determines
a fully faithful embedding from Fun™U"(X,Set) to Shv(X) (Corollary . By virtue of Corollary m
the essential image of this embedding is closed under small colimits. Note that the category Shv(X) is
generated under small colimits by subobjects of the final object, it will suffice to show that every subobject
of the final object of Shv(X') has the form .Z ¢, for some left ultrafunctor G : X — Set. This is a special case

of Corollary O
We close this section by establishing a variant of Theorem

Theorem 3.4.11. Let X be a compact Hausdorff space. Then the construction G — F ¢ induces a fully
faithful embedding Fun""*(X,Set) — Shv(X). The essential image of this embedding is spanned by those
sheaves & on X which are locally constant with finite stalks.

Proof. By virtue of Theorem it will suffice to show that the following conditions on a left ultrafunctor
G : X — Set are equivalent:

(a) The left ultrafunctor G is an ultrafunctor. That is, for each map f:S - X and each ultrafilter u on
S, the left ultrastructure map o, : G(fg f(s)du) - [¢ G(f(s))dp is a bijection.
(b) The sheaf .#¢ is locally constant with finite stalks.

We first show that (a) implies (b). Assume that G is an ultrafunctor. Fix a point y € X, a set S, and
an ultrafilter 1 on S. Then the ultrapower diagonal map A, : G(y) - G(y)" in the category Set (see
Example can be identified with the image under G of the ultrapower diagonal map y — y* =y in X
(regarded as a category having only identity morphisms). It follows that A, is bijective: that is, for every
map f:S — G(y), there exists a subset Sy € S such that u(Sp) =1 and f|s, is constant. In the special case
where S = G(y) and f is the identity map, this implies that every ultrafilter on S is principal. It follows
that G(y) must be finite, so that (by virtue of Proposition the stalk .# ¢, is finite.
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We now show that the sheaf .# 4 is constant in some neighborhood of any point y € X. Let n be the
cardinality of the stalk % ¢ ,. Choose an open neighborhood U of the point y and a finite collection of
sections @i.a,...,0ne € F¢(U) having distinct images in #¢,. Let us identify each ¢;. with a tuple
{piz € G(x)}gev satisfying condition (*) of Construction Note that, since G is an ultrafunctor,
condition (*) has the following consequence:

(") Let f:S5 — U be a map of sets and let y be an ultrafilter on S such that [ f(s)du belongs to . If
Pif(s) = i.p(s) for all s €5, then ;1 p(oyap = bj. 1 f(s)dn-

Let V c U be an open neighborhood of y whose closure V is contained in U. For 1<i<j<n,let K;; <V
denote the subset consisting of those points x for which ¢; ; = ¢, . It follows from (+’) that each of the sets
K; ; is closed. By construction, the sets K; ; do not contain the point y.

Let K’ €V be the set of all points  for which the set G(z) contains some element 1, ¢ {14, -, Pnx}-
Note that, for every ultrafilter u on the set K', the image {1, }zexs under the map

[16@~ [

-1
G(x)du SN G(/ xdp)

zeK' K’ K’

does not belong to the set {¢1 1, vau:- -+ Pn, [, zau}- It follows that K’ is a closed subset of V, which also

does not contain the point y.

Let W ¢ V be an open neighborhood of y which is disjoint from the closed sets K’ and Kj; ;. For each point
x € W, the elements ¢1 , ..., ¢n , are pairwise distinct and exhaust G(z). It follows from Proposition m
that the germs of the sections ¢1,...,¢, are pairwise distinct and exhaust the stalk .#¢ ;. Consequently,
they determine an isomorphism of % ¢ |y is isomorphic with the constant sheaf associated to the finite set
{1,2,...,n}. This completes the proof that (a) implies (b).

Now suppose that % is locally constant; we wish to show that G is an ultrafunctor. Choose a map
f:S - X and an ultrafilter g on S, and set = = [¢ f(s)du. We must show that the left ultrastructure
map o, : G(x) = G([4 f(s)dp) - [¢ G(f(s))du is bijective. Choose an open neighborhood U of z such that
F v is isomorphic to the constant sheaf J,;, for some finite set J. Let V' be an open neighborhood of x
whose closure is contained in U, and set Sy = f~1(V). Since x belongs to V, we must have ;(Sp) = 1. We may
therefore replace S by Sy and p by its restriction to Sy, and thereby reduce to the case where the function f
takes values in V. Replacing X by the compact set V ¢ X, we can reduce to the case where # g = J y is itself
the constant sheaf associated to a finite set J. In this case, we have an isomorphism of sheaves % g ~ .
where G’ : X — Set is the constant ultrafunctor taking the value J. It follows from Theorem that that
G is isomorphic to G’ (as a left ultrafunctor), and is therefore also an ultrafunctor. O

3.5. The Proof of Proposition Throughout this section, we fix a compact Hausdorff space X and
a left ultrafunctor G : X — Set. Our goal is to compute the stalks of the sheaf .# s of Construction [3.4.2
We begin by establishing a weak version of Proposition [3.4.6

Lemma 3.5.1. For each point y € X, the map Fq, = li_n)lyeU Fa(U) - G(y) of Proposition is
injective.

Proof. Let U be an open neighborhood of the point y and suppose we are given a pair of elements ¢ = {4} zcv
and e = {3 }zev of F¢(U) satistying ¢, = 1), (as elements of the set G(y)). We wish to show that there
exists an open subset V' ¢ U containing the point y such that ¢, = 1, for each z € V. Assume otherwise.
Set Up = {x € U : ¢, # 1} €U, and let U be the collection of all subsets of U having the form UynV,
where V' is an open neighborhood of y. Then U is closed under finite intersections and does not contain
the empty set. Applying Proposition we deduce that there exists an ultrafilter u on the set U such
that u(Upn V) = 1, whenever V is an open neighborhood of y. We then have fU xdp = y. Invoking our
assumption that ¢, =1, and the definition of the sheaf % ¢, we deduce that ¢, and 1), have the same image
in the ultraproduct [; G(x)dp. It follows that u(Up) = 0, contradicting the definition of Uy. O
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To complete the proof of Proposition we must show that each element ¢, € G(y) can be extended to
an element ¢, € .7 ¢ (U) for some open neighborhood U of the point y. The proof will require some auxiliary
constructions.

Notation 3.5.2. Choose a set T equipped with a bijection fo : T — X. We regard fy as a continuous
bijection of topological spaces, where T is endowed with the discrete topology. We will use the letter v to
denote a typical ultrafilter on T': that is, a point in the Stone-Cech compactification ST. Let i : T — BT be
the canonical embedding, which assigns to each point ¢ € T' the corresponding principal ultrafilter i(t) = d;.
By virtue of Proposition the map fy: T — X extends uniquely to a continuous map f: 87 — X, given
concretely by the formula f(v) = [ fo(t)dv.

Let ¢4 denote the sheaf of sets on the (discrete) topological space T whose stalks are given by % =
G(fo(t)), and let 4 denote the direct image i, %o. Then ¢ is a sheaf of sets on 8T whose value on closed
and open sets is given by the formula

9 (BTo) = [[ G(fo(t)),

teTp

and whose stalk at a point v € 8T is given by the formula ¢, ~ [ G(fo(t))dv.

Choose a set S and a bijection go : S — ST, which we identify with a collection of ultrafilters {vs}ses
on the set T. We regard gy as a continuous bijection of topological spaces, where S is equipped with the
discrete topology and BT with the topology of Construction [3.2.2] We will use the letter p to denote a
typical ultrafilter on S: that is, a point in the Stone-Cech compactification 8S. Let j : S = S be the
canonical embedding, which assigns to each point s € S the corresponding principal ultrafilter j(s) = ;. Let
o = 959 denote the sheaf of sets on S whose stalks are given by s = [ G(fo(t))dvs. Let S denote
the sheaf of sets on 8S given by the direct image j. 5. Then S is given on closed and open sets by the
formula

A Bs0) =] [ Glh®))dn..

s€So

and its stalk at a point p € 85 is given by €, = [o( [ G(fo(t))dvs)dp

By virtue of Proposition[3.2.7] the bijection go : S — BT admits a unique continuous extension g : 85 - T,
given concretely by the formula g(p) = /. s Vsdp (see Example . We have a canonical isomorphism
779" Y ~ g5 ¢ = €, which induces a map of sheaves u: ¢g* ¥ — j. 7€ = . Concretely, the map u is given
on stalks by the map

(6" D= s = [ G [ vedi) =2 [ ([ Glho(t)dv,)dyu= 52,

where A ,, is the categorical Fubini transformation in the category of sets.
Let hg: S — T be the map of sets given by the composition

-1 .
s®prt xl,rier
For each s € S, the right ultrastructure on the functor G determines a map
G (ioho)(s) = Gono(s) = G((f 2 90)(5)) = G(fT fo(t)dvs) — fTG(fo(t))st = Hos

Let h: S — BT denote the unique continuous extension of hg, given concretely by h(u) = ho«(p). The
preceding discussion then gives a map of sheaves j*h*¥ — 5, on the discrete space S, which we identify
with a map v: h*¥ — j, 5y = € on the topological space 8S. Concretely, the map v is given on stalks by
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the composition

12

(h* ), [ GUat)dtho.n)

L6 o ho)(s))d

=[G foydv)dn
L2t [ G0

Note that we have a commutative diagram of topological spaces
g f
B8S :h; BT —— X,

that is, we have fog = f" = foh for some continuous map f’': 35S - X, given concretely by the formula
(1) = [s(Jp fo(t)dvs)dp. The maps u and v therefore determine maps u',v’ : f.(¢4) — fi(H) in the
category Shv(X).

Lemma 3.5.3. The sheaf % ¢ of C’onstruction can be identified with the equalizer of the maps u',v" :
[ (&) = fL.(F).
Proof. By construction, the direct image sheaf f, & ~ fo, ¥ is given by
(f+9)(U) = [] G(a).
zeU

Let & denote the equalizer of u’ and v’, regarded as a subsheaf of f,¥. Unwinding the definitions, we see
that for each subset U ¢ X, we can identify &(U) with the subset of [,y G(z) consisting of those tuples
{¢s }zev which satisfy the following condition:
(") For every ultrafilter v on T such that [ fo(t)dv belongs to U, the elements {Ds0t) Yees;1 vy and
10) I fo(t)dv have the same image under the maps

ot

I GU®) s [ Gthanis < 6( [ fotn)

tefg' (U)

where o, is given by the left ultrastructure on G.
Note that condition (+") follows immediately from condition (*) of Construction (applied to the subset
To = fY(U) € T, and the ultrafilter on T given by the restriction of v/). That is, we can regard the sheaf
Z ¢ of Construction as a subsheaf of &. To complete the proof, we must show that (*') implies (*).
To this end, suppose we are given an arbitrary map of sets e : R — U and an ultrafilter A on R satisfying
Jre(r)dX\ e U; we wish to show that {¢e()}rer and @1, e(ryax have the same image under the maps

1 Gle(r)) 2 /G(e(r))d)\ G(fe(r)d)\)

reR

Since fj is bijective, the map e factors uniquely as a composition R 5T Jo, X. The desired assertion now
follows by applying () to the ultrafilter e, A on Ty = f5'(U). |

Let us now fix a point y € X and an element ¢, of the set G(y). For each ultrafilter v on T satisfying
f(w) = [; fo(t)dv =y, let 1, denote the image of ¢, under the map

G(y) = G( [ fotydr) = [ G(fo(t))dv -

Lemma 3.5.4. Let u be a point of BS satisfying f'(n) =y. Let uy, 9 g,
the maps induced by u and v, respectively. Then u,(Vg()) = vu(Vnu)-

y =y and vy 2 Gy =~ Ay be
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Proof. This follows from the definition of u and v, together with the commutativity of the diagram

G(y) Jr G(fo(£))d(hospr) Js G((fooho)(s))dp

G([7 fo(t)d([gvsdp)) Js G(J1 fo(t)dvs)du

9 [svsdp
\ lfs oy dp

[ GUo(8)d( fg vadp) —22= [o( [ G(fo(t))dve)dp.

Thos 1 Apng

O

Lemma 3.5.5. There exists a global section v of the sheaf 4 |s-1(,y such that, for each point v e Yy,
the germ of Y at v is equal to 1, .

Proof. Let 7 denote the unique element of T' satisfying fo(¥) =y, and let K ¢ 85 denote the inverse image of
0y under the map h: 35S — ST. Then g: 35 — BT restricts to a map of topological spaces gx : K — Yy}
Then u restricts to a map of sheaves ug : g5 % |f-1¢,y = # |k on K, which we can identify with a map
L9 |10y > (uk« A |K) on the fiber f7'{y}. We first claim that ¢ is injective. To prove this, it suffices
to observe that for each point v € f~1{y}, there exists a point u € K for which ux(u) = v and u induces a
monomorphism of stalks v, : ¥, - 5. In fact, writing v = v, for some s € S, we can take u = 65 to be the
principal ultrafilter at the point s, in which case the map u,, is bijective.

For each point v € f~1{y}, let 1!, denote the image of v, in the stalk (ux. 7 |x), (under the map ¢).
Since ¢ is a monomorphism, it will suffice to show that the germs {¢/},. f-1{y) determine a global section of
the sheaf ug . S |k. Applying Proposition to the map ug : K — f~1{y}, this can be reformulated as
follows:

(%) There exists a global section £ of the sheaf J# |k having the property that, for every point p € K,
the germ &, of § at the point u is coincides with the image of 14(,) under the map ¢,y - 2,
determined by ug.

Let G(y)K denote the constant sheaf on K with the value G(y), so that v restricts to a map of sheaves
UK : G(y)K - |k

The map vy carries the element ¢, € G(y) to a global section ¢ the sheaf 7 |k. It follows from Lemma
that & satisfies the requirement of (). O

Proof of Proposition[3.4.6, Let 4(f'{y}) denote the set of global sections of the sheaf & |1, and define
H(f'~{y}) similarly. Since f and f’ are proper maps, we can identify 4(f *{y}) and 2 (f'~1{y}) with
the stalks (f+¥), and (f, 5€),, respectively. Using Lemma [3.5.3] we obtain an equalizer diagram of sets

Fay =9 Hyh) 32 Hy))-
For each element ¢, € G(y), the section 1 € 4(f~'{y}) of Lemma belongs to this equalizer (by Lemma
3.5.4), and can therefore be identified with an element of .% ¢ ;. It follows immediately from the construction
that the canonical map 6 : % ¢ , - G(y) carries this element to ¢,,, which shows that 6 is surjective; injectivity
was established in Lemma [3.5.1] O

4. ULTRACATEGORIES AS STACKS

Let Comp denote the category of compact Hausdorff spaces. In we showed that every compact Haus-
dorff space X can be regarded as an ultracategory (Proposition , and that this observation determines
a fully faithful embedding from the ordinary category Comp to the 2-category Ult" of Remark (see
Theorem . In this section, we will use embedding as a tool to analyze the entire category Ult™.
To any ultracategory M, we can associate a presheaf of categories on Comp, given by the construction
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X + Fun™Yt (X, M). This presheaf can be encoded by a fibration of categories Comp,, - Comp, where
Comp ,, is a category whose objects are pairs (X, Ox ), with X a compact Hausdorff space and Ox : X - M
a left ultrafunctor (see Construction [4.1.1)). The main results of this section can be summarized as follows:

e Let M be an ultracategory. In we show that Comp »4 is a stack (not in groupoids) with respect
to the coherent topology on the category of compact Hausdorff spaces (Proposition In other
words, the construction X ~ FunLUlt(X , M) satisfies descent with respect to continuous surjections
of compact Hausdorff spaces X - Y.

e Every ultracategory M can be identified with a full subcategory of Comp}};: namely, the full subcat-
egory consisting of those pairs (X, Ox), where the topological space X has a single point. In
we show that this full subcategory has ultraproducts in Comp?’y and that the ultrastructure on M
can be recovered by applying the construction of Proposition (Theorem . In particular,
this proves that every ultrastructure on a category M can be realized by applying the categorical
ultraproduct construction in a suitable enlargement M™* of M (we will return to this idea in .

e The construction M ~ Comp,, determines a functor from the 2-category of ultracategories Ult:
(with morphisms given by left ultrafunctors) to the 2-category of stacks on Comp. In we show
that this functor is fully faithful (Theorem . Consequently, it is possible to reformulate theory
of ultracategories entirely in the language of topological stacks. Our interest in this result is more
pragmatic: it provides a strategy for analyzing the category of left ultrafunctors FunLUlt(M,N )
between two ultracategories M and N. In we will exploit this strategy to obtain more precise
information in the special case where N = Set is the category of sets, which we will ultimately use
in the proof of Theorem [2:2.2

e Let us say that an ultracategory M is an wltragroupoid if the underlying category of M is a groupoid:
that is, if every morphism in M is invertible. For every ultragroupoid M, we can regard Comp ,, as
a stack in groupoids on the category of compact Hausdorff spaces. In §4.4] we show that a stack in
groupoids arises in this way (for some small ultragroupoid M) if and only if it is representable: that
is, if and only if it arises from groupoid object in the category of compact Hausdorff spaces itself
(Theorem . For example, the structure of the classifying stack BG of a compact topological
group G can be encoded by a suitable ultrastructure on its underlying category (the category having
a single object with automorphism group G); see Example

4.1. The Category Comp,,. Let X be a compact Hausdorff space, which we regard as an ultracategory
having only identity morphisms (see Proposition. If M is another ultracategory, we will use the symbol
Ox to denote a left ultrafunctor from X to M. We denote the value of this functor at a point z € X by Ox 5.
Heuristically, it is useful to think of Ox as a sheaf on X with values in M, whose stalk at a point z € X is
given by Ox . In the case where M is the category of sets, this heuristic is made precise by Theorem @

(and Proposition |3.4.6)).

Construction 4.1.1 (The Category Comp,,). Let Comp denote the category whose objects are compact
Hausdorff spaces and whose morphisms are continuous functions. Let M be an ultracategory. We define a
category Comp ,, as follows:
(1) The objects of Comp », are pairs (X, Ox), where X is a compact Hausdorff space and Ox : X - M
is a left ultrafunctor.
(2) If (X,0x) and (Y, Oy) are objects of Comp »4, then a morphism from (X, Ox) to (Y, Oy) is a pair
(f,a), where f: X - Y is a continuous function and a: Oy of - Ox is a natural transformation of
left ultrafunctors (here we view f as an ultrafunctor via Theorem [3.1.5).
(3) The composition of a pair of morphisms

(f,a) (9,8)
(X,0x) 5 (Y,0y) ~2 (Z,07)

in the category Comp ,, is given by the pair (g o f,7), where v is the natural transformation of left
ultrafunctors given by

OZogofi0y0f2>OX.
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Note that the construction (X,Ox) — X determines a forgetful functor Comp ,, - M.

Remark 4.1.2. Let M be an ultracategory, let X be a compact Hausdorff space, and let Ox : X - M be
a left ultrafunctor. If f:Y — X is a continuous map of compact Hausdorff spaces, then we can regard f as
an ultrafunctor, so that the composition

Yy L ox 25 m
has the structure of a left ultrafunctor from Y to M. We will denote this left ultrafunctor by Ox |y (this
notation will be used primarily, but not exclusively, in the case where Y is a closed subset of X and f is the
inclusion map), so that we have a canonical map (Y,0x |y) - (X,Ox) in the category Comp , (given by
the pair (f,ido |, )-
If f is a closed immersion, then this map enjoys the following universal property: for every object (Z,0z)
in Comp 4, the induced map

HomCompM ((Z7 OZ); (Y, OX |Y)) i HomCompM ((Z; OZ); (Xv OX))
whose image is the collection of morphisms (f,a):(Z,0z) - (X,Ox) such that f(Z)cY.

Remark 4.1.3. Let M be an ultracategory. Then the forgetful functor 7 : Comp,, - Comp is a fibration
of categories. By definition, it is obtained by applying the Grothendieck construction to the functor

Comp®® —» Cat X - Fun""" (X, M)°P.

A morphism (f,a) : (Y,0y) - (X,0x) in Comp,, is m-Cartesian if and only if o : Ox |y - Oy is an
isomorphism of left ultrafunctors.

Example 4.1.4. Let Y be a compact Hausdorff space, regarded as an ultracategory having only identity
morphisms. Then the category Compy- of Construction is equivalent to the full subcategory of Topy
spanned by those continuous maps f: X — Y, where X is a compact Hausdorff space; see Theorem [3.1.5)

The category Comp of compact Hausdorff spaces is a pretopos. Consequently, we can regard Comp as
equipped with the coherent topology of Deﬁnition By definition, a collection of maps {f; : X; = X }ier
is a covering for this topology if and only if there exists some subset Iy € I for which the induced map
e, Xi = X is surjective. Our goal in this section is to prove the following:

Proposition 4.1.5. Let M be an ultracategory. Then the fibration Comp ,, - Comp is a stack with respect
to the coherent topology on Comp. In other words, the construction X ~ FunLUlt(X,M) satisfies (effective)
descent for the coherent topology.

We begin by showing that the fibration Comp ,, - Comp is a stack for the extensive topology. Concretely,
this reduces to the following assertion:

Lemma 4.1.6. Let X be a compact Hausdorff space which is given as a disjoint union of finitely many closed
(and open) subspaces {X; € X }ier. Let M be an ultracategory. Then the construction Ox — {Ox
induces an equivalence of categories

0 : Fun"""" (X, M) - [] Fun™"" (X;, M).
iel
Remark 4.1.7. Lemma can be generalized. Given any finite collection of ultracategories {\;}cr, one
can equip the disjoint union [[;; N; with the structure of an ultracategory. This ultracategory is then a
i

coproduct of the collection {N;};cr in the 2-category Ult" of Remark 4.6)): that is, for every ultracategory
M, we have an equivalence

Xi}iel

Fun"""([ [NV, M) = [] Fun"Y"* (W, M).

iel iel

Since we will not need this more general result, we leave the details to the reader.
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Proof of Lemma[4.1.6. We first show that the functor 6 is fully faithful. Suppose we are given a pair of
left ultrafunctors Ox,0% : X - M, with left ultrastructures given by {o,} and {0},}, and a natural
transformation of functors a : Ox — O%. For each i € I, set Ox, = x., 0%, = O%|x,, and let
a; : Ox, = O'Xi be the induced map. We must show that if each «; is a natural transformation of left
ultrafunctors, then « is also a natural transformation of left ultrafunctors. To prove this, let f: S - X be a
map of sets and let u be an ultrafilter on S. For each i € I, let S; = f71(X;). Since u is an ultrafilter, there
is a unique index i € I such that u(S;) = 1. Let uw:S; = S denote the inclusion map, so that we can write
1 =ux(pg) for some ultrafilter p; on S;. Then pu restricts to an ultrafilter u; on the set S;. We wish to prove
the commutativity of the “back face” of the cubical diagram

OX.f5 1(s)dp JsOx f(s)dp
O [, (s)dps . o Js, Ox..5(s) i
s
O Je sy B ‘ Js O s(s) dnt Js, adps
Ok, Ss, F(s)dps i s, O,Xi,f(s) dpsi,

where A, ,, denotes the ultraproduct diagonal map of Notation [1.3.3] (which is an isomorphism, since u is
injective and M satisfies axiom (B) of Definition [1.3.1)). We now observe that the left face commutes by
construction, the right face by the functoriality of ultraproducts in M, the top face because o, is a left
ultrastructure, the bottom face because JL is a left ultrastructure, and the front face because «; is a natural
transformation of left ultrafunctors.

We now prove that 6 is essentially surjective. Suppose that we are given functors Ox, : X; - M equipped
with left ultrastructures {o7,} for each i € I. Let Ox : X - M be the amalgam of the functors Ox,. For
every map of sets f:.5 - X and every ultrafilter p on S, define S; and p; as above. Then there is a unique
map o, (’)XJS F(s)dp = fS Ox, f(s) dp for which the diagram

Ox.f, f(syip ——— [ Ox f(s) dit

~ Auqy,u
o_i
i

OXifs, 1(s)dus s, Oxi.p(s) dpsa

is commutative. Note that, if the function f factors through Xj;, then A, ,, is the identity map (Corollary
, so that o, = 0},. We will complete the proof by showing that {c,} is a left ultrastructure on Ox: that
is, 1t satisfies the ax1oms of Definition [1.4.1} Axiom (0) is immediate from the construction. To verify (1),
suppose that p = d, is a principal ultrafilter, so that f(sg) € X; for some index ¢ € I. Then the ultrafilter
u; appearing in the above construction is also the principal ultrafilter ds, (on the set S;). We then have a
commutative diagram

opu €3,s
Ox f(s0) = J5s Ox.f(s) @5y —> O f(s0)

H LA“iwu H
i
0'“_

€S;,50

Ox: 1(s0) = Js, Oxi,1(s) @050 —= O, (s0)
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where the bottom horizontal composition is the identity (since Oy, is a left ultrafunctor), so the upper
horizontal composition is the identity as well.

To verify axiom (2), suppose we are given a map f:7T — X, a family of ultrafilters {vs}scs on T, and an
ultrafilter © on X. Then there is a unique index i € I such that (fqvsdp)(f'X;) =1. Set T; = f~!(X;) and
Si={seS: [, f(t)dvs € X;}. Then p restricts to an ultrafilter p; on S;, and for each s € S; the ultrafilter
v, restricts to an ultrafilter vg; on T;. Let w:S; - .S and v :T; = T be the inclusion maps. We wish to show
the commutativity of the outer cycle in the diagram

OX.fp F(Hd(fs vedn OX,[o(fp F()dvs)dn
O, fy, F®As, verdis == OXi [, (f, F(D)dvi)dpns In
Lafut
Tfs vsdn OJs, vasdui /s, OX, [y, f(t)dv; Qi <=— JsOx.1, r(tyav. At
l/fSi Uisid“i
Jr, Ox.py A5, vsidps) = [s, (7, Oxi.py dvsi)dpi Js ovadun
Apve
J1Ox sy A [5 vsdps) JsUr Ox sy dvs)dp.
This follows from a diagram chase; note that the inner cycle commutes by virtue of our assumption that
{o},} is a left ultrastructure on Ox;. O

Remark 4.1.8. Let M be an ultracategory. Then every finite collection of objects {(X;, Ox,) }ier admits a
coproduct (X,Ox) in Comp »,, where X = [],.; X; is the disjoint union of the underlying topological spaces
X; and Ox : X - M is the unique left ultrafunctor whose restriction to each subset X; ¢ X coincides with

Ox, (Lemma [4.1.6]).

Let us now make Proposition more explicit.

Notation 4.1.9. Let p: X - X be a continuous surjection of compact Hausdorff spaces and let M be an
ultracategory. Let Ox : X - M be a left ultrafunctor (with left ultrastructure {o,}). A descent datum for
Ox consists of a collection of isomorphisms ¢, , : Ox,, - Ox ., defined for all (z,y) € X x% X, with the
following properties:

(i) The isomorphisms ¢, comprise a natural transformation of left ultrafunctors from X x+ X to M.
In other words, for every pair of maps f, f’: S - X satisfying po f = po f’ and every ultrafilter  on
S, the diagram

ou

Ox. [ pr(syan —— [ Ox pr(s) dit

bl F()dn.fg 1/()dn Js ®5¢o),57¢rdm

Tp

Ox. [, f(s)dn Js Ox f(s) dp

commutes.
(73) For every triple (x,y,2) € X x5 X x5 X, we have the cocycle identity ¢, . = ¢z © ¢y 2.
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If Ox, 0% : X > M are left ultrafunctors equipped with descent data {¢, ,} and {5}, then we will say
that a natural transformation of left ultrafunctors a: Ox - O is compatible with {¢,.,} and {¢/, ,} if, for
every pair (z,y) € X x% X, the diagram

b,y
OX,y > OX,m

) Yo
OX,y Ova

is commutative. We let FunLUlt(X - X, M) denote the category whose objects are left ultrafunctors on X

with descent data, and whose morphisms are natural transformations of left ultrafunctors that are compatible
with descent data.

Example 4.1.10. Let p: X - X be a continuous surjection of compact Hausdorff spaces. If O : X - M
is a left ultrafunctor, then we can endow the composite left ultrafunctor Ox = O op with a descent datum,
where for each (z,y) € X x5 X we take the isomorphism ¢, , to be the identity map from

Ox.e = 0% p(a) = O%p(y) = Oxw
to itself. This construction determines a functor Fun*V"* (X, M) - Fun""" (X - X, M).
Proposition follows from Lemma together with the following:

Proposition 4.1.11. Let p: X - X be a continuous surjection of compact Hausdorff spaces and let M be
an ultracategory. Then the construction of Example induces an equivalence of categories

6 : Fun"""* (X, M) - Fun"V"(X - X, M).

Proof. We first show that 6 is fully faithful. Suppose that O, O« : X - M are functors equipped with left
ultrastructures {o,} and {c},}, and let Ox, O’ denote their images under the functor 6. Let a: Ox - Oy
be a natural transformation of left ultrafunctors which is compatible with descent data. For each point
Z € X, we can choose a point z € X such that p(z) =Z. In this case, a determines a map

A7) : Og 5 = Oxo ~h O, = O5 2.

The condition that @ is compatible with descent data guarantees that this map is independent of the choice
of x, and therefore defines a natural transformation @ : O — O/Y' We wish to show that @ is a natural

transformation of left ultrafunctors: that is, for every map of sets f : S — X and every ultrafilter  on S,
the diagram 7 :

T
Ox 1. F(syan — Js Ox (s

T

o

! K !
O% 1. Fwan = Js O 7

is commutative. Since p is surjective, we can write f = po f for some map f:S — X. We can then identify
7 with the diagram

Ox.f, f(syan — Js Ox.f(s) dpr

la L[Sadu

/ Tu /
O 1. t(syan — S5 Ox () bty

which commutes because « is a natural transformation of left ultrafunctors.
We now prove that 6 is essentially surjective. Let Ox : X - M be a left ultrafunctor equipped with
a descent datum {¢,,}. We wish to show that the pair (Ox,{¢s}) belongs to the essential image of 6.
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Note that, if we ignore the left ultrastructure on Ox, then the descent datum {¢, ,} allows us to choose an
isomorphism Ox =~ O op, for some functor O«. We may therefore assume without loss of generality that
Ox = O op for some functor O : X — M, and that each of the isomorphisms ¢, , is the identity map; in
this case, we wish to show that the left ultrastructure {o,} on Ox arises from a left ultrastructure {7, } on
the functor O. For any map of sets f:8 - X and any ultrafilter & on S, we can write f = po f for some
map f:S5 — X; we then define 7, to be the map

ou
O% 1. F(9)dn = O [o F(s)dn — [S Ox,(s) A = [S Ox 7 A1t

Since the descent datum {¢, , = id} satisfies condition (7) of Notation [4.1.9] this map does not depend on
the choice of f. The fact that the maps {7, } satisfy axioms (0), (1), and (2) of Definition follows
immediately from the assumption that the same axioms hold for {o,}. |

4.2. Free Objects of Comp,,. In we introduced the notion of an wltrastructure on a category M
(Definition [[.3.1)). Our definition of ultrastructure was intended to axiomatize the essential features of the
categorical ultraproducts studied in whenever M has ultraproducts in some larger category M™, the
formation of ultraproducts determines an ultrastructure on M (Proposition . It is natural to ask the
following:

Question 4.2.1. Let M be a category. Can every ultrastructure on M be obtained by embedding M into
some larger category M™, such that M has ultraproducts in M*?

In this section, we give an affirmative answer to Question [1.2.1] To every ultracategory M, we show that
there is a canonical way to recover the ultrastructure via categorical ultraproducts in a larger category M™*:
namely, we can take M to be the opposite of the category Comp 4, of Construction (Theorem [4.2.7)).

Remark 4.2.2. For every ultracategory M, there exists an embedding M < M™ satisfying the requirement
of Question However, the enlargement M™* is not uniquely determined. Moreover, the construction of
this section is not the most efficient: to recover the ultrastructure on M, we do not need to use the entire
category Compj\f’l. We will return to this point in

We begin by observing that every ultracategory M can be identified with the full subcategory of Comp'l
spanned by those pairs (X,Ox), where X consists of a single point. To see this, we need the following
general fact about left ultrafunctors:

Proposition 4.2.3. Let X = {z} be a one-point space. Then, for every ultracategory M, the evaluation
functor
Fun""" (X, M) > M Fw F(x)

is an equivalence of categories.
We postpone the proof of Proposition for the moment.

Remark 4.2.4. Let M be an ultracategory. Proposition [£.2.3] implies that for every object M € M, there
is a unique left ultrastructure {o,} on the functor
F:X={z} - M F(x)=M.

Concretely, this left ultrastructure associates to each set S and each ultrafilter y on S a map

M:F(/Sxdﬂ)lfSF(x)dﬂ:M“,

which is given by the ultrapower diagonal of Example [1.3.4 Beware that this morphism is generally not
invertible. In other words, there is generally no wltrafunctor {x} — M taking the value M. For example, if
M = Set is the category of sets, then the left ultrafunctor F' is an ultrafunctor if and only if M is finite.

Notation 4.2.5. Let M be an ultracategory. For each object M € M, we let M denote the object of
Comp,, given by the pair (x,O), where * denotes the one-point space and O : * — M is the unique left
ultrafunctor taking the value M.
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Remark 4.2.6. Let M be an ultracategory, let M be an object of M, and let (X,Ox) be any object of
Comp . Every morphism M — (X,0x) in the category Comp,, determines a point x € X together with a
morphism Ox , - M in the category M. It follows from Proposition that this construction induces a
bijection
HomcompM (M, ()(7 Ox)) g LI HOmM(OX7x,M).
reX
In particular, the construction M ~ M determines a fully faithful embedding M — Comp%’l.

We can now state the main result of this section.

Theorem 4.2.7. Let M be an ultracategory and let M’ Comp%’l denote the full subcategory spanned by
those objects (X,0x), where X consists of a single point. Then:
(a) The category M’ has ultraproducts in Cornpj)\]/)l, in the sense of Construction .
(b) The construction M ~ M can be promoted to an equivalence of ultracategories M — M’ (where M’
s equipped with the ultrastructure of Proposition .

The main ingredient in the proof of Theorem [4.2.7|is the fact that objects of the form M admit products
in Comp%’l (or, equivalently, coproducts in the category Comp ,,). We now construct these.

Proposition 4.2.8. Let M be an ultracategory and let {M; }er be a collection of objects of M indexed by a
set T. Let Ogp : BT — M be the functor gien by Ogr, = [ Mydv. Then Ogr admits a left ultrastructure
{o.}, which assigns to each map of sets S — BT given by a family of ultrafilters ve = {Vs}ses and each
ultrafilter pn on S the map

Auve
O Opr vy = [ Mid( [ vedi) === [ ([ Midvyan= [ Opr.,du

determined by the Fubini transformation A, ,,.

Proof. We must show that the maps {0, } satisfy conditions (0), (1), and (2) of Definition Condition
(0) is vacuous (since X has only identity morphisms). To verify condition (1), suppose we are given a
collection of ultrafilters vy = {vs}ses on the set T and an element sg € S; we wish to show that the diagram

A‘SSOJIQ
fr Mid( 5 M.ds.,) S5z Nedv)ds,
fT ]\4,5dl/s0

commutes in the category M, which is axiom (A) of Definition m To verify condition (2), we must show
that for every collection ve = {Vs}ses of ultraflters on T, every collection pe = {piy}reg of ultrafilters on S,
and every ultrafilter A on R, we have a commutative diagram

A]R#rd)\,'/o

fT Mtd(fs Vsd(fR.urdA)) fs(fT Mths)d(fRHrd/\)

A%,u.

A)\,_[S vsdue

Tr D vedA
fT Mtd(fR([S Vsdﬂr)a»‘) - = fR(fT Mtd(fs Vsdﬂr))dA L> fR(fS(fT Nths)d,uT)d)\a
which is axiom (C) of Definition [I.3.1] O
In the situation of Proposition the left ultrafunctor Ogr has a universal property.

Proposition 4.2.9. Let M be an ultracategory, let {M;}ier be a collection of objects of M, and let Oay :
BT — M be the left ultrafunctor of Proposition [[.2.8 Let F : BT — M be any left ultrafunctor. For any
natural transformation of left ultrafunctors a: F - Ogr and any element t € T, let oy denote the composite

map
€Tt

y(ﬁ = O,@T((St) = ﬁMt'dat — M;.
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Then the construction o — {cy }rer induces a bijection

0: HOmFunLUlt(,BT,M)(j, OgT) g H HomM(ﬂgt,Mt).
teT

Proof. Let {0, } denote the left ultrastructure on Ogr constructed in Proposition and let {0}, } denote
the left ultrastructure on .%. Let a: .# — Ogr be a natural transformation of left ultrafunctors. For each
ultrafilter v on T', we can write v = [, §;dv, so that we have a commutative diagram

’

QJ’T Sedv o [T ygt dl/dl/
ardyv
a(v) S a(6e) fr
oy [ er,edv
OQTJ, jT O/BT,ét dv T fT Ntdl/.

It follows from Corollary that the composition of the lower horizontal maps is the identity from [ Nydv
to itself. Consequently, a(v) is given by the composition
fT azdr

F, = F V”"fﬁd [Nd:Ol,
chStd_>T 5, AV - tav BT,

and is therefore completely determined by the maps {c; }er. This proves that 8 is injective.

To show that 6 is surjective, suppose we are given any collection of morphisms {f; : #s, > M; }ter in the
category M. Let o: . F — Ogr be the natural transformation which assigns to each ultrafilter v on T' the
composite map

ol _[T fidv
F, = ﬁ[T(;td,, — [ F5, dv ——— [ Nydv = Ogry, .
T T
It follows from axiom (1) of Definition that ay = f; for each ¢ € T. Consequently, to show that {f;}ter
belongs to the image of 6, it will suffice to verify that « is a natural transformation of left ultrafunctors.
Suppose we are given a collection of ultrafilters {vs}ses on T and an ultrafilter p on S; we wish to show that
the diagram

’yf
‘ngsusdp, - fSst d:u
<g\fT(Std(fs vsdu) .[S ythsths d/u’
'Y'fs M Is 7:/3 dp

Apive
Jr Fs. d([gvedp) ———— [s(Jr Fs, dvs)du

Jp fed([g vsdp) JsUp frdvs)du

Sy Ned(f vidp) —=" s [ ([ Nedvs)dps)

commutes. The commutativity of the upper rectangle follows from our assumption that {’yL} is a left
ultrastructure, and the commutativity of the lower square from the naturality of the Fubini transformations
in the ultracategory M. |



50 ULTRACATEGORIES

Proof of Proposition[{.2.3 Let X ={z} be a single point, which we identify with the Stone-Cech compact-
ification of itself. We first note that for every object M € M, Proposition produces a left ultrafunctor
O : X — M satisfying O(z) = [ Mé,, so that there exists an isomorphism ey : O(x) ~ M. This proves the
essential surjectivity of the evaluation map FunLUlt(X , M) > M. We will complete the proof by showing
that it is fully faithful: that is, for every pair of left ultrafunctors F,G : X - M, the canonical map

Hompy Lot x, ag) (£, G) — Hompag (F(2), G())

is bijective. Set M = G(x) and define O as above. It follows from Proposition that the isomorphism
e}éz : G(x) ~ O(=) lifts uniquely to a natural transformation of left ultrafunctors o : G — O, which is
automatically an isomorphism. We may therefore assume without loss of generality that G = O, in which
case the desired result follows from Proposition O

Proposition 4.2.10. Let M be an ultracategory, let {M}ier be a collection of objects of M, and let
Ogr : BT - M be the left ultrafunctor of Pmposz'tion. For each t €T, let e, : My — (BT, Ogr) denote

the morphism in Comp ,, corresponding to the point o, € 1" and the isomorphism

€Tt

Osrs, = f M,ds, 5 M.
T
Then the maps e; exhibit (5T, Ogr) as a coproduct of the family of objects {M, }ier in the category Comp .
Proof. Combine Proposition [£:2.9] with Proposition [3:2.7] O

Proof of Theorem[4.2.7 Let {M,;}er be a collection of objects of M and let Ogr be as in Proposition

so that Proposition [4.2.10| identifies (5T, Ogr) with the product of {M;}¢e, in Comp’l;. For each
ultrafilter v on T, let p, : (BT, Opr) — [, Mydv be the morphism of Compy which corresponds, under the

identification of Remark to the point v € ST and the identity map id : Ogr, — [, M;dv. For each
subset Ty € T satisfying v(7Tp) = 1, we can identify STy with a subset of 5T containing v, so that p, factors
uniquely as a composition

To
(BT, Op1) ~ (BTo, Opr |s1,) 2 fT M,dv

in the category Comp’;). Here we can use Remark to identify (570, Opr |pr,) with the direct factor
of (BT,Opr) given by the product [T;er, M. For any object (X,0x) of Comp, it follows from Remark
[41:2] that composition with p, induces an injection

Homeompsz, (| Midv, (X, 0x)) > Homcomyss (8T, Opr). (X,0x))

with image consisting of those maps which, at the level of the underlying topological spaces, induce the
constant map X — 87T taking the value {v}. Note that this is equivalent to the requirement that the map
X — BT factors through the subset 3Ty € 3T whenever v(Ty) = 1, so that the maps pl° exhibit Jr Midv as
a colimit of the diagram {(8Ty, Opr|s1,) }o(10)=1 in the category CompQ. This proves the existence of the
ultraproduct

[ Mudv = tim T My,
v(Tp)=1 teTp
and shows that there exists a unique isomorphism =, : fT Mydy ~ fT M;dv satisfying 7, o q, = p,.-
To complete the proof, it will suffice to show that the isomorphisms 7, : ]T Mydy =~ fT M;dv determine a

(right) ultrastructure on the functor M — M. We will verify requirement (2) of Definition and leave
the verification of (0) and (1) to the reader. Suppose we are given a collection {M;}er of objects of M
indexed by a set T, a collection v = {Vs}ses of ultrafilters on T indexed by a set .S, and an ultrafilter y on
S. Let A denote the ultrafilter on T' given by [qvedp. We wish to show that the outer rectangle appearing
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in the diagram

Jr MydX = [ Myd
\ /’
HteT %
ADpive l{qus }ses o) ves Buve
HseS Tvs
HseS fT%dVS —_— HSES _[T Mdvs
/ lq K
n

fS ’Y"sdﬂ

JsUp Mydvs)dp Js Iz Mthsdﬂi>[s(fT Mydv)dy

commutes in the category Comp%’l. Since the map gy is an epimorphism, it will suffice to prove the commu-
tativity of each inner cycle of the diagram. The triangles commute the construction of v, the quadrilateral
on the left commutes by the construction of the Fubini transformations in Compoj\f’t, and the quadrilateral
on the bottom commutes by functoriality. We are therefore reduced to proving the commutativity of the
quadrilateral on the right. Let Ogr : 8T - M be the left ultrafunctor obtained by applying Proposition
to the family of objects {M;}er, and Ogg denote the left ultrafunctor 8S — M obtained by apply-
ing Proposition to the family of objects { [, M;dvs}ses. Unwinding the definition, we are reduced to
proving the commutativity of the diagram

Apve
Js(Jy Midvs)dp Jr MidX
(p,id) (A,id)
(f,e)
(ﬁSa OBS) (BTv OﬁT)v

in the category Comp ,,, where the vertical maps are labelled using the classification of Remark [£.2.6] and
(f,«) is determined by the requirements f(d0s) = v for each s € S and « is given at the point d5 by the
composition

A s:Ve
O, = fT M,d [S (vyddy) =22 [S ( fT Mydvy)dés = O,
(see Proposition [4.2.10). Unwinding the definitions, we wish to show that the map
(i) : Oprr = fTMtd)\—> fs(fTMtdus)duzoﬁs,u

coincides with the Fubini transformation A, ,,. Writing u = /. g 0sdp and invoking our assumption that o is
a natural transformation of left ultrafunctors, we deduce that a(u) fits into a commutative diagram

a(uw)

[ MydA [o(fyp Mydvy)dp
| 2w
J

lAM-ﬁ.
s Dussdp

fs(fT Mdvs)dp — fS(fS(fT Mydvg)dos )dp.

Combining this observation with axiom (C') of Definition we conclude that the maps

O‘(N)aAmu-:/TMtd/\_’fS(fTMths)dﬂ
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agree after composing with the isomorphism

Bt [(f Mdvydp= [ ([ ([ Midv)dssydn,

and must therefore coincide. O

4.3. Ultracategories as Topological Stacks. Let M be an ultracategory. We proved in that the
category Comp,, of Construction can be regarded as a stack on the category of compact Hausdorff
spaces: that is, the construction X FunLUlt(X , M) satisfies descent with respect to the coherent topology
(Proposition [f.1.5). Our goal in this section is to show that the construction M + Comp , is fully faithful
(Theorem @?Pfo formulate this precisely, it will be convenient to introduce a bit of notation.

Definition 4.3.1. Let C be a category. Suppose we are given fibrations of categories p: D - C and ¢: € - C.
We define a category Carte(D,E) as follows:
e The objects of Carte(D,E) are functors F : D — & which satisfy g o F' = p and have the property
that, for every p-Cartesian morphism u of D, the image F(u) is a g-Cartesian morphism of £.
e If F,G :C — D are objects of Carte(D, ), then a morphism from F to G in Carte(D,E) is a natural
transformation « : F' — G for which the induced natural map

p=gqo F = qo G = P
is the identity transformation from p to itself.

Example 4.3.2. Let M and N be ultracategories. Then, for every left ultrafunctor F' : M — N, the
construction (X,0x) = (X, F o Ox) determines a functor ®p : Comp,, - Comp,,, which is an object of
the category Cartcomp(Comp yq, Comp )

Theorem 4.3.3. Let M and N be ultracategories. Then the construction F = ®p induces an equivalence
of categories
Fun™"" (M, ) = Cartgomp(Comp ,q, Comp r)°P.

Remark 4.3.4. Let Ult" denote the strict 2-category whose objects are ultracategories and whose mor-
phisms are left ultrafunctors (see Remark [I.4.6). Theorem [4.3.3] (together with Proposition [£.1.5]) asserts
that the construction M ~ Comp,, induces a fully faithful embedding of 2-categories

Ult" - {Stacks of categories on Comp}.

Remark 4.3.5. By virtue of Theorem[3.1.5] we can regard the category of Comp of compact Hausdorff spaces
(with morphisms given by continuous maps) as a full subcategory of the 2-category Ult" of ultracategories
(with morphisms given by left ultrafunctors). Theorem asserts that the inclusion Comp — Ult" is
dense: that is, the identity functor on UltY is a left Kan extension of its restriction to Comp.

We now turn to the proof of Theorem [£.3.3] We begin by explicitly constructing a functor in the opposite
direction. Let M and N be ultracategories, and let ® : Comp,, - Comp,, be a morphism of stacks on
Comp. Then the induced map of opposite categories ®°P : Comp%’( - Compj’\lf’ satisfies condition (*) of
Proposition and therefore (by virtue of Theorem restricts to a left ultrafunctor F': M - N
(characterized on objects by the formula ®(M) = F(M)). Let us denote this left ultrafunctor by ®|r. We
first prove the following:

Lemma 4.3.6. Let M and N be ultracategories. Then the composition

PP F—®
Cartcomp(Comp 5, Comp,)°P Bodlm, Fun""" (M, N) —5 Cartcomp (Comp 5, Comp,)°P

is naturally isomorphic to the identity functor.

Proof. Let @ : Comp,, - Comp,, be an object of Cartcomp(Comp s, Comp,,) and set F' = @4, so that
we have ®(M) = F(M) for each object M € M. For each object (X,Ox) in the category Comp ,, we can
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write ®(X,0x) = (X, Px(Ox)) for some left ultrafunctor Px(Ox) : X - N. Applying ® to each of the
canonical maps Ox , — (X,Ox), we obtain maps

F(Ox.) = (X, 2x(0x))

which are Cartesian with respect to the projection Comp,, - Comp and therefore determine isomorphisms
¢z Px(Ox)s ~ F(Ox,) in the ultracategory N. We will show that the isomorphisms ¢, determine an
isomorphism

¢(X,0x): ®(X,0x) = (X,2x(0x)) = (X, FoOx) =Pr(X,0x)

in the category Comp,, (it is then easy to see that these isomorphisms depend functorially on (X, Ox) and
induce the identity at the level of the underlying topological spaces, and therefore determine an isomorphism
® ~ ®p in the category Cartcomp(Comp ,,, Comp,,), depending functorially on ®). To prove this, we must
show that isomorphisms {¢; }zex comprise an isomorphism of left ultrafunctors from ®x(Ox) to F o Ox.
Fix a map of sets f:S - X and an ultrafilter 4 on S; we wish to show that the diagram

Pl f(s)d
Px(Ox)y, f(s)dp — F(Ox 1, f(sydu)

l Js $5esydn l

Js@x(Ox)s(s) Js F(Ox p(s) dp)

commutes, where the vertical maps are given by the left ultrastructure on ®x(Ox) and F, respectively.
Using the universal property of Proposition we can reduce to checking this after replacing (X, Ox)
with (8S5,03s), where Ogg : S - M is the left ultrafunctor obtained by applying Proposition to the
objects {Ox (s }ses of M. In this case, the desired commutativity follows from the construction of the left
ultrastructure on F'. ]

Proof of Theorem[].3.3 Let M and N be ultracategories; we wish to show that the construction F + ®p
induces an equivalence of categories Fun™""" (M, N') = Cartcomp(Comp y,, Comp,,)°P. Essential surjectivity
follows from Lemma [£.3.6] It will therefore suffice to prove that the construction F ~ ®p is fully faithful.
Suppose that we are given a pair of left ultrafunctors F,G : M - A and a natural transformation o : &g —
® . To every compact Hausdorff space X and every left ultrafunctor Ox : X - M, « associates a natural
transformation of left ultrafunctors a(X,Ox) : F o Ox - G o Ox, which we can associate with a collection
of maps {a(X,0x), : F(Ox ) - G(Ox )} in the ultracategory . Taking (X,Ox) = M for some object
M e M, we obtain maps ag(M) : F(M) - G(M), depending functorially on M. We will show that « is the
image of ag under the functor FunLUlt(/\/l,N) = Cartcomp (Comp g, Comp,)°P (it is immediate that oy is
uniquely determined by this requirement). For any object (X,Ox) € Comp ,, and any point x € X, we have
a commutative diagram

a(OX,:L')
®c(O0x,2) Qr(Ox.0)
l a(X,0x) l
¢a(X,0x) ——> Pp(X,0x)

in the category Comp s, which shows that o(X, Ox), can be identified with the map ag(Ox ) : F(Ox ) —
G(Ox ). Consequently, it will suffice to show that «y is a natural transformation of left ultrafunctors. Fix
a collection of objects {M;}ses in M and an ultrafilter 4 on S; we wish to show that the diagram

Ozo(fs Mbd

F(fs Msdp) H)G(js Mdp)

Is F(Ms)dufwiﬂfs G(My)dp
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commutes, where the vertical maps are given by the left ultrastructures on the functors F' and G. This
follows from the fact that «(8S,0ss) is a natural transformation of left ultrafunctors 8S — N, where
Ops : S - M is the left ultrafunctor obtained by applying Proposition to the family {M;}ses. |

Remark 4.3.7. Let M and N be ultracategories. It follows from Theorem [£.3.3] and Lemma that
the construction ® — ®,, is also a left homotopy inverse to the equivalence of Theorem that is, the
composition

Fun™V* (M, N) Frer, Cartcomp(Comp 1, Comp )P PP LU (M,N)

is naturally isomorphic to the identity.

4.4. Application: Classification of Ultragroupoids. We now consider a particularly simple class of
ultracategories.

Definition 4.4.1. An ultragroupoid is an ultracategory M for which the underlying category of M is a
groupoid (that is, every morphism in M is an isomorphism).

Example 4.4.2. Every ultraset (in the sense of Definition [3.1.1]) is an ultragroupoid.

According to Theorem [3.1.5] the category of ultrasets is equivalent to the category of compact Hausdorff
spaces. Our goal in this section is to obtain an analogous description for the 2-category of all ultragroupoids
(which we regard as a full subcategory of the 2-category Ult of Remark [1.4.6)). First, we need some termi-
nology.

Definition 4.4.3. A topological groupoid is a groupoid C which is equipped with topologies on the set Ob(C)
and Mor(C) of objects and morphisms of C, satisfying the following requirements:
e The function s,t: Mor(C) — Ob(C) taking a morphism f:C — D in C to its source s(f) = C and its
target t(f) = D are both continuous.
e The function Ob(C) - Mor(C) taking each object C € C to the identity morphism id¢ is continuous.
e The function Mor(C) - Mor(C) taking each morphism f : C — D to its inverse f™' : D —» C is
continuous.
e The function Mor(C) xop(cy Mor(C) - Mor(C) taking a pair of composable morphisms C Lp%E
to its composition g o f is continuous.
We will say that a topological groupoid C is compact if both Ob(C) and Mor(C) are compact Hausdorff
spaces.

Remark 4.4.4. Let C be a compact topological groupoid. Then we can regard C as an ultracategory as
follows:

e For each set S and each ultrafilter © on S, we let fS(O)dp :C% > C be the functor given on objects
and morphisms by the maps

[5 (e)di : Ob(C)S > Ob(C) [S (¢)dp : Mor(C)® - Mor(C)

determined by the compact Hausdorff topologies on Ob(C) and Mor(C), respectively.
e The isomorphisms €g , and Fubini transformations A, ,, are the identity maps.

Example 4.4.5. Let G be a compact topological group. Then G determines a compact topological groupoid
(hence an ultragroupoid) BG, where we take the space of objects Ob(BG) to be a single point and the space
of morphisms Mor(BG) to be the group G (with composition of morphisms given by the multiplication in

G).

Notation 4.4.6. Let C be a compact topological groupoid. We let Comp, denote the category obtained by
applying Construction to C, where we endow C with the ultrastructure of Remark By definition,
the objects of Comp, are pairs (X,Ox), where X is a compact Hausdorff space and Ox : X — C is an
ultrafunctor (note that, since C is a groupoid, every left ultrafunctor X — C is automatically an ultrafunctor).
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We can now state our main result.

Theorem 4.4.7. Let G — Comp be a stack in groupoids over the category Comp of compact Hausdorff spaces
(where we endow Comp with the coherent topology). The following conditions are equivalent:

(1) The stack G is representable. That is, there exists a map of stacks G' - G, locally surjective with
respect to the coherent topology, such that both G' and the fiber product G' xg G’ are representable by
compact Hausdorff spaces.

(2) There exists a compact topological groupoid C and an equivalence of stacks G ~ Compg.

(3) There exists a small ultragroupoid M and an equivalence of stacks G ~ Comp .

Before turning to the proof of Theorem [.4.7] let us analyze the construction of Notation [£.4.6] in more
detail. Let C be a compact topological groupoid. For every compact Hausdorff space X, let Fun®""(X,C)
denote the groupoid whose objects are continuous maps X — Ob(C) and whose morphisms are continuous
maps X — Mor(C). Using Theorem we can identify Fun®(X,C) with a full subcategory of the
category of ultrafunctors FunUlt(X ,C): namely, the full subcategory spanned by those functors F' equipped
with an ultrastructure {o,} where each o, is an identity map.

Lemma 4.4.8. Let S be a set and let 3S be its Stone-Cech compactification. Then, for every compact
topological groupoid C, the preceding construction induces an equivalence of categories Fun®"(5S,C) =~

Fun"" (85, C).

Proof. Let Ogg : S — C be any ultrafunctor. For each s € S, set Cs = Ogg,5,. Let O'ﬁs : S — C be the left
ultrafunctor obtained by applying Proposition to the collection {Cj}ses. The ultrastructure on O}, g is
then given by a collection of maps {0}, } which are obtained from the Fubini transformations of C, and are
therefore identity maps. It follows that Ojg belongs to the image of the map Fun®"(35,C) ~ Fun""(85,0C).
Moreover, the universal property of Propositionsupplies a map of left ultrafunctors Ogs — O,’@ g, which
must be an isomorphism because C is a groupoid. |

Lemma 4.4.9. Let C be a compact topological groupoid. Then the stack Comp, of Notation can be
obtained by stackifying the presheaf of groupoids X ~ Funcont(Xﬂ) (with respect to the coherent topology on
Comp).

Proof. We have a canonical map ¢ : Fun®™ (X, C) - Fun""*(X,C) = Fun™"" (X, C) which is fully faithful and
depends functorially on X, whose target satisfies descent for the coherent topology (Proposition [4.1.5)). It
will therefore suffice to show that ¢ is locally surjective. That is, we must show that for any ultrafunctor

o
Ox : X — C, there exists a continuous surjection X’ - X for which the composite map X’ - X — C
is isomorphic (as an ultrafunctor) to some object of Fun®"*(X’,C). This follows from Lemma (for
example, we can take X’ to be the Stone-Cech compactification of the underlying set of X). |

Example 4.4.10. Let G be a compact topological group and let BG be the topological groupoid of Ex-
ample We define a principal G-bundle on X to be a compact Hausdorff space P equipped with a
continuous, free action of the group G and a homeomorphism P /G ~ X (beware that this terminology is
potentially misleading: we do not require that the quotient map P — X admits sections locally on X). The
collection of principal G-bundles on X forms a category which we will denote by Bung(X). We can identify
Fun®"(X,BG) with the full subcategory of Bung (X ) spanned by the trivial G-bundle P = X xG (whose au-
tomorphism group is the group Homr, (X, G) of all continuous maps from X into G). Then the construction
X = Bung(X) can be identified with the stackification (for the coherent topology on the category Comp)
of the subfunctor X ~ Fun®""(X,BG) ¢ Bung(X): this follows from the observation that when X = 35S is
the Stone-Cech compactification of a set S, then every principal G-bundle on X is trivial. Applying Lemma
in this case, we obtain an equivalence of categories FunUlt(X ,BG) ~ Bung(X), depending functorially
on X.

Proof of Theorem[{.4.7 By a standard argument, any representable stack G can be obtained as the stackifi-
cation of the groupoid-valued presheaf X + Fun®""(X,C), where C is some groupoid object of the category
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Comp (that is, a compact topological groupoid in the sense of Definition , and is therefore equivalent
to Compy by virtue of Lemma [4.4.9] This proves the implication (1) = (2), and the implication (2) = (3)
is trivial. We will complete the proof by showing that (3) implies (1). Assume that G = Comp,, for some
small ultragroupoid M. Choose a compact Hausdorff space X and an essentially surjective left ultrafunctor
Ox : X > M (this is possible by virtue of our assumption that M is small; for example, we can use the
construction of Proposition . Note that Ox is automatically an ultrafunctor (since every morphism in
M is invertible). The (2-categorical) fiber product X x ¢ X can then be regarded as an ultracategory having
only identity morphisms, which we can identify (by virtue of Theorem with a compact Hausdorff space
R. Then Ox induces a map of stacks 6 : Compy — Comp,, = G, where the (2-categorical) fiber product
Comp x Xcomp,, Compy is represented by R. To complete the proof that G satisfies (1), it will suffice to
show that the functor 6 is locally essentially surjective (with respect to the coherent topology on Comp).
Choose any object of G, corresponding to a compact Hausdorff space Y equipped with a left ultrafunctor
Oy : Y - M; we wish to show that (Y,Oy) is locally in the essential image of §. To prove this, we may
assume without loss of generality that Y = 8S for some set S. For each element s € S, choose a point
f(s) € X and an isomorphism Oy, ~ Ox f(s)- Then f induces a continuous map f:Y =38 - X (given
by f(u) = Js f(s)dp). Let O%S : BS = M be the left ultrafunctor obtained by applying Proposition to
the collection of objects {Ox f(s)} of S, so that the universal property of Proposition supplies natural
transformations of left ultrafunctors

Oy - Olg < Ox ly.

Since M is a groupoid, these natural transformations must be invertible, which shows that Oy ~ Ox |y
belongs to the essential image of 6 as desired. O

5. THE Topros OF LEFT ULTRAFUNCTORS

Our ultimate goal in this paper is to show that the category Shv(C) of sheaves on a small pretopos C can
be identified with the category of left ultrafunctors Fun™""*(Mod(C), Set) (Theorem [2.2.2). One obstacle to
proving this is that our definition of left ultrafunctor is somewhat unwieldy. To supply a left ultrastructure
on a functor F': M — N, one must supply a morphism o, : F([g Msdp) = [¢ F(M)du for every collection
of objects {Ms}ses of M and every ultrafilter 1 on S. Our goal in this section is to show that (in various
cases) the study of left ultrafunctors from M to N can be reduced to the study of ordinary functors between
suitable enlargements of M and A. Note that we have already proved one result of this type: according to
Theorem[4.4.7] the datum of a left ultrafunctor F' : M — N is equivalent to the datum of a morphism of stacks
from Comp ,, to Comp,,. However, this result is not quite what we are after: it establishes an equivalence
between functors F : M — N which respect a certain kind of structure (namely, the ultrastructures on
M and N) with functors ® : Comp,, - Comp,, which respect a different kind of structure (namely, the
fibrations Comp , - Comp < Comp,,). To find a remedy, it will be useful to restrict the class of compact
Hausdorff spaces that we work with.

Notation 5.0.1 (The Category Stonep). Let Stone denote the category whose objects are Stone spaces
(that is, topological spaces which are compact, Hausdorff, and totally disconnected) and whose morphisms
are continuous functions. We will regard Stone as a full subcategory of the category Comp of compact
Hausdorff spaces. For each ultracategory M, we let Stonen denote the full subcategory of Comp ,, spanned
by those pairs (X,Ox) where X is a Stone space. Note that if F': M — N is a left ultrafunctor, then the
functor ®r : Comp,, - Comp,, restricts to a functor Stoneps - Stoneps, which we will also denote by @ .

The main results of this section can be summarized as follows:

e Let M and N be ultractegories. In we show that the construction F' + ®p induces a fully
faithful embedding Fun™V! (M, N) > Fun(Stonepq, Stoneps)°P, whose essential image can be explic-
itly identified (Theorem . This is essentially a restatement of Theorem but is formulated
in terms of the structure of Stoney and Stoneys as abstract categories (rather than as categories
fibered over over Stone).
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o In §5.2] we specialize to the case where N/ = Set is the category of sets. In this case, we show
that every left ultrafunctor F': M — Set admits a canonical extension F'* : Stone})} — Set, from
which the left ultrastructure on F can be recovered using the construction of Proposition [1.4.9
This construction determines a fully faithful embedding 6 from the category of left ultrafunctors
Fun™""* (M, Set) to the category of ordinary functors Fun(Stone}, Set) (Theorem .

o If M is an ultracategory which admits small filtered colimits, then the essential image of 6 :
FunLUlt(M,SeQ < Fun(Stone}, Set) admits a particularly simple description. In we show
that a functor F: Stone%’[ — Set belongs to the essential image of § if and only if it preserves small
filtered colimits and finite coproducts (Theorem |5.3.3)).

e The main step in our proof of Theorem [5.3.3|is to show that any functor F': M — Set which admits a
left ultrastructure automatically preserves filtered colimits (Proposition . This result suggests
that, under appropriate set-theoretic assumptions, it should be possible to recover a left ultrafunctor
F : M — Set from its restriction to any sufficiently large full subcategory Mgy ¢ M. In §5.4] we
exploit this idea to show that if the ultrastructure on M is accessible (Definition [5.4.1]), then the
category of left ultrafunctors Fun™"""(M, Set) is a Grothendieck topos (Proposition

5.1. Canonical Extensions of Left Ultrafunctors. We begin with a few general remarks.

Definition 5.1.1. Let C be a category which admits finite coproducts. We say that an object C € C is
connected if the functor Home (C, o) : C — Set preserves finite coproducts.

Example 5.1.2. Let M be an ultracategory and let (X,Ox) be an object of the category Comp ,, (Con-
struction [4.1.1)). Then (X, Ox) is connected as an object of Comp ,, (in the sense of Definition [5.1.1)) if and
only if X is connected as a topological space. This follows from the description of coproducts in Comp 4

supplied by Remark [1.1.8]

Variant 5.1.3. Let M be an ultracategory and let (X,Ox) be an object of Stoneps. The following
conditions are equivalent:
(a) The pair (X,Ox) is a connected object of Comp 4.
(b) The pair (X,0x) is a connected object of Stone .
(¢) The topological space X has a single point (so that (X,Ox) is isomorphic to M, for some object
M eM).

We can now state the main result of this section:

Theorem 5.1.4. Let M and N be ultracategories. Then the construction F — ®r of Notation induces
a fully faithful embedding
Fun™""* (M, N) - Fun(Stone., Stonexr)°P,

whose essential image is spanned by those functors ® : Stoneys — Stonepns satisfying the following conditions:

(1) The functor ® preserves finite coproducts.

(2) The functor ® carries connected objects of Stonepq to connected objects of Stoneps.

(3) For each object (X,Ox) in Stoneaq and each point x € X, the maps {®({z},O0x ) > ®(U,O0x )}
exhibit ®({z},O0x ) as a limit of the diagram {®(U,Ox |v)}gev in the category Stonepnr. Here U
ranges over all closed and open neighborhoods of the point x.

Remark 5.1.5. Let M and N be left ultracategories, let F' : M — N be a left ultrafunctor, and let
® : Stoneps — Stonen be the functor of Notation Let {M;}ses be any collection of objects of M, so

that ® induces a map
w: [[8(M:) > o(1] M)
seS seS
in the category Stoneps. Using the description of both coproducts supplied by Proposition we can
identify the underlying topological spaces of both sides with the Stone-Cech compactification 85. At each
point p € 35, u induces the map o, : F([g Msdp) - [¢ F(Ms)dp given by the left ultrastructure on F.
Consequently, the following assertions are equivalent:
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(1) The left ultrafunctor F is an ultrafunctor: that is, each of the maps o, is an isomorphism in N .
(2) The functor ®F preserves coproducts of connected objects of Stone .

Remark 5.1.6. In the situation of Theorem [5.1.4] the inverse equivalence is easy to describe. Let @ :
Stoneq — Stoneps be a functor which satisfies conditions (1), (2), and (3) of Theorem Then the map
of opposite categories ®°P : Stone’ly — Stone}? satisfies the hypotheses of Propositio and therefore
restricts to a left ultrafunctor ®|x¢ : M — N, which is (up to canonical isomorphism) a preimage of ® under

the equivalence Theorem see Remark

Remark 5.1.7. Let ® : Stonepy; — Stoney be a functor which satisfies conditions (2) and (3) of Theorem
but not necessarily condition (1). Then the map of opposite categories Stone?\i - Stonej)\? still satisfies
the requirements of Proposition and therefore restricts to a left ultrafunctor F = @[y : M > N.
However, if ® does not satisfy condition (1), then we cannot conclude that @ is isomorphic to the functor
Dp.

The proof of Theorem will require some preliminaries. We begin by treating the case where N = {*}
is a category having a single object and a single morphism, so that Stonexs can be identified with the category
of Stone spaces.

Lemma 5.1.8. Let M be an ultracategory, let ®q : Stoneps - Stone denote the forgetful functor (given on
objects by Po(X,0x) = X), and let O : Stoneps — Stone be any functor which satisfies conditions (1), (2),
and (3) of Theorem|5.1.4, Then there is a unique natural transformation of functors a: ® - ®q, and « is
an isomorphism.

Proof. For every Stone space X, let Uy(X) denote the Boolean algebra of closed and open subsets of X.
Let (X,0x) be an object of Stoneps. Since the functor ® satisfies property (1), it carries summands
of (X,0x) (in the category Stonej ) to summands of ®(X,Ox) (in the category Stone). This induces
a homomorphism of Boolean algebras Uy(X) — Uy(P(X,Ox)). By virtue of Stone duality, this Boolean
algebra homomorphism is given by taking inverse images along a continuous map a(X,0x) : ®(X,0x) - X.
Here « is characterized by the requirement that, for each closed and open subset U ¢ X, the inverse
image a(X,0x) 1 (U) ¢ ®(X,Ox) is the image of the map ®(U,Ox |y) - ®(X,0x). From this, we see
immediately that the construction (X,0x) ~ a(X,0x) is a natural transformation of functors (and that
any other natural transformation of functors is equal to «).

We will complete the proof by showing that for each object (X,Ox) € Stonep, the map a(X,0x) :
®(X,0x) — X is a homeomorphism. Since a(X,0x) is a continuous map between compact Hausdorff
spaces, it will suffice to show that a(X, Ox) is bijective. Fix a point = € X; we wish to show that the inverse
image a(X,0x) '{z} consists of a single point. Since ® satisfies condition (3), this inverse image can be
identified with the space ®({z},Ox ), so that the desired result follows from condition (2). O

Lemma 5.1.9. Let M and N be ultracategories, and let ® : Stoner; — Stonens be a functor which fits into
a commutative diagram
®

Stone g Stoneps

I

Stone,

where the vertical maps are the forgetful functors. Then ® satisfies conditions (1) and (3) of Theorem [5.1.4)
if and only if it preserves the class of Cartesian morphisms with respect to the vertical fibrations.

Remark 5.1.10. In the situation of Lemma the functor ® automatically satisfies condition (2) of
Theorem E.1.41

Proof of Lemma[5.1.9. For each object (X,0x) € Stonenq, let us write ®(X,0x) = (X, Px(Ox)), where
Oy : Fun"V* (X, M) > Fun™*"" (X, \) is the functor obtained from ®°P by passing to the fiber over X ¢
Stone. Then, for any map of Stone spaces ¥ — X, we have a comparison map ay,;x : ®x(Ox)ly —
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@y (Ox |y), and the functor ® preserves Cartesian morphisms if and only if each of the maps ay/x is an
isomorphism. Note that ® satisfies condition (1) of Theorem lm if and only if ay/x is an isomorphism
whenever Y is a closed and open subset of X (see Remark[4.1.8)). If this condition is satisfied, then ® satisfies
condition (3) of Theorem if and only if ayy is an isomorphism whenever Y consists of a single point.
In this case, ay;x is an isomorphism in general: this follows by observing that, for each point y € Y, the
induced map (ay;x)lyy @ Px(Ox)lyy = Py (Ox [Y)lqyy fits into a commutative diagram

Xy} x

Dx (Ox)ly P43 (Ox lyy)

oy xlyy %/Y?

Py (Ox |y)lgyy-
O

For every compact Hausdorff space X, there exists a surjection of compact Hausdorff spaces w:Y - X,
where Y is a Stone space (for example, we can take Y to be the Stone-Cech compactification of the underlying
set of X). It follows that the category of Stone spaces can be regarded as a basis for the coherent topology
on the category Comp (Definition . Combining this observation with Proposition we obtain the
following:

Lemma 5.1.11. Let M and N be ultracategories. Then the restriction functor
Cartcomp(Comp g, Comp ) = Cartgione (Stonepy, Stonepr)

is an equivalence of categories.

Proof of Theorem[5.1.7} Let M and N be ultracategories, and consider the functors

FunLUlt(MvN) i CartCOmp(CompM, CompN)OP

0/
—  Cartggone (Stonepy, Stonens )P

0,’
— Fun(Stonea, Stonear)°P.

Here 6 is given by the construction of Example 0" is the restriction functor, and 6" is the inclusion.
We wish to show that the composition 6" 0§’ o 6 is a fully faithful embedding, whose essential image is
the full subcategory Fun’(Stonea,,Stonen)°P ¢ Fun(Stonea, Stonepr)°P spanned by those functors which
satisfy conditions (1), (2), and (3) of Theorem Note that the functor 6 is an equivalence of categories
by virtue of Theorem and the functor 6’ is an equivalence of categories by virtue of Lemma
Moreover, Lemma implies that 6" fits into a (homotopy) fiber sequence

0//
Cartggone (Stone g, Stonepr )P — Fun’(Stone, Stoneys)°P — Fun’(Stonea,, Stone).

From the description of Fun'(Stone, Stone) given by Lemma we conclude that 6" is an equivalence
of categories. O

5.2. Set-Valued Left Ultrafunctors. Let M be an ultracategory and let Fj : M — Set be a functor.
Our goal in this section is to show that every left ultrastructure on F, arises from a suitable extension
F : Stone}) — Set via the construction of Proposition Moreover, there is a canonical choice for the
extension F'.

Theorem 5.2.1. Let M be an ultracategory and let Fung(Stone%,Set) denote the full subcategory of
Fun(Stone’(), Set) spanned by those functors F which satisfy the following pair of conditions:

(a) For every object (X,0x) in Stoneprq and every point x € X, the canonical map
lim F(U,0x |v) -~ F({z},Ox.2)
zeU
1s bijective. Here the colimit is taken over all closed and open neighborhoods U of the point x.



60 ULTRACATEGORIES

(b) The functor F carries finite coproducts in Stonepq to finite products in the category of sets.

Then the construction of Proposition[I.7.9 induces an equivalence of categories
Fung (Stone’)), Set) — Fun"" (M, Set).

Variant 5.2.2. In the statement of Theorem [5.2.1] we can replace the category Set with any compactly
generated category (see Variant [3.4.5)), endowed with the categorical ultrastructure of Example

We will deduce Theorem [5.2.1] by combining Theorem [4.3.3 with the results of §3] which allow us to give
a more concrete description of the category Stoneget.

Remark 5.2.3. For any compact Hausdorff space X, Theorem supplies an equivalence of categories
FunLUlt(X ,Set) ~ Shv(X). Moreover, this equivalence depends functorially on X (by virtue of Proposition
3.4.6)). It follows that the category Stonese; of Notation is equivalent to another category Stoneg,,
which can be described concretely as follows:

e The objects of Stoneg,, are pairs (X,Ox), where X is a Stone space and Ox is a sheaf of sets on
X.

e If (X,0x) and (Y,Oy) are objects of Stoneg,, then a morphism from (X,0x) to (Y,0y) in
Stoneg,, is a pair (f,«), where f : X —» Y is a continuous function and « : f*Oy - Ox is a
morphism of set-valued sheaves on X.

For the remainder of this section, we will abuse notation by identifying Stonege; with Stoneg,,: that is, we
will think of the objects of Stonege; as given by pairs (X, Ox) where Oy is a sheaf of sets, rather than a
set-valued left ultrafunctor.

Construction 5.2.4. For each object (X, Ox) € Stoneget, we let I'(X, Ox ) denote the set Ox (X) of global
sections of the sheaf Ox. This construction determines a functor I' : Stonegr, — Set which preserves small
products and small filtered colimits.

Remark 5.2.5. Let {(X,,0x,)} be a filtered diagram in the category Stonege; having inverse limit
(X,0x), so that X = LiilXa is the inverse limit of the underlying topological spaces and Ox is given
by the direct limit lim(Ox,,)|x. Then the canonical map

lim (X, 0x,) » (X, 0x)

(03

is a bijection.

Let M be an ultracategory and define Cartsione(Stonea, Stoneset) as in Definition Note that, for
any functor ® : Stoneps — Stonege; belonging to Cartgione(Stoneay, Stoneget), the composition T' o P :
Stonegh, — Set satisfies conditions (a) and (b) of Theorem Moreover, since the functor I' commutes
with small products and small filtered colimits, the functors ®°P and I" o ®°P restrict to the same set-valued
left ultrafunctor on M. Combining this observation with Lemma and Theorem we deduce that
the composition

Cart(Stone g, Stonege )P I Fung (Stone}) Set) —— Fun""" (M, Set)

is an equivalence of categories. We can therefore reformulate Theorem 1| as follows:

Proposition 5.2.6. Let M be an ultracategory. Then composition with the functor I' : Stonegh, — Set of
Construction induces an equivalence of categories

O : Cartggone (Stoneq, Stonege )” — Fung(Stone}, Set).

Proof. Let F : Stone}l, — Set be any functor and let (X, Ox) be an object of Stone. If F satisfies condition
(b) of Theorem il then the construction (U ¢ X) » F(U,Ox |y) carries disjoint unions of closed and
open subsets of X to products in the category of sets, and therefore admits an essentially unique extension to
a sheaf of sets on X which we will denote by F/(Ox). In this case, we can regard the construction (X,Ox)
(X,F(Ox)) as a functor from Stoneps to Stonege;. This functor belongs to Cartgione (Stoneps, Stonege) if
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and only if, for each object (X,Ox) in Stoney and each map of Stone spaces f:Y — X, the canonical map
F(Ox)ly - F(Ox|y) is an isomorphism of set-valued sheaves on Y. As in the proof of Lemma it
suffices to verify this condition in the case where Y is a point, in which case it translates to the condition
that the functor F' satisfies condition (a) of Theorem We therefore obtain a functor

A : Fung(Stone}, Set) — Cartgione (Stone g, Stoneget )P,

given on objects by the formula A(F)(X,0x) = (X, F(Ox)). Note that the composition oA is the identity
functor from Fung(Stone}), Set) to itself. We will complete the proof by observing that there is a canonical
isomorphism « : id = Ao © of functors from the category Cartsione (Stone s, Stoneset ) to itself, which assigns
to each functor @ € Cartggone(Stonepy, Stonege) the natural transformation
agp: D> A(O(D))
given on each object (X, Ox) € Stonens by the map of sheaves given on closed and open sets by the bijection
(Uc X))~ 0x(0x)(U)) = (U< X) =y (Ox [0)(U)).
O

Remark 5.2.7. Let M be an ultracategory and let F : Stone}}; — Set be a functor satisfying conditions
(a) and (b) of Theorem so that we can regard Fy = F|p as a left ultrafunctor from M to Set. The
following conditions are equivalent:

(1) The left ultrafunctor Fy: M — Set is an ultrafunctor.

(2) For every collection of objects {M}ses indexed by a set S, the canonical map F(II,q M) —

[Tses F (M) is bijective.

The implication (1) = (2) follows from Proposition [1.4.9] For the converse, we observe that (by the proof
of Proposition , the functor F' can be recovered from Fy by the construction

(X,0x) »T'(X, Fo(Ox)).

Suppose that Fy is an ultrafunctor. If (X,O0x) = [1,.g Ms is the object of Stonen, obtained by applying
Proposition to the collection {My}ses of objects of M, then (X, Fo(Ox)) is the object of Stoneget
obtained by applying Proposition to the collection of sets {Fy(Ms)}ses, so that T'(X, Fo(Ox)) =
HseS FO(MS)'

5.3. Left Ultrafunctors and Filtered Colimits. If M is an ultracategory which admits small filtered

colimits, then the equivalence of Theorem can be formulated more simply. First, we need an elementary
observation.

Proposition 5.3.1. Let M be an ultracategory which admits small filtered colimits. Then:

(a) The category Comp , admits small filtered limits.
(b) The full subcategory Stoneaq € Comp n, is closed under small filtered limits..

In particular, the category Stoneas admits small filtered limits.

Proof. Let {(X4,Ox_)} be a small filtered diagram in the category Comp . Then the underlying diagram
of topological spaces { X, } admits an inverse limit X = l(iLnXa, which is also a compact Hausdorff space. For
each index a, let m, : X - X, be the projection map. Then {7} Ox_} is a filtered diagram in the category
of left ultrafunctors Fun™V'"*(X, M), and therefore admits a colimit O x = h_r)n((’) X, T ) (see Remark.
It is straightforward to verify that (X, Ox) can be regarded as an inverse limit of the diagram {(X,,O0x_)}
in the category Comp ,,. Moreover, if each X, is a Stone space, then X is also a Stone space. ]

Variant 5.3.2. In the situation of Proposition [5.3.1] suppose that we assume only that M admits small
k-filtered colimits, for some regular cardinal . In this case, the categories Comp ,, and Stonep also admit
small r-filtered limits. Moreover, these limits are preserved by the forgetful functors

Comp , - Comp Stonenq — Stone.

We can now state our main result:
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Theorem 5.3.3. Let M be an ultracategory which admits small filtered colimits, and let Fun'(Stoneja, Set)
denote the full subcategory of Fun(Stone’l,Set) spanned by those functors which preserve small filtered
colimits and finite products. Then the construction of Proposition[I.4.9 induces an equivalence of categories
Fun’(Stone}, Set) - Fun™V"* (M, Set).

We will deduce Theorem by combining Theorem with the following general result, which may
be of independent interest:

Proposition 5.3.4. Let M be an ultracategory and let F : M — Set be a functor. If there exists a left
ultrastructure on F', then F' preserves all small filtered colimit which exist in M.

Proof of Theorem[5.3.3 By virtue of Theorem we must show that the category Fun’(Stone), Set)
appearing in the statement of Theorem coincides with the category Funo(Stonej)\’jl7 Set) in the statement
of Theorem In other words, we must show that if F' : Stonej’\i — Set is a functor which satisfies
conditions (a) and (b) of Theorem then F' commutes with small filtered colimits.

For each object (X,0x) € Stonepq, let F(Ox) denote the sheaf of sets on X given on closed and open
subsets U ¢ X by the formula F(Ox)(U) = F(U,Ox |v) (see Corollary [B.6.5).

Let {(X,,0x,)} be a filtered diagram in the category Stonep, having an inverse limit (X,Ox). For
each index «, let m, : X — X, denote the projection map, and let Ox = h_r)na(OXa o7y ) be as in the proof
of Proposition We wish to show that the canonical map

0:1lim F(X,,0x,) - F(X,0x)

is a bijection. Equivalently, we wish to show that the composite map

. 0 . * 0"

lim F(Ox,)(Xa) = (lim7, F(Ox,))(X) — (F(Ox))(X).

(0% «
Here ¢’ is is bijective by virtue of Remark To show that 6” is bijective, we will prove the stronger
assertion that the comparison map u : lim m;F (Ox,) - F(Ox) is an isomorphism in the category of

«

sheaves on X. Let wu, denote the map of sets obtained from w by passing to stalks at some point z € X.
Setting x,, = 7o (), we see that u, can be identified with the upper horizontal map in a commutative diagram

limy F(Ox, )z, ——F(Ox):

|

lim F({ra},Ox.s,) == F({z},0x.0).

Since F satisfies condition (a) of Theorem the vertical maps in this diagram are bijective (see Con-
struction . We are therefore reduced to showing that the lower horizontal map is bijective, which
follows from the fact that the restriction F|r admits a left ultrastructure and therefore preserves filtered
colimits (Proposition [5.3.4). O

The proof of Proposition will require some preliminaries.

Notation 5.3.5. Let S be a partially ordered set. For each s € S, set Sss={t€S:t>s}. We will say that
an ultrafilter p on S is cofinal if u(Sss) =1 for each s € S. In this case, u restricts to an ultrafilter on each
of the subsets Sss, which we will denote by uss. Note that there exists a cofinal ultrafilter on S if and only
if S is directed: that is, every finite subset of S has an upper bound (this is a consequence of Proposition
1.1.10)).

Construction 5.3.6. Let M be an ultracategory and suppose we are given a diagram ({M,}, {@s: My >
M,;}) in M, indexed by a partially ordered set S. Let p be a cofinal ultrafilter on S. For each sy € S, let
wg: My — fs M;dy denote the composite map

stS @s,tdﬂzs

Aﬂzs Aﬂzsvt
M, 2, [S M, dpis. [S Mydpis, =222 [S Mydy,
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where A, is the ultrapower diagonal map of Example and A, , is the isomorphism induced by the
inclusion ¢ : Sy = S (Notation [1.3.3]). Note that the maps w; satisfy ws = wy o ps ¢ for s <t. Consequently,
if the diagram ({M}, {¢s.:: My — M,;}) admits a colimit in M, we obtain a canonical map

w:limMsa/‘Mtdu.
;S') S

Remark 5.3.7. In the situation of Construction let {¢; : My > M} be a collection of morphisms in
M which exhibit M as a colimit of the diagram ({M,}, {ps,: Ms - M;}). Then the composite map

) td
ML[MthMfMdM:M“
S S

coincides with the ultrapower diagonal A, of Example[1.3.4]

Remark 5.3.8. In the situation of Construction suppose that M = Set is the category of sets (equipped
with the categorical ultrastructure of Example . In this case, the map w: M — |, g Mydp is injective.
To prove this, suppose we are given a pair of elements x,y € M, for some s € S satisfying ws(z) = ws(y).
Unwinding the definitions, we see that the set S' = {t € Sss : @s1(z) = ps:(y)} satisfies pu(S’) = 1. In
particular, S’ is nonempty, so that 2 and y have the same image in M, for some t > s.

Proof of Proposition[5.3.7} Let M be an ultracategory and let F': M — Set be a functor which admits a left
ultrastructure {o,}. We wish to show that, for every small filtered category Z and every diagram U : Z - M
which admits a colimit, the canonical map ¢ : lim(F o U) — F(lim(U)) is a bijection. Then there exists a
directed partially ordered set S and a cofinal functor S — Z (see, for example, [I3] Tag 0032]). Replacing
7T by S, we may assume that Z = S is a directed partially ordered set, so that the diagram U is given by a
collection of objects {M}ses and transition morphisms {@s ¢ : My - M;}s<r. Let {95 : My - M}ses be a
collection of morphisms in M which exhibit M as a colimit of the functor U. Choose a cofinal ultrafilter p
on S. Applying Construction [5.3.6|in the ultracategories M and Set, we obtain maps

w: M =lim M, ~ fthdu W' :lim F(M,) — fSF(Mt)d,u.
These maps fit into a commutative diagram

fs F(wt)d#
—_ >

lim F/(M,) ——"—— [ F(M,)d F(M)*

| |- -
F(fs wtdu)

FM) — 0 ([ Mydg) — 222 g,

Since the map w’ is injective (Remark, we immediately deduce that 6 is injective. To prove surjectivity,
suppose we are given an element x € F(M). Then (o, o F(w))(z) is an element y of the ultraproduct
Js F(My;)dp which we can represent by a collection of elements {y; € F(M;)}es, for some subset Sy ¢ S
satisfying ©(So) = 1. Note that the composition (f4t¢dp) o w coincides with the ultrapower diagonal
A, M - M" (Remark . It follows that the composition

F(w)

F(fgvidp)
F(M) =2 F( [ M) ===

F(M") 2 F(M)*

agrees with the ultrapower diagonal A, : F(M) — F(M)* in the category of sets. We therefore have an
identity (fgF(¢¢)dp)(y) = Au(x) in the ultrapower F(M)*, which translates concretely to the statement
that the set S1 = {t € Sp : F(¢)(y:) = x} satisfies u(S1) = 1. In particular, the set S; is nonempty. Choosing
t € S1, we conclude that x belongs to the image of the map F(1;) : F(M;) - F(M) and therefore also to
the image of 6. ]
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5.4. Accessible Ultrastructures. Let M be an ultracategory and let Fun™V!t (M, Set) denote the category
of set-valued left ultrafunctors on M. In and we have seen two examples in which the category
Fun™U"*(M, Set) is a Grothendieck topos:
e If M =Mod(C) is the category of models of a small pretopos C (endowed with the ultrastructure of
Remark [2.1.2)), then the category FunLUlt(/\/l, Set) is equivalent to the topos Shv(C) of sheaves on
C (Theorem [2.2.2)).
o If M = X is a compact Hausdorff space (regarded as an ultracategory having only identity mor-
phisms), then the category FunLUlt(M,Set) is equivalent to the topos Shv(X) of sheaves on X

(Theorem [3.4.4)).

Our goal in this section is to show that this is a rather general phenomenon. Of course, it is not completely
general: to guarantee that the category FunLUlt(./\/l7 Set) is a reasonable mathematical object, we will need
to assume that the ultracategory M is “not too big”. To formulate this precisely, it is convenient to use the
language of accessible categories (see [I]).

Definition 5.4.1. Let M be a category. We will say that an ultrastructure on M is accessible if the following
conditions are satisfied:

e For some regular cardinal x, the category M admits small k-filtered colimits.
e The category Stone?; of Construction is accessible.

Remark 5.4.2. Let M be an ultracategory which admits small x-filtered colimits, for some regular cardinal
k. Then the forgetful functor F : Stone}; — Stone®” preserves small r-filtered colimits (Variant @ .
If the ultrastructure on M is accessible, then F' is an accessible functor between accessible categories. It
follows that the category M is also accessible (since it can be realized as the 2-categorical fiber product
Stone’{y xstone{*})-

Example 5.4.3. Let C be a small pretopos. Then the ultrastructure on Mod(C) is accessible; this follows
from the description of the category Stoneyoq(c)y supplied by Theorem

Example 5.4.4. Let X be a compact Hausdorff space, regarded as a category having only identity mor-
phisms. Then the ultrastructure of Proposition [3.3.1] is accessible. This follows from the description of

Stonex € Compy supplied by Example

We can now state the main result of this section:

Proposition 5.4.5. Let M be a category equipped with an accessible ultrastructure. Then the category of
left ultrafunctors FunLUlt(/\/l7 Set) is a Grothendieck topos.

The main content of Proposition [5.4.5| is contained in the following result, which does not require any
set-theoretic assumptions on M:

Proposition 5.4.6. Let M be an ultracategory. Then the category of left ultrafunctors FunLUlt(M, Set) is
a pretopos which admits small colimits. Moreover, for every morphism o : F — G in Fun™V!t (M, Set), the
pullback functor o™ : FunLUlt(./\/l, Set);c — FunLUlt(M, Set),r preserves small colimits.

Proof. The category FunLUlt(M, Set) admits small colimits by Remark and finite limits by Corollary
2.1.4] For every natural transformation of left ultrafunctors o : F - G and every small diagram {G,} in
Fun™"" (M, Set) JG» the canonical map
h_r)n(Ga xg F') — (h_r)nGa) xg F
[e% (o7

is an isomorphism of left ultrafunctors because it induces a bijection after evaluating on any object M € M
(since colimits and fiber products in Fun™Y! (M, Set) are computed pointwise, and the formation of colimits
in Set is compatible with pullback). In particular, the category Fun™V! (M, Set) is extensive. To complete
the proof that it is a pretopos, it will suffice to show that for every left ultrafunctor F ¢ Fun™V" (M, Set)
and every equivalence relation R ¢ F' x F in FunLUlt(M, Set), the canonical map

R—>FXF/RF
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is an isomorphism of left ultrafunctors, where F'/R = Coeq(R = F') denotes the quotient of F by the
equivalence relation R. This also follows from the corresponding assertion in the category of sets, since the
coequalizer defining F'/R and the fiber product F' xp/p F' are computed pointwise. ([

Proof of Proposition . Let M be a category equipped with an accessible ultrastructure; we wish to show
that the category Fun c (M, Set) is a Grothendieck topos. By virtue of Proposition and Remark
it will suffice to show that the category Fun™V*(M, Set) is accessible. Using Theorem we can identify
Fun""" (M, Set) with the full subcategory Fung (Stone’y), Set) € Fun(Stone}, Set) spanned by those functors
F': StoneRy — Set satisfying conditions (a) and (b) of Theorem

Choose a regular cardinal x such that M admits small x-filtered colimits. Enlarging & if necessary, we
may further assume that the category Stone’l) is x-accessible: that is, it is equivalent to Ind,(€), where & is
a small category. Let us abuse notation by identifying £ with its image in Stone’{;. Then £ can be identified
with the full subcategory of Stone%’l spanned by the x-compact objects. iConsequently, the full subcategory
Ec Stone%’[ is closed under finite products, and also under the formation of direct factors. Note that, for
every functor F : Stonel; — Set satisfying (a) and (b) of Theorem the restriction Flap @ M — Set
admits a left ultrastructure (Proposition|1.4.9)), and therefore preserves small k-filtered colimits (Proposition
. Arguing as in the proof of Theor we see that the functor F' itself preserves small k-filtered
colimits.

Let Fun, (Stone%, Set) denote the full subcategory of Fun(Stone});,Set) spanned by those functors which
preserve small x-filtered colimits, so that the restriction functor

Fun, (Stone}}, Set) - Fun(&, Set)

is an equivalence of categories. Let Fung (&, Set) denote the essential image of FunO(Stonef\Ij[, Set) under this
equivalence, so that Fun™V" (M, Set) is equivalent to Fung (&, Set). We will complete the proof by showing
that Fung (&, Set) is an accessible subcategory of the presheaf category Fun(&, Set). To prove this, it suffices
to observe that a functor Fy: € — Set belongs to Fung (&, Set) if and only if satisfies the following analogues
of (a) and (b):
(a') Let F : Stone}) — Set be a left Kan extension of Fy. Then, for each object (X,0x) in &, the
canonical map
h_I)nF(U7 OX |U) - F({.’E}, OX,I)
zelU
is bijective.
(b") For every finite collection of objects (X;,Ox,) of &, the canonical map
F(ITX:,01x,) = [ Fo(Xi,Ox,)
is bijective.
This characterization exhibits Fung(&, Set) as an intersection of a bounded number of accessible subcategories
of Fun(&,Set), so that Fung(&, Set) is itself accessible. O

Let M be a category equipped with an accessible ultrastructure. For each object M € M, evaluation on
M induces a functor

evyy s Fun®U (M, Set) — Set

which preserves small colimits and finite limits (Remark [1.4.3])) and finite limits (Corollary [2.1.4). We can

therefore regard evy; as a point of the Grothendieck topos FunLUlt(./\/l,Set). Moreover, the construction
M — ev)s determines a functor

ev: M - Fun* (Fun™"'"* (M, Set), Set).

This functor is an equivalence in the following cases:

e If M is the ultracategory Mod(C) of models of a small pretopos C, then the functor ev is an
equivalence of categories; it is homotopy inverse to the equivalence of Corollary
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o If M = X is a compact Hausdorff space (regarded as an ultracategory having only identity mor-
phisms), then the functor ev is an equivalence of categories (every point of the sheaf topos Shv(X)
is determined by a point of the topological space X).

However, the functor ev is not an equivalence in general.
Counterexample 5.4.7. Let G be a compact topological group and let BG be the ultracategory of Example
Let e denote the unique object of the category BG, so that we can identify G with the automorphism

group Autpg(e). Let us abuse notation by identifying e with a left ultrafunctor from the one-object category
* to BG, so that we have a homotopy pullback square

G— s %

el
in the 2-category Ult of Remark [T.4.6]

Let F': BG — Set be a left ultrafunctor. Then « determines an automorphism ¢ of the composite left
ultrafunctor

G5+ 5BG L Set,

which we can identify (under the equivalence of Theorem 4)) with the constant sheaf F’ (e)G. At each point
g € G, the automorphism ¢ determines an automorphism of the stalk F' (e) ~ F'(e), which is simply given by

the action of g € G = Autpg(e) on F(e) by the functoriality of F'. The fact that ¢ is automorphism of sheaves
guarantees that this automorphism is constant on the identity component G° ¢ G. Consequently, the action
of G° on the object e € BG induces the trivial action of G° on the image ev(e) € Fun* (Fun™V"(BG, Set), Set).
In particular, if G° is nontrivial, then the evaluation functor

ev: BG - Fun* (Fun™"" (BG, Set), Set)

cannot be an equivalence of categories.

With a bit more effort, one can show that the category of left ultrafunctors Fun™V!*(BG, Set) is equivalent
to the Grothendieck topos of sets equipped with a continuous action of the profinite group mo(G) = G/G°.
In particular, we can identify ev with the canonical map BG — B(my(G)).

6. THE CATEGORY StoneMod(c)

Let C be a small pretopos and let Mod(C) denote the category of models of C, which we endow with the
ultrastructure of Remark [2.1.2] The ultimate goal of this paper is to prove Theorem [2:2.2] which asserts that
the category of left ultrafunctors Fun™V*(Mod(C), Set) is equivalent to the topos Shv(C) of sheaves on C. To
prove this, we will take advantage of the characterization of (set-valued) left ultrafunctors established in
According to Theorem [5.3.3 m the datum of a left ultrafunctor Mod(C) — Set is equivalent to the datum of a
functor F': StoneM ae) Set which preserves finite products and small filtered colimits. In some sense, this

is progress: by trading the category of models Mod(C) for the larger category Stonelr we can reduce

Mod(C)’
Theorem [2.2.2) to a statement about ordinary categories and ordinary functors, rather t}fazl ultracategories
and (left) ultrafunctors. The caveat is that the ultrastructure on Mod(C) is embedded into the definition
of the category Stoneyioq(c): recall that the objects of Stoneyioq(c) are given by pairs (X, Ox), where X is
a Stone space and Ox is a left ultrafunctor from X to Mod(C). Our goal in this section is to show that
the category Stoneyjoq(cy has an alternative description, which is completely independent of the theory of

ultracategories:

Theorem 6.0.1. Let C be a small pretopos. Then there is a canonical equivalence of categories Stoneyoq(cy =
Fun'®(C, Set)°P. Here Fun'®(C,Set) denotes the full subcategory of Fun(C,Set) spanned by those functors
P :C — Set which are regular: that is, which preserve finite limits and effective epimorphisms.
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Remark 6.0.2. Let C be a small pretopos. Combining Theorem with Theorem [5.3.3] we obtain a fully
faithful embedding

Fun""*(Mod(C), Set) = Fun(Fun'&(C, Set), Set).
Moreover, the essential image of this embedding contains all functors F : Fun"™®(C, Set) — Set which pre-
serve small products and small filtered colimits (see Remark . From the construction, it will follow
immediately that the composition

€ = Fun" (Mod(C), Set) = Fun(Fun™8(C, Set), Set)

is the Barr embedding of C (see ; here ev denotes the evaluation map of Construction Con-
sequently, from Makkai’s description of the image the Barr embedding (Theorem we can deduce
Makkai’s strong conceptual completeness theorem (Theorem , which asserts that the evaluation map
ev: C —» Fun""(Mod(C), Set) is an equivalence of categories (recall that we proved the reverse implication
in . We will not make use of this observation: instead, we will apply Theorem [6.0.1] in §7] to prove a
stronger version of Makkai’s conceptual completeness theorem (Theorem [2.2.2]), which describes the larger
category Fun™V"(Mod(C), Set) of left ultrafunctors from Mod(C) to Set.

Let us now outline our approach to Theorem In §6.3] we introduce a category Stonec whose objects
are pairs (X,Ox), where X is a Stone space and Oy is a pretopos functor from C to the topos Shv(X)
(Definition Using the results of we construct an equivalence of categories Stonec ~ Stoneyoq(c)
(see Warning6.3.9)). We then construct a comparison functor I': Stonec - Fun"8(C, Set)°P, given concretely
by the formula I'(X,0x)(C) = O%(X) (where O% denotes the image of an object C' € C under the pretopos
functor Ox). We deduce Theorem from the more precise assertion that the functor I' is an equivalence
of categories, which we prove in

Note that the category Fun"™®(C, Set) of regular functors from C to Set is contained in the larger category
Fun'®(C, Set) of functors P : C — Set which preserve finite limits. Throughout this section, it will be
convenient to phrase our results in terms of the opposite category FunleX(C,Set)Op, which we denote by
Pro(C) and refer to as the category of pro-objects of C. In we recall some standard facts about the
category Pro(C) and study properties that it inherits from C. In particular, we show that if C is a small
pretopos, then the category Pro(C) is regular and extensive (Corollary , which we will exploit in
to study sheaves on Pro(C). The category Fun"®(C, Set)°P can then be identified with the full subcategory
Pro"?(C) c Pro(C) of weakly projective pro-objects of C (Definition [6.2.2)). In we recall the proof (due
to Barr) that the Barr embedding of a small regular category is fully faithful (Theorem . This is
a consequence of the stronger assertion that the category Pro(C) has “enough” weakly projective objects

(Proposition [6.2.12)), which will be needed in @

6.1. Pro-Objects. We begin with a short review of the theory of pro-objects of a small category C. To
simplify the discussion, we will confine our attention to the case where the category C admits finite limits.

Definition 6.1.1. Let C be a small category which admits finite limits. A pro-object of C is a functor
P :C — Set which preserves finite limits. If P and @ are two such functors, then a morphism of pro-objects
from P to @ is a natural transformation of functors a: Q - P. We let Pro(C) = FunlCX(C, Set)°P denote the
category whose objects are pro-objects of C.

Example 6.1.2. Let C be a small category which admits finite limits. Then every object C' € C determines
a pro-object of C, given the functor Hom¢(C,e) corepresented by C. By virtue of Yoneda’s lemma, the
construction C' — Home(C, o) determines a fully faithful embedding C < Pro(C). We will generally abuse
notation by identifying C with its essential image under this embedding: that is, we will not distinguish
between an object C' € C and the corresponding pro-object Home(C,e). Moreover, if X : C — Set is any
pro-object of C, we will identify X (C) with the set Homp,,(c)(X,C) of morphisms from X to C in the
category Pro(C).

Example 6.1.3 (Profinite Sets). Let X be a topological space and let Fin denote the category of finite
sets. We let I'(X) : Fin — Set denote the functor given by the formula I'(X)(S) = Homrop (X, S): that is, it
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carries a finite set S to the collection of locally constant S-valued functions on X. Since the inclusion functor
Fin - Top preserves finite limits, the functor I'(X) preserves finite limits, and can therefore be regarded as
an object of the category Pro(Fin) of profinite sets. The construction X ~ I'(X) induces an equivalence of
categories Stone ~ Pro(Fin).

Remark 6.1.4. Let C be a small category which admits finite limits. Since the formation of finite limits
commutes with filtered colimits in the category Set, the full subcategory Fun'®*(C, Set) ¢ Fun(C, Set) is closed
under (small) filtered colimits. Passing to opposite categories, we conclude:
e The category Pro(C) admits small filtered limits.
e For every object C' € C, the evaluation functor Homp,,(c)(e, C') carries small filtered limits in Pro(C)
to filtered colimits of sets.

Remark 6.1.5. Let C be a small category which admits finite limits, and suppose we are given a small
filtered diagram {Cy} in C. Then, in the category Pro(C), this diagram admits an inverse limit lim Cy, given
concretely by the functor D ~ h_r)nHomc(Ca,D). Beware that this is generally different from the inverse
limit of the diagram {C,} in C (if such a limit exists).

Remark 6.1.6. Let C be a small category which admits finite limits. One can show that every object of

Pro(C) arises as the inverse limit of a filtered diagram in C. Consequently, the category Pro(C) can be
described more informally as follows:

e The objects of Pro(C) are “formal” inverse limits lim Cy,, where {C,} is a small filtered diagram in
C.

e Given small filtered diagrams {C,} and {Dgs}, we have canonical bijections

Homp,o(c) (lim Co, lim Dg) = lim Homp,c) (lim Co, Dp)

[ B B [
~ limlim Home (Caq, Dg).
B«

Remark 6.1.7. Let C be a small category which admits finite limits. Then the category of pro-objects
Pro(C) can be characterized (up to equivalence) by a universal mapping property. Let D be any category
which admits small filtered limits. Then precomposition with the Yoneda embedding C < Pro(C) induces an
equivalence of categories Fun'(Pro(C), D) — Fun(C, D), where Fun'(Pro(C), D) denotes the full subcategory
of Fun(Pro(C),D) spanned by those functors which preserve small filtered limits. More informally: the
category of pro-objects Pro(C) is obtained from C by “freely” adjoining small filtered limits. See Proposition
8.7.3 of [6], Expose 1.

Remark 6.1.8 (Functoriality). Let C and D be small categories which admit finite limits and let g : C - D
be a left exact functor. Then precomposition with g induces a functor F : Pro(D) — Pro(C). This functor
F admits a right adjoint G : Pro(C) — Pro(D). To prove this, we must show that for every pro-object
X € Pro(C), the functor (Y € Pro(D)) = Homp,,)(F(Y),X) is representable by an object of Pro(D).
Writing X as a filtered limit of objects of C (Remark, we can assume that X belongs to C. In this case,
the desired result follows from the bijections Homp,o(c)(F(Y), X) = (Y 0 g)(X) ~ Homp,op) (Y, g(X)).

It follows from the above argument that the restriction G|c is given by the composition of g : C - D with
the fully faithful embedding D — Pro(D). Moreover, the functor G preserves filtered limits (since it is a
right adjoint). Using the universal property of Remark we see that the functor G is characterized (up
to isomorphism) by these requirements.

Remark 6.1.9. In the situation of Remark [6.1.8] suppose that we drop the assumption that the functor
g : C — D is left exact. In this case, the universal property of Remark guarantees that g admits an
essentially unique extension G : Pro(C) — Pro(D) which commutes with filtered limits. Concretely, the
functor G can be constructed as a right Kan extension of the composition C 4LDo Pro(D). However, it
generally cannot be characterized as in Remark if the functor g does not preserve finite limits, then
neither does G, so G cannot admit a left adjoint.
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Proposition 6.1.10. Let C be a small category which admits finite limits, let Co € C be a full subcategory
which is closed under finite limits, and let G : Pro(Cy) — Pro(C) be the essentially unique extension of the
inclusion map Cq = C which commutes with filtered limits. Then G is fully faithful, and the essential image
of G consists of those pro-objects X € Pro(C) which satisfy the following condition:

(*) For C eC, every morphism f: X — C admits a factorization X - Cy — C where Cy belongs to the
subcategory Co.

Proof. Let F :Pro(C) — Pro(Cy) be the left adjoint to G, given concretely by the restriction map
Fun'®™(C, Set)°P — Fun'*(Cy, Set)°P.

To prove (1), we must show that for each object Y € Pro(Cy), the counit map (F oG)(Y) - Y is an
isomorphism. Since both F' and G commute with filtered limits, we may assume without loss of generality
that Y belongs to Co, which case the result is obvious. We now prove (2). By definition, an object X € Pro(C)
belongs to the essential image of G if and only if it can be written as a formal inverse limit “liilca”, where
each C\, belongs to Cqy. If X satisfies this condition, then every morphism X — C' factors through one of the
projection maps C,, so that X satisfies condition (*).

We now prove the converse. Assume that X satisfies (*). Set Y = (Go F')(X) and let u: X - Y be
the unit map; we wish to show that u is an isomorphism. To prove this, we show that composition with
u induces a bijection ¢ : Home (Y, C) — Home (X, C) for each object C € C. By construction, the map
O¢c is bijective when C belongs to Cg. From our assumption that X satisfies (*), we immediately deduce
that 0¢ is surjective for any object C' € C. To prove injectivity, suppose we are given a pair of morphisms
£y Y > C satisfying fou = f'ou. Since Y satisfies condition (*), the induced map (f,f'): Y - CxC

factors as a composition Y ER Cy > C x C for some Cy € C. Using our assumption that X satisfies (), we

deduce that the map (gowu, fou): X — Cy xcoxc C factors as a composition X LA C1 S Oy xoxe C for some
Cy € C. Using the bijectivity of 8¢c,, we can write h = h' o u for some map h' : Y — C;. The composition
vy oS Co xcoxc C then gives a pair of maps ¢’ : Y - Cy and " : Y — C satisfying ¢’ ou = gou and
eog = (f",f"). Using the injectivity of f¢,, we conclude that g’ = g, so that (f”, f")=eog’ =eog=(f,f")
and therefore f = f'. O

Lemma 6.1.11. Let C be a small category which admits finite limits. Then the inclusion functor C — Pro(C)
preserves finite limits and all colimits which exist in C.

Proof. The first assertion follows from the observation that for every pro-object X € Pro(C), the functor
(C € C) ind HomPro(C) (X7 C)

can be identified with X, and is therefore left exact. The second assertion follows from the fact that the
Yoneda embedding
C° < Fun(C, Set) C ~ Hom¢(C,e)

carries colimits in the category C to limits in the functor category Fun(C, Set). ]
Lemma 6.1.12. Let C be a small category which admits finite limits and let I be a finite partially ordered set

(regarded as a category). Then the inclusion map Fun(I,C) - Fun(I,Pro(C)) admits an (essentially unique)
extension to an equivalence of categories Pro(Fun(I,C)) ~ Fun(I, Pro(C)).

Proof. See Proposition 3.3 of the appendix to [2]. a

Example 6.1.13. Applying Lemma[6.1.12|in the case I = {0 < 1}, we see that every morphism f:C — D
in Pro(C) can be obtained as the limit of a filtered diagram of morphisms {f, : C, > D,} between objects
of C.

Lemma 6.1.14. Let C be a small category which admits finite limits. Then the category of pro-objects
Pro(C) admits small limits. In particular, Pro(C) also admits finite limits.
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Proof. By virtue of Remark [6.1.4} it will suffice to show that the category Pro(C) has a final object and
admits pullbacks. We argue more generally that, for any diagram

I>Pro(C) imX;

indexed by a finite partially ordered set I, there exists a limit Ligl‘el X; in the category Pro(C). Using Lemma
1

6.1.12| (together with the “Fubini theorem” for inverse limits), we can reduce to the case where each X; is
an object of C. In this case, the desired limit exists (and belongs to the essential image of the embedding

C = Pro(C)) by virtue of Lemma [6.1.11 O

Proposition 6.1.15. Let C be a small regular category (Definition . Then:

(1) The category Pro(C) is regular.

(2) A morphism f: X —Y in Pro(C) is a monomorphism if and only if it can be written as a small
filtered limit of monomorphisms in C.

(3) A morphism f: X - Y in Pro(C) is an effective epimorphism if and only if it can be written as a
small filtered limit of effective epimorphisms in C.

Proof. To prove (1), we must show that Pro(C) satisfies axioms (R1), (R2), and (R3) of Definition
Assertion (R1) follows from Lemmal6.1.14 To prove (R2), fix any morphism f : X — Z in Pro(C). Invoking
Lemma we can write f as the limit of a diagram {f; : X; — Z;}iczor, where 7 is a small filtered
category and each f; is a morphism in C. Since C is regular, each of the morphism f; admits a factorization

gi h;
X; =Y, — Z,

where ¢g; is an effective epimorphism in C and h; is a monomorphism in C. It follows from Proposition
that we can regard the construction ¢ = Y; as a functor Z°°? — C, and the construction ¢ = g;, h; as
natural transformations of functors. Passing to the inverse limit, we deduce that f factors as a composition

X %Y X Z where Y denotes the inverse limit lim _ Y; formed in the category Pro(C). Note that the
diagonal map § : Y - Y xz Y can be identified w1th an inverse limit of dlagonal maps 0; : Y; = Y; xz, Y.
Each h; is a monomorphism in C and therefore also in Pro(C) (Lemma |6. , so each ¢; is an isomorphism
and therefore § is also an isomorphism. It follows that & is a monomorphism in Pro(C). We will will show
that g is an effective epimorphism in Pro(C). For this, we wish to show that for each object C' € Pro(C), the
diagram of sets

HomPro(C) (K C) - HomPro(C) (X7 C) = HomPro(C) (X xy X, C)

is an equalizer. Using Remark [6.1.6] we can reduce to the case where C' belongs to C. In this case, we can
realize the preceding diagram as a filtered colimit of diagrams

Home(Y;, C) - Home (X, C) = Home (X; xy, X;,C).

We conclude by observing that each of these diagrams is an equalizer (since g, is an effective epimorphism
in C), and the collection of equalizer diagrams in Set is closed under filtered colimits. This completes the
verification of axiom (R2).

We now prove (3) (the proof of (2) is similar). If f is an effective epimorphism in Pro(C), then the
morphism h:Y — Z is an isomorphism (Remark . It follows that f can be identified with the limit
of the diagram {g; : X; = Y; }iczor of effective epimorphisms in C. Conversely, suppose that the diagram
{fi: Xi = Z;}iczor can be chosen so that each f; is an effective epimorphism. Then each of the morphisms
h; 2 Y; > Z; will be an isomorphism in C, so that the map h:Y — Z is an isomorphism in Pro(C) and f = hog
is an effective epimorphism in Pro(C).

We now complete the proof by showing that the category Pro(C) satisfies axiom (R3) of Definition [A-1.3]
Fix a pullback diagram

X —=X

N

7 2t sZ



ULTRACATEGORIES 71

in Pro(C), where f is an effective epimorphism; we wish to show that f’ is also an effective epimorphism.
Using Lemma[6.1.12] we can assume that f and u are given as the limits of diagrams {f; : X; = Z; };ezor and
{w; : Z - Z;}jezov, where T is a small filtered category. Defining ¢; and h; as above, we obtain diagrams

Xi XZZ' Z{HXZ

T

Yixz, 7l —=Y;

Tk

/ Wi
Z;, ——— 1,

where each square is a pullback, depending functorially on ¢ € Z°°. Passing to the inverse limit, we obtain a
commutative diagram of pro-objects

X' X

)

: ’

| L

7 —s7

)

in which both squares are pullbacks in Pro(C). Since f is an effective epimorphism, the map h is an
isomorphism, so A’ is also an isomorphism. We are therefore reduced to showing that ¢’ is an effective
epimorphism. This follows from (3), since it an inverse limit of effective epimorphisms X; xz, Z! - Y; xz, Z!
in the regular category C. O

Remark 6.1.16. Let C be a small regular category. Then the collection of effective epimorphisms in Pro(C)
is closed under small filtered limits.

Remark 6.1.17. Let C be a small regular category. Then the collection of effective epimorphisms in Pro(C)
is closed under the formation of products. To prove this, we can use Remark [6.1.16|to reduce to the case of
finite products, in which case the desired result follows from the regularity of Pro(C) (Corollary [A.1.10)).

Lemma 6.1.18. Let C be a small category which admits finite limits. Then the category Pro(C) admits
small colimits. Moreover, the formation of finite colimits in Pro(C) commutes with filtered limits.

Proof. The first assertion follows from the observation that the full subcategory Fun'®(C,Set) ¢ Fun(C, Set)
is closed under inverse limits, and the second from the observation that it is also closed under filtered colimits
(together with the observation that filtered colimits commute with finite limits in the category Set). g

Proposition 6.1.19. Let C be a small category which admits finite limits. If C is extensive (Definition
, then the category of pro-objects Pro(C) is also extensive.

Proof. The existence of coproducts in Pro(C) follows from Lemma [6.1.18) We next show that coproducts
in Pro(C) are disjoint. Let X and Y be objects of Pro(C). Using Lemma [6.1.12| and Remark we can

write X and Y as the limits of diagrams {X; };ezeor and {Y; };czor in the category C, where 7 is a small filtered
category. For each i € I, let X; uY; denote a coproduct of X; with Y; in the category C. Using Lemmas|6.1.18
and we see that the limit of the diagram {X; uY;};czor can be identified with the coproduct of X and
Y in the category Pro(C). Under this identification, the tautological maps X - X 1Y « Y can be realized
as limits of the maps X; = X, uY; < Y;, which are monomorphisms in C (hence also in Pro(C)) by virtue of
our assumption that coproducts in C are disjoint. Moreover, the fiber product X x(x;y) Y can be identified
with the limit of the diagram {X; xx,uv; Y; }iezer which carries each object ¢ € Z°P to an initial object of C.
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Since the inclusion C = Pro(C) preserves initial objects (Lemma [6.1.11)), it follows that X x(x,y) Y is an
initial object of Pro(C).

To complete the proof that Pro(C) is extensive, we must show that the formation of finite coproducts in
Pro(C) is compatible with pullback. Suppose we are given a morphism f: X - Y in Pro(C) and a collection
of morphisms u; : Z; - Y indexed by some finite set J. We wish to show that the canonical map

0: H(X Xy Z]) - X Xy (H Z])

jeJ jeJ
is an isomorphism in Pro(C). Using Lemma [6.1.12| and Remark [6.1.6] we can assume that the morphisms
f and u; are realized as the limits of diagrams {f; : X; - Y }iezor and {uw; ; : Z; ; > Y, }iezor for some small
filtered category Z, where each of the pro-objects X;, Y;, and Z; ; belongs to C. Invoking Lemma [6.1.18] we
can write 0 as a limit of maps
0:: [1(Xixy, Zij) = Xixy, (1 Zi ),

jeJ jedJ
where the coproduct and fiber product can be formed either in Pro(C) or in the smaller category C (Lemma
6.1.11). Since the formation of finite coproducts in C commutes with pullback, each of the maps 6; is an
isomorphism in C, so that 6 is an isomorphism in Pro(C). |

Corollary 6.1.20. Let C be a small reqular extensive category. Then Pro(C) is also regular and extensive.

Proof. Combine Propositions [6.1.15] and [6.1.19] (]

Warning 6.1.21. It is not true that if C is a small pretopos, then the category Pro(C) is also a pretopos.
For example, let C be the category of finite sets. Then the category Pro(C) of profinite sets can be identified
with the category Stone of Stone spaces (Example[6.1.3]). Let C' € Stone be the Cantor set, which we identify
with the collection of infinite sequences (n1,n2,n3,...) where n; € {0, 1}. The construction

(nlan27n37 ) = a1

defines a continuous surjection C' — [0,1], and the fiber product R = C x[p1) C can be regarded as an
equivalence relation on C' in the category of Stone spaces. However, this equivalence relation is not effective:
given any Stone space X, a continuous map C' — X which equalizes the two projection maps R = C must
factor through a continuous map [0,1] — X. Such a map is automatically constant (since X is totally
disconnected), so that C'xx C = C x C is strictly larger than the subset R c C x C.

We close this section by giving an alternate characterization of the the class effective epimorphisms in
Pro(C), in the case where C is both regular and extensive.

Notation 6.1.22. Let C be a small regular extensive category. Then, for every object C € C, the collection
of subobjects of C' forms a distributive lattice Sub(C) (Example . We let C' denote the spectrum
Spec(Sub(C’)) in the sense of Definition | which we regard as a topological space. The construction
C ~ C determines a functor from C to the category Top of topological spaces. Using Remark n we see
that this functor admits an essentially unique extension to a functor

Pro(C) — Top PwP
which commutes with filtered inverse limits.

Warning 6.1.23. The notation [6.1.22)is potentially misleading. Let C be a small regular extensive category.
Then Pro(C) is also a regular extensive category. Consequently, for every pro-object P € Pro(C), the partially
ordered set Sub(P) of subobjects of P is a distributive lattice. However, the topological space P of Notation
is not the spectrum Spec(Sub(P)). Writing P as the limit of a filtered diagram {C,} of objects of C,
Remark we have

P ~1limC, ~ lim Spec(Sub(Cq)) ~ Spec(lim Sub(Cy)) = Spec(Sub’(P)),

Pa—
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where Sub®(P) denotes the sublattice of Sub(P) consisting of those subobjects Py ¢ P for which there exists
a pullback square
PO —P

|,

Co —1=C,
where j: Cy - C' is a monomorphism in the category C.

Proposition 6.1.24. Let C be a small reqular extensive category and let f : P — Q be a morphism in Pro(C).
The following conditions are equivalent:

(a) The morphism f is an effective epimorphism in Pro(C).

(b) The map of topological spaces f: P @ 18 surjective.

Proof. Suppose first that f is an effective epimorphism in Pro(C). Then f can be realized as a filtered inverse
limit of effective epimorphisms f, : P, - @, in the category C (Proposition . It follows that each of
the inverse limit maps f;!: Sub(Q,) — Sub(P,) is a monomorphism of distributive lattices. Passing to the
colimit over a, we obtain a monomorphism of distributive lattices Sub®(Q) — Sub®(P) (where Sub’(P) and
SubO(Q) are defined as in Warning , hence a surjection of topological spaces

—_

P ~Spec(Sub’(P)) - Spec(Sub®(Q)) — @
(see Proposition [A.5.7)).

Now suppose that (b) is satisfied; we wish to show that f is an effective epimorphism. Using Proposition

6.1.15, we can factor f as a composition P N P’ L @, where f’ is an effective epimorphism in Pro(C) and f”
is a monomorphism in Pro(C). Since the surjection f: P - Q factors through " : P/ » @, the map f" is also
surjective. We may therefore replace f by f”' and thereby reduce to the case where f is a monomorphism in
Pro(C). Using Proposition we can write f as the limit of a diagram { f, : P, & Q,}. In this case, we
can identify P with the intersection (in the partially ordered set Sub(Q)) of the subobjects S, = Py xg,, Q.
Each of these subobjects belongs to the lattice SubO(Q) of Warning , and has the property that
PnS, =P. It follows from assumption (b) and Proposition that the intersection map S~ Sn P
induces a monomorphism of distributive lattices Sub’(Q) - Sub’(P), so that each S, must coincide with
Q and therefore P = @ (as subobjects of Q). O

6.2. Weak Projectives and the Barr Embedding. Let C be a regular category. Recall that an object
P € C is said to be projective if every effective epimorphism P - P in the category C admits a section
s:P— P.
Proposition 6.2.1. Let C be a regular category and let P be an object of C. The following conditions are
equivalent:

(a) The object P is projective.

(b) For every effective epimorphism f : C - D in C, postcomposition with f induces a surjection

Home (P, C) - Home (P, D).

Proof. Assume first that P is projective, and let f: C' - D be an effective epimorphism. For any morphism
g: P — D, we can form a pullback square

P——=C
lf f
pP—2=D.
Using axiom (R3) of Definition we conclude that f' is also an effective epimorphism. Our assumption

that P is projective guarantees that f’ admits a section s : P - P. Then the composition g’ os € Home (P, C)
is a preimage of g under the map Home (P, C) > Home (P, D). This shows that (a) = (b).

’
g
’
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Conversely, suppose that (b) is satisfied; we wish to show that P is projective. Choose an effective
epimorphism f : P — P. It follows from (b) that postcomposition with f induces a surjection Home (P, P) —
Home (P, P) is surjective. In particular, there exists a map s: P - P such that fos=1idp. O

Let C be a small regular category. Then the category of pro-objects Pro(C) is also regular (Proposition
6.1.15). Beware that a projective object P of the category C need not be projective when regarded as an
object of Pro(C). In general, projective objects of Pro(C) might be in short supply. We therefore introduce
the following variant notion:

Definition 6.2.2. Let C be a small regular category and let X be a pro-object of C. We will say that X is
weakly projective if, for every effective epimorphism f : C' - D in the category C, composition with f induces
a surjection Homp,,(c)(X,C) - Homp,c)(X, D). We let Pro™?(C) denote the full subcategory of Pro(C)
spanned by the weakly projective pro-objects of C.

Remark 6.2.3. Let C be a regular category. A pro-object X € Pro(C) is weakly projective if and only if it is
regular when regarded as a functor from C to the category of sets: that is, the functor X : C — Set preserves
finite limits and effective epimorphisms.

Example 6.2.4. Let C be a small regular category and let P be an object of C. Then P is projective as an
object of C if and only if it is weakly projective as an object of Pro(C) (this is the content of Proposition
6.2.1).

Example 6.2.5. Let C be a small regular category. Then every projective object of Pro(C) is weakly
projective.

Example 6.2.6. Let Fin denote the category of finite sets. Then Fin is a regular category in which every
object is projective: that is, every effective epimorphism in Fin admits a section. It follows that every
pro-object of Fin is weakly projective. However, not every object of Pro(Fin) is projective. For example, the
infinite product [],,50{0,1} is a non-projective object of Pro(Fin). Under the equivalence Pro(Fin) ~ Stone
of Example the projective objects of Pro(Fin) correspond to Stone spaces X which are extremally
disconnected: that is, those which can be realized as a retract of the Stone-Cech compactification 39, for
some set S.

Remark 6.2.7. Let C be a small regular category. Then the collection of weakly projective pro-objects is
closed under the formation of filtered limits in Pro(C). This follows from Remark since the collection
of surjective morphisms in Set is closed under the formation of filtered colimits.

Example 6.2.8. Let X be a quasi-compact, quasi-separated scheme and let C be the pretopos of con-
structible étale sheaves (of sets) on X. Then the final object 1 € C is projective as an object of Pro(C) if and
only if X is affine and w-contractible in the sense of Bhatt-Scholze (see [4]).

Remark 6.2.9. Let C be a small regular category. The category Pro(C) is sensitive to the precise structure of
C: one can recover C (up to equivalence) as the full subcategory spanned by the cocompact objects of Pro(C).
However, the subcategory Pro™P(C) ¢ Pro(C) is a coarser invariant. If Cy € C is a full subcategory which
is closed under finite limits having the property that every object C' € C admits an effective epimorphism
Cy - C, with Cy € Cp, then every weakly projective pro-object of C belongs to the essential image of the
embedding Pro(Cy) = Pro(C) (see Proposition [6.1.10). If Cy is closed under the formation of images in
C, then it is also a small regular category and the embedding Pro(Cy) — Pro(C) induces an equivalence
Pro™?(Co) ~ Pro"?(C).

Remark 6.2.10. Let C be a small regular category. Then the collection of regular functors from C to the
category of sets is closed under the formation of products in Fun(C, Set) (this follows from the observation
that the collection of surjections in Set is closed under products, by the axiom of choice). It follows that the
collection of weakly projective pro-objects of C is closed under the formation of coproducts in Pro(C).

Remark [6.2.10] admits the following converse:
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Proposition 6.2.11. Let C be a small regular category and let P,Q € Pro(C) be pro-objects of C. If the
coproduct P u Q is weakly projective, then P and Q are weakly projective.

Proof. We will show that P is weakly projective. Let g : C' - D be an effective epimorphism in C and let
f: P — D be a morphism of pro-objects; we wish to show that there exists a morphism f: P - C such that
f=qof. Let 1 be a final object of C and let ¢g: Q — 1 be the unique map. Since P u Q is weakly projective
and the map (guid):Cul— Dul is an effective epimorphism, the map (fug): Pu@ — Dul factors as
a composition

id
PuQiOulﬂ)Dul.
Applying Proposition [A2377] we obtain a commutative diagram

r—1 o9 . p

L

PuQ—scu1-% pu1

where both squares are pullbacks and the upper vertical composition coincides with f. ([l

Let C be a small regular category and let X be a pro-object of C. One can apply Quillen’s “small object
argument” to construct an effective epimorphism of pro-objects X - X, where X is weakly projective. For
later use, we record the following more precise statement:

Proposition 6.2.12. Let C be a small regular category. Then there exists a functor A : Pro(C) - Pro(C)
and a natural transformation p: A — idp.o(cy with the following properties:

(1) For each object X € Pro(C), the object A\(X) € Pro(C) is weakly projective.
(2) For each object X € Pro(C), the map p(X) : MX) — X is an effective epimorphism in Pro(C).
(3) The functor X preserves small filtered limits.

Proof. Let {f;: C; = D;}icr be a set of representatives for all isomorphism classes of effective epimorphisms
in C. For each object X € Pro(C), set

cx)=TIC IT &) DX)=IIC IT D),

el 1 X-D; el nX->D;

where in both cases the inner product is indexed by the set Homp,,c)(X, D;) of all maps from X to D;
in the category Pro(C). By construction, we have a canonical map X — D(X); let A;(X) denote the fiber
product C'(X) xp(x) X. It follows from Remark that the natural map C(X) - D(X) is an effective
epimorphism in Pro(C). Since the category Pro(C) is regular, the projection map A (X) - X is also an
effective epimorphism in Pro(C).

For n > 1, we define A, (X) by the formula A, (X) = X\ (A,-1(X)), so that we have an inverse system

of effective epimorphisms in C. Set A(X) = lim A, (X'). We have an evident projection map p(X) : A(X) - X,
depending functorially on X. We claim that the functor X — A(X) and the natural transformation X ~ p(X)
satisfy the requirements of Proposition [6.2.12}

(1) For each pro-object X € Pro(C), the pro-object A(X) is weakly projective. Choose an index i € T
and a morphism g : A\(X) — D;; we wish to show that g factors through the effective epimorphism
fi : Ci = D;. Using Remark we see that g factors as a composition A(X) — A, (X) 2 D; for
some n > 0. It now suffices to observe that, by construction, the composite map

Ane1(X) = A (A (X)) > A (X) 2 D;
factors through f;.
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(2) For each pro-object X € Pro(C), the projection map p(X) : A(X) — X is an effective epimorphism
in Pro(C). This follows from Remark (since each of the transition maps Ap41(X) = A (X) is
an effective epimorphism).

(3) To show that the functor A commutes with small filtered limits, it will suffice to show that each
An : Pro(C) — Pro(C) commutes with small filtered limits. Writing A, as an n-fold iterate of the
functor A1, we can reduce to the case n = 1. By construction, we have a pullback diagram of functors

(X = M (X)) — (X = C(X))

l l

(X — X) (X = D(X)).

It will therefore suffice to establish that the functors X ~ C(X) and X ~ D(X) commute with
filtered limits limits, which follows easily from Remark [6.1.4]

O

Proposition [6.2.12] is essentially contained in [3], where it used to prove the following:

Theorem 2.4.1 (Barr). Let £ be a small regular category. Then the construction E — evg induces a fully
faithful embedding
& < Fun(Fun'® (&, Set), Set).

Proof. Since the category £ is regular, the category of pro-objects Pro(€) is also regular (Proposition.
Let us regard Pro(&) as equipped with the regular topology of Definition Since the regular topology
is subcanonical (Corollary [B-3.6)), the Yoneda embedding Pro(€) = Fun(Pro(£)°P, Set) factors through the
category Shv(Pro(£)) € Fun(Pro(£)°P, Set). Proposition implies that the subcategory Pro“? (&) ¢
Pro(€) is a basis for the regular topology on £. In particular, Pro™? (&) inherits a Grothendieck topology
and the restriction functor Shv(Pro(&)) - Shv(Pro™?(€)) is an equivalence of categories (Propositions [B.6.3]
and [B.6.4). We now observe that the evaluation map ev : € - Fun(Pro"?(€), Set) factors as a composition

€ cPro(&) < Shv(Pro(€)) ~ Shv(Pro"?(£)) € Fun(Pro™?(&)°P, Set) = Fun(Fun'*®(&, Set), Set).
]

Remark 6.2.13. Let X be a quasi-compact, quasi-separated scheme. By Theorem 1.5 of [4], one can choose
a faithfully flat pro-étale map U — X, where U is a w-contractible affine scheme. Using the terminology of
this section, this result asserts the existence of an effective epimorphism P - 1 in Pro(C), where C denotes
the pretopos of constructible étale sheaves on X and P is a projective object of Pro(C). A relative version
of the same argument shows that every object X € Pro(C) admits an effective epimorphism P - X, where
P is projective. However, it seems unlikely that the same result can be extended to an arbitrary pretopos.

6.3. Classification of Weak Projectives. Let C be a small pretopos. Recall that a model of C is a functor
M : C — Set which preserves finite limits, finite coproducts, and effective epimorphisms. In particular, every
model of C can be regarded as a weakly projective pro-object of C. Our goal in this section is to formulate
a partial converse: every weakly projective pro-object can be viewed as a “continuous family” of models
of C, parametrized by a Stone space (Theorem . To make this precise, we need to introduce some
terminology.

Definition 6.3.1. Let C be a pretopos and let X be a topological space. Let Shv(X) denote the category
of set-valued sheaves on X (which is a Grothendieck topos, and therefore also a pretopos). An X-model of
C is a pretopos functor Ox : C - Shv(X). Given such a functor Ox, we will denote the value of Ox on an
object C € C by O)C(. This is a sheaf of sets on X, whose value on an open set U ¢ X we denote by Og(U).

Example 6.3.2. If the topological space X consists of a single point, we can identify Shv(X) with the
category of sets. In this case, we can identify X-models of a coherent category C with models of C.
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Example 6.3.3. Let X be a compact Hausdorff space. In this case, we can use Theorem to identify
the topos Shv(X) with the category of left ultrafunctors Fun™V! (X, Set). For every pretopos C, we have a
canonical equivalence of categories

Fun(C, Shv(X)) = Fun(C, Fun™*V"* (X, Set)) ~ Fun™""* (X, Fun(C, Set)).

Since colimits and finite limits in FunLUlt(X ,Set) are computed pointwise (Remarks and Corollary
, this restricts to an equivalence of categories Fun"**"P(C, Shv(X)) ~ Fun™""*(X, Fun' "**P(C, Set)) =
Fun™""* (X, Mod(C)), where we endow the category of models Mod(C) with the ultrastructure of Remark
In other words, we can identify X-models of C (in the sense of Definition with left ultrafunctors
X - Mod(C) (in the sense of Definition [[.4.1]).

Construction 6.3.4. Let f : X - Y be a continuous function between topological spaces, and let f* :
Shv(Y') - Shv(X) denote the functor given by pullback along f. Then f* is a pretopos functor. In particular,
for any pretopos C, postcomposition with f* induces a functor Fun""*?(C, Shv(Y)) - Fun""*"?(C, Shv(X)).
If Oy is a Y-model of C, we will denote its image under this functor by f* Oy or by Oy |x (we will use the
latter notation primarily in the case where X is given as a subset of ).

Example 6.3.5. Let C be a pretopos, let X be a topological space, and let O x be an X-model of C. For each
point z € X, pullback along the inclusion map {z} < X determines an {x}-model of C, which we can identify
with an object of Mod(C) (Example [6.3.2). We will denote this model by Ox , and refer to it as the stalk
of Ox at z. Concretely, the stalk Ox , is a functor C - Set given by the construction C ~ li_r)nHU (’)g’;(U),
where the colimit is taken over the collection of all open neighborhoods U of the point x.

Remark 6.3.6. Let C be a pretopos and let X be a topological space. One can think of an X-model Ox of
C as given by a collection of models {Ox ,}sex depending “continuously” on the point x € X. Beware that
the category Fun"""P(C,Shv(X)) is generally not equivalent to the category of Mod(C)-valued sheaves on
X (though they are equivalent in certain cases; see Example . Given an X-model Ox of C, there
is generally no way to construct a model of C by “evaluating” on an open set U ¢ X: the construction
(CeC)r (OF(U) € Set) is usually not a pretopos functor (see Proposition .

Remark 6.3.7. Let C be a pretopos, let X be a topological space, and let Ox : C - Shv(X) be any functor.
The following conditions are equivalent:

(a) The functor Ox is an X-model of C.

(b) For every point z € X, the functor (C' € C) ~ ((O% )z € Set) is a model of C.
The implication (a) = (b) is Example and the converse follows from the observation that the stalk
functors Shv(X) — Set detect isomorphisms.

Definition 6.3.8. Let C be a pretopos. We define a category Top, as follows:

e The objects of Top, are pairs (X,Ox), where X is a topological space and Ox : C - Shv(X) is an
X-model of C (Definition [6.3.1]).

e A morphism from (X, Ox) to (Y, Oy ) in the category Top, consists of a pair (f,«), where f: X -Y
is a continuous function and « : f* Oy — Ox is a natural transformation of functors from C to
Shv(X).

e The composition of a pair of morphisms (X, Ox) o), (Y,0v) LB, (Z,0z) is given by the pair
(go foao f*(B)).

We let Comp, € Top, denote the full subcategory spanned by those pairs (X, Ox) where X is a compact
Hausdorff space, and Stonec ¢ Comp, the full subcategory spanned by those pairs (X, Ox) where X is a
Stone space.

Warning 6.3.9. We have now attached two different meanings to the notation Comp, (and Stonec):

e In the case where C is a pretopos, the category Comp, of Definition consists of pairs (X, Ox),
where X is a compact Hausdorff space and Ox : C - Shv(X) is a pretopos functor.
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o In the case where C is an ultracategory, the category Comp, of Construction consists of pairs
(X,0x), where X is a compact Hausdorff space and Ox : X — C is a left ultrafunctor.

In the case where C is both a pretopos and an ultracategory (for example, if C = Set is the category of sets),
these definitions are not compatible. To avoid confusion, we will use a subscript C to indicate that we are
considering the case of a pretopos, and a subscript M to indicate that we are considering the case of an
ultracategory (there is little danger of confusion in any case, since we will generally employ Definition m
in the case where C is a small pretopos having no obvious ultrastructure).

However, these definitions are compatible in a different sense. For any pretopos C, we can equip the
category of models Mod(C) with the ultrastructure of Remark Then, for any compact Hausdorff space
X, we can identify pretopos functors C - Shv(X) with left ultrafunctors X — Mod(C) (Example [6.3.3).
This identification depends functorially on X, and therefore gives rise to an equivalence from the category
Comp, (introduced in Definition to the category Compyjoq(cy (introduced in Construction .
This equivalence is the identity at the level of topological spaces, and therefore restricts to an equivalence
Stonec ~ Stoneyoq(c)-

Example 6.3.10 (Ringed Spaces). Let CRing denote the category of commutative rings and let X ¢
Fun(CRing, Set) be the full subcategory spanned by those functors F' : CRing — Set that commute with
filtered colimits. Then X is a coherent Grothendieck topos, called the classifying topos of commutative
rings. Let X.on € X be the pretopos of coherent objects of X. For any pretopos C, we can identify pretopos
functors Xcon = C with commutative ring objects of C. In particular, we can identify models of X .o, with
commutative rings, and X-models of X ., with sheaves of commutative rings on X (for any topological space
X). This identification induces an equivalence of Top,_ with the category of ringed spaces.

Construction 6.3.11 (The Global Sections Functor). Let C be a small pretopos, let X be a topological
space, and let Ox : C - Shv(X) be an X-model of C. We let I'(X,0x) : C - Set denote the functor given
on objects by I'(X,0x)(C) = 05 (X).

Recall that a topological space X is said to be zero-dimensional if every open covering of X can be refined
to a covering of X by disjoint open sets.

Proposition 6.3.12. Let C be a pretopos, let (X,Ox) be an object of Tope, and let T'(X,Ox) : C - Set be
the functor of Construction[6.53.11 Then:

(1) The functor T'(X,Ox) preserves finite limits: that is, it can be regarded as a pro-object of C.
(2) If X is zero-dimensional, then the pro-object T'(X,Ox) is weakly projective.
(3) The functor T'(X,Ox) preserves finite coproducts if and only if X is connected.

Proof. Assertion (1) follows from the observation that the evaluation functor
Shv(X) — Set F - F(U)

is left exact. To prove (2), suppose that X is zero-dimensional. We wish to show that the functor C' — O% (X)
carries effective epimorphisms in C to surjections of sets. Let f: C - D be an effective epimorphism in C.
Then the induced map (’))C( - (’)Q is an effective epimorphism in the sheaf category Shv(X): that is, it is
surjective on stalks. In particular, if s € (’)Q(X) is a global section of the sheaf (’)g, then we can choose a
covering {U,} of X such that each restriction s|y, € O (U,) can be lifted to a section 5, € O% (U, ). Using
the assumption that X is zero-dimensional, we can assume that the open sets U, are disjoint. It follows that
there is a unique section s € Og’; (X) satisfying 5|y, =S, for each index a. This section is a preimage of s
under the map 05 (X) - OR(X) determined by f.

We now prove (3). Let 1 denote a final object of C. For every finite set S, let S denote the constant
sheaf on X with value S. Since the functor Ox preserves final objects and finite coproducts, it carries the
coproduct [[,.g1 to the sheaf S. Consequently, the functor I'(X,Ox) carries the coproduct [[,.¢1 to the
set Hommo, (X, S) of locally-constant S-valued functions on X. Using the criterion of Proposition
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we see that I'(X,Ox) preserves finite coproducts if and only if the canonical map S - Homr, (X, S) is
bijective when S is either empty or has two elements; that is, if and only if X is connected. |

Construction 6.3.13. Let C be a pretopos. The construction (X,0x) ~ Ox(X) determines a functor
from the category Top, of Definition to the category of pro-objects Pro(C) = FunleX(C,Set)Op. Since
every Stone space X is zero-dimensional, Proposition [6.3.12|shows that this construction restricts to a functor
I': Stonec — Pro™?(C).

We can now state the main result of this section:

Theorem 6.3.14. Let C be a small pretopos. Then the functor T' : Stonec — Pro™P(C) of Construction
[6-3.13 is an equivalence of categories.

We will give a detailed proof of Theorem [6.3.14] in Let us give an informal sketch of the main idea.
Suppose that P : C — Set is a weakly projective pro-object: that is, a functor which preserves finite limits and
effective epimorphisms. We would like to show that there is an essentially unique object (X,Ox) € Stonec

with an isomorphism P ~T'(X,Ox). We observe that the object (X, Ox) must have the following features:

(a) Since Ox preserves final objects and finite coproducts, we can identify (9%(”1 with the constant sheaf

on X associated to the two-element set {0,1}. Consequently, the set P(111) can be identified with
the Boolean algebra of closed and open subsets of X, from which we can recover the topology of X
(by Stone duality).

(b) Since X is a Stone space, each of the sheaves (’)g’; is determined by its values on closed and open
subsets U ¢ X. These can be recovered from the functor P by the formula

OS(U) = O™ (X) xoua(x) {U} = P(Cu1) xpauny {U}-

This analysis suggests a recipe for reconstructing the pair (X, Ox) from the functor P; the essential content
of Theorem [6.3.14]is that this recipe works if (and only if) the functor P preserves finite limits and effective
epimorphisms.

Remark 6.3.15. Theorem immediately implies (a version of) Deligne’s completeness theorem. Let
C be a small pretopos, and let u : C' - C’ be a morphism in C with the property that, for every model
M of C, the map M(u) : M(C) — M(C’) is bijective. It follows that, for each object (X,0x) in
Tope, the induced map (’))C( - (’)g is an isomorphism of sheaves on X, and therefore induces a bijec-
tion T'(X,0x)(C) - T'(X,0x)(C"). Theorem then guarantees that composition with u induces a
bijection Homp,(¢) (P, C') - Homp,o(c) (P, C") for every weakly projective pro-object of Pro(C), so that u is
an isomorphism by virtue of Proposition See Theorem for a (slightly) stronger version.

6.4. The Proof of Theorem [6.3.14] Let C be a small pretopos. Our goal in this section is to prove
Theorem [6.3.14] by showing that the global sections functor

I : Stonec — Pro"?(C)
is an equivalence of categories. The proof will proceed in several steps. We first argue that the functor

I : Stonec — Pro™?(C) is conservative.

Lemma 6.4.1. Let X be a Stone space and let f : F — 4 be a morphism in Shv(X). Suppose that f
induces a bijection 0 : (F ul)(X) - (4 ul)(X) (where 1 denotes the final object of Shv(X)). Then f is an
isomorphism.

Proof. Unwinding the definitions, we see that 6 is the map
[[7@)~]19)
U U

induced by f, where both coproducts are indexed by the collection of all closed and open subsets of X.
Consequently, if 6 is a bijection, then f induces a bijection .%(U) - 4 (U) whenever U ¢ X is closed and
open. Since X is a Stone space, the closed and open subsets of X form a basis for the topology of X. It
follows that f is an isomorphism of sheaves. O
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Lemma 6.4.2. Let C be a small pretopos and let (f,a): (X,0x) - (Y,Oy) be a morphism in the category
Stonec. If the induced map 6 : T'(X,0x) — I(Y,Oy) is an isomorphism in Pro(C), then (f,a) is an
isomorphism in Stonec.

Proof. Let 1 denote a final object of C. For each finite set S, let S¢ = [I,cg 1 denote the corresponding object
of C. Then we can identify Of(c and Of/c with the constant sheaves Sy and Sy on X and Y, respectively.
If 8 is an isomorphism of pro-objects, then composition with 6 induces a bijection

['(Y, Sy ) = Homp,o(c) (I'(Y, Oy ), Sc) - Homp,oc) (I'(X,0x),Sc) =T'(X,Sx).
Equivalently, composition with f induces a bijection Homrop(Y,S) - Homre, (X, S) for every finite set S.
Since X and Y are Stone spaces, it follows that f is a homeomorphism (Example [6.1.3)). To complete the

proof, it will suffice to show that « induces an isomorphism f* (’))C/ - (’))C( in Shv(X), for each object C €C.
Using the criterion of Lemma this follows from the bijectivity of the map the bijectivity of the map

O}C’]_Il(y) = HomPro(C)(F(Yv OY)a Cu 1) - HomPro(C)(F(X7 OX)? Cu 1) = ogul(X)
O

Our next goal is to explain how to reconstruct the underlying topological space of an object (X,Ox) €
Stonece directly from the pro-object I'( X, Ox).

Construction 6.4.3. Let C be a small pretopos and let 1 be a final object of C. Let Fin denote the category
of finite sets, and let g : Fin — C be the functor given on objects by g(S) = II,cg 1. Then g is left exact, and
therefore induces a pair of adjoint functors

Pro(C) %Pro(Fin)

where F' is given by precomposition with g and G|rin ~ g (see Remark . Let @ : Stone - Pro(C) denote
the composition of G with the equivalence of categories Stone ~ Pro(Fin) of Example Then ® has a
left adjoint Pro(C) — Stone (obtained by composing F' with the inverse equivalence), which we will denote
by (P € Pro(C)) ~ (|P] € Stone). These functors can be described more concretely as follows:

e If X is a Stone space given as the limit of a filtered diagram of finite sets {S,}, then ®(X) € Pro(C)
is given by the limit of the diagram {[I..g 1}, where 1 denotes a final object of C.

e If P is a pro-object of C, then the Stone space |P| is characterized (up to homeomorphism) by the
requirement that for any finite set .S, we have a bijection

Homrop (| P|, S) =~ Homp,o(c) (P, H 1)= P(H 1).
seS seS

Example 6.4.4. Let C be a small pretopos, let (X,Ox) be an object of Stonec, and let T'(X,Ox) be the
corresponding pro-object. Then we have a canonical homeomorphism [I'(X,Ox)| ~ X.

Lemma 6.4.5. Let C be a small pretopos and let P be a pro-object of C, which we view as a left-exact functor
P:C — Set. Then P preserves finite coproducts if and only if the Stone space |P| is a point.

Proof. This is a restatement of Proposition O

Lemma 6.4.6. Let f: X — Y be a continuous function between Stone spaces, let C be a small pretopos, and
suppose we are given a pullback diagram

P—>Q

| |

o(x) 2L (y)

in the category Pro(C). If Q is weakly projective, then P is also weakly projective.
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Proof. By virtue of Lemma (and Example , we can realize f as the limit of a filtered diagram
{foa : Xo = Y, }, where each f, is a map between finite sets. Then P is a limit of the filtered diagram of
pro-objects {Q xa(y,) (Xo)}. Since the collection of weakly projective objects of Pro(C) is closed under
filtered limits (Remark|6.2.7)), it will suffice to show that each of the fiber products @ xg(y, ) ®(X4) is weakly
projective. In other words, we may assume without loss of generality that X and Y are finite sets (with the
discrete topology).

Let us identify ®(X) with the coproduct [[,.x 1, where 1 is a final object of C (moreover, this coproduct
can be taken either in the category C or Pro(C), by virtue of Lemma [6.1.11]). Since Pro(C) is extensive
(Proposition , it follows that P decomposes as a coproduct [[,.x ®({z}) xa(y) @- Because the
collection of weakly projective objects of Pro(C) is closed under coproducts (Remark , it will suffice
to show that each summand ®({x}) xs(y) @ is weakly projective. In other words, we may assume without
loss of generality that the set X consists of a single element x.

For each y € Y, let @, denote the fiber product ®({y}) xg(y) Q. Since Pro(C) is extensive (Proposition

6.1.19), we can identify @ with the coproduct [[,cy Q,. Applying Proposition [6.2.11, we deduce that each
@)y 1s weakly projective. In particular, the object P = Qy(,) is weakly projective, as desired. O

Lemma 6.4.7. Let f: X - Y be a continuous function between Stone spaces, let C be a small pretopos, and
suppose we are given a pullback diagram

P Q

| |

(X)L o(v)

in Pro(C). Then the associated diagram of Stone spaces o :
[Pl — Q|
|,
X ——Y
is also a pullback square.

Proof. Arguing as in the proof of Lemma (and using the fact that the functor || : Pro(C) — Stone
commutes with filtered limits), we can reduce to the case where X and Y are finite sets with the discrete
topology. For each y €Y, set Q, = ®({y}) xa(y) Q. Since Pro(C) is extensive, the canonical maps

Q¢ — P [e,~@

xeX yeY

are isomorphisms. Because the functor || : Pro(C) — Stone preserves finite coproducts (in fact, all colimits),
we can identify ¢ with the diagram of Stone spaces

HzeX |Qf(r)‘ - ]—[yEY |Qy|

l l

X— Y,

which is evidently a pullback square. (Il

Lemma 6.4.8. Let C be a small pretopos, let P be a weakly projective pro-object of C, and let u: P - ®(|P])
be the unit map for the adjunction of Construction . Let x be a point of the Stone space |P|, and form
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a pullback diagram
Py

o({z}) —=@(|P).
Then Py is a model of C (when viewed as a left exact functor from C to Set).

Proof. Tt follows from Lemma [6.4.6] that the functor P, : C — Set preserves finite limits and effective epimor-
phisms. It will therefore suffice to show that P, preserves finite coproducts. Using the criterion of Lemma
m we are reduced to showing that the Stone space |P,| consists of a single point. Equivalently, we must
show that the diagram of Stone spaces

| Pe| —— |P|

)

{z} — 1P|
is a pullback square, which is a special case of Lemma O
Lemma 6.4.9. Let C be a small pretopos. Then the functor ® : Stone — Pro(C) preserves finite coproducts.

Proof. Let {X;}ier be a finite collection of Stone spaces; we wish to show that the canonical map 6 :
ier (X;) = ©(1I;e; X;) is an isomorphism in Pro(C). By virtue of Lemma and Example we
can assume that each X; is written as the limit of a diagram { X ; } je7or, where J is a filtered category which
is independent of 4. Since the formation of finite coproducts in Stone ~ Pro(Fin) and Pro(C) commutes with
filtered limits (Lemma, we can identify  with the limit of a diagram of morphisms {6, : [1;c; (X, ;) -
O (Ujer Xij)}jeger. It will therefore suffice to show that each 6; is an isomorphism. In other words, we are
reduced to showing that the restriction ®|pi, preserves finite coproducts, where we identify the category Fin
of finite sets with a full subcategory of Stone. This follows immediately from the construction of ®. O

Lemma 6.4.10. Let C be a small pretopos, let P be a weakly projective pro-object of C, and let |P| be the
Stone space of Construction[6.4.3 Let Uo(|P|) denote the collection of all closed and open subsets of |P|,
which we regard as a partially ordered set with respect to inclusion. Then:

(1) For each object C €C, the construction
(U eUo(P[)°P) = Hompyo(cy (R(U) xa(ppy P.C)

extends (in an essentially unique way) to a sheaf of sets (9‘% on the Stone space |P).
(2) The functor
Op:C—Shv(|P])  Cr» O,
is coherent: that is, it is a |P|-model of C, in the sense of Definition m

Proof. To prove (1), it will suffice to show that if U ¢ |P| is given as a finite union of pairwise disjoint closed
and open sets {U; };cr, then the canonical map
Homp,o(cy (B(U) xo(ppy P, C) = [ [ Hompro(c) (®(Us) xa(ip)) P, C).
iel

In fact, we claim that ®(U) xgp)) P is a coproduct of the objects {®(U;) xa(|pj) Plier in the category
Pro(C). Since Pro(C) is extensive (Proposition [6.1.19)), we are reduced to showing that ®(U) is a coproduct
of the objects {®(U;)}ier. This is clear, since U is a coproduct of the objects U; in the category of Stone
spaces, and the functor ® preserves coproducts (Lemma [6.4.9)).

For each object C € C and each point x € |P|, let O%Lw denote the stalk of the sheaf OI%I at the point z.
To prove (2), it will suffice (by virtue of Remark [6.3.7)) to show that the functor

OplsiC—>Set  Cr O,
is a model of C for each point z € |P|. This is a restatement of Lemma [6.4.8] O
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In the situation of Lemma [6.4.10, we can regard the pair (|P|, O|p|) as an object of the category Stonec.
By definition, the functor I'(|P[, Ojp|) is given by the construction

(C eC) = O(|P]) = Hompyoc) ((|P]) xa(p)) P, C) = Homp,o(c) (P, C).
In other words, we have a canonical isomorphism of pro-objects v : T'(|P|, O|p|) = P.

Lemma 6.4.11. Let C be a small reqular extensive category, let P be a weakly projective pro-object of C,
and let v : T'(|P|,Op|) ~ P be the isomorphism described above. Then, for any object (X,Ox) in Stonec,
composition with v induces a bijection

HomStonc(C)((X7 OX)? (|P|? O\P\)) g HomPro(C)(F(Xa OX)7 P)

Proof. Fix a continuous map f: X — |P|, and let Homgtone(c)((X, Ox),(|P],0)p))) denote the summand of
Homggone(c) (X, Ox), (|P|,Op|)) consisting of those maps (X,Ox) — (|P|,O)p) for which the underlying
continuous map X — |P| coincides with f. For each object C € C, let f. (’)?} denote the direct image of the
sheaf O under the function f. The construction C' ~ f, O determines a left exact functor C - Shv(|P)),
which we will denote by f. Ox (beware that this need not be a |P|-model of C). Let U denote the partially
ordered set of closed and open subsets of the Stone space |P|. Since U is a basis for the topology of |P|, we
can identify Shv(|P|) with a full subcategory of Fun(&/°?,Set). Under this identification, f. Ox and O)p

can be viewed as functors from U°P to the category Fun'"(C, Set), or equivalently as functors from I to the
category Pro(C). Unwinding the definitions, we have a canonical bijection

Homgtone(c)((X7 OX)? (|P|? O\P\)) = HomFun(Z/{,Pro(C))(f* OXa O|P|)

For every pro-object Q of C, let @ denote the constant functor Uy(X) — Pro(C) taking the value Q. Let
T :U — Stone be the forgetful functor. By definition, we have a pullback diagram

O\p| P

-

PoT —— O(|P])

in the category Fun(U,Pro(C)). We therefore obtain a pullback diagram of sets

Homjsctone(c) ((Xa OX)a (|P|a O|P|)) - HomFun(Z/[,Pro(C))(f* OX)B)

| |

HomFun(Ll,Pro(C))(f* OXa Do T) - HomFun(Z/l,Pro(C)(f* OX7 (D(|P|))

Using the adjunction of Construction (and the observation that a functor of the form @ is a right Kan
extension of its restriction to the full subcategory {X} cUf), we can rewrite this diagram as

Homgtone(c)((Xa 0X)7 (|P|7 O|P\)) - HomPro(C)(F(X7 OX)7 P)

| |

HomFun(u,Stone)(|f* Ox |7 T) - HomStone(|F(X7 OX)L |P|)

Here the right vertical map is independent of the function f : X — |P|. Passing to a coproduct over all
choices of f, we obtain a pullback square

Homggone(c) ((X,Ox), (|P], Op|)) Homp,(c)(I'(X,O0x), P)

| |

0
]_If:X—>|P| HomFun(u,Stone)(|.f* Ox |7 T) - HomStone(|F(Xa 0X)|a |P|),
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where the top horizontal map is induced by composition with v. To prove that this map is bijective, it will
suffice to show that € is bijective. For each continuous function f: X — |P|, let us regard the construction
U+ f~Y(U) as a functor from the partially ordered set U to the category of Stone spaces Stone. Using
Example we can identify € with the canonical map

U HomFun(Zx{,Stone)(f_la T) - HomStone (X7 |P|)
f: X—|P|

Note that, given a continuous function f : X — |P|, we can identify objects of HornFun(uvsmne)(f‘l,T)
with continuous maps g : X = f~*(|P|) - T(|P|) = P having the property that, for each closed and open
subset U ¢ |P|, the map g carries f~}(U) into U. This condition is satisfied only when g = f, so the set
Hompynu,stone) (f , T') has a single element having image f € Homggone(X,|P]). Taking the disjoint union
over all possible values for the function f, we conclude that 6 is a bijection. O

Proof of Theorem [6.3.14] Let C be a small pretopos. We wish to show that the functor
I : Stonee — Pro"?(C)

is an equivalence of categories. By virtue of Lemma [6.4.11] the functor I admits a right adjoint G, given
on objects by the formula G(P) = (|P|,Op|). Moreover, for each object P € Pro™?(C), the counit map v :
(TeG)(P) =T(|P|,O)p|) - P is an isomorphism. It follows that the functor G is fully faithful. Consequently,
to show that I' is an equivalence of categories, it will suffice to show that it is conservative, which follows
from Lemma [6.4.2] O

7. THE MAIN THEOREM

Let C be a small pretopos. The goal of this section is to prove Theorem which asserts that the
category of left ultrafunctors FunLUlt(Mod(C ), Set) is equivalent to the category of sheaves Shv(C). Our
strategy will be to introduce a third category Shv®®"*(Pro(C)) which is equipped with forgetful functors

Shv(C) < Shv*™ (Pro(C)) - Fun"™(Mod(C), Set),

and to show that both of these functors as equivalences.

We begin by constructing the equivalence ¢ : Shv**™(Pro(C)) — Shv(C). Recall that if C is a small
pretopos, then the category of pro-objects Pro(C) is regular and extensive, and can therefore be equipped
with the coherent topology of Definition We let Shv(Pro(C)) denote the category of sheaves for
the coherent topology, and Shv®®"*(Pro(C)) ¢ Shv(Pro(C)) the full subcategory spanned by those sheaves
F : Pro(C)°® - Set which commute with filtered colimits (Definition [7.1.4). In §7.1] we observe that
precomposition with the inclusion C = Pro(C) induces an equivalence of categories ¢ : Shv*™ (Pro(C)) =~
Shv(C) (Corollary [7.1.5).

Recall that every model M of C can be regarded as a pro-object of C; more precisely, we can regard
the category of models Mod(C) as a full subcategory of Pro(C)°P = Fun'®(C,Set). It follows from the Los
ultraproduct theorem that the category Mod(C) is closed under the formation of categorical ultraproducts
in FunleX(C ,Set). Consequently, if & : Pro(C)°? — Set is a functor which commutes with filtered colimits,
then the restriction .7 |\0q(c) : Mod(C) — Set inherits the structure of a left ultrafunctor (Proposition.
This construction determines a forgetful functor ¢ : Shv®™ (Pro(C)) — Fun""(Mod(C), Set), and we would
like to show that v is an equivalence of categories.

Let Stonec denote the category introduced in Definition [6.3.8] Then Theorem supplies a fully
faithful embedding T" : Stonec = Pro(C), whose essential image is the full subcategory Pro"?(C) ¢ Pro(C)
of weakly projective pro-objects of C. In we use the functor I' to transport the coherent topology on
Pro(C) to a topology on Stonec, which we will refer to as the elementary topology (Deﬁnition. It follows
formally that precomposition with I induces an equivalence of categories Shv™ (Pro(C)) - Shv®°"*(Stonec),
where Shv®™(Stonec) denotes the category of functors .7 : Stonel” — Set which are sheaves with respect
to the elementary topology and commute with filtered colimits (Corollary .
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Every functor % : Stonegp — Set which is a sheaf for the elementary topology commutes with finite
products. In we prove that that the converse holds if .# commutes with filtered colimits (Proposition
. In other words, we can identify Shv®™(Stonec) with the full subcategory of Fun(Stonel”,Set)
spanned by those functors which preserve finite products and small filtered colimits. Using this identification,
we see that the functor 1 factors as a composition

Shv*™ (Pro(C)) = Shv"™ (Stonec ) > Fun™"" (Mod(C), Set),

where 9’ is an equivalence by virtue of Theorem In we use this strategy to complete the proof
of Theorem 222

To prove Proposition we will need to be able to recognize when a functor .Z : Stonel” — Set is a
sheaf for the elementary topology. For this, it is convenient to give an alternative definition of the elementary
topology, which does not make reference to the embedding I : Stonec <> Pro(C) of Theorem In
we show that a morphism f: (X,0x) — (Y,Oy) in Stonec is a covering for the elementary topology if and
only if, for each point y € Y, it is possible to choose a point € X for which f(z) =y and the induced map
Oy,y — Ox . is an elementary embedding of models of C (Theorem. In §7.5, we prove Proposition
by combining this characterization of elementary coverings with a standard argument relating ultraproducts
and elementary embeddings (Lemma [7.5.4)).

7.1. Sheaves on Pro(C). Let C be a small pretopos. Then the category of pro-objects Pro(C) is regular and
extensive (Corollary [6.1.20). We will regard Pro(C) as equipped with the coherent topology of Construction
We let Shv(Pro(C)) denote the category of set-valued sheaves with respect to the coherent topology
on Pro(C).

Remark 7.1.1. Let C be a small pretopos. By virtue of Proposition we can identify Shv(Pro(C))
with the full subcategory of Fun(Pro(C)°P,Set) spanned by those functors % satisfying the following pair
of conditions:

(¢) For every finite collection of objects {P; };er of Pro(C), the canonical map .#(Pro(C)) = [T % (C:)
is bijective.
(i1) For every effective epimorphism P — @ in Pro(C), the diagram of sets
F(P)~>F(Q)3 F(QxpQ)

is an equalizer.

Warning 7.1.2. Let C be a small pretopos. Then the category of pro-objects Pro(C) need not be small, or
even essentially small (in fact, Pro(C) is essentially small if and only if the pretopos C is trivial). Consequently,
one should exercise some care when working with sheaves on Pro(C):

o If .# : Pro(C)°P — Set is a presheaf of (small) sets on Pro(C), then one cannot generally sheafify .#
to produce a sheaf of (small) sets; the standard sheafification process involves passage to a direct
limit over all possible coverings, which need not exist in the category of (small) sets.

e The category Shv(Pro(C)) is not a Grothendieck topos (except in the case where C is trivial).

We now compare the category Shv(Pro(C)) with the topos Shv(C).

Proposition 7.1.3. Let C be a small pretopos and let F : Pro(C)°P? — Set be a functor. Then:

(1) If Z is a sheaf with respect to the coherent topology on Pro(C), then the restriction F |cov is a sheaf
with respect to the coherent topology on C.

(2) If F|cor is a sheaf with respect to the coherent topology on C and the functor F commutes with
filtered colimits, then % is a sheaf with respect to the coherent topology on Pro(C).

Proof. Assertion (1) follows immediately from the characterization of sheaves given in Proposition
We will prove (2). Assume that .% |cor is a sheaf and that the functor .# carries filtered limits in Pro(C) to
filtered colimits of sets. We will show that .7 satisfies conditions (i) and (ii) of Remark
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() Suppose we are given a finite collection of objects {P;}ier in Pro(C) having coproduct P. We wish
to show that the canonical map
0: F(P)~[]Z(F)
iel
is bijective. Using Lemma[6.1.12] we can write each P; as the limit of a diagram {P;  }ae4cr indexed
by the same filtered category A. Using Lemmas [6.1.18] we can identify P with the limit of the
coproduct diagram {[I;c; Pi o }aeacr, where each P; , belongs to C. Consequently, our assumption
on % allows us to identify 6 with a filtered colimit of comparison maps
bo : Z([ [ Pie) > [[ F(Pra)
i€l iel
each of which is bijective by virtue of our assumption that % |cor is a sheaf with respect to the

coherent topology on C (Proposition [B.5.5)).
(i1) Let f: P — @ be an effective epimorphism in Pro(C). We wish to show that the induced map

p: F(P) > Eq(Z(Q) 3 Z(QxpQ))

is a bijection. Using Proposition [6.1.15] we can write f as the limit of a filtered diagram {f, : P, -
Qo } of effective epimorphisms in the category C. Invoking our assumption on %, we can write p as
a filtered colimit of maps

Pa :y(Pa) - EQ(y(Qa) 3 y(Qa X P, Qa))7
each of which is bijective by virtue of our assumption that % |cor is a sheaf with respect to the
coherent topology on C (Proposition [B.5.5)).
|

Definition 7.1.4. Let C be a small pretopos. We will say that a sheaf .% € Pro(C) is continuous if, for every
object X € Pro(C) given as the limit of a filtered diagram {X,} in C, the canonical map

. R

lim 7 (X,) > 7 (X)

is a bijection. Let Shv®®(Pro(C)) denote the full subcategory of Shv(Pro(C)) spanned by the continuous
sheaves on Pro(C).

Corollary 7.1.5. Let C be a small pretopos. Then the restriction functor F — F |cor induces an equivalence
of categories Shv®™* (Pro(C)) — Shv(C).

Proof. Combine Proposition with Remark O

We close this section by describing the relationship of our constructions with the theory of pro-étale
sheaves in algebraic geometry introduced by Bhatt and Scholze in [4]. The following discussion will play no
further role in this paper and can safely be omitted by the reader. We begin with a general observation.

Remark 7.1.6. Let C be a small pretopos, and let Cy ¢ C be a full subcategory which is closed under finite
limits with the following additional property:

(*) For every object C € C, there exists an effective epimorphism Cy - C with Cy € Cy.

Then we can identify the category of pro-objects Pro(Cqy) with a full subcategory of Pro(C) (Proposition
6.1.10). Condition (*) guarantees that Pro(Cy) contains all weakly projective pro-objects of C (Remark
6.2.9), and therefore forms a basis with respect to the coherent topology on Pro(C). Applying Proposition
B.6.3} we see that Pro(Cy) inherits a Grothendieck topology for which the restriction functor Shv(Pro(C)) —
Shv(Pro(Cyp)) is an equivalence of categories.

In the special case where Cy is closed under the formation of coproducts and images in C, we can charac-
terize the induced topology on Pro(Cy) more intrinsically: it is the coherent topology on Pro(Cy) (which is
a regular extensive category by virtue of Corollary .
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Example 7.1.7 (The Pro-Etale Topology of a Scheme). Let X be a scheme. Following Bhatt-Scholze ([4]),
we say that a morphism of schemes f: U — X is weakly étale if both f and the diagonal map § : U - U xx U
are flat. Let Schx denote the category of all X-schemes and let Schl)’(mét denote the full subcategory spanned
by those X-schemes U for which the structure morphism f:U — X is weakly étale. The category Schg(mét
admits a Grothendieck topology, where a collection of maps {f; : V; > U} is a covering if and only
if, for every quasi-compact open subset Uy € U, there exists a finite subset Iy € I for which the maps
{Vi xu Uy = Up }ie1, are mutually surjective. We refer to this topology as the pro-étale topology on Schg’(mét.

For simplicity, let us assume that X = Spec(R) is affine. Let Cy be the category of X-schemes of the
form Spec(A), where A is an étale R-algebra. Then the inclusion Cy < Schg’(rOét extends to a fully faithful
embedding Pro(Cy) - Schl))(rOét whose essential image consists of those X-schemes of the form Spec(A),
where A is an ind-étale R-algebra (that is, an R-algebra which can be written as a filtered colimit of étale R-
algebras). Under this embedding, the functor P+~ P of Notation corresponds to the forgetful functor
from R-schemes to topological spaces. It follows from Proposition [6.1.24] that a collection of morphisms
{U; - U}ier is a covering with respect to the coherent topology on Pro(Cy) if and only if it is a covering
with respect to the pro-étale topology of [4]. Moreover, the image of the inclusion Pro(Cy) < Schl;rOét forms
a basis for the pro-étale topology (see Lemma 4.2.4 of [4]), so Proposition supplies an equivalence of
categories a : ShV(SChI;(rOét) — Shv(Pro(Cy)).

The category Cg is usually not a pretopos. However, it can be identified with a full subcategory of the
pretopos C of constructible set-valued sheaves on X. Moreover, the inclusion Cq — C satisfies condition
(*) of Remark and therefore induces an equivalence of categories 8 : Shv(Pro(C)) — Shv(Pro(Cy)).
Combined with the preceding analysis, we obtain an equivalence

Shv(Pro(C)) =~ Shv(Pro(Cq)) =~ shv(schg(roét)

between the category Shv(Pro(C)) studied in this section with the category ShV(Schg’(rOét) of pro-étale sheaves
studied in [4].

The preceding discussion can be extended to the case where X is any quasi-compact, quasi-separated
scheme; (with some minor modifications, since the category Cy need not admit finite limits).

7.2. Sheaves on Stonec. Using the results of to “restrict” the coherent topology on Pro(C) to a topology
on the category Stonec of Definition which we will refer to as the elementary topology (for reasons
which will become clear in §7.4)).

Definition 7.2.1. Let C be a small pretopos. We will say that a collection of morphisms
{fi: (Xi,0x,) = (X,0x) }iex
in the category Stonec is an elementary covering if the collection of maps
{T'(f:): T(X;,0x,) > T(X,0x) }ier

is a covering with respect to the coherent topology on Pro(C): that is, if there exists a finite subset Iy € I
for which the induced map

[I(X;,0x,) -~ T(X,0x)

iely

is an effective epimorphism of pro-objects.

Proposition 7.2.2. Let C be a small pretopos. Then:

(1) The collection of elementary coverings determines a Grothendieck topology on the category Stonec,
which we will refer to as the elementary topology.

(2) Precomposition with the global sections functor I': Stonec — Pro(C) induces an equivalence of cate-
gories Shv(Pro(C)) — Shv(Stonec), where we endow Pro(C) with the coherent topology and Stonec
with the elementary topology.
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Proof. It follows from Proposition that the full subcategory Pro"?(C) ¢ Pro(C) forms a basis for the
coherent topology on Pro(C). It follows from Proposition that the subcategory Pro“?(C) inherits a
Grothendieck topology for which the restriction functor Shv(Pro(C)) — Shv(Pro"P(C)) is an equivalence
of categories. Proposition follows by transporting this topology along the equivalence of categories
I : Stonec ~ Pro“?(C) supplied by Theorem O

Definition 7.2.3. Let C be a small pretopos and let .7 : Stone,” — Set be a sheaf for the elementary topology.
We will say that .Z is continuous if it commutes with small filtered colimits. We let Shv°°™(Stonec, Set)
denote the full subcategory of Shv(Stonec) spanned by the continuous sheaves.

Corollary 7.2.4. Let C be a small pretopos. Then composition with the global sections functor I" : Stonec —
Pro(C) induces an equivalence of categories Shv*™ (Pro(C)) - Shv®™(Stonec).

Proof. By virtue of Proposition it will suffice to show that a sheaf # € Shv(Pro(C)) is continuous
if and only if the composition .% oI' € Shv(Stoneg”) is continuous. The “only if” direction is clear (since
the global sections functor I' : Stonec — Pro(C) commutes with filtered limits). To prove the converse, let
A : Pro(C) — Pro"?(C) be the functor of Proposition [6.2.12] so that every object P € Pro(C) is equipped
with an epimorphism pp : A(P) - P. Let pu: Pro(C) - Pro"?(C) be the functor given on objects by the
formula p(P) = A(A(P)xpA(P)). Our assumption that .# is a sheaf guarantees that the coequalizer diagram
w(X) 3 MX) - X in Pro(C) induces an isomorphism
F(P) = Eq(F(MP)) 3 F (u(P))),
depending functorially on P. By construction, the functors A and g commute with filtered inverse limits.
Consequently, if .7 [pyqwp(c)or commutes with filtered colimits, then the functor
P Z(P) = Eq(F(A(P)) 3 F(u(P)))
also commutes with filtered colimits. Corollary [7.2.4 now follows from Theorem [6.3.14] a

Our proof of Theorem will make use of the following characterization of continuous sheaves on
Stonec, which we prove in

Proposition 7.2.5. Let C be a small pretopos and let F : Stonel’ — Set be a functor which commutes with
filtered colimits. The following conditions are equivalent:

(a) The functor F is a sheaf with respect to the elementary topology.

(b) The functor F carries finite coproducts in Stonec to products in Set.
7.3. The Proof of Theorem We are now almost ready to prove the main result of this paper.

Proposition 7.3.1. Let C be a small pretopos. Then the construction of Proposition (applied to the
inclusion Mod(C) = Pro(C)°P) induces an equivalence of categories

¢ : Shv*™ (Pro(C)) - FunY"*(Mod(C), Set).

Proof. Note that the inclusion Mod(C) = Pro(C)°P is isomorphic to the composite functor

M—M T
Mod(C) —— Stoneg” — Pro(C)°P.
Consequently, the functor ¢ factors (up to isomorphism) as a composition

Shv™(Pro(C)) Edai il Shv°°™(Stonec ) ¥, Fun""" (Mod(C), Set),
where 1)’ obtained by applying the construction of Proposition to the fully faithful embedding Mod(C) —
Stone . The first map is an equivalence by virtue of Corollary According to Proposition
Shv®™(Stonec) is the full subcategory of Fun(Stone,”, Set) spanned by those functors which preserve finite
products and small filtered colimits. Consequently, the functor 1’ is an equivalence by virtue of Theorem

(and Warning [6.3.9)). O



ULTRACATEGORIES 89

Proof of Theorem[2.2.2 Let C be a small pretopos. Then the evaluation map ev:C — FunUlt(Mod(C), Set)
of Construction fits into a commutative diagram

C— > Fun"""(Mod(C), Set)
h

Shv®"*(Pro(C)) *Qf> Fun™""*(Mod(C), Set),

where 1) is the equivalence of Proposition and h: C — Shv®™(Pro(C)) associates to each object C € C
the functor he : Pro(C)°P = Fun'®*(C,Set) — Set given by evaluation at C' (which is a sheaf, since it is
representable by the image of C in the category Pro(C)). We can therefore reformulate Theorem as
follows:

(1) For each object . € Shv™(Pro(C)), the construction
(C €C) » Homgpy (pro(cy) (he, F)

determines a functor % : C - Set which is a sheaf for the coherent topology on C.
(2) The construction .Z  .Z induces an equivalence of categories Shv*°"*(Pro(C)) — Shv(C).

This is precisely the content of Corollary O

7.4. Effective Epimorphisms and Elementary Embeddings. Let C be a small pretopos. Our goal in
this section is to give an alternative description of the elementary topology on the category Stonec, which
does not make reference to the embedding I": Stonee — Pro(C) of Theorem First, we need to review
some terminology.

Definition 7.4.1. Let C be a pretopos and let f : M — N be a morphism in the category of models
Mod(C). We will say that f is an elementary embedding if, for every object C' € C, the induced map
M(f): M(C)— N(C) is a monomorphism of sets.

Example 7.4.2. Let C be a pretopos, let M be a model of C, and let p be an ultrafilter on a set S. Then
the ultrapower diagonal A, : M — M*" of Example is an elementary embedding. This follows from
the observation that, for every set X, the ultrapower diagonal X — X* is a monomorphism of sets (Lemma
7.5.2)).

Proposition 7.4.3. Let C be a small pretopos and let f: M — N be a morphism in Mod(C). The following
conditions are equivalent:

(1) The morphism f is an elementary embedding.
(2) For every object C € C and every subobject Cy € C, the diagram

M(Co) . N(Co)

o

M) —L = N(O)

is a pullback square (in the category of sets).
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Proof. We first show that (2) implies (1). Let C be an object of C. Then the diagonal map 6 : C - C x C
exhibits C' as a subobject of C' x C. If condition (2) is satisfied, then the upper square in the diagram

M(C) —— = N(C)

| |

M(CxC) ——= N(CxC)

| |

M(C) x M(C) —= N(C) x N(C)

is a pullback. Since M and N preserve finite products, the lower vertical maps are isomorphisms. It follows
that the outer rectangle is also a pullback square, so that the map M(C) — N(C) is injective.

We now show that (1) implies (2). Assume that f is an elementary embedding. Let C' be an object of C
and let Cy € C' a subobject. We wish to show that the diagram o :

M(Cy) — N(Cy)

]

M(C)—— N(C)

is a pullback square. Let 1 denote the final object of C. Replacing C by C'u11 and Cy by Cou 1 (and using
the fact that M and N preserve finite coproducts), we can reduce to the case where the projection map
Cy — 1 is an effective epimorphism.

Let R denote the subobject of C' x C given by the union of C' (embedded diagonally in C' x C') with the
product Cy x Cy. Since C is a pretopos, the equivalence relation R is effective. Let D = C'/R denote the
coequalizer of the diagram R = C, and let Dy € D denote the image of the composite map Cy = C' - D.
Note that effective epimorphisms Cy - Dy and Cy - 1 determine the same equivalence relation on Cy and
are therefore equivalent: that is, Dy is a final object of C.

Since the formation of images in C is compatible with pullback, we can identify the fiber product Dy xp C
with the image of the map ¢q : CoxpC — C given by projection onto the second factor. Using the distributivity
of the lattice Sub(C x C'), we compute

CoxpC = (CoxC)n(CxpC)
- (CoxC)nR
= (CoxC)n(Cu(CoxCo))
= ((CoxC)nC)u((CoxC)n(CoxCo))
= Cou (CyxCy)
= CyxCy.

It follows that the image of ¢ is contained in Dy, so that the diagram

Co—— Dy

|

C——D

is a pullback square.
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Using the left exactness of the functor N, we deduce that ¢ can be extended to a commutative diagram

M(Co) — N(Co) — N (Do)

N

M(C) ——= N(C) —= N(D)

where the right square is a pullback. Consequently, to show that o is a pullback, it will suffice to show that
the outer rectangle is a pullback. This outer rectangle fits into another commutative diagram

M(Co) —= M (Do) — N(Dy)

L

M(C) —— M (D) — N(D)

where the left square is a pullback (by virtue of the left exactness of M). It will therefore suffice to show
that the canonical map

0: M(Do) — N(Do) xn(py N(D)
is a bijection. Since Dy is a final object of C and the functor M is left exact, the set M(Dy) is a singleton.
It will therefore suffice to show that the fiber product N (Do) xpr(py N(D) has at most one element. This
is clear, since the set N(Dy) is also a singleton and the map M (D) - N(D) is injective (by virtue of our
assumption that f is an elementary embedding). (I

In the setting of classical first-order logic, the requirement of Definition is vacuous. Recall that a
pretopos C is said to be Boolean if, for every object X € C, the partially ordered set Sub(X) is a Boolean
algebra (in other words, every subobject of X is a summand of X).

Proposition 7.4.4. Let C be a Boolean pretopos. Then every morphism f : M — N in Mod(C) is an
elementary embedding.

Proof. We will show that f satisfies criterion (2) of Proposition Let C be an object of C and let Cy € C

be a subobject; we wish to show that the diagram o :
f
M(Co) —— N(Co)
M(C) —L~ N(0)

is a pullback. Since C is Boolean, the partially ordered set Sub(C') is a Boolean algebra. We can therefore
choose another subobject Cy € Sub(C') which is complementary to Cy, so that CouCy = C and Con C; = @.
It follows that inclusions Cy < C <« (4 exhibit C' as a coproduct of Cy with Cy. Since the functors M and
N preserve finite coproducts, we can identify ¢ with the diagram

l |

M(C()) u M(Cl) —— N(Co) u N(Cl),
so that the desired result follows from Proposition (or by direct inspection). O

The relevance of Definition [7.4:1] for us is the following:

Theorem 7.4.5. Let C be a small pretopos and let f: (X,0x) - (Y,Oy) be a morphism in Stonec. The
following conditions are equivalent:

(1) The induced map T'(X,0x) —» T'(Y,Oy) is an effective epimorphism in Pro(C).



92 ULTRACATEGORIES

(2) For each point y €Y, there exists a point x € X such that f(z) =y and the map Oy, - Ox 4 is an
elementary embedding in Mod(C).

Corollary 7.4.6. Let C be a small pretopos and let (X,0x) = (Y,Oy) be a morphism in Stonec. If the
induced map T'(X,0x) - T'(Y,Oy) is an effective epimorphism in Pro(C), then the underlying map of
topological spaces X - Y is surjective. The converse holds if C is Boolean.

Proof. Combine Theorem with Proposition [7.4:4] O

Corollary 7.4.7. Let C be a small pretopos and let {f; : (X;,Ox,) - (X,0x)}ier be a collection of mor-
phisms in Stonec. Then the morphisms f; are an elementary covering (in the sense of Deﬁnitionm if
and only if there exists a finite subset Iy € I satisfying the following condition:

(*) For every point x € X, there exists an index i € Iy and a point y € X; such that f;(y) = = and the
map Ox , - Ox, y is an elementary embedding in Mod(C).

Corollary 7.4.8. [Amalgamation] Let C be a small pretopos, let f: M — N be an arbitrary morphism in
Mod(C), and let g : M — M' be an elementary embedding in Mod(C). Then there exists a commutative
diagram

M= M
o, |
NN
in Mod(C), where g’ is also an elementary embedding.
Proof. By virtue of Corollary the elementary embedding g determines an elementary covering g : M -

M in the category Stonec. Since the elementary coverings give rise to a Grothendieck topology on Stonec,
we can find a collection of commutative diagrams

(X;,0x,) —=M'

"

N%

in Stonec where the left vertical maps form an elementary covering. Using Corollary [7.4.7] we conclude that
there is an index 7 and a point z € X; for which the left vertical map induces an elementary embedding
g+ N - Ox, 5, in which case we obtain a commutative diagram of models

M—2 M

o,

N —_— OXi,CE
with the desired property. ]
Proof of Theorem[7.].5 We proceed in several steps. Let f: P — @ be an arbitrary morphism in Pro(C).
Consider the following assertion:
(i) The map f: P — @ is an effective epimorphism in Pro(C).
We claim that (i) is equivalent to the following;:

(41) For every monomorphism u: U < V in Pro(C) and every commutative square

P——sU

7
s

Q—=V,
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there exists a dotted arrow rendering both triangles commutative.
The implication (i) = (#4) is clear. Conversely, if (i) is satisfied for the inclusion Im(u) < @, then assertion
(i) follows. Note that, in the situation of (ii), the dotted arrow is automatically unique (by virtue of
our assumption that the morphism U — V is a monomorphism). According to Proposition every
monomorphism in Pro(C) can be realized as a filtered limit of monomorphisms in C. Consequently, (i) is
equivalent to the following a priori weaker condition:

(ii¢) For every monomorphism u: Cy < C' in the category C and every square diagram

P4>Co

L)

QHC»

there exists a dotted arrow rendering both triangles commutative.

Let us now suppose that P =T'(X,0x) and @ = I'(Y,Oy) for some objects (X,O0x), (Y,Oy) € Stonec.
Unwinding the definitions, we can rephrase (iii) as follows:

(iv) Let C €C be an object and let sy € (Y, 0y )(C) = O (Y) be a section having image sx € O%(X).
Suppose that Cy is a subobject of C' and that sx lifts to a section of the subsheaf (’))C(O c Og. Then
sy lifts to a section of the subsheaf (950 c Of.

We now restate (v) in contrapositive form:

(v) Let C €C be an object and let Cy € Sub(C') be a subobject. Suppose we are given a global section
sy € OF(Y) having image sx € O%(X). If there exists a point y € Y such that the stalk sy, does
not belong to Ogoy, then there exists a point € X such that sx , does not belong to (’))C(OI.

Note that assertion (v) follows immediately from (2), together with the criterion of Proposition (if
(2) is satisfied, then we can choose a point = € X for which f(z) = y and the induced map Oy, > Ox ; is
an elementary embedding). We will complete the proof by showing that assertion (iv) implies (2).

Assume that (iv) is satisfied, and fix a point y € Y. We wish to show that there exists a point 2 € X such
that f(z) = y and the induced map Oy, - Ox , is an elementary embedding. Suppose otherwise. Then,
for each point x € f~(y), the induced map Oy, - Ox , is not an elementary embedding. It follows that we
can choose an object C(z) € C, a subobject Cy(x) € Sub(C(z)), and an element of 7, € Olc/g) N O}C,f’;m) for

which the image of 7, in O)c(f;) belongs to Og‘?iz). Let U, be an open neighborhood of z in the fiber f~!{y}

for which the image of 7, in C’)g’;f;f,) belongs to (’)g?;x), for each 2’ € U,. Since the fiber f~'{y} is compact,

we can choose finitely many points x1,...,z, € f~!{y} for which the open sets U,,,U,,,...,U,, cover the
fiber f~{y}. Set C = C(x1) x--xC(zy), and let Cy € C be the union of the subobjects Co(z;) x [1;.; C(z;).
Then we can identify {7, }1<i<n With a point 7 € (’);C/,y. By construction, 1 does not belong to (’))C/f]y7 but the
image of 1 in O)C(’z belongs to (’)g‘)m for each z € f~1{y}.

Choose a lift of n to a point sy ¢ O}C;(V), for some open neighborhood V' of Y. Let s¢-1(yy denote the
image of V in O%(f~'(V)). Then there is a largest open subset W ¢ f~'(V) for which the restriction
s¢-1(v)lw is a section of the subsheaf O)C(O c O%. By construction, the open set W contains the fiber f~*{y}.
Since f is a proper map, we can choose a smaller open set V' ¢ V such that y € V' and f1(V') ¢ W.
Replacing V by V', we can assume that s;-1(y) belongs to O)C(O(f’l(V)).

Shrinking V' further if necessary, we can arrange that V is both open and closed. In this case, we can
extend sy to a global section sy of the sheaf O$"! ~ O ul (which is equal to sy on the open set V, and
carries the complement of V' to the second summand of O$"!). Replacing C' by the coproduct C' 11 and
Cy by the coproduct Cp 11 1, we can assume that V =Y that is, that sy is a global section of C’))C;. It then
follows from (iv) that sy is also a global section of the subsheaf C’)go c 05, contradicting our choice of . O
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7.5. The Proof of Proposition Let C be a small pretopos, and let % : Stonegp — Set be a functor.
If .7 is a sheaf for the elementary topology, then it carries finite coproducts in Stonec to products in Set.
Our goal in this section is to prove Proposition which asserts that the converse holds provided that .#
commutes with filtered colimits. To prove this, we must show that .7 satisfies descent for every elementary
covering (X,0x) — (Y,0y). We begin by treating the case where the underlying topological spaces X
and Y consist of a single point. By virtue of Corollary [7.4.7] this reduces a concrete statement about the
behavior of the functor F' = .F |yioq(cy With respect to elementary embeddings:

Proposition 7.5.1. Let C be a small pretopos, let f : M — N be an elementary embedding in Mod(C),
and let F : Mod(C) — Set be a left ultrafunctor. Then the map of sets F(f) : F(M) - F(N) is injective.
Moreover, the image of F(f) consists of those elements x € F(N) which satisfy the following condition:
(*) For every pair of morphisms u,v : N — P in the category Mod(C) satisfying wo f = vo f, we
F(u)(z) = F(v)(x) in the set F(P).

The proof of Proposition will require some preliminaries. We first make some elementary observations
concerning ultraproducts in the category of sets:

Lemma 7.5.2. Let X and S be sets, let p be an ultrafilter on S, and let A, : X — X*# be the ultrapower
diagonal of Example(1.3.4 Then A, is injective.

Proof. Without loss of generality we may assume that X is nonempty, so that we can identify X* with the
set of equivalence classes of functions f:S — X with respect to an equivalence relation ~,, where f ~, g if
and only if p({s e S: f(s) =g(s)})) =1. If f is the constant function with value 2 € X and g is a constant
function with value y € S (representing A, (z) and A,(y), respectively) then we have

(frpg) e (u{seS:z=y})=1) e (v=y).
0

Lemma 7.5.3. Let u: X <Y be an injective map of sets and let y be an ultrafilter on a set S. Then the
diagram

is a pullback square (in the category of sets).

Proof. Let y € Y be an element with the property that A, (y) = (fqudp)(x), for some 2 € X*; we wish to
show that y belongs to the image of u. Then X* is nonempty, so X is nonempty; we may therefore assume
without loss of generality that x is represented by a tuple {z }ses € X°. Set T = {s € S :u(x,) =y}. The
equality A, (y) = (fgudp)(x) guarantees that p(I) = 1. In particular, the set I is nonempty. Choose an
element s € I. Then y = u(x,) belongs to the image of w. O

Lemma 7.5.4. Let C be a small pretopos and let f: M — N be an elementary embedding in Mod(C). Then
there exists a set S, an ultrafilter p on S, and a morphism g: N — M" for which the composite map

WVERER VT
coincides with the ultrapower diagonal dpp : M — M* of Ezample[1.5.].

Proof. To avoid confusion, let us use the notation Ths to denote the image of a model M € Mod(C) under
the inclusion Mod(C)°? = Pro(C). The elementary embedding f : M — N can then be identified with a map
of pro-objects Ty - Ty, which we will denote by Ty. Our assumption that f is elementary guarantees that
Ty is an effective epimorphism in Pro(C) (Theorem , and can therefore be realized as the limit of a
filtered diagram {fs : Cs - Ds} of effective epimorphisms in C. Without loss of generality, we can assume
that this limit is indexed by (the opposite of) a directed partially ordered set (.5, <).
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For each s € S, set Ps = Cs xp_ Ty (where the fiber product is formed in Pro(C). Since M is a model,
the pro-object Ty is weakly projective so that each of the maps Th; — Dy factors through fs. A choice of
factorization then determines a map us : Thy = Ps which is a section of of the projection map Ps — Tys (note
that we do not require, and usually cannot arrange, that the morphisms u, depend functorially on s). To
avoid confusion, let us write N, for the image of P; in the opposite category Pro(C)°P ¢ Fun(C, Set), so that
each us can be viewed as a natural transformation of functors Ny - M. Moreover, we can identify N with
the colimit lim N (as an object of the category Fun(C, Set)).

Since the partial ordering on S is directed, we can choose a cofinal ultrafilter 1 on S. We now define
g: N — M* to be the composition

w ugd,
Nestduu»fMduzM”,
s s
where w is the morphism defined by applying Construction (in the ultracategory Fun(C,Set)). The
identity go f = A, follows from Remark O

Proof of Proposition[7.5.1] Let C be a small pretopos, let f: M — N be an elementary embedding in Mod(C),
and let F': Mod(C) — Set be a left ultrafunctor. Using Lemma we can choose a set S, an ultrafilter
won S, and a morphism g : N - M* such that go f is the ultrapower embedding A, (M) : M — M*. Let
{o,} be a left ultrastructure on F', so that the composite map

F(A (M

F(M) D, pry 2 p(ar)P

is the ultrapower diagonal of the set F(M), and therefore injective (Lemma [7.5.2)). It follows that the
composition F(A,(M)) = F(g) o F(f) is also injective, so that F(f): F(M) — F(N) is injective. We will
complete the proof by showing that if x € F(N) is an element satisfying condition (*) of Proposition
then z belongs to the image of F(f). We have a commutative diagram

F(M) F(f)

F(N)

lF(A“(M)) LF(A;L(N))

Foumy 2L ey

e
F(f)*

F(M)* ——= F(N)*,

where the outer rectangle is a pullback square by Lemma[7.5.3] Consequently, to show that z belongs to the
image of F'(f), it will suffice to show that F'(A,(N)) belongs to the image of the map F(f*): F(M") -
F(N*#). In fact, we claim that F'(A,(N))(z) = F(f*)(F(w)(z)). To prove this, it will suffice (by virtue
of our assumption that x satisfies (+)) to show that the maps A,(N),(f* ow): N - N* have the same
restriction to M. This follows from Remark together with the commutativity of the diagram

M*f>N
lAu(M) LAH(N)

Mn I N,

To deduce Proposition from Proposition [7.5.1 we will need a bit of notation.

Construction 7.5.5. Let C be a small pretopos and let .% : Stoneg” — Set be a functor. Assume that %
carries finite coproducts in Stonec to products in the category of sets. Fix an object (X, Ox) in the category
Stonec, and let U(X) denote the collection of all closed and open subsets of X. We define a functor

y(OX) ZUQ(X)OP — Set
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by the formula % (Ox)(U) = #(U,Ox |y). It follows from our assumption on .# that the functor #(Ox)
carries disjoint unions in Uy(X) to products in Set, and therefore extends uniquely to a set-valued sheaf on
X (Corollary [B.6.5) which we will also denote by % (Ox). The stalks of this sheaf are given by the formula

F(Ox)s = lim F(Ox)(U) = lim Z(U, O |v),
U U
where the colimit is taken over the collection of all closed and open neighborhoods U € X of the point z.

Consequently, there is a natural map .#(Ox), - & ({z},Ox ), which is an isomorphism if .# commutes
with filtered colimits.

Remark 7.5.6. Let C be a small pretopos and let .7 : Stoneg” — Set be a functor which preserves finite
products and small filtered colimits. Then, for any object (X, Ox) € Stonec, the canonical map

p:j(X,Ox) - I_Al(j({CCLOX,x)

is injective. This follows from Construction since a global section s of the sheaf .#(Ox) is determined
by the collection of stalks {s, € #(Ox), ~.F({z},0x )}

Proof of Proposition[7.2.5 Let C be a small pretopos and let .% : Stoneg” — Set be a functor which preserves
finite products and small filtered colimits. We wish to show that .% is a sheaf with respect to the elementary
topology. Define F': Mod(C) — Set by the formula F(M) = % (M). Note that F' admits a left ultrastructure,
and therefore satisfies the conclusions of Proposition [7.5.1]

We first argue that .% is a separated presheaf. Suppose we are given a collection of morphisms

{(Xi,0x,) = (X,0x)}iex
which comprise a covering with respect to the elementary topology; we wish to show that the induced map
Z(X,0x) ~ [ 7(Xi,0x,)
i€l
is injective. This map fits into a commutative diagram

F(X,0x) [Tier 7 (X3,0x,)

l |

erX ﬁ({z}, OX,QC) - nie] erXi j({f}7oX1ﬁf)7

where the vertical maps are injective by virtue of Remark It will therefore suffice to show that the
lower horizontal map is injective. This is clear: for each point x € X, we can choose an index i € I and a
point T € X; lying over x for which the map of models Ox , - Ox, z is an elementary embedding, so that
Proposition [7.5.1] guarantees the injectivity of the induced map .7 ({z},Ox ») - .Z ({z},0x, 7).

To complete the proof that .# is a sheaf, suppose that we are given a collection of elements s; € .7 (X;, Ox,)
satisfying the following compatibility condition:

(%) For every commutative diagram

(W, 0w ) — (X;,0x,)

| |

(Xj7OXj) — (XaOX)

in Stonec, the elements s; and s; have the same image in % (W, Ow).
We wish to show that there exists an element s € .#(X,Ox) having image s; in each .#(X;,Ox,) (the
uniqueness of s is automatic by the preceding argument).

Without loss of generality, we may assume that the set I is finite. For each point y € X;, we let s; , denote
the image of s; under the map .#(X;,0x,) - Z({y},0x,y) =~ F0(Ox, ). Fix a point 2 € X. Choose an
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index 7 € I and a point y € X; lying over x for which the map of models Ox , - Ox;, , is an elementary
embedding. Applying (*) in the case where W is a single point, we deduce the following;:

(#") For each index j € I, each point z € X; lying over x, and each commutative diagram

M Ox, .y

|

OXj,z < OX,x

in Mod(C), the elements s;, and s; , have the same image in F'(M).

Applying (') in the case ¢ = j and z = y and invoking (c¢), we conclude that s;, has a unique preimage
sp under the map F(Ox,) — F(Ox, ). We claim that the element s, satisfies the following additional
condition:

(#"") For each index j € I and each point j € X; lying over x, the canonical map p: F(Ox ) - F(Ox; 2)
carries s, to s; ..

To prove (*'"), we note that Corollary guarantees the existence of a commutative diagram
M OX«;,?J

P

OXj,z < OX,x

in the category Mod(C), where the map u is an elementary embedding. It then follows from (+") that p(s,)
and s; . have the same image under the map F'(u) : F(Ox; .) — F(M). Since u is an elementary embedding,
Proposition guarantees that F'(u) is injective, so we must have p(s;) = s; ..

Let #(Ox) be the sheaf of sets on X given by Construction so that we can identify each of
the sets F(Ox ) with the stalk of .#(Ox) at the point z. It follows that we can lift s, to an element
su() € F(Ox)(U(x)) = Z(U(x),0x |u(s)) for some closed and open neighborhood U(xz) of the point x.
For each j € I, let U;(x) denote the inverse image of U(z) in X; and let s;» denote the image of sy(,) under
the canonical map .7 (U(z), Ox |v(x)) = F (U;j(2), Ox; |u,(2))- Then we can identify s’ with a section of the
sheaf .7 (Ox;) over the open set U;(x), and s; with a global section of the sheaf .# (Ox;,). Let V;(z) ¢ U;(x)
denote the open subset of U;(z) consisting of those points z for which s; and sg have the same image in the
stalk .7 (Ox;). =~ F(Ox;,z). It follows from (+) that the set V;(z) contains the preimage X; xx {z} of the
point x. Because each of the maps X; — X is proper (since both X; and X are compact and Hausdorff),
we can choose an open subset U'(z) € U(x) containing = which satisfies X; xx U’ (z) ¢ V;(x) for each j € I.
Since X is a Stone space, we may further assume that U’(x) is closed. Replacing U(x) by U'(x), we may
assume that U(z) has been chosen so that sy ;) and s; have the same image in % (U;(z),Ox; |, (x)) for
each j e J.

Because X is compact, the open covering {U(z)}zex admits a finite subcover U(x1),U(x2),...,U(xy).
Since X is a Stone space, we can further assume (by shrinking the open sets U(z,,) if necessary) that
the sets U(x1),U(x2),...,U(x,) are disjoint. Applying assumption (a’), we deduce that there is a unique
element s € .7 (X, Ox) having image s/(,,.y in each .7 (U(2m), Ox |v(s,,))- It follows immediately from the
construction that each of the maps .7 (X,0x) - .7 (X;,Ox;) carries s to s;. O

8. THE ENVELOPE OF AN ULTRACATEGORY

In we proved that every ultracategory M can be obtained from the construction of Proposition [1.3.
That is, one can obtain any ultrastructure on a category M by embedding it into a larger category M*
in such a way that M has ultraproducts in M*. However, the category M* is not uniquely determined.
Moreover, the specific construction that we studied in §5|is not the most economical: the category Stoneja of
Construction contains many objects which do not arise as products of objects of M, and are therefore
not needed in the construction of ultraproducts in M.
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In this section, we show that for every ultracategory M, there is an “optimal” choice for an embedding
M = Env(M) which induces the ultrastructure on M. We will refer to the category Env(M) as the envelope
of M. Tt is characterized (up to equivalence) by the following features:

(a) The full subcategory M has ultraproducts in Env(M) (giving rise to the ultrastructure on M via
the construction of Proposition .

(b) Every object of Env(M) can be written as a product of objects belonging to M.

(¢) Every object of M is coconnected when viewed as an object of Env(M) (see Definition [8.2.1)).

The embedding M < Stone’{y of Remark has properties (a) and (c¢), but not property (b). However,
this is easily remedied: we can simply take Env(M) to be the full subcategory of of Stone}} generated by
M under products. This category admits several other concrete descriptions, which we outline in

The data of an ultracategory M and its envelope Env(M) are equivalent: either can be reconstructed
from the other. Consequently, it is possible to entirely dispense with ultracategories and work only with
their envelopes. The advantage of this approach is that one does not need to keep track of any additional
information: the ultrastructure on M is completely determined by the structure of Env(M) as an abstract
category. Moreover, there is a relatively simple characterization of those categories which arise in this
way. In we introduce the notion of an wltracategory envelope (Definition . By definition, an
ultracategory envelope is a category £ satisfying a few simple axioms. These axioms guarantee that £ induces
an ultrastructure on a certain full subcategory £°° ¢ £, and that £ can be recovered (up to equivalence) as
the envelope of £°°. To prove this, we show in that the relationship between £ and £°° is governed
by a universal mapping property (Theorem . This property is most conveniently formulated using the
language of right ultrafunctors, which we introduce in

8.1. Right Ultrafunctors. We now consider a variant of Definition [T.4:1}

Definition 8.1.1 (Right Ultrafunctors). Let M and N be categories with ultrastructure and let F': M - N
be a functor. A right ultrastructure on F consists of the following data:

(*) For every collection of objects {M;}scs of the category M and every ultrafilter 1 on S, a morphism
Yt fg F(Mg)dp — F(fg Msdp) in the category N.

These morphisms are required to satisfy the following conditions:

(0) For every collection of morphisms {fs: Ms; - M.} in the category M and every ultrafilter x on S,
the diagram

Js F(M;)dp s F(fs Mddy)
lfs F(fs)du LF(fs fedp)
Js F(M{)dp —" F(f5 M{dp)
commutes. In other words, we can regard -, as a natural transformation
s ([ ($)dp) o FS > Fo [ (o)d

of functors from M to N.
(1) For every collection {M,}ses of objects of M indexed by a set S and every element sg € S, the

diagram
[ F(M,)dd,, oo F(fg M,dd,,)
F(Ms,)

commutes (in the category N).



ULTRACATEGORIES 99

(2) For every collection {M;}ier of objects of M indexed by a set T', every collection vy = {vs}ses of
ultrafilters on T' indexed by a set S, and every ultrafilter ;1 on S, the diagram

Vfgvsdu

.[T F(Mt)d(fs Vsdﬂ)) F(fT Mtd(_[s Vsd,u))
lAu,V. LF(A;L,V.)
[ [ F(My)dvy)dp 5000 s F(fy Mydvy)dp —— F( [ [y Mydvy)dps)

commutes (in the category N).

A right ultrafunctor from M to N is a pair (F,{~,}), where F' is a functor from M to N and {~,} is a right
ultrastructure on F.

Example 8.1.2. Let M = {x} denote the category having a single object and a single morphism (so that
M admits a unique ultrastructure), and let A/ denote the category of sets (endowed with the categorical
ultrastructure). Then the datum of a functor F': M — N is equivalent to the datum of the set X = F(*). A
right ultrastructure {~y,} on F associates to each ultrafilter  on a set S a map

x5 % [ F(dp 25 P( [ ) = X,

which we will denote by f ~ [¢ f(s)du. Using axioms (1) and (2) of Definition we see that the
construction (f, u) = [¢ f(s)dp endows X with the structure of an ultraset (Definition[3.1.1), or equivalently

with the structure of a compact Hausdorff space (Theorem [3.1.5]).

The rest of this section is devoted to some general remarks about the theory of right ultrafunctors. For
the most part, these can be regarded as counterparts to observations that we made in §1.4] concerning left
ultrafunctors. Beware that there is no formal mechanism for reducing questions about right ultrafunctors to
questions about left ultrafunctors, because the theory of ultracategories is not “self-dual” (an ultrastructure
on a category M does not induce an ultrastructure on the opposite category M°P, because the Fubini
transformations for the ultrastructure on M need not be invertible).

Remark 8.1.3. Let F': M - N be a functor between ultracategories and let {0, } be an ultrastructure on
F (in the sense of Definition . Then the collection of inverse maps {0;1} is a left ultrastructure on F.
Conversely, if {7, } is a right ultrastructure on F' for which each of the maps v, : [¢ F(M)dpu — F([g Mydpu)
is an isomorphism, then the collection of inverse maps {'y;l} is an ultrastructure on F'.

Remark 8.1.4 (Adjoint Functors). Let M and N be ultracategories and suppose we are given a pair of
adjoint functors

M%N,

with unit map v :idys = G o F and counit v : F o G — ids. Then:

o Every right ultrastructure {,} on G determines a left ultrastructure on F, which assigns to each
collection {M;}ses and each ultrafilter p on S the composite map

F(fs w(Ms)dp)

([ M) F [ (GoF)(M)dn
T (FeG)( [ F(M.)dn)

v F(Msg)d,
M, fSF(MS)d“'
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e Every left ultrastructure {o,} on F' determines a right ultrastructure on G, which assigns to each
collection of objects {N; }ser and each ultrafilter v on T' the composite map

[ e@nar M (o py( [ avii)
S G (Fee) )

G(fT v(Ns)dv)

a( [S Nydv).
These constructions determine mutually inverse bijections

{Left ultrastructures on F'} ~ {Right ultrastructures on G}.

Definition 8.1.5. Let M and A be categories with ultrastructure, let F, F': M — N be functors from M
to N, and suppose that I and F’ are equipped with right ultrastructures {~,} and {7, }, respectively. We
will say that a natural transformation u : F' - F’ is a natural transformation of right ultrafunctors if, for
every collection of objects {Mj}ses of M and every ultrafilter u on S, the diagram

[ F(My)dp —%— F(f4 Mady)

L[su(Ms)dﬂ l/U(fSMSdM)
o

Js F'(My)dp) —— F'( [ Msdp)

commutes (in the category N).
We let Fun®"* (M, ) denote the category whose objects are right ultrafunctors (F, {7.}) from M to N
and whose morphisms are natural transformations of right ultrafunctors.

Remark 8.1.6. Let M and N be ultracategories. Then the construction (F,{o,}) = (F,{0,"'}) determines
a fully faithful embedding FunUlt(M7./\/ ) = FunRUlt(M,N ), whose essential image consists of those right
ultrafunctors (F, {7,}) for which each of the maps ~, is invertible (see Remark [8.1.3]).

Remark 8.1.7 (Limits of Right Ultrafunctors). Let M and N be ultracategories. Suppose that we are
given a diagram {F,} in the category Fun™V"*(M, N') with the property that, for every object M e M, the
diagram {F, (M)} admits a limit in A/. Then:

e The construction (M € M) — lim F, (M) determines a functor F: M — N.

e There is a unique right ultrastructure on F for which each of the natural maps A\, : F' — F,, is a

natural transformation of left ultrafunctors.
e The maps )\, exhibit F as a limit of the diagram {F,} in Fun™""(M,N).

In particular, if the ultracategory N admits small limits, then the category Fun™V"* (M, N) also admits small
limits, which are preserved by the forgetful functor Fun®V" (M, N') - Fun(M,N).

Construction 8.1.8 (Composition of Right Ultrafunctors). Let M, M’ and M" be ultracategories. Let
(F,{v.}) be a right ultrafunctor from M to M’, and let (F’,{v,}) be a right ultrafunctor from M’ to
M". Then the composite functor F’ o F' admits a right ultrastructure, which associates to each collection of
objects {Ms}ses of M and each ultrafilter p on S the composite map

[ o my s B[ F)d T (o P [ M),
This construction determines a composition law
Fun""" (M, M) > Fun"""* (M, M") > Fun"""* (M, M").
Remark 8.1.9. We can use Construction to construct a (strict) 2-category UIt™ as follows:

e The objects of Ult" are ultracategories.
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e For every pair of objects M,N ¢ UltR, the category of morphisms from M to N is given by
Fun®""* (M, N).
e The composition law on Ult® is given by Construction

More informally: Ult® is the category whose objects are ultracategories, whose morphisms are right ultra-
functors, and whose 2-morphisms are natural transformations of right ultrafunctors.

We close this section by establishing a counterpart of Proposition [1.4.9

Proposition 8.1.10. Let M* and N™* be categories which admit small products and let F*: M™ - N7 be a
functor which preserves small products. Suppose that M ¢ M™ is a full subcategory which has ultraproducts
in M*, that N S N is a full subcategory which has ultraproducts in N, and that F* carries objects of M
to objects of N, so that we can regard F = F*|p as a functor from M to N'. Then:

(i) For every collection of objects {Ms}ses of M and every ultrafilter p on S, there is a unique map
Vi fo F(Ms)dp - F([g F(Ms)dp) having the property that, for each subset So ¢ S with j(Sp) =1,
the diagram

HseSg F(MS) -~ F+(HS€I MS)

lqio lmqi(})

[ F(M)dp —“> F(f4 Mydy)

commutes (in the category N').
(ii) The morphisms {~,} of (i) determine a right ultrastructure on the functor F.

Proof. Assertion (i) follows from the fact that the maps {q;fO t Maes, F(Ms) — [¢ F(M)dp} exhibit
Js F(M)dp as a colimit of the diagram {[T.cs, F'(Ms)}u(sq)=1 (together with our assumption that F*
commutes with products). To prove (ii), we argue that the morphisms {,} satisfy condition (2) of Defini-
tion (conditions (0) and (1) are immediate from the construction). Fix a collection of objects {M;}ier
of M indexed by a set T, a collection of ultrafilters {v;}ses on T indexed by a set S, and an ultrafilter x4 on
the set S. Set A = [ vydu. We wish to show that the diagram o :

Apve

Jr FOMy)d(X) —— [5(Jp F(My)dvs)dp
lfs Vv At
A Js F(fp Midvs)dp

l/ i

F(fy Myd\) —2220 p(fo( f Midv)dps)

commutes (in the category N). Let u,v : [ F(M;)d(X) = F([q([/p Midvs)dp) be the maps given by
clockwise and counterclockwise composition around the diagram o. To show that u = v, it will suffice to
show that u o qfo =vo ‘IZ:O for every subset Ty € T satisfying A(Tp) = 1. Set Sp={s€ S :vs(Tp) =1}, so that
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1(Sp) = 1. Counsider the diagram

Alhl’n

Jr F (M) Js(J7 F(My)dvs)dp

y

a0
Maes, (f7 F(My)dvs) Js v du
}}S}%/ lnseso Trs
So
RE HteTo F(Mt) HseSO F(_[T Mths) L) fS F([T MthS)dﬂ'
T F({q.0}ses) T
F*(Tier, Mi) ——5 F* (I yes, (Jr Medvs))
y Kﬁb)
F(Auve)

F(fT Myd\) F(fs(fT Mydvy)dp)

in the category N'*. Note that the inner region of the diagram commutes by the construction of the maps
Yu., the upper region commutes by the construction of the Fubini transformation for the ultrastructure on
N, the lower region commutes by the construction of the Fubini transformation for the ultrastructure on
M, the region on the left commutes by the construction of 7y, the region on the upper right commutes by
functoriality, and the region on the lower right commutes by the construction of v,. It follows by a diagram
chase that u o qz\}’ =vo qf“, as desired. O

Remark 8.1.11. In the situation of Proposition [8.1.10, the maps {v,} are invertible if and only if the
functor F'* satisfies condition (*) of Proposition this case, the right ultrastructure on F' given by
Proposition [8.1.10]is given by the image, under the identification of Remark [8.1.3] of of the the ultrastructure
on F' supplied by Proposition [1.4.9

8.2. Ultracategory Envelopes. In this section, we introduce the notion of an ultracategory envelope (Def-
inition [8.2.2)), and show that it is equivalent to the notion of a ultracategory introduced in First, we need
some terminology.

Definition 8.2.1. If £ is a category which admits finite products, then we say that an object X € &£ is
coconnected if it is connected when viewed as an object of the opposite category £°P. In other words, we say
that X is coconnected if the functor Homg (e, X') carries finite products in the category £ to disjoint unions
in the category of sets. We let £°° denote the full subcategory of £ spanned by the coconnected objects.

Definition 8.2.2. An ultracategory envelope is a category £ which satisfies the following axioms:
(E1) The category £ admits small products.
(E2) Every object X € £ can be written as a (small) product [],.q X5, where each factor X, is a cocon-
nected object of £.
(E3) The full subcategory £° ¢ £ of coconnected objects has ultraproducts in €. In other words, for every
collection {X;}ses of coconnected objects of £ and every ultrafilter u on S, the direct limit

/ Xedp = h_n)l H X
s 4(S0)=1 55
exists and is a coconnected object of £.
Remark 8.2.3. Let £ be an ultracategory envelope and let £°° € € be the full subcategory spanned by the

coconnected objects. In what follows, we will always regard £°° as an ultracategory by equipping it with the
ultrastructure supplied by Proposition [1.3.
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Remark 8.2.4. Let M™ be a category and let M € M* be a subcategory which has ultraproducts in M™*.
Let £ € M™ be the full subcategory spanned by products of objects that belong to M. Then &£ automatically
satisfies conditions (E1) and (E3) of Definition If every object of M is coconnected as an object of
E, then & also satisfies (E2) and is therefore an ultracategory envelope. Moreover, in this case, we have

EC >~ M.

In we will show that every ultracategory M arises (up to equivalence) from the construction of
Remark [8.2.3

Theorem 8.2.5. Let M be an ultracategory. Then there exists an ultracategory envelope Env(M) and an
equivalence of ultracategories M ~ Env(M).

In the situation of Theorem [8.2.5) we will refer to the category Env(M) as the envelope of M. Tt is
determined (up to equivalence) by the ultracategory M. This is a consequence of the following universal
property, which we will establish in

Theorem 8.2.6. Let £ be an ultracategory envelope, let M* be a category which admits small products,
and let M € M" be a full subcategory which has ultraproducts in M*. Let Fun'(€, M") denote the full
subcategory of Fun(€, M™) spanned by those functors F' which preserve small products and carry coconnected
objects of € to objects of M. Then the construction of Proposition|8.1.10) induces an equivalence of categories
Fun'(€, M*) - Fun"" (£, M).

It follows from Theorems [3.2.5| and that the notions of ultracategory and ultracategory envelope are
interchangeable.

Notation 8.2.7. Let £ and & be ultracategory envelopes. We say that a functor F : £ — £’ is a functor
of ultracategory envelopes if F' preserves small products and carries coconnected objects of £ to coconnected
objects of &. We let Fun™(€,&’) denote the full subcategory of Fun(&,£’) spanned by the functors
of ultracategory envelopes. We let Cat®™ denote the (strict) 2-category whose objects are ultracategory
envelopes, where the category of morphisms from € to £ in Cat™ is given by Fun™(&,£’). Note that we
can regard Cat®™" as a (non-full) subcategory of the 2-category of categories.

Corollary 8.2.8. The construction €& — E° induces an equivalence of 2-categories Cat™ — UIR; here
Cat®™ is the 2-category of ultracategory envelopes (Notationm and UIY is the 2-category of Remark
15.1.9

Proof. Essential surjectivity follows from Theorem It will therefore suffice to show that for every
pair of ultracategory envelopes £ and &', the construction of Proposition [8.1.10| induces an equivalence of
categories Fun®™ (€, ") - Fun®V!(£°¢, £'°°), which is a special case of Theorem O

8.3. Application: Classification of Right Ultrafunctors. Let C be a small exact category and let
Fun™®(&, Set) denote the category of regular functors from &£ to the category of sets. In we noted that
a functor F : Fun'®(&, Set) — Set which preserves small products and small filtered colimits admits a unique
ultrastructure (Remark . In this section, we prove a more general form of this result (Corollary ,
which we deduce from a more general statement in the setting of right ultrastructures. Our starting point is
the following result, which is obtained by applying Theorem @ in the special case M = M™*:

Proposition 8.3.1. Let £ be an ultracategory envelope and let M be a category which admits small products
and filtered colimits. Then the construction of Proposition|8.1.10] induces an equivalence of categories

Fun!l(&, M) - Fun®V* (£, M).
Here Fun!! (&, M) denotes the full subcategory of Fun(€, M) spanned by those functors which preserve small
products, and we regard M as endowed with the categorical ultrastructure of Example[1.5.8

Corollary 8.3.2. Let M be an ultracategory which admits small products. Let N be a category which admits
small products and small filtered colimits, which we endow with the categorical ultrastructure of Fxample
. Then the forgetful functor 6 : FunRUlt’H(M,N) — Fun!! (M, N) is an equivalence of categories. Here
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Fun!! (M, N) denotes the full subcategory of Fun(M,N') spanned by those functors which preserve small
products, and Fun™V"IH( M, N) € Fun®V (M, N) is defined similarly.

Remark 8.3.3. We can state Corollary more informally as follows: if M and N are ultracategories
which admit small products, and the ultrastructure on N is categorical, then any functor F' : M — N which
preserves small products admits a unique right ultrastructure.

Proof of Corollary[8.3.3 By virtue of Theorem[8.2.5] we may assume without loss of generality that M = £°
for some ultracategory envelope €. In this case, we can use Proposition [8:3.1] to identify 6 with the restriction
functor Fun’(£,N') - Fun!l(£°, ), where Fun’ (€, N) is the full subcategory of Fun(&, ) spanned by those
functors F for which both F' and F|ge preserve small products. To show that 8 is an equivalence of categories,
it will suffice to prove the following;:

(i) Every functor Fp: £°° > N admits a right Kan extension F': & > N.

(i1) Let F': & - N be a functor for which the restriction Fy = F|gce preserves small products. Then F is

a right Kan extension of Fj if and only if F' preserves small products.

We first prove (7). Assume that Fy : £ - N is a functor which preserves small products, and let X be an
object of £. Then we can factor X as a product er g X, where each X is coconnected and the superscript
indicates that the product is formed in the category £. Since £°° admits small products, the collection of
objects {X;}ses also admits a product in the subcategory £°; which we will denote by Hf;; X,. We then
have a canonical map v : Hf;g X, - [1%.5 X,, and composition with u induces a bijection

gee

£
seS X )

seS*TS

Homgee (Y, [ [ o Xs) = Homg (Y, ]|

for every coconnected object Y € £°. It follows that Hi; X, is a final object of the category £ x¢ £)x, so
that the inverse limit

lim  Fp(Y)
Ye£cc Xg S/X
exists and is equivalent to FO(HiC; Xs). This proves (i), and the following version of (i7):

(#") A functor F : £ -» N is a right Kan extension of Fj = F|gee if and only if, for every collection of
objects {Xs}ses of £°°, the canonical map

(T X » F(T6X)

is an isomorphism.

We conclude by observing that if Fy preserves small products, then the criterion of (i) is equivalent to the
requirement that F' also preserves small products. (Il

Example 8.3.4. Let M be an ultracategory. Assume that the underlying category of M admits small
products and filtered colimits. Let N' = M denote the same category, but equipped with the categorical
ultrastructure of Example [[.3.8] It follows from Corollary [8.3.2) that there is a unique right ultrastructure
on the identity functor id : M ~ N. For every collection of objects { M, }scs and every ultrafilter u on S, this
ultrastructure determines a canonical map

I T e
w(So)=1 seSo S

where the left hand side is the categorical ultraproduct of Construction and the right hand side is
supplied by the ultrastructure on M. This map can be described concretely: for example, the composition
(Vuoqu) : Taes Ms — [ Mydp is given by the composition

(I M) =5 ([T My = [(TTM)dp > [ Mdp,

seS seS seS
where A, is the ultrapower diagonal of Example
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Corollary 8.3.5. Let M and N be categories which admit small products and small filtered colimits, and
egard M and N as equipped with the categorical ultrastructures of Ezample . Let FunUlt’H(M,./\/')
denote the full subcategory of FunUlt(M,./\/') spanned by those functors which preserve small products. Then
the forgetful functor FunUlt’n(M,N') - Fun(M, N) is a fully faithful embedding, whose essential image is
spanned by those ultrafunctors F : M — N which preserve small products and small filtered colimits.

Remark 8.3.6. Corollary [8:3.5] implies in particular that if F': M — N is a functor which preserves small
products and small filtered colimits, then it admits a unigue ultrastructure (namely, the ultrastructure given

by Proposition |1.4.9)).

Proof of Corollary[8:3.5, Tt follows from Corollary that the forgetful functor 6 : Fun""“II(M,N) -
Fun(M,N) is fully faithful. Any functor F : M — A belonging to the essential image of § must preserve
small products (by definition) and small filtered colimits (by Proposition [5.3.4). Conversely, if F': M - N
preserves small products and small filtered colimits, then it admits an ultrastructure by virtue of Proposition
and therefore belongs to the essential image of 6. |

8.4. Construction of the Envelope. Let M be an ultracategory. Our goal in this section is to prove
Theorem which asserts the existence of an ultracategory envelope Env(M) and an equivalence of
ultracategories M ~ Env(M)®. We give a quick proof based on the constructions of However, we also
outline two other constructions of the category Env(M), which are independent of the ideas developed in

(see Remark and Proposition [8.4.7)).

Definition 8.4.1. Let M be an ultracategory. We will say that an object (X,Ox) of Stonen, is free if it
can be written as a small coproduct of objects of the form M, where M belongs to M. Equivalently, an
object (X, Ox) of Stonep is free if it is isomorphic to (8T, Ogr), where Ogr is the ultrafunctor associated
by Proposition to a collection of objects {M; }ier.

We let Env(M) denote the full subcategory of Stone}) spanned by the free objects (X,Ox). We will
refer to Env(M) as the envelope of M.

Example 8.4.2. Let Y be a compact Hausdorff space, regarded as an ultracategory having only identity
morphisms. Then the envelope Env(Y") can be identified with the opposite of the full subcategory of Top Y
spanned by those continuous maps f: X — Y, where X is a topological space of the form 35, for some set

S; see Example

Example 8.4.3. Let C be a small pretopos and regard the category of models Mod(C) as endowed with
the ultrastructure of Remark Then the envelope Env(Mod(C)) can be identified with the smallest full
subcategory of Fun(C, Set) which contains Mod(C) and is closed under small products. This follows from
Theorem However, it can also be proved directly, by showing that the full subcategory of Fun(C, Set)
generated by Mod(C) under products satisfies the axioms of Definition The essential observation is
that every model of M of C is coconnected when viewed as an object of Fun“*(C,Set) = Pro(C)°P (beware
that M is usually not coconnected as an object of the larger category Fun(C, Set)).

Theorem [8.2.5] is a consequence of the following more precise assertion:

Theorem 8.4.4. Let M be an ultracategory. Then the category Env(M) of Definition is an ultracate-
gory envelope. Moreover, the construction M — M induces an equivalence of ultracategories M — Env(M)°.

Proof. By virtue of Theorem and Remark it will suffice to show that for each object M € M, the
object M € Env(M) is coconnected. This is a consequence of Example O

Remark 8.4.5. Let M be an ultracategory. One we have granted the existence of an envelope Env(M),
it is not difficult to work out the structure of Env(M) directly from the definitions. Note that every object
of Env(M) must factor as a product of objects {M,}ses belonging to M (moreover, this factorization is
essentially unique: see Proposition . Moreover, giving a map from a product [, N¢ to a product
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[Tses M is equivalent to giving a family of maps {us : [Tier Nt = M }ses. Each of the maps ug then factors
uniquely as a composition

[N [ Nudv, 25 M,

tel T

for some morphism g, in the category M (see Lemma [8.6.2). Moreover, the composition law on morphisms
in Env(M) is determined by the ultrastructure on the category M ~ Env(M). This analysis supplies an
equivalence of Env(M) with a category Env'(M), which can be described explicitly as follows:

e An object of Env’'(M) is a set S together with a collection { M, }ses of objects of M which is indexed
by S. We will denote such an object simply by {M;}ses.

e Let {M}ses and {N;}ier be objects of Env'(M). A morphism from {Ni}ier to {Mg}ses is a
collection of pairs {(vs, gs) }ses, indexed by S, where each v is an ultrafilter on T and each g, is a
morphism from /T Nidvs to M in the category M.

e Let g: {N;}bier = {M}ses be a morphism in Env' (M) given by {(vs, gs) }ses, and let f: {Ms}ses —
{L,}er be a morphism in Env’ (M) given by { (i, f) }rer. Then the composition (fog) : {N; }rer —
{L;}rer is defined to be {(A\, hy) }rer, where each A, denotes the ultrafilter on T given by [S vt
and each h, : fT N¢d\, - L, is the morphism given by the composition

Aprive sd ity -
thd)\Tsztd(f usdu,)—>f(f Ntdus)durfsg—”>stdurf—>L,.
T T S S T S

It is not difficult (albeit somewhat tedious) to prove Theorem directly by showing that the category
Env'(M) is an ultracategory envelope, and that the construction M ~ {M} defines an equivalence of
ultracategories from M to the full subcategory of coconnected objects of Env’(M).

Remark 8.4.6. Let us define a quasi-ultracategory to be a category M equipped with ultraproduct functors
MS - M {Ms}ses = [S’Msdl’t7

together with natural transformations

eS,SO:fSMSdasO:MSO AW,_:fTNtd(fSusdu)»/;(fTNtdys)du,

which are not required to satisfy any further conditions (that is, we omit axioms (A), (B), and (C) of
Definition .

Let us say that a quasi-ultracategory M admits an envelope if it is equivalent (as a quasi-ultracategory)
to the category of coconnected objects £°° of some ultracategory envelope £. Taken together, Theorem
and Proposition [[.3.7] assert that a quasi-ultracategory M admits an envelope if and only if it is an
ultracategory: that is, if and only if it satisfies axioms (A), (B), and (C). Consequently, any construction
of the envelope of an ultracategory M must make essential use of these axioms at some point. Here it is
instructive to contrast the approaches of Definition and Remark

e In the construction of Remark axioms (A) and (C) are needed immediately to show that the
category Env’ (M) is well-defined. In fact, axiom (C) is precisely equivalent to the associativity of
the composition law on Env’ (M), and axiom (A) is equivalent to the assertion that, for every object
{M}ses of Env' (M), the morphism {(ds, €5.5) }ses : {Ms}ses = {Ms}ses is a left unit with respect
to composition (the fact that it is also a right unit follows from Corollary .

e In the construction of Definition the envelope Env(M) is realized as a full subcategory of
the larger category Stonej&, which is well-defined even if we do not assume that M satisfies axioms
(A), (B), and (C). However, axioms (A) and (C) are needed to construct certain objects of the
category Stone%’l (Proposition , and these objects span the full subcategory Env(M) that we
are interested in.

We now give another description of the category Env(M).

Proposition 8.4.7. Let M be an ultracategory which is locally small (that is, for every pair of objects
M, N e M, the collection of morphisms Hompq (M, N) is small). Then:
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(1) Let M € M be an object and let hM : M — Set denote the functor corepresented by M, given by the
formula KM (N) = Homa (M, N). Then h™ admits a unique right ultrastructure.

(2) The category Env(M) is equivalent to the smallest full subcategory of Fun™U"* (M, Set) which
contains each of the objects corepresentable functors h™ (equipped with the right ultrastructures
described by (1)) and is closed under small coproducts.

Proof. Let h™ : Env(M) — Set denote the functor represented by the object M € Env(M). Then hL
preserves small products, and therefore determines a right ultrastructure on the restriction h™ ~ h™| (see
Proposition . This proves the existence statement of (1). To prove uniqueness, we observe that any
other right ultrastructure on h™ can be obtained by applying the same construction to some other product-
preserving functor F : Env(M) — Set equipped with an isomorphism e : A ~ F|,, (Proposition . By
Yoneda’s lemma, the map e extends uniquely to a natural transformation € : AL — F' of set-valued functors
on Env(M). Since e is an isomorphism and the functors AL and F both commute with products, it follows
that € is an isomorphism. This proves the uniqueness statement of (1).

We now prove (2). Using Proposition again, we can identify Fun®™""* (M, Set) with the category
Fun!l(Env(M), Set) of product-preserving functors from Env(M) to the category of sets. We now ob-
serve that the Yoneda embedding Env(M)°P — Fun!l(Env(M),Set) is a fully faithful embedding which
preserves small coproducts, and therefore induces an equivalence from Env(M)°P to the full subcategory of

Fun!l(Env(M), Set) generated under coproducts by objects of the form WM. O

Remark 8.4.8. In theory, Proposition supplies a construction of the envelope Env(M) which is
independent of both Definition and Remark However, our proof of Proposition depends
on an assumption that Env(M) already exists. Without the universal property of Proposition [8.3.1} it is
not clear how to work with the category of right ultrafunctors FunRUlt(/\/l7 Set) (for example, to show that
coproducts of corepresentable right ultrafunctors exist in FunRUlt(M, Set)).

In the situation of Proposition [8.4.7 one can give a similar description of the larger category Comp,, 2

Env(M)°P.

Proposition 8.4.9. Let M be an ultracategory which is locally small. Then the construction (X,0x)
Homcomp,, (¢, (X,0x)) determines a fully faithful embedding

Comp A Fun!(Env(M), Set) ~ Fun""" (M, Set).

Proof. Let (Y,0y) and (Z,0z) be objects of Comp,, and let u : 6(Y,0y) - 0(Z,0z) be a natural
transformation of functors from Env(M) to Set. For every morphism ¢ : (X,0x) — (Y, Oy) in the category
Comp,,, where (X,Ox) belongs to Env(M)°P ¢ Comp ,,, we let u(€) : (X,0x) — (Z,0z) denote the
image of £ under u. We wish to show that there is a unique morphism (f,«): (Y,0y) - (Z,0z) in Comp ,,
satisfying u(£) = (f,«) o € for all £ as above.

For each point = € X, let &, : ({y},Oy,y) = (Y, Oy) be the canonical map, so that u(&,) : ({y}, Ov,y) —»
(Z,0z) determines a point f(y) € Z and a morphism «, : Oz ¢(,) = Oy, in the ultracategory M; we regard
{ay }yey as a natural transformation of functors Oz of — Oy. We will prove the following:

(*) The pair (f,a) is a morphism from (Y,0y) to (Z,0z) in the category Comp,,. That is, the

function f is continuous and « is a natural transformation of left ultrafunctors.

Assume (*) for the moment. We will complete the proof of Proposition by showing that (f,«) is the
unique morphism in Comp,, satisfying u(§) = (f,a) o€ for all £ : (X,0x) - (¥,Oy) with (X,0x) in
Env(M)°P. Uniqueness is clear: by construction, (f,«) is characterized by the requirement that we have an
equality u(&,) = (f,a) o0&, for each y € Y. To show that the equality u(§) = (f,a) o & holds in general, we
can decompose (X,Ox) as a coproduct and thereby reduce to the case where (X, Ox) = M for some object
M e M. In this case, the map £ factors uniquely as a composition

M5 ({y},0v,) 5 (v,0y)

for some point zy € Y, so we can replace { by &, in which case the desired identity holds by construction.
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It remains to prove (*). Fix a set S and a map g : S - Y. Set (X,0x) = [lses Oy, f(s), Where the

coproduct is taken in Comp,,, so that we can amalgamate the maps {,(s) to a single map £ : (X,0x) —
(Y,Oy). Then u(é) : (X,0x) - (Z,0z) is a morphism in Comp,,. Using Proposition we can
identify X with the Stone-Cech compactification 85, and Ox with the left ultrafunctor of Propositionm
Consequently, the morphism (&) associates to each ultrafilter p € 8S a point h(u) € Z and a morphism
?;il: (?Z,h(ﬂ) - Ox, = fs Oy, s(s) dp in the ultracategory M. From the functoriality of u, we deduce the
ollowing:

(a) For each ultrafilter y on S, the point h(yu) € Z is given by f([qg(s)dp), and the map , by the
composition

g 9(s)du

Oz Oy fustorin = [, Ovato it
where 0, is determined by the left ultrastructure on the functor Oy.

In particular, we can identify u(§) : (X,0x) = lses Oy, f(s) = (Z,0z) given by amalgamating the maps

u(&g(sy) for s € S. This yields a different description of h(x) and a,:

(b) For each ultrafilter p on S, the point h(u) € Z is given by [¢(f o g)(s)du, and the map a;, by the
composition

Js ag(sydp

L OY,g(s) d,LL,

is determined by the left ultrastructure on the functor Q.

a:L
Oznw) = Oz, (fog)(s)dn — /S Oz, (fog)(s) At

’
m

It follows from (a) and (b) that we have f([qg(s)du) = [4(f o g)(s)du for every map g : S - X and
every ultrafilter 4 on S. That is, f is a morphism of ultrasets, and is therefore continuous (Theorem [3.1.5]).
Moreover, (a) and (b) also imply the commutativity of the diagram

where o

Oz.n(») — Js Oz (sog)(s) dp

lafs g(s)dp lfs ag(sydp
ou
Oy, [, g(s)du Js Ovg(s) dis,
so that « is a natural transformation of left ultrafunctors. O

Example 8.4.10. Let M = {*} denote a category with a single object and a single morphism. In this case,
the fully faithful embedding Comp,, = FunRUlt(M, Set) is an equivalence of categories; essential surjectivity

follows from Example (and Theorem [3.1.5)).

8.5. Digression: Categories with Unique Factorization. Let £ be an ultracategory envelope, let M™
be a category which admits small products, and let M € M* be a full subcategory which admits categorical
ultraproducts in M™. To prove Theorem we must show that every right ultrafunctor F : £ - M
admits an essentially unique extension to a functor F'* : £ - M™ which preserves small products. At the
level of objects, it is clear what we need to do: since every object X € £ factors as a product of coconnected
objects { X} ses, the functor F'* must satisfy F*(X) ~ [1,.q F(Xs). However, to see that this construction is
functorial, it will be important to know that the factorization X ~ [],.g X is essentially unique (Proposition
8.5.5)). For the proof, we will not need the full strength of our assumption that £ is an ultracategory envelope.

Definition 8.5.1. Let £ be a category. We will say that £ has unique factorization if it satisfies the following
axioms:

(E1) The category £ admits small products.
(E2) Every object X € £ can be written as a (small) product [],.q X5, where each factor X, is a cocon-
nected object of £.

Example 8.5.2. Every ultracategory envelope is a category with unique factorization.
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Example 8.5.3. Let £ be any category which admits small products, and let £& ¢ £ be the smallest full
subcategory which contains all coconnected objects of £ and is closed under products. Then £’ is a category
with unique factorization.

Example 8.5.4. The category Set admits small coproducts, and a set S is connected (as an object of Set)
if and only if it consists of a single element. Moreover, every set S can be written as a coproduct [I,.s{s}
of connected objects of Set. It follows that the opposite category Set°” has unique factorization.

However, Set®® is not an ultracategory envelope: if p is an ultrafilter on a set S, then the ultraproduct
Js{s}du (computed in the category Set°”) can be described concretely as the the subset of S given the
intersection M, (s,) So- If p is a nonprincipal ultrafilter, then this intersection is the empty set, which is not
a coconnected object of Set®P.

Our goal in this section is to prove the following result, which will be needed in the proof of Theorem
8. 2.0l

Proposition 8.5.5. Let £ be a category with unique factorization (Definition . Suppose we are given
families of coconnected objects {Xs}ses and {Yi}ier, and let f: [1seq Xs = [ier Yz be an isomorphism. Then
there exists a bijection p: S ~T' and a collection of isomorphisms fs: X =Y, such that f is the the product
{fs}
map [lses Xs — Tlses Yp(s) ~ [Tier Yz
The proof of Proposition will require a few preliminaries.

Lemma 8.5.6. Let £ be a category with unique factorization containing morphisms v : X — X' and v :
Y > Y, and suppose that the product map (uxv): X xY - X' xY" is an isomorphism. Then u and v are
isomorphisms.

Proof. Fix an object Z € £; we will show that composition with v and v induce bijections
¢:Homg (X', Z) - Home (X, Z) ¥ :Homg(Y', Z) - Homg (Y, Z).
Writing Z as a product of coconnected objects, we may assume without loss of generality that Z is cocon-
nected. In this case, the coproduct of the maps ¢ and ¢ (in the category of sets) can be identified with the
map
Homg (X' xY', Z) - Homg (X x Y, Z)
given by precomposition with u x v, and is therefore bijective. |

Lemma [8.5.6| immediately implies the following slightly stronger assertion:

Lemma 8.5.7. Let £ be a category with unique factorization and let {us : X5 » Ys}ses be a collection of
morphisms in €. Suppose that the product map [Iseg Xs = [lseg Ys @5 an isomorphism. Then each ug is an
isomorphism.

Lemma 8.5.8. Let £ be a category with unique factorization, let {Xs}ses be a collection of coconnected
objects of £ having product X = [l,eg Xs. Then every direct factor of X has the form [ls; Xs for some
subset I € S.

Proof. Suppose we are given a pair of maps f: X — Y and g: X — Z which exhibit X as a product of Y and
Z in the category €. For each s € S, let ps : X — X, be the projection map. Since each X is coconnected,
composition with f and g induce a bijection

Homg (Y, X;) u Homg (Z, X) » Homg (X, X5).

In particular, each of the maps ps factors uniquely either as a composition X ER y L Xsor X ERY/ LN Xs.
Let I ¢ S be the collection of those indices s for which p, factors through f. Then {p;}ser and {p?}ser
induce maps u:Y — [[,; X and v: Z — [y X, and the product map
(uxv):YxZeHXs
seS
is an isomorphism. Applying Lemma [8.5.6] we deduce that v and v are isomorphisms. (]
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Remark 8.5.9. Let £ be a category which admits finite products, so that £ has a final object 1. Then an
object X € £ is coconnected if and only if it satisfies the following pair of conditions:

e The set Homg(1,X) is empty.
e For every pair of objects Y, Z € £, the canonical map

Homg (Y, X) u Homg (Z, X) - Homg (Y x Z, X)

is bijective. In other words, every f:Y x Z — X factors (uniquely) through either Y or Z (but not
both).

In particular, the final object 1 € £ is not coconnected.

Lemma 8.5.10. Let £ be a category with unique factorization and let {Xs}ses be a collection of coconnected
objects of € having product X = [l,eg Xs. Then X is coconnected if and only if S is a singleton.

Proof. We will show that if X is coconnected, then S is a singleton (the converse is immediate). We first
note that S is nonempty (since the final object 1 € £ is not coconnected; see Remark . If S has more
than one element, then we can write S = I uJ for nonempty subsets I, J €.S. We then have projection maps
p:X > Xileer Xs and ¢ : X —» X = [I4e5 Xs which exhibit X as a product of X; and X ;. Using the
coconnectivity of X, we deduce that the identity map idx factors (uniquely) through either p or ¢. Without
loss of generality, we may assume that idx = f o p for some map f: X; - X. For each s€ J, let g;: Xy - 1
be the projection map. Then the composition
Fx{gs}
X:XIXHXS—>X><H1:X
seJ seJ

is the identity map idx. It follows from Lemmal8.5.7|that each g is an isomorphism. This is a contradiction,
since the objects X are coconnected and therefore cannot be final objects of £. O

Proof of Proposition[8.5.5 Let € be a category with unique factorization and let f : [T,eg Xs = [Tjer Yz be an
isomorphism in &€, where each X, and each Y; is coconnected. For each sg € S, the composition of f~* with
the projection map [],.g Xs = X5, exhibits X, as a direct factor of [T,er Yi. It follows from Lemma [8.5.8
that this factor must have the form [],.; Y;, for some subset I € T'. Since X, is coconnected, we must have
I={p(s0)} for some element p(sg) € T (Lemma [8.5.10). It follows that f fits into a commutative diagram

!
[lses Xs ——Iler Y2

.

Xso — Y(s0)

for some isomorphism f, : Xs, = Y, (,,). To complete the proof, it will suffice to show that p is bijective. This
follows by the same analysis (with the roles of S and T reversed): for each element ¢y € T', the composition

[Tses Xs ER [Tier Y2 — Y3, exhibits Y;, as a coconnected direct factor of [],.g X5, which is therefore of the
form X, for some unique element sg € S. O

Remark 8.5.11. Let £ be a category with unique factorization. Then, for every pair of objects X,Y € &,
the projection maps X « X xY — Y are epimorphisms in £. In other words, for every object Z € &, the
canonical maps

Home (X, Z) - Home (X x Y, Z) < Home (Y, Z).

To prove this, we can factor Z as a product of coconnected objects and thereby reduce to the case where Z
is coconnected. In this case, i and j are inclusions of complementary summands (Remark [8.5.9)).
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8.6. The Proof of Theorem We begin with some general observations concerning ultracategory
envelopes.

Remark 8.6.1. Let £ be an ultracategory envelope, and suppose we are given a collection of coconnected
objects {X;}ses indexed by a set S. For each ultrafilter p on S, we let

[S Xedp ~ h_H)l H Xs.
1(S0)=15¢50
denote the categorical ultraproduct of Construction [1.2.2] For each subset Sy € S, the canonical map
[Tses Xs = [lses, Xs is projection onto a direct factor, and is therefore an epimorphism in £ (Remark
8.5.11)). Passing to the direct limit, we see that the map g, : [Tses Xs > fS Xsdp of Notation is also an
epimorphism in £.

Lemma 8.6.2. Let £ be an ultracategory envelope, let {Xs}ses be a collection of coconnected objects of &,
and let Y be another coconnected object of £. Then composition with the maps q, : [1ses Xs - js Xsdu of
Notation [1.2.3 induces a bijection

11 Homgcc(f Xodp,Y) > Home ([ X, V).

peBs S seS

In other words, every morphism [l,g Xs = Y factors uniquely through g, : [14es Xs - ]S Xsdp for some
uniquely determined ultrafilter y on S.

Proof. For each subset Sy € 5, set X, = [[ses, Xs- Our assumption that Y is coconnected guarantees that
the map
HOHIg(XSO, Y) H HOIl’lg(AXS\SO7 Y) g Homg(Xs, Y)

is bijective. In particular, every map f : Xg — Y factors through exactly one of the projection maps
Xs, « Xg » Xg.s,. It follows that the map

1 if f factors through Xg - Xg,

0 otherwise.

p:P(S) ~{0,1} u(So)={

is an ultrafilter on .S, which is uniquely determined by the requirement that f factors through the map
i Xs e lim, X e :
From Lemma we can immediately deduce a weak version of Theorem

Proposition 8.6.3. Let £ be an ultracategory envelope, let M™ be a category, and let M € M™ be a full
subcategory which has ultraproducts in M*. Then the functor Fun' (£, M) -» Fun®"" (£°°, M) of Theorem

is fully faithful.

Proof. Let F*,G* : £ - M" be functors which preserve small products and carry £° into M and let
a: F - G be a natural transformation. We wish to show that if « is a natural transformation of right
ultrafunctors, then it extends uniquely to a natural transformation between F'* and G*.

For each object X € &, choose a set S(X) and a collection of maps {px s : X = X}ses(x) which exhibit
X as a product of coconnected objects X of £ (by virtue of Proposition this product decomposition
is essentially unique; however, we do not yet need to know this). Since the functor G* preserves products,
there is a unique map a*(X) : F*(X) - G*(X) which fits into a commutative diagram

{F*(px,s)}ses(x)
FH(X) —————— [Lses(x) F(X5)

ot (X) Maes(x) a(Xs)

{G*(px.s)}ses(x)
G (X) ———— Tlees(x) G(Xs).
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It is clear that if o extends to a natural transformation from F* to G*, then the extension must be given by
X ~ a*(X). Moreover, from the uniqueness of a*(X) (and the naturality of o) we see that a*(X) = a(X)
when X is coconnected. It will therefore suffice to show that a* is a natural transformation. That is, we
must show that for any morphism f: X — Y in the category &£, the left square in the diagram

F*(f) {F*(py.¢) }tes(v)
F*(X) FHY) ————— Twes(v) F'(Y2)
at(X) a*(X) {a(¥1)}
G*(f) {G* (py,t) }tes(v)
G*(X) G*(Y) [iesvy G(Yr)

commutes. Since the right square commutes by construction and the horizontal maps on the right are
bijective, it will suffice to show that the outer square commutes: that is, for each ¢ € S(Y), we have a
commutative diagram o :

F*(ft)

F*(X) F(Y7)
o (Y) a(Yy)
GH(X) G™(fe) Q)

where f; denotes the composition py: o f. Using Lemma we see that f; factors (uniquely) as a

composition X 2, fs(x) Xsdu ELN Y; for some ultrafilter 4 on the set S(X). Unwinding the definitions, we
can identify o with the outer rectangle in the diagram

m F(fo)
Maesoy FOX) 2 [y F(X )t —————— B[y Xodgt) — 2 (v,
Hses(x)a(Xs) /S(X) a(Xs)dp O‘(fs(x) Xsdp) a(Y:)
an G(fo)
Macsy G(Xa) —— 2 [y GOX ) ——————= G(fs 0y Xodt) (v,

Here the left square commutes by the functoriality of the ultraproduct construction, the right square com-
mutes by the naturality of «, and the middle square commutes by virtue of our assumption that « is a
natural transformation of right ultrafunctors. O

To complete the proof of Theorem [8.2.6] it will suffice to prove the following;:

Proposition 8.6.4. Let £ be an ultracategory envelope, let M™ be a category, and let M € M™ be a full
subcategory which has ultraproducts in M*. Let F : £°° - M be a right ultrafunctor. Then there exists
a functor F* : & - M*, which preserves small products and carries £ into M, and an isomorphism
a: F*|gee ~ F of right ultrafunctors from E°° to M.

The proof of Proposition [8.6.4] requires a straightforward but somewhat lengthy construction. For the
remainder of this section, we fix an ultracategory envelope &, a category M™ which admits small products, a
full subcategory M ¢ M™ which admits categorical ultraproducts in M", and a right ultrafunctor (F,{v,})
from £° to M.

Construction 8.6.5 (The Functor F* on Objects). For each object X € &, choose a collection of maps
{px,s + X = X }ses(x) which exhibit X as a product of coconnected objects X of £ (as in the proof of
Proposition. We let F*(X) denote a product [Tes(x) F'(Xs), formed in the category M*. Note that
when X is coconnected, then S(X) is a singleton (Lemma|8.5.10) so we can arrange that F*(X) belongs to
M.
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Notation 8.6.6. Let f: X — Y be a morphism in the category &£, where Y is coconnected. It follows from

Lemma that f factors uniquely as a composition
qu
X~ ] X.2% Xodpy 2y
5eS(X) 5(X)

for some uniquely determined ultrafilter 1y on S(X). Let ¢y : F*(X) - F(Y) denote the morphism in M™
given by the composition

Py = T P = [

s€S(X) s

Ty F(fo)
F(X)duy -5 F f Xodu) 29 poyvy.
) (Xs)dpy (S(X) 1) (Y)

Example 8.6.7. Let X be an object of £ and take f: X — Y to be the projection map px s, : X - X, for
some sg € S(X). In this case, the map ¢ : F*(X) - F(Y) = F(X,,) of Notation is defined to be the

composition

FrX)= T[] F(XS)—>f F(Xs)dasth(f X,ds,,)
seS(X) 5(X) S(X)

F(e s
T, (p(x,,)).

where €g(x),s, : fS(X) Xsdds, ~ X5, is the isomorphism of Example Using condition (1) of Definition
we can rewrite this composition as

F+X: FX5_> FXsdas
()= 1 PO iy FE,

€5(X),s0

F(XSO)7

which coincides with the projection map [Tses(x) F'(Xs) = F/(Xs,)-

Remark 8.6.8. Suppose that we are given a composable pair of morphisms X ER Y % Z in the category &,
where both Y and Z are coconnected. Then the morphism ¢gos : F*(X) — F(Z) of Notation factors
as a composition F'(g) o ¢y.

To define the functor F'* on morphisms, we will prove the following:

Lemma 8.6.9. Let f: X - Y be a morphism in E. Then there is a unique morphism F*(f): F*(X) -
F*(Y) in the category M* with the following property:
(%) For every morphism g:Y — Z in &, where Z is coconnected, the diagram

FH(X) FH(f)

m Py

F(2)

F(Y)

commutes.

Proof. For each s € S(Y), let f,: X - Y, denote the composition X Ly o Y;. Using Lemma we
see that fs factors as a composition

X= ] Xt—'li)/ Xodv, L v,
teS(X) S(X)
for some uniquely determined ultrafilter vs on S(X) and morphism ?5 : f S(x) X:dvy - Y, between cocon-

nected objects of £. Let us define F*(f) to be the unique morphism from F*(X) to F*(Y) having the
property that, for each s € S(Y'), the composite map

F+
Frx) 2D pryy s [T F(Ye) > F(YL)
s'eS(Y)
coincides with ¢y, . It follows from Example that F*(f) is the unique morphism from F*(X) to F*(Y")
which satisfies condition (*) in those cases where g:Y — Z is one of the projection maps py,s:Y — Y.
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To complete the proof, we must show that the morphism F*(f) satisfies condition (*) for any morphism
g:Y - Z where Z is coconnected. Using Lemma we can factor the morphism g as a composition

y=J] .2 / Yodp 2 7
seS(Y) 5(Y)

for some ultrafilter 1 on S(Y). By virtue of Remark [8.6.8] we may replace the map ¢g : Y — Z with the
epimorphism g, : [Tses(v) ¥s = fS(Y) Ysdp, and thereby reduce to the case where g is the identity map. Let
A denote the ultrafilter on S(X) given by [, s(v) Vsdi, so that go f is given by the composition

Apve Tscyy Fodr
X= 1] Xtﬂ)f Xtd/\‘_*,f ( Xths)dML’f xm
teS(X) 5(X) s(y) Js(x) S(Y)

where A, ,, is the Fubini transformation of Notation [1.2.9} It follows that ¢ is given by the clockwise
composition in the diagram

q y
Mies(x) F(Xe) - Jscx) F(X1)dA 2 F([sx) Xed))
{qu }SES(Y) A}.L,l/.
q
1_[ses(Y)fS(X)F(X’f)dys - fS(Y)([S(X)F(Xt)st)d,U F(Apve)
Msesv) Tos TsqvyTwsdn
q ¥
[ses(v) F(jS(X) Xydv) —— [S(Y) F(fS(X) Xydvg)dp) —— F(fs(y)(fs(x) Xedvg)dp)
Msesvy F(?g) fs(y) F(?s)d# F(.[S(Y)?sdl‘l’)
ax Y

Msesory F(Ys) —————— ]s(y) F(Ys)dp F(]s(y) Ydp),

while the counterclockwise composition coincides with ¢, o F*(f). It will therefore suffice to show that the
diagram commutes. Here the commutativity is immediate except for the rectangle in the upper right, which
commutes by virtue of the compatibility of the maps v with the ultrapower diagonals in the categories £°°

and M (condition (2) of Definition |8.1.1]). O

Let f: X > Y and g: Y — Z be a pair of morphisms in the category £. It follows immediately from

F P
the definitions that the composite map F*(X) RCIN F*(Y) W, F*(Z) satisfies condition (*) of Lemma

and therefore coincides with F"*(g o f). Similarly, for each object X € &, the identity map idp+(x)
satisfies condition (*) of Lemma and therefore coincides with F*(idyx). Consequently, we can regard
Construction and Lemma as defining a functor F*: & - M™*.

Notation 8.6.10. For each coconnected object X of &, let ax : F*(X) — F(X) denote the morphism ¢iq
of Notation [R.6.61

Lemma 8.6.11. The construction X — ax of Notation|8.6.1(] determines a natural isomorphism of functors
F+ gee = F.

Proof. We first note that X is a coconnected object of £, then the set S(X) has a single element s (Lemma
8.5.10) and the projection map px,s: X - X, is an isomorphism. It follows from Example and Remark
S

.6.8| that the map ax : F*(X) = X, - X is the inverse isomorphism p}&s. To complete the proof, it will
suthice to show ax is natural in X: that is, for every morphism f: X — Y between coconnected objects of
&, we have a commutative diagram

P 0 S F(Y)

o b

Fx) 2% pv.
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The clockwise composition coincides with ¢; by virtue of condition (*) of Lemma [8.6.9) and the counter-
clockwise composition coincides with ¢; by Remark O

Lemma 8.6.12. The functor F*: £ - M™* preserves small products.

Proof. Since £ is an ultracategory envelope, every object of £ can be decomposed as a product of coconnected
objects. It will therefore suffice to show that the functor F'* preserves products of coconnected objects.
Suppose we are given a collection of maps {u; : X - X, };cr which exhibit X as a product of the objects
X;; we wish to show that the maps F*(u;) : F*(X) — F*(X;) exhibit F*(X) as a product of the objects
{F*(X;) }ier- By virtue of Proposition we may assume without loss of generality that I = S(X) and
each ug is the projection map px s : X — X, chosen in Construction @ In this case, we can identify
F*(us) with the composition
-1
Fr(X)= J] Xu-X,25%F(X.),
s’eS(X)
from which the desired result is immediate. O

Proof of Proposition[8.6.7} The functor F* : &€ > M" carries £ into M by construction, and preserves
small products by Lemma Using Remark we can regard F'*|gee as a right ultrafunctor from
E° to M. To complete the proof, it will suffice to show that « is a natural isomorphism of right ultrafunctors.
In other words, we wish to show that for every collection of coconnected objects {X;}ter of € and every
ultrafilter i on T', the diagram

Ir a;(ltdu "
/TF(Xt)dM [TF (Xe)dp
o b
/T tdp B
F(fy Xedp) F*(fy Xedp)

commutes, where VL is determined by the right ultrastructure structure on F*|gec.op.
Writing the ultraproduct [ F*(X;)dp as a filtered colimit of products [Tz, F*(X¢), we are reduced to
proving an equality
-1 T -1 T
7,0 (fT ax,dp)oq,’ = Op Xydp © Vi © 4’
for each Ty € T with u(Ty) = 1. Set Y = [y, X¢, where the product is formed in the category £. Using
Proposition we can choose a bijection p : S(Y) ~ Ty such that each of the projection maps ¥ —
[Tter, Xt = X,(s) factors as a composition Y’ P, Y, = X ,(s), Where u, is an isomorphism. Since u(Tp) = 1,
we can write 4 as the pushforward p. (o) for some ultrafilter po on the set S(Y"). Consider the diagram

Mees(yy F(u Miery @%,

Msesvy F(Ys) —> Mier, F (X)) ———— Tlier, £ (X)

T T
Apo q,° q,°

/. F(us)dpo /. oz_lrdu
Jsory P 225 [ POy dp —— s [ P (X,)dp

Yo Y 'Y,’L

-1
(fs(Y) sdpio X Xydu

F(fsYsdpo) F(fp Xidp)
Note that the composition of the horizontal maps at the top of the diagram can be identified with the
comparison isomorphism F*(Y) = F* (Iyer, Ys) = Tleer, F*(X¢). Invoking the definition of v/, we see that
clockwise composition around the diagram yields the map F+(q50) cFH(Y) = F*(Ter, Xt) = F* ([ Xedp).

F(fp Xodp).
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On the other hand, counterclockwise composition yields the morphism a]l Xydp © Pos where ¢, is defined as
T

in Notation W Using condition (*) of Lemma we deduce that the outer square of this diagram
commutes. Consequently, to show that the rectangle on the right side commutes, it will suffice to show that
the two squares on the right commute. Taking inverses of the horizontal maps and noting that we can write
w=p«(po) = fs(y) dp(s)dpto, we are reduced to proving the commutativity of the diagram

MFu;)
HSES(Y) F(Y;) HteTu F(XS)
lQuo Lq:{g
fs(y) F(us)dpo A,
[S(Y) F(Ys)dpo ~ fs(y) F(Xp(s))dpo - Jr F(Xy)du
l’mo \L'YMJ L'Y;L
F(fs¢vy usdpo) F(Apug . p);
F([seyy Ysdpo) =————F([s(yy Xp(s) o) =——— 0 F(fp Xedp);
here A, denotes the ultraproduct diagonal of Notation so the lower right square commutes by virtue
of our assumption that the maps {7, } comprise a right ultrastructure on F. (]

In this appendix, we review some well-known concepts and results from category theory and sheaf theory
which are needed in the body of this paper. Since these ideas are treated extensively elsewhere in the
literature, our exposition is somewhat terse.

APPENDIX A. CATEGORY THEORY
A.1. Regular Categories.

Definition A.1.1. Let C be a category which admits fiber products, and suppose we are given a morphism
f:X >Y inC. Let X xy X denote the fiber product of X with itself over Y, and let m,7" : X xy X - X
denote the projection maps onto the two factors. We will say that f is an effective epimorphism if it exhibits
Y as a coequalizer of the maps m, 7" : X xy X 3 X. In other words, f is an effective epimorphism if, for
every object Z € C, composition with f induces a bijection

Home (Y, Z) ~ {u € Home(X,Z) :uom=uon'}.

Remark A.1.2. Let C be a category which admits fiber products. Then every effective epimorphism is an
epimorphism. In the category of sets, the converse is true: if g: X — Y is a surjective map of sets, then
we can recover Y as the quotient of X by the equivalence relation R = X xy X = {(z,2') : g(z) = g(z)}.
However, this need not be true in a general category.

Definition A.1.3. Let C be a category. We will say that C is regular if the following conditions are satisfied:
(R1) The category C admits finite limits.
(R2) Every morphism f: X - Z in C can be written as a composition X 5 Y Lz , where ¢ is an effective
epimorphism and h is a monomorphism.

(R3) The collection of effective epimorphisms in C is closed under pullbacks. That is, if we are given a
pullback diagram

X —X
Y ——=Y
in C where f is an effective epimorphism, the morphism f’ is also an effective epimorphism.

In the situation of Definition the factorization demanded by (R2) is depends functorially on the
morphism f: X - Z.
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Proposition A.1.4. LetC be a category which admits fiber products, and suppose we are given a commutative
square

y —L v

If p is an effective epimorphism and j is a monomorphism, then there exists a unique morphism h:Y — U
(as indicated by the dotted arrow) satisfying joh =g and hop= f.

Proof. Let m,m’ : X xy X 2 X be the projection maps. Then we have
jOfO’]'(':hOpO’]‘[’:hOpO’]‘(',:jOfO’]T,,

Since j is a monomorphism, it follows that fom = f on’. Our assumption that p is an effective epimorphism
then guarantees that there is a unique morphism h : Y — U satisfying hop = f. We will complete the
proof by showing that j o h = g. Since p is an epimorphism (Remark [A.1.2)), this follows from the identity

johop=jof=gop. O
It follows from Proposition that if C is a category which admits pullbacks and satisfies axiom (R2) of

Definition [A71.3] then the collections of monomorphisms and effective epimorphisms comprise a factorization
system on the category C. In particular, we have the following consequences:

Corollary A.1.5. Let C be a category which admits pullbacks and which satisfies condition (R2) of Definition

, Then, for every morphism f: X — Z in C, the factorization X Lyly of condition (R2) is unique
up to (unique) isomorphism.

Proof. Suppose we are given another factorization X Ly bz , where ¢’ is an effective epimorphsim and
h' is a monomorphism. Invoking Proposition we deduce that there exists a unique map u:Y - Y’
for which the diagram

x—tLoy

f/ lg'
.7

Y ——

commutes. Similarly, there is a unique morphism v : Y’ — Y for which the diagram
f
X——Y
v
i)
v —2s 2z
The uniqueness assertion of Proposition then guarantees that uov = idy+ and vowu = idy. O

Notation A.1.6. In the situation of Corollary [A-T.5] the monomorphism h : Y < Z exhibits Y as a subobject
of Z, which we will denote by Im(f) and refer to as the image of f. It follows from Proposition that
the image Im(f) depends functorially on the morphism f. More precisely, every commutative diagram

X*f>Z

L,

Xl fH ZI
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induces a map v : Im(f) — Im(f"), which is determined by the requirement that the diagram

X——Im(f) —=Z2

k]
X ——Im(f) — 2’

comimutes.

Remark A.1.7. Let C be a category which admits pullbacks, satisfying condition (R2) of Definition
Let f: X - Y be a morphism in C. Then:

(a) The morphism f is an effective epimorphism if and only if the induced map Im(f) = Y is an
isomorphism.
(b) The morphism f is a monomorphism if and only if the induced map X — Im(f) is an isomorphism.

Proposition A.1.8. Let C be a category which admits pullbacks. Suppose that the collection of effective
epimorphisms in C is closed under pullbacks (Deﬁm’tion. Then the collection of effective epimorphisms
in C is closed under composition.

Proof. Let f: X -» Y and g:Y - Z be effective epimorphisms in C; we wish to show that the composite
map go f : X - Z is also an effective epimorphism. Let m, 7" : X xz X — X denote the projection maps,
and suppose we are given a morphism v : X — C satisfying uom = uox’. We wish to show that there
exists a unique morphism w : Z — C such that u = wo go f. The uniqueness of w is clear (since f and g
are epimorphisms; see Remark . To prove existence, we first observe that u coequalizes the projection
maps X xy X = X. Invoking our assumption that f is an effective epimorphism, we deduce that there is
a unique map v : Y — C satisfying u = vo f. It will therefore suffice to prove that we can write v =wog
for some map w: Z - C. Since g is an effective epimorphism, this is equivalent to showing that the map v
coequalizes the projection maps T,7 : Y xz Y =Y. Let F': X xz X - Y xz Y denote the map induced by
F, so that we have equalities

— ’ ’ —7
voTmoF =vofor=uomr=uon =vofon =voT oF.

It will therefore suffice to show that the morphism F' is an epimorphism. In fact, we can write F' as a
composition of morphisms
)(><Z)(—>,Xv><ZYv—>Y—><Z§/7

each of which is a epimorphism because it is a pullback of f (hence an effective epimorphism). O

Remark A.1.9. One can also prove the following variant of Proposition if C is a category with fiber
products which satisfies axiom (R2) of Definition then the collection of effective epimorphisms in C
is closed under composition. This follows from the observation that the collections of monomorphisms and
effective epimorphisms determine a factorization system on C (and are therefore closed under composition).

Corollary A.1.10. Let C be a regular category, and suppose we are given a pair of effective epimorphisms
f:C > Dand f':C" > D' in C. Then the product map (f x f'): C xC" - D x D’ is also an effective
epimorphism.

Proof. The product map f x f’ can be written as a composition
xid o7 i x f’
cxcor L8 por Mo pypr,

Each of these maps is an effective epimorphism (the first because it is a pullback of f, and the second
because it is a pullback of f’). Since the collection of effective epimorphisms in C is closed under composition
(Proposition |[A.1.8)), it follows that f x f’ is also an effective epimorphism. O

Proposition A.1.11. Let C be a category which admits pullbacks and satisfies condition (R2) of Definition
. Then C satisfies condition (R3) of Definition if and only if it satisfies the following variant:
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(%) The formation of images in C is compatible with pullback. That is, for every pullback diagram

X4f>Z

L,

Xl fH ZI

in C, the induced diagram T :
Im(f) —> 2

|

Im(f'y —— 27’
is also a pullback square.

Proof. Form a commutative diagram

X Lo Im(f)xy 21>z

L

X' ———TIm(f") ——— A
where ¢’ is an effective epimorphism, A’ is a monomorphism, and the right square is a pullback. Then h
is also a monomorphism. Since the outer rectangle is a pullback, it follows that the left square is also a
pullback. If condition (R3) is satisfied, then g is an effective epimorphism. It follows that we can identify 7
with the right square of the preceding diagram, so that 7 is a pullback square and (*) is also satisfied. For
the converse, suppose that () is satisfied and that we are given a pullback diagram

X —=X

lf ! lf
Y ——=Y
where f is an effective epimorphism. Then the monomorphism Im(f) < Y is an isomorphism (Remark

IA.1.7). Using (R3), we conclude that the monomorphism Im(f’) = Y’ is also an isomorphism, so that f’ is
an effective epimorphism as desired. O

A.2. Exact Categories.

Definition A.2.1. Let C be a category which admits finite limits and let X be an object of C. We say that
a subobject R € X x X is an equivalence relation on X if, for every object Y € C, the image of the induced
map

Home(Y, R) » Home (Y, X x X) ~ Home (Y, X) x Home (Y, X)
is an equivalence relation on the set Home (Y, X).

Example A.2.2. Let C be a category which admits finite limits and let f : X - Y be a morphism in C.
Then the fiber product X xy X can be regarded as an equivalence relation on the object X.

Definition A.2.3. Let C be a category which admits finite limits and let X be an object of C. We will say
that an equivalence relation R on X is effective if there exists an effective epimorphism f: X — Y such that
R = X xy X (as subobjects of X x X).

Notation A.2.4. Let C be a category which admits finite limits, let X be an object of C, and let R be
an effective equivalence relation on X. Then there exists an effective epimorphism f : X - Y in C such
that R = X xy X. The assumption that f is an effective epimorphism then implies that it exhibits Y as
the coequalizer of the diagram R = X. In particular, Y is determined (up to unique isomorphism) by the
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equivalence relation R; we will emphasize this dependence by denoting Y by X /R. It follows the construction
R ~ X /R induces a bijection

{Effective equivalence relations R < X x X}
{Effective epimorphisms f: X - Y'}/isomorphism;
the inverse bijection carries an effective epimorphism f : X — Y to the equivalence relation X xy X of

Example [A72.2]

Proposition A.2.5. Let C be a regular category, let X be an object of C, and let R € X x X be an equivalence
relation on X. The following conditions are equivalent:

(1) The equivalence relation R is effective.
(2) There exists a morphism f: X —Y such that R=X xy X (as a subobject of X x X ).
Proof. The implication (1) = (2) is immediate. For the converse, suppose that R = X xy X for some

morphism f: X — Y. Since C is regular, the morphism f factors as a composition X EQ Im(f) & Y, where g
is an effective epimorphism and A is a monomorphism. The desired conclusion follows from the observation
that R can also be identified with the fiber product X xp,(s) X. O
Definition A.2.6. Let C be a category. We say that C is ezxact if it satisfies the following axioms:

(R1) The category C admits finite limits.
(R2") Every equivalence relation on an object X € C is effective.
(R3) The collection of effective epimorphisms in C is closed under pullbacks. That is, if we are given a
pullback diagram
X —=X
lf ! lf
Y ——=Y
in C where f is an effective epimorphism, the morphism f is also an effective epimorphism.
Example A.2.7. The category of sets is exact.

Proposition A.2.8. Let C be a category. If C is exact (in the sense of Definition , then it is reqular
(in the sense of Definition[A.1.5).

The proof requires the following elementary observation:
Lemma A.2.9. Let C be a category which admits fiber products. Suppose we are given a pullback diagram

Xl fH Yl

lgl lg
f
X——Y
in C, where both [ and f' are effective epimorphisms. If ¢’ is an isomorphism, then g is also an isomorphism.
Proof. We have a commutative diagram
X'’ Xy X —=X——>Y'
Xxy X—=X——>Y

where the rows are coequalizer diagrams and the left and middle vertical maps are isomorphisms. It follows
that g is an isomorphism as well. O
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Proof of Proposition[A.2.8 We must show that C satisfies axiom (R2) of Definition Let f: X - Z
be a morphism in C, and let R = X xz X be the equivalence relation of Example Since C is exact,
the equivalence relation R is effective. We can therefore choose an effective epimorphism g : X - Y such
that R coincides with X xy X (as subobjects of X x X). Our assumption that ¢ is an effective epimorphism
guarantees that it exhibits Y as a coequalizer of the diagram R = X. Consequently, there is a unique
morphism h : Y - Z satisfying hog = f. To complete the proof, it will suffice to show that h is a
monomorphism: that is, that the diagonal map §: Y - Y xz Y is an isomorphism. We have a commutative
diagram of pullback squares

Xxy X 2o Xxy X —>XxX

L, e

Yy —— —=Yxz; YV ——=YxY.

Since g is an effective epimorphism, axiom (R3) of Definition and Proposition guarantee that
the vertical maps in the above diagram are effective epimorphisms. Since X xz X and X xy X are both
equal to R as subobjects of X x X, the map 4’ is an isomorphism. Applying Lemma we conclude that
0 is an isomorphism, as desired. O

A.3. Extensive Categories.

Definition A.3.1. Let C be a category which admits fiber products, and let X,Y € C be objects which
admit a coproduct X 1Y. We will say that X uY is a disjoint coproduct of X and Y if the following pair of
conditions is satisfied:

e Each of the maps X - (X uY) « Y is a monomorphism.
e The fiber product X xx,y Y is an initial object of C.

Definition A.3.2. Let C be a category which admits finite limits. We will say that C is extensive if it
satisfies the following conditions:

(E1) The category C has finite coproducts, and coproducts in C are disjoint.
(E2) The formation of finite coproducts in C is preserved by pullbacks. More precisely, for every morphism
f+X =Y in C, the pullback functor

f*IC/yﬁC/X f*(U)ZUXyX
preserves finite coproducts.

Remark A.3.3. It is possible to define the notion of extensive category without assuming that C admits
fiber products; in this case, condition (E2) needs to be reformulated. For details, we refer the reader to [5].

Example A.3.4. The category of sets is extensive.

Remark A.3.5. Let C be an extensive category which admits fiber products. Then C has an initial object,
which we will denote by @. For any morphism f:C - @ in C, axiom (E2) of Definition guarantees
that the pullback functor f*:C,u — Cc preserves initial objects. In particular, the pullback f*(@) ~ C' is
an initial object of C;¢, so that C' is an initial object of C (and f is automatically an isomorphism).

Remark A.3.6. Let C be an extensive category which admits fiber products, with initial object @. For
every object C € C, there is a unique morphism f : @ — C in C. It follows from Remark that the
fiber product @ x¢ @ is also an initial object of C, so that the relative diagonal map § : @ - @ x¢ @ is an
isomorphism. It follows that f is a monomorphism in C. That is, the initial object @ can be regarded as a
subobject of any other object C' € C (which is then a least element of the partially ordered set Sub(C)).

We now collect some facts about extensive categories which will be useful in the body of this paper.
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Proposition A.3.7. Let C be an extensive category which admits fiber products. Then, for every pair of
morphisms f:C - D and f:C' - D' in C, the diagram

C——=Cul

b
D——=DubD'

is a pullback square.

Proof. Using axiom (FE2) of Definition we can identify the fiber product (C'uC”") x(p,pry D with the
coproduct of objects
X =C x(pupry D = Cxp (D x(pupry D)
Y = C' x(pupry D = C" xp: (D" x(pupry D).
Since coproducts in C are disjoint, the canonical map D — D u D’ is a monomorphism, so the map C — X is

an isomorphism. It will therefore suffice to show that Y is an initial object of C. This follows from Remark
since (D’ xpypr D is an initial object of C. O

Proposition A.3.8. Let C be an extensive category which admits fiber products and let f : C - D and
f' 0" > D' be effective epimorphisms in C. Then the induced map (fu f'): CuC’ - Du D' is also an
effective epimorphism in C.

Proof. Set R=C xp C and R’ = C’ xp/ C'. Using Proposition we see that the canonical maps
R— D xpup ((CuC") xpyp (Cul"))
R - D' xpyp ((Cul”) xpup (Cul"))
are isomorphisms. Combining this with axiom (E2), we obtain an isomorphism
RuR' - (CuC") xpyp (CuC’).
Consequently, to show that f u f’ is an effective epimorphism, it will suffice to show that the diagram
(RuR)z(CulC') - (DuD")

is a coequalizer. This is clear, since f and f’ are effective epimorphisms and the collection of coequalizer
diagrams is closed under the formation of coproducts. (I

Proposition A.3.9. Let C be an extensive category which admits finite limits and let Fin denote the category
of finite sets. Then there is an essentially unique functor F : Fin — C which preserves finite coproducts and
finite limits, given on objects by the formula F(S) = 1,51, where 1 is the final object of C. More precisely,
if we let Fun'®"(Fin, C) denote the full subcategory of Fun(Fin,C) spanned by those functors which preserve
finite limits and finite coproducts, then Funlex7”(Fin,C) s equivalent to the category * having a single object
and a single morphism.

Proof. Let Fun"(Fin,C) be the full subcategory of Fun(Fin,C) spanned by those functors which preserve
finite coproducts. Note that a functor F' : Fin — C belongs to Fun"(Fin,C) if and only if it is a left Kan
extension of its restriction to the full subcategory of C spanned by the final object 1. It follows that the
construction F + F(1) induces an equivalence Fun"(Fin,C) — C. In particular, if we let Fun’(Fin,C)
denote the full subcategory of Fun(Fin,C) spanned by those functors which preserve finite coproducts and
final objects, then Fun'(Fin,C) is equivalent to the full subcategory {1} ¢ C. In particular, the category
Fun'(Fin,C) contains an essentially unique functor F', given on objects by F(S) = I, 1. To complete the
proof, it will suffice to show that the functor F' is left exact. Since F' preserves final objects, it is sufficient
to show that it preserves fiber products. Suppose we are given maps of finite sets Sy — S < S7; we wish to
show that the canonical map
0: F(So Xg Sl) d F(So) XF(S) F(Sl)

is an equivalence. Note that, as functors of Sy, both the domain and codomain of 8 commute with finite
coproducts. We may therefore assume without loss of generality that Sy has a single element, having image



ULTRACATEGORIES 123

s € S. Similarly, we may assume that S; has a single element having image s’ € S. We now consider two
cases:

e If s # s’, then the fiber product Sy xg S is empty. It follows that the domain of 6 is an initial object
of C. Tt will therefore suffice to show that the codomain of 6 is also an initial object of C. Applying

Remark to the map

F(S0) xp(s) F(S1) = F({s}) xp(s) F(S~{s}),
we are reduced to showing that F'({s}) xp(sy F'(S\ {s}) is an initial object of C, which follows from
the disjointness of coproducts in C.

o If s = &', then we can identify § with the relative diagonal of the morphism u : F/({s}) - F(S5).
Consequently, to show that 6 is an isomorphism, it will suffice to show that u is a monomorphism.
This follows from the disjointness of coproducts in C, since u is the inclusion of a summand.

([l

Proposition A.3.10. Let C and D be extensive categories which admit finite limits, and let G:C - D be a
functor which preserves finite limits. The following conditions are equivalent:
(1) The functor G preserves finite coproducts.
(2) Let F:Fin - C be as in Proposition . Then the composition G o F' preserves finite coproducts.
(3) The functor G preserves initial objects, and the canonical map G(1) u G(1) - G(1u1l) is an
equivalence in D (here 1 denotes a final object of C).

Proof. The implications (1) = (2) = (3) are immediate. Assume that G satisfies (3); we wish to show
that for every pair of objects C,C’ € C, the canonical map 6 : G(C) u G(C') - G(C u ") is an equivalence.
Choose maps C' - 1 and C' - 1’, where 1 and 1’ are final objects of C (which we can take to be the same,
but will distinguish notationally for the sake of clarity). We have a commutative diagram

G(C)u G(C") G(1)uG(1)

I |

(G(1) xgaury G(Cu ")) n (G(1') xgur) G(Cu ")) —=G(1) 1 G(1')

- |

G(CucC) G(1ul)

and we wish to show that the left vertical composition 6 = 6" 0§’ is an isomorphism. Note that the bottom
square of this diagram is a pullback (since D is extensive) and the right vertical maps are isomorphisms (by
virtue of assumption (3)), so the map 0" is an isomorphism. It will therefore suffice to show that ¢’ is an
isomorphism. Using our assumption that 6 is left exact, we are reduced to showing that both squares in the
diagram

C——Cul'=——'

T

1——1ul'=——1’

are pullbacks, which follows from Proposition O
A.4. Pretopoi and Models.

Definition A.4.1. Let C be a category. We say that C is a pretopos if it is exact and extensive.

Example A.4.2. The category of sets is a pretopos (combine Example with Example .

Example A.4.3. Let C be a pretopos and let Cy € C be a full subcategory which is closed under the
formation of finite limits and finite coproducts, and satisfies the following further condition:
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(%) For every object X € Cy and every equivalence relation R ¢ X x X which belongs to Cp, the quotient
X /R also belongs to Cy.

Then Cg is a pretopos.
Example A.4.4. The category Fin of finite sets is a pretopos. This follows from Examples[A.4.2] and [A4.3]

Definition A.4.5. Let C and D be pretopoi. We will say that a functor F': C — D is a pretopos functor if
F preserves finite limits, finite coproducts, and carries effective epimorphisms in C to effective epimorphisms
in D. We let Fun""*"°P(C, D) denote the full subcategory of Fun(C,D) spanned by the pretopos functors.

If C is a pretopos, then a model of C is a pretopos functor M : C - Set. We let Mod(C) denote the full
subcategory of Fun(C, Set) spanned by the models of C.

A.5. Distributive Lattices.

Definition A.5.1. Let L be a partially ordered set. We say that L is a lattice if every finite subset of L has
a least upper bound and a greatest lower bound. Equivalently, L is a lattice if it has a least element 0 € L,
a largest element 1 € L, and every pair of elements z,y € L have a least upper bound x vy (called the join
of z and y) and a greatest lower bound x Ay (called the meet of z and y).
We say that a lattice L is distributive if, for every triple of elements z,y, z € L, we have the distributive
law
xa(yvz)=(zxAry)Vv(znAz).

Example A.5.2. Let C be a regular extensive category. Then, for every object X € C, the partially ordered
set Sub(X) of subobjects of X is a distributive lattice. The largest element of Sub(X) is the object X, the
least element is the initial object @ of C. Given a pair of subobjects X, X7 € X, their join and meet are
given by the formulae

X0VX1:IH1(X0HX1—>X) XQ/\X1:X0><XX1.
The distributive law follows from the assumption that coproducts and images in C are compatible with the
formation of pullbacks.

Definition A.5.3. . Let L and L' be lattices. A lattice homomorphism from L to L' is a function p: L - L'
which preserves least upper bounds and greatest lower bounds of finite subsets: that is, u satisfies the
identities
p(0) =0 plzvy) = p(x)vuly)
(1) =1 plzay) = p(e) A py).
If L is a distributive lattice, we let Spec(L) denote the set of all lattice homomorphisms g : L - {0 < 1}.
We refer to Spec(L) as the spectrum of L.

Example A.5.4. Every Boolean algebra B is a distributive lattice. Moreover, the spectrum of B as a
Boolean algebra coincides with its spectrum as a distributive lattice.

Remark A.5.5. Let L be a distributive lattice. Then the spectrum Spec(L) can be equipped with a
topology, having a basis of open sets of the form

Uy = {p € Spec(L) : pu(z) =1}
where x ranges over the elements of L. Moreover, the construction x ~ U, induces an isomorphism of
distributive lattices
L - {Quasi-compact open subsets U ¢ Spec(L)}.

Remark A.5.6. The construction L ~ Spec(L) is functorial: for every homomorphism of distributive
lattices A : L — L', composition with A induces a continuous map of topological spaces Spec(L) — Spec(L').
Moreover, formation of the spectrum is compatible with filtered colimits. If L is a distributive lattice which
is given as the colimit of a filtered diagram {L,}, then the induced map

Spec(L) - lim Spec(Lq)

is a homeomorphism of topological spaces.
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We will need the following:

Proposition A.5.7. Let A : L - L' be a homomorphism of distributive lattices. The following conditions
are equivalent:

(a) The homomorphism X is injective.
(b) The induced map of topological spaces Spec(L’) — Spec(L) is surjective.

Proof. Suppose first that (b) is satisfied, and let x,y € L satisfy A(z) = A(y). We wish to show that = = y.
We will prove this under the assumption that = <y (the general case then follows by applying this argument
with the pair (z,y) replaced by (x Ay,x) and (z Ay,y)). Assume, for a contradiction, that x # y. Let P
denote the collection of all subsets I € L which are closed downward, closed under joins, and contain the
element x, but do not contain y. Then P is nonempty (it contains the subset L., = {z € L: 2z <x}). Applying
Zorn’s lemma, we conclude that P contains a maximal element p € L. Define p: L — {0 < 1} by the formula

,u(z):{o if zep

1 otherwise.

We claim that p is a lattice homomorphism. The compatibility of p with the formation of joins follows
from our assumption that p is closed under joins, and the formula p(1) = 1 follows from our assumption
that y ¢ p (so also 1 ¢ p, since p is closed downward). To complete the proof, it will suffice to show that
w(z A z2") = u(z) Au(z"). Equivalently, we must show that if 2 A 2" belongs to p, then either z or 2’ belongs
to p. Assume otherwise. Then the sets

I={weL:(Jvep)w<vvz} I'={weL:(I ep)w' <v' vz}

are subsets of L which are downward closed, closed under joins, and properly contain p. It follows from the
maximality of p that both I and I’ must contain y. That is, we have y < vvz and y < v’ v 2’ for some v,v’ € p.
Applying the distributive law, we obtain

y<(wva)A@ vz =(ad)v(waz)v(zav)v(zaz)ep,

which is a contradiction. This completes the proof that p is a lattice homomorphism. If (b) is satisfied, then
we can write u = ' o A, for some lattice homomorphism p' : L’ - {0 < 1}. The identity A(x) = A(y) then
shows that p(z) = u(y), which is a contradiction.

We now show that (a) implies (b). Assume that X is injective, and let p : L — {0 < 1} be a lattice
homomorphism. Let Q denote the collection of all subsets I € L’ which are closed downward, closed under
joins, contain A(x) for each element x € L satisfying u(z) = 0, and do not contain A(x) for elements x € L
satisfying p(x) = 1. Our assumption that A is injective guarantees that the set

{yeL :(3zeL)[p(x) =0 and y < A\(z)]}

belongs to Q. In particular, @ is nonempty. We can therefore choose a maximal element q € Q. Define
' : L' - {0 <1} by the formula
0 ifyeq
1 (y) = {

1  otherwise.

By construction, we have p = p’oA. We will complete the proof by showing that p’ is a lattice homomorphism,

so that p is the image of ' under the map Spec(L’) o Spec(L). Arguing as above, we are reduced to
showing that if we are given a pair of elements y,y’ € L’ such that y A 3’ belongs to q, then either y or 3’
belongs to q. Assume otherwise: then the sets

J={wel :(vequw<vvy} J'={w el : (I eq)uw <v' vy'}

are downward closed, closed under joins, and properly contain q. It follows from the maximality of q that
J must contain an element of the form A\(z) where u(z) = 1, and J’ must contain an element of the form
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A(") where u(z') = 1. We therefore have A(x) < v vy and A(z") Av' vy, for some elements v,v’ € g. Using
the distributive law and the fact that A is a lattice homomorphism, we obtain

Mz az') = Mz)ad()
< (vvy)a(vvy)
= (vAv)v(vay)v(yav)v(yay')
€ q.
Since p(x Ax') = p(x) A p(z’) = 1, this contradicts our assumption that q belongs to Q. O

APPENDIX B. SHEAF THEORY
In this section, we review the theory of Grothendieck topologies and the associated sheaf theory.
B.1. Grothendieck Topologies.

Definition B.1.1. Let C be a category. A sieve on C is a full subcategory ¢ c ¢ with the following
property: for every morphism f:C’ - C in C, if C belongs to C© then €’ also belongs to cO 1fCecis
an object, then a sieve on C is a sieve on the overcategory C,c.

Let f: D — C be a morphism in the category C. If C;OC) € Cc is a sieve on the object C, then we let
fr C;g,) denote the sieve on D consisting of those morphisms ¢ : £ — D such that the composite morphism

(fog): E— C belongs to C;OC). We will refer to f* C;OC) as the pullback of the sieve C;OC).

Remark B.1.2. Let C be a category containing an object C' and let {f; : C; — C}icr be a collection of
morphisms having codomain C. Then there is a smallest sieve C;g? < C/c which contains each f;: namely, the

full subcategory of C;c spanned by those morphisms g : D — C which factor as a composition D — C; N C,
for some 7 € I. We will refer to C;g) as the sieve generated by the morphisms f;. We say that a sieve C;g) is
finitely generated if it is generated by a finite collection of morphisms in C.

Definition B.1.3. Let C be a category. A Grothendieck topology on C is a procedure which assigns to each

object C € C a collection of sieves on C', which we refer to as covering sieves. This assignment is required to
have the following properties:

(T'1) For each object C € C, the sieve C;¢ is a covering sieve on C.

(T2) For each morphism f: D — C in C and each covering sieve C;OC) € Cyc on C, the pullback f* C;OC) is
a covering sieve on D.
(T3) Let C;g) € Cjc be a covering sieve on an object C' € C and let C;g be another sieve having the

(0)

i the pullback f* C;é) is a covering

property that for every morphism f : D — C belonging to C
sieve on D. Then C;lc) is a covering sieve on C.

If C is equipped with a Grothendieck topology, then we will say that a collection of morphisms {f; : C; - C}
is a covering if it generates a covering sieve on C' (see Remark [B.1.2)).

Example B.1.4. Let X be a topological space and let U (X) denote the partially ordered set of all open
subsets of X, regarded as a category. Then we can equip U(X) with a Grothendieck topology, where a
collection of morphisms {U; € U };¢s is a covering of an object U e U(X) if U = User Ui
Example B.1.5. Let C be a category and let .% : C°P — Set be a functor. We will say that a sieve C;OC) cCic
is a % -covering if, for every morphism f: D — C in C, the canonical map

a7 4 a7

F(D)—~ lm F(E)

Be(f* i)

is bijective. The collection of .Z-covering sieves determines a Grothendieck topology on C: axioms (7'1) and
(T2) are immediate from the definition, and axiom (7'3) follows by an easy interchange of limits argument.
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B.2. Sheaves for a Grothendieck Topology. Let C be a category equipped with a Grothendieck topology.
We say that a functor .# : C°® — Set is a sheaf if it satisfies the following condition: for each object C € C

and each covering sieve C;g) € C,c, the canonical map
F(C) — @ Z (D)
De(ci)er
is a bijection.

Notation B.2.1. Let C be a category equipped with a Grothendieck topology. We let Shv(C) denote the
full subcategory of Fun(C°", Set) spanned by those functors which are sheaves on C.

Example B.2.2. Let X be a topological space and let U (X)) denote the partially ordered set of open subsets
of X. We let Shv(X) denote the category Shv(U (X)), where U(X) is endowed with the Grothendieck
topology of Example We will refer to objects of Shv(X) as sheaves on X.

Remark B.2.3. Let C be a category equipped with a Grothendieck topology and let .Z : C°? — Set be a
functor. Then .Z is a sheaf if and only if every covering sieve (for our Grothendieck topology on C) is a
F-covering sieve (in the sense of Example . In other words, the Grothendieck topology of Example
is the finest Grothendieck on C with respect to which .# is sheaf.

The following result is standard (see [11] for a textbook account):

Proposition B.2.4. Let C be a small category equipped with a Grothendieck topology. Then the inclusion
functor Shv(C) = Fun(C°®,Set) admits a left adjoint L : Fun(C°?,Set) - Shv(C). Moreover, the functor L
preserves finite limits.

We refer to the functor L : Fun(C°?,Set) — Shv(C) as the sheafification functor.

Warning B.2.5. In §7] we will study sheaves on the category Pro(C) of pro-objects of a (small) pretopos C.
The category Pro(C) is not small, and Proposition does not apply to this situation. In order to sheafify
a presheaf % : Pro(C)°P — Set taking values in the category of small sets, one needs to allow sheaves which

take non-small values. For us, this is irrelevant; we will have no need to sheafify any set-valued presheaves
on Pro(C).

Definition B.2.6. Let C be a category. For each object C € C, we let he : C°P - Set denote the functor
represented by C, given on objects by the formula he(D) = Home(D,C). We say that a Grothendieck
topology on C is subcanonical if each of the functors he is a sheaf. In this case, the construction C' ~ h¢
determines a fully faithful embedding h : C < Shv(C), which we will refer to as the Yoneda embedding.

Remark B.2.7 (Sheafified Yoneda Embedding). Let C be a small category equipped with a Grothendieck
topology. For each object C' € C, we let he denote the sheafification of the representable functor he =
Home (e, C). The functor C he then determines a functor i : C — Shv(C), which we will refer to as the
sheafified Yoneda embedding. Beware that this terminology is somewhat misleading: if the Grothendieck
topology on C is not subcanonical, then the functor h:C— Shv(C) is not fully faithful.

B.3. Example: The Regular Topology.
Definition B.3.1. Let C be a regular category (Definition , and let C;OC) be a sieve on an object C € C.

We say that C;OC) is a regular covering sieve if it contains an effective epimorphism D — C.

Proposition B.3.2. Let C be a regqular category. Then the collection of reqular covering sieves determines
a Grothendieck topology on C.

Proof. Axiom (T'1) of Definition follows from the fact that each identity map idg : C — C is an
effective epimorphism in C, and axiom (7'2) from fact that effective epimorphisms in C are stable under
pullback (axiom (R3) of Definition [A.1.3). Axiom (7'3) follows from the fact that the collection of effective
epimorphisms in C is closed under composition (Proposition . O
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Definition B.3.3. Let C be a regular category. We will refer to the Grothendieck topology of Proposition
as the regular topology on C.

Remark B.3.4. Let C be a regular category. Then a collection of morphisms {f; : C; = C};cs is a covering
for the regular topology if and only if some f; : C; - C'is an effective epimorphism. In particular, the regular
topology on C is the coarsest Grothendieck topology for which effective epimorphism D — C' generates a
covering sieve.

Proposition B.3.5. Let C be a regular category. Then a functor F : C°® — Set is a sheaf with respect to
the reqular topology if and only if it satisfies the following condition:

(%) For every effective epimorphism D - C in C, the diagram of sets
F(C)—> F (D)= F(Dxc D)
s an equalizer.

Corollary B.3.6. Let C be a regular category. Then the reqular topology on C is subcanonical. That is, for
every object E € C, the representable functor hg(e) = Home(e, F) is a sheaf for the regular topology.

Proof. By virtue of Proposition it suffices to verify that for every effective epimorphism D - C in C,
the diagram of sets
Home¢(C, E) - Home(D, E) 2 Home(D x¢ D, E)

is an equalizer. This is precisely the definition of an effective epimorphism. (]
Proposition [B:3.5]is a consequence of the following:

Lemma B.3.7. Let C be a category which admits fiber products, let f: D — C be a morphism in C, and let
C;OC) €Cjc be the sieve generated by f. Then the canonical map

lm  #(E) > Bq(F(D) = #(D xc D))
EGCEOC)’OP

is a bijection.

Proof. Fix an element 7 € .% (D). Unwinding the definitions, we see that 7 can be lifted to an element of the

inverse limit Lir—nEec(O)“’P Z (E) if and only if, for every pair of maps u,v: E - D in C satisfying fou= fog,
(e}

the induced maps % (u), % (v) : F(D) - F(E) carry n to the same point of .Z#(FE) (moreover, the lifting
is unique if it exists). To verify this condition, it suffices to treat the universal case where E = D xo D and
u,v: F — D are the projection maps. (|

Proof of Proposition[B.3.5, Let C be a regular category and let .# : C°® — Set be a functor. Then .7 is a
sheaf for the regular topology if and only if every regular covering sieve is a .%-covering sieve, in the sense of
Example (Remark [B.2.3). By virtue of Remark this is equivalent to the requirement that every
effective epimorphism D - C in C generates a .#-covering sieve. According to Lemma this holds if
and only if .Z satisfies condition (*) of Proposition m a

B.4. Example: The Extensive Topology.

Definition B.4.1. Let C be an extensive category which admits pullbacks, and let C;OC) be a sieve on
an object C € C. We say that C;g) is a extensive covering sieve if it contains a finite collection of maps

{C; = C'}er which exhibit C as a coproduct of the collection {C;}ier-

Proposition B.4.2. Let C be an extensive category which admits pullbacks. Then the collection of extensive
covering sieves determines a Grothendieck topology on C.

Proof. Axioms (T'1) and (T'3) of Definition follow immediately from the definition, and (7'2) follows
from axiom (E2) of Definition [B.4.3] O
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Definition B.4.3. Let C be an extensive category which admits pullbacks. We will refer to the Grothendieck
topology of Proposition as the extensive topology on C.

Remark B.4.4. Let C be an extenstive category. Then a collection of morphisms {f; : D; = C}s is a
covering for the extensive topology if and only C' can be written as a finite coproduct [],c; C;, where each
of the inclusion maps C; — C factors through f; : D; = C for some i (which might depend on j).

In particular, the extensive topology on C is the coarsest topology having the property that, for every
finite collection of objects {C}}je; with coproduct C =11, ; C}, the inclusion maps {C; = C}je; comprise a
covering.

Proposition B.4.5. Let C be an extensive category which admits pullbacks. Then a functor % : C°P — Set
is a sheaf with respect to the extensive topology if and only if it preserves finite products (that is, it carries
finite coproducts in C to products of sets).

Corollary B.4.6. Let C be an extensive category which admits pullbacks. Then the extensive topology on C
is subcanonical.

We will deduce Proposition from the following:

Lemma B.4.7. Let C be an extensive category which admits pullbacks and let % : C°® — Set be a functor
having the property that F(2) is a singleton (where @ denotes an initial object of C). Let {C;}icr be a
finite collection of objects of C having coproduct C =11;.; C;, and let C;OC) € Cjc be the sieve generated by the
tautological maps C; — C. Then the canonical map
i F(D)  [[7(C)
Dec§er v
is bijective.
Proof. Suppose we are given an element 7 € [1,.; % (C;), given by a tuple {n; € % (C;) }ier; we wish to show
that 1 can be lifted uniquely to a point
ﬁ:{ﬁD}Decjoc) € Lin <ﬂ\(lj)
DEC;OC)’Op

Uniqueness is clear: for any morphism f: D — C which belongs to the sieve C;OC), we can choose a factorization

of f as a composition D EN C; — C, so that 7, must be given by the image of n; under the map Z(f') :
F(C;) - F (D). To prove existence, it will suffice to show that this construction is independent of the
factorization chosen. Since coproducts in C are disjoint, the tautological maps C; — C' are monomorphisms;
consequently, the morphism f’: D — C; is uniquely determined once ¢ is fixed. Consequently, it will suffice
to show that if we have a commutative diagram o :

D¢

|

Cj 4>C,

then 7); and 7; have the same image in the set .%# (D). Note that the disjointness of coproducts in C guarantees
that the fiber product C; x¢ C; is an initial object of C, so that D is also initial (Remark [A.3.6]). It follows
that the set # (D) is a singleton, so the desired equality is automatic. ]

Proof of Proposition[B-].5 Let C be an extensive category which admits pullbacks and let .Z : C°P — Set
be a functor; we wish to show that % is a sheaf for the extensive topology if and only if it preserves
finite products. Note that, if @ denotes the initial object of C, then the empty sieve is a covering of @.
Consequently, if .Z is a sheaf for the extensive topology, then the set % (@) must be a singleton. Let us
henceforth assume that this condition is satisfied. Then .% is a sheaf for the extensive topology if and only
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if every extensive covering sieve is a .#-covering sieve, in the sense of Example (Remark . By
virtue of Remark this is equivalent to the requirement that for every finite collection of objects {C; }ser
having coproduct C, the inclusion maps {C; — C'};c; generate a #-covering sieve C;OC) cCjc- It follows from
axiom (FE2) of Definition that the formation of this sieve is compatible with pullback, so we only need
to check that the canonical map

0:7(C)~ lim F(D)

De(cjfg)op
is a bijection. Using Lemma we can identify 6 with the canonical map % (C) — [1;c; #(C;), so that
Z is a sheaf if and only if it commutes with finite products. O

B.5. Example: The Coherent Topology. We now combine the constructions of and

Definition B.5.1. Let C be a category which is regular and extensive. We will say that a sieve C;g? cCic

on an object C € C is a coherent covering sieve if it contains a finite collection of morphisms {C; - C};cy for
which the induced map [[,.; C; = C is an effective epimorphism in C.

Arguing as in the proofs Proposition [B.3.2] and Proposition [B.4.2] one obtains the following:

Proposition B.5.2. Let C be a category which is reqular and extensive. Then the collection of coherent
covering sieves determines a Grothendieck topology on C.

Definition B.5.3. Let C be a regular extensive category. We will refer to the Grothendieck topology of
Proposition as the coherent topology on C.

Remark B.5.4. The coherent topology on a category C can be defined more generally when the category
C is coherent; see [7].

Let C be a regular extensive category. The coherent topology on C is the coarsest Grothendieck topology
which refines both the regular and extensive topologies on C. In particular, a functor .% : C°® — Set is a sheaf
for the coherent topology if and only if it is a sheaf for both the regular and extensive topologies. Using

Propositions and we obtain the following:

Proposition B.5.5. Let C be a regular extensive category. Then a functor .% : C°° — Set is a sheaf with
respect to the coherent topology (Deﬁm'tion if and only if satisfies the following pair of conditions:
(1) The functor F preserves finite products. That is, for every finite collection of objects {C;}ier of C,
the canonical map F (e Ci) = [ier F (C;) is bijective.
(2) For every effective epimorphism D — C in C, the diagram of sets

F(C)—> F (D)= F(Dxc D)
18 an equalizer.

Corollary B.5.6. Let C be a reqular extensive category. Then the coherent topology on C is subcanonical.
That is, for every object E € C, the representable functor hg(e) = Home (e, E) is a sheaf for the coherent
topology.

Remark B.5.7. Let C be a small category which is regular and extensive. Then the regular and extensive
topologies on C are compatible in the following sense:

o If # :C°" - Set is a sheaf for _the extensive topology and Z is the sheafification of .Z with respect
to the regular topology, then .# is also a sheaf for the extensive topology (that is, it commutes with
finite products), and therefore also for the coherent topology.

In other words, if . : C°? — Set is any functor, then its sheafification for the coherent topology can be
computed in two steps: sheafification for the extensive topology, followed by sheafification for the regular
topology.
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B.6. Bases. In practice, it is often useful to describe a sheaf by specifying its value only on a restricted
class of objects.

Definition B.6.1. Let C be a category equipped with a Grothendieck topology. We will say that a full
subcategory D ¢ C is a basis for C if, for every object C € C, there exists a covering {f; : D; - C}icr, where
the set I is small and each D; belongs to D.

Example B.6.2. Let X be a topological space and let U (X) be the partially ordered set of open subsets
of X, endowed with the Grothendieck topology of Example Then a full subcategory Uo(X) € U(X)
is a basis in the sense of Definition [B6.1] if and only if it is a basis in the usual sense: that is, every open
subset of X can be realized as a union of open sets belonging to Uo(X).

Proposition B.6.3. Let C be a category equipped with a Grothendieck topology and let D < C be a basis.
Then there is a unique Grothendieck topology on the category D with the following property: a collection of
morphisms {D; = D}ier in D is a covering if and only if it is a covering in C.

Proof. Let us say that a sieve D;OD) € D,p is a covering if it contains a collection of morphisms { f; : D; = D}y
which form a covering in C. Axioms (7'1) and (7'3) of Definition follow immediately from the definitions
(and do not require the assumption that D is a basis for C). To verify (72), suppose we are given a covering

sieve Df(l))) on an object D € D and a morphism f : D’ - D in the category D; we wish to show that the

pullback f* D;OD) ¢ Dp: is a covering sieve on D’. Let C;OD) € C/p denote the sieve generated by D;?D), so that

the pullback f* C;OD) € C/pr is a covering sieve. In other words, there exists a covering {g; : C; - D'}ier in C

(0)

D which means there exists a

such that each of the composite maps f o g; : C; > D belongs to the sieve C
commutative diagram

Ci—D;

Lgi lg:
f

D'——=D
where each g} : D; - D belongs to the sieve D;OD). Using our assumption that D ¢ C is a basis, we conclude
that each of the objects C; admits a covering {Dg,j — Cj}jes,, where the objects D;’j belong to D. Then the

composite maps {D;yj - C; LIN D'} er jes; comprise a covering of D' by objects of the sieve f* D;OD). O

Proposition B.6.4. Let C be a category equipped with a Grothendieck topology and let D ¢ C be a basis.
Regard D as equipped with the Grothendieck topology of Proposition [B-6.3. Then precomposition with the
inclusion D < C induces an equivalence of categories

ShV(C) id ShV(D) F > F "Dop.

Corollary B.6.5. Let X be a Stone space, let U(X) denote the partially ordered set of all open subsets
of X, and let Upg(X) c U(X) be the collection of all closed and open subsets of X. Then the construction
F = F |uyx)y induces a fully faithful embedding
Shv(X) ¢ Fun(U(X)°?, Set) - Fun(Uo(X)P, Set),
whose essential image is spanned by those functors F :Uy(X )P — Set with the following property:
(*) For every finite collection of pairwise disjoint closed and open subsets {U; € X }ier, the canonical

map
FZ(JU) - [[7W)
iel iel
1s bijective.
Proof. Since X is a Stone space, the collection of closed and open subsets of X forms a basis for the topology
of X. Applying Proposition we deduce that the restriction functor Shv(X) — Fun(Uo(X)°P, Set) is a
fully faithful embedding whose essential image is spanned by those functors % : Uy(X )P — Set which are
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sheaves with respect to the topology on Uy (X) given by open coverings. Note that if U is a closed and open
subset of X, then any covering of U by closed and open subsets admits a refinement {U; € U};c; where the
index set [ is finite and the sets U; are pairwise disjoint. It follows that the topology of Proposition is
the coarsest Grothendieck topology on Ug(X) for which every such collection {U; € U};er is a covering. It
follows that a functor F# : Uy (X )°P — Set is a sheaf (with respect to the Grothendieck topology of Proposition
B.6.3) if and only if, for every collection of pairwise disjoint closed and open subsets U; € X with union U,
the inclusion maps {U; € U} are an .%-covering (in the sense of Example . Unwinding the definitions,
this is equivalent to the requirement that for each closed and open subset V' ¢ U, the canonical map

FWV) > lm FW)=[]ZWnV)
WweU;nV iel

is bijective. To verify this condition, we may assume without loss of generality that U =V, in which case it
is precisely the criterion of (x). O

Proposition is a consequence of the following more precise assertion:

Proposition B.6.6. Let C be a category equipped with a Grothendieck topology, let D € C be a basis, and let
F :C? - Set be a functor. Then F is a sheaf if and only if it satisfies the following pair of conditions:

(a) The restriction F |pev : D°P — Set is a sheaf (with respect to the Grothendieck topology of Proposition

(b) The functor F is a right Kan extension of its restriction F |pov.

Proof of Proposition[B.6.4) from Proposition[B.6.6 If the category C is small, then Proposition is an
immediate consequence of Proposition However, in §7 we would like to apply Proposition in a
situation where C is not small. In this case, there is a potential technicality: if % € Shv(D) is a sheaf and
F is a right Kan extension of % (given by the formula

FC)=  lm Fo(D),
De(D xc C/C)Op

when % might potentially fail to be a set-valued sheaf because it values % (C) might not be small. However,
this is impossible: Definition m guarantees that there exists a covering {f; : D; - C}ier of the object C
by a small collection of objects of D, so that .#(C) can be identified with a subset of [I;.;-Z0(D;) and is
therefore small. O

Proof of Proposition[B.6.6 Suppose first that % : C°P — Set is a sheaf; we will show that it satisfies condi-
tions (a) and (b) of Proposition B.6.6l Set Fo = F |per and let % be a right Kan extension of #(, given
by the formula

2-\\ _ .
F(C)=  lm  Fe(D)
De(D x¢ C/C)OP
(if the category C is not small, then the functor Z might a prior: take non-small values, but we will see in

a moment that this is not the case). We have a canonical map 0 : # — Z which is an isomorphism when
restricted to D. To prove (b), we must show that ¢ is an isomorphism. Fix an object C' € C, let D, denote

the fiber product D x¢ C/¢, and let C;g) € C/c denote the sieve generated by D,¢. Since D is a basis for the

topology on C, the sieve C;g) is covering. The map 6(C) fits into a commutative diagram

9(C)

F(C) Z(C)

. a1 0 . = /
@016(0500))01’ 7 (C ) LLHC’E(CEOC))OD LQ.((j )a
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where the left vertical map is bijective by virtue of our assumption that .# is a sheaf, and the right vertical
map is bijective by virtue of the fact that .Z is a right Kan extension of its restriction to D. Since the sieve C;g)

is generated by D, (and 6 is an isomorphism when restricted to D), we conclude that 6" is a monomorphism.

It follows that #(C') is a monomorphism. Applying the same argument to (C") for C’ € C;C) , we conclude

that 6" is a monomorphism whose image is the collection of elements 7 € lim Z (C") having the

—Cre(ci)er
property that, for each C' € (C(O)) the image of € Z(C") belongs to the image of #(C”). Invoking again

the fact that C;OC) is generated by D¢, we see that it suffices to check this condition in the case where C’
belongs to D¢, in which case it is automatic because 6(C") is bijective. It follows that 6’ is a bijection, so
that 6(C) is also a bijection. This completes the proof of (b).

We now verify (a). Let D be an object of D and let D%) be a covering sieve on D; we wish to show that

the canonical map p: #o(D) - lim Fo(D") is bijective. Let C;OD) € C,p denote the sieve generated

<D’ ('D(O) Yop

by D(O) Our assumption that D; D) is covering for the Grothendieck topology of Propositionw guarantees

that C;c) is covering for the original Grothendieck topology on C. The map p factors as a composition

Fo(D)=F(D) > lim  F(C)>  lim Fo(D),
Cre(es Py Dre(D§)yor

where p’ is a bijection by virtue of our assumption that .% is a sheaf, and the map p” is bijective because
Z is a right Kan extension of its restriction to D°P. This completes the proof of (b).

We now prove the converse. Suppose that % satisfies conditions (a) and (b) we wish to show that Z is
a sheaf on C. Fix a covering sieve C;C) cCjc. Set Do = DxcCjc and D/C D x C;OC). We wish to show

that the upper vertical map in the diagram

Z(C)

lim

—Cre(CsR)er Z(C")

|

lim F (D) —— lim (D@yer

«—De DOI’

7 (D)

is bijective. We conclude by observing that the vertical maps are bijective by virtue of (b), and the lower
horizontal map by virtue of (a) (together with our assumption that D is a basis for C). ]

APPENDIX C. TorPOS THEORY

C.1. Grothendieck Topoi.

Definition C.1.1. A Grothendieck topos is a category X satisfying the following axioms:

(1) The category X is exact (Definition [A.2.6]).

(2) The category X admits small coproducts, and coproducts in X are disjoint (Definition .

(3) The formation of small coproducts in X is compatible with pullback. That is, for every collection of
objects {X; }ier having coproduct X = [[;.; X; and every morphism f:Y — X, the projection maps
{X; xx Y > Y} exhibit Y as a coproduct of the objects {X; xx Y }ier.

(4) The category X is locally small, and there exists a small subcategory X which generates X in the
sense that every object X € X admits an effective epimorphism [[,;.; U; - X, where each U; belongs
to Xo.

Remark C.1.2. Every Grothendieck topos is a pretopos.
Example C.1.3. The category Set is a Grothendieck topos.
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Example C.1.4. Let C be a small category and let X be a Grothendieck topos. Then the category Fun(C, X')
is a Grothendieck topos. In particular, for any small category C, the category of presheaves Fun(C°?, Set) is
a Grothendieck topos.

Proposition C.1.5. Let X be a Grothendieck topos and let Xo € X be a full subcategory. Suppose that the
inclusion functor Xo <= X admits a left adjoint L : X — X which preserves finite limits. Then X is also a
Grothendieck topos.

Remark C.1.6. In the situation of Proposition[C.I.5] the existence of the left adjoint L : X — X guarantees
that the subcategory Xy € X is closed under the formation of finite limits. In particular, the meaning of our
assumption that L preserves finite limits does not depend on whether we regard L as an object of Fun(X, X)
or Fun(X, X).

Corollary C.1.7. Let C be a small category equipped with a Grothendieck topology. Then the category of
sheaves Shv(C) is a Grothendieck topos.

Proof. Combine Proposition Example and Proposition O

Remark C.1.8. Proposition has a converse: every Grothendieck topos is equivalent to Shv(C), for
some small category C equipped with a Grothendieck topology (Theorem |C.4.1). In fact, this is often taken
as the definition of a Grothendieck topos.

Remark C.1.9. In the situation of Definition condition (4) is automatically satisfied if the category
X is accessible. Conversely, every Grothendieck topos is locally presentable as a category (and in particular
accessible): this follows from the fact that every Grothendieck topos can be identified with Shv(C), for some
small category C equipped with a Grothendieck topology (Theorem .

Proof of Proposition[C-1.5 Let X be a Grothendieck topos, let X € X be a full subcategory, and let
L:X - X be a left adjoint to the inclusion functor. Assume that the functor L preserves finite limits.
We wish to show that X is a Grothendieck topos. We first show that X'y is exact: that is, that it satisfies
axioms (R1), (R2'), and (R3) of Definition [A.2.6] Axiom (R1) follows from Remark [C.1.6] To verify (R2’),
suppose we are given an object X € Xy and an equivalence relation R ¢ X x X in the category Xy. Without
loss of generality, we may assume that X = LX for some object X € X and R = LR for some equivalence
relation R € X x X (for example, we can take X = X and R = R). Since X satisfies axiom (R2'), we can
choose a coequalizer diagram
B3X-X/R

in the category X'. Applying the functor L (which preserves all colimits which exist in C, since it is a left
adjoint), we obtain a coequalizer diagram

R= X - L(X/R).
To show that the equivalence relation R is effective in X, it will suffice to show that the diagram o :

R X

|

X — L(X/R)

is a pullback square in Xy. This follows from our assumption that L preserves pullback squares, since o is
the image under L of the diagram
X

which is a pullback diagram in X (since every equivalence relation in X is effective). This completes the
proof of (R2'), and also gives the following characterization of effective epimorphisms in the category Xo:
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(*) A morphism f: X - Y in X is an effective epimorphism (in the category X)) if it and only if it is
isomorphic to a morphism of the form Lf: LX — LY, where f: X — Y is an effective epimorphism
in X.
We now complete the proof that X is exact by verifying condition (R3) of Definition Suppose we
are given a pullback square 7 :

X —=X

N

Y ——=Y

in X, where f is an effective epimorphism in Xy. We wish to show that ?l is also an effective epimorphism
in Xy. By virtue of (%), we can assume that f = Lf for some effective epimorphism f: X — Y in C. Using
the assumption that L preserves pullbacks, we see that 7 can be identified with the image under L of a
pullback diagram

leyy*)Y

o
Y’ Xy?H—?

in the category X. Our assumption that X is exact then guarantees that f, is an effective epimorphism in
X, so that f' = L?I is an effective epimorphism in X by virtue of (x).

Every small collection of objects {X,};r of the category Xo admit a coproduct in X, which can be
obtained by forming the coproduct [[,.; X; in the category X and then applying the functor L. We claim
that for every pair of objects X,Y € X, their coproduct in X is disjoint. Without loss of generality, we
may assume that X = LX and Y = LY for some objects X,Y € X. We then have a commutative diagram

%) X
.
Yy —%Xuy,

and our assumption that X has disjoint coproduct guarantees that this diagram is a pullback square and
that f and g are monomorphisms. Applying the functor L, we obtain a diagram

Ly —— X

.

Y*Q>L(YLI?)

which exhibits L(X 1Y) as a coproduct of X and Y in Cy. Since L preserves fiber products, this diagram
is a pullback square and f and ¢ are monomorphisms. It follows that X and Y have a disjoint coproduct in
the category Xy.

We now show that the formation of small coproducts in X is compatible with pullbacks. We now complete
the proof by showing that Cy satisfies the axiom (F2). Let f: X — Y be a morphism in Xy and suppose
we are given a small collection of morphisms {Y; - Y };c;. Let [1;; Y; denote a coproduct of the collection
{Y; }ier in the category X, so that L([I;;;Y:) is a coproduct of the collection {Y;};e; in the category Xo.
We wish to show that the pullback X xy L([I;;;Yi) can be identified with a coproduct of the collection
{X xy Y;}ier. In other words, we wish to show that the canonical map

6 : L(L}(X xy Y;)) - X xy L(Ll Y3)
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is an isomorphism. This is clear: we can identify 6 with the image under L of the canonical map
0:[[(X xy ¥;) » X xy [V,
iel iel
which is an isomorphism in X by virtue of our assumption that X is a Grothendieck topos.
We complete the proof by observing that if X' is generated by a small collection of objects {X;}ier, then
X0 is generated by the small collection of objects {LX;}cr. O

C.2. Geometric Morphisms.

Definition C.2.1. Let X and Y Grothendieck topoi. A geometric morphism from X to ) is a pretopos
functor F* : Y - X which preserves small coproducts. We let Fun*()), X) denote the full subcategory of
Fun(Y, X') spanned by the geometric morphisms from X to ).

More concretely, a geometric morphism from X to ) is a functor F* : )) - X which preserves finite limits,
small coproducts, and effective epimorphisms.

Example C.2.2. Let X be a Grothendieck topos and let f: X — Y be a morphism in X'. Then the pullback
functor
X/YAX/X Z'—>Z><yX

is a geometric morphism from X, x to Xy

Example C.2.3. Let C be a small category equipped with a Grothendieck topology. Then the sheafification
functor L : Fun(C°?, Set) — Shv(C) is a geometric morphism of topoi.

Definition has several other formulations. To establish their equivalence (Proposition below),

we need some preliminaries.

Lemma C.2.4. Let X be a Grothendieck topos containing an object X. Then:
(1) Every set of subobjects {X; € X}ier has a least upper bound U;er X; in the partially ordered set
Sub(X).
(2) If F* : X - Y is a geometric morphism of topoi, then we have F*(User Xi) = Usier (F*(X5)) in
Sub(F*(X)).
(3) The collection of subobjects Sub(X) is small.

Remark C.2.5. Let X be a Grothendieck topos containing an object X with a subobject Y ¢ X. Applying
assertion (2) of Lemma to the pullback functor ex x Y of Example we deduce that the formation
of unions in Sub(X) satisfies the infinite distributive law Y n (U;er Xi) = Uier (Y n X;). In other words, the
partially ordered set Sub(X) is a frame.

Proof of Lemma[C-2-]) For assertion (1), we note that U;.; X; can be characterized as the image of the map
;e Xi — X (obtained by amalgamating the inclusions X; — X). Assertion (2) follows by construction,
since geometric morphisms preserve the formation of coproducts and images. To prove (3), we note that
that if {G;}ier is a set of generators for X, then a subobject Y ¢ X is determined (as an object of Sub(X))
by the collection of subsets {Homx (G;,Y) € Homx (Gy, X) bier- O

Lemma C.2.6. Let X be a Grothendieck topos and suppose we are given a pair of morphisms f,g:Y - X
in X having the same domain and codomain. Then:
(1) There is a smallest equivalence relation R € X x X such that the pair (f,g) : Y - X x X factors
through R. We will refer to R as the equivalence relation generated by (f,g).
(2) If F* : X = Y is a geometric morphism of topoi, then F*(R) ¢ F*(X) x F*(X) is the equivalence
relation generated by the pair of morphisms F*(f),F*(g): F*(Y) - F*(X).
Proof. We define an increasing sequence of subobjects
RycRicRyc--cXxX

as follows:
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o We take Ry to be the smallest subobject of X x X which contains the images of the maps
(f.9):Y > XxX ()Y >XxX §:X-XxX,

where ¢ is the diagonal.

e For n >0, let R, denote the image of the map R,_1 xx R,-1 = X x X. That is, R,, is the smallest
subobject of X x X with the property that, for every triple of maps a,b,c : Z — X such that
(a,b) : Z - X x X and (b,¢) : Z - X x X factor through R,_1, then (a,c) : Z - X x X factors
through R,,.

Note that if (f,g) : Y - X x X factors through some equivalence relation E ¢ X x X, then E must contain
each R, and must therefore contain the union R =U,, R,. We will complete the proof by showing that R is
an equivalence relation on X. It is immediate from the definition that R is reflexive (since Ry contains the
image of the diagonal § : X & X x X) and symmetric (each of the relations R,, is symmetric by construction).
It will therefore suffice to show that R is transitive. Suppose we are given a triple of maps a,b,c: Z - X for
which the maps
(a,0): Z > X x X (bye): Z >XxX

factor through R. For each n > 0, let Z,, denote the subobject of Z given by the intersection (a,b) 'R, n
(b,c)™'R,. By construction, each of the maps (a,c) : Z - X x X carries Z, into R,.1, so that Z, ¢
(a,c) ' (R). Since the formation of unions of subobjects is compatible with pullback (by part (2) of Lemma
, we see that Z =U,, Z,, so that Z = (a,¢) ™' (R) as desired. This completes the proof of (1). Assertion
(2) follows by construction, since geometric morphisms preserve the formation of pullbacks, images, and

unions of subobjects (Lemma |[C.2.4)). O

Proposition C.2.7. Let X be a Grothendieck topos. Then X admits small colimits. Moreover, every
geometric morphism F* : X — Y preserves small colimits.

Proof. By definition, the category X admits small coproducts, and every geometric morphism F* : X —» Y
preserves small coproducts. It will therefore suffice to show that every pair of morphisms f,g:Y — X admits
a coequalizer in X', which is preserved by every geometric morphism F* : X - ). Let R ¢ X x X be the
equivalence relation generated by the pair (f,g) (Lemma . Unwinding the definitions, we see that a
morphism h : X — X' factors (uniquely) through X /R if and only if the fiber product X xx X ¢ X x X
contains R, or equivalently that the map (f,g) : Y - X x X factors through X xx/ X. It follows that the
quotient map X - X /R exhibits X/R as a coequalizer of the morphisms f and g. For every geometric
morphism F* : X - Y, the induced map F*(X) » F*(X/R) exhibits F*(X/R) as the quotient of F*(X)
by the equivalence relation

F*(X) xpe gy F(X) = F* (X x5 X) = F*(R) € F*(X) x F* (X)),
It follows from part (2) of Lemma that this is the equivalence relation generated by F*(f),F*(g) :
F*(Y) - F*(X). |
Corollary C.2.8. Let X be a Grothendieck topos. Then colimits in X are universal. That is, for every
morphism f: X =Y in X, the pullback functor

X/Y_’X/X ZHZXyX
preserves small colimits.

Proof. Combine Example with Proposition O

Proposition C.2.9. Let X and Y be Grothendieck topoi, and let F* : X - ) be a functor which preserves
finite limits. The following conditions are equivalent:

(1) The functor F* is a geometric morphism from Y to X: that is, it preserves small coproducts and
effective epimorphisms.

(2) The functor F* preserves small colimits.

(3) The functor F* admits a right adjoint F : ) — X.
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Proof. The implication (3) = (2) is immediate, and the reverse implication follows from the adjoint functor
theorem. The implication (1) = (2) follows from Proposition We complete the proof by showing
that (2) = (1). Suppose that F** : X — Y preserves small colimits and finite limits and let f:Y - X is an
effective epimorphism in X'; we wish to show that F*(f) is an effective epimorphism in ). By definition, the
map f exhibits X as a coequalizer of the projection maps Y xx Y =2 Y. Since F'* preserves finite limits, it
follows that F'*(f) exhibits F*(X) as the coequalizer of the projection maps F*(Y') x g« (x) F*(Y') = F*(Y),
so that F*(f) is an effective epimorphism. This shows that (2) = (1). O

Remark C.2.10. In the situation of Proposition the functor F* : X - ) and its right adjoint
F,:)Y — X are equivalent data: either can be recovered (up to canonical isomorphism) from the other. It
is common to emphasize the role of the functor F,, and to refer to the functor F, : ) — X as a geometric
morphism from Y to X.

C.3. Diaconescu’s Theorem.

Theorem C.3.1 (Diaconescu). Let C be a small category which admits finite limits, and let X be a
Grothendieck topos. Then composition with the Yoneda embedding h : C - Fun(C°?,Set) induces a fully
faithful embedding

Fun*(Shv(C),X) — Fun(C, X).

The essential image of this embedding consists of those functors f:C — X which preserve finite limits.

Before giving the proof of Theorem let us describe some of its consequences. Let C be a small
category which admits finite limits. Suppose that C is equipped with a Grothendieck topology, and let
L : Fun(C°?,Set) — Shv(C) be the sheafification functor. Then composition with L induces a fully faithful
embedding

Fun* (Shv(C), &) <5 Fun* (Fun(C°P, Set), &),
whose essential image consists of those geometric morphisms f* : Fun(C°®,Set) — X having the property
that the right adjoint f, : X — Fun(C°",Set) factors through the full subcategory Shv(C) € Fun(C°P, Set).
Combining this observation with Theorem we obtain the following:

Corollary C.3.2. Let C be a small category which admits finite limits. Suppose that C is equipped with a
Grothendieck topology, and h : C — Shv(C) denote the sheafified Yoneda embedding (Remark . Then,
for any Grothendieck topos X, composition with h induces a fully faithful embedding 6 : Fun*(Shv(C),X) —
Fun(C, X), whose essential image is spanned by those functors f : C — X which preserve finite limits and
satisfy the following additional condition:

(*) For each object X € X, the functor Homx (f(e),X) : C°" - Set is a sheaf on C.

Remark C.3.3. In the situation of Corollary condition (*) is equivalent (under the assumption that
f preserves finite limits) to the following more concrete assertion:
(+") For every covering {C; - C'};er in the category C, the induced map [1;c; f(C;) = f(C) is an effective
epimorphism in the topos X.

Corollary C.3.4. Let C be a small reqular category, endowed with the regular topology of Definition [B-3.3
Let X be any Grothendieck topos. Then composition with the Yoneda embedding h : C — Shv(C) induces
a fully faithful embedding Fun*(Shv(C),X) — Fun(C,X), whose essential image is spanned by the regular
functors f:C — X: that is, functors which preserve finite limits and effective epimorphisms.

Proof. Combine Corollary [C.3:2] with Proposition [B:3.5] O

Corollary C.3.5. Let C be a small extensive category which admits finite limits, endowed with the extensive
topology of Definition[B-{.3. Let X be any Grothendieck topos. Then composition with the Yoneda embedding
h:C - Shv(C) induces a fully faithful embedding Fun*(Shv(C),X) — Fun(C,X), whose essential image is
spanned by those functors f:C — X : which preserve finite limits and finite coproducts.

Proof. Combine Corollary with Proposition O
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Corollary C.3.6. Let C be a small regular extensive category, endowed with the coherent topology of Defini-
tion . Let X be any Grothendieck topos. Then composition with the Yoneda embedding h:C — Shv(C)
induces a fully faithful embedding Fun®(Shv(C),X) — Fun(C, X), whose essential image is spanned by those
functors f:C — X: which preserve finite limits, finite coproducts, and effective epimorphisms.

In particular, if C is a pretopos, then composition with h induces an equivalence Fun®(Shv(C),X) =~
Fun"™*P(C, X).

Proof. Combine Corollary with Proposition O

We now turn to the proof of Theorem We begin by recalling that for any small category C,
the presheaf category Fun(C°P,Set) is freely generated under small colimits by the image of the Yoneda
embedding h : C - Fun(C°?,Set). More precisely, suppose that X is any category which admits small
colimits, and let LFun(Fun(C°?,Set), X') denote the full subcategory of Fun(Fun(C°?,Set), X) spanned by
those functors which preserve small colimits. Then composition with the Yoneda embedding induces an
equivalence of categories

LFun(Fun(C°?, Set), X) oh, Fun(C, X);
the inverse equivalence is given by left Kan extension along h. To prove Theorem[C-3.1] we must show that if C
admits finite limits and X is a Grothendieck topos, then a colimit preserving functor F': Fun(C°", Set) - X
preserves finite limits if and only if the composition F o h : C - X preserves finite limits. The “only if”
direction is clear (since the Yoneda embedding h : C = Fun(C°?, Set) preserves small limits), and does not
require the assumption that & is a Grothendieck topos. We can therefore reformulate Theorem as
follows:
Proposition C.3.7. Let C be a small category which admits finite limits, let X be a Grothendieck topos,
and let F : Fun(C°?,Set) — X be a functor which preserves small colimits. If the composite functor C LA
Fun(C°?, Set) Lx preserves finite limits, then F preserves finite limits.

Proof. Let f: C - X denote the composition F o h. Since f and h preserve final objects, the functor F
preserves final objects. It will therefore suffice to show that F' preserves pullbacks. For every pair of maps

Fo S 7L 7
in the presheaf category Fun(C?, Set), let 6, g denote the natural map
F(Foxz F1) > F(F)) XF(ZF) F(71).
Let us say that a presheaf .# € Fun(C°?, Set) is good it it satisfies the following condition:
(%) For every pair of objects C, D € C equipped with maps h¢ 57 £ hp, the comparison map
Oa,p: F(hc xz hp) = F(he) xr(z) F(hp)
is an isomorphism in X.
Note that, if we regard .% and the map «: hg — . as fixed, then the constructions
F1- F(he xg F1)
F1= F(he) xpz) F(F1)
carry colimits in the category Fun(C°”,Set);# to colimits in X. Consequently, the collection of those
objects .#1 € Fun(C?,Set), # which 6, s is an isomorphism is closed under small colimits. Since every

object of Fun(C°?,Set) can be realized as a colimit of representable functors, we see that every good object
F € Fun(C°", Set) satisfies the following stronger version of condition (*):

(+") For every object C € C and every pair of morphisms he — % L 1 in Fun(C°P, Set), the comparison
map
Oap: F(he xz F1) = F(he) xpz) F(F1)

is an isomorphism in X.
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Applying the same argument with the roles of o and [ reversed, we see that every good object & €
Fun(C°?, Set) satisfies the following even stronger condition:
(*"") For every pair of morphisms % 57 Z Z1 in Fun(C?, Set), the comparison map
Oap: F(he xz F1) = F(he) xpz) F(F1)
is an isomorphism in X.

To complete the proof of Proposition it will suffice to show that every object of Fun(C°?,Set) is good.
We first treat the case where # = [I;.; hg, is a coproduct of representable functors. In this case, any map
a:he — % arises from a morphism C — E; in the category C, and any morphism 3 : hp — .% arises from
a morphism D — E; in the category C. If ¢ # j, then the domain and codomain of the map 6, g are both
initial objects of X’ (since coproducts are disjoint in both Fun(C°?,Set) and X, and the functor F preserves
initial objects), so that 6, g is automatically an isomorphism. In the case i = j, we can identify 0, g with
the comparison map f(C xg, D) — f(C) x¢(g,) f(D) which is an isomorphism by virtue of our assumption
that f preserves finite limits.

Since the final object 1 of Fun(C°?,Set) is a representable presheaf (representable by the final object of
C), it follows that the object 1 is good. Using (*"), we see that the functor F' : Fun(C°?,Set) —» X commutes
with products.

Now suppose that .# is an arbitrary presheaf on C. Choose an effective epimorphism u : .F' - 7,
where .#' is a coproduct of representable presheaves. Then u is a levelwise surjection, so any pair of maps

he S F £ hp as in (*) can be written as compositions

u

he S 7 57 &7 Lhp.
In this case, the comparison map 6, g factors as a composition

9/
F(he xz hp) —  F(he) xpzy F(F xzhp)

9//
—  F(he) xpzy F(F xz F') xp(z) F(hp)
—  F(hc) xpzy (F(F') xpz) F(F")) xp(z) F(hp)

= F(hc) XF(ZF) F(hD)-
Since .#" is good, it follows from (*'") that the maps 6" and 6" are isomorphisms. Consequently, to show that
Z is good, it will suffice to show that the map 6" is an isomorphism. For this, we show that the comparison
map
Ou: F(F' x5 F') > F(F') xpz) F(F')

is an isomorphism in X.

Set # = F' xz.Z', which we regard as a subobject of .#' x.#'. Note that .Z'x.Z' can be written as a
coproduct of representable presheaves, so that the comparison map

F(Z) =~ F(# %5 x5 R) > F(R) xp5 x5y F(%)

is an isomorphism. It follows that we can identify F(%) with a subobject of F(F' x ') ~ F(F")x F(F").
Since u is an effective epimorphism, we can identify .# with the coequalizer of the projection maps Z = .%".
Because the functor F' preserves colimits, we obtain a coequalizer diagram
F
F(#) 3 F(7) 2 p(7)

in the topos X. It follows that the fiber product F(.Z") X p () F(.Z') can be identified with the equivalence
relation on F(F') generated by F(#) c F(F') x F(Z"). (see the proof of Proposition|C.2.7). To complete
the proof that the 8, ,, is an isomorphism, it will suffice to show that F'(Z) is already an equivalence relation
on F(.Z"). Reflexivity and symmetry are clear. To verify transitivity, we must show that the natural map

pi F(R) xp(s F(7) > F(F') x F(F)
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factors through F(#). Since #' is good, we can use (*”) to identify the domain of p with F(Z x 3 #) =~
F(F' ' xg F'xg F'). The existence of the desired factorization is now obvious (it can be obtained by
applying the functor F' to the canonical map

l4 4

x?ﬂ Xgﬁ\

I l4

F xg FxgF .

; id xuxid
—

F

C.4. Giraud’s Theorem. Corollary admits a converse:
Theorem C.4.1 (Giraud). Let X be a category. The following conditions are equivalent:

(1) There exists a small category C which admits finite limits, a Grothendieck topology on C, and an
equivalence of categories X ~ Shv(C).

(2) There exists a small category C, a Grothendieck topology on C, and an equivalence of categories
X ~Shv(C).

(3) There exists a small category C and a fully faithful embedding X — Fun(C°®,Set) which admits a left
adjoint L : Fun(C°?,Set) — X which preserves finite limits.

(4) The category X is a Grothendieck topos (in the sense of Definition [C-1.1]).

The implication (1) = (2) is immediate, (2) = (3) follows from Proposition [B.2.4] and the implication
(3) = (4) from Proposition To show that (4) = (1), we need some preliminaries.

Construction C.4.2 (The Canonical Topology). Let X be a Grothendieck topos. We will say that a sieve
X;g() on an object X € X is a canonical covering sieve if it contains a set of morphisms {U; - X };¢s for which
the induced map [[;c; U; = X is an effective epimorphism in X

Remark C.4.3. If X is a Grothendieck topos, then a sieve X ;g() is a canonical covering sieve if and only if

there is no proper subobject X’ ¢ X such that each morphism f:U — X in X;g{) factors through X' (if this
condition is satisfied, then X can be realized as the join of the images Im(f) where f: U — X ranges over

all morphisms belonging to X ;g(); note that the collection of such images is small by virtue of Lemma

Lemma C.4.4. Let X be a Grothendieck topos and let {f; : X; > Y;}ier be a small collection of effective
epimorphisms in X. Then the coproduct map f: 11;e; Xi = Lier Yi is also an effective epimorphism in X.

Proof. Set Y =11,;Y; and U = Im(f) €Y. Since the formation of coproducts in X is pullback-stable, we
can identify U with the coproduct of the inverse images U; = U xy Y;. By construction, each of the maps
fi + Xi > Y, factors through U;. Since f; is an effective epimorphism we conclude that U; = Y;, so that
U:UieIUi:HieIY;:Y' U

Proposition C.4.5. Let X be a Grothendieck topos. Then the collection of canonical covering sieves deter-
mines a Grothendieck topology on X.

We refer to the Grothendieck topology of Proposition as the canonical topology on X.

Proof of Proposition[C-7.5, Axiom (T'1) of Definition [B.1.3]is immediate, and (72) follows from the assump-
tion that small coproducts and effective epimorphisms in X are stable under pullback. To prove (7'3), it
suffices to show that for every effective epimorphism f : [],.; U; - X and collection of effective epimorphisms
{9i : Ujey, Vi,j = Ui}ier, the composite map

L; g f
[] vio—[Ui=>X
iel,jed; iel
is an effective epimorphism. This follows from Proposition [A-1.8] and Lemma [C.4.4] O
Remark C.4.6. Let X be a Grothendieck topos and let Xg € X be a full subcategory. Then X generates

X (in the sense of Definition if and only if X is a basis for the canonical topology on X (Definition
B.6.1). In this case, Xy inherits a Grothendieck topology (Proposition [B.6.3)), which we will refer to as the
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restricted canonical topology on Xg. Beware that this terminology is potentially confusing: the restricted
canonical topology on X depends not only on Xy as an abstract category, but on its realization as a full
subcategory of the topos X.

Remark C.4.7. Let X be a Grothendieck topos and let Xy € X be a full subcategory which generates X'.
Regard X as equipped with the canonical topology of Proposition[C.4.5|and X with the restricted canonical
topology of Remark Then composition with the inclusion Xy € X induces an equivalence of categories
Shv(X) ~ Shv(X). This is a special case of Proposition [B.6.4]

Proposition C.4.8. Let X be a Grothendieck topos. Then the Yoneda embedding h : X — Fun(X°P,Set)
induces an equivalence of X with the category Shv(X) of sheaves with respect to the canonical topology on
X.

Proof. Let X € X be a small full subcategory which generates X. Then Remark[C.4.7|supplies an equivalence
Shv(X) ~ Shv(Xy), so that Shv(X) is a Grothendieck topos by virtue of Corollary We leave it to
the reader to verify that for every object X € X, the representable presheaf hx = Homy (e, X) is a sheaf
for the canonical topology. We wish to prove the converse. Let # be an object of Shv(X); we wish to
show that .% is representable. Since X, is small, we can choose a map a : .#' — .%, where .#' is a small
coproduct of sheaves representable by objects X € X, such that the map of sets .#'(X) — .Z (X) is surjective
for each X € Xy. Then the induced map 7’| xer = F | xgP is an effective epimorphism in the category of
presheaves Fun(X", Set) and therefore also in the category of sheaves Shv(X). Since the restriction functor
Shv(X) — Shv(X,) is an equivalence of categories, it follows that « is an effective epimorphism in Shv(X). It
follows from the definition of the canonical topology on X that the construction X ~ hx carries coproducts
and effective epimorphisms in X' to coproducts and effective epimorphisms in Shv(X’). Consequently, the
sheaf .#’ € Shv(X) is representable by an object U € X (which might not belong to Xy).

Let us now treat the special case where % is given as a subobject of a representable sheaf hx € Shv(X).
In this case, we can identify o with a map of representable functors hy — hx which, by virtue of Yoneda’s
lemma, is induced by a morphism @ : U - X in the category X. Since the functor Y ~ hy preserves
finite limits and effective epimorphisms, it preserves the formation of images. Consequently, the sheaf
Z =Im(a:hy - hx) can be identified with Ay, g), and is therefore representable as desired.

We now treat the general case. The effective epimorphism « : hy — F exhibits .% as the quotient of hy
by an equivalence relation Z <€ hy x hy ~ hyxy. The preceding argument shows that Z is representable by a
subobject R < U x U, which is easily seen to be an equivalence relation. Since the functor Y — hy preserves
finite limits and effective epimorphisms, it preserves the formation of quotient by equivalence relations. We
therefore obtain a canonical isomorphism .# ~ hyy/hr = hy/g, so that .7 is representable as desired. O

By definition, for any Grothendieck topos X we can select a small full subcategory Xy € X which generates
X. Enlarging X if necessary, we can assume that X is closed under finite limits in X'. Consequently, the
implication (4) = (1) of Theorem follows from Remark together with the following:

Corollary C.4.9. Let X be a Grothendieck topos, and let Xy € X be a full subcategory which generates
X. Then the restricted Yoneda embedding X — hX|XgP induces an equivalence of categories X — Shv(Xy),
where X is equipped with the restricted canonical topology of Remark[CZ.0

Proof. Combine Proposition [C.4.8| with Remark [C:4.7] O

C.5. Coherent Topoi. Let X be a Grothendieck topos. We will say that a set of morphisms {U; - X };cr
is a covering if it is a covering for the canonical topology of Proposition that is, if the induced map
L;e; U; = X is an effective epimorphism in X'.

Definition C.5.1. Let X be a Grothendieck topos. We say that an object X € X' is quasi-compact if every
covering {U; - X };er (for the canonical topology) has a finite subcovering: that is, there exists a finite subset
Iy c I for which the maps {U; - X };¢5, are also a covering.

Proposition C.5.2. Let X be a Grothendieck topos and let X be an object of X. Suppose that X admits a
covering {U; > X }ier. If the set I is finite and each U; is quasi-compact, then X is quasi-compact.



ULTRACATEGORIES 143

Proof. Let {V; - X}jes be any covering of X. Then, for each ¢ € I, the collection of morphisms {U; xx V; -
Ui} jes is also a covering. Using our assumption that each U; is quasi-compact, we deduce that there exists
a finite subset Jy € J such that each of the collections {U; xx V; — Ui}jejo is a covering. We then have a
commutative diagram

Wier Ujes, Ui xx V; —— s Us

| l

Wjes, Vy ———=X

where the upper horizontal and right vertical map are effective epimorphisms (Proposition [A.3.8)). It follows
that the lower horizontal map is also an effective epimorphism, so that {V; - X}, is a covering of X. O

Remark C.5.3. Let X be a Grothendieck topos containing a pair of objects X and Y. If the coproduct
X uY is quasi-compact, then X and Y are quasi-compact.

Proposition C.5.4. Let X be a Grothendieck topos and let Xq. € X be the full subcategory spanned by the
quasi-compact objects. Then X is essentially small (that is, it is equivalent to a small category).

Proof. Let Xy € X be a small full subcategory which generates X'. Enlarging X if necessayr, we may assume
that X is closed under finite coproducts. For each object X € X', we can choose a covering {U; — X}, where
each U; belongs to Xy. If X is quasi-compact, this covering admits a finite subcover. We can therefore
choose a single object U € X and an effective epimorphism U - X. It follows that X can be identified
with the coequalizer of a diagram R = U, for some equivalence relation R € U x U. Since Xy is small and
the collection Sub(U x U) of subobjects of U x U is small (Lemma , it follows that the collection of
isomorphism classes of quasi-compact objects of X is small. O

Definition C.5.5. Let X be a Grothendieck topos. We will say that an object X € X is quasi-separated if,
for every pair of morphisms U - X « V, where U and V are quasi-compact, the fiber product U xx V is
also quasi-compact.

Remark C.5.6. Let X be a Grothendieck topos and let X € X be a quasi-separated object. Then every
subobject U ¢ X is also quasi-separated.

Beware that the requirement of Definition is sometimes satisfied for uninteresting reasons. For
example, if X = Shv(R"™) is the category of sheaves on the Euclidean space R", then the only quasi-compact
object of X is the initial object. In this case, every object of X is quasi-separated. For Definition to
be meaningful, we need to ensure that there exists a good supply of quasi-compact objects.

Definition C.5.7. Let X be a Grothendieck topos. We will say that & is coherent if there exists a collection
of objects U satisfying the following conditions:

(a) The collection U generates X: that is, every object X € X admits a covering {U; - X}, where each
U; belongs to U.
(b) The collection U is closed under finite products. In particular, it contains a final object of X.
(¢) Every object of U is quasi-compact and quasi-separated.
If these conditions are satisfied, then we say that an object X € X is coherent if it is quasi-compact and
quasi-separated. We let X, denote the full subcategory of X spanned by the coherent objects.

Remark C.5.8. Let X be a coherent Grothendieck topos. Then the final object of X is quasi-separated.
It follows that the collection of quasi-compact objects of X is closed under finite products.

Our next goal is to show that if X' is a coherent Grothendieck topos, then we can take the full subcategory
U c X of Definition to be the category of coherent objects X on. To prove this, it suffices to show that
the category of coherent objects X .o, is closed under finite products. In fact, we have the following:

Proposition C.5.9. Let X be a coherent Grothendieck topos. Then the full subcategory X .on € X is closed
under finite limits.
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To prove Proposition it will be convenient to employ another characterization of the class of quasi-
separated objects.

Lemma C.5.10. Let X be a coherent Grothendieck topos. Then an object X € C is quasi-separated if and
only if it satisfies the following condition:
(%) For every quasi-compact object U € X and every pair of morphisms f,g : U - X, the equalizer
Eq(U = X) is quasi-compact.

Proof. Suppose first that X is quasi-separated, and that we are given a pair of morphisms f,g: U - X; we
wish to show that the equalizer Eq(U = X)) is quasi-compact. Let U be as in Definition and choose a
covering {U; — U };c; where each U; belongs to Y. Since U is quasi-compact, we can assume that this covering
is finite. Then f and g induce maps f;,g; : U; = X, having an equalizer Eq(U; 2 X) ~ Eq(U = X) xy U;.
It follows that Eq(U = X) admits a finite covering by the objects Eq(U; = X). It will therefore suffice to
show that each Eq(U; = X) is quasi-compact. In other words, we may replace U by U; and thereby reduce
to the case where U e .

Unwinding the definitions, we see that the equalizer Eq(U = X) can be identified with the fiber product

(Uxx U) xyxv U.

Note that the product U x U belongs to U, and is therefore quasi-separated. Since U and and U xx U are
quasi-compact (the second by virtue of our assumption that X is quasi-separated), it follows that Eq(U = X))
is also quasi-compact.

We now prove the converse. Assume that condition () is satisfied; we wish to prove that X is quasi-
separated. Choose quasi-compact objects U,V € X equipped with maps U - X < V; we wish to show that
the fiber product U xx V is quasi-compact. Unwinding the definitions, we can identify U xx V with the
equalizer of a diagram (U x V') = X. The desired result now follows from (*), since U x V' is a quasi-compact

object of X (Remark |C.5.8]). O

Lemma C.5.11. Let X be a coherent Grothendieck topos and let X,Y € X be quasi-separated objects. Then
the product X xY is quasi-separated.

Proof. Suppose we are given a pair of maps U - X xY « V., where U and V are quasi-compact. We wish to
show that the fiber product Z = U xx,y V is quasi-compact. This follows from Lemma since Z can
be identified with the equalizer of a pair of maps U xx V =3 Y. O

Proof of Proposition[C.5.9. Let X be a coherent Grothendieck topos. Then the final object 1 € X is coherent
(since 1 belongs to any full subcategory U ¢ X satisfying the requirements of Definition . It will
therefore suffice to show that for every diagram U — X « V in Xy, the fiber product U xx V is coherent.
The quasi-compactness of U x x V follows from our assumption that U and V are quasi-compact and that X
is quasi-separated. To show that U xx V' is quasi-separated, it will suffice to show that the product U x V/

is quasi-separated (Remark , which is a special case of Lemma [C.5.11 O

We now establish some further closure properties of coherent objects.

Proposition C.5.12. Let X be a coherent Grothendieck topos. Then the full subcategory X on € X is closed
under finite coproducts.

Proof. Let {X;}i1 be a collection of coherent objects of X indexed by a finite set I, having coproduct
X =1I1;e; Xi. Then X is quasi-compact (Proposition ; we must show that it is also quasi-separated.
Suppose we are given maps U - X < V| where U and V are quasi-compact; we wish to show that the fiber
product U xx V is quasi-compact. For each i € I, set U; = U xx X; and V; = V xx X;. Then each U; is
summand of U, hence quasi-compact (Remark ; similarly each V; is quasi-compact. It follows that
each of the fiber products U; xx; V; is quasi-compact, so that the coproduct

[JUixx, VizUxxV

iel
is quasi-compact by virtue of Proposition O
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Proposition C.5.13. Let X be a coherent Grothendieck topos. Suppose that we are given an effective
epimorphism f: X - Y in X. If X is coherent and the equivalence relation R = X xy X is quasi-compact,
then Y is coherent.

Proof. Tt follows from Proposition that Y is quasi-compact. We claim that Y is quasi-separated.

Suppose we are given morphisms U ER y £ V, where U and V are quasi-compact objects of X; we wish
to show that the fiber product U xy V is quasi-compact. Set U = U xy X, so that we have an effective
epimorphism Uxy X - Uxy X. By virtue of Proposition we can replace U by U and thereby reduce
to the case where f lifts to a map f: U — X. Similarly, we may assume that g lifts to a map g: V - X. In
this case, we can identify U xy V with the fiber product (U x V) xxxx R. Since X x X is quasi-separated
(Lemma and R is quasi-compact, we are reduced to showing that the product U xV is quasi-compact,
which is a special case of Remark ([l

Corollary C.5.14. Let X be a coherent Grothendieck topos. Then the full subcategory Xcon € X is an
essentially small pretopos.

Proof. The category Xcon is essentially small by virtue of Proposition To show that it is a pretopos,
it will suffice (by virtue of Example [A.4.3) to show that the full subcategory X.on € X is closed under
the formation of finite limits, finite coproducts, and quotients by equivalence relations. This follows from

Propositions [C.5.9] [C.5.12] and [C.5.13] O

C.6. Finitary Grothendieck Topologies. We now provide some examples of coherent Grothendieck topoi.

Definition C.6.1. Let C be a category. We say that a Grothendieck topology on C is finitary if, for every
collection of morphisms {f; : U; = X }er in C which cover X, there exists a finite subset Iy € I such that the
collection of morphisms {f; : U; - X }iep, is also a covering of X.

Example C.6.2. Let C be a regular category (extensive category, regular and extensive category). Then
the regular topology (extensive topology, coherent topology) on C is finitary.

Proposition C.6.3. Let C be a small category which admits finite limits which is equipped with a finitary
Grothendieck topology. Then the Grothendieck topos Shv(C) is coherent. Moreover, the sheafified Yoneda
embedding h: C - Shv(C) carries each object of C to a coherent object of Shv(C).

Proof. Let U € Shv(C) denote the full subcategory spanned by objects of the form he, where C € C. Then
U generates the topos Shv(C). Moreover, the functor C' ~ he preserves finite limits, and therefore finite
products. It follows that U is closed under finite products. We will complete the proof by showing that for
each C € C, the sheaf h¢ is quasi-compact and quasi-separated as an object of Shv(C).

We first verify quasi-compactness. Choose a covering {%#; — Ec}ie ; in the Grothendieck topos Shv(C).
Note that the identity map id¢ : C' - C determines a section s € EC(C’). It follows that there exists a
covering {C; — C}jes in the category C such that, for each j € J, the image s; € ﬁc(Cj) of s can be lifted
to an element 3; € .%; (C;) for some i; € I. Since the topology on C is finitary, we may assume without loss
of generality that J is finite. Setting Iy = {i;}jcs € I, we deduce that {.#; - h¢ }ies, is a finite subcover of
{Fi = hctier B

We now argue that each of the sheaves h¢ is quasi-separated. Choose quasi-compact objects #,% € Shv(C)
equipped with maps .Z — he < ; we wish to show that the fiber product % e ¥ is quasi-compact. Note
that .# admits a covering {#; — % },cr, where each .%; belongs to U. Since # is quasi-compact, we may
assume that I is finite. Then {%; X @ }icr is a finite covering of # XTre . It will therefore suffice to show
that each %, T ¥ is quasi-compact. Replacing % by %;, we are reduced to the case where % has the
form hp for some object D € C. In this case, the map .% — he can be identified with an element of EC(D).
Passing to a covering of D (which we may also assume to be finite), we may assume that this element lies in
the image of the map he (D) - he(D). In other words, we may assume that the map .# — he arises from
applying the functor e to a morphism D — C in the category C. Similarly, we may assume that the map
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& - he arises by applying he to a morphism E — C' in C. In this case, the fiber product # X ¢ can be
identified with 7 py o E, which is quasi-compact by the first part of the argument. O

Proposition C.6.4. Let X be a Grothendieck topos. The following conditions are equivalent:

(a) The Grothendieck topos X is coherent (in the sense of Definition|[C.5.7).

(b) There exists a small pretopos C and an equivalence X ~ Shv(C), where C is equipped with the coherent
topology.

(¢) There exists a small category C which admits finite limits, a finitaryGrothendieck topology on C, and
an equivalence of categories X ~ Shv(C).

Proof. The implication (b) = (c) is immediate (Example [C.6.2), and the implication (c) = (a) follows from
Proposition We will show that (a) = (b). Assume that X is coherent, and let X.on denote the full
subcategory of X spanned by the coherent objects. Then X.o is an essentially small pretopos (Corollary
. Let C € X ¢on be a small full subcategory which is equivalent to X'. Then the subcategory C generates
X, so Corollary supplies an equivalence X =~ Shv(C), where C is equipped with the restricted canonical
topology of Remark |C.4.6] By definition, a collection of morphisms {C; — C} in C form a covering for
the restricted canonical topology if and only if the induced map [I;.; C; = C is an effective epimorphism
in X. Since C is a quasi-compact object of X, this is equivalent to the requirement that there exists a
finite subset Iy ¢ I such that the map [[;c;, Ci = C' is an effective epimorphism in &', or equivalently in the
pretopos C itself. It follows that the restricted canonical topology on C coincides with the coherent topology
of Definition [B.5.3} so that X satisfies (b). O

The pretopos C appearing in part (b) of Proposition is actually determined (up to equivalence) by
the Grothendieck topos X': it can always be identified with the category X con of coherent objects of X. This
is a consequence of the following:

Theorem C.6.5. Let C be a small pretopos, which we endow with the coherent topology of Definition[B.5.3
Then the Yoneda embedding h : C — Shv(C) induces an equivalence of categories C ~ Shv(C)eon-

Proof. Tt is clear that the Yoneda embedding h : C — Shv(C) is fully faithful, and Proposition guarantees
that the essential image of h is contained in Shv(C).on. To establish Theorem we must prove the
converse: that every coherent object % € Shv(C) is representable by an object of C. Choose a covering
{hx, > F }ier in Shv(C). Since .Z# is quasi-compact, we can assume that I is finite. Setting X = [I,.; X;, we
can arrange that there is an effective epimorphism « : hx — .% for some object X €C.

We now complete the proof in the special case where there exists a monomorphism 3 : . % < hy, for some

object Y in C. In this case, we can identify .Z with the image of the composite map hy — .# 5 hy . Since
the Yoneda embedding is fully faithful, this composite map is induced by a morphism v : X — Y in the
category C. It follows from the definition of the coherent topology that the Yoneda embedding C < Shv(C)
preserves finite limits and effective epimorphisms, and therefore commutes with the formation of images. In
particular, we obtain an isomorphism .# = Im(hy) = hiy(u), so that Z is representable by an object of C as
desired.

We now treat the general case. Let o : hx - % be as above, and set #Z = hx X hx. Then Z is a
coherent object of Shv(C) (Proposition , and it can be realized as a subsheaf of hx x hx ~ hxxx.
Applying the first part of the argument, we can write Z = hg for some subobject R € X x X. Using the
fact that Z is an equivalence relation on hx, it follows easily that R is an equivalence relation on X in the
pretopos C. Because C is exact, there exists an effective epimorphism v : X - X /R having the property
that R = X xx/gr X (as subobjects of X x X). Applying the Yoneda embedding, we obtain an effective
epimorphism of sheaves hx — hxr such that hx Xhy/n hx ~hgr ~%. It follows that hx g can be identified
with the quotient of hx by the equivalence relation Z#, and is therefore isomorphic to .%#. ]
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