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Introduction

A central aim of mathematical logic is to understand the relationship between the syntax of a logical
theory T and its semantics. This relationship is particularly strong in the setting of first-order predicate
logic: according to Gödel’s celebrated completeness theorem, a first-order sentence ϕ is provable from the
axioms of T (an a priori syntactic notion) if and only if it is true when interpreted in any model of T (an
a priori semantic notion). In [9], Makkai proved a stronger form of Gödel’s completeness theorem, which
provides a complete recipe for reconstructing the syntax of a first-order theory T (up to an appropriate
notion of equivalence) from its semantics. The goal of this paper is to give a new proof of Makkai’s theorem
and a reasonably self-contained exposition of the mathematics that surrounds it.

Before stating Makkai’s result, let us recall an important classical precursor: the Stone duality theorem
for Boolean algebras.

Definition 0.0.1. A Boolean algebra is a partially ordered set (B,≤) with the following properties:

● Every finite subset of B has a least upper bound. Equivalently, B contains a least element 0 and
every pair of elements x, y ∈ B have a least upper bound x ∨ y.

● Every finite subset of B has a greatest lower bound. Equivalently, B has a largest element 1 and
every pair of elements x, y ∈ B have a greatest lower bound x ∧ y.

● The distributive law x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) holds.
● Every element x ∈ B has a complement x, characterized by the identities

x ∧ x = 0 x ∨ x = 1.

If B and B′ are Boolean algebras, a homomorphism of Boolean algebras from B to B′ is a function µ ∶ B → B′

satisfying the identities
µ(0) = 0 µ(x ∨ y) = µ(x) ∨ µ(y)
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µ(1) = 1 µ(x ∧ y) = µ(x) ∧ µ(y).
We let BAlg denote the category whose objects are Boolean algebras and whose morphisms are Boolean
algebra homomorphisms.

For every Boolean algebra B, we let Spec(B) = HomBAlg(B,{0,1}) denote the set of all Boolean algebra
homomorphisms µ ∶ B → {0,1}. Note that Spec(B) can be identified with a subset of the set ∏x∈B{0,1}
of all functions from B to the two-element set {0,1}. Consequently, the product topology on ∏x∈B{0,1}
induces a topology on Spec(B), which depends functorially on the Boolean algebra B.

Theorem 0.0.2 (Stone Duality Theorem). The construction B ↦ Spec(B) determines a fully faithful
embedding Spec ∶ BAlgop ↪ Top from (the opposite of) the category of Boolean algebras to the category of
topological spaces. The essential image of this functor is the full subcategory Stone ⊆ Top whose objects are
Stone spaces: that is, topological spaces which are compact, Hausdorff, and totally disconnected.

The Stone duality theorem can be understood as supplying an equivalence between syntax and semantics
in the setting of propositional logic. Every Boolean algebra B can viewed as a theory of propositional logic,
whose models are the points of the spectrum Spec(B). Theorem 0.0.2 implies that B can be recovered (up
to isomorphism) from the set of models Spec(B), together with its topology. Makkai proved a generalization
of the Stone daulity theorem in the setting of coherent logic, where the Boolean algebra B is replaced by a
small pretopos C (see §A.4), and the set Spec(B) is replaced by the category of models Mod(C) (Definition
A.4.5). Roughly speaking, it asserts that a small pretopos C can be recovered (up to equivalence) from its
category of models Mod(C), together with some additional structure that plays the role of a “topology” on
Mod(C). To motivate the precise statement, we need to review a bit of point-set topology.

Construction 0.0.3 (The Stone-Čech Compactification). Let S be a set and let P (S) denote the collection
of all subsets of S, which we regard as a Boolean algebra. We denote the spectrum Spec(P (S)) by βS and
refer to it as the Stone-Čech compactification of S. By definition, the points of βS can be identified with
Boolean algebra homomorphism µ ∶ P (S) → {0,1}, which we refer to as ultrafilters on S (see §1.1).

Every element s ∈ S determines an ultrafilter δs on S, given by the formula

δs ∶ P (S) → {0,1} δs(I) =
⎧⎪⎪⎨⎪⎪⎩

1 if s ∈ I
0 if s ∉ I.

The construction s ↦ δs determines a map of sets δ ∶ S → βS. One can show that the map δ exhibits βS as
a “universal” compactification of S in the following precise sense (see Proposition 3.2.7):

(∗) Let X be a compact Hausdorff space and let f ∶ S → X be a function. Then there is a unique

continuous function f ∶ βS →X satisfying f ○ δ = f .

Note that an ultrafilter µ on a set S can be viewed as a finitely additive {0,1}-valued measure defined

on the collection of all subsets of S. In the situation of (∗), we will indicate the continuous extension f by

the suggestive notation f(µ) = ∫S f(s)dµ. Assertion (∗) can then be understood as articulating a special
feature enjoyed by the underlying set of any compact Hausdorff space X: any map of sets f ∶ S →X can be
“integrated” with respect to an ultrafilter µ ∈ βS to produce a new point ∫S f(s)dµ of X. This integration
procedure is determined by the topology on X: note that it is characterized by the normalization condition

∫S f(s)dδt = f(t) and the requirement that ∫S f(s)dµ depends continuously µ ∈ βS. Conversely, if the map
f ∶ S → X has dense image, then the topology on X can be recovered from the map µ ↦ ∫S f(s)dµ (since
any continuous surjection of compact Hausdorff spaces βS →X is a quotient map). We can therefore regard
the construction (f, µ) ↦ ∫S f(s)dµ as a way of encoding the the topology on the set X.

The integration procedure above has an analogue in the setting of coherent logic. If C is a small pretopos
and {Ms}s∈S is a collection of models of C indexed by a set S, then to each ultrafilter µ the ultraproduct
of the models Ms indexed by µ (see Theorem 2.1.1). To emphasize the relationship with the preceding
construction, we will denote this ultraproduct by ∫SMsdµ. For every fixed ultrafilter µ ∈ βS, the construction
{Ms}s∈S ↦ ∫SMsdµ determines a functor

∫
S
(●)dµ ∶ Mod(C)S →Mod(C).
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These functors, together with certain natural transformations relating them, determine what we will call
an ultrastructure on the category Mod(C) (see Definition 1.3.1). Using this structure, one can formulate an
analogue of Theorem 0.0.2 (for a more precise formulation, see Theorem 2.3.1):

Theorem 0.0.4 (Makkai’s Strong Conceptual Completeness Theorem). Let C be a small pretopos. Then

C is equivalent to the category FunUlt(Mod(C),Set) of ultrafunctors from the category of models Mod(C) to
the category of sets: that is, functors intertwine the ultrastructures on the categories Mod(C) and Set (see
Definition 1.4.2).

In this paper, we give a proof of Theorem 0.0.4 which is very different from the proof which appears in
[9]. Before describing our strategy, let us briefly comment on the notion of ultrafunctor which appears in
the statement of Theorem 0.0.4. Let M and N be ultracategories, and let F ∶ M → N be a functor. An
ultrastructure on F is a family of isomorphisms F (∫SMsdµ) ≃ ∫S F (Ms)dµ, indexed by collections {Ms}s∈S
of objects of M and ultrafilters µ on S, which are required to satisfy a handful of coherence conditions.
More generally, we introduce notions of left ultrastructure and right ultrastructure on F , which are given
respectively by families of morphisms

σµ ∶ F (∫
S
Msdµ) → ∫

S
F (Ms)dµ γµ ∶ ∫

S
F (Ms)dµ→ F (∫

S
Msdµ),

which are not required to be invertible (but are still required to satisfy some coherence conditions; see
Definitions 1.4.1 and 8.1.1). We define an ultrafunctor (left ultrafunctor, right ultrafunctor) from M to N
to be a functor F ∶ M → N together with an ultrastructure (left ultrastructure, right ultrastructure) on
F . The collection of ultrafunctors (left ultrafunctors, right ultrafunctors) from M to N can be organized

into a category which we will denote by FunUlt(M,N) (FunLUlt(M,N), FunRUlt(M,N)), so that we have
inclusions

(1) FunLUlt(M,N) ⊇ FunUlt(M,N) ⊆ FunRUlt(M,N).
Remark 0.0.5. To appreciate the distinction between ultrafunctors, left ultrafunctors, and right ultrafunc-
tors, it is instructive to examine the special case where M = {∗} is a category having a single object and
a single morphism, and N = Set is the category of sets. In this case, specifying a functor F ∶ M → N is
equivalent to specifying the set X = F (∗). In this case:

● The functor F always admits a unique left ultrastructure. Moreover, the construction F ↦X = F (∗)
induces an equivalence of categories FunLUlt({∗},Set) ≃ Set (here we can replace N = Set with any
other ultracategory; see Proposition 4.2.3).

● The unique left ultrastructure on the functor F is an ultrastructure if and only if the set X is finite.
Consequently, the construction F ↦X = F (∗) induces an equivalence of categories FunUlt({∗},Set) ≃
Fin, where Fin ⊆ Set denotes the category of finite sets (this is a special case Theorem 0.0.4, applied
to the pretopos C = Fin).

● There is a bijective correspondence between right ultrastructures on the functor F and compact
Hausdorff topologies on the set X. More precisely, the construction F ↦X = F (∗) can be upgraded

to an equivalence of categories FunRUlt({∗},Set) ≃ Comp, where Comp denotes the category of
compact Hausdorff spaces (Example 8.4.10). In particular, the functor F admits a unique right
ultrastructure when the set X is finite, and otherwise admits many different right ultrastructures.

Specializing (1) to this case, we obtain the inclusions Set ⊇ Fin ⊆ Comp.

The bulk of this paper is devoted to the proof of the following generalization of Theorem 0.0.4:

Theorem 0.0.6. Let C be a small pretopos and let Shv(C) denote the associated coherent topos. Then

Shv(C) is equivalent to the category of left ultrafunctors FunLUlt(Mod(C),Set).

Let us now outline the contents of this paper. We begin in §1 by defining the notions of ultracategory
(Definition 1.3.1) and (left) ultrafunctor (Definition 1.4.1) that we will use throughout this paper (beware
that our definitions are somewhat different from those which appear [9]; see Warning 1.0.4). The simplest
examples are given by categories M which admit small products and small filtered colimits: under these
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assumptions, we can regardM as an ultracategory by associating to each family of objects {Ms}s∈S ofM and
each ultrafilter µ on S the categorical ultraproduct ∫SMsdµ = limÐ→µ(S0)

∏s∈S0
Ms, where the colimit is taken

over the collection of subsets S0 ⊆ S satisfying µ(S0) = 1 (partially ordered by reverse inclusion). However,
many of the ultracategories we are interested in cannot be obtained directly in this way. For example, if C
is a small pretopos, then the category of models Mod(C) need not admit products. Nevertheless, one can
still define the ultraproduct of a collection of models {Ms}s∈S by the formula ∫SMsdµ = limÐ→µ(S0)

∏s∈S0
Ms,

provided that the product ∏s∈S0
Ms is formed in the larger category Fun(C,Set) ⊇ Mod(C) (which admits all

small limits and colimits). In §2, we recall the  Los ultraproduct theorem, which asserts (in this context) that

∫SMsdµ is again a model of C, and use it to endow Mod(C) with the structure of an ultracategory (Remark
2.1.2). We then apply this observation to give a more precise formulation of Theorem 0.0.6 (Theorem 2.2.2),
and deduce some of its consequences:

● From the equivalence Shv(C) ≃ FunLUlt(Mod(C),Set), one can immediately deduce Deligne’s com-
pleteness theorem (Theorem 2.2.10), which asserts that every coherent topos has “enough points.”
When restricted to Boolean pretopoi, this is essentially equivalent to the classical Gödel completeness
theorem.

● In §2.3, we use some elementary compactness to show that the equivalence of categories Shv(C) ≃
FunLUlt(Mod(C),Set) restricts to an equivalence of full subcategories C ≃ FunUlt(Mod(C),Set),
thereby obtaining a proof of Makkai’s strong conceptual completeness theorem (see Theorem 2.3.1).

● From the strong conceptual completeness theorem, one can immediately deduce Makkai duality: the
construction C ↦Mod(C) determines a fully faithful embedding of 2-categories

{Small pretopoi, pretopos functors}op ↪ {Ultracategories, ultrafunctors};

see Corollary 2.3.3. Using Theorem 2.2.2, one can promote this to a fully faithful embedding

{Coherent topoi, geometric morphisms} ↪ {Ultracategories, left ultrafunctors};

see Remark 2.2.9.
● Let E be a small exact category and let Funreg(E ,Set) denote the category of regular functors from
E to the category of sets: that is, functors which preserve finite limits and effective epimorphisms.
In [10], Makkai proved that the essential image of the Barr embedding

E ↪ Fun(Funreg(E ,Set),Set)
consists of those functors F ∶ Funreg(E ,Set) → Set which preserve small products and small filtered
colimits. In §2.4, we give a different (though arguably less elementary) proof, showing that it is an
elementary consequence of the strong conceptual completeness theorem (Theorem 2.4.2).

Our approach to Theorem 2.2.2 is somewhat roundabout, and depends on having a good general un-
derstanding of ultracategories and (left) ultrafunctors. Heuristically, one can think of ultrastructure on
a category M as playing the role of a (compact Hausdorff) topology on M. In §3, we provide evidence
for this heuristic by showing that if M is a category having only identity morphisms, then endowing M
with an ultrastructure is equivalent to choosing a compact Hausdorff topology on the set X = Ob(M) of
objects of M (Theorem 3.1.5). Moreover, we show that this equivalence identifies the category of left ul-

trafunctors FunLUlt(M,Set) with the category Shv(X) of set-valued sheaves on X (Theorem 3.4.4). This

equivalence carries the category of ultrafunctors FunUlt(M,Set) ⊆ FunLUlt(M,Set) to the full subcategory
Loc(X) ⊆ Shv(X) consisting of sheaves F which are locally constant with finite stalks (or, equivalently,

the category of covering spaces X̃ → X with finite fibers); see Theorem 3.4.11. We regard this as strong
motivation for allowing left ultrafunctors (as opposed to only ultrafunctors) into the basic vocabulary of our
theory: from the category Shv(X) we can completely recover the topology of a compact Hausdorff space X,
but the category Loc(X) is a much weaker invariant (for example, if X is simply connected, then Loc(X) is
equivalent to the category Fin of finite sets).

Remark 0.0.7. To every Boolean algebra B, one can associate a small pretopos CB for which the category
of models Mod(CB) is equivalent to the spectrum Spec(B), considered as a category having only identity
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morphisms. Under this equivalence, the ultrastructure on Mod(CB) corresponds to the the topology on the
spectrum Spec(B). From this observation, one can use Makkai duality to deduce part of the Stone duality
theorem: namely, the assertion that the spectrum functor Spec ∶ BAlgop → Top is fully faithful. However,
this observation does not really lead to an independent proof of Theorem 0.0.2, since we use Stone duality
(implicitly and explicitly) in proving the main results of this paper.

In §4, we leverage the results of §3 to study ultracategories in general. Let M be any ultracategory,
and let X be a compact Hausdorff space (regarded as an ultracategory having only identity morphisms).

Motivated by the equivalence FunLUlt(X,Set) ≃ Shv(X) of Theorem 3.4.4), it will be useful to think of

FunLUlt(X,M) as a category of “M-valued sheaves on X.” Fixing M and allowing X to vary, we obtain a

functor X ↦ FunLUlt(X,M)op from (the opposite of) the category Comp of compact Hausdorff spaces to the
2-category of small categories. This construction can be encoded by fibration of categories CompM → Comp,
where CompM is a category whose objects are pairs (X,OX), where X is a compact Hausdorff space
and OX ∶ X → M is a left ultrafunctor. In §4, we show that CompM is a stack (with respect to the
Grothendieck topology on Comp given by finite jointly surjective families; see Proposition 4.1.5). Moreover,
the construction M↦ CompM determines a fully faithful embedding of 2-categories

{Ultracategories, left ultrafunctors} ↪ {Stacks of categories on Comp};

see Theorem 4.3.3. Consequently, it is possible to formulate the theory of ultracategories using the language
of topological stacks. Beware, however, that the construction M ↦ CompM is not essentially surjective.
However, if we restrict our attention to groupoids, then the essential image has a very simple description:
a stack in groupoids on Comp has the form CompM (for some small ultracategory M) if and only if it is
representable by a groupoid internal to the category of compact Hausdorff spaces (Theorem 4.4.7).

In §5, we specialize to the study of left ultrafunctors F ∶ M → Set taking values in the category of
sets. For every ultracategory M, let StoneM ⊆ CompM denote the full subcategory spanned by those pairs
(X,OX), where X is a Stone space. Combining the results of §4 and §3, we construct a fully faithful

embedding FunLUlt(M,Set) ↪ Fun(Stoneop
M
,Set) (Theorem 5.2.1). In the case where M admits small

filtered colimits, the essential image of this embedding admits a simple description: it is the full subcategory
Fun0(Stoneop

M
,Set) ⊆ Fun(Stoneop

M
,Set) spanned by those functors Stoneop

M
→ Set which preserve finite

products and small filtered colimits (Theorem 5.3.3). It follows from this description that, under some

mild set-theoretic assumptions, the category of left ultrafunctors FunLUlt(M,Set) is a Grothendieck topos
(Proposition 5.4.5).

The virtue of Theorem 5.2.1 is that it allows us describe left ultrafunctors F ∶ M → Set (which are functors
equipped with a large amount of additional structure) in terms of ordinary functors F ∶ Stoneop

M
→ Set (which

are a priori more amenable to study using standard category-theoretic tools). To make use of this in practice,
we need to know something about the structure of the category StoneM. In §6, we specialize to the situation
where M = Mod(C) is the category of models of a small pretopos C. In this case, the category StoneM
admits a concrete description which is independent of the theory of ultracategories: according to Theorem
6.3.14, there is a fully faithful embedding Γ ∶ StoneM ↪ Pro(C) into the category Pro(C) of pro-objects of
C, whose essential image is the full subcategory Prowp(C) ⊆ Pro(C) of weakly projective pro-objects of C
(Definition 6.2.2).

In §7, we combine the preceding ideas to obtain a proof of Theorem 2.2.2. Our strategy is inspired by the
work of Bhatt-Scholze on pro-étale sheaves in the setting of algebraic geometry (and earlier work of Scholze
in the rigid-analytic setting). For any small pretopos C, we can equip the category of pro-objects Pro(C)
with a Grothendieck topology and consider the category Shv(Pro(C)) of set-valued sheaves on Pro(C). This
category of sheaves is generally very large (for example, it is not a Grothendieck topos), but contains a
more manageable category Shvcont(Pro(C)) of continuous sheaves (Definition 7.1.4) which is equivalent to
the category of sheaves on C itself (Corollary 7.1.5). The equivalence of Theorem 0.0.6 can then be realized
as a composition

Shv(C) ≃ Shvcont(Pro(C)) ○ΓÐ→ Fun0(Stoneop
Mod(C)

,Set) ≃ FunLUlt(Mod(C),Set).



ULTRACATEGORIES 7

Here the essential point is to show that any functor Stoneop
Mod(C)

→ Set which preserves finite products and

small filtered colimits extends (uniquely) to a continuous sheaf on the category Pro(C) (Proposition 7.2.5),
which we prove by exploiting the relationship between ultraproducts and elementary embeddings in the
category Mod(C).

By definition, an ultrastructure on a categoryM is given by a collection of ultraproduct functors ∫S(●)dµ ∶
MS →M and natural transformations relating them, which are required to satisfy some axioms (expressing
the commutativity of various diagrams). This is a large amount of data which can be somewhat cumbersome
to work with. We close this paper by explaining an alternative approach to the theory of ultracategories
which is in some ways more efficient. In §8, we introduce the notion of an ultracategory envelope (Definition
8.2.2). By definition, an ultracategory envelope is a category E satisfying a few simple axioms (which do
not refer to any additional structure on E), which determine an ultrastructure on a certain full subcategory
Ecc ⊆ E . We show that the construction E ↦ Ecc induces a bijection from equivalence classes of ultracategory
envelopes (considered as abstract categories) to equivalence classes of ultracategories (considered as categories
with additional structure). In particular, every ultracategory M can be identified with Env(M)cc for an
essentially unique ultracategory envelope Env(M), which we refer to as the envelope of M. The category
Env(M) admits a number of (equivalent) realizations, which we describe in §8.4.

Remark 0.0.8. The theory of ultracategory envelopes developed in §8 will play no role in our proof of
Makkai’s strong conceptual completeness theorem. As we will see, ultracategory envelopes are very well
adapted to describing right ultrafunctors between ultracategories, while our approach is based on the clas-
sification of left ultrafunctors from Mod(C) to Set. However, one of the original motivations for the work
described in this paper was to find a formulation (and proof) of Makkai’s theorem which could be adapted
easily to the setting of higher category theory. For this purpose, the formalism of ultracategory envelopes is
much more convenient than the explicit approach of §1. We will return to this point in a future work.

For the convenience of the reader, we include some appendices which review the categorical background
which is used in the body of this paper.

Warning 0.0.9. The definitions of ultracategory and ultrafunctor that we use in this paper are somewhat
different from the definitions which appear in [9] (see Warning 1.0.4). For us, an object of the category

FunUlt(Mod(C),Set) is a functor F ∶ Mod(C) → Set together with a collection of isomorphisms

σµ ∶ F (∫
S
Msdµ) ≃ ∫

S
F (Ms)dµ

for which a relatively small number of diagrams are required to commute (see Definition 1.4.1). Makkai’s
definition is similar, but requires a much larger number of diagrams to commute. As a consequence, our
category of ultrafunctors FunUlt(Mod(C),Set) is a priori larger than the category of ultrafunctors introduced
by Makkai. Consequently, our version Theorem 0.0.4 can be viewed as a slight strengthening of Makkai’s
original result: it shows that every ultrafunctor F ∶ Mod(C) → Set in the sense of this paper is also an
ultrafunctor in the more restrictive sense of Makkai (since it is given by evaluation at an object C ∈ C).
Acknowledgements. I would like to thank Bhargav Bhatt, Dustin Clausen, and Ieke Moerdijk for many
useful conversations related to the subject of this paper. This work was supported by the National Science
Foundation under grant DMS-1810917.

Conventions. We use the following notations:

● We write Set for the category of sets.
● We write Fin for the category of finite sets (regarded as a full subcategory of Set).
● We write Top for the category of topological spaces.
● We write Comp for the category of compact Hausdorff spaces (regarded as a full subcategory of

Top).
● We write Stone for the category of Stone spaces (regarded as a full subcategory of Comp).

If X is a topological space, we let Shv(X) denote the category of set-valued sheaves on X. For each object
F ∈ Shv(X), we let F (U) denote its value on an open subset U ⊆ X and F x its stalk at a point x ∈ X
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(given by the direct limit limÐ→x∈U F (U), taken over the collection of all open neighborhoods U of the point

x). Every continuous map of topological spaces f ∶X → Y induces pushforward and pullback functors

f∗ ∶ Shv(X) → Shv(Y ) f∗ ∶ Shv(Y ) → Shv(X),
satisfying the formulae

(f∗ F )(U) = F (f−1(U)) (f∗ G )x ≃ G f(x)

for F ∈ Shv(X) and G ∈ Shv(Y ), respectively. Given a sheaf G on Y , we sometimes denote its pullback f∗ G
by G ∣X (primarily in the case where X is a subspace of Y ). We will need the following elementary fact:

Proposition 0.0.10 (Proper Base Change). Let f ∶ X → Y be a continuous map of compact Hausdorff
spaces and let F be a set-valued sheaf on X. Let y ∈ Y be a point and let Xy = f−1{y} be the fiber of f over
y. Then the canonical map

(f∗ F )y → (F ∣Xy)(Xy)
is a bijection.

Concretely, Proposition 0.0.10 asserts that every global section of F ∣Xy can be extended to a section of

F over an open set of the form f−1(U), where U is an open neighborhood of the point y ∈ Y ; moreover any
two extensions coincide over f−1(V ), for some smaller open neighborhood V of the point y.

Warning 0.0.11. Throughout this paper, we will generally ignore set-theoretic issues when working with
categories that are not necessarily small. However, our notion of ultrastructure introduces set-theoretic issues
of a new kind (which we will also disregard). By definition, an ultrastructure on a category M consists of a
collection of functors

∫
S
(●)dµ ∶ MS →M,

indexed by the collection of all sets S and all choices of ultrafilter µ on S. Consequently, this is a proper
class of data even if we assume that the category M is small. One can address this (within the framework
of Zermelo-Fraenkel set theory, say) as follows:

(a) We assume throughout this paper that we have chosen a strongly inaccessible cardinal κ.
(b) We say that a mathematical object (like a set or a topological space) is small if it has cardinality < κ.

All mathematical objects other than categories are assumed to be small unless otherwise specified.
(c) Whenever we speak of the ultraproduct ∫SMsdµ of a family of objects {Ms}s∈S , we assume that S

is small.

Of course, this is just for convenience; none of the results of this paper depend on the existence of a strongly
inaccessible cardinal in an essential way.

1. Ultracategories

Let {Ms}s∈S be a collection of nonempty sets. Every ultrafilter µ on S determines an equivalence relation
≃µ on the Cartesian product ∏s∈SMs, given by the formula

({xs}s∈S ≃µ {ys}s∈S) ⇔ µ({s ∈ S ∶ xs = ys}) = 1.

We will refer to the quotient (∏s∈SMs)/ ≃µ as the ultraproduct of {Ms}s∈S with respect to µ and denote it
by ∫SMsdµ. This quotient can be characterized by a universal mapping property: it is the direct limit

limÐ→
µ(S0)=1

(∏
s∈S0

Ms),

taken over the collection of all subsets S0 ⊆ S satisfying µ(S0) = 1, partially ordered by reverse inclusion (see
Example 1.2.6). This observation allows us to make sense of ultraproducts in a more general setting:

Construction 1.0.1 (Categorical Ultraproducts). Let M be a category which admits small products and
small filtered colimits. Suppose we are given a collection of objects {Ms}s∈S ofM, together with an ultrafilter
µ on the set S. We let ∫SMsdµ denote the direct limit limÐ→µ(S0)=1

(∏s∈S0
Ms), where the product and direct
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limit are computed in the category M. We will refer to ∫SMsdµ as the categorical ultraproduct of {Ms}s∈S
with respect to µ.

This section is devoted to the following:

Question 1.0.2. What are the essential properties of the ultraproduct construction {Ms}s∈S ↦ ∫SMsdµ?

In §1.2, we partially address Question 1.0.2 by observing that the categorical ultraproduct construction
has the following features:

(a) If {Ms}s∈S is a collection of objects of M indexed by a set S and δs0 is the principal ultrafilter
associated to an element s0 ∈ S, then there is a canonical isomorphism εS,s0 ∶ ∫SMsδs0 ≃ Ms0

(Example 1.2.7).
(b) If {Nt}t∈T is a collection of objects ofM indexed by a set T , ν● = {νs}s∈S is a collection of ultrafilters

on T indexed by a set S, and µ is an ultrafilter on S, then there is a canonical map

∆µ,ν● ∶ ∫
T
Ntd(∫

S
νsdµ) → ∫

S
(∫

T
Ntdνs)dµ,

which we call the categorical Fubini transformation; here ∫S νsdµ denotes the ultrafilter on T given
by the formula (∫S νsdµ)(T0) = µ({s ∈ S ∶ νs(T0) = 1}) (see Proposition 1.2.8).

In §1.3, we place these observations into an axiomatic framework by introducing the notion of an ultra-
category. For any category M, we define an ultrastructure on M to be a collection of functors

∫
S
(●)dµ ∶ MS →M,

indexed by the collection of all sets S and all ultrafilters µ on S, together with natural transformations εS,s0
and ∆µ,ν● as in (a) and (b) above (which are required to satisfy a few additional axioms). We define an
ultracategory to be a category M together with an ultrastructure on M (Definition 1.3.1).

If M is a category which admits small products and small filtered colimits, then the categorical ultra-
product of Construction 1.0.1 determines an ultrastructure on M, which we will refer to as the categorical
ultrastructure. However, there are interesting examples of ultrastructures which do not arise in this way:

(1) Let C be a pretopos and let Mod(C) denote the category of models of C, which we regard as a
full subcategory of Fun(C,Set). It follows from the  Los ultraproduct theorem that the full subcat-
egory Mod(C) ⊆ Fun(C,Set) is closed under the formation of ultraproducts (see Theorem 2.1.1).
Consequently, the categorical ultrastructure on Fun(C,Set) induces an ultrastructure on the cate-
gory Mod(C), which usually cannot be obtained by applying Construction 1.0.1 directly to Mod(C)
(because the category Mod(C) generally does not have products).

(2) Let X be a set, regarded as a category having only identity morphisms. In §3, we will show that there
is a bijective correspondence between the set of ultrastructures on X and the collection of compact
Hausdorff topologies on X (Theorem 3.1.5). These ultrastructures never arise from Construction
1.0.1, except in the trivial case where X has a single point.

Remark 1.0.3. Example (1) illustrates a general phenomenon. If M is an ultracategory containing a
collection of objects {Ms}s∈S and µ is an ultrafilter on S, then the ultraproduct ∫SMsdµ (given by the ultra-
structure on M) need not coincide with the categorical ultraproduct limÐ→µ(S0)=1

(∏s∈S0
Ms) of Construction

1.0.1 (in fact, the categorical ultraproduct might not even be defined, since M need not admit products
or filtered colimits). However, we will show in §4.2 that one can always obtain ∫SMsdµ by applying Con-
struction 1.0.1 inside a larger category which contains M (Theorem 4.2.7). We will see in §8 that there is
a canonical choice for this enlargement, which we will denote by Env(M) and refer to as the ultracategory
envelope of M.

For our purpose, the main virtue of axiomatizing the notion of ultracategory is that it allows us to precisely
formulate what it means for a functor to “commute with ultraproducts.” Let M and N be ultracategories,
and let F ∶ M → N be a functor. We define an ultrastructure on F to be a collection of isomorphisms

σµ ∶ F (∫
S
Ms)dµ

∼Ð→ ∫
S
F (Ms)dµ,
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parametrized by all collections of objects {Ms}s∈S of M and all ultrafilters µ on S, satisfying a few natural
constraints (see Definition 1.4.1). We define an ultrafunctor from M to N to be a pair (F,{σµ}), where
F is a functor from M to N and {σµ} is an ultrastructure on M. The collection of all ultrafunctors from

M to N forms a category FunUlt(M,N), which we will study in §1.4. We also introduce a larger category

FunLUlt(M,N) of left ultrafunctors from M to N , which is defined in a similar way except that we do not
require the morphisms σµ to be isomorphisms (there is also a dual notion of right ultrafunctor, which we will
study in §8).

Warning 1.0.4. The theory of ultracategories developed in this paper is inspired by the work of Makkai
([9]). However, our definition of ultracategory differs from Makkai’s definition in two respects:

● By our definition, an ultrastructure on a category M is completely determined by the ultraproduct
functors

∫
S
(●)dµ ∶ MS →M,

together with certain natural maps

εS,s0 ∶ ∫
S
Msδs0 ≃Ms0 ∆µ,ν● ∶ ∫

T
Ntd(∫

S
νsdµ) → ∫

S
(∫

T
Ntdνs)dµ.

In [9], an ultrastructure consists of much more data (involving natural transformations between very
complicated iterated ultraproducts).

● Our definition includes certain axioms that the maps εS,s0 and ∆µ,ν● are required to satisfy. These
axioms do not appear in [9].

1.1. Ultrafilters. We begin with a brief review of the theory of ultrafilters, which will play an essential role
throughout this paper.

Definition 1.1.1. Let S be a set and let P (S) denote the Boolean algebra of all subsets of S. An ultrafilter
on S is a Boolean algebra homomorphism

µ ∶ P (S) → {0,1}.

Remark 1.1.2. Let S be a set and let P (S) denote the collection of all subsets of S. To each ultrafilter µ
on S, we can associate a subset Uµ ⊆ P (S) given by

Uµ = {S0 ⊆ S ∶ µ(S0) = 1}.
The construction µ↦ Uµ determines a bijection from the set of ultrafilters on S to the collection of subsets
U ⊆ P (S) with the following properties:

(a) The subset U is closed under finite intersections. That is, the set S belongs to U , and for every pair
S0, S1 ∈ U , the intersection S0 ∩ S1 also belongs to U .

(b) For every subset S0 ⊆ S, exactly one of the sets S0 and S ∖ S0 belongs to U .

Example 1.1.3 (Principal Ultrafilters). Let S be a set. Then each element s ∈ S determines an ultrafilter
δs on S, given by the formula

δs ∶ P (S) → {0,1} δs(S0) =
⎧⎪⎪⎨⎪⎪⎩

1 if s ∈ S0

0 if s ∉ S0.

We will refer to δs as the principal ultrafilter associated to s. We will say that an ultrafilter µ on S is principal
if it has the form δs for some s ∈ S.

Construction 1.1.4 (Pushforward of Ultrafilters). Let f ∶ S → T be a map of sets and let µ be an ultrafilter
on S. We define an ultrafilter f∗µ on T by the formula (f∗µ)(T0) = µ(f−1(T0)). We will refer to f∗µ as the
pushforward of µ along f .

Remark 1.1.5. Suppose that f ∶ S → T is an injective map of sets. Then the pushforward map f∗ is an
injection

{Ultrafilters on S} ↪ {Ultrafilters on T},
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whose image consists of those ultrafilters µ on T satisfying µ(f(S)) = 1.
In particular, if S = T0 is a subset of T and µ is an ultrafilter on T satisfying µ(T0) = 1, then µ restricts

to an ultrafunctor µ0 ∶ {Subsets of T0} → {0,1}.

We will need a generalization of Construction 1.1.4:

Construction 1.1.6 (Composition of Ultrafilters). Let S and T be sets, and let {νs}s∈S be a collection of
ultrafilters on T indexed by the set S. For each ultrafilter µ on T , we let ∫S νsdµ denote the ultrafilter on T
given by the formula

(∫
S
νsdµ)(T0) = µ({s ∈ S ∶ νs(T0) = 1}).

Example 1.1.7. Let f ∶ S → T be a map of sets and let µ be an ultrafilter on S. Then the pushforward
ultrafilter f∗µ of Construction 1.1.4 is given by the formula f∗µ = ∫S δf(s)dµ. This follows from the calculation

(∫
S
δf(s)dµ)(T0) = µ({s ∈ S ∶ δf(s)(T0) = 1})

= µ({s ∈ S ∶ f(s) ∈ T0})
= µ(f−1T0)
= (f∗µ)(T0).

Example 1.1.8. Let S and T be sets and let {νs}s∈S be a collection of ultrafilters on T indexed by S. Let s0

be an element of S and let δs0 denote the corresponding principal ultrafilter. Then the composite ultrafilter

∫S νsdδs0 is equal to νs0 .

Remark 1.1.9 (Associativity). Let T be a set, let {νs}s∈S be a collection of ultrafilters on T , let {µr}r∈R
be a collection of ultrafilters on S, and let λ be an ultrafilter on R. Then we have an equality

∫
R
(∫

S
νsdµr)dλ = ∫

S
νsd(∫

R
µrdλ).

Both sides coincide with the ultrafilter ρ on T given by the formula

ρ(T0) = λ({r ∈ R ∶ µr({s ∈ S ∶ νs(T0) = 1}) = 1}).

We will need the following existence result, which asserts that every filter on a set S can be extended to
an ultrafilter.

Proposition 1.1.10. Let S be a set and let U be a collection of subsets of S which is closed under finite
intersections. If ∅ ∉ U , then there exists an ultrafilter µ on S such that µ(S0) = 1 for each S0 ∈ U .

Proof. Let Q be the collection of all subsets V ⊆ P (S) which are closed under finite intersections and satisfy
∅ ∉ V. Let us regard Q as a partially ordered set with respect to inclusion. Applying Zorn’s lemma, we
deduce that U ∈ Q is contained in a maximal element V ∈ Q. Define µ ∶ P (S) → {0,1} by the formula

µ(S0) =
⎧⎪⎪⎨⎪⎪⎩

1 if S0 ∈ V
0 otherwise.

We will complete the proof by showing that µ is an ultrafilter on S: that is, that the set V satisfies conditions
(a) and (b) of Remark 1.1.2. Condition (a) is immediate. To prove (b), let S0 be any subset of S; we must
show that V contains either S0 or the complement S ∖ S0 (it cannot contain both, since V is closed under
finite intersections and does not contain ∅). Suppose otherwise, and set V+ = V ∪{S0 ∩ I ∶ I ∈ V}. Then V+ is
a subset of P (S) which is closed under finite intersections and properly contains V. Invoking the maximality
of V, we conclude that ∅ ∈ V+: that is, we can choose a set I ∈ V such that S0∩I = ∅. By the same reasoning,
we can choose a set J ∈ V such that (S ∖S0)∩J = ∅. Since V is closed under finite intersections, we conclude
that ∅ = I ∩ J ∈ V, contradicting our assumption that V belongs to Q. �
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1.2. The Ultraproduct Construction. In this section, we discuss the categorical ultraproduct of Con-
struction 1.0.1 in more detail. With an eye toward future applications, we work in a slightly more general
setting.

Notation 1.2.1. Let µ be an ultrafilter on a set S and set Uµ = {S0 ⊆ S ∶ µ(S0) = 1} (Remark 1.1.2). We
regard Uµ as a partially ordered set with respect to inclusions. Note that since Uµ is closed under finite
intersections, the opposite partially ordered set Uop

µ is directed.

Construction 1.2.2 (Categorical Ultraproducts). Let M+ be a category and let M ⊆ M+ be a full sub-
category. We will say that M has ultraproducts in M+ if the following conditions are satisfied:

● For every collection {Ms}s∈S of objects of M indexed by a set S, there exists a product ∏s∈SMs in
the category M+.

● For every collection {Ms}s∈S of objects of M indexed by a set S and every ultrafilter µ on S, the
diagram

(S0 ∈ Uop
µ ) ↦ (∏

s∈S0

Ms)

admits a colimit (in the category M+) which belongs to the subcategory M⊆M+. In this case, we
denote this colimit by ∫SMsdµ and refer to it as the categorical ultraproduct of {Ms}s∈S indexed by
µ.

Notation 1.2.3. Let M+ be a category and let M⊆M+ be a full subcategory which has ultraproducts in
M+. Fix a set S and an ultrafilter µ on S. For every collection of objects {Ms}s∈S of M, the categorical
ultraproduct ∫SMsdµ comes equipped with a family of maps

qS0
µ ∶ ∏

s∈S0

Ms → ∫
S
Msdµ,

indexed by those subsets S0 ⊆ S satisfying µ(S0) = 1. In the special case S0 = S, we will denote qS0
µ simply

by qµ ∶ ∏s∈SMs → ∫SMsdµ.
Suppose we are given a collection {fs ∶Ms → Ns} of morphisms inM, indexed by a set S. We let ∫S fsdµ

denote the unique morphism from ∫SMsdµ to ∫SNsdµ in the category M with the property that, for every
subset S0 ⊆ S satisfying µ(S0) = 1, the diagram

∏s∈S0
Ms

∏s∈S0 fs //

q
S0
µ

��

∏s∈S0
Ns

q
S0
µ

��
∫SMsdµ

∫S fsdµ // ∫SNsdµ

commutes (in the category M+). The constructions

{Ms}s∈S ↦ ∫
S
Msdµ {fs}s∈S ↦ ∫

S
fsdµ

determine a functor ∫S(●)dµ ∶ M
S →M, which we will refer to as the categorical ultraproduct functor. By

construction, for each subset S0 ⊆ S satisfying µ(S0) = 1, the construction

{Ms}s∈S ↦ (qS0
µ ∶ ∏

s∈S0

Ms → ∫
S
Msdµ)

is a natural transformation of functors.

Warning 1.2.4. Let M+ be a category and let M ⊆ M+ be a subcategory which has ultraproducts in
M+. For any ultrafilter µ on a set S, the ultraproduct functor ∫S(●)dµ ∶ M

S →M is given by the formula

∫SMsdµ = limÐ→µ(S0)=1
∏s∈S0

Ms. Beware that the products appearing in this formula are formed in the

category M+, and need not belong to M. In particular, the ultraproduct functors ∫S(●)dµ ∶ M
S →M are

not necessarily intrinsic to M: they depend on the structure of the larger category M+.
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Example 1.2.5. Let M be a category which admits small products and small filtered colimits. Then M
has ultraproducts in itself.

Example 1.2.6 (Ultraproducts of Sets). Let {Ms}s∈S be a collection of sets indexed by a set S, let µ be an
ultrafilter on S, and let ∫SMsdµ be the categorical ultraproduct of Construction 1.2.2. Let qµ ∶ ∏s∈SMs →
∫SMsdµ be the map of Notation 1.2.3, so that we can identify qµ with a filtered direct limit of projection
maps

πS0 ∶ ∏
s∈S

Ms → ∏
s∈S0

Ms.

If each of the sets Ms is nonempty, then each of the maps πS0 is surjective and therefore qµ is also surjective.
In this case, we can identify ∫SMsdµ with the quotient of the Cartesian product ∏s∈SMs by an equivalence
relation ≃µ, given explicitly by

({xs}s∈S ≃µ {ys}s∈S) ⇔ (µ({s ∈ S ∶ xs = ys}) = 1).
Beware that if one of the sets Ms is empty, then the map qµ need not be surjective: in this case, the

Cartesian product ∏s∈SMs is empty, but the ultraproduct ∫SMsdµ need not be.

Example 1.2.7 (Principal Ultrafilters). Let M+ be a category and let M ⊆ M+ be a full subcategory
which has ultraproducts inM+. Let S be a set containing an element s0 ∈ S, and let δs0 denote the principal
ultrafilter associated to s0. Then the partially ordered set Uδs0 = {S0 ⊆ S ∶ s0 ∈ S0} has a least element, given

by the singleton {s0}. It follows that, for any collection of objects {Ms}s∈S , we have a canonical isomorphism

εS,s0 ∶ ∫
S
Msdδs0 ≃ ∏

s∈{s0}

Ms =Ms0 .

The construction {Ms}s∈S ↦ εS,s0 determines a natural isomorphism εS,s0 ∶ ∫S(●)dδs0
∼Ð→ evs0 of functors

from MS to M; here evs0 ∶ MS →M denotes the evaluation functor {Ms}s∈S ↦Ms0 .

We now make an elementary observation concerning iterated ultraproducts.

Proposition 1.2.8. Let M+ be a category and let M ⊆ M+ be a full subcategory which has ultraproducts
in M+. Let {Mt}t∈T be a collection of objects of M indexed by a set T , let ν● = {νs}s∈S be a collection
of ultrafilters on T indexed by a set S. Let µ be an ultrafilter on S and let ∫S νsdµ denote the composite
ultrafunctor of Construction 1.1.6. Then there is a unique morphism

∆µ,ν● ∶ ∫
T
Mtd(∫

S
νsdµ) → ∫

S
(∫

T
Mtdνs)dµ

in the category M with the following property:

(∗) Let S0 ⊆ S and T0 ⊆ T be subsets such that µ(S0) = 1 and νs(T0) = 1 for each s ∈ S0 (so that we also
have (∫S νsdµ)(T0) = 1). Then the diagram

∏t∈T0
Mt

q
T0

∫S νsdµ
��

{q
T0
νs }s∈S0 // ∏s∈S(∫T Mtdνs)

q
S0
µ

��
∫T Mtd(∫S νsdµ)

∆µ,ν● // ∫S(∫T Mtdνs)dµ

commutes (in the category M+).

Proof. From the definition of the ultraproduct ∫T Mtd(∫S νsdµ) as a colimit, we see that there is a unique
morphism

∆µ,ν● ∶ ∫
T
Mtd(∫

S
νsdµ) → ∫

S
(∫

T
Mtdνs)dµ

for which the diagram of (∗) commutes in the special case where S0 = {s ∈ S ∶ νs(T0)}. It follows immediately
from the definitions that the diagram commutes in general. �
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Notation 1.2.9 (Categorical Fubini Transformation). In the situation of Proposition 1.2.8, we will refer to
the map ∆µ,ν● as the categorical Fubini transformation. Note that is depends functorially on {Mt}t∈T : that

is, we can regard ∆µ,ν● as a natural transformation of functors from MT to M, fitting into a diagram

MS

∫S(●)dµ

!!
MT

{∫T (●)dνs}s∈S

==

∫T (●)d(∫S νsdµ)
//

∆µ,ν●

KS

M .

1.3. Ultracategories. We now place the constructions of §1.2 into an axiomatic framework.

Definition 1.3.1. Let M be a category. An ultrastructure on M consists of the following data:

(1) For every set S and every ultrafilter µ on S, a functor

∫
S
(●)dµ ∶ MS →M

We will denote the value of this functor on an object {Ms}s∈S ∈ MS by ∫SMsdµ, and refer to it as
the ultraproduct of {Ms}s∈S with respect to µ.

(2) For every family of objects {Ms}s∈S and every element s0 ∈ S, an isomorphism

εS,s0 ∶ ∫
S
Msdδs0

∼Ð→Ms0 ;

here δs0 denotes the principal ultrafilter associated to s0. We require that, for fixed S and s0,
these isomorphisms depend functorially on {Ms}s∈S : that is, they determine a natural isomorphism

εS,s0 ∶ ∫S(●)dδs0
∼Ð→ evs0 , where evs0 ∶ MS →M denotes the evaluation function {Ms}s∈S ↦Ms0 .

(3) For every family of objects {Mt}t∈T indexed by a set T , every family ν● = {νs}s∈S of ultrafilters on
T indexed by a set S, and every ultrafilter µ on S, a morphism

∆µ,ν● ∶ ∫
T
Mtd(∫

S
νsdµ) → ∫

S
(∫

T
Mtdνs)dµ

which we call the Fubini transformation.
For fixed S, T , µ, and ν●, we require that these morphisms depend functorially on the family

{Mt}t∈T . That is, they determine a natural transformation of functors

∆µ,ν● ∶ ∫
T
(●)d(∫

S
νsdµ) → ∫

T
(∫

S
(●)dνs)dµ

of functors from MT to M, fitting into a diagram

MS

∫S(●)dµ

!!
MT

{∫T (●)dνs}s∈S

==

∫T (●)d(∫S νsdµ)
//

∆µ,ν●

KS

M .

These data are required to satisfy the following axioms:

(A) Let {Mt}t∈T be a collection of objects of M indexed by a set T , let ν● = {νs}s∈S be a collection of
ultrafilters on T indexed by a set S, and let δs0 be the principal ultrafilter on S associated to an
element s0 ∈ S. Then the Fubini transformation

∆δs0 ,ν●
∶ ∫

T
Mtd(∫

S
νsdδs0) → ∫

S
(∫

T
Mtdνs)dδs0
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is the inverse of the isomorphism

∫
S
(∫

T
Mtdνs)dδs0

εS,s0ÐÐÐ→ ∫
T
Mtdνs0 = ∫

T
Mtd(∫

S
νsdδs0).

(B) Let {Mt}t∈T be a collection of objects of M indexed by a set T , let f ∶ S → T be a monomorphism
of sets, and let µ be an ultrafilter on a set S, so that the pushforward ultrafilter f∗(µ) is given by

∫S δf(s)dµ (see Example 1.1.7). Then the Fubini transformation

∆µ,δf(●) ∶ ∫
T
Mtd(f∗µ) → ∫

S
(∫

T
Mtdδf(s))dµ

is an isomorphism.
(C) Let {Mt}t∈T be a collection of objects of M indexed by a set T , let {νs}s∈S be a collection of

ultrafilters on T indexed by a set S, let {µr}r∈R be a collection of ultrafilters on S indexed by a set
R, and let λ be an ultrafilter on R. Let ρ denote the ultrafilter on T given by ρ = ∫R(∫S νsdµr)dλ =
∫S νsd(∫R µrdλ) Then the diagram of Fubini transformations

∫T Mtdρ
∆λ,∫S νsdµ● //

∆∫R µrdλ,ν●

��

∫R(∫T Mtd(∫S νsdµr))dλ

∫R∆µr,ν●dλ

��
∫S(∫T Mtdνs)d(∫R µrdλ)

∆λ,µ● // ∫R(∫S(∫T Mtdνs)dµr)dλ

commutes in the category M.

An ultracategory is a category M together with an ultrastructure on M.

Warning 1.3.2. To avoid an unmanagable profusion of notation, we adopt the convention of using the same
symbols ∫S(●)dµ, εS,s0 , and ∆µ,ν● for the data appearing in Definition 1.3.1, for all ultracategories that we
consider. This convention creates some danger of confusion: for example, ifM andN are two ultracategories,
then the symbol εS,s0 is used to denote both an isomorphism in the functor category Fun(MS ,M) (which

is supplied by the ultrastructure on M) and an isomorphism in the functor category Fun(N S ,N) (which is
supplied by the ultrastructure on N ).

Notation 1.3.3. Let M be an ultracategory. Suppose we are given a collection of objects {Mt}t∈T of M,
a map of sets f ∶ S → T , and an ultrafilter µ on S. We let ∆µ,f ∶ ∫T Mtd(f∗µ) → ∫SMf(s)dµ denote the
composite map

∫
T
Mtd(f∗µ) = ∫

T
Mtd(∫

S
δf(s)dµ)

∆µ,δf(●)ÐÐÐÐÐ→ ∫
S
(∫

T
Mtdδf(s))dµ

∫S εS,s0dµÐÐÐÐÐÐ→ ∫
S
Mf(s)dµ.

We will refer to ∆µ,f as the ultraproduct diagonal map. Note that axiom (B) of Definition 1.3.1 is equivalent
to the requirement that if f is an injective map of sets, then ∆µ,f is an isomorphism in M.

Example 1.3.4 (Ultrapowers). Let M be an ultracategory and let µ be an ultrafilter on a set S. For each
object M ∈ M, we let Mµ = ∫SMdµ denote the object of M obtained by applying the ultraproduct functor

∫S(●)dµ to the constant map S →M taking the value M . We will refer to Mµ as the ultrapower of M by
µ. Applying the construction of Notation 1.3.3 in the case where T = {t} is a singleton and f ∶ S → T is the
constant map taking the value t, we obtain a map

M ≃ ∫
T
Md(f∗µ) → ∫

S
Mdµ =Mµ.

We will denote this map by ∆µ ∶ M → Mµ and refer to it as the ultrapower diagonal. Beware that ∆µ is
generally not an isomorphism.

We will frequently make use of the following elementary observation concerning Notation 1.3.3:
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Proposition 1.3.5. Let M be an ultracategory. Suppose we are given a family of objects {Mt}t∈T of M
indexed by a set T , a pair of composable maps R

gÐ→ S
fÐ→ T , and an ultrafilter λ on R. Then the composite

map

∫
T
Mtd(f ○ g)∗λ

∆g∗λ,fÐÐÐÐ→ ∫
S
Mf(s)d(g∗λ)

∆λ,gÐÐÐ→ ∫
R
M(f○g)(r)dλ

coincides with the ultraproduct diagonal ∆λ,f○g.

Proof. Note that the morphisms ∆λ,g ○ ∆g∗(λ),f and ∆λ,f○g are given by clockwise and counterclockwise
composition around the diagram

∫T Mtd(f ○ g)∗λ
∆g∗(λ),δf(●) //

∆λ,δ(f○g)(●)

��

∫S(∫T Mtdδf(s))d(g∗λ)

∆λ,δg(●)

��

∫S εT,f(s) // ∫SMf(s)d(g∗λ)

∆λ,δg(●)

��
∫R(∫T Mtdδ(f○g)(●))dλ

∫R∆δg(r),δf(●)dλ// ∫R(∫S(∫T Mtdδf(s))dδg(r)dλ //

∫R εS,g(r)dλ

��

∫R(∫SMf(s)dδg(r))dλ

∫R εS,g(r)dλ

��
∫R(∫T Mtdδ(f○g)(r))dλ

∫R εT,δ(f○g)(r) // ∫RM(f○g)(r)dλ.

It will therefore suffice to show that this diagram commutes. For the squares on the right, this follows by
functoriality; the upper left square commutes by axiom (C) of Definition 1.3.1, and the triangle in the lower
left commutes by axiom (A). �

Proposition 1.3.5 has a counterpart for identity maps:

Corollary 1.3.6. Let M be an ultracategory, let {Ms}s∈S be a collection of objects of M indexed by a set
S, and let µ be an ultrafilter on S, which we identify with the pushforward of itself along the identity map
idS ∶ S → S. Then the ultraproduct diagonal map

∆µ,idS ∶ ∫
S
Msdµ→ ∫

S
Msdµ

of Notation 1.3.3 is the identity map.

Proof. It follows from axiom (B) of Definition 1.3.1 that ∆µ,idS is an isomorphism. Consequently, to show
that ∆µ,idS is the identity map, it will suffice to show that ∆µ,idS ○∆µ,idS = ∆µ,idS , which is a special case
of Proposition 1.3.5. �

We close this section by showing that ultraproducts satisfy the axiomatics of Definition 1.3.1:

Proposition 1.3.7. Let M+ be a category and let M ⊆ M+ be a full subcategory which has ultraproducts
in M. Then the functors ∫S(●)dµ ∶ MS → M of Construction 1.2.2 (together with the isomorphisms
εS,s0 of Example 1.2.7 and the categorical Fubini transformations ∆µ,ν● of Proposition 1.2.8) determine an
ultrastructure on M.

Example 1.3.8 (The Categorical Ultrastructure). Let M be a category which admits small products and
small filtered colimits. Applying Proposition 1.3.7 in the case M+ = M, we obtain an ultrastructure on
the category M, which we will refer to as the categorical ultrastructure on M. We will show later that the
categorical ultrastructure is “initial” among all possible ultrastructures on M (see Example 8.3.4).

Proof of Proposition 1.3.7. We must argue that M satisfies axioms (A), (B), and (C) of Definition 1.3.1.
We consider each in turn.
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(A) Let {Mt}t∈T be a collection of objects ofM, let ν● = {νs}s∈S be a collection of ultrafilters on T indexed
by a set S, and let µ be an ultrafilter on S. Recall that the categorical Fubini transformation

∆µ,ν● ∶ ∫
T
Mtd(∫

S
νsdµ) → ∫

S
(∫

T
Mtdνs)dµ

is characterized by the following requirement: if S0 ⊆ S and T0 ⊆ T are subsets with the property
that µ(S0) = 1 and νs(T0) = 1 for each s ∈ S0, then the diagram

∏t∈T0
Mt

{q
T0
νs }s∈S0 //

q
T0

∫S νsdµ
��

∏s∈S0 ∫T Mtνs

q
S0
µ

��
∫T Mtd(∫S νsdµ)

∆µ,ν● // ∫S(∫T Mtdνs)dµ

commutes. In the special case where µ = δs0 is the principal ultrafilter associated to some element
s0 ∈ S, we can take S0 = {s0} to obtain a commutative diagram

∏t∈T0
Mt

//

��

∫T Mtdνs0

ε−1S,s0
��

∫T Mtd(∫S νsdµ)
∆δs0

,ν●// ∫S(∫T Mtdνs)dδs0
for any subset T0 ⊆ T satisfying νs0(T0) = 1. Passing to the direct limit over T0, we obtain the desired
identity.

(B) Let {Mt}t∈T be a collection of objects of M indexed by a set T , let f ∶ S ↪ T be a monomorphism
of sets, and let µ be an ultrafilter on S. We wish to show that the ultraproduct diagonal

∆µ,f ∶ ∫
T
Mtd(f∗µ) → ∫

S
Mf(s)dµ

of Notation 1.3.3 is an isomorphism. This follows from the observation that the construction S0 ↦
f(S0) induces a cofinal map of partially ordered sets Uop

µ → Uop
f∗(µ)

.

(C) Let {Mt}t∈T be a collection of objects of M indexed by a set T , let {νs}s∈S be a collection of
ultrafilters on T indexed by a set S, let {µr}r∈R be a collection of ultrafilters on S indexed by a set
R, and let λ be an ultrafilter on R. Set ρ = ∫R(∫S νsdµr)dλ = ∫S νsd(∫R µrdλ, and let T0 ⊆ T be a
subset with ρ(T0) = 1. Set S0 = {s ∈ S ∶ νs(T0) = 1} and R0 = {r ∈ R ∶ µr(S0) = 1}, so that λ(R0) = 1.
We then have a cubical diagram

∏t∈T0
Mt

q
T0
ρ

((

//

��

∏r∈R0∏t∈T0
Mt

))

��

∫T Mtdρ
∆λ,∫S νsdµ● //

∆∫R µrdλ,ν●

��

∫R(∫T Mtd(∫S νsdµr))dλ

∫R∆µr,ν●dλ

��

∏s∈S0∏t∈T0
Mt

((

// ∏r∈R0∏s∈S0∏t∈T0
Mt

))
∫S(∫T Mtdνs)d(∫R µrdλ)

∆λ,µ● // ∫R(∫S(∫T Mtdνs)dµr)dλ

It then follows by a diagram chase that we have an identity

∆λ,µ● ○∆
∫R µrdλ,ν●

○ qT0
ρ = (∫

R
∆µr,ν●dλ) ○∆λ,∫S νsdµ●

○ qT0
ρ

in the set HomM+(∏t∈T0
Mt, ∫R(∫S(∫T Mtdνs)dµr)dλ). Since the maps {qT0

ρ ∶ ∏t∈T0
Mt → ∫T Mtdρ}

exhibit the categorical ultraproduct ∫T Mtdρ as a direct limit of the diagram {∏t∈T0
Mt}ρ(T0)=1, it
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follows that we must also have the identity

∆λ,µ● ○∆
∫R µrdλ,ν●

= (∫
R

∆µr,ν●dλ) ○∆λ,∫S νsdµ●

in HomM(∫T Mtdρ, ∫R(∫S(∫T Mtdνs)dµr)dλ).
�

1.4. Ultrafunctors. We now introduce some terminology for articulating the relationship between different
ultracategories.

Definition 1.4.1 (Ultrafunctors). Let M and N be categories with ultrastructure and let F ∶ M → N be
a functor. A left ultrastructure on F consists of the following data:

(∗) For every collection of objects {Ms}s∈S of the categoryM and every ultrafilter µ on S, a morphism
σµ ∶ F (∫SMsdµ) → ∫S F (Ms)dµ in the category N .

These morphisms are required to satisfy the following conditions:

(0) For every collection of morphisms {fs ∶Ms →M ′
s} in the category M and every ultrafilter µ on S,

the diagram

F (∫SMsdµ)

F (∫S fsdµ)

��

σµ // ∫S F (Ms)dµ

∫S F (fs)dµ

��
F (∫SM ′

sdµ)
σµ // ∫S F (M ′

s)dµ
commutes. In other words, we can regard σµ as a natural transformation

σµ ∶ F ○ ∫
S
(●)dµ→ ∫

S
(●)dµ ○ FS

of functors from MS to N .
(1) For every collection {Ms}s∈S of objects of M indexed by a set S and every element s0 ∈ S, the

diagram

F (∫SMsdδs0)

F (εS,s0) ''

σδs0 // ∫S F (Ms)dδs0

εS,s0ww
F (Ms0)

commutes (in the category N ).
(2) For every collection {Mt}t∈T of objects of M indexed by a set T , every collection ν● = {νs}s∈S of

ultrafilters on T indexed by a set S, and every ultrafilter µ on S, the diagram

F (∫T Mtd(∫S νsdµ))

F (∆µ,ν●)

��

σ∫S νsdµ // ∫T F (Mt)d(∫S νsdµ)

∆µ,ν●

��
F (∫S(∫T Mtdνs)dµ)

σµ // ∫S F (∫T Mtdνs)dµ
∫S σνsdµ // ∫S(∫T F (Mt)dνs)dµ

commutes (in the category N ).

An ultrastructure on F is a left ultrastructure {σµ} for which each of the maps σµ is an isomorphism. A
left ultrafunctor from M to N is a pair (F,{σµ}), where F is a functor from M to N and {σµ} is a left
ultrastructure on F . An ultrafunctor fromM to N is a right ultrafunctor (F,{σµ}) for which each σµ is an
isomorphism.

Definition 1.4.2. Let M and N be categories with ultrastructure, let F,F ′ ∶ M → N be functors from M
to N , and suppose that F and F ′ are equipped with left ultrastructures {σµ} and {σ′µ}, respectively. We
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will say that a natural transformation u ∶ F → F ′ is a natural transformation of left ultrafunctors if, for every
collection of objects {Ms}s∈S of M and every ultrafilter µ on S, the diagram

F (∫SMsdµ)
σµ //

u(∫SMsdµ)

��

∫S F (Ms)dµ

∫S u(Ms)dµ

��
F ′(∫SMsdµ)

σµ // ∫S F ′(Ms)dµ

commutes (in the category N ).

We let FunLUlt(M,N) denote the category whose objects are left ultrafunctors (F,{σµ}) from M to N
and whose morphisms are natural transformations of left ultrafunctors, and we let FunUlt(M,N) denote the

full subcategory of FunLUlt(M,N) spanned by the ultrafunctors from M to N .

Remark 1.4.3 (Colimits of Left Ultrafunctors). Let M and N be ultracategories. Suppose that we are

given a diagram {Fα} in the category FunLUlt(M,N) with the property that, for every object M ∈ M, the
diagram {Fα(M)} admits a colimit in N . Then:

● The construction (M ∈ M) ↦ limÐ→α Fα(M) determines a functor F ∶ M → N .

● There is a unique left ultrastructure on F for which each of the natural maps ρα ∶ Fα → F is a
natural transformation of left ultrafunctors.

● The maps ρα exhibit F as a colimit of the diagram {Fα} in the category of left ultrafunctors

FunLUlt(M,N).
In particular, if the ultracategory N admits small colimits, then the category FunLUlt(M,N) also admits

small colimits, which are preserved by the forgetful functor FunLUlt(M,N) → Fun(M,N).

Warning 1.4.4. The analogue of Remark 1.4.3 for ultrafunctors (as opposed to left ultrafunctors) is false.

If {Fα} is a diagram in the category FunUlt(M,N) of ultrafunctors which admits a pointwise colimit F ∶
M → N , then F inherits a left ultrastructure (by virtue of Remark 1.4.3) given by maps

σµ ∶ F (∫
S
Msdµ) ≃ limÐ→

α

Fα(∫
S
Msdµ) ≃ limÐ→

α
∫
S
Fα(Ms)dµ→ ∫

S
(limÐ→
α

Fα(Ms)dµ) ≃ ∫
S
F (Ms)dµ.

But these maps are generally not invertible, because the ultraproduct functors on N need not preserve
colimits.

Construction 1.4.5 (Composition of Left Ultrafunctors). Let M, M′, and M′′ be ultracategories. Let
(F,{σµ}) be a left ultrafunctor from M to M′, and let (F ′,{σ′µ}) be a left ultrafunctor from M′ to M′′.
Then the composite functor F ′ ○F admits a left ultrastructure, which associates to each collection of objects
{Ms}s∈S of M and each ultrafilter µ on S the composite map

(F ′ ○ F )(∫
S
Msdµ)

F ′
(σµ)ÐÐÐÐ→ F ′(∫

S
F (Ms)dµ)

σ′µÐ→ ∫
S
(F ′ ○ F )(Ms)dµ.

Note that if {σµ} and {σ′µ} are ultrastructures, then this construction determines an ultrastructure on the
functor F ′ ○ F . We therefore obtain composition laws

FunLUlt(M′,M′′) × FunLUlt(M,M′) → FunLUlt(M,M′′)

FunUlt(M′,M′′) × FunUlt(M,M′) → FunUlt(M,M′′).

Remark 1.4.6. We can use Construction 1.4.5 to construct (strict) 2-categories Ult ⊂ UltL as follows:

● The objects of Ult and UltL are ultracategories.
● For every pair of ultracategoriesM and N , the category of morphisms fromM to N in Ult is given

by FunUlt(M,N), and the category of morphisms fromM to N in UltL is given by FunLUlt(M,N).
● The composition laws on Ult and UltL are given by Construction 1.4.5.
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More informally: UltL is the 2-category in which objects are ultracategories, 1-morphisms are left ultrafunc-
tors, and 2-morphisms are natural transformations of left ultrafunctors. The 2-category Ult is the (non-full)

subcategory of UltL whose morphisms are ultrafunctors.

Remark 1.4.7. LetM and N be ultracategories and let F ∶ M → N be an ultrafunctor. If F is an equiva-
lence of categories having homotopy inverse G ∶ N →M, then G inherits the structure of an ultrafunctor and
can be regarded as a homotopy inverse of F in the 2-category Ult. Beware that the analogous statement is
not necessarily true if we assume only that F is a left ultrafunctor (though in this case, G still inherits the
structure of a right ultrafunctor; see Remark 8.1.4).

We give some examples of (left) ultrafunctors.

Proposition 1.4.8. Let M and N be categories which admit small products and small filtered colimits, and
equip M and N with the category ultrastructures of Example 1.3.8. Let F ∶ M → N is a functor which
preserves small filtered colimits, then F can be regarded as a left ultrafunctor from M to N . If F preserves
small filtered colimits and small products, then it can be regarded as an ultrafunctor from M to N .

Proposition 1.4.8 is an immediate consequence of the following more general (and more precise) assertion:

Proposition 1.4.9. Let M+ and N + be categories and let M⊆M+ and N ⊆ N + be full subcategories which
admit ultraproducts in M+ and N +, respectively. Let F + ∶ M+ → N + be a functor which carries M into N
and satisfies the following additional condition:

(∗) For every collection of objects {Ms}s∈S of M and every ultrafilter µ on S, the maps

F +(qS0
µ ) ∶ F +(∏

s∈I

Ms) → F +(∫
S
Msdµ)

exhibit F +(∫SMsdµ) as a colimit of the diagram {F +(∏s∈IMs)}µ(I)=1 in the category N +.

Let F = F +∣M, which we regard as a functor from M to N , and regard M and N as equipped with the
ultrastructures give by Proposition 1.3.7. Then:

(a) For every collection of objects {Ms}s∈S of M and every ultrafilter µ on S, there is a unique map
σµ ∶ F (∫SMsdµ) → ∫S F (Ms)dµ having the property that, for each subset S0 ⊆ S with µ(S0) = 1, the
diagram

F +(∏s∈S0
Ms) //

F+
(q
S0
µ )

��

∏s∈S0
F (Ms)

q
S0
µ

��
F (∫SMsdµ)

σµ // ∫S F (Ms)dµ

commutes.
(b) The morphisms {σµ} of (a) determine a left ultrastructure on the functor F .
(c) If F + preserves small products, then {σµ} is an ultrastructure on F (that is, each of the maps

σµ ∶ F (∫SMsdµ) → ∫S F (Ms)dµ is an isomorphism).

Proof of Proposition 1.4.9. Assertion (a) follows immediately from (∗), and (c) is clear. To prove (b), we
show that that the maps {σµ} satisfy condition (2) of Definition 1.4.1 (conditions (0) and (1) are immediate
from the definitions). Fix a collection of objects {Mt}t∈T ofM indexed by a set T , a collection of ultrafilters
{νs}s∈S on T indexed by a set S, and an ultrafilter µ on the set S. Set λ = ∫S νsdµ. We wish to show that
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the diagram τ ∶

∫T F (Mt)dλ
∆µ,ν● // ∫S(∫T F (Mt)dνs)dµ

∫S F (∫T Mtdνs)dµ

∫S σνsdµ

OO

F (∫T Mtdλ)
F (∆µ,ν●) //

σλ

OO

F (∫S(∫T Mtdνs)dµ)

σµ

OO

commutes (in the category N ). Let u, v ∶ F (∫T Mtdλ) ⇉ ∫S(∫T F (Mt)dνs)dµ be the maps given by clockwise
and counterclockwise composition around the diagram σ. To show that u = v, it will suffice (by virtue of

(∗)) to show that u and v agree after precomposition with F (qT0

λ ) ∶ F (∏t∈T0
Mt) → F (∫T Mtdλ), for every

subset T0 ⊆ T with λ(T0) = 1. Set S0 = {s ∈ S ∶ νs(T0) = 1}, so that µ(S0) = 1. We are then reduced to
verifying the commutativity of the diagram

∫T F (Mt)
∆µ,ν● // ∫S(∫T F (Mt)dνs)dµ

∏s∈S0
(∫T F (Mt)dνs)

q
S0
µ

44

∏t∈T0
F (Mt)

{q
T0
νs }s∈S0

44

q
T0
λ

bb

∏s∈S0
F (∫T Mtdνs)

∏s∈S0 σνs

OO

q
S0
µ // ∫S F (∫T Mtdνs)dµ

∫S σνsdµ

OO

F +(∏t∈T0
Mt)

OO

F (q
T0
λ

)

uu

F ({q
T0
νs }s∈S)// F +(∏s∈S0

(∫T Mtdνs))

OO

F (q
S0
µ )

**
F (∫T Mtdλ)

F (∆µ,ν●) //

σλ

OO

F (∫S(∫T Mtdνs)dµ)

σµ

OO

in the category N +. Note that the inner region of the diagram commutes by the construction of the maps
σνs , the upper region commutes by the construction of the Fubini transformation for the ultrastructure on
N , the lower region commutes by the construction of the Fubini transformation for the ultrastructure on
M, the region on the left commutes by the construction of σλ, the region on the upper right commutes by
functoriality, and the region on the lower right commutes by the construction of σµ. �

Remark 1.4.10. Let M+ and N + be categories which admit small products, let M ⊆ M+ and N ⊆ N +

be full subcategories which admit ultraproducts in M+ and N +, and let Fun′(M+,N +) denotes the full
subcategory of Fun(M,N) spanned by those functors which carry M into N and satisfy condition (∗)
of Proposition 1.4.9. Then the construction F + ↦ (F,{σµ}) of Proposition 1.4.9 determines a functor

Fun′(M+,N +) → FunLUlt(M,N).

2. Ultracategories and Logic

Let C be a small pretopos. Recall that a model of C is a functor M ∶ C → Set which preserves finite limits,
finite coproducts, and effective epimorphisms (Definition A.4.5). We let Mod(C) denote the full subcategory
of Fun(C,Set) spanned by the models of C. In §2.1, we recall the  Los ultraproduct theorem, which (in this
context) asserts that the category of models of C is closed under the formation of ultraproducts in Fun(C,Set)
(Theorem 2.1.1). In particular, the category Mod(C) inherits an ultrastructure (Remark 2.1.2), so we can
consider (left) ultrafunctors F ∶ Mod(C) → Set. In §2.2, we give a precise statement of the main result
of this paper (Theorem 2.2.2), which establishes an equivalence between the category of left ultrafunctors
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FunLUlt(Mod(C),Set) with the topos of sheaves Shv(C). In §2.3, we apply this result to deduce Makkai’s
strong conceptual completeness theorem, which supplies an equivalence of the category of ultrafunctors
FunUlt(Mod(C),Set) with the pretopos C itself (Theorem 2.3.1). In §2.4, we apply the strong conceptual
completeness theorem to prove another result of Makkai, which characterizes the essential image of the Barr
embedding of a small exact category E (Theorem 2.4.2).

2.1. The  Los Ultraproduct Theorem. We now recall the classical  Los ultraproduct theorem in a form
which is convenient for our applications. Note that, for any category C, the functor category Fun(C,Set)
admits small limits and colimits. In particular, for any collection of functors {Ms ∶ C → Set}s∈S and any
ultrafilter µ on S, we can form the categorical ultraproduct ∫SMsdµ (in the category Fun(C,Set)), which is
described concretely by the formula

(∫
S
Msdµ)(C) = ∫

S
(Ms(C))dµ = limÐ→

µ(S0)=1

∏
s∈S0

Ms(C).

Theorem 2.1.1 ( Los Ultraproduct Theorem). Let C be a pretopos and let {Ms}s∈S be a collection of models
of C. For every ultrafilter µ on S, the ultraproduct ∫SMsdµ (formed in the category Fun(C,Set)) is also a
model of C.

Remark 2.1.2. Let C be a pretopos. Theorem 2.1.1 asserts that the category of models Mod(C) has
ultraproducts in the larger category Fun(C,Set), in the sense of Construction 1.2.2. Applying Proposition
1.3.7, we obtain an ultrastructure on the category Mod(C).

Theorem 2.1.1 is an immediate consequence of the following feature of the category of sets:

Proposition 2.1.3. Let S be a set and let µ be an ultrafilter on S. Then the ultraproduct functor ∫S(●)dµ ∶
SetS → Set of Construction 1.2.2 is a pretopos functor: that is, it preserves finite limits, finite coproducts,
and effective epimorphisms.

Proof. By construction, the ultraproduct functor ∫S(●)dµ can be written as a filtered direct limit of functors
of the form {Ms}s∈S ↦ ∏s∈S0

Ms. Since each of these functors preserves finite limits, initial objects, and
effective epimorphisms, it follows that ∫S(●)dµ preserves finite limits, initial objects, and effective epimor-

phisms. To complete the proof, it will suffice to show that for every pair of objects {Ms}s∈S ,{Ns}s∈S ∈ SetS ,
the canonical map

(∫
S
Msdµ) ∐ (∫

S
Nsdµ) → ∫

S
(Ms ∐Ns)dµ

is bijective. It follows from the left exactness of the ultraproduct functor that we can identify ∫SMsdµ and

∫SNsdµ with disjoint subsets of ∫S(Ms ∐Ns)dµ; we wish to show that every element x ∈ ∫S(Ms ∐Ns)dµ
belongs to one of these subsets. Without loss of generality, we may assume that x is represented by an
element {xs}s∈S0 ∈ ∏s∈S0

(Ms ∐Ns) for some subset S0 ⊆ S with µ(S0) = 1. Then we can write S0 = S− ∐ S+,
where S− = {s ∈ S0 ∶ xs ∈Ms} and S+ = {s ∈ S0 ∶ xs ∈ Ns}. We then have µ(S−) +µ(S+) = µ(S0) = 1. Without
loss of generality, we may assume that µ(S−) = 1. In this case, x can also be represented by the tuple

{xs}s∈S− ∈ ∏
s∈S−

Ms ⊆ ∏
s∈S−

(Ms ∐Ns)

and therefore belongs to the image of the ultraproduct ∫SMsdµ. �

Proof of Theorem 2.1.1. Let {Ms}s∈S be a collection of models of C and let µ be an ultrafilter on the index
set S. Then the ultraproduct ∫SMsdµ (formed in the category Fun(C,Set)) can be identified with the
composition

C {Ms}s∈SÐÐÐÐÐ→ SetS
∫S(●)dµÐÐÐÐ→ Set .

The first map is a pretoos functor by virtue of our assumption that each Ms is a model of C, and the second
map is a pretopos functor by virtue of Proposition 2.1.3. It follows that the composite map is also a pretopos
functor. �

We close this section by noting another consequence of Proposition 2.1.3.
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Corollary 2.1.4. LetM be an ultracategory. Then the category of left ultrafunctors FunLUlt(M,Set) admits

finite limits, which are preserved by the forgetful functor FunLUlt(M,Set) → Fun(M,Set). Moreover, the

full subcategory FunUlt(M,Set) is closed under finite limits.

Proof. Let {Fα} be a finite diagram in the category of left ultrafunctors FunLUlt(M,Set), and define F ∶
M → Set by the formula F (M) = lim←ÐFα(M). For any collection of objects {Ms}s∈S ofM and any ultrafilter

µ on S, we have a diagram

F (∫SMsdµ)
σµ //

∼

��

∫S F (Ms)dµ

∼

��
lim←Ðα Fα(∫SMsdµ) // lim←Ðα ∫S Fα(Ms)dµ,

where the bottom horizontal map is supplied by the left ultrastructures on the functors Fα and the right verti-
cal map is a bijection by virtue of Proposition 2.1.3. It follows that there is a unique map σµ ∶ F (∫SMsdµ) →
∫S F (Ms)dµ which renders the diagram commutative. Moreover, if each Fα is an ultrafunctor, then the bot-
tom horizontal map is bijective, so that σµ is an isomorphism. We leave it to the reader to verify that the
collection of maps {σµ} is a left ultrastructure on F (hence an ultrastructure in the case where each Fα is
an ultrafunctor), and that the projection maps F → Fα exhibit F as a limit of the diagram {Fα} in the

category of left ultrafunctors FunLUlt(M,Set). �

2.2. Statement of the Main Theorem. We are now ready to formulate the main result of this paper.

Construction 2.2.1 (The Evaluation Map). Let C be a pretopos. For each object C ∈ C, evaluation at C
determines a functor Fun(C,Set) → Set which preserves small limits and colimits. We let evC denote the
restriction of this evaluation functor to the category Mod(C) ⊆ Fun(C,Set), given on objects by evC(M) =
M(C). Invoking Proposition 1.4.9, we see that evC can be regarded as an ultrafunctor from Mod(C) to
the category of sets, where Mod(C) is endowed with the ultrastructure of Remark 2.1.2. Moreover, the
construction C ↦ evC determines a functor

ev ∶ C → FunUlt(Mod(C),Set),
which we will refer to as the evaluation map (see Remark 1.4.10).

Theorem 2.2.2. Let C be a small pretopos and let

ev ∶ C → FunUlt(Mod(C),Set) ⊆ FunLUlt(Mod(C),Set)
denote the evaluation map of Construction 2.2.1. Then:

(1) Let T ∶ Mod(C) → Set be a left ultrafunctor, and define a functor FT ∶ Cop → Set by the formula
FT (C) = HomFunLUlt(Mod(C),Set)(evC , T ). Then FT is a sheaf on C (with respect to the coherent

topology of Definition B.5.3).

(2) The construction T ↦ FT induces an equivalence of categories FunLUlt(Mod(C),Set) → Shv(C),
where Shv(C) is the topos of sheaves on C (with respect to the coherent topology).

We will prove Theorem 2.2.2 in §7.

Corollary 2.2.3. Let C be a small pretopos. Then the category of left ultrafunctors FunLUlt(Mod(C),Set)
is a (coherent) Grothendieck topos.

Notation 2.2.4. If X and Y are Grothendieck topoi, we let Fun∗(X ,Y) denote the full subcategory of
Fun(X ,Y) spanned by those functors f∗ ∶ X → Y that preserve small colimits and finite limits (in other
words, Fun∗(X ,Y) denotes the category of geometric morphisms from Y to X ).

Example 2.2.5. Let M and N be ultracategories, and assume that the categories FunLUlt(M,Set) and

FunLUlt(N ,Set) are Grothendieck topoi. For every left ultrafunctor F ∶ M → N , precomposition with F
induces a map

FunLUlt(N ,Set) → FunLUlt(M,Set)
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which preserves small colimits (by Remark 1.4.3) and finite limits (by Corollary 2.1.4). We therefore obtain
a map

FunLUlt(M,N) → Fun∗(FunLUlt(N ,Set),FunLUlt(M,Set)).

Corollary 2.2.6. Let C be a small pretopos and let X be a Grothendieck topos. Then composition with the
evaluation map ev ∶ C → FunUlt(Mod(C),Set) ⊆ FunLUlt(Mod(C),Set) induces a fully faithful embedding

Fun∗(FunLUlt(Mod(C),Set),X) → Fun(C,X),
whose essential image is spanned by the pretopos functors from C to X .

Proof. Combine Theorem 2.2.2 with Corollary C.3.6. �

Corollary 2.2.7. Let C be a small pretopos, let M be an ultracategory, and assume that FunLUlt(M,Set)
is a Grothendieck topos. Then the comparison map

θ ∶ FunLUlt(M,Mod(C)) → Fun∗(FunLUlt(Mod(C),Set),FunLUlt(M,Set))
of Example 2.2.5 is an equivalence of categories.

Proof. Unwinding the definitions, we see that θ fits into a commutative diagram

FunLUlt(M,Mod(C))

��

θ // Fun∗(FunLUlt(Mod(C),Set),FunLUlt(M,Set))

○ ev

��
FunLUlt(M,Fun(C,Set)) // Fun(C,FunLUlt(M,Set))

where the bottom horizontal map is an equivalence of categories. It will therefore suffice to show that
this diagram is a pullback square. Using Corollary 2.2.6, we are reduced to proving the following concrete
statement:

(∗) Let F ∶ C → FunLUlt(M,Set) be a functor. Then F is a pretopos functor if and only if, for each
object X ∈ M, the functor

FX ∶ C → Set FX(C) = F (C)(X)
is a pretopos functor (that is, a model of C).

This is clear, since colimits and finite limits in the category FunLUlt(M,Set) are computed pointwise (Remark
1.4.3 and Corollary 2.1.4). �

Example 2.2.8. In the situation of Corollary 2.2.7, suppose that M = Mod(D) for some other small
pretopos D. Combining the identifications

FunLUlt(Mod(C),Set) ≃ Shv(C) FunLUlt(Mod(D),Set) ≃ Shv(D)
of Theorem 2.2.2 with Corollary 2.2.7, we obtain an equivalence of categories

FunLUlt(Mod(C),Mod(D)) ≃ Fun∗(Shv(D),Shv(C)).

Remark 2.2.9. Let UltL denote the (strict) 2-category whose objects are ultracategory and whose mor-

phisms are left ultrafunctors (Remark 1.4.6), and let UltL
0 ⊆ UltL denote the full subcategory spanned by

those ultracategories of the form Mod(C), where C is a small pretopos. It follows from Corollary 2.2.7 that

the construction M ↦ FunLUlt(M,Set) determines a fully faithful embedding from UltL
0 to the (strict)

2-category of topoi and geometric morphisms. By virtue of Theorem 2.2.2, the essential image of this
embedding is the 2-category of coherent topoi (see Proposition C.6.4).

Theorem 2.2.2 immediately implies the following classical result of Deligne:

Theorem 2.2.10 (Deligne’s Completeness Theorem). Let X be a coherent Grothendieck topos. Then X has
enough points. In other words, if f ∶X → Y is a morphism in X with the property that u∗(f) is bijective for
every point u∗ ∈ Fun∗(X ,Set), then f is an isomorphism in X .
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Proof. By virtue of Proposition C.6.4 and Theorem 2.2.2, we may assume without loss of generality that
X = FunLUlt(Mod(C),Set) for some small pretopos C, so that f is a natural transformation between left
ultrafunctors X,Y ∶ Mod(C) → Set. If f is not an isomorphism, then there exists some model M ∈ Mod(C)
for which the map X(M) → Y (M) is not bijective. Evaluation at M determines a functor

u∗ ∶ X = FunLUlt(Mod(C),Set) → Fun(Mod(C),Set) → Set

such that u∗(f) is not bijective. Since small colimits and finite limits in FunLUlt(Mod(C),Set) are computed
pointwise (Remark 1.4.3 and Corollary 2.1.4), the functor u∗ is a point of the topos X . �

We note the following easy consequence of Deligne’s theorem, which will be useful in the next section:

Corollary 2.2.11. Let C and D be pretopoi and let λ ∶ D → C be a functor. Assume that C is small and that
for each model M of C, the composite functor M ○ λ ∈ Fun(D,Set) is a model of D. Then λ is a pretopos
functor.

Proof. We must show that the functor λ preserves finite limits, finite coproducts, and effective epimorphisms.
We give the proof for finite limits; the other properties follow by a similar argument. Suppose we are given
a finite diagram {Dα} in the category D having limit D = lim←ÐαDα. We wish to show that the canonical map

u ∶ λ(D) → lim←Ðα λ(Dα) is an isomorphism in the category C. By virtue of Theorem 2.2.10 (and Corollary

B.5.6), it will suffice to show that M(u) is an isomorphism for each model M of C. Since M preserves finite
limits, we can identify M(u) with the canonical map (M ○ λ)(D) → lim←Ðα(M ○ λ)(Dα). This map is an

isomorphism by virtue of our assumption that M ○ λ is a model of D. �

2.3. Application: Strong Conceptual Completeness. We now turn to the original version of Makkai’s
strong conceptual completeness theorem.

Theorem 2.3.1 (Makkai). Let C be a small pretopos. Then the evaluation map ev ∶ C → FunUlt(Mod(C),Set)
of Construction 2.2.1 is an equivalence of categories.

Remark 2.3.2. Theorem 2.3.1 is actually slightly stronger than the version proved by Makkai in [9], since

our category of ultrafunctors FunUlt(Mod(C),Set) is a priori larger than the one introduced by Makkai; see
Warning 0.0.9.

Before giving the proof of Theorem 2.3.1, let us note some of its consequences. Let C and D be pretopoi
and let λ ∶ D → D be any functor. Then precomposition with λ induces a map λ∗ ∶ Fun(C,Set) → Fun(D,Set)
which preserves small limits and colimits. Applying Remark 1.4.10, we see that λ∗ induces an ultrafunctor
from Mod(C) to Fun(D,Set), which we will also denote by λ∗. Note that if λ is a pretopos functor, then we
can regard λ∗ as an ultrafunctor from Mod(C) to Mod(D).

Corollary 2.3.3 (Makkai Duality). Let C and D be pretopoi and let FunPretop(D,C) denote the category
of pretopos functors from D to C. If C is small, then the construction λ ↦ λ∗ induces an equivalence of
categories

FunPretop(D,C) ≃ FunUlt(Mod(C),Mod(D)).

Proof. It follows from Theorem 2.3.1 that the construction λ↦ λ∗ induces an equivalence of categories

Fun(D,C) → Fun(D,FunUlt(Mod(C)),Set) ≃ FunUlt(Mod(C),Fun(D,Set)).

Under this equivalence, the full subcategory FunUlt(Mod(C),Mod(D)) ⊆ FunUlt(Mod(C),Fun(D,Set)) can
be corresponds to the full subcategory of Fun(D,C) spanned by those functors λ with the property that for
each model M of C, the composition M ○ λ is a model of D. By virtue of Corollary 2.2.11, this subcategory
coincides with FunPretop(D,C). �

Remark 2.3.4. Let Ult denote the (strict) 2-category whose objects are ultracategories and whose mor-
phisms are ultrafunctors (Remark 1.4.6) It follows from Corollary 2.3.3 that the construction C ↦ Mod(C)
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determines a fully faithful embedding of 2-categories {Small pretopoi}op ↪Ult. This embedding fits into a
commutative diagram

{Small pretopoi}op C↦Mod(C) //

C↦Shv(C)

��

Ult

��
{Coherent topoi} // UltL,

where the bottom horizontal map is the fully faithful embedding of Remark 2.2.9 (with homotopy inverse

given by M↦ FunLUlt(M,Set)).
Corollary 2.3.5 (Makkai-Reyes Conceptual Completeness Theorem). Let C and D be small pretopoi and
let λ ∶ D → C be a pretopos functor. If the induced map Mod(C) → Mod(D) is an equivalence of categories,
then λ is an equivalence of categories.

Proof. Combine Corollary 2.3.3 with Remark 1.4.7. �

We will deduce Theorem 2.3.1 from Theorem 2.2.2 together with the following observation:

Lemma 2.3.6. Let C be a small pretopos and let F ∶ Mod(C) → Set be a functor equipped with a left
ultrastructure {σµ}. Suppose that, for every collection of models {Ms}s∈S of C and every ultrafilter µ on
S, the map σµ ∶ F (∫SMsdµ) → ∫S F (Ms)dµ is surjective. Then F is a quasi-compact object of the topos

FunLUlt(Mod(C),Set).

Proof. Let {Fs}s∈S be the collection of all quasi-compact subobjects of F (in the Grothendieck topos

FunLUlt(Mod(C),Set)). We regard S as partially ordered by inclusion (so that s ≤ s′ if and only if Fs ⊆ Fs′).
Since the collection of quasi-compact subobjects of F is closed under finite unions, the partial ordering on
S is directed. Applying Proposition 1.1.10, we can choose an ultrafilter µ on S such that, for every t ∈ S, we
have µ({s ∈ S ∶ s ≥ t}) = 1.

Assume that F is not quasi-compact. Then, for each s ∈ S, we have Fs ⊊ F . We can therefore choose a
model Ms of C and an element xs ∈ F (Ms) which does not belong to Fs(Ms). Let x denote the image of
{xs}s∈S in the ultraproduct ∫S F (Ms)dµ. Using the surjectivity of the map σµ ∶ F (∫SMsdµ) → ∫S F (Ms)dµ,
we conclude that there is an element y ∈ F (∫SMsdµ) satisfying σµ(y) = x. Then y belongs to Ft(∫SMsdµ)
for some t ∈ S. Using the commutativity of the diagram

Ft(∫SMsdµ)
σµ //

��

∫S Ft(Ms)dµ

��
F (∫SMsdµ)

σµ // ∫S F (Ms)dµ,

we see that x can be lifted to an element x̃ of the ultraproduct ∫S Ft(Ms)dµ. Choose a subset S0 ⊆ S
satisfying µ(S0) = 1 and a tuple {x̃s ∈ Ft(Ms)}s∈S0 representing x̃. Shrinking S0 if necessary, we may assume
that x̃s = xs for each s ∈ S0 and that S0 ⊆ {s ∈ S ∶ s ≥ t}. Then, for any element s ∈ S0, we conclude that

xs = x̃s ∈ Ft(Ms) ⊆ Fs(Ms),
contradicting our choice of xs. �

Proof of Theorem 2.3.1. Let C be a small pretopos; we wish to prove that the evaluation map ev ∶ C →
FunUlt(Mod(C),Set) is an equivalence of categories. Let θ ∶ FunLUlt(Mod(C),Set) → Shv(C) be the equiv-
alence of Theorem 2.2.2, so that the composition θ ○ ev ∶ C → Shv(C) is the Yoneda embedding. Applying
Theorem C.6.5, we see that the evaluation map ev is a fully faithful embedding, whose essential image con-
sists of those ultrafunctors F ∶ Mod(C) → Set which are quasi-compact and quasi-separated when viewed as

objects of the topos FunLUlt(Mod(C),Set). We will complete the proof by showing that every ultrafunctor

F is quasi-compact and quasi-separated as an object of FunLUlt(Mod(C),Set). The quasi-compactness of
F follows from Lemma 2.3.6. To prove that F is quasi-separated, we must show that for every pair of
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quasi-compact objects F0, F1 ∈ FunLUlt(Mod(C),Set) equipped with maps F0 → F ← F1, the fiber product

F0 ×F F1 is quasi-compact. It follows from Theorem 2.2.2 that the topos FunLUlt(Mod(C),Set) is generated
(under small colimits) by objects of the form evC , for C ∈ C. We may therefore assume without loss of
generality that F0 and F1 belong to the essential image of the evaluation functor, and therefore belong to
the subcategory FunUlt(Mod(C),Set) ⊆ FunLUlt(Mod(C),Set). In this case, the fiber product F0 ×F F1 is
also an ultrafunctor (Corollary 2.1.4), and is therefore quasi-compact by Lemma 2.3.6. �

2.4. Application: The Image of the Barr Embedding. Let E be a regular category (Definition A.1.3).
Recall that a functor M ∶ E → Set is said to be regular if it preserves finite limits and carries effective
epimorphisms in E to surjections in the category of sets. We let Funreg(E ,Set) denote the full subcategory
of Fun(E ,Set) spanned by the regular functors. For every object E ∈ E , we let evE ∶ Funreg(E ,Set) → Set
denote the functor given by evaluation at E, so that evE(M) =M(E). The construction E ↦ evE is called
the Barr embedding, due to the following result of [3]:

Theorem 2.4.1 (Barr). Let E be a small regular category. Then the construction E ↦ evE induces a fully
faithful embedding

E ↪ Fun(Funreg(E ,Set),Set).

We refer the reader to §6.2 for a proof of Theorem 2.4.1 (which is essentially identical to Barr’s original
proof).

If E is an exact category, then the essential image of the Barr embedding admits a simple description,
given by the following result of Makkai:

Theorem 2.4.2 (Makkai). Let E be a small exact category (Definition A.2.6). Then the functor ev ∶
E → Fun(Funreg(E ,Set),Set) is a fully faithful embedding, whose essential image consists of those functors
F ∶ Funreg(E ,Set) → Set which preserve small products and small filtered colimits.

In this section, we observe that Theorem 2.4.2 can be deduced from Makkai’s strong conceptual com-
pleteness theorem (the reverse is also true: see Remark 6.0.2). The proof is based on the following general
category-theoretic fact:

Proposition 2.4.3. Let E be a small regular category. Then there exists a small pretopos C and a fully
faithful regular functor h ∶ E → C such that precomposition with h induces an equivalence of categories
Mod(C) ⊆ Funreg(C,Set) → Funreg(E ,Set). Moreover, if the category E is exact, then an object C ∈ C belongs
to the essential image of f if and only if the evaluation functor

evC ∶ Mod(C) → Set M ↦M(C)

commutes with finite products.

Remark 2.4.4. For any regular category E , the full subcategory Funreg(E ,Set) ⊆ Fun(E ,Set) is closed
under small products and small filtered colimits. In the situation of Proposition 2.4.3, the existence of
an equivalence Mod(C) ≃ Funreg(E ,Set) guarantees that the category Mod(C) also admits small products.
Moreover, if C ∈ C belongs to the essential image of h, then the evaluation functor evC ∶ Mod(C) → Set can
be identified with the evaluation functor evE ∶ Funreg(E ,Set) → Set for some object E ∈ E , and therefore
commutes with small products (not just finite products).

Proof of Proposition 2.4.3. Let us regard the category E as equipped with the regular topology of Definition
B.3.3, and let Shv(E) denote the associated category of sheaves. Let h ∶ E → Fun(Eop,Set) be the Yoneda
embedding. Since the regular topology on E is subcanonical (Corollary B.3.6), we can regard h as a functor
from E to Shv(E). Note that the topos Shv(E) is coherent, and that the functor h takes values in the
full subcategory Shvcoh(E) ⊆ Shv(E) of coherent objects (Proposition C.6.3). Let C ⊆ Shvcoh(E) denote
a small subcategory which is equivalent to Shvcoh(E) and contains the essential image of h. Then C is a
small pretopos (Corollary C.5.14), and we can regard h as a regular functor from E to C. We claim that
precomposition with h induces an equivalence of categories θ ∶ Mod(C) → Funreg(E ,Set). To prove this, we
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observe that θ fits into a commutative diagram

Fun∗(Shv(E),Set)

vv

○h

))
Mod(C) θ // Funreg(E ,Set),

where the left and right vertical maps are equivalences by virtue of Corollary C.3.4 and Corollary C.3.6,
respectively. It follows that the category Mod(C) admits small products (Remark 2.4.4).

We now prove the following:

(∗) Let C ∈ C be an object for which the evaluation functor evC ∶ Mod(C) → Set preserves finite products.
Then there exists an object E ∈ E and an effective epimorphism hE ↠ C in the pretopos C.

To prove (∗), we first note that Shv(E) is generated by objects of the form hE . We can therefore choose a
collection of objects {Ei}i∈I of E and maps {ui ∶ hEi → C}i∈I for which the induced map ∐i∈I hEi → C is an
effective epimorphism in the topos Shv(E). Since C is a quasi-compact object of Shv(E), we may assume
without loss of generality that the set I is finite. We claim that one of the maps ui is an effective epimorphism.
Assume otherwise. Then, for each i ∈ I, we can apply Deligne’s completeness theorem (Theorem 2.2.10) to
choose a model Mi ∈ Mod(C) for which the map of sets Mi(ui) ∶ Mi(hEi) → Mi(C) is not surjective. For
each i ∈ I, choose an element xi ∈Mi(C) which does not belong to the image of Mi(ui). Let M denote the
product ∏i∈IMi, formed in the category Mod(C). Our assumption that the evaluation functor evC preserves
finite products guarantees that the canonical map M(C) → ∏i∈IMi(C) is bijective. We can therefore choose
an element x ∈M(C) having image xi under each of the projection maps M(C) →Mi(C). Since the maps
ui induce a surjection ∐i∈IM(hEi) →M(C), there exists an index j ∈ I such that x belongs to the image of
the map M(uj) ∶M(hEj) →M(C). Using the commutativity of the diagram

M(hEj)
M(uj) //

��

M(C)

��
Mj(hEj)

Mj(uj) // Mj(C),

we conclude that xj belongs to the image of Mj(uj), contradicting our choice of xj . This completes the
proof of (∗).

We next prove:

(∗′) Let E′ be an object of E and let C ∈ C be a subobject of hE′ . If the evaluation functor evC commutes
with finite products, then C belongs to the essential image of h.

To prove (∗′), we note that (∗) guarantees the existence of an object E ∈ E and an effective epimorphism

v ∶ hE ↠ C. Then C can be identified with the image of the composite map hE
vÐ→ C ↪ hE′ . Since the

functor h is fully faithful, we can assume that this map has the form hu, for some map u ∶ E → E′ in E . The
regularity of the functor h then implies that C = Im(hu) is isomorphic to hIm(u).

Now assume that the category E is exact, and let C ∈ C be any object for which the evaluation functor
evC ∶ Mod(C) → Set preserves finite products. Using (∗), we can choose an object E ∈ E and an effective
epimorphism v ∶ hE ↠ C in C. Let D = hE ×C hE ⊆ hE×E be the equivalence relation on hE determined by v.
Then the evaluation functor evD is given by the fiber product evhE ×evC evhE , and therefore preserves small
products. It follows from (∗′) that we can assume D = hR for some subobject R ⊆ E × E in the category
E . It is easy to see that R is an equivalence relation on E. Since E is exact, the equivalence relation R is
effective: that is, there exists an effective epimorphism E ↠ E/R in E such that R = E×E/RE (as subobjects
of E ×E). Because the functor h is regular, we can identify hE/R with the quotient of hE by the equivalence
relation hR = hE ×evC hE : that is, with the object C ∈ C. It follows that C belongs to the essential image of
h, as desired. �
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Remark 2.4.5. Let E be a small regular category and let h ∶ E → C be as in Proposition 2.4.3. Then the
equivalence θ ∶ Mod(C) ≃ Funreg(E ,Set) is an equivalence of ultracategories, where we endow Mod(C) with
the ultrastructure of Remark 2.1.2 and Funreg(E ,Set) with the categorical ultrastructure. To see this, we
observe that θ can be written as the composition of the inclusion map Mod(C) ↪ Funreg(C,Set) (which
has an evident ultrastructure, where we endow Funreg(C,Set) with the categorical ultrastructure) with the

restriction functor Funreg(C,Set) ○hÐ→ Funreg(E ,Set) (which preserves small products and filtered colimits,
and therefore inherits an ultrastructure from Proposition 1.4.9.

Proof of Theorem 2.4.2. Let E be a small exact category. According to Theorem 2.4.1, the construction
E ↦ evE induces a fully faithful embedding ev ∶ E ↪ Fun(Funreg(E ,Set),Set). It will therefore suffice
to show that if F ∶ Funreg(E ,Set) → Set is a functor which preserves small products and small filtered
colimits, then there is a natural isomorphism F ≃ evE for some E ∈ E (the converse is clear, since small
products and small filtered colimits in the category Funreg(E ,Set) are computed pointwise). Note that we
can use Proposition 1.4.9 to endow F with the structure of an ultrafunctor (where Funreg(E ,Set) and Set
are equipped with the categorical ultrastructures of Example 1.3.8).

Choose a small pretopos C and a regular functor h ∶ E → C satisfying the requirements of Proposition 2.4.3.
Then precomposition with h induces an equivalence of ultracategories H ∶ Mod(C) → Funreg(E ,Set) (Remark

2.4.5). Consequently, the composite functor Mod(C) HÐ→ Funreg(E ,Set) FÐ→ Set admits an ultrastructure, and
is therefore given by evaluation on some object C ∈ C (Theorem 2.3.1). It will therefore suffice to show that
C belongs to the essential image of h. This follows from Proposition 2.4.3, since the functor F ○H commutes
with finite products. �

Remark 2.4.6. Let h ∶ E ↪ C be as in the proof of Theorem 2.4.2. Note that there is a asymmetry
between the statements of Theorems 2.3.1 and 2.4.2. The first supplies an equivalence of C with the category
FunUlt(Mod(C),Set), whose objects are functors F ∶ Mod(C) → Set equipped with additional structure.
The second supplies an equivalence of the smaller category E with a full subcategory of Fun(Mod(C),Set)
spanned by functors F which satisfy certain conditions: namely, that F preserves small products and small
filtered colimits. This apparent discrepancy can be resolved by observing that a functor F ∶ Mod(C) →
Set which preserves small products and small filtered colimits admits a unique ultrastructure (namely, the
ultrastructure supplied by Proposition 1.4.9). This is a special case of a more general result about categorical
ultrastructures, which we will prove in §8.3 (see Corollary 8.3.5).

3. Ultracategories and Topology

Recall that every set X can be regarded as a category, having the elements of X as objects and no non-
identity morphisms. Of course, categories of this form are not very interesting. However, we will show in this
section that they can nevertheless carry interesting ultrastructures. Our principal results can be summarized
as follows:

(a) Let X be a set, regarded as a category having only identity morphisms. Then there is a canonical
bijection

{Ultrastructures on X} ≃ {Compact Hausdorff topologies on X}.
(b) Let X be a compact Hausdorff space, and let F be a sheaf of sets on X. Then the construction

x↦F x can be regarded as a left ultrafunctor from X (equipped with the ultrastructure determined
by its topology) to the category Set (equipped with the categorical ultrastructure of Example 1.3.8).

Moreover, this construction determines an equivalence of categories FunLUlt(X,Set) ≃ Shv(X).
(c) The equivalence of (b) restricts to an equivalence of categories FunUlt(X,Set) ≃ Loc(X), where

Loc(X) ⊆ Shv(X) is the full subcategory spanned by those sheaves which are locally constant with
finite fibers.

We begin in §3.1 by giving a precise formulation of (a) (Theorem 3.1.5). The proof is given in §3.3, using
some standard facts about Stone-Čech compactifications which we review in §3.2. In §3.4, we give a precise
formulation of (b) by associating to each left ultrafunctor G ∶ X → Set a certain sheaf of sets FG on X,
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and asserting that the construction G ↦ FG is an equivalence of categories (Theorem 3.4.4); assertion (c)
is then an easy consequence (Theorem 3.4.11). The main step of the proof is to show that the stalk of the
sheaf FG at a point x ∈X can be identified with the value of the functor G at x (Proposition 3.4.6), which
we prove in §3.5.

Remark 3.0.1. Let Comp denote the category of compact Hausdorff spaces and let G ∶ Comp→ Set denote
the forgetful functor, which associates to each compact Hausdorff space X its underlying set. Theorem
3.1.5 is essentially a reformulation of the classical fact that the functor G is monadic: that is, it admits a
left adjoint F (the Stone-Čech compactification functor of §3.2) and induces an equivalence of Comp with
the category of algebras over the monad G ○ F (see, for example, § VI.9 of [8]). Equipping a set X with
the structure of an algebra for this monad is equivalent to specifying an ultrastructure on X, almost by
definition. Our Theorem 3.4.4 admits a similar interpretation: it is equivalent to the monadicity of a functor
G+ ∶ Comp+ → Set+ which can be described as follows:

● The objects of the category Comp+ are pairs (X,F ), where X is a compact Hausdorff space and F
is a sheaf of sets on X; here a morphism from (X,F ) to (X ′,F ′) is given by a continuous function
f ∶X →X ′ together with a map of sheaves f∗ F ′ →F on X.

● The objects of the category Set+ are pairs (X,F ), where X is a set with the discrete topology and
F is a sheaf of sets on X, with morphisms defined in a similar way.

● The functor G+ carries a pair (X,F ) to (Xdisc,F ∣Xdisc), where Xdisc denotes the underlying set of
X endowed with the discrete topology, and F ∣Xdisc denotes the pullback of F to Xdisc.

More informally, the functorG+ is given on a pair (X,F ) by “forgetting” everything except for the underlying
set of X and the collection of stalks {F x}x∈X .

3.1. Ultrasets. We begin by observing that, when working with categories having only identity morphisms,
our notion of ultracategory becomes dramatically simpler: since every morphism is an isomorphism and
every diagram commutes, axioms (A), (B), and (C) of Definition 1.3.1 are automatically satisfied. We can
therefore rephrase Definition 1.3.1 as follows:

Definition 3.1.1. Let X be a set. An ultrastructure on X consists of the following data:

(1) For every map of sets f ∶ S →X and every ultrafilter µ on S, an element ∫S f(x)dµ ∈X.

This data is required to satisfy the following conditions:

(2) For every map of sets f ∶ S →X and every element s0 ∈ S, we have ∫S f(s)dδs0 = f(s0).
(3) For every map of sets f ∶ T → S, every family ν● = {νs}s∈S of ultrafilters on T , and every ultrafilter

µ on S, we have an identity

∫
T
f(t)d(∫

S
νsdµ) = ∫

S
(∫

T
f(t)dνs)dµ.

An ultraset is a set X together with an ultrastructure on X.

Definition 3.1.2. Let X and Y be ultrasets. A morphism of ultrasets from X to Y is a function g ∶X → Y
which satisfies the following condition: for every map of sets f ∶ S →X and every ultrafilter µ on S, we have
an identity

g(∫
S
f(s)dµ) = ∫

S
(g ○ f)(s)dµ.

We let USet denote the category whose objects are ultrasets and whose morphisms are morphisms of ultrasets.

Remark 3.1.3. Let X and Y be ultrasets. Then we can regard X and Y as ultracategories having only
identity morphisms. The category FunUlt(X,Y ) of ultrafunctors from X to Y has only identity morphisms,
and its objects can be identified with morphisms of ultrasets from X to Y . In other words, we can identify
the category USet of Definition 3.1.2 with a full subcategory of the 2-category Ult of ultracategories (Remark
1.4.6), whose objects are small ultracategories having only identity morphisms.

Proposition 3.1.4. Let X be an ultraset. Then there is a unique topology on X for which a subset K ⊆ X
is closed if and only if it satisfies the following condition:
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(∗) For every map of sets f ∶ S →K and every ultrafilter µ on S, the point ∫S f(s)dµ belongs to K.

Proof. It is clear that the collection of subsets of X satisfying condition (∗) is stable under intersections. We
will show that it is also stable under finite unions. Suppose that we are given a finite collection of subsets
{Ki ⊆ X}i∈I , where each Ki satisfies condition (∗). Set K = ⋃i∈IKi; we wish to show that K also satisfies
(∗). Let f ∶ S → K be any map of sets and let µ be an ultrafilter on S. For each i ∈ I, set Si = f−1(Ki).
Since µ is an ultrafilter, there exists i ∈ I such that µ(Si) = 1. In this case, µ restricts to an ultrafilter µi on
the set Si, and we have

∫
S
f(S)dµ = ∫

Si
f(s)dµi ∈Ki ⊆K

by virtue of our assumption that Ki satisfies (∗). �

Note that if g ∶ X → Y is a morphism of ultrasets, then it is automatically continuous if we equip X and
Y with the topology of Proposition 3.1.4. We can therefore regard Proposition 3.1.4 as supplying a functor
from the category of ultrasets USet to the category Top of topological spaces. We can now state our first
result:

Theorem 3.1.5. The construction of Proposition 3.1.4 determines a fully faithful functor USet → Top,
whose essential image is the full subcategory Comp ⊆ Top spanned by the compact Hausdorff spaces.

We will prove Theorem 3.1.5 in §3.3.

Remark 3.1.6. Let f ∶ X → Y be a morphism of ultrasets, and regard X and Y as equipped with the
topology of Definition 3.1.2. Then f is a closed map: that is, for every closed subset K ⊆ X, the image
f(K) ⊆ Y is closed. To prove this, we observe that any function g ∶ S → f(K) can be written as f ○ g̃ for
some function g̃ ∶ S →K. It follows that for every ultrafilter µ on S, we have

∫
S
g(s)dµ = ∫

S
f(g̃(s))dµ = f(∫

S
g̃(s)dµ) ∈ f(K)

by virtue of our assumption that K is closed.

3.2. Digression: The Stone-Čech Compactification. Let S be a set. We let βS denote the set of all
ultrafilters on S. Then βS can be identified with the spectrum of a Boolean algebra (namely, the Boolean
algebra P (S) of all subsets of S), and therefore inherits the structure of a topological space; this topological
space is called the Stone-Čech compactification of S. In this section, we recall the construction of the space
βS and review its universal property (Proposition 3.2.7).

Notation 3.2.1. Let S be a set. For each subset S0 ⊆ S, pushforward along the inclusion S0 ↪ S induces a
monomorphism βS0 ↪ βS. In what follows, we will often abuse notation by identifying βS0 with its image
under this monomorphism: by virtue of Remark 1.1.5, this image is given {µ ∈ βS ∶ µ(S0) = 1} ⊆ βS. With
this convention, we have

β(S0 ∩ S1) = (βS0) ∩ (βS1) β(S0 ∪ S1) = (βS0) ∪ (βS1) β(S ∖ S0) = (βS) ∖ (βS0).

Construction 3.2.2 (The Topology on βS). Let S be a set. We will regard the collection of ultrafilters βS as
a topological space by equipping it with the topology generated by sets of the form βS0 = {µ ∈ βS ∶ µ(S0) = 1}
for S0 ⊆ S. Since these sets are closed under the formation of finite intersections, they comprise a basis for
the topology on βS.

Proposition 3.2.3. Let S be a set. Then the Stone-Čech compactification βS is a Stone space (with respect
to the topology of Construction 3.2.2). That is, βS is a compact Hausdorff space having a basis of closed
and open sets.

Proof. For every pair of distinct ultrafilters µ, ν ∈ βS, we can choose some subset S0 ⊆ S such that µ(S0) ≠
ν(S0). Then βS0 and β(S ∖S0) are complementary open sets containing µ and ν. This immediately implies
that βS is Hausdorff. Moreover, each of the basic open sets βS0 ⊆ βS is also closed, since it is the complement
of the basic open set β(S ∖ S0).
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To complete the proof, it will suffice to show that the topological space βS is compact. To prove this,
suppose we are given a covering of βS by a collection of basic open sets {βSα}α∈A. Let U denote the collection
of all subsets of S which can be written as a finite intersection of sets of the form S ∖ Sα. By assumption,
every ultrafilter µ on S satisfies µ(Sα) = 1 for some index α, so we have µ(J) = 0 for J = (S ∖ Sα) ∈ U .
Invoking Proposition 1.1.10, we conclude that U contains the empty set. In other words, we can choose a
finite subset A0 ⊆ A such that ⋂α∈A0

(S ∖Sα) = ∅, so that ⋃α∈A0
Sα = S. It follows that βS is covered by the

finite collection of subsets {βSα}α∈A0
. �

Corollary 3.2.4. Let S be a set. Then the construction (S0 ⊆ S) ↦ (βS0 ⊆ βS) induces a bijection

{Subsets of S} ≃ {Closed and open subsets of βS}.

Proof. Note that for any subset S0 ⊆ S and any element s ∈ S, the principal ultrafilter δs is contained in
βS0 = {µ ∈ βS ∶ µ(S0) = 1} if and only if s ∈ I. It follows that if S0 and S1 are distinct subsets of S, then
βS0 ≠ βS1 (as subsets of βS). We will complete the proof by showing that if U ⊆ βS is closed and open,
then U = βS0 for some S0 ⊆ S. The assumption that U is open guarantees that we can write U = ⋃βSα for
some collection {Sα ⊆ S}α∈A. The assumption that U is closed guarantees that U is compact (since βS is
compact by Proposition 3.2.3), so we can assume without loss of generality that A is finite. Then U = βS0

for S0 = ⋃α∈A Sα. �

Corollary 3.2.5. Let S be a set and let µ be an ultrafilter on S. Then µ is principal if and only if is an
isolated point of the topological space βS.

Proof. By virtue of Corollary 3.2.4, the point µ is isolated in βS if and only if there exists a subset S0 ⊆ S
such that {µ} = {ν ∈ βS ∶ ν(S0) = 1}. The set S0 must be nonempty, so we can choose some point s ∈ S0.
Then the principal ultrafilter δs belongs to {ν ∈ βS ∶ ν(S0) = 1} = {µ}, so that µ = δs. �

Remark 3.2.6. Let S be a set. Then the collection of principal ultrafilters {δs}s∈S is dense in the Stone-
Čech compactification βS. To see this, we observe that every nonempty open subset U ⊆ βS contains a
nonempty set of the form βS0 for S0 ⊆ S, and therefore contains the point δs for any element s ∈ S0.

The Stone-Čech compactification βS can be characterized (up to homeomorphism) by the following
universal mapping property:

Proposition 3.2.7. Let S be a set, and let δ ∶ S → βS be the map which associates to each s ∈ S the principal
ultrafilter δs ∈ βS. Then, for any compact Hausdorff space X, composition with δ induces a bijection

HomTop(βS,X) → HomSet(S,X).
Here HomTop(βS,X) denotes the collection of continuous maps from βS to X.

Proof. Let f ∶ S →X be any map of sets. We wish to show that there is a unique continuous map f ∶ βS →X
satisfying f = f ○ δ. We will prove the existence of f ; uniqueness is immediate from Remark 3.2.6. For each

subset S0 ⊆ S, let f(S0) denote the closure of the subset f(S0) ⊆X. We first prove the following:

(∗) For every ultrafilter µ on S, the intersection ⋂µ(S0)=1 f(S0) consists of a single point of X.

To prove (∗), we first observe that for every finite collection of sets S1, . . . , Sn ∈⊆ S satisfying µ(S1) = µ(S2) =
⋯ = µ(Sn) = 1, we have

∅ ≠ f(S1 ∩⋯ ∩ Sn) ⊆ f(S1) ∩⋯ ∩ f(Sn).
Consequently, the closed sets {f(S0)}µ(S0)=1 have the finite intersection property. Since X is compact,

it follows that the intersection ⋂µ(S0)=1 f(S0) is nonempty. Suppose we are given a pair of points x, y ∈
⋂µ(S0)=1 f(I). If x ≠ y, then we can choose disjoint open sets U,V ⊆ X satisfying x ∈ U and y ∈ V . Then

f−1(U) ∩ f−1(V ) = ∅, so either µ(f−1(U)) = 0 or µ(f−1(V )) = 0. Without loss of generality, we may
assume that µ(f−1(U)) = 0. Then U is an open neighborhood of x which does not intersect f(S − f−1(U)),
contradicting our assumption that x belongs to ⋂µ(S0)=1 f(S0). This completes the proof of (∗).
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For each ultrafilter µ on S, let ∫S f(s)dµ denote the unique point of the intersection ⋂µ(S0)=1 f(S0).
Note that if µ = δt is the principal ultrafilter associated to an element t ∈ S, then µ({t}) = 1, so we have

∫S f(s)dµ ∈ f({t}) = {f(t)}; that is, we have ∫S f(s)dδt = f(t). We will complete the proof by showing that
the function

f ∶ βS →X f(µ) = ∫
S
f(s)dµ

is continuous. Let µ be an ultrafilter on S and let U ⊆X be an open neighborhood of the point ∫S f(s)dµ; we

wish to show that f
−1(U) contains an open neighborhood of µ. Choose an open neighborhood V of the point

∫S f(s)dµ satisfying V ⊆ U , and set S0 = S ∖ f−1(V ). Then f(S0) is disjoint from V , so the point ∫S f(s)dµ
is not contained in the closure f(S0). It follows that µ(S0) = 1, so that we can regard βI as an open

neighborhood of µ in βS. If ν belongs to this neighborhood, we have f(ν) = ∫S f(s)dν ∈ f(S0) ⊆ V ⊆ U . �

Example 3.2.8 (Composition of Ultrafilters). Let S and T be sets. Suppose we are given a map of sets

f ∶ S → βT , which we can identify with a collection of ultrafilters {νs}s∈S on T . Define f ∶ βS → βT by the

formula f(µ) = ∫S νsdµ (see Construction 1.1.6). Then f is the continuous extension of Proposition 3.2.7:

that is the unique continuous function satisfying f(δs) = f(s) for s ∈ S (see Example 1.1.8). To verify the

continuity of f , it will suffice to show that for every closed and open subset βT0 ⊆ βT , the inverse image

f
−1(βT0) is a closed and open subset of βS; this follows from the calculation

f
−1(βT0) = {µ ∈ βS ∶ f(µ) ∈ βT0}

= {µ ∈ βS ∶ f(µ)(T0) = 1}
= {µ ∈ βS ∶ µ({s ∈ S ∶ νs(T0) = 1}) = 1}
= βS0,

where S0 = {s ∈ S ∶ νs(T0) = 1}.

3.3. The Proof of Theorem 3.1.5. We now turn to the proof of Theorem 3.1.5. We begin by using
Proposition 3.2.7 to explicitly construct an ultrastructure on each compact Hausdorff space X.

Proposition 3.3.1. Let X be a compact Hausdorff space. For every map of sets f ∶ S → X and every
ultrafilter µ on S, let ∫S f(s)dµ be defined as in the proof of Proposition 3.2.7. Then the construction
(f, µ) ↦ ∫S f(s)dµ determines an ultrastructure on X (in the sense of Definition 3.1.1).

Proof. The identity ∫S f(s)dδs0 = f(s0) follows immediately from the definitions. We will verify condition (3)
of Definition 3.1.1. Suppose we are given a map of sets f ∶ T →X and a family of ultrafilters ν● = {νs}s∈S on

T . Using Proposition 3.2.7, we see that there is a unique continuous map f ∶ βT →X satisfying f(δt) = f(t)
for each t ∈ T , given by the formula f(ν) = ∫T f(t)dν. Similarly, there is a unique continuous map g ∶ βS → βT
satisfying g(δs) = νs for s ∈ S, given by the formula g(µ) = ∫S νsdµ (Example 3.2.8). Since the composition

f ○ g ∶ βS →X is continuous, we have

∫
T
f(t)d(∫

S
νsdµ) = f(∫

S
νsdµ)

= f(g(µ))
= (f ○ g)(µ)

= ∫
S
(f ○ g)(δs)dµ

= ∫
S
f(νs)dµ

= ∫
S
(∫

T
f(t)dνs)dµ.

�
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Example 3.3.2. Let T be a set. The Stone-Čech compactification βT is a compact Hausdorff space (Propo-
sition 3.2.3), and therefore inherits an ultrastructure from Proposition 3.3.1. Concretely, this ultrastructure
associates to each collection {νs}s∈S of ultrafilters on T and each ultrafilter µ on S the composite ultrafilter

∫s∈S νsdµ defined in Construction 1.1.6. This follows from the calculation of Example 3.2.8.

Remark 3.3.3. Let X be a compact Hausdorff space, and regard X equipped with the ultrastructure of
Proposition 3.3.1. Then the topology of X agrees with the topology of Proposition 3.1.4. That is, a subset
K ⊆ X is closed if and only if, for every map f ∶ S → K and every ultrafilter µ on S, the point ∫S f(s)dµ
belongs to K. One direction is clear: if K is closed, then {µ ∈ βS ∶ ∫S f(s)dµ ∈ K} is a closed subset of βS
which contains every principal ultrafilter, and therefore coincides with βS (Remark 3.2.6). Conversely, if K
is closed in the sense of Proposition 3.1.4 and we choose f ∶ S → K to be surjective, then the construction
(µ ∈ βS) ↦ (∫S f(s)dµ ∈ X) determines a continuous surjection f ∶ βS → X having image K, so that K is
closed (since βS is compact and X is Hausdorff).

Remark 3.3.4. Let X be an ultraset, let f ∶ T → X be a map of sets, and let f ∶ βT → X be the map
given by f(ν) = ∫T f(t)dν. Then f is a morphism of ultrasets, in the sense of Definition 3.1.2 (where we
regard βT as equipped with the ultrastructure of Example 3.3.2). This is precisely the content of axiom (3)
of Definition 3.1.1 (for a more general version of this argument, see Proposition 4.2.8).

Proposition 3.3.5. Let X be an ultraset, and regard X as equipped with the topology of Proposition 3.1.4.
Then X is a compact Hausdorff space.

Proof. Choose a surjection of sets f ∶ T →X, and define f ∶ βT →X via the formula f(ν) = ∫T f(t)dν. Then

f is a morphism of ultrasets (Remark 3.3.4). Note that the topology on βT provided by Proposition 3.1.4

agrees with the topology of Proposition 3.2.3 (Remark 3.3.3). Applying Remark 3.1.6, we see that f is a
closed map of topological spaces. Since it is surjective, it is a quotient map. Consequently, to show that
X is a compact Hausdorff space, it will suffice to show that the fiber product S = (βT ) ×X (βT ) has closed
image in the product (βT ) × (βT ).

Let us view the embedding g ∶ S ↪ (βT ) × (βT ) as a collection of pairs {(νs, ν′s)}s∈S of ultrafilters on T ,
indexed by S. Then g extends to a continuous map g ∶ βS → (βT ) × (βT ), given by the formula

g(µ) = (∫
S
νsdµ,∫

S
ν′sdµ)

(see Example 3.2.8). Since g is a continuous map between compact Hausdorff spaces, it has closed image.
It will therefore suffice to show that g and g have the same image: that is, that g takes values in the fiber
product (βT ) ×X (βT ) ⊆ (βT ) × (βT ). This follows from the calculation

f(∫
S
νsdµ) = ∫

T
f(t)d(∫

S
νsdµ)

= ∫
S
(∫

T
f(t)dνs)dµ

= ∫
S
(∫

T
f(t)dν′s)dµ

= ∫
T
f(t)d(∫

S
ν′sdµ)

= f(∫
S
ν′sdµ).

�

Proof of Theorem 3.1.5. By virtue of Proposition 3.3.5, the functor USet → Top takes values in the full
subcategory Comp ⊆ Top spanned by the compact Hausdorff spaces. Moreover, every compact Hausdorff
space belongs to the image, by Proposition 3.3.1 (and Remark 3.3.3). It will therefore suffice to show that
the functor is fully faithful. In other words, it will suffice to show that if X and Y are ultrasets, then every
continuous function f ∶ X → Y is a morphism of ultrasets (in the sense of Definition 3.1.2). Choose a map
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of sets g ∶ S →X, and define functions

gX ∶ βS →X gY ∶ βS → Y

by the formulae

gX(µ) = ∫
S
g(s)dµ gY (µ) = ∫

S
(f ○ g)(s)dµ.

We wish to show that gY = f ○ gX . Note that the functions gY and gX are both morphisms of ultrasets
(Remark 3.3.4), and are therefore continuous. It follows that both gY and f ○ gX are continuous functions
from βS to Y . Since they agree on the dense subset of βS consisting of principal ultrafilters (Remark 3.2.6)
and the topology on Y is Hausdorff (Proposition 3.3.5), it follows that they coincide everywhere. �

3.4. Sheaves as Left Ultrafunctors. Let X be a topological space and let F be a sheaf of sets on X.
For each point x ∈ X, let F x denote the stalk of F at the point x, given by the direct limit limÐ→x∈U F (U)
(where the colimit is taken over all open neighborhoods of the point x). We can then ask the following:

Question 3.4.1. Is it possible to reconstruct a sheaf F from the collection of stalks {F x}x∈X , together
with some additional data?

The goal of this section is to give an affirmative answer to Question 3.4.1 in the special case where X is a
compact Hausdorff space. In this case, we can identify the topology on X with an ultrastructure (Theorem
3.1.5), which associates to each map f ∶ S → X and each ultrafilter µ on S a point x = ∫S f(s)dµ. Let
φx be an element of of the stalk F x. Then we can write φx as the germ of a section φU ∈ F (U), for
some open neighborhood U of the point x. Our assumption x = ∫S f(s)dµ then guarantees that the set
SU = {s ∈ S ∶ f(s) ∈ U} satisfies µ(SU) = 1. For each s ∈ SU , the section φU determines an element φs of
the stalk F f(s). Individually, these germs are not determined by φx: they depend also on the choice of the
section φU . However, they are well-defined “almost everywhere,” in the sense of the ultrafilter µ: that is, the
image of {φs}s∈S0 in the ultraproduct ∫S F f(s) dµ depends only on φx. This construction determines maps

σµ ∶ F ∫S f(s)dµ
→ ∫

S
F f(s) dµ,

which supply a left ultrastructure on the functor x ↦ F x. We will address Question 3.4.1 by showing
that this left ultrastructure determines the sheaf F : more precisely, the preceding construction induces
an equivalence from the category Shv(X) of set-valued sheaves on X to the category of left ultrafunctors

FunLUlt(X,Set) (Theorem 3.4.4). To carry out the details, it will actually be more convenient to work with
the inverse equivalence.

Construction 3.4.2. Let X be a compact Hausdorff space and let G ∶ X → Set be a left ultrafunctor,
with left ultrastructure {σµ}. For every open subset U ⊆X, we let FG(U) denote the subset of ∏x∈U G(x)
consisting of those tuples φ● = {φx}x∈U satisfying the following condition:

(∗) For every map of sets f ∶ S → U ⊆ X and every ultrafilter µ on S satisfying ∫S f(s)dµ ∈ U , we have
an equality qµ({φf(s)}s∈S) = σµ(φ∫S f(s)dµ) in the ultraproduct ∫S G(f(s))dµ. That is, {φf(s)}s∈S
and φ

∫S f(s)dµ
have the same image under the maps

∏
s∈S

G(f(s))
qµÐ→ ∫

S
G(f(s))dµ

σµ←Ð G(∫
S
f(s)dµ).

Note that if {φx}x∈U satisfies condition (∗) and V ⊆ U is an open subset of U , then the tuple {φx}x∈V
also satisfies condition (∗). It follows that the construction U ↦FG(U) determines a presheaf (of sets) on
the topological space X.

We begin with an elementary observation:

Lemma 3.4.3. Let X be a compact Hausdorff space and let G ∶ X → Set be a left ultrafunctor. Then the
construction U ↦FG(U) determines a sheaf of sets on X.



36 ULTRACATEGORIES

Proof. Let G denote the sheaf of sets on X given by the formula G (U) = ∏x∈U G(x). By construction,
the presheaf FG is contained in G . It will therefore suffice to show that if {Uα} is a collection of open
subsets of X having union U = ⋃αUα, and φ● ∈ G (U) is a section having the property that its image in each
G (Uα) belongs to FG(Uα), then φ● belongs to FG(U). Write φ● = {φx}x∈U for some collection of elements
φx ∈ F x. Suppose that f ∶ S → U ⊆ X is a map of sets and that µ is an ultrafilter on S with the property
that ∫S f(s)dµ belongs to U ; we wish to prove the identity

qµ({φf(s)}s∈S) = σµ(φ∫S f(s)dµ)

in the ultraproduct ∫S G(f(s))dµ. Choose an index α such that ∫S f(s)dµ belongs to the subset Uα ⊆ U .
Set S0 = {s ∈ S ∶ f(s) ∈ Uα}. Then µ(S0) = 1, so we can replace S by S0 and f by f ∣S0 . In this case, the
relevant identity follows from our assumption that {φx}x∈Uα belongs to FG(Uα). �

We can now give a precise statement of our main result.

Theorem 3.4.4. Let X be a compact Hausdorff space. Then the construction G ↦FG induces an equiva-
lence of categories FunLUlt(X,Set) → Shv(X).

Variant 3.4.5. Recall that a category M is said to be compactly generated if it admits small colimits and
is generated under filtered colimits by a small collection of compact objects. Equivalently, M is compactly
generated if there exists an equivalence M ≃ Funlex(C,Set), for some small category C which admits finite
limits (which can then be identified with the opposite of the category of compact objects of M). If M is
compactly generated and X is a compact Hausdorff space, then Theorem 3.4.4 determines equivalence from
the category of left ultrafunctors FunLUlt(X,M) to the category Shv(X;M) of M-valued sheaves on X,
given by the composition

FunLUlt(X,M) ≃ FunLUlt(X,Funlex(C,Set))
≃ Funlex(C,FunLUlt(X,Set))
→ Funlex(C,Shv(X))
≃ Shv(X; Funlex(C,Set))
≃ Shv(X;M).

One can also describe this equivalence directly, using a variant of Construction 3.4.2.

Let X be a compact Hausdorff space containing a point y and let G ∶X → Set be a left ultrafunctor. For
every open subset U ⊆ X containing y, the construction {φx}x∈U ↦ φy determines a map FG(U) → G(y).
These maps are compatible as U varies, and therefore induce a map of sets FG,y → G(y). The main
ingredient in our proof of Theorem 3.4.4 is the following result, whose proof we defer to §3.5:

Proposition 3.4.6. Let X be a compact Hausdorff space and let G ∶ X → Set be a left ultrafunctor. Then,
for each point y ∈X, the preceding construction induces a bijection FG,y → G(y).

Corollary 3.4.7. Let X be a compact Hausdorff space and let α ∶ G → H be a natural transformation of
left ultrafunctors G,H ∶X → Set. Then α is an isomorphism if and only if, for each open subset U ⊆X, the
induced map FG(U) →FH(U) is an isomorphism.

Corollary 3.4.8. Let X be a compact Hausdorff space. Then the functor FunLUlt(X,Set) → Shv(X) pre-
serves small colimits.

Proof. Since small colimits Shv(X) are computed stalkwise, it will suffice to show that for each point x ∈X,
the functor G ↦ FG,x commutes with small colimits. By virtue of Proposition 3.4.6, this is equivalent to
the evaluation functor G↦ G(x), which preserves small colimits by virtue of Remark 1.4.3. �

Corollary 3.4.9. Let X be a compact Hausdorff space and let G ∶ X → Set be a left ultrafunctor. Then
every subsheaf of FG has the form FG0 , for some uniquely determined subobject G0 ⊆ G in the category of

left ultrafunctors FunLUlt(X,Set).
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Proof. Let G be a subsheaf of FG. For each x ∈X, let G0(x) denote the inverse image of the stalk G x ⊆ FG,x

under the bijection of Proposition 3.4.6. By virtue of Proposition 3.4.6, it will suffice to show that the left
ultrastructure on G restricts to a left ultrastructure on G0. In other words, it will suffice to show that for
every map of sets f ∶ S →X and every ultrafilter µ on S, the map

σµ ∶ G(∫
S
f(s)dµ) → ∫

S
G(f(s))dµ

given by the left ultrastructure on G carries each element η ∈ G0(∫S f(s)dµ) into the subset

∫
S
G0(f(s))dµ ⊆ ∫

S
G(f(s))dµ.

It follows from the definition of G0 that there exists an open subset U ⊆ X containing the point ∫S f(s)dµ
and a tuple

φ● = {φx}x∈U ∈ G (U) ⊆ FG(U)
such that φ

∫S f(s)dµ
= η. Set S0 = {s ∈ S ∶ f(s) ∈ U}, so that µ(S0) = 1. The definition of FG then

gives σµ(φ∫S f(s)dµ) = qS0
µ ({φf(s)}s∈S0). By construction, we have φx ∈ G0(x) for each x ∈ U , so that

qS0
µ ({φf(s)}s∈S0) belongs to the subset ∫S G0(f(s))dµ ⊆ ∫S G(f(s))dµ. �

Corollary 3.4.10. Let X be a compact Hausdorff space. Then the construction G ↦ FG induces a fully
faithful functor FunLUlt(X,Set) → Shv(X).

Proof. Let G,H ∶ X → Set be left ultrafunctors, and let α ∶ FG → FH be a morphism of sheaves on X.
Let Γ(α) denote the graph of α, considered as a subobject of the product FG ×FH ≃ FG×H . By virtue

of Corollary 3.4.9, we can write Γ(α) = FH for some subobject G′ ⊆ G × H in FunLUlt(X,Set). Since
projection map π ∶ G′ → G induces an isomorphism of sheaves FG′ →FG, Corollary 3.4.7 shows that π is an
isomorphism of left ultrafunctors. It follows that G′ can be identified with the graph of a morphism G→H
which is a lift of α. The uniqueness is immediate from Proposition 3.4.6. �

Proof of Theorem 3.4.4. Let X be a compact Hausdorff space. Then the construction G ↦FG determines
a fully faithful embedding from FunLUlt(X,Set) to Shv(X) (Corollary 3.4.10). By virtue of Corollary 3.4.8,
the essential image of this embedding is closed under small colimits. Note that the category Shv(X) is
generated under small colimits by subobjects of the final object, it will suffice to show that every subobject
of the final object of Shv(X) has the form FG, for some left ultrafunctor G ∶X → Set. This is a special case
of Corollary 3.4.9. �

We close this section by establishing a variant of Theorem 3.4.4:

Theorem 3.4.11. Let X be a compact Hausdorff space. Then the construction G ↦ FG induces a fully
faithful embedding FunUlt(X,Set) ↪ Shv(X). The essential image of this embedding is spanned by those
sheaves F on X which are locally constant with finite stalks.

Proof. By virtue of Theorem 3.4.4, it will suffice to show that the following conditions on a left ultrafunctor
G ∶X → Set are equivalent:

(a) The left ultrafunctor G is an ultrafunctor. That is, for each map f ∶ S →X and each ultrafilter µ on
S, the left ultrastructure map σµ ∶ G(∫S f(s)dµ) → ∫S G(f(s))dµ is a bijection.

(b) The sheaf FG is locally constant with finite stalks.

We first show that (a) implies (b). Assume that G is an ultrafunctor. Fix a point y ∈ X, a set S, and
an ultrafilter µ on S. Then the ultrapower diagonal map ∆µ ∶ G(y) → G(y)µ in the category Set (see
Example 1.3.4) can be identified with the image under G of the ultrapower diagonal map y → yµ = y in X
(regarded as a category having only identity morphisms). It follows that ∆µ is bijective: that is, for every
map f ∶ S → G(y), there exists a subset S0 ⊆ S such that µ(S0) = 1 and f ∣S0 is constant. In the special case
where S = G(y) and f is the identity map, this implies that every ultrafilter on S is principal. It follows
that G(y) must be finite, so that (by virtue of Proposition 3.4.6) the stalk FG,y is finite.
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We now show that the sheaf FG is constant in some neighborhood of any point y ∈ X. Let n be the
cardinality of the stalk FG,y. Choose an open neighborhood U of the point y and a finite collection of
sections φ1,●, . . . , φn,● ∈ FG(U) having distinct images in FG,y. Let us identify each φi,● with a tuple
{φi,x ∈ G(x)}x∈U satisfying condition (∗) of Construction 3.4.2. Note that, since G is an ultrafunctor,
condition (∗) has the following consequence:

(∗′) Let f ∶ S → U be a map of sets and let µ be an ultrafilter on S such that ∫S f(s)dµ belongs to µ. If
φi,f(s) = φj,f(s) for all s ∈ S, then φi,∫S f(s)dµ = φj,∫S f(s)dµ.

Let V ⊆ U be an open neighborhood of y whose closure V is contained in U . For 1 ≤ i < j ≤ n, let Ki,j ⊆ V
denote the subset consisting of those points x for which φi,x = φj,x. It follows from (∗′) that each of the sets
Ki,j is closed. By construction, the sets Ki,j do not contain the point y.

Let K ′ ⊆ V be the set of all points x for which the set G(x) contains some element ψx ∉ {φ1,x, . . . , φn,x}.
Note that, for every ultrafilter µ on the set K ′, the image {ψx}x∈K′ under the map

∏
x∈K′

G(x) → ∫
K′
G(x)dµ

σ−1µÐÐ→ G(∫
K′
xdµ)

does not belong to the set {φ1,∫K′ xdµ, . . . , φn,∫K′ xdµ}. It follows that K ′ is a closed subset of V , which also
does not contain the point y.

Let W ⊆ V be an open neighborhood of y which is disjoint from the closed sets K ′ and Ki,j . For each point
x ∈W , the elements φ1,x, . . . , φn,x are pairwise distinct and exhaust G(x). It follows from Proposition 3.4.6
that the germs of the sections φ1, . . . , φn are pairwise distinct and exhaust the stalk FG,x. Consequently,
they determine an isomorphism of FG ∣W is isomorphic with the constant sheaf associated to the finite set
{1,2, . . . , n}. This completes the proof that (a) implies (b).

Now suppose that FG is locally constant; we wish to show that G is an ultrafunctor. Choose a map
f ∶ S → X and an ultrafilter µ on S, and set x = ∫S f(s)dµ. We must show that the left ultrastructure
map σµ ∶ G(x) = G(∫S f(s)dµ) → ∫S G(f(s))dµ is bijective. Choose an open neighborhood U of x such that
FG ∣U is isomorphic to the constant sheaf JU , for some finite set J . Let V be an open neighborhood of x
whose closure is contained in U , and set S0 = f−1(V ). Since x belongs to V , we must have µ(S0) = 1. We may
therefore replace S by S0 and µ by its restriction to S0, and thereby reduce to the case where the function f
takes values in V . Replacing X by the compact set V ⊆X, we can reduce to the case where FG = JX is itself
the constant sheaf associated to a finite set J . In this case, we have an isomorphism of sheaves FG ≃ FG′

where G′ ∶X → Set is the constant ultrafunctor taking the value J . It follows from Theorem 3.4.4 that that
G is isomorphic to G′ (as a left ultrafunctor), and is therefore also an ultrafunctor. �

3.5. The Proof of Proposition 3.4.6. Throughout this section, we fix a compact Hausdorff space X and
a left ultrafunctor G ∶ X → Set. Our goal is to compute the stalks of the sheaf FG of Construction 3.4.2.
We begin by establishing a weak version of Proposition 3.4.6.

Lemma 3.5.1. For each point y ∈ X, the map FG,y = limÐ→y∈U FG(U) → G(y) of Proposition 3.4.6 is

injective.

Proof. Let U be an open neighborhood of the point y and suppose we are given a pair of elements φ● = {φx}x∈U
and ψ● = {ψx}x∈U of FG(U) satisfying φy = ψy (as elements of the set G(y)). We wish to show that there
exists an open subset V ⊆ U containing the point y such that φx = ψx for each x ∈ V . Assume otherwise.
Set U0 = {x ∈ U ∶ φx ≠ ψx} ⊆ U , and let U be the collection of all subsets of U having the form U0 ∩ V ,
where V is an open neighborhood of y. Then U is closed under finite intersections and does not contain
the empty set. Applying Proposition 1.1.10, we deduce that there exists an ultrafilter µ on the set U such
that µ(U0 ∩ V ) = 1, whenever V is an open neighborhood of y. We then have ∫U xdµ = y. Invoking our
assumption that φy = ψy and the definition of the sheaf FG, we deduce that φ● and ψ● have the same image
in the ultraproduct ∫U G(x)dµ. It follows that µ(U0) = 0, contradicting the definition of U0. �
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To complete the proof of Proposition 3.4.6, we must show that each element ϕy ∈ G(y) can be extended to
an element φ● ∈ FG(U) for some open neighborhood U of the point y. The proof will require some auxiliary
constructions.

Notation 3.5.2. Choose a set T equipped with a bijection f0 ∶ T → X. We regard f0 as a continuous
bijection of topological spaces, where T is endowed with the discrete topology. We will use the letter ν to
denote a typical ultrafilter on T : that is, a point in the Stone-Čech compactification βT . Let i ∶ T ↪ βT be
the canonical embedding, which assigns to each point t ∈ T the corresponding principal ultrafilter i(t) = δt.
By virtue of Proposition 3.2.7, the map f0 ∶ T →X extends uniquely to a continuous map f ∶ βT →X, given
concretely by the formula f(ν) = ∫T f0(t)dν.

Let G 0 denote the sheaf of sets on the (discrete) topological space T whose stalks are given by G 0t =
G(f0(t)), and let G denote the direct image i∗ G 0. Then G is a sheaf of sets on βT whose value on closed
and open sets is given by the formula

G (βT0) = ∏
t∈T0

G(f0(t)),

and whose stalk at a point ν ∈ βT is given by the formula G ν ≃ ∫T G(f0(t))dν.
Choose a set S and a bijection g0 ∶ S → βT , which we identify with a collection of ultrafilters {νs}s∈S

on the set T . We regard g0 as a continuous bijection of topological spaces, where S is equipped with the
discrete topology and βT with the topology of Construction 3.2.2. We will use the letter µ to denote a
typical ultrafilter on S: that is, a point in the Stone-Čech compactification βS. Let j ∶ S ↪ βS be the
canonical embedding, which assigns to each point s ∈ S the corresponding principal ultrafilter j(s) = δs. Let
H 0 = g∗0 G denote the sheaf of sets on S whose stalks are given by H 0s = ∫T G(f0(t))dνs. Let H denote
the sheaf of sets on βS given by the direct image j∗ H 0. Then H is given on closed and open sets by the
formula

H (βS0) = ∏
s∈S0

∫
T
G(f0(t))dνs,

and its stalk at a point µ ∈ βS is given by H µ ≃ ∫S(∫T G(f0(t))dνs)dµ
By virtue of Proposition 3.2.7, the bijection g0 ∶ S → βT admits a unique continuous extension g ∶ βS → βT ,

given concretely by the formula g(µ) = ∫S νsdµ (see Example 3.2.8). We have a canonical isomorphism
j∗g∗ G ≃ g∗0 G = H 0 which induces a map of sheaves u ∶ g∗ G → j∗ H 0 = H . Concretely, the map u is given
on stalks by the map

(g∗ G )µ = G g(µ) = ∫
T
G(f0(t))d(∫

S
νsdµ)

∆λ,µ●ÐÐÐ→ ∫
S
(∫

T
G(f0(t)dνs)dµ ≃ H µ,

where ∆λ,µ● is the categorical Fubini transformation in the category of sets.
Let h0 ∶ S → T be the map of sets given by the composition

S
g0Ð→ βT

fÐ→X
f−10ÐÐ→ T

iÐ→ βT

For each s ∈ S, the right ultrastructure on the functor G determines a map

G (i○h0)(s) ≃ G 0h0(s) ≃ G((f ○ g0)(s)) = G(∫
T
f0(t)dνs)

σνsÐÐ→ ∫
T
G(f0(t))dνs ≃ H 0s

Let h ∶ βS → βT denote the unique continuous extension of h0, given concretely by h(µ) = h0∗(µ). The
preceding discussion then gives a map of sheaves j∗h∗ G → H 0 on the discrete space S, which we identify
with a map v ∶ h∗ G → j∗ H 0 = H on the topological space βS. Concretely, the map v is given on stalks by
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the composition

(h∗ G )µ ≃ ∫
T
G(f0(t))d(h0∗µ)

∆µ,h0ÐÐÐ→ ∫
S
G((f0 ○ h0)(s))dµ

= ∫
S
G(∫

T
f0(t)dνs)dµ

∫S σνsdµÐÐÐÐÐ→ ∫
S
(∫

T
G(f0(t))dνs)dµ.

Note that we have a commutative diagram of topological spaces

βS
g //
h
// βT

f // X;

that is, we have f ○ g = f ′ = f ○ h for some continuous map f ′ ∶ βS → X, given concretely by the formula
f ′(µ) = ∫S(∫T f0(t)dνs)dµ. The maps u and v therefore determine maps u′, v′ ∶ f∗(G ) → f ′∗(H ) in the
category Shv(X).

Lemma 3.5.3. The sheaf FG of Construction 3.4.2 can be identified with the equalizer of the maps u′, v′ ∶
f∗(G ) ⇉ f ′∗(H ).

Proof. By construction, the direct image sheaf f∗ G ≃ f0∗ G 0 is given by

(f∗ G )(U) ≃ ∏
x∈U

G(x).

Let E denote the equalizer of u′ and v′, regarded as a subsheaf of f∗ G . Unwinding the definitions, we see
that for each subset U ⊆ X, we can identify E (U) with the subset of ∏x∈U G(x) consisting of those tuples
{φx}x∈U which satisfy the following condition:

(∗′) For every ultrafilter ν on T such that ∫T f0(t)dν belongs to U , the elements {φf0(t)}t∈f−10 (U) and

φ
∫T f0(t)dν

have the same image under the maps

∏
t∈f−10 (U)

G(f0(t))
q
f−10 (U)
νÐÐÐÐ→ ∫

T
G(f0(t))dν

σν←Ð G(∫
T
f0(t)dν),

where σν is given by the left ultrastructure on G.

Note that condition (∗′) follows immediately from condition (∗) of Construction 3.4.2 (applied to the subset
T0 = f−1(U) ⊆ T , and the ultrafilter on T0 given by the restriction of ν). That is, we can regard the sheaf
FG of Construction 3.4.2 as a subsheaf of E . To complete the proof, we must show that (∗′) implies (∗).
To this end, suppose we are given an arbitrary map of sets e ∶ R → U and an ultrafilter λ on R satisfying

∫R e(r)dλ ∈ U ; we wish to show that {φe(r)}r∈R and φ
∫R e(r)dλ

have the same image under the maps

∏
r∈R

G(e(r)) qλÐ→ ∫
R
G(e(r))dλ σλ←Ð G(∫

R
e(r)dλ).

Since f0 is bijective, the map e factors uniquely as a composition R
e′Ð→ T0

f0Ð→X. The desired assertion now
follows by applying (∗) to the ultrafilter e′∗λ on T0 = f−1

0 (U). �

Let us now fix a point y ∈ X and an element φy of the set G(y). For each ultrafilter ν on T satisfying
f(ν) = ∫T f0(t)dν = y, let ψν denote the image of φy under the map

G(y) = G(∫
T
f0(t)dν)

σµÐ→ ∫
T
G(f0(t))dν = G ν .

Lemma 3.5.4. Let µ be a point of βS satisfying f ′(µ) = y. Let uµ ∶ G g(µ) →H µ and vµ ∶ G h(µ) →H µ be
the maps induced by u and v, respectively. Then uµ(ψg(µ)) = vµ(ψh(µ)).
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Proof. This follows from the definition of u and v, together with the commutativity of the diagram

G(y)
σh0∗µ //

σµ
--

∫T G(f0(t))d(h0∗µ)
∆µ,h0 // ∫S G((f0 ○ h0)(s))dµ

G(∫T f0(t)d(∫S νsdµ))
σ∫S νsdµ

**

∫S G(∫T f0(t)dνs)dµ

∫S σνsdµ

��
∫T G(f0(t))d(∫S νsdµ)

∆µ,ν● // ∫S(∫T G(f0(t))dνs)dµ.

�

Lemma 3.5.5. There exists a global section ψ of the sheaf G ∣f−1{y} such that, for each point ν ∈ f−1{y},
the germ of ψ at ν is equal to ψν .

Proof. Let y denote the unique element of T satisfying f0(y) = y, and let K ⊆ βS denote the inverse image of
δy under the map h ∶ βS → βT . Then g ∶ βS → βT restricts to a map of topological spaces gK ∶K → f−1{y}.
Then u restricts to a map of sheaves uK ∶ g∗K G ∣f−1{y} → H ∣K on K, which we can identify with a map

ι ∶ G ∣f−1{y} → (uK∗ H ∣K) on the fiber f−1{y}. We first claim that ι is injective. To prove this, it suffices

to observe that for each point ν ∈ f−1{y}, there exists a point µ ∈ K for which uK(µ) = ν and u induces a
monomorphism of stalks uµ ∶ G µ →H ν . In fact, writing ν = νs for some s ∈ S, we can take µ = δs to be the
principal ultrafilter at the point s, in which case the map uµ is bijective.

For each point ν ∈ f−1{y}, let ψ′ν denote the image of ψν in the stalk (uK∗ H ∣K)ν (under the map ι).
Since ι is a monomorphism, it will suffice to show that the germs {ψ′ν}ν∈f−1{y} determine a global section of

the sheaf uK∗ H ∣K . Applying Proposition 0.0.10 to the map uK ∶K → f−1{y}, this can be reformulated as
follows:

(⋆) There exists a global section ξ of the sheaf H ∣K having the property that, for every point µ ∈ K,
the germ ξµ of ξ at the point µ is coincides with the image of ψg(µ) under the map G g(µ) → H µ

determined by uK .

Let G(y)
K

denote the constant sheaf on K with the value G(y), so that v restricts to a map of sheaves

vK ∶ G(y)
K
→H ∣K .

The map vK carries the element φy ∈ G(y) to a global section ξ the sheaf H ∣K . It follows from Lemma
3.5.4 that ξ satisfies the requirement of (⋆). �

Proof of Proposition 3.4.6. Let G (f−1{y}) denote the set of global sections of the sheaf G ∣f−1{y}, and define

H (f ′−1{y}) similarly. Since f and f ′ are proper maps, we can identify G (f−1{y}) and H (f ′−1{y}) with
the stalks (f∗ G )y and (f ′∗ H )y, respectively. Using Lemma 3.5.3, we obtain an equalizer diagram of sets

FG,y → G (f−1{y}) ⇉H (f ′−1{y}).
For each element φy ∈ G(y), the section ψ ∈ G (f−1{y}) of Lemma 3.5.5 belongs to this equalizer (by Lemma
3.5.4), and can therefore be identified with an element of FG,y. It follows immediately from the construction
that the canonical map θ ∶ FG,y → G(y) carries this element to φy, which shows that θ is surjective; injectivity
was established in Lemma 3.5.1. �

4. Ultracategories as Stacks

Let Comp denote the category of compact Hausdorff spaces. In §3, we showed that every compact Haus-
dorff space X can be regarded as an ultracategory (Proposition 3.3.1), and that this observation determines

a fully faithful embedding from the ordinary category Comp to the 2-category UltL of Remark 1.4.6 (see

Theorem 3.1.5). In this section, we will use embedding as a tool to analyze the entire category UltL.
To any ultracategory M, we can associate a presheaf of categories on Comp, given by the construction
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X ↦ FunLUlt(X,M). This presheaf can be encoded by a fibration of categories CompM → Comp, where
CompM is a category whose objects are pairs (X,OX), with X a compact Hausdorff space and OX ∶X →M
a left ultrafunctor (see Construction 4.1.1). The main results of this section can be summarized as follows:

● LetM be an ultracategory. In §4.1, we show that CompM is a stack (not in groupoids) with respect
to the coherent topology on the category of compact Hausdorff spaces (Proposition 4.1.5) In other

words, the construction X ↦ FunLUlt(X,M) satisfies descent with respect to continuous surjections
of compact Hausdorff spaces X ↠ Y .

● Every ultracategoryM can be identified with a full subcategory of Compop
M

: namely, the full subcat-
egory consisting of those pairs (X,OX), where the topological space X has a single point. In §4.2,
we show that this full subcategory has ultraproducts in Compop

M
and that the ultrastructure on M

can be recovered by applying the construction of Proposition 1.3.7 (Theorem 4.2.7). In particular,
this proves that every ultrastructure on a category M can be realized by applying the categorical
ultraproduct construction in a suitable enlargement M+ of M (we will return to this idea in §8).

● The construction M ↦ CompM determines a functor from the 2-category of ultracategories UltL

(with morphisms given by left ultrafunctors) to the 2-category of stacks on Comp. In §4.3, we show
that this functor is fully faithful (Theorem 4.3.3). Consequently, it is possible to reformulate theory
of ultracategories entirely in the language of topological stacks. Our interest in this result is more
pragmatic: it provides a strategy for analyzing the category of left ultrafunctors FunLUlt(M,N)
between two ultracategories M and N . In §5, we will exploit this strategy to obtain more precise
information in the special case where N = Set is the category of sets, which we will ultimately use
in the proof of Theorem 2.2.2.

● Let us say that an ultracategoryM is an ultragroupoid if the underlying category ofM is a groupoid:
that is, if every morphism inM is invertible. For every ultragroupoidM, we can regard CompM as
a stack in groupoids on the category of compact Hausdorff spaces. In §4.4, we show that a stack in
groupoids arises in this way (for some small ultragroupoidM) if and only if it is representable: that
is, if and only if it arises from groupoid object in the category of compact Hausdorff spaces itself
(Theorem 4.4.7). For example, the structure of the classifying stack BG of a compact topological
group G can be encoded by a suitable ultrastructure on its underlying category (the category having
a single object with automorphism group G); see Example 4.4.10.

4.1. The Category CompM. Let X be a compact Hausdorff space, which we regard as an ultracategory
having only identity morphisms (see Proposition 3.3.1). IfM is another ultracategory, we will use the symbol
OX to denote a left ultrafunctor from X toM. We denote the value of this functor at a point x ∈X by OX,x.
Heuristically, it is useful to think of OX as a sheaf on X with values in M, whose stalk at a point x ∈ X is
given by OX,x. In the case where M is the category of sets, this heuristic is made precise by Theorem 3.4.4
(and Proposition 3.4.6).

Construction 4.1.1 (The Category CompM). Let Comp denote the category whose objects are compact
Hausdorff spaces and whose morphisms are continuous functions. Let M be an ultracategory. We define a
category CompM as follows:

(1) The objects of CompM are pairs (X,OX), where X is a compact Hausdorff space and OX ∶X →M
is a left ultrafunctor.

(2) If (X,OX) and (Y,OY ) are objects of CompM, then a morphism from (X,OX) to (Y,OY ) is a pair
(f,α), where f ∶X → Y is a continuous function and α ∶ OY ○f → OX is a natural transformation of
left ultrafunctors (here we view f as an ultrafunctor via Theorem 3.1.5).

(3) The composition of a pair of morphisms

(X,OX) (f,α)ÐÐÐ→ (Y,OY ) (g,β)ÐÐÐ→ (Z,OZ)
in the category CompM is given by the pair (g ○ f, γ), where γ is the natural transformation of left
ultrafunctors given by

OZ ○g ○ f
βÐ→ OY ○f

αÐ→ OX .
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Note that the construction (X,OX) ↦X determines a forgetful functor CompM →M.

Remark 4.1.2. Let M be an ultracategory, let X be a compact Hausdorff space, and let OX ∶ X →M be
a left ultrafunctor. If f ∶ Y → X is a continuous map of compact Hausdorff spaces, then we can regard f as
an ultrafunctor, so that the composition

Y
fÐ→X

OXÐÐ→M
has the structure of a left ultrafunctor from Y to M. We will denote this left ultrafunctor by OX ∣Y (this
notation will be used primarily, but not exclusively, in the case where Y is a closed subset of X and f is the
inclusion map), so that we have a canonical map (Y,OX ∣Y ) → (X,OX) in the category CompM (given by
the pair (f, idOX ∣Y ).

If f is a closed immersion, then this map enjoys the following universal property: for every object (Z,OZ)
in CompM, the induced map

HomCompM((Z,OZ), (Y,OX ∣Y )) ↪ HomCompM((Z,OZ), (X,OX))

whose image is the collection of morphisms (f,α) ∶ (Z,OZ) → (X,OX) such that f(Z) ⊆ Y .

Remark 4.1.3. Let M be an ultracategory. Then the forgetful functor π ∶ CompM → Comp is a fibration
of categories. By definition, it is obtained by applying the Grothendieck construction to the functor

Compop → Cat X ↦ FunLUlt(X,M)op.

A morphism (f,α) ∶ (Y,OY ) → (X,OX) in CompM is π-Cartesian if and only if α ∶ OX ∣Y → OY is an
isomorphism of left ultrafunctors.

Example 4.1.4. Let Y be a compact Hausdorff space, regarded as an ultracategory having only identity
morphisms. Then the category CompY of Construction 4.1.1 is equivalent to the full subcategory of Top/Y

spanned by those continuous maps f ∶X → Y , where X is a compact Hausdorff space; see Theorem 3.1.5.

The category Comp of compact Hausdorff spaces is a pretopos. Consequently, we can regard Comp as
equipped with the coherent topology of Definition B.5.3. By definition, a collection of maps {fi ∶Xi →X}i∈I
is a covering for this topology if and only if there exists some subset I0 ⊆ I for which the induced map

∐i∈I0 Xi →X is surjective. Our goal in this section is to prove the following:

Proposition 4.1.5. Let M be an ultracategory. Then the fibration CompM → Comp is a stack with respect

to the coherent topology on Comp. In other words, the construction X ↦ FunLUlt(X,M) satisfies (effective)
descent for the coherent topology.

We begin by showing that the fibration CompM → Comp is a stack for the extensive topology. Concretely,
this reduces to the following assertion:

Lemma 4.1.6. Let X be a compact Hausdorff space which is given as a disjoint union of finitely many closed
(and open) subspaces {Xi ⊆ X}i∈I . Let M be an ultracategory. Then the construction OX ↦ {OX ∣Xi}i∈I
induces an equivalence of categories

θ ∶ FunLUlt(X,M)→∏
i∈I

FunLUlt(Xi,M).

Remark 4.1.7. Lemma 4.1.6 can be generalized. Given any finite collection of ultracategories {N i}i∈I , one
can equip the disjoint union ∐i∈I N i with the structure of an ultracategory. This ultracategory is then a

coproduct of the collection {N i}i∈I in the 2-category UltL of Remark 1.4.6): that is, for every ultracategory
M, we have an equivalence

FunLUlt(∐
i∈I

N i,M) ≃∏
i∈I

FunLUlt(N i,M).

Since we will not need this more general result, we leave the details to the reader.
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Proof of Lemma 4.1.6. We first show that the functor θ is fully faithful. Suppose we are given a pair of
left ultrafunctors OX ,O′

X ∶ X → M, with left ultrastructures given by {σµ} and {σ′µ}, and a natural

transformation of functors α ∶ OX → O′
X . For each i ∈ I, set OXi = OX ∣Xi , O′

Xi = O′
X ∣Xi , and let

αi ∶ OXi → O′
Xi be the induced map. We must show that if each αi is a natural transformation of left

ultrafunctors, then α is also a natural transformation of left ultrafunctors. To prove this, let f ∶ S →X be a
map of sets and let µ be an ultrafilter on S. For each i ∈ I, let Si = f−1(Xi). Since µ is an ultrafilter, there
is a unique index i ∈ I such that µ(Si) = 1. Let u ∶ Si ↪ S denote the inclusion map, so that we can write
µ = u∗(µi) for some ultrafilter µi on Si. Then µ restricts to an ultrafilter µi on the set Si. We wish to prove
the commutativity of the “back face” of the cubical diagram

OX,∫S f(s)dµ
σµ //

α

��

∫SOX,f(s) dµ
∆µi,u

∼

((

∫S αdµ

��

OXi,∫Si f(s)dµi

αi

��

σµ // ∫Si OXi,f(s) dµi

∫Si
αdµi

��

O′
X,∫S f(s)dµ

σ′µ // ∫SO
′
X,f(s) dµ

∆µi,u

∼

''
O′
Xi,∫Si

f(s)dµi

σ′µ // ∫Si O
′
Xi,f(s)

dµi,

where ∆µi,u denotes the ultraproduct diagonal map of Notation 1.3.3 (which is an isomorphism, since u is
injective and M satisfies axiom (B) of Definition 1.3.1). We now observe that the left face commutes by
construction, the right face by the functoriality of ultraproducts in M, the top face because σµ is a left
ultrastructure, the bottom face because σ′µ is a left ultrastructure, and the front face because αi is a natural
transformation of left ultrafunctors.

We now prove that θ is essentially surjective. Suppose that we are given functors OXi ∶Xi →M equipped
with left ultrastructures {σiµ} for each i ∈ I. Let OX ∶ X → M be the amalgam of the functors OXi . For
every map of sets f ∶ S →X and every ultrafilter µ on S, define Si and µi as above. Then there is a unique
map σµ ∶ OX,∫S f(s)dµ → ∫SOX,f(s) dµ for which the diagram

OX,∫S f(s)dµ
σµ // ∫SOX,f(s) dµ

∆µi,u∼

��
OXi,∫Si f(s)dµi

σiµi // ∫Si OXi,f(s) dµi

is commutative. Note that, if the function f factors through Xi, then ∆µi,u is the identity map (Corollary
1.3.6), so that σµ = σiµ. We will complete the proof by showing that {σµ} is a left ultrastructure on OX : that
is, it satisfies the axioms of Definition 1.4.1. Axiom (0) is immediate from the construction. To verify (1),
suppose that µ = δs0 is a principal ultrafilter, so that f(s0) ∈ Xi for some index i ∈ I. Then the ultrafilter
µi appearing in the above construction is also the principal ultrafilter δs0 (on the set Si). We then have a
commutative diagram

OX,f(s0)
σµ // ∫SOX,f(s) dδs0

εS,s0 //

∆µi,u

��

OX,f(s0)

OXi,f(s0)
σiµi // ∫Si OXi,f(s) dδs0

εSi,s0 // OXi,f(s0)
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where the bottom horizontal composition is the identity (since OXi is a left ultrafunctor), so the upper
horizontal composition is the identity as well.

To verify axiom (2), suppose we are given a map f ∶ T →X, a family of ultrafilters {νs}s∈S on T , and an
ultrafilter µ on X. Then there is a unique index i ∈ I such that (∫S νsdµ)(f−1Xi) = 1. Set Ti = f−1(Xi) and
Si = {s ∈ S ∶ ∫T f(t)dνs ∈ Xi}. Then µ restricts to an ultrafilter µi on Si, and for each s ∈ Si the ultrafilter
νs restricts to an ultrafilter νsi on Ti. Let u ∶ Si ↪ S and v ∶ Ti ↪ T be the inclusion maps. We wish to show
the commutativity of the outer cycle in the diagram

OX,∫T f(t)d(∫S νsdµ

σ∫S νsdµ

��

OX,∫S(∫T f(t)dνs)dµ

σµ

��

OXi,∫Ti f(t)d(∫Si νsidµi

σi∫Si
νsidµi

��

OXi,∫Si(∫Ti f(t)dνsi)dµi
σiµi
��

∫Si OXi,∫Ti f(t)dνsi dµi

∫Si
σiνsi

dµi

��

∫SOX,∫T f(t)dνs dµ∼
oo

∫S σνsdµ

��

∫Ti OXi,f(t) d(∫Si νsidµi) // ∫Si(∫Ti OXi,f(t) dνsi)dµi

∫T OX,f(t) d(∫S νsdµ)
∆µ,ν● //

∆∫Si
νsidµi,v

55

∫S(∫T OX,f(t) dνs)dµ.

∼

ii

This follows from a diagram chase; note that the inner cycle commutes by virtue of our assumption that
{σiµ} is a left ultrastructure on OXi . �

Remark 4.1.8. LetM be an ultracategory. Then every finite collection of objects {(Xi,OXi)}i∈I admits a
coproduct (X,OX) in CompM, where X = ∐i∈I Xi is the disjoint union of the underlying topological spaces
Xi and OX ∶ X →M is the unique left ultrafunctor whose restriction to each subset Xi ⊆ X coincides with
OXi (Lemma 4.1.6).

Let us now make Proposition 4.1.5 more explicit.

Notation 4.1.9. Let p ∶ X ↠ X be a continuous surjection of compact Hausdorff spaces and let M be an
ultracategory. Let OX ∶ X →M be a left ultrafunctor (with left ultrastructure {σµ}). A descent datum for
OX consists of a collection of isomorphisms φx,y ∶ OX,y → OX,x, defined for all (x, y) ∈ X ×X X, with the
following properties:

(i) The isomorphisms φ●,● comprise a natural transformation of left ultrafunctors from X ×X X to M.
In other words, for every pair of maps f, f ′ ∶ S →X satisfying p ○ f = p ○ f ′ and every ultrafilter µ on
S, the diagram

OX,∫S f ′(s)dµ
σµ //

φ∫S f(s)dµ,∫S f ′(s)dµ

��

∫SOX,f ′(s) dµ

∫S φf(s),f ′(s)dµ

��
OX,∫S f(s)dµ

σµ // ∫SOX,f(s) dµ

commutes.
(ii) For every triple (x, y, z) ∈X ×X X ×X X, we have the cocycle identity φx,z = φx,y ○ φy,z.
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If OX ,O′
X ∶X →M are left ultrafunctors equipped with descent data {φx,y} and {φ′x,y}, then we will say

that a natural transformation of left ultrafunctors α ∶ OX → O′
X is compatible with {φx,y} and {φ′x,y} if, for

every pair (x, y) ∈X ×X X, the diagram

OX,y
φx,y //

α

��

OX,x
α

��
O′
X,y

φ′x,y // OX,y

is commutative. We let FunLUlt(X ↠X,M) denote the category whose objects are left ultrafunctors on X
with descent data, and whose morphisms are natural transformations of left ultrafunctors that are compatible
with descent data.

Example 4.1.10. Let p ∶ X ↠ X be a continuous surjection of compact Hausdorff spaces. If OX ∶ X →M
is a left ultrafunctor, then we can endow the composite left ultrafunctor OX = OX ○p with a descent datum,
where for each (x, y) ∈X ×X X we take the isomorphism φx,y to be the identity map from

OX,x = OX,p(x) = OX,p(y) = OX,y
to itself. This construction determines a functor FunLUlt(X,M)→ FunLUlt(X ↠X,M).

Proposition 4.1.5 follows from Lemma 4.1.6 together with the following:

Proposition 4.1.11. Let p ∶ X ↠ X be a continuous surjection of compact Hausdorff spaces and let M be
an ultracategory. Then the construction of Example 4.1.10 induces an equivalence of categories

θ ∶ FunLUlt(X,M)→ FunLUlt(X ↠X,M).

Proof. We first show that θ is fully faithful. Suppose that OX ,OX′ ∶X →M are functors equipped with left

ultrastructures {σµ} and {σ′µ}, and let OX ,O′
X denote their images under the functor θ. Let α ∶ OX → O′

X

be a natural transformation of left ultrafunctors which is compatible with descent data. For each point
x ∈X, we can choose a point x ∈X such that p(x) = x. In this case, α determines a map

α(x) ∶ OX,x = OX,x
α(x)ÐÐ→ O′

X,x = OX,x .
The condition that α is compatible with descent data guarantees that this map is independent of the choice
of x, and therefore defines a natural transformation α ∶ OX → O

′

X
. We wish to show that α is a natural

transformation of left ultrafunctors: that is, for every map of sets f ∶ S → X and every ultrafilter µ on S,
the diagram τ ∶

OX,∫S f(s)dµ
σµ //

α

��

∫SOX,f(s) dµ

∫S αdµ

��
O′

X,∫S f(s)dµ

σ′µ // ∫SO
′

X,f(s)
dµ

is commutative. Since p is surjective, we can write f = p ○ f for some map f ∶ S → X. We can then identify
τ with the diagram

OX,∫S f(s)dµ
σµ //

α

��

∫SOX,f(s) dµ

∫S αdµ

��
O′
X,∫S f(s)dµ

σ′µ // ∫SO
′
X,f(s) dµ,

which commutes because α is a natural transformation of left ultrafunctors.
We now prove that θ is essentially surjective. Let OX ∶ X → M be a left ultrafunctor equipped with

a descent datum {φx,y}. We wish to show that the pair (OX ,{φx,y}) belongs to the essential image of θ.
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Note that, if we ignore the left ultrastructure on OX , then the descent datum {φx,y} allows us to choose an
isomorphism OX ≃ OX ○p, for some functor OX . We may therefore assume without loss of generality that

OX = OX ○p for some functor OX ∶ X →M, and that each of the isomorphisms φx,y is the identity map; in
this case, we wish to show that the left ultrastructure {σµ} on OX arises from a left ultrastructure {σµ} on

the functor OX . For any map of sets f ∶ S → X and any ultrafilter µ on S, we can write f = p ○ f for some
map f ∶ S →X; we then define σµ to be the map

OX,∫S f(s)dµ = OX,∫S f(s)dµ
σµÐ→ ∫

S
OX,f(s) dµ = ∫

S
OX,f(s) dµ.

Since the descent datum {φx,y = id} satisfies condition (i) of Notation 4.1.9, this map does not depend on
the choice of f . The fact that the maps {σµ} satisfy axioms (0), (1), and (2) of Definition 1.4.1 follows
immediately from the assumption that the same axioms hold for {σµ}. �

4.2. Free Objects of CompM. In §1.3, we introduced the notion of an ultrastructure on a category M
(Definition 1.3.1). Our definition of ultrastructure was intended to axiomatize the essential features of the
categorical ultraproducts studied in §1.2: whenever M has ultraproducts in some larger category M+, the
formation of ultraproducts determines an ultrastructure on M (Proposition 1.3.7). It is natural to ask the
following:

Question 4.2.1. Let M be a category. Can every ultrastructure on M be obtained by embedding M into
some larger category M+, such that M has ultraproducts in M+?

In this section, we give an affirmative answer to Question 4.2.1. To every ultracategoryM, we show that
there is a canonical way to recover the ultrastructure via categorical ultraproducts in a larger categoryM+:
namely, we can take M+ to be the opposite of the category CompM of Construction 4.1.1 (Theorem 4.2.7).

Remark 4.2.2. For every ultracategoryM, there exists an embeddingM↪M+ satisfying the requirement
of Question 4.2.1. However, the enlargementM+ is not uniquely determined. Moreover, the construction of
this section is not the most efficient: to recover the ultrastructure on M, we do not need to use the entire
category Compop

M
. We will return to this point in §8.

We begin by observing that every ultracategoryM can be identified with the full subcategory of Compop
M

spanned by those pairs (X,OX), where X consists of a single point. To see this, we need the following
general fact about left ultrafunctors:

Proposition 4.2.3. Let X = {x} be a one-point space. Then, for every ultracategory M, the evaluation
functor

FunLUlt(X,M)→M F ↦ F (x)
is an equivalence of categories.

We postpone the proof of Proposition 4.2.3 for the moment.

Remark 4.2.4. Let M be an ultracategory. Proposition 4.2.3 implies that for every object M ∈ M, there
is a unique left ultrastructure {σµ} on the functor

F ∶X = {x} →M F (x) =M.

Concretely, this left ultrastructure associates to each set S and each ultrafilter µ on S a map

M = F (∫
S
xdµ)

σµÐ→ ∫
S
F (x)dµ =Mµ,

which is given by the ultrapower diagonal of Example 1.3.4. Beware that this morphism is generally not
invertible. In other words, there is generally no ultrafunctor {x} →M taking the value M . For example, if
M= Set is the category of sets, then the left ultrafunctor F is an ultrafunctor if and only if M is finite.

Notation 4.2.5. Let M be an ultracategory. For each object M ∈ M, we let M denote the object of
CompM given by the pair (∗,O), where ∗ denotes the one-point space and O ∶ ∗ → M is the unique left
ultrafunctor taking the value M .
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Remark 4.2.6. Let M be an ultracategory, let M be an object of M, and let (X,OX) be any object of
CompM. Every morphism M → (X,OX) in the category CompM determines a point x ∈X together with a
morphism OX,x →M in the category M. It follows from Proposition 4.2.3 that this construction induces a
bijection

HomCompM(M, (X,OX)) → ∐
x∈X

HomM(OX,x,M).

In particular, the construction M ↦M determines a fully faithful embedding M→ Compop
M

.

We can now state the main result of this section.

Theorem 4.2.7. Let M be an ultracategory and let M′ ⊆ Compop
M

denote the full subcategory spanned by
those objects (X,OX), where X consists of a single point. Then:

(a) The category M′ has ultraproducts in Compop
M

, in the sense of Construction 1.2.2).
(b) The construction M ↦M can be promoted to an equivalence of ultracategories M→M′ (where M′

is equipped with the ultrastructure of Proposition 1.3.7).

The main ingredient in the proof of Theorem 4.2.7 is the fact that objects of the form M admit products
in Compop

M
(or, equivalently, coproducts in the category CompM). We now construct these.

Proposition 4.2.8. Let M be an ultracategory and let {Mt}t∈T be a collection of objects of M indexed by a
set T . Let OβT ∶ βT →M be the functor given by OβT,ν = ∫T Mtdν. Then OβT admits a left ultrastructure
{σµ}, which assigns to each map of sets S → βT given by a family of ultrafilters ν● = {νs}s∈S and each
ultrafilter µ on S the map

σµ ∶ OβT,∫S νsdµ = ∫T Mtd(∫
S
νsdµ)

∆µ,ν●ÐÐÐ→ ∫
S
(∫

T
Mtdνs)dµ = ∫

S
OβT,νs dµ

determined by the Fubini transformation ∆µ,ν● .

Proof. We must show that the maps {σµ} satisfy conditions (0), (1), and (2) of Definition 1.4.1. Condition
(0) is vacuous (since X has only identity morphisms). To verify condition (1), suppose we are given a
collection of ultrafilters ν● = {νs}s∈S on the set T and an element s0 ∈ S; we wish to show that the diagram

∫T Mtd(∫SMsdδs0)
∆δs0

,ν● // ∫S(∫T Ntdνs)dδs0

εS,s0vv
∫T Mtdνs0

commutes in the categoryM, which is axiom (A) of Definition 1.3.1. To verify condition (2), we must show
that for every collection ν● = {νs}s∈S of ultraflters on T , every collection µ● = {µr}r∈R of ultrafilters on S,
and every ultrafilter λ on R, we have a commutative diagram

∫T Mtd(∫S νsd(∫R µrdλ))
∆∫R µrdλ,ν● // ∫S(∫T Mtdνs)d(∫R µrdλ)

∆λ,µ●

��
∫T Mtd(∫R(∫S νsdµr)dλ)

∆λ,∫S νsdµ● // ∫R(∫T Mtd(∫S νsdµr))dλ
∫R∆µr,ν●dλ// ∫R(∫S(∫T Ntdνs)dµr)dλ,

which is axiom (C) of Definition 1.3.1. �

In the situation of Proposition 4.2.8, the left ultrafunctor OβT has a universal property.

Proposition 4.2.9. Let M be an ultracategory, let {Mt}t∈T be a collection of objects of M, and let OβT ∶
βT → M be the left ultrafunctor of Proposition 4.2.8. Let F ∶ βT → M be any left ultrafunctor. For any
natural transformation of left ultrafunctors α ∶ F → OβT and any element t ∈ T , let αt denote the composite
map

F δt

αÐ→ OβT (δt) = ∫
T
Mt′dδt

εT,tÐÐ→Mt.
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Then the construction α ↦ {αt}t∈T induces a bijection

θ ∶ HomFunLUlt(βT,M)(F ,OβT ) → ∏
t∈T

HomM(F δt ,Mt).

Proof. Let {σµ} denote the left ultrastructure on OβT constructed in Proposition 4.2.8, and let {σ′µ} denote
the left ultrastructure on F . Let α ∶ F → OβT be a natural transformation of left ultrafunctors. For each
ultrafilter ν on T , we can write ν = ∫T δtdν, so that we have a commutative diagram

F
∫T δtdν

σ′ν //

α(ν)

��

∫T F δt dνdν

∫T α(δt)

��

∫T αtdν

$$
OβT,ν

σν // ∫T OβT,δt dν
∫T εT,tdν // ∫T Ntdν.

It follows from Corollary 1.3.6 that the composition of the lower horizontal maps is the identity from ∫T Ntdν
to itself. Consequently, α(ν) is given by the composition

F ν = F
∫T δtdν

σ′νÐ→ ∫
T

F δt dν
∫T αtdνÐÐÐÐ→ ∫

T
Ntdν = OβT,ν

and is therefore completely determined by the maps {αt}t∈T . This proves that θ is injective.
To show that θ is surjective, suppose we are given any collection of morphisms {ft ∶ F δt →Mt}t∈T in the

category M. Let α ∶ F → OβT be the natural transformation which assigns to each ultrafilter ν on T the
composite map

F ν = F
∫T δtdν

σ′νÐ→ ∫
T

F δt dν
∫T ftdνÐÐÐÐ→ ∫

T
Ntdν = OβT,ν .

It follows from axiom (1) of Definition 1.4.1 that αt = ft for each t ∈ T . Consequently, to show that {ft}t∈T
belongs to the image of θ, it will suffice to verify that α is a natural transformation of left ultrafunctors.
Suppose we are given a collection of ultrafilters {νs}s∈S on T and an ultrafilter µ on S; we wish to show that
the diagram

F
∫S νsdµ

γ′µ // ∫S F νs dµ

F
∫T δtd(∫S νsdµ)

γ′∫S νsdµ

��

∫S F
∫T δtdνs

dµ

∫S γ
′
νs
dµ

��
∫T F δt d(∫S νsdµ)

∆µ,ν● //

∫T ftd(∫S νsdµ)

��

∫S(∫T F δt dνs)dµ

∫S(∫T ftdνs)dµ

��
∫T Ntd(∫S νsdµ)

∆µ,ν● // ∫S(∫T Ntdνs)dµ)
commutes. The commutativity of the upper rectangle follows from our assumption that {γ′µ} is a left
ultrastructure, and the commutativity of the lower square from the naturality of the Fubini transformations
in the ultracategory M. �
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Proof of Proposition 4.2.3. Let X = {x} be a single point, which we identify with the Stone-Čech compact-
ification of itself. We first note that for every object M ∈ M, Proposition 4.2.8 produces a left ultrafunctor
O ∶X →M satisfying O(x) = ∫XMδx, so that there exists an isomorphism εX,x ∶ O(x) ≃M . This proves the

essential surjectivity of the evaluation map FunLUlt(X,M) → M. We will complete the proof by showing
that it is fully faithful: that is, for every pair of left ultrafunctors F,G ∶X →M, the canonical map

HomFunLUlt(X,M)(F,G) → HomM(F (x),G(x))

is bijective. Set M = G(x) and define O as above. It follows from Proposition 4.2.9 that the isomorphism
ε−1
X,x ∶ G(x) ≃ O(x) lifts uniquely to a natural transformation of left ultrafunctors α ∶ G → O, which is

automatically an isomorphism. We may therefore assume without loss of generality that G = O, in which
case the desired result follows from Proposition 4.2.9. �

Proposition 4.2.10. Let M be an ultracategory, let {Mt}t∈T be a collection of objects of M, and let
OβT ∶ βT →M be the left ultrafunctor of Proposition 4.2.8. For each t ∈ T , let et ∶Mt → (βT,OβT ) denote
the morphism in CompM corresponding to the point δt ∈ βT and the isomorphism

OβT,δt = ∫
T
Mtdδt

εT,tÐÐ→Mt.

Then the maps et exhibit (βT,OβT ) as a coproduct of the family of objects {M t}t∈T in the category CompM.

Proof. Combine Proposition 4.2.9 with Proposition 3.2.7. �

Proof of Theorem 4.2.7. Let {Mt}t∈T be a collection of objects of M and let OβT be as in Proposition
4.2.8, so that Proposition 4.2.10 identifies (βT,OβT ) with the product of {Mt}t∈T0 in Compop

M
. For each

ultrafilter ν on T , let pν ∶ (βT,OβT ) → ∫T Mtdν be the morphism of Compop
M

which corresponds, under the

identification of Remark 4.2.6, to the point ν ∈ βT and the identity map id ∶ OβT,ν → ∫T Mtdν. For each
subset T0 ⊆ T satisfying ν(T0) = 1, we can identify βT0 with a subset of βT containing ν, so that pν factors
uniquely as a composition

(βT,OβT ) → (βT0,OβT ∣βT0)
p
T0
νÐÐ→ ∫

T
Mtdν

in the category Compop
M

). Here we can use Remark 4.1.8 to identify (βT0,OβT ∣βT0) with the direct factor
of (βT,OβT ) given by the product ∏t∈T0

Mt. For any object (X,OX) of Compop
M

, it follows from Remark
4.1.2 that composition with pν induces an injection

HomCompop
M

(∫
T
Mtdν, (X,OX)) → HomCompop

M
((βT,OβT ), (X,OX))

with image consisting of those maps which, at the level of the underlying topological spaces, induce the
constant map X → βT taking the value {ν}. Note that this is equivalent to the requirement that the map
X → βT factors through the subset βT0 ⊆ βT whenever ν(T0) = 1, so that the maps pT0

ν exhibit ∫T Mtdν as

a colimit of the diagram {(βT0,OβT ∣βT0)}ν(T0)=1 in the category Compop
M

. This proves the existence of the
ultraproduct

∫
T
Mtdν = limÐ→

ν(T0)=1

∏
t∈T0

Mt,

and shows that there exists a unique isomorphism γν ∶ ∫T Mtdν ≃ ∫T Mtdν satisfying γν ○ qν = pν .

To complete the proof, it will suffice to show that the isomorphisms γν ∶ ∫T Mtdν ≃ ∫T Mtdν determine a

(right) ultrastructure on the functor M ↦M . We will verify requirement (2) of Definition 8.1.1, and leave
the verification of (0) and (1) to the reader. Suppose we are given a collection {Mt}t∈T of objects of M
indexed by a set T , a collection ν● = {νs}s∈S of ultrafilters on T indexed by a set S, and an ultrafilter µ on
S. Let λ denote the ultrafilter on T given by ∫S νsdµ. We wish to show that the outer rectangle appearing
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in the diagram

∫T Mtdλ
γλ //

∆µ,ν●

��

∫T Mtdλ

∆µ,ν●

��

∏t∈T Mt

qλ
hh

pλ

33

{qνs}s∈S

��

{pνs}s∈S

((
∏s∈S ∫T Mtdνs

∏s∈S γνs//

qµ

vv

∏s∈S ∫T Mtdνs

qµ

��

pµ

((
∫S(∫T Mtdνs)dµ

∫S γνsdµ // ∫S ∫T Mtdνsdµ
γµ // ∫S(∫T Mtdνs)dµ

commutes in the category Compop
M

. Since the map qλ is an epimorphism, it will suffice to prove the commu-
tativity of each inner cycle of the diagram. The triangles commute the construction of γ, the quadrilateral
on the left commutes by the construction of the Fubini transformations in Compop

M
, and the quadrilateral

on the bottom commutes by functoriality. We are therefore reduced to proving the commutativity of the
quadrilateral on the right. Let OβT ∶ βT → M be the left ultrafunctor obtained by applying Proposition
4.2.8 to the family of objects {Mt}t∈T , and OβS denote the left ultrafunctor βS → M obtained by apply-
ing Proposition 4.2.8 to the family of objects {∫T Mtdνs}s∈S . Unwinding the definition, we are reduced to
proving the commutativity of the diagram

∫S(∫T Mtdνs)dµ
∆µ,ν● //

(µ,id)

��

∫T Mtdλ

(λ,id)

��
(βS,OβS)

(f,α) // (βT,OβT ),

in the category CompM, where the vertical maps are labelled using the classification of Remark 4.2.6, and
(f,α) is determined by the requirements f(δs) = νs for each s ∈ S and α is given at the point δs by the
composition

OβT,νs = ∫
T
Mtd∫

S
(νs′dδs)

∆δs,ν●ÐÐÐÐ→ ∫
S
(∫

T
Mtdνs′)dδs = OβS,δs

(see Proposition 4.2.10). Unwinding the definitions, we wish to show that the map

α(µ) ∶ OβT,λ = ∫
T
Mtdλ→ ∫

S
(∫

T
Mtdνs)dµ = OβS,µ

coincides with the Fubini transformation ∆µ,ν● . Writing µ = ∫S δsdµ and invoking our assumption that α is
a natural transformation of left ultrafunctors, we deduce that α(µ) fits into a commutative diagram

∫T Mtdλ
α(µ) //

∆µ,ν●

��

∫S(∫T Mtdνs)dµ

∆µ,δ●

��
∫S(∫T Mtdνs)dµ

∫S ∆µ,δsdµ // ∫S(∫S(∫T Mtdνs)dδs′)dµ.

Combining this observation with axiom (C) of Definition 1.3.1, we conclude that the maps

α(µ),∆µ,ν● ∶ ∫
T
Mtdλ→ ∫

S
(∫

T
Mtdνs)dµ
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agree after composing with the isomorphism

∆µ,δ● ∶ ∫
S
(∫

T
Mtdνs)dµ ≃ ∫

S
(∫

S
(∫

T
Mtdνs)dδs′)dµ,

and must therefore coincide. �

4.3. Ultracategories as Topological Stacks. Let M be an ultracategory. We proved in §4.1 that the
category CompM of Construction 4.1.1 can be regarded as a stack on the category of compact Hausdorff

spaces: that is, the construction X ↦ FunLUlt(X,M) satisfies descent with respect to the coherent topology
(Proposition 4.1.5). Our goal in this section is to show that the construction M↦ CompM is fully faithful
(Theorem 4.3.3). To formulate this precisely, it will be convenient to introduce a bit of notation.

Definition 4.3.1. Let C be a category. Suppose we are given fibrations of categories p ∶ D → C and q ∶ E → C.
We define a category CartC(D,E) as follows:

● The objects of CartC(D,E) are functors F ∶ D → E which satisfy q ○ F = p and have the property
that, for every p-Cartesian morphism u of D, the image F (u) is a q-Cartesian morphism of E .

● If F,G ∶ C → D are objects of CartC(D,E), then a morphism from F to G in CartC(D,E) is a natural
transformation α ∶ F → G for which the induced natural map

p = q ○ F αÐ→ q ○G = p
is the identity transformation from p to itself.

Example 4.3.2. Let M and N be ultracategories. Then, for every left ultrafunctor F ∶ M → N , the
construction (X,OX) ↦ (X,F ○ OX) determines a functor ΦF ∶ CompM → CompN , which is an object of
the category CartComp(CompM,CompN )

Theorem 4.3.3. Let M and N be ultracategories. Then the construction F ↦ ΦF induces an equivalence
of categories

FunLUlt(M,N) ≃ CartComp(CompM,CompN )op.

Remark 4.3.4. Let UltL denote the strict 2-category whose objects are ultracategories and whose mor-
phisms are left ultrafunctors (see Remark 1.4.6). Theorem 4.3.3 (together with Proposition 4.1.5) asserts
that the construction M↦ CompM induces a fully faithful embedding of 2-categories

UltL ↪ {Stacks of categories on Comp}.

Remark 4.3.5. By virtue of Theorem 3.1.5, we can regard the category of Comp of compact Hausdorff spaces
(with morphisms given by continuous maps) as a full subcategory of the 2-category UltL of ultracategories

(with morphisms given by left ultrafunctors). Theorem 4.3.3 asserts that the inclusion Comp ↪ UltL is

dense: that is, the identity functor on UltL is a left Kan extension of its restriction to Comp.

We now turn to the proof of Theorem 4.3.3. We begin by explicitly constructing a functor in the opposite
direction. Let M and N be ultracategories, and let Φ ∶ CompM → CompN be a morphism of stacks on
Comp. Then the induced map of opposite categories Φop ∶ Compop

M
→ Compop

N
satisfies condition (∗) of

Proposition 1.4.9, and therefore (by virtue of Theorem 4.2.7) restricts to a left ultrafunctor F ∶ M → N
(characterized on objects by the formula Φ(M) = F (M)). Let us denote this left ultrafunctor by Φ∣M. We

first prove the following:

Lemma 4.3.6. Let M and N be ultracategories. Then the composition

CartComp(CompM,CompN )op Φ↦Φ∣MÐÐÐÐ→ FunLUlt(M,N) F↦ΦFÐÐÐÐ→ CartComp(CompM,CompN )op

is naturally isomorphic to the identity functor.

Proof. Let Φ ∶ CompM → CompN be an object of CartComp(CompM,CompN ) and set F = Φ∣M, so that
we have Φ(M) = F (M) for each object M ∈ M. For each object (X,OX) in the category CompM, we can
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write Φ(X,OX) = (X,ΦX(OX)) for some left ultrafunctor ΦX(OX) ∶ X → N . Applying Φ to each of the
canonical maps OX,x → (X,OX), we obtain maps

F (OX,x) → (X,ΦX(OX))

which are Cartesian with respect to the projection CompN → Comp and therefore determine isomorphisms
φx ∶ ΦX(OX)x ≃ F (OX,x) in the ultracategory N . We will show that the isomorphisms φx determine an
isomorphism

φ(X,OX) ∶ Φ(X,OX) = (X,ΦX(OX)) ≃ (X,F ○ OX) = ΦF (X,OX)
in the category CompN (it is then easy to see that these isomorphisms depend functorially on (X,OX) and
induce the identity at the level of the underlying topological spaces, and therefore determine an isomorphism
Φ ≃ ΦF in the category CartComp(CompM,CompN ), depending functorially on Φ). To prove this, we must
show that isomorphisms {φx}x∈X comprise an isomorphism of left ultrafunctors from ΦX(OX) to F ○ OX .
Fix a map of sets f ∶ S →X and an ultrafilter µ on S; we wish to show that the diagram

ΦX(OX)
∫S f(s)dµ

φ∫S f(s)dµ //

��

F (OX,∫S f(s)dµ)

��
∫S ΦX(OX)f(s)

∫S φf(s)dµ // ∫S F (OX,f(s) dµ)

commutes, where the vertical maps are given by the left ultrastructure on ΦX(OX) and F , respectively.
Using the universal property of Proposition 4.2.9, we can reduce to checking this after replacing (X,OX)
with (βS,OβS), where OβS ∶ βS →M is the left ultrafunctor obtained by applying Proposition 4.2.8 to the
objects {OX,f(s)}s∈S ofM. In this case, the desired commutativity follows from the construction of the left
ultrastructure on F . �

Proof of Theorem 4.3.3. Let M and N be ultracategories; we wish to show that the construction F ↦ ΦF
induces an equivalence of categories FunLUlt(M,N) ≃ CartComp(CompM,CompN )op. Essential surjectivity
follows from Lemma 4.3.6. It will therefore suffice to prove that the construction F ↦ ΦF is fully faithful.
Suppose that we are given a pair of left ultrafunctors F,G ∶ M → N and a natural transformation α ∶ ΦG →
ΦF . To every compact Hausdorff space X and every left ultrafunctor OX ∶ X →M, α associates a natural
transformation of left ultrafunctors α(X,OX) ∶ F ○ OX → G ○ OX , which we can associate with a collection
of maps {α(X,OX)x ∶ F (OX,x) → G(OX,x)} in the ultracategory N . Taking (X,OX) =M for some object
M ∈ M, we obtain maps α0(M) ∶ F (M) → G(M), depending functorially on M . We will show that α is the

image of α0 under the functor FunLUlt(M,N) ≃ CartComp(CompM,CompN )op (it is immediate that α0 is
uniquely determined by this requirement). For any object (X,OX) ∈ CompM and any point x ∈X, we have
a commutative diagram

ΦG(OX,x)
α(OX,x)

//

��

ΦF (OX,x)

��
ΦG(X,OX)

α(X,OX) // ΦF (X,OX)
in the category CompN , which shows that α(X,OX)x can be identified with the map α0(OX,x) ∶ F (OX,x) →
G(OX,x). Consequently, it will suffice to show that α0 is a natural transformation of left ultrafunctors. Fix
a collection of objects {Ms}s∈S in M and an ultrafilter µ on S; we wish to show that the diagram

F (∫SMsdµ)
α0(∫SMsdµ)//

��

G(∫SMsdµ)

��
∫S F (Ms)dµ

∫S α0(Ms)dµ// ∫S G(Ms)dµ
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commutes, where the vertical maps are given by the left ultrastructures on the functors F and G. This
follows from the fact that α(βS,OβS) is a natural transformation of left ultrafunctors βS → N , where
OβS ∶ βS →M is the left ultrafunctor obtained by applying Proposition 4.2.8 to the family {Ms}s∈S . �

Remark 4.3.7. Let M and N be ultracategories. It follows from Theorem 4.3.3 and Lemma 4.3.6 that
the construction Φ ↦ ΦM is also a left homotopy inverse to the equivalence of Theorem 4.3.3: that is, the
composition

FunLUlt(M,N) F↦ΦFÐÐÐÐ→ CartComp(CompM,CompN )op Φ↦Φ∣MÐÐÐÐ→ FunLUlt(M,N)
is naturally isomorphic to the identity.

4.4. Application: Classification of Ultragroupoids. We now consider a particularly simple class of
ultracategories.

Definition 4.4.1. An ultragroupoid is an ultracategory M for which the underlying category of M is a
groupoid (that is, every morphism in M is an isomorphism).

Example 4.4.2. Every ultraset (in the sense of Definition 3.1.1) is an ultragroupoid.

According to Theorem 3.1.5, the category of ultrasets is equivalent to the category of compact Hausdorff
spaces. Our goal in this section is to obtain an analogous description for the 2-category of all ultragroupoids
(which we regard as a full subcategory of the 2-category Ult of Remark 1.4.6). First, we need some termi-
nology.

Definition 4.4.3. A topological groupoid is a groupoid C which is equipped with topologies on the set Ob(C)
and Mor(C) of objects and morphisms of C, satisfying the following requirements:

● The function s, t ∶ Mor(C) → Ob(C) taking a morphism f ∶ C →D in C to its source s(f) = C and its
target t(f) =D are both continuous.

● The function Ob(C) →Mor(C) taking each object C ∈ C to the identity morphism idC is continuous.
● The function Mor(C) → Mor(C) taking each morphism f ∶ C → D to its inverse f−1 ∶ D → C is

continuous.

● The function Mor(C) ×Ob(C) Mor(C) →Mor(C) taking a pair of composable morphisms C
fÐ→D

gÐ→ E
to its composition g ○ f is continuous.

We will say that a topological groupoid C is compact if both Ob(C) and Mor(C) are compact Hausdorff
spaces.

Remark 4.4.4. Let C be a compact topological groupoid. Then we can regard C as an ultracategory as
follows:

● For each set S and each ultrafilter µ on S, we let ∫S(●)dµ ∶ C
S → C be the functor given on objects

and morphisms by the maps

∫
S
(●)dµ ∶ Ob(C)S → Ob(C) ∫

S
(●)dµ ∶ Mor(C)S →Mor(C)

determined by the compact Hausdorff topologies on Ob(C) and Mor(C), respectively.
● The isomorphisms εS,s and Fubini transformations ∆µ,ν● are the identity maps.

Example 4.4.5. Let G be a compact topological group. Then G determines a compact topological groupoid
(hence an ultragroupoid) BG, where we take the space of objects Ob(BG) to be a single point and the space
of morphisms Mor(BG) to be the group G (with composition of morphisms given by the multiplication in
G).

Notation 4.4.6. Let C be a compact topological groupoid. We let CompC denote the category obtained by
applying Construction 4.1.1 to C, where we endow C with the ultrastructure of Remark 4.4.4. By definition,
the objects of CompC are pairs (X,OX), where X is a compact Hausdorff space and OX ∶ X → C is an
ultrafunctor (note that, since C is a groupoid, every left ultrafunctor X → C is automatically an ultrafunctor).
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We can now state our main result.

Theorem 4.4.7. Let G → Comp be a stack in groupoids over the category Comp of compact Hausdorff spaces
(where we endow Comp with the coherent topology). The following conditions are equivalent:

(1) The stack G is representable. That is, there exists a map of stacks G′ → G, locally surjective with
respect to the coherent topology, such that both G′ and the fiber product G′ ×G G′ are representable by
compact Hausdorff spaces.

(2) There exists a compact topological groupoid C and an equivalence of stacks G ≃ CompC.
(3) There exists a small ultragroupoid M and an equivalence of stacks G ≃ CompM.

Before turning to the proof of Theorem 4.4.7, let us analyze the construction of Notation 4.4.6 in more
detail. Let C be a compact topological groupoid. For every compact Hausdorff space X, let Funcont(X,C)
denote the groupoid whose objects are continuous maps X → Ob(C) and whose morphisms are continuous
maps X → Mor(C). Using Theorem 3.1.5, we can identify Funcont(X,C) with a full subcategory of the

category of ultrafunctors FunUlt(X,C): namely, the full subcategory spanned by those functors F equipped
with an ultrastructure {σµ} where each σµ is an identity map.

Lemma 4.4.8. Let S be a set and let βS be its Stone-Čech compactification. Then, for every compact
topological groupoid C, the preceding construction induces an equivalence of categories Funcont(βS,C) ≃
FunUlt(βS,C).

Proof. Let OβS ∶ βS → C be any ultrafunctor. For each s ∈ S, set Cs = OβS,δs . Let O′
βS ∶ βS → C be the left

ultrafunctor obtained by applying Proposition 4.2.8 to the collection {Cs}s∈S . The ultrastructure on O′
βS is

then given by a collection of maps {σ′µ} which are obtained from the Fubini transformations of C, and are

therefore identity maps. It follows that O′
βS belongs to the image of the map Funcont(βS,C) ≃ FunUlt(βS,C).

Moreover, the universal property of Proposition 4.2.9 supplies a map of left ultrafunctors OβS → O′
βS , which

must be an isomorphism because C is a groupoid. �

Lemma 4.4.9. Let C be a compact topological groupoid. Then the stack CompC of Notation 4.4.6 can be
obtained by stackifying the presheaf of groupoids X ↦ Funcont(X,C) (with respect to the coherent topology on
Comp).

Proof. We have a canonical map ι ∶ Funcont(X,C) → FunUlt(X,C) = FunLUlt(X,C) which is fully faithful and
depends functorially on X, whose target satisfies descent for the coherent topology (Proposition 4.1.5). It
will therefore suffice to show that ι is locally surjective. That is, we must show that for any ultrafunctor

OX ∶ X → C, there exists a continuous surjection X ′ ↠ X for which the composite map X ′ ↠ X
OXÐÐ→ C

is isomorphic (as an ultrafunctor) to some object of Funcont(X ′,C). This follows from Lemma 4.4.8 (for
example, we can take X ′ to be the Stone-Čech compactification of the underlying set of X). �

Example 4.4.10. Let G be a compact topological group and let BG be the topological groupoid of Ex-
ample 4.4.5. We define a principal G-bundle on X to be a compact Hausdorff space P equipped with a
continuous, free action of the group G and a homeomorphism P /G ≃ X (beware that this terminology is
potentially misleading: we do not require that the quotient map P →X admits sections locally on X). The
collection of principal G-bundles on X forms a category which we will denote by BunG(X). We can identify
Funcont(X,BG) with the full subcategory of BunG(X) spanned by the trivial G-bundle P =X×G (whose au-
tomorphism group is the group HomTop(X,G) of all continuous maps from X into G). Then the construction
X ↦ BunG(X) can be identified with the stackification (for the coherent topology on the category Comp)
of the subfunctor X ↦ Funcont(X,BG) ⊆ BunG(X): this follows from the observation that when X = βS is
the Stone-Čech compactification of a set S, then every principal G-bundle on X is trivial. Applying Lemma
4.4.9 in this case, we obtain an equivalence of categories FunUlt(X,BG) ≃ BunG(X), depending functorially
on X.

Proof of Theorem 4.4.7. By a standard argument, any representable stack G can be obtained as the stackifi-
cation of the groupoid-valued presheaf X ↦ Funcont(X,C), where C is some groupoid object of the category
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Comp (that is, a compact topological groupoid in the sense of Definition 4.4.3), and is therefore equivalent
to CompC by virtue of Lemma 4.4.9. This proves the implication (1) ⇒ (2), and the implication (2) ⇒ (3)
is trivial. We will complete the proof by showing that (3) implies (1). Assume that G = CompM for some
small ultragroupoidM. Choose a compact Hausdorff space X and an essentially surjective left ultrafunctor
OX ∶ X → M (this is possible by virtue of our assumption that M is small; for example, we can use the
construction of Proposition 4.2.8). Note that OX is automatically an ultrafunctor (since every morphism in
M is invertible). The (2-categorical) fiber product X ×MX can then be regarded as an ultracategory having
only identity morphisms, which we can identify (by virtue of Theorem 3.1.5) with a compact Hausdorff space
R. Then OX induces a map of stacks θ ∶ CompX → CompM = G, where the (2-categorical) fiber product
CompX ×CompM CompX is represented by R. To complete the proof that G satisfies (1), it will suffice to
show that the functor θ is locally essentially surjective (with respect to the coherent topology on Comp).
Choose any object of G, corresponding to a compact Hausdorff space Y equipped with a left ultrafunctor
OY ∶ Y → M; we wish to show that (Y,OY ) is locally in the essential image of θ. To prove this, we may
assume without loss of generality that Y = βS for some set S. For each element s ∈ S, choose a point
f(s) ∈ X and an isomorphism OY,δs ≃ OX,f(s). Then f induces a continuous map f ∶ Y = βS → X (given

by f(µ) = ∫S f(s)dµ). Let O′
βS ∶ βS →M be the left ultrafunctor obtained by applying Proposition 4.2.8 to

the collection of objects {OX,f(s)} of S, so that the universal property of Proposition 4.2.9 supplies natural
transformations of left ultrafunctors

OY → O′
βS ← OX ∣Y .

Since M is a groupoid, these natural transformations must be invertible, which shows that OY ≃ OX ∣Y
belongs to the essential image of θ as desired. �

5. The Topos of Left Ultrafunctors

Our ultimate goal in this paper is to show that the category Shv(C) of sheaves on a small pretopos C can

be identified with the category of left ultrafunctors FunLUlt(Mod(C),Set) (Theorem 2.2.2). One obstacle to
proving this is that our definition of left ultrafunctor is somewhat unwieldy. To supply a left ultrastructure
on a functor F ∶ M → N , one must supply a morphism σµ ∶ F (∫SMsdµ) ≃ ∫S F (Ms)dµ for every collection
of objects {Ms}s∈S of M and every ultrafilter µ on S. Our goal in this section is to show that (in various
cases) the study of left ultrafunctors fromM to N can be reduced to the study of ordinary functors between
suitable enlargements of M and N . Note that we have already proved one result of this type: according to
Theorem 4.4.7, the datum of a left ultrafunctor F ∶ M → N is equivalent to the datum of a morphism of stacks
from CompM to CompN . However, this result is not quite what we are after: it establishes an equivalence
between functors F ∶ M → N which respect a certain kind of structure (namely, the ultrastructures on
M and N ) with functors Φ ∶ CompM → CompN which respect a different kind of structure (namely, the
fibrations CompM → Comp ← CompN ). To find a remedy, it will be useful to restrict the class of compact
Hausdorff spaces that we work with.

Notation 5.0.1 (The Category StoneM). Let Stone denote the category whose objects are Stone spaces
(that is, topological spaces which are compact, Hausdorff, and totally disconnected) and whose morphisms
are continuous functions. We will regard Stone as a full subcategory of the category Comp of compact
Hausdorff spaces. For each ultracategoryM, we let StoneM denote the full subcategory of CompM spanned
by those pairs (X,OX) where X is a Stone space. Note that if F ∶ M → N is a left ultrafunctor, then the
functor ΦF ∶ CompM → CompN restricts to a functor StoneM → StoneN , which we will also denote by ΦF .

The main results of this section can be summarized as follows:

● Let M and N be ultractegories. In §5.1, we show that the construction F ↦ ΦF induces a fully
faithful embedding FunLUlt(M,N) → Fun(StoneM,StoneN )op, whose essential image can be explic-
itly identified (Theorem 5.1.4). This is essentially a restatement of Theorem 4.4.7, but is formulated
in terms of the structure of StoneM and StoneN as abstract categories (rather than as categories
fibered over over Stone).
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● In §5.2, we specialize to the case where N = Set is the category of sets. In this case, we show
that every left ultrafunctor F ∶ M → Set admits a canonical extension F + ∶ Stoneop

M
→ Set, from

which the left ultrastructure on F can be recovered using the construction of Proposition 1.4.9.
This construction determines a fully faithful embedding θ from the category of left ultrafunctors
FunLUlt(M,Set) to the category of ordinary functors Fun(Stoneop

M
,Set) (Theorem 5.2.1).

● If M is an ultracategory which admits small filtered colimits, then the essential image of θ ∶
FunLUlt(M,Set) ↪ Fun(Stoneop

M
,Set) admits a particularly simple description. In §5.3, we show

that a functor F ∶ Stoneop
M
→ Set belongs to the essential image of θ if and only if it preserves small

filtered colimits and finite coproducts (Theorem 5.3.3).
● The main step in our proof of Theorem 5.3.3 is to show that any functor F ∶ M → Set which admits a

left ultrastructure automatically preserves filtered colimits (Proposition 5.3.4). This result suggests
that, under appropriate set-theoretic assumptions, it should be possible to recover a left ultrafunctor
F ∶ M → Set from its restriction to any sufficiently large full subcategory M0 ⊆ M. In §5.4 we
exploit this idea to show that if the ultrastructure on M is accessible (Definition 5.4.1), then the

category of left ultrafunctors FunLUlt(M,Set) is a Grothendieck topos (Proposition 5.4.5).

5.1. Canonical Extensions of Left Ultrafunctors. We begin with a few general remarks.

Definition 5.1.1. Let C be a category which admits finite coproducts. We say that an object C ∈ C is
connected if the functor HomC(C, ●) ∶ C → Set preserves finite coproducts.

Example 5.1.2. Let M be an ultracategory and let (X,OX) be an object of the category CompM (Con-
struction 4.1.1). Then (X,OX) is connected as an object of CompM (in the sense of Definition 5.1.1) if and
only if X is connected as a topological space. This follows from the description of coproducts in CompM
supplied by Remark 4.1.8.

Variant 5.1.3. Let M be an ultracategory and let (X,OX) be an object of StoneM. The following
conditions are equivalent:

(a) The pair (X,OX) is a connected object of CompM.
(b) The pair (X,OX) is a connected object of StoneM.
(c) The topological space X has a single point (so that (X,OX) is isomorphic to M , for some object

M ∈ M).

We can now state the main result of this section:

Theorem 5.1.4. LetM and N be ultracategories. Then the construction F ↦ ΦF of Notation 5.0.1 induces
a fully faithful embedding

FunLUlt(M,N) → Fun(StoneM,StoneN )op,

whose essential image is spanned by those functors Φ ∶ StoneM → StoneN satisfying the following conditions:

(1) The functor Φ preserves finite coproducts.
(2) The functor Φ carries connected objects of StoneM to connected objects of StoneN .
(3) For each object (X,OX) in StoneM and each point x ∈X, the maps {Φ({x},OX,x) → Φ(U,OX ∣U)}

exhibit Φ({x},OX,x) as a limit of the diagram {Φ(U,OX ∣U)}x∈U in the category StoneN . Here U
ranges over all closed and open neighborhoods of the point x.

Remark 5.1.5. Let M and N be left ultracategories, let F ∶ M → N be a left ultrafunctor, and let
ΦF ∶ StoneM → StoneN be the functor of Notation 5.0.1. Let {Ms}s∈S be any collection of objects of M, so
that Φ induces a map

u ∶ ∐
s∈S

Φ(Ms) → Φ(∐
s∈S

Ms)

in the category StoneN . Using the description of both coproducts supplied by Proposition 4.2.10, we can
identify the underlying topological spaces of both sides with the Stone-Čech compactification βS. At each
point µ ∈ βS, u induces the map σµ ∶ F (∫SMsdµ) → ∫S F (Ms)dµ given by the left ultrastructure on F .
Consequently, the following assertions are equivalent:
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(1) The left ultrafunctor F is an ultrafunctor: that is, each of the maps σµ is an isomorphism in N .
(2) The functor ΦF preserves coproducts of connected objects of StoneM.

Remark 5.1.6. In the situation of Theorem 5.1.4, the inverse equivalence is easy to describe. Let Φ ∶
StoneM → StoneN be a functor which satisfies conditions (1), (2), and (3) of Theorem 5.1.4. Then the map
of opposite categories Φop ∶ Stoneop

M
→ Stoneop

N
satisfies the hypotheses of Proposition 1.4.9 and therefore

restricts to a left ultrafunctor Φ∣M ∶ M → N , which is (up to canonical isomorphism) a preimage of Φ under
the equivalence Theorem 5.1.4; see Remark 4.3.7.

Remark 5.1.7. Let Φ ∶ StoneM → StoneN be a functor which satisfies conditions (2) and (3) of Theorem
5.1.4, but not necessarily condition (1). Then the map of opposite categories Stoneop

M
→ Stoneop

N
still satisfies

the requirements of Proposition 1.4.9, and therefore restricts to a left ultrafunctor F = Φ∣M ∶ M → N .
However, if Φ does not satisfy condition (1), then we cannot conclude that Φ is isomorphic to the functor
ΦF .

The proof of Theorem 5.1.4 will require some preliminaries. We begin by treating the case where N = {∗}
is a category having a single object and a single morphism, so that StoneN can be identified with the category
of Stone spaces.

Lemma 5.1.8. Let M be an ultracategory, let Φ0 ∶ StoneM → Stone denote the forgetful functor (given on
objects by Φ0(X,OX) = X), and let Φ ∶ StoneM → Stone be any functor which satisfies conditions (1), (2),
and (3) of Theorem 5.1.4. Then there is a unique natural transformation of functors α ∶ Φ → Φ0, and α is
an isomorphism.

Proof. For every Stone space X, let U0(X) denote the Boolean algebra of closed and open subsets of X.
Let (X,OX) be an object of StoneM. Since the functor Φ satisfies property (1), it carries summands
of (X,OX) (in the category StoneM) to summands of Φ(X,OX) (in the category Stone). This induces
a homomorphism of Boolean algebras U0(X) → U0(Φ(X,OX)). By virtue of Stone duality, this Boolean
algebra homomorphism is given by taking inverse images along a continuous map α(X,OX) ∶ Φ(X,OX) →X.
Here α is characterized by the requirement that, for each closed and open subset U ⊆ X, the inverse
image α(X,OX)−1(U) ⊆ Φ(X,OX) is the image of the map Φ(U,OX ∣U) → Φ(X,OX). From this, we see
immediately that the construction (X,OX) ↦ α(X,OX) is a natural transformation of functors (and that
any other natural transformation of functors is equal to α).

We will complete the proof by showing that for each object (X,OX) ∈ StoneM, the map α(X,OX) ∶
Φ(X,OX) → X is a homeomorphism. Since α(X,OX) is a continuous map between compact Hausdorff
spaces, it will suffice to show that α(X,OX) is bijective. Fix a point x ∈X; we wish to show that the inverse
image α(X,OX)−1{x} consists of a single point. Since Φ satisfies condition (3), this inverse image can be
identified with the space Φ({x},OX,x), so that the desired result follows from condition (2). �

Lemma 5.1.9. Let M and N be ultracategories, and let Φ ∶ StoneM → StoneN be a functor which fits into
a commutative diagram

StoneM
Φ //

%%

StoneN

yy
Stone,

where the vertical maps are the forgetful functors. Then Φ satisfies conditions (1) and (3) of Theorem 5.1.4
if and only if it preserves the class of Cartesian morphisms with respect to the vertical fibrations.

Remark 5.1.10. In the situation of Lemma 5.1.9, the functor Φ automatically satisfies condition (2) of
Theorem 5.1.4.

Proof of Lemma 5.1.9. For each object (X,OX) ∈ StoneM, let us write Φ(X,OX) = (X,ΦX(OX)), where

ΦX ∶ FunLUlt(X,M) → FunLUlt(X,N) is the functor obtained from Φop by passing to the fiber over X ∈
Stone. Then, for any map of Stone spaces Y → X, we have a comparison map αY /X ∶ ΦX(OX)∣Y →
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ΦY (OX ∣Y ), and the functor Φ preserves Cartesian morphisms if and only if each of the maps αY /X is an
isomorphism. Note that Φ satisfies condition (1) of Theorem 5.1.4 if and only if αY /X is an isomorphism
whenever Y is a closed and open subset of X (see Remark 4.1.8). If this condition is satisfied, then Φ satisfies
condition (3) of Theorem 5.1.4 if and only if αY /X is an isomorphism whenever Y consists of a single point.
In this case, αY /X is an isomorphism in general: this follows by observing that, for each point y ∈ Y , the
induced map (αY /X)∣{y} ∶ ΦX(OX)∣{y} → ΦY (OX ∣Y )∣{y} fits into a commutative diagram

ΦX(OX)∣{y}

αY /X ∣{y} ((

α{y}/X // Φ{y}(OX ∣{y})

ΦY (OX ∣Y )∣{y}.
α{y}/Y

66

�

For every compact Hausdorff space X, there exists a surjection of compact Hausdorff spaces π ∶ Y ↠ X,
where Y is a Stone space (for example, we can take Y to be the Stone-Čech compactification of the underlying
set of X). It follows that the category of Stone spaces can be regarded as a basis for the coherent topology
on the category Comp (Definition B.6.1). Combining this observation with Proposition 4.1.5, we obtain the
following:

Lemma 5.1.11. Let M and N be ultracategories. Then the restriction functor

CartComp(CompM,CompN ) → CartStone(StoneM,StoneN )
is an equivalence of categories.

Proof of Theorem 5.1.4. Let M and N be ultracategories, and consider the functors

FunLUlt(M,N) θÐ→ CartComp(CompM,CompN )op

θ′Ð→ CartStone(StoneM,StoneN )op

θ′′Ð→ Fun(StoneM,StoneN )op.

Here θ is given by the construction of Example 4.3.2, θ′ is the restriction functor, and θ′′ is the inclusion.
We wish to show that the composition θ′′ ○ θ′ ○ θ is a fully faithful embedding, whose essential image is
the full subcategory Fun′(StoneM,StoneN )op ⊆ Fun(StoneM,StoneN )op spanned by those functors which
satisfy conditions (1), (2), and (3) of Theorem 5.1.4. Note that the functor θ is an equivalence of categories
by virtue of Theorem 4.3.3, and the functor θ′ is an equivalence of categories by virtue of Lemma 5.1.11.
Moreover, Lemma 5.1.9 implies that θ′′ fits into a (homotopy) fiber sequence

CartStone(StoneM,StoneN )op θ′′Ð→ Fun′(StoneM,StoneN )op → Fun′(StoneM,Stone).
From the description of Fun′(StoneM,Stone) given by Lemma 5.1.8, we conclude that θ′′ is an equivalence
of categories. �

5.2. Set-Valued Left Ultrafunctors. Let M be an ultracategory and let F0 ∶ M → Set be a functor.
Our goal in this section is to show that every left ultrastructure on F0 arises from a suitable extension
F ∶ Stoneop

M
→ Set via the construction of Proposition 1.4.9. Moreover, there is a canonical choice for the

extension F .

Theorem 5.2.1. Let M be an ultracategory and let Fun0(Stoneop
M
,Set) denote the full subcategory of

Fun(Stoneop
M
,Set) spanned by those functors F which satisfy the following pair of conditions:

(a) For every object (X,OX) in StoneM and every point x ∈X, the canonical map

limÐ→
x∈U

F (U,OX ∣U) → F ({x},OX,x)

is bijective. Here the colimit is taken over all closed and open neighborhoods U of the point x.
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(b) The functor F carries finite coproducts in StoneM to finite products in the category of sets.

Then the construction of Proposition 1.4.9 induces an equivalence of categories

Fun0(Stoneop
M
,Set) → FunLUlt(M,Set).

Variant 5.2.2. In the statement of Theorem 5.2.1, we can replace the category Set with any compactly
generated category (see Variant 3.4.5), endowed with the categorical ultrastructure of Example 1.3.8.

We will deduce Theorem 5.2.1 by combining Theorem 4.3.3 with the results of §3, which allow us to give
a more concrete description of the category StoneSet.

Remark 5.2.3. For any compact Hausdorff space X, Theorem 3.4.4 supplies an equivalence of categories
FunLUlt(X,Set) ≃ Shv(X). Moreover, this equivalence depends functorially on X (by virtue of Proposition
3.4.6). It follows that the category StoneSet of Notation 5.0.1 is equivalent to another category Stone′Set,
which can be described concretely as follows:

● The objects of Stone′Set are pairs (X,OX), where X is a Stone space and OX is a sheaf of sets on
X.

● If (X,OX) and (Y,OY ) are objects of Stone′Set, then a morphism from (X,OX) to (Y,OY ) in
Stone′Set is a pair (f,α), where f ∶ X → Y is a continuous function and α ∶ f∗OY → OX is a
morphism of set-valued sheaves on X.

For the remainder of this section, we will abuse notation by identifying StoneSet with Stone′Set: that is, we
will think of the objects of StoneSet as given by pairs (X,OX) where OX is a sheaf of sets, rather than a
set-valued left ultrafunctor.

Construction 5.2.4. For each object (X,OX) ∈ StoneSet, we let Γ(X,OX) denote the set OX(X) of global
sections of the sheaf OX . This construction determines a functor Γ ∶ Stoneop

Set → Set which preserves small
products and small filtered colimits.

Remark 5.2.5. Let {(Xα,OXα)} be a filtered diagram in the category StoneSet having inverse limit
(X,OX), so that X = lim←ÐXα is the inverse limit of the underlying topological spaces and OX is given

by the direct limit lim←Ð(OXα)∣X . Then the canonical map

limÐ→
α

Γ(Xα,OXα) → Γ(X,OX)

is a bijection.

Let M be an ultracategory and define CartStone(StoneM,StoneSet) as in Definition 4.3.1. Note that, for
any functor Φ ∶ StoneM → StoneSet belonging to CartStone(StoneM,StoneSet), the composition Γ ○ Φop ∶
Stoneop

Set → Set satisfies conditions (a) and (b) of Theorem 5.2.1. Moreover, since the functor Γ commutes
with small products and small filtered colimits, the functors Φop and Γ ○Φop restrict to the same set-valued
left ultrafunctor onM. Combining this observation with Lemma 5.1.11 and Theorem 4.3.3, we deduce that
the composition

Cart(StoneM,StoneSet)op Γ○Ð→ Fun0(Stoneop
M
,Set) Φ↦Φ∣MÐÐÐÐ→ FunLUlt(M,Set)

is an equivalence of categories. We can therefore reformulate Theorem 5.2.1 as follows:

Proposition 5.2.6. Let M be an ultracategory. Then composition with the functor Γ ∶ Stoneop
Set → Set of

Construction 5.2.4 induces an equivalence of categories

Θ ∶ CartStone(StoneM,StoneSet)op → Fun0(Stoneop
M
,Set).

Proof. Let F ∶ Stoneop
M
→ Set be any functor and let (X,OX) be an object of StoneM. If F satisfies condition

(b) of Theorem 5.2.1, then the construction (U ⊆ X) ↦ F (U,OX ∣U) carries disjoint unions of closed and
open subsets of X to products in the category of sets, and therefore admits an essentially unique extension to
a sheaf of sets on X which we will denote by F (OX). In this case, we can regard the construction (X,OX) ↦
(X,F (OX)) as a functor from StoneM to StoneSet. This functor belongs to CartStone(StoneM,StoneSet) if
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and only if, for each object (X,OX) in StoneM and each map of Stone spaces f ∶ Y →X, the canonical map
F (OX)∣Y → F (OX ∣Y ) is an isomorphism of set-valued sheaves on Y . As in the proof of Lemma 5.1.9, it
suffices to verify this condition in the case where Y is a point, in which case it translates to the condition
that the functor F satisfies condition (a) of Theorem 5.2.1. We therefore obtain a functor

Λ ∶ Fun0(Stoneop
M
,Set) → CartStone(StoneM,StoneSet)op,

given on objects by the formula Λ(F )(X,OX) = (X,F (OX)). Note that the composition Θ○Λ is the identity
functor from Fun0(Stoneop

M
,Set) to itself. We will complete the proof by observing that there is a canonical

isomorphism α ∶ id→ Λ○Θ of functors from the category CartStone(StoneM,StoneSet) to itself, which assigns
to each functor Φ ∈ CartStone(StoneM,StoneSet) the natural transformation

αΦ ∶ Φ→ Λ(Θ(Φ))
given on each object (X,OX) ∈ StoneM by the map of sheaves given on closed and open sets by the bijection

((U ⊆X) ↦ ΦX(OX)(U)) ∼Ð→ ((U ⊆X) ↦ ΦU(OX ∣U)(U)).
�

Remark 5.2.7. Let M be an ultracategory and let F ∶ Stoneop
M
→ Set be a functor satisfying conditions

(a) and (b) of Theorem 5.2.1, so that we can regard F0 = F ∣M as a left ultrafunctor from M to Set. The
following conditions are equivalent:

(1) The left ultrafunctor F0 ∶ M → Set is an ultrafunctor.
(2) For every collection of objects {Ms}s∈S indexed by a set S, the canonical map F (∐s∈SMs) →

∏s∈S F (Ms) is bijective.

The implication (1) ⇒ (2) follows from Proposition 1.4.9. For the converse, we observe that (by the proof
of Proposition 5.2.6), the functor F can be recovered from F0 by the construction

(X,OX) ↦ Γ(X,F0(OX)).
Suppose that F0 is an ultrafunctor. If (X,OX) = ∐s∈SMs is the object of StoneM obtained by applying
Proposition 4.2.8 to the collection {Ms}s∈S of objects of M, then (X,F0(OX)) is the object of StoneSet

obtained by applying Proposition 4.2.8 to the collection of sets {F0(Ms)}s∈S , so that Γ(X,F0(OX)) ≃
∏s∈S F0(Ms).
5.3. Left Ultrafunctors and Filtered Colimits. If M is an ultracategory which admits small filtered
colimits, then the equivalence of Theorem 5.2.1 can be formulated more simply. First, we need an elementary
observation.

Proposition 5.3.1. Let M be an ultracategory which admits small filtered colimits. Then:

(a) The category CompM admits small filtered limits.
(b) The full subcategory StoneM ⊆ CompM is closed under small filtered limits..

In particular, the category StoneM admits small filtered limits.

Proof. Let {(Xα,OXα)} be a small filtered diagram in the category CompM. Then the underlying diagram
of topological spaces {Xα} admits an inverse limit X = lim←ÐXα, which is also a compact Hausdorff space. For

each index α, let πα ∶ X → Xα be the projection map. Then {π∗αOXα} is a filtered diagram in the category

of left ultrafunctors FunLUlt(X,M), and therefore admits a colimit OX = limÐ→(OXα ○πα) (see Remark 1.4.3).

It is straightforward to verify that (X,OX) can be regarded as an inverse limit of the diagram {(Xα,OXα)}
in the category CompM. Moreover, if each Xα is a Stone space, then X is also a Stone space. �

Variant 5.3.2. In the situation of Proposition 5.3.1, suppose that we assume only that M admits small
κ-filtered colimits, for some regular cardinal κ. In this case, the categories CompM and StoneM also admit
small κ-filtered limits. Moreover, these limits are preserved by the forgetful functors

CompM → Comp StoneM → Stone .

We can now state our main result:
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Theorem 5.3.3. Let M be an ultracategory which admits small filtered colimits, and let Fun′(Stoneop
M
,Set)

denote the full subcategory of Fun(Stoneop
M
,Set) spanned by those functors which preserve small filtered

colimits and finite products. Then the construction of Proposition 1.4.9 induces an equivalence of categories
Fun′(Stoneop

M
,Set) → FunLUlt(M,Set).

We will deduce Theorem 5.3.3 by combining Theorem 5.2.1 with the following general result, which may
be of independent interest:

Proposition 5.3.4. Let M be an ultracategory and let F ∶ M → Set be a functor. If there exists a left
ultrastructure on F , then F preserves all small filtered colimit which exist in M.

Proof of Theorem 5.3.3. By virtue of Theorem 5.2.1, we must show that the category Fun′(Stoneop
M
,Set)

appearing in the statement of Theorem 5.3.3 coincides with the category Fun0(Stoneop
M
,Set) in the statement

of Theorem 5.2.1. In other words, we must show that if F ∶ Stoneop
M
→ Set is a functor which satisfies

conditions (a) and (b) of Theorem 5.2.1, then F commutes with small filtered colimits.
For each object (X,OX) ∈ StoneM, let F (OX) denote the sheaf of sets on X given on closed and open

subsets U ⊆X by the formula F (OX)(U) = F (U,OX ∣U) (see Corollary B.6.5).
Let {(Xα,OXα)} be a filtered diagram in the category StoneM, having an inverse limit (X,OX). For

each index α, let πα ∶ X → Xα denote the projection map, and let OX = limÐ→α(OXα ○πα) be as in the proof

of Proposition 5.3.1. We wish to show that the canonical map

θ ∶ limÐ→
α

F (Xα,OXα) → F (X,OX)

is a bijection. Equivalently, we wish to show that the composite map

limÐ→
α

F (OXα)(Xα)
θ′Ð→ (limÐ→

α

π∗αF (OXα))(X) θ′′Ð→ (F (OX))(X).

Here θ′ is is bijective by virtue of Remark 5.2.5. To show that θ′′ is bijective, we will prove the stronger
assertion that the comparison map u ∶ limÐ→α π

∗
αF (OXα) → F (OX) is an isomorphism in the category of

sheaves on X. Let ux denote the map of sets obtained from u by passing to stalks at some point x ∈ X.
Setting xα = πα(x), we see that ux can be identified with the upper horizontal map in a commutative diagram

limÐ→α F (OXα)xα
ux //

��

F (OX)x

��
limÐ→α F ({xα},OX,xα)

θ′ // F ({x},OX,x).

Since F satisfies condition (a) of Theorem 5.2.1, the vertical maps in this diagram are bijective (see Con-
struction 7.5.5). We are therefore reduced to showing that the lower horizontal map is bijective, which
follows from the fact that the restriction F ∣M admits a left ultrastructure and therefore preserves filtered
colimits (Proposition 5.3.4). �

The proof of Proposition 5.3.4 will require some preliminaries.

Notation 5.3.5. Let S be a partially ordered set. For each s ∈ S, set S≥s = {t ∈ S ∶ t ≥ s}. We will say that
an ultrafilter µ on S is cofinal if µ(S≥s) = 1 for each s ∈ S. In this case, µ restricts to an ultrafilter on each
of the subsets S≥s, which we will denote by µ≥s. Note that there exists a cofinal ultrafilter on S if and only
if S is directed: that is, every finite subset of S has an upper bound (this is a consequence of Proposition
1.1.10).

Construction 5.3.6. Let M be an ultracategory and suppose we are given a diagram ({Ms},{ϕs,t ∶Ms →
Mt}) in M, indexed by a partially ordered set S. Let µ be a cofinal ultrafilter on S. For each s0 ∈ S, let
ws ∶Ms → ∫SMtdµ denote the composite map

Ms

∆µ≥sÐÐÐ→ ∫
S≥s

Msdµ≥s
∫S≥s

ϕs,tdµ≥s
ÐÐÐÐÐÐÐ→ ∫

S≥s
Mtdµ≥s

∆µ≥s,ιÐÐÐÐ→ ∫
S
Mtdµ,
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where ∆µ≥s is the ultrapower diagonal map of Example 1.3.4 and ∆µ≥s,ι is the isomorphism induced by the
inclusion ι ∶ S≥s ↪ S (Notation 1.3.3). Note that the maps ws satisfy ws = wt ○ ϕs,t for s ≤ t. Consequently,
if the diagram ({Ms},{ϕs,t ∶Ms →Mt}) admits a colimit in M, we obtain a canonical map

w ∶ limÐ→
s∈S

Ms → ∫
S
Mtdµ.

Remark 5.3.7. In the situation of Construction 5.3.6, let {ψt ∶Mt →M} be a collection of morphisms in
M which exhibit M as a colimit of the diagram ({Ms},{ϕs,t ∶Ms →Mt}). Then the composite map

M
wÐ→ ∫

S
Mtdµ

∫S ψtdµÐÐÐÐ→ ∫
S
Mdµ =Mµ

coincides with the ultrapower diagonal ∆µ of Example 1.3.4.

Remark 5.3.8. In the situation of Construction 5.3.6, suppose thatM= Set is the category of sets (equipped
with the categorical ultrastructure of Example 1.3.8). In this case, the map w ∶ M → ∫SMtdµ is injective.
To prove this, suppose we are given a pair of elements x, y ∈ Ms for some s ∈ S satisfying ws(x) = ws(y).
Unwinding the definitions, we see that the set S′ = {t ∈ S≥s ∶ ϕs,t(x) = ϕs,t(y)} satisfies µ(S′) = 1. In
particular, S′ is nonempty, so that x and y have the same image in Mt for some t ≥ s.

Proof of Proposition 5.3.4. LetM be an ultracategory and let F ∶ M → Set be a functor which admits a left
ultrastructure {σµ}. We wish to show that, for every small filtered category I and every diagram U ∶ I →M
which admits a colimit, the canonical map θ ∶ limÐ→(F ○ U) → F (limÐ→(U)) is a bijection. Then there exists a

directed partially ordered set S and a cofinal functor S → I (see, for example, [13, Tag 0032]). Replacing
I by S, we may assume that I = S is a directed partially ordered set, so that the diagram U is given by a
collection of objects {Ms}s∈S and transition morphisms {ϕs,t ∶ Ms → Mt}s≤t. Let {ψs ∶ Ms → M}s∈S be a
collection of morphisms in M which exhibit M as a colimit of the functor U . Choose a cofinal ultrafilter µ
on S. Applying Construction 5.3.6 in the ultracategories M and Set, we obtain maps

w ∶M = limÐ→Ms → ∫
S
Mtdµ w′ ∶ limÐ→F (Ms) → ∫

S
F (Mt)dµ.

These maps fit into a commutative diagram

limÐ→F (Ms)

θ

��

w′
// ∫S F (Mt)dµ

∫S F (ψt)dµ // F (M)µ

F (M)
F (w) // F (∫SMtdµ)

σµ

OO

F (∫S ψtdµ) // F (Mµ).

σµ

OO

Since the map w′ is injective (Remark 5.3.8), we immediately deduce that θ is injective. To prove surjectivity,
suppose we are given an element x ∈ F (M). Then (σµ ○ F (w))(x) is an element y of the ultraproduct

∫S F (Mt)dµ which we can represent by a collection of elements {yt ∈ F (Mt)}t∈S0 for some subset S0 ⊆ S
satisfying µ(S0) = 1. Note that the composition (∫S ψtdµ) ○ w coincides with the ultrapower diagonal
∆µ ∶M →Mµ (Remark 5.3.7). It follows that the composition

F (M) F (w)ÐÐÐ→ F (∫
S
Mtdµ)

F (∫S ψtdµ)ÐÐÐÐÐÐ→ F (Mµ)
σµÐ→ F (M)µ

agrees with the ultrapower diagonal ∆µ ∶ F (M) → F (M)µ in the category of sets. We therefore have an
identity (∫S F (ψt)dµ)(y) = ∆µ(x) in the ultrapower F (M)µ, which translates concretely to the statement
that the set S1 = {t ∈ S0 ∶ F (ψt)(yt) = x} satisfies µ(S1) = 1. In particular, the set S1 is nonempty. Choosing
t ∈ S1, we conclude that x belongs to the image of the map F (ψt) ∶ F (Mt) → F (M) and therefore also to
the image of θ. �

https://stacks.math.columbia.edu/tag/0032
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5.4. Accessible Ultrastructures. LetM be an ultracategory and let FunLUlt(M,Set) denote the category
of set-valued left ultrafunctors on M. In §2 and §3, we have seen two examples in which the category
FunLUlt(M,Set) is a Grothendieck topos:

● If M= Mod(C) is the category of models of a small pretopos C (endowed with the ultrastructure of

Remark 2.1.2), then the category FunLUlt(M,Set) is equivalent to the topos Shv(C) of sheaves on
C (Theorem 2.2.2).

● If M = X is a compact Hausdorff space (regarded as an ultracategory having only identity mor-

phisms), then the category FunLUlt(M,Set) is equivalent to the topos Shv(X) of sheaves on X
(Theorem 3.4.4).

Our goal in this section is to show that this is a rather general phenomenon. Of course, it is not completely
general: to guarantee that the category FunLUlt(M,Set) is a reasonable mathematical object, we will need
to assume that the ultracategoryM is “not too big”. To formulate this precisely, it is convenient to use the
language of accessible categories (see [1]).

Definition 5.4.1. LetM be a category. We will say that an ultrastructure onM is accessible if the following
conditions are satisfied:

● For some regular cardinal κ, the category M admits small κ-filtered colimits.
● The category Stoneop

M
of Construction 4.1.1 is accessible.

Remark 5.4.2. LetM be an ultracategory which admits small κ-filtered colimits, for some regular cardinal
κ. Then the forgetful functor F ∶ Stoneop

M
→ Stoneop preserves small κ-filtered colimits (Variant 5.3.2).

If the ultrastructure on M is accessible, then F is an accessible functor between accessible categories. It
follows that the category M is also accessible (since it can be realized as the 2-categorical fiber product
Stoneop

M
×Stone{∗}).

Example 5.4.3. Let C be a small pretopos. Then the ultrastructure on Mod(C) is accessible; this follows
from the description of the category StoneMod(C) supplied by Theorem 6.3.14.

Example 5.4.4. Let X be a compact Hausdorff space, regarded as a category having only identity mor-
phisms. Then the ultrastructure of Proposition 3.3.1 is accessible. This follows from the description of
StoneX ⊆ CompX supplied by Example 4.1.4.

We can now state the main result of this section:

Proposition 5.4.5. Let M be a category equipped with an accessible ultrastructure. Then the category of
left ultrafunctors FunLUlt(M,Set) is a Grothendieck topos.

The main content of Proposition 5.4.5 is contained in the following result, which does not require any
set-theoretic assumptions on M:

Proposition 5.4.6. Let M be an ultracategory. Then the category of left ultrafunctors FunLUlt(M,Set) is

a pretopos which admits small colimits. Moreover, for every morphism α ∶ F → G in FunLUlt(M,Set), the

pullback functor α∗ ∶ FunLUlt(M,Set)/G → FunLUlt(M,Set)/F preserves small colimits.

Proof. The category FunLUlt(M,Set) admits small colimits by Remark 1.4.3 and finite limits by Corollary
2.1.4. For every natural transformation of left ultrafunctors α ∶ F → G and every small diagram {Gα} in

FunLUlt(M,Set)/G, the canonical map

limÐ→
α

(Gα ×G F ) → (limÐ→
α

Gα) ×G F

is an isomorphism of left ultrafunctors because it induces a bijection after evaluating on any object M ∈ M
(since colimits and fiber products in FunLUlt(M,Set) are computed pointwise, and the formation of colimits

in Set is compatible with pullback). In particular, the category FunLUlt(M,Set) is extensive. To complete

the proof that it is a pretopos, it will suffice to show that for every left ultrafunctor F ∈ FunLUlt(M,Set)
and every equivalence relation R ⊆ F × F in FunLUlt(M,Set), the canonical map

R → F ×F /R F
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is an isomorphism of left ultrafunctors, where F /R = Coeq(R ⇉ F ) denotes the quotient of F by the
equivalence relation R. This also follows from the corresponding assertion in the category of sets, since the
coequalizer defining F /R and the fiber product F ×F /R F are computed pointwise. �

Proof of Proposition 5.4.5. LetM be a category equipped with an accessible ultrastructure; we wish to show
that the category FunLUlt(M,Set) is a Grothendieck topos. By virtue of Proposition 5.4.6 and Remark C.1.9,

it will suffice to show that the category FunLUlt(M,Set) is accessible. Using Theorem 5.2.1, we can identify

FunLUlt(M,Set) with the full subcategory Fun0(Stoneop
M
,Set) ⊆ Fun(Stoneop

M
,Set) spanned by those functors

F ∶ Stoneop
M
→ Set satisfying conditions (a) and (b) of Theorem 5.2.1.

Choose a regular cardinal κ such that M admits small κ-filtered colimits. Enlarging κ if necessary, we
may further assume that the category Stoneop

M
is κ-accessible: that is, it is equivalent to Indκ(E), where E is

a small category. Let us abuse notation by identifying E with its image in Stoneop
M

. Then E can be identified
with the full subcategory of Stoneop

M
spanned by the κ-compact objects. iConsequently, the full subcategory

E ⊆ Stoneop
M

is closed under finite products, and also under the formation of direct factors. Note that, for
every functor F ∶ Stoneop

M
→ Set satisfying (a) and (b) of Theorem 5.2.1, the restriction F ∣M ∶ M → Set

admits a left ultrastructure (Proposition 1.4.9), and therefore preserves small κ-filtered colimits (Proposition
5.3.4). Arguing as in the proof of Theorem 5.3.3, we see that the functor F itself preserves small κ-filtered
colimits.

Let Funκ(Stoneop
M
,Set) denote the full subcategory of Fun(Stoneop

M
,Set) spanned by those functors which

preserve small κ-filtered colimits, so that the restriction functor

Funκ(Stoneop
M
,Set) → Fun(E ,Set)

is an equivalence of categories. Let Fun0(E ,Set) denote the essential image of Fun0(Stoneop
M
,Set) under this

equivalence, so that FunLUlt(M,Set) is equivalent to Fun0(E ,Set). We will complete the proof by showing
that Fun0(E ,Set) is an accessible subcategory of the presheaf category Fun(E ,Set). To prove this, it suffices
to observe that a functor F0 ∶ E → Set belongs to Fun0(E ,Set) if and only if satisfies the following analogues
of (a) and (b):

(a′) Let F ∶ Stoneop
M
→ Set be a left Kan extension of F0. Then, for each object (X,OX) in E , the

canonical map

limÐ→
x∈U

F (U,OX ∣U) → F ({x},OX,x)

is bijective.
(b′) For every finite collection of objects (Xi,OXi) of E , the canonical map

F (∐Xi,O∐Xi) →∏F0(Xi,OXi)

is bijective.

This characterization exhibits Fun0(E ,Set) as an intersection of a bounded number of accessible subcategories
of Fun(E ,Set), so that Fun0(E ,Set) is itself accessible. �

Let M be a category equipped with an accessible ultrastructure. For each object M ∈ M, evaluation on
M induces a functor

evM ∶ FunLUlt(M,Set) → Set

which preserves small colimits and finite limits (Remark 1.4.3) and finite limits (Corollary 2.1.4). We can

therefore regard evM as a point of the Grothendieck topos FunLUlt(M,Set). Moreover, the construction
M ↦ evM determines a functor

ev ∶ M → Fun∗(FunLUlt(M,Set),Set).

This functor is an equivalence in the following cases:

● If M is the ultracategory Mod(C) of models of a small pretopos C, then the functor ev is an
equivalence of categories; it is homotopy inverse to the equivalence of Corollary 2.2.6.
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● If M = X is a compact Hausdorff space (regarded as an ultracategory having only identity mor-
phisms), then the functor ev is an equivalence of categories (every point of the sheaf topos Shv(X)
is determined by a point of the topological space X).

However, the functor ev is not an equivalence in general.

Counterexample 5.4.7. Let G be a compact topological group and let BG be the ultracategory of Example
4.4.5. Let e denote the unique object of the category BG, so that we can identify G with the automorphism
group AutBG(e). Let us abuse notation by identifying e with a left ultrafunctor from the one-object category
∗ to BG, so that we have a homotopy pullback square

G
π //

π

��

∗
e

��
∗

α

9A

e // BG

in the 2-category Ult of Remark 1.4.6.
Let F ∶ BG → Set be a left ultrafunctor. Then α determines an automorphism ϕ of the composite left

ultrafunctor

G
πÐ→ ∗ eÐ→ BG

FÐ→ Set,

which we can identify (under the equivalence of Theorem 3.4.4) with the constant sheaf F (e)
G

. At each point

g ∈ G, the automorphism ϕ determines an automorphism of the stalk F (e)
G,g

≃ F (e), which is simply given by

the action of g ∈ G = AutBG(e) on F (e) by the functoriality of F . The fact that ϕ is automorphism of sheaves
guarantees that this automorphism is constant on the identity component G○ ⊆ G. Consequently, the action
of G○ on the object e ∈ BG induces the trivial action of G○ on the image ev(e) ∈ Fun∗(FunLUlt(BG,Set),Set).
In particular, if G○ is nontrivial, then the evaluation functor

ev ∶ BG→ Fun∗(FunLUlt(BG,Set),Set)

cannot be an equivalence of categories.
With a bit more effort, one can show that the category of left ultrafunctors FunLUlt(BG,Set) is equivalent

to the Grothendieck topos of sets equipped with a continuous action of the profinite group π0(G) = G/G○.
In particular, we can identify ev with the canonical map BG→ B(π0(G)).

6. The Category StoneMod(C)

Let C be a small pretopos and let Mod(C) denote the category of models of C, which we endow with the
ultrastructure of Remark 2.1.2. The ultimate goal of this paper is to prove Theorem 2.2.2, which asserts that
the category of left ultrafunctors FunLUlt(Mod(C),Set) is equivalent to the topos Shv(C) of sheaves on C. To
prove this, we will take advantage of the characterization of (set-valued) left ultrafunctors established in §5.
According to Theorem 5.3.3, the datum of a left ultrafunctor Mod(C) → Set is equivalent to the datum of a
functor F ∶ Stoneop

Mod(C)
→ Set which preserves finite products and small filtered colimits. In some sense, this

is progress: by trading the category of models Mod(C) for the larger category Stoneop
Mod(C)

, we can reduce

Theorem 2.2.2 to a statement about ordinary categories and ordinary functors, rather than ultracategories
and (left) ultrafunctors. The caveat is that the ultrastructure on Mod(C) is embedded into the definition
of the category StoneMod(C): recall that the objects of StoneMod(C) are given by pairs (X,OX), where X is
a Stone space and OX is a left ultrafunctor from X to Mod(C). Our goal in this section is to show that
the category StoneMod(C) has an alternative description, which is completely independent of the theory of
ultracategories:

Theorem 6.0.1. Let C be a small pretopos. Then there is a canonical equivalence of categories StoneMod(C) ≃
Funreg(C,Set)op. Here Funreg(C,Set) denotes the full subcategory of Fun(C,Set) spanned by those functors
P ∶ C → Set which are regular: that is, which preserve finite limits and effective epimorphisms.
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Remark 6.0.2. Let C be a small pretopos. Combining Theorem 6.0.1 with Theorem 5.3.3, we obtain a fully
faithful embedding

FunUlt(Mod(C),Set) ↪ Fun(Funreg(C,Set),Set).
Moreover, the essential image of this embedding contains all functors F ∶ Funreg(C,Set) → Set which pre-
serve small products and small filtered colimits (see Remark 5.2.7). From the construction, it will follow
immediately that the composition

C evÐ→ FunUlt(Mod(C),Set) ↪ Fun(Funreg(C,Set),Set)
is the Barr embedding of C (see §2.4); here ev denotes the evaluation map of Construction 2.2.1. Con-
sequently, from Makkai’s description of the image the Barr embedding (Theorem 2.4.2) we can deduce
Makkai’s strong conceptual completeness theorem (Theorem 2.3.1), which asserts that the evaluation map

ev ∶ C → FunUlt(Mod(C),Set) is an equivalence of categories (recall that we proved the reverse implication
in §2.4). We will not make use of this observation: instead, we will apply Theorem 6.0.1 in §7 to prove a
stronger version of Makkai’s conceptual completeness theorem (Theorem 2.2.2), which describes the larger

category FunLUlt(Mod(C),Set) of left ultrafunctors from Mod(C) to Set.

Let us now outline our approach to Theorem 6.0.1. In §6.3, we introduce a category StoneC whose objects
are pairs (X,OX), where X is a Stone space and OX is a pretopos functor from C to the topos Shv(X)
(Definition 6.3.8). Using the results of §3, we construct an equivalence of categories StoneC ≃ StoneMod(C)

(see Warning 6.3.9). We then construct a comparison functor Γ ∶ StoneC → Funreg(C,Set)op, given concretely

by the formula Γ(X,OX)(C) = OCX(X) (where OCX denotes the image of an object C ∈ C under the pretopos
functor OX). We deduce Theorem 6.0.1 from the more precise assertion that the functor Γ is an equivalence
of categories, which we prove in §6.4.

Note that the category Funreg(C,Set) of regular functors from C to Set is contained in the larger category

Funlex(C,Set) of functors P ∶ C → Set which preserve finite limits. Throughout this section, it will be

convenient to phrase our results in terms of the opposite category Funlex(C,Set)op, which we denote by
Pro(C) and refer to as the category of pro-objects of C. In §6.1, we recall some standard facts about the
category Pro(C) and study properties that it inherits from C. In particular, we show that if C is a small
pretopos, then the category Pro(C) is regular and extensive (Corollary 6.1.20), which we will exploit in §7
to study sheaves on Pro(C). The category Funreg(C,Set)op can then be identified with the full subcategory
Prowp(C) ⊆ Pro(C) of weakly projective pro-objects of C (Definition 6.2.2). In §6.2, we recall the proof (due
to Barr) that the Barr embedding of a small regular category is fully faithful (Theorem 2.4.1). This is
a consequence of the stronger assertion that the category Pro(C) has “enough” weakly projective objects
(Proposition 6.2.12), which will be needed in §7.

6.1. Pro-Objects. We begin with a short review of the theory of pro-objects of a small category C. To
simplify the discussion, we will confine our attention to the case where the category C admits finite limits.

Definition 6.1.1. Let C be a small category which admits finite limits. A pro-object of C is a functor
P ∶ C → Set which preserves finite limits. If P and Q are two such functors, then a morphism of pro-objects
from P to Q is a natural transformation of functors α ∶ Q→ P . We let Pro(C) = Funlex(C,Set)op denote the
category whose objects are pro-objects of C.

Example 6.1.2. Let C be a small category which admits finite limits. Then every object C ∈ C determines
a pro-object of C, given the functor HomC(C, ●) corepresented by C. By virtue of Yoneda’s lemma, the
construction C ↦ HomC(C, ●) determines a fully faithful embedding C ↪ Pro(C). We will generally abuse
notation by identifying C with its essential image under this embedding: that is, we will not distinguish
between an object C ∈ C and the corresponding pro-object HomC(C, ●). Moreover, if X ∶ C → Set is any
pro-object of C, we will identify X(C) with the set HomPro(C)(X,C) of morphisms from X to C in the
category Pro(C).

Example 6.1.3 (Profinite Sets). Let X be a topological space and let Fin denote the category of finite
sets. We let Γ(X) ∶ Fin→ Set denote the functor given by the formula Γ(X)(S) = HomTop(X,S): that is, it
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carries a finite set S to the collection of locally constant S-valued functions on X. Since the inclusion functor
Fin↪ Top preserves finite limits, the functor Γ(X) preserves finite limits, and can therefore be regarded as
an object of the category Pro(Fin) of profinite sets. The construction X ↦ Γ(X) induces an equivalence of
categories Stone ≃ Pro(Fin).

Remark 6.1.4. Let C be a small category which admits finite limits. Since the formation of finite limits
commutes with filtered colimits in the category Set, the full subcategory Funlex(C,Set) ⊆ Fun(C,Set) is closed
under (small) filtered colimits. Passing to opposite categories, we conclude:

● The category Pro(C) admits small filtered limits.
● For every object C ∈ C, the evaluation functor HomPro(C)(●,C) carries small filtered limits in Pro(C)

to filtered colimits of sets.

Remark 6.1.5. Let C be a small category which admits finite limits, and suppose we are given a small
filtered diagram {Cα} in C. Then, in the category Pro(C), this diagram admits an inverse limit lim←ÐCα, given

concretely by the functor D ↦ limÐ→HomC(Cα,D). Beware that this is generally different from the inverse

limit of the diagram {Cα} in C (if such a limit exists).

Remark 6.1.6. Let C be a small category which admits finite limits. One can show that every object of
Pro(C) arises as the inverse limit of a filtered diagram in C. Consequently, the category Pro(C) can be
described more informally as follows:

● The objects of Pro(C) are “formal” inverse limits lim←ÐCα, where {Cα} is a small filtered diagram in

C.
● Given small filtered diagrams {Cα} and {Dβ}, we have canonical bijections

HomPro(C)(lim←Ð
α

Cα, lim←Ð
β

Dβ) ≃ lim←Ð
β

HomPro(C)(lim←Ð
α

Cα,Dβ)

≃ lim←Ð
β

limÐ→
α

HomC(Cα,Dβ).

Remark 6.1.7. Let C be a small category which admits finite limits. Then the category of pro-objects
Pro(C) can be characterized (up to equivalence) by a universal mapping property. Let D be any category
which admits small filtered limits. Then precomposition with the Yoneda embedding C ↪ Pro(C) induces an
equivalence of categories Fun′(Pro(C),D) → Fun(C,D), where Fun′(Pro(C),D) denotes the full subcategory
of Fun(Pro(C),D) spanned by those functors which preserve small filtered limits. More informally: the
category of pro-objects Pro(C) is obtained from C by “freely” adjoining small filtered limits. See Proposition
8.7.3 of [6], Expose 1.

Remark 6.1.8 (Functoriality). Let C and D be small categories which admit finite limits and let g ∶ C → D
be a left exact functor. Then precomposition with g induces a functor F ∶ Pro(D) → Pro(C). This functor
F admits a right adjoint G ∶ Pro(C) → Pro(D). To prove this, we must show that for every pro-object
X ∈ Pro(C), the functor (Y ∈ Pro(D)) ↦ HomPro(C)(F (Y ),X) is representable by an object of Pro(D).
Writing X as a filtered limit of objects of C (Remark 6.1.6), we can assume that X belongs to C. In this case,
the desired result follows from the bijections HomPro(C)(F (Y ),X) ≃ (Y ○ g)(X) ≃ HomPro(D)(Y, g(X)).

It follows from the above argument that the restriction G∣C is given by the composition of g ∶ C → D with
the fully faithful embedding D ↪ Pro(D). Moreover, the functor G preserves filtered limits (since it is a
right adjoint). Using the universal property of Remark 6.1.7, we see that the functor G is characterized (up
to isomorphism) by these requirements.

Remark 6.1.9. In the situation of Remark 6.1.8, suppose that we drop the assumption that the functor
g ∶ C → D is left exact. In this case, the universal property of Remark 6.1.7 guarantees that g admits an
essentially unique extension G ∶ Pro(C) → Pro(D) which commutes with filtered limits. Concretely, the

functor G can be constructed as a right Kan extension of the composition C gÐ→ D ↪ Pro(D). However, it
generally cannot be characterized as in Remark 6.1.8: if the functor g does not preserve finite limits, then
neither does G, so G cannot admit a left adjoint.
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Proposition 6.1.10. Let C be a small category which admits finite limits, let C0 ⊆ C be a full subcategory
which is closed under finite limits, and let G ∶ Pro(C0) → Pro(C) be the essentially unique extension of the
inclusion map C0 ↪ C which commutes with filtered limits. Then G is fully faithful, and the essential image
of G consists of those pro-objects X ∈ Pro(C) which satisfy the following condition:

(∗) For C ∈ C, every morphism f ∶ X → C admits a factorization X → C0 → C where C0 belongs to the
subcategory C0.

Proof. Let F ∶ Pro(C) → Pro(C0) be the left adjoint to G, given concretely by the restriction map

Funlex(C,Set)op → Funlex(C0,Set)op.

To prove (1), we must show that for each object Y ∈ Pro(C0), the counit map (F ○ G)(Y ) → Y is an
isomorphism. Since both F and G commute with filtered limits, we may assume without loss of generality
that Y belongs to C0, which case the result is obvious. We now prove (2). By definition, an object X ∈ Pro(C)
belongs to the essential image of G if and only if it can be written as a formal inverse limit “ lim←ÐCα”, where

each Cα belongs to C0. If X satisfies this condition, then every morphism X → C factors through one of the
projection maps Cα, so that X satisfies condition (∗).

We now prove the converse. Assume that X satisfies (∗). Set Y = (G ○ F )(X) and let u ∶ X → Y be
the unit map; we wish to show that u is an isomorphism. To prove this, we show that composition with
u induces a bijection θC ∶ HomC(Y,C) → HomC(X,C) for each object C ∈ C. By construction, the map
θC is bijective when C belongs to C0. From our assumption that X satisfies (∗), we immediately deduce
that θC is surjective for any object C ∈ C. To prove injectivity, suppose we are given a pair of morphisms
f, f ′ ∶ Y → C satisfying f ○ u = f ′ ○ u. Since Y satisfies condition (∗), the induced map (f, f ′) ∶ Y → C ×C
factors as a composition Y

gÐ→ C0
eÐ→ C ×C for some C0 ∈ C. Using our assumption that X satisfies (∗), we

deduce that the map (g ○u, f ○u) ∶X → C0 ×C×C C factors as a composition X
hÐ→ C1

e′Ð→ C0 ×C×C C for some
C1 ∈ C. Using the bijectivity of θC1 , we can write h = h′ ○ u for some map h′ ∶ Y → C1. The composition

Y
h′Ð→ C ′ e′Ð→ C0 ×C×C C then gives a pair of maps g′ ∶ Y → C0 and f ′′ ∶ Y → C satisfying g′ ○ u = g ○ u and

e ○ g′ = (f ′′, f ′′). Using the injectivity of θC0 , we conclude that g′ = g, so that (f ′′, f ′′) = e ○ g′ = e ○ g = (f, f ′)
and therefore f = f ′. �

Lemma 6.1.11. Let C be a small category which admits finite limits. Then the inclusion functor C ↪ Pro(C)
preserves finite limits and all colimits which exist in C.

Proof. The first assertion follows from the observation that for every pro-object X ∈ Pro(C), the functor

(C ∈ C) ↦ HomPro(C)(X,C)
can be identified with X, and is therefore left exact. The second assertion follows from the fact that the
Yoneda embedding

Cop ↪ Fun(C,Set) C ↦ HomC(C, ●)
carries colimits in the category C to limits in the functor category Fun(C,Set). �

Lemma 6.1.12. Let C be a small category which admits finite limits and let I be a finite partially ordered set
(regarded as a category). Then the inclusion map Fun(I,C) ↪ Fun(I,Pro(C)) admits an (essentially unique)
extension to an equivalence of categories Pro(Fun(I,C)) ≃ Fun(I,Pro(C)).

Proof. See Proposition 3.3 of the appendix to [2]. �

Example 6.1.13. Applying Lemma 6.1.12 in the case I = {0 < 1}, we see that every morphism f ∶ C → D
in Pro(C) can be obtained as the limit of a filtered diagram of morphisms {fα ∶ Cα → Dα} between objects
of C.

Lemma 6.1.14. Let C be a small category which admits finite limits. Then the category of pro-objects
Pro(C) admits small limits. In particular, Pro(C) also admits finite limits.
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Proof. By virtue of Remark 6.1.4; it will suffice to show that the category Pro(C) has a final object and
admits pullbacks. We argue more generally that, for any diagram

I → Pro(C) i↦Xi

indexed by a finite partially ordered set I, there exists a limit lim←Ði∈I Xi in the category Pro(C). Using Lemma

6.1.12 (together with the “Fubini theorem” for inverse limits), we can reduce to the case where each Xi is
an object of C. In this case, the desired limit exists (and belongs to the essential image of the embedding
C ↪ Pro(C)) by virtue of Lemma 6.1.11. �

Proposition 6.1.15. Let C be a small regular category (Definition A.1.3). Then:

(1) The category Pro(C) is regular.
(2) A morphism f ∶ X → Y in Pro(C) is a monomorphism if and only if it can be written as a small

filtered limit of monomorphisms in C.
(3) A morphism f ∶ X → Y in Pro(C) is an effective epimorphism if and only if it can be written as a

small filtered limit of effective epimorphisms in C.

Proof. To prove (1), we must show that Pro(C) satisfies axioms (R1), (R2), and (R3) of Definition A.1.3.
Assertion (R1) follows from Lemma 6.1.14. To prove (R2), fix any morphism f ∶X → Z in Pro(C). Invoking
Lemma 6.1.12, we can write f as the limit of a diagram {fi ∶ Xi → Zi}i∈Iop , where I is a small filtered
category and each fi is a morphism in C. Since C is regular, each of the morphism fi admits a factorization

Xi
giÐ→ Yi

hiÐ→ Zi,

where gi is an effective epimorphism in C and hi is a monomorphism in C. It follows from Proposition
A.1.4 that we can regard the construction i ↦ Yi as a functor Iop → C, and the construction i ↦ gi, hi as
natural transformations of functors. Passing to the inverse limit, we deduce that f factors as a composition

X
gÐ→ Y

hÐ→ Z where Y denotes the inverse limit lim←Ði∈Iop
Yi, formed in the category Pro(C). Note that the

diagonal map δ ∶ Y → Y ×Z Y can be identified with an inverse limit of diagonal maps δi ∶ Yi → Yi ×Zi Yi.
Each hi is a monomorphism in C and therefore also in Pro(C) (Lemma 6.1.11), so each δi is an isomorphism
and therefore δ is also an isomorphism. It follows that h is a monomorphism in Pro(C). We will will show
that g is an effective epimorphism in Pro(C). For this, we wish to show that for each object C ∈ Pro(C), the
diagram of sets

HomPro(C)(Y,C) → HomPro(C)(X,C) ⇉ HomPro(C)(X ×Y X,C)
is an equalizer. Using Remark 6.1.6, we can reduce to the case where C belongs to C. In this case, we can
realize the preceding diagram as a filtered colimit of diagrams

HomC(Yi,C) → HomC(Xi,C) ⇉ HomC(Xi ×Yi Xi,C).
We conclude by observing that each of these diagrams is an equalizer (since gα is an effective epimorphism
in C), and the collection of equalizer diagrams in Set is closed under filtered colimits. This completes the
verification of axiom (R2).

We now prove (3) (the proof of (2) is similar). If f is an effective epimorphism in Pro(C), then the
morphism h ∶ Y → Z is an isomorphism (Remark A.1.7). It follows that f can be identified with the limit
of the diagram {gi ∶ Xi → Yi}i∈Iop of effective epimorphisms in C. Conversely, suppose that the diagram
{fi ∶ Xi → Zi}i∈Iop can be chosen so that each fi is an effective epimorphism. Then each of the morphisms
hi ∶ Yi → Zi will be an isomorphism in C, so that the map h ∶ Y → Z is an isomorphism in Pro(C) and f = h○g
is an effective epimorphism in Pro(C).

We now complete the proof by showing that the category Pro(C) satisfies axiom (R3) of Definition A.1.3.
Fix a pullback diagram

X ′

f ′

��

// X

f

��
Z ′ u // Z
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in Pro(C), where f is an effective epimorphism; we wish to show that f ′ is also an effective epimorphism.
Using Lemma 6.1.12, we can assume that f and u are given as the limits of diagrams {fi ∶Xi → Zi}i∈Iop and
{ui ∶ Z ′

i → Zi}i∈Iop , where I is a small filtered category. Defining gi and hi as above, we obtain diagrams

Xi ×Zi Z ′
i

��

// Xi

gi

��
Yi ×Zi Z ′

i
//

��

Yi

hi

��
Z ′
i

ui // Zi,

where each square is a pullback, depending functorially on i ∈ Iop. Passing to the inverse limit, we obtain a
commutative diagram of pro-objects

X ′ //

g′

��

X

g

��
lim←Ð(Yi ×Zi Z ′

i)

h′

��

// Y

h

��
Z ′ u // Z,

in which both squares are pullbacks in Pro(C). Since f is an effective epimorphism, the map h is an
isomorphism, so h′ is also an isomorphism. We are therefore reduced to showing that g′ is an effective
epimorphism. This follows from (3), since it an inverse limit of effective epimorphisms Xi ×Zi Z ′

i → Yi ×Zi Z ′
i

in the regular category C. �

Remark 6.1.16. Let C be a small regular category. Then the collection of effective epimorphisms in Pro(C)
is closed under small filtered limits.

Remark 6.1.17. Let C be a small regular category. Then the collection of effective epimorphisms in Pro(C)
is closed under the formation of products. To prove this, we can use Remark 6.1.16 to reduce to the case of
finite products, in which case the desired result follows from the regularity of Pro(C) (Corollary A.1.10).

Lemma 6.1.18. Let C be a small category which admits finite limits. Then the category Pro(C) admits
small colimits. Moreover, the formation of finite colimits in Pro(C) commutes with filtered limits.

Proof. The first assertion follows from the observation that the full subcategory Funlex(C,Set) ⊆ Fun(C,Set)
is closed under inverse limits, and the second from the observation that it is also closed under filtered colimits
(together with the observation that filtered colimits commute with finite limits in the category Set). �

Proposition 6.1.19. Let C be a small category which admits finite limits. If C is extensive (Definition
A.3.2), then the category of pro-objects Pro(C) is also extensive.

Proof. The existence of coproducts in Pro(C) follows from Lemma 6.1.18. We next show that coproducts
in Pro(C) are disjoint. Let X and Y be objects of Pro(C). Using Lemma 6.1.12 and Remark 6.1.6, we can
write X and Y as the limits of diagrams {Xi}i∈Iop and {Yi}i∈Iop in the category C, where I is a small filtered
category. For each i ∈ I, let Xi∐Yi denote a coproduct of Xi with Yi in the category C. Using Lemmas 6.1.18
and 6.1.11, we see that the limit of the diagram {Xi ∐Yi}i∈Iop can be identified with the coproduct of X and
Y in the category Pro(C). Under this identification, the tautological maps X → X ∐ Y ← Y can be realized
as limits of the maps Xi ↪Xi ∐ Yi ↩ Yi, which are monomorphisms in C (hence also in Pro(C)) by virtue of
our assumption that coproducts in C are disjoint. Moreover, the fiber product X ×(X∐Y ) Y can be identified
with the limit of the diagram {Xi ×Xi∐Yi Yi}i∈Iop which carries each object i ∈ Iop to an initial object of C.
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Since the inclusion C ↪ Pro(C) preserves initial objects (Lemma 6.1.11), it follows that X ×(X∐Y ) Y is an
initial object of Pro(C).

To complete the proof that Pro(C) is extensive, we must show that the formation of finite coproducts in
Pro(C) is compatible with pullback. Suppose we are given a morphism f ∶X → Y in Pro(C) and a collection
of morphisms uj ∶ Zj → Y indexed by some finite set J . We wish to show that the canonical map

θ ∶ ∐
j∈J

(X ×Y Zj) →X ×Y (∐
j∈J

Zj)

is an isomorphism in Pro(C). Using Lemma 6.1.12 and Remark 6.1.6, we can assume that the morphisms
f and uj are realized as the limits of diagrams {fi ∶ Xi → Yi}i∈Iop and {ui,j ∶ Zi,j → Yi}i∈Iop for some small
filtered category I, where each of the pro-objects Xi, Yi, and Zi,j belongs to C. Invoking Lemma 6.1.18, we
can write θ as a limit of maps

θi ∶ ∐
j∈J

(Xi ×Yi Zi,j) →Xi ×Yi (∐
j∈J

Zi,j),

where the coproduct and fiber product can be formed either in Pro(C) or in the smaller category C (Lemma
6.1.11). Since the formation of finite coproducts in C commutes with pullback, each of the maps θi is an
isomorphism in C, so that θ is an isomorphism in Pro(C). �

Corollary 6.1.20. Let C be a small regular extensive category. Then Pro(C) is also regular and extensive.

Proof. Combine Propositions 6.1.15 and 6.1.19. �

Warning 6.1.21. It is not true that if C is a small pretopos, then the category Pro(C) is also a pretopos.
For example, let C be the category of finite sets. Then the category Pro(C) of profinite sets can be identified
with the category Stone of Stone spaces (Example 6.1.3). Let C ∈ Stone be the Cantor set, which we identify
with the collection of infinite sequences (n1, n2, n3, . . .) where ni ∈ {0,1}. The construction

(n1, n2, n3, . . .) ↦∑
ni
2i

defines a continuous surjection C → [0,1], and the fiber product R = C ×[0,1] C can be regarded as an
equivalence relation on C in the category of Stone spaces. However, this equivalence relation is not effective:
given any Stone space X, a continuous map C → X which equalizes the two projection maps R ⇉ C must
factor through a continuous map [0,1] → X. Such a map is automatically constant (since X is totally
disconnected), so that C ×X C = C ×C is strictly larger than the subset R ⊆ C ×C.

We close this section by giving an alternate characterization of the the class effective epimorphisms in
Pro(C), in the case where C is both regular and extensive.

Notation 6.1.22. Let C be a small regular extensive category. Then, for every object C ∈ C, the collection
of subobjects of C forms a distributive lattice Sub(C) (Example A.5.2). We let Ĉ denote the spectrum
Spec(Sub(C)), in the sense of Definition A.5.3, which we regard as a topological space. The construction

C ↦ Ĉ determines a functor from C to the category Top of topological spaces. Using Remark 6.1.7, we see
that this functor admits an essentially unique extension to a functor

Pro(C) → Top P ↦ P̂

which commutes with filtered inverse limits.

Warning 6.1.23. The notation 6.1.22 is potentially misleading. Let C be a small regular extensive category.
Then Pro(C) is also a regular extensive category. Consequently, for every pro-object P ∈ Pro(C), the partially

ordered set Sub(P ) of subobjects of P is a distributive lattice. However, the topological space P̂ of Notation
6.1.22 is not the spectrum Spec(Sub(P )). Writing P as the limit of a filtered diagram {Cα} of objects of C,
Remark A.5.6, we have

P̂ ≃ lim←Ð Ĉα ≃ lim←ÐSpec(Sub(Cα)) ≃ Spec(limÐ→Sub(Cα)) = Spec(Sub0(P )),
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where Sub0(P ) denotes the sublattice of Sub(P ) consisting of those subobjects P0 ⊆ P for which there exists
a pullback square

P0
//

��

P

��
C0

j // C,

where j ∶ C0 ↪ C is a monomorphism in the category C.

Proposition 6.1.24. Let C be a small regular extensive category and let f ∶ P → Q be a morphism in Pro(C).
The following conditions are equivalent:

(a) The morphism f is an effective epimorphism in Pro(C).

(b) The map of topological spaces f̂ ∶ P̂ → Q̂ is surjective.

Proof. Suppose first that f is an effective epimorphism in Pro(C). Then f can be realized as a filtered inverse
limit of effective epimorphisms fα ∶ Pα ↠ Qα in the category C (Proposition 6.1.15). It follows that each of
the inverse limit maps f−1

α ∶ Sub(Qα) → Sub(Pα) is a monomorphism of distributive lattices. Passing to the

colimit over α, we obtain a monomorphism of distributive lattices Sub0(Q) → Sub0(P ) (where Sub0(P ) and

Sub0(Q) are defined as in Warning 6.1.23), hence a surjection of topological spaces

P̂ ≃ Spec(Sub0(P )) → Spec(Sub0(Q)) → Q̂

(see Proposition A.5.7).
Now suppose that (b) is satisfied; we wish to show that f is an effective epimorphism. Using Proposition

6.1.15, we can factor f as a composition P
f ′↠ P ′ f

′′

↪ Q, where f ′ is an effective epimorphism in Pro(C) and f ′′

is a monomorphism in Pro(C). Since the surjection f̂ ∶ P̂ → Q̂ factors through f̂ ′′ ∶ P̂ ′ → Q̂, the map f̂ ′′ is also
surjective. We may therefore replace f by f ′′ and thereby reduce to the case where f is a monomorphism in
Pro(C). Using Proposition 6.1.15, we can write f as the limit of a diagram {fα ∶ Pα ↪ Qα}. In this case, we
can identify P with the intersection (in the partially ordered set Sub(Q)) of the subobjects Sα = Pα ×Qα Q.

Each of these subobjects belongs to the lattice Sub0(Q) of Warning 6.1.23), and has the property that
P ∩ Sα = P . It follows from assumption (b) and Proposition A.5.7 that the intersection map S ↦ S ∩ P
induces a monomorphism of distributive lattices Sub0(Q) → Sub0(P ), so that each Sα must coincide with
Q and therefore P = Q (as subobjects of Q). �

6.2. Weak Projectives and the Barr Embedding. Let C be a regular category. Recall that an object
P ∈ C is said to be projective if every effective epimorphism P ↠ P in the category C admits a section
s ∶ P → P .

Proposition 6.2.1. Let C be a regular category and let P be an object of C. The following conditions are
equivalent:

(a) The object P is projective.
(b) For every effective epimorphism f ∶ C ↠ D in C, postcomposition with f induces a surjection

HomC(P,C) → HomC(P,D).

Proof. Assume first that P is projective, and let f ∶ C ↠D be an effective epimorphism. For any morphism
g ∶ P →D, we can form a pullback square

P

f ′

��

g′ // C

f

��
P

g // D.

Using axiom (R3) of Definition A.1.3, we conclude that f ′ is also an effective epimorphism. Our assumption

that P is projective guarantees that f ′ admits a section s ∶ P → P . Then the composition g′ ○s ∈ HomC(P,C)
is a preimage of g under the map HomC(P,C) → HomC(P,D). This shows that (a) ⇒ (b).
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Conversely, suppose that (b) is satisfied; we wish to show that P is projective. Choose an effective

epimorphism f ∶ P → P . It follows from (b) that postcomposition with f induces a surjection HomC(P,P ) →
HomC(P,P ) is surjective. In particular, there exists a map s ∶ P → P such that f ○ s = idP . �

Let C be a small regular category. Then the category of pro-objects Pro(C) is also regular (Proposition
6.1.15). Beware that a projective object P of the category C need not be projective when regarded as an
object of Pro(C). In general, projective objects of Pro(C) might be in short supply. We therefore introduce
the following variant notion:

Definition 6.2.2. Let C be a small regular category and let X be a pro-object of C. We will say that X is
weakly projective if, for every effective epimorphism f ∶ C ↠D in the category C, composition with f induces
a surjection HomPro(C)(X,C) → HomPro(C)(X,D). We let Prowp(C) denote the full subcategory of Pro(C)
spanned by the weakly projective pro-objects of C.

Remark 6.2.3. Let C be a regular category. A pro-object X ∈ Pro(C) is weakly projective if and only if it is
regular when regarded as a functor from C to the category of sets: that is, the functor X ∶ C → Set preserves
finite limits and effective epimorphisms.

Example 6.2.4. Let C be a small regular category and let P be an object of C. Then P is projective as an
object of C if and only if it is weakly projective as an object of Pro(C) (this is the content of Proposition
6.2.1).

Example 6.2.5. Let C be a small regular category. Then every projective object of Pro(C) is weakly
projective.

Example 6.2.6. Let Fin denote the category of finite sets. Then Fin is a regular category in which every
object is projective: that is, every effective epimorphism in Fin admits a section. It follows that every
pro-object of Fin is weakly projective. However, not every object of Pro(Fin) is projective. For example, the
infinite product ∏n≥0{0,1} is a non-projective object of Pro(Fin). Under the equivalence Pro(Fin) ≃ Stone
of Example 6.1.3, the projective objects of Pro(Fin) correspond to Stone spaces X which are extremally
disconnected: that is, those which can be realized as a retract of the Stone-Čech compactification βS, for
some set S.

Remark 6.2.7. Let C be a small regular category. Then the collection of weakly projective pro-objects is
closed under the formation of filtered limits in Pro(C). This follows from Remark 6.2.3, since the collection
of surjective morphisms in Set is closed under the formation of filtered colimits.

Example 6.2.8. Let X be a quasi-compact, quasi-separated scheme and let C be the pretopos of con-
structible étale sheaves (of sets) on X. Then the final object 1 ∈ C is projective as an object of Pro(C) if and
only if X is affine and w-contractible in the sense of Bhatt-Scholze (see [4]).

Remark 6.2.9. Let C be a small regular category. The category Pro(C) is sensitive to the precise structure of
C: one can recover C (up to equivalence) as the full subcategory spanned by the cocompact objects of Pro(C).
However, the subcategory Prowp(C) ⊆ Pro(C) is a coarser invariant. If C0 ⊆ C is a full subcategory which
is closed under finite limits having the property that every object C ∈ C admits an effective epimorphism
C0 ↠ C, with C0 ∈ C0, then every weakly projective pro-object of C belongs to the essential image of the
embedding Pro(C0) ↪ Pro(C) (see Proposition 6.1.10). If C0 is closed under the formation of images in
C, then it is also a small regular category and the embedding Pro(C0) ↪ Pro(C) induces an equivalence
Prowp(C0) ≃ Prowp(C).

Remark 6.2.10. Let C be a small regular category. Then the collection of regular functors from C to the
category of sets is closed under the formation of products in Fun(C,Set) (this follows from the observation
that the collection of surjections in Set is closed under products, by the axiom of choice). It follows that the
collection of weakly projective pro-objects of C is closed under the formation of coproducts in Pro(C).

Remark 6.2.10 admits the following converse:
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Proposition 6.2.11. Let C be a small regular category and let P,Q ∈ Pro(C) be pro-objects of C. If the
coproduct P ∐Q is weakly projective, then P and Q are weakly projective.

Proof. We will show that P is weakly projective. Let q ∶ C ↠ D be an effective epimorphism in C and let
f ∶ P →D be a morphism of pro-objects; we wish to show that there exists a morphism f ∶ P → C such that
f = q ○ f . Let 1 be a final object of C and let g ∶ Q→ 1 be the unique map. Since P ∐Q is weakly projective
and the map (q ∐ id) ∶ C ∐ 1→D ∐ 1 is an effective epimorphism, the map (f ∐ g) ∶ P ∐Q→D ∐ 1 factors as
a composition

P ∐Q hÐ→ C ∐ 1
q∐idÐÐ→D ∐ 1.

Applying Proposition A.3.7, we obtain a commutative diagram

P

��

f // C
q //

��

D

��
P ∐Q h // C ∐ 1

q∐id // D ∐ 1

where both squares are pullbacks and the upper vertical composition coincides with f . �

Let C be a small regular category and let X be a pro-object of C. One can apply Quillen’s “small object
argument” to construct an effective epimorphism of pro-objects X ↠X, where X is weakly projective. For
later use, we record the following more precise statement:

Proposition 6.2.12. Let C be a small regular category. Then there exists a functor λ ∶ Pro(C) → Pro(C)
and a natural transformation ρ ∶ λ→ idPro(C) with the following properties:

(1) For each object X ∈ Pro(C), the object λ(X) ∈ Pro(C) is weakly projective.
(2) For each object X ∈ Pro(C), the map ρ(X) ∶ λ(X) →X is an effective epimorphism in Pro(C).
(3) The functor λ preserves small filtered limits.

Proof. Let {fi ∶ Ci →Di}i∈I be a set of representatives for all isomorphism classes of effective epimorphisms
in C. For each object X ∈ Pro(C), set

C(X) =∏
i∈I

( ∏
η∶X→Di

Ci) D(X) =∏
i∈I

( ∏
η∶X→Di

Di),

where in both cases the inner product is indexed by the set HomPro(C)(X,Di) of all maps from X to Di

in the category Pro(C). By construction, we have a canonical map X → D(X); let λ1(X) denote the fiber
product C(X) ×D(X) X. It follows from Remark 6.1.17 that the natural map C(X) → D(X) is an effective
epimorphism in Pro(C). Since the category Pro(C) is regular, the projection map λ1(X) → X is also an
effective epimorphism in Pro(C).

For n > 1, we define λn(X) by the formula λn(X) = λ1(λn−1(X)), so that we have an inverse system

⋯↠ λ3(X) ↠ λ2(X) ↠ λ1(X) ↠X

of effective epimorphisms in C. Set λ(X) = lim←Ðλn(X). We have an evident projection map ρ(X) ∶ λ(X) →X,

depending functorially onX. We claim that the functorX ↦ λ(X) and the natural transformationX ↦ ρ(X)
satisfy the requirements of Proposition 6.2.12:

(1) For each pro-object X ∈ Pro(C), the pro-object λ(X) is weakly projective. Choose an index i ∈ I
and a morphism g ∶ λ(X) → Di; we wish to show that g factors through the effective epimorphism

fi ∶ Ci → Di. Using Remark 6.1.4, we see that g factors as a composition λ(X) → λn(X) gnÐ→ Di for
some n≫ 0. It now suffices to observe that, by construction, the composite map

λn+1(X) = λ1(λn(X)) → λn(X) gnÐ→Di

factors through fi.
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(2) For each pro-object X ∈ Pro(C), the projection map ρ(X) ∶ λ(X) → X is an effective epimorphism
in Pro(C). This follows from Remark 6.1.16 (since each of the transition maps λn+1(X) ↠ λn(X) is
an effective epimorphism).

(3) To show that the functor λ commutes with small filtered limits, it will suffice to show that each
λn ∶ Pro(C) → Pro(C) commutes with small filtered limits. Writing λn as an n-fold iterate of the
functor λ1, we can reduce to the case n = 1. By construction, we have a pullback diagram of functors

(X ↦ λ1(X)) //

��

(X ↦ C(X))

��
(X ↦X) // (X ↦D(X)).

It will therefore suffice to establish that the functors X ↦ C(X) and X ↦ D(X) commute with
filtered limits limits, which follows easily from Remark 6.1.4.

�

Proposition 6.2.12 is essentially contained in [3], where it used to prove the following:

Theorem 2.4.1 (Barr). Let E be a small regular category. Then the construction E ↦ evE induces a fully
faithful embedding

E ↪ Fun(Funreg(E ,Set),Set).

Proof. Since the category E is regular, the category of pro-objects Pro(E) is also regular (Proposition 6.1.15).
Let us regard Pro(E) as equipped with the regular topology of Definition B.3.3. Since the regular topology
is subcanonical (Corollary B.3.6), the Yoneda embedding Pro(E) ↪ Fun(Pro(E)op,Set) factors through the
category Shv(Pro(E)) ⊆ Fun(Pro(E)op,Set). Proposition 6.2.12 implies that the subcategory Prowp(E) ⊆
Pro(E) is a basis for the regular topology on E . In particular, Prowp(E) inherits a Grothendieck topology
and the restriction functor Shv(Pro(E)) → Shv(Prowp(E)) is an equivalence of categories (Propositions B.6.3
and B.6.4). We now observe that the evaluation map ev ∶ E → Fun(Prowp(E),Set) factors as a composition

E ⊆ Pro(E) ↪ Shv(Pro(E)) ≃ Shv(Prowp(E)) ⊆ Fun(Prowp(E)op,Set) = Fun(Funreg(E ,Set),Set).
�

Remark 6.2.13. Let X be a quasi-compact, quasi-separated scheme. By Theorem 1.5 of [4], one can choose
a faithfully flat pro-étale map U → X, where U is a w-contractible affine scheme. Using the terminology of
this section, this result asserts the existence of an effective epimorphism P ↠ 1 in Pro(C), where C denotes
the pretopos of constructible étale sheaves on X and P is a projective object of Pro(C). A relative version
of the same argument shows that every object X ∈ Pro(C) admits an effective epimorphism P ↠ X, where
P is projective. However, it seems unlikely that the same result can be extended to an arbitrary pretopos.

6.3. Classification of Weak Projectives. Let C be a small pretopos. Recall that a model of C is a functor
M ∶ C → Set which preserves finite limits, finite coproducts, and effective epimorphisms. In particular, every
model of C can be regarded as a weakly projective pro-object of C. Our goal in this section is to formulate
a partial converse: every weakly projective pro-object can be viewed as a “continuous family” of models
of C, parametrized by a Stone space (Theorem 6.3.14). To make this precise, we need to introduce some
terminology.

Definition 6.3.1. Let C be a pretopos and let X be a topological space. Let Shv(X) denote the category
of set-valued sheaves on X (which is a Grothendieck topos, and therefore also a pretopos). An X-model of
C is a pretopos functor OX ∶ C → Shv(X). Given such a functor OX , we will denote the value of OX on an

object C ∈ C by OCX . This is a sheaf of sets on X, whose value on an open set U ⊆X we denote by OCX(U).

Example 6.3.2. If the topological space X consists of a single point, we can identify Shv(X) with the
category of sets. In this case, we can identify X-models of a coherent category C with models of C.
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Example 6.3.3. Let X be a compact Hausdorff space. In this case, we can use Theorem 3.4.4 to identify
the topos Shv(X) with the category of left ultrafunctors FunLUlt(X,Set). For every pretopos C, we have a
canonical equivalence of categories

Fun(C,Shv(X)) ≃ Fun(C,FunLUlt(X,Set)) ≃ FunLUlt(X,Fun(C,Set)).
Since colimits and finite limits in FunLUlt(X,Set) are computed pointwise (Remarks 1.4.3 and Corollary

2.1.4), this restricts to an equivalence of categories FunPretop(C,Shv(X)) ≃ FunLUlt(X,FunPretop(C,Set)) =
FunLUlt(X,Mod(C)), where we endow the category of models Mod(C) with the ultrastructure of Remark
2.1.2. In other words, we can identify X-models of C (in the sense of Definition 6.3.1) with left ultrafunctors
X →Mod(C) (in the sense of Definition 1.4.1).

Construction 6.3.4. Let f ∶ X → Y be a continuous function between topological spaces, and let f∗ ∶
Shv(Y ) → Shv(X) denote the functor given by pullback along f . Then f∗ is a pretopos functor. In particular,

for any pretopos C, postcomposition with f∗ induces a functor FunPretop(C,Shv(Y )) → FunPretop(C,Shv(X)).
If OY is a Y -model of C, we will denote its image under this functor by f∗OY or by OY ∣X (we will use the
latter notation primarily in the case where X is given as a subset of Y ).

Example 6.3.5. Let C be a pretopos, let X be a topological space, and let OX be an X-model of C. For each
point x ∈X, pullback along the inclusion map {x} ↪X determines an {x}-model of C, which we can identify
with an object of Mod(C) (Example 6.3.2). We will denote this model by OX,x and refer to it as the stalk

of OX at x. Concretely, the stalk OX,x is a functor C → Set given by the construction C ↦ limÐ→x∈U O
C
X(U),

where the colimit is taken over the collection of all open neighborhoods U of the point x.

Remark 6.3.6. Let C be a pretopos and let X be a topological space. One can think of an X-model OX of
C as given by a collection of models {OX,x}x∈X depending “continuously” on the point x ∈ X. Beware that

the category FunPretop(C,Shv(X)) is generally not equivalent to the category of Mod(C)-valued sheaves on
X (though they are equivalent in certain cases; see Example 6.3.10). Given an X-model OX of C, there
is generally no way to construct a model of C by “evaluating” on an open set U ⊆ X: the construction
(C ∈ C) ↦ (OCX(U) ∈ Set) is usually not a pretopos functor (see Proposition 6.3.12).

Remark 6.3.7. Let C be a pretopos, let X be a topological space, and let OX ∶ C → Shv(X) be any functor.
The following conditions are equivalent:

(a) The functor OX is an X-model of C.
(b) For every point x ∈X, the functor (C ∈ C) ↦ ((OCX)x ∈ Set) is a model of C.

The implication (a) ⇒ (b) is Example 6.3.5, and the converse follows from the observation that the stalk
functors Shv(X) → Set detect isomorphisms.

Definition 6.3.8. Let C be a pretopos. We define a category TopC as follows:

● The objects of TopC are pairs (X,OX), where X is a topological space and OX ∶ C → Shv(X) is an
X-model of C (Definition 6.3.1).

● A morphism from (X,OX) to (Y,OY ) in the category TopC consists of a pair (f,α), where f ∶X → Y
is a continuous function and α ∶ f∗OY → OX is a natural transformation of functors from C to
Shv(X).

● The composition of a pair of morphisms (X,OX) (f,α)ÐÐÐ→ (Y,OY ) (g,β)ÐÐÐ→ (Z,OZ) is given by the pair
(g ○ f,α ○ f∗(β)).

We let CompC ⊆ TopC denote the full subcategory spanned by those pairs (X,OX) where X is a compact
Hausdorff space, and StoneC ⊆ CompC the full subcategory spanned by those pairs (X,OX) where X is a
Stone space.

Warning 6.3.9. We have now attached two different meanings to the notation CompC (and StoneC):

● In the case where C is a pretopos, the category CompC of Definition 6.3.8 consists of pairs (X,OX),
where X is a compact Hausdorff space and OX ∶ C → Shv(X) is a pretopos functor.
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● In the case where C is an ultracategory, the category CompC of Construction 4.1.1 consists of pairs
(X,OX), where X is a compact Hausdorff space and OX ∶X → C is a left ultrafunctor.

In the case where C is both a pretopos and an ultracategory (for example, if C = Set is the category of sets),
these definitions are not compatible. To avoid confusion, we will use a subscript C to indicate that we are
considering the case of a pretopos, and a subscript M to indicate that we are considering the case of an
ultracategory (there is little danger of confusion in any case, since we will generally employ Definition 6.3.8
in the case where C is a small pretopos having no obvious ultrastructure).

However, these definitions are compatible in a different sense. For any pretopos C, we can equip the
category of models Mod(C) with the ultrastructure of Remark 2.1.2. Then, for any compact Hausdorff space
X, we can identify pretopos functors C → Shv(X) with left ultrafunctors X → Mod(C) (Example 6.3.3).
This identification depends functorially on X, and therefore gives rise to an equivalence from the category
CompC (introduced in Definition 6.3.8) to the category CompMod(C) (introduced in Construction 4.1.1).
This equivalence is the identity at the level of topological spaces, and therefore restricts to an equivalence
StoneC ≃ StoneMod(C).

.

Example 6.3.10 (Ringed Spaces). Let CRing denote the category of commutative rings and let X ⊆
Fun(CRing,Set) be the full subcategory spanned by those functors F ∶ CRing → Set that commute with
filtered colimits. Then X is a coherent Grothendieck topos, called the classifying topos of commutative
rings. Let X coh ⊆ X be the pretopos of coherent objects of X . For any pretopos C, we can identify pretopos
functors X coh → C with commutative ring objects of C. In particular, we can identify models of X coh with
commutative rings, and X-models of X coh with sheaves of commutative rings on X (for any topological space
X). This identification induces an equivalence of TopX coh

with the category of ringed spaces.

Construction 6.3.11 (The Global Sections Functor). Let C be a small pretopos, let X be a topological
space, and let OX ∶ C → Shv(X) be an X-model of C. We let Γ(X,OX) ∶ C → Set denote the functor given

on objects by Γ(X,OX)(C) = OCX(X).

Recall that a topological space X is said to be zero-dimensional if every open covering of X can be refined
to a covering of X by disjoint open sets.

Proposition 6.3.12. Let C be a pretopos, let (X,OX) be an object of TopC, and let Γ(X,OX) ∶ C → Set be
the functor of Construction 6.3.11. Then:

(1) The functor Γ(X,OX) preserves finite limits: that is, it can be regarded as a pro-object of C.
(2) If X is zero-dimensional, then the pro-object Γ(X,OX) is weakly projective.
(3) The functor Γ(X,OX) preserves finite coproducts if and only if X is connected.

Proof. Assertion (1) follows from the observation that the evaluation functor

Shv(X) → Set F ↦F (U)

is left exact. To prove (2), suppose thatX is zero-dimensional. We wish to show that the functor C ↦ OCX(X)
carries effective epimorphisms in C to surjections of sets. Let f ∶ C ↠ D be an effective epimorphism in C.
Then the induced map OCX ↠ ODX is an effective epimorphism in the sheaf category Shv(X): that is, it is

surjective on stalks. In particular, if s ∈ ODX(X) is a global section of the sheaf ODX , then we can choose a

covering {Uα} of X such that each restriction s∣Uα ∈ ODX(Uα) can be lifted to a section sα ∈ OCX(Uα). Using
the assumption that X is zero-dimensional, we can assume that the open sets Uα are disjoint. It follows that
there is a unique section s ∈ OCX(X) satisfying s∣Uα = sα for each index α. This section is a preimage of s

under the map OCX(X) → ODX(X) determined by f .
We now prove (3). Let 1 denote a final object of C. For every finite set S, let S denote the constant

sheaf on X with value S. Since the functor OX preserves final objects and finite coproducts, it carries the
coproduct ∐s∈S 1 to the sheaf S. Consequently, the functor Γ(X,OX) carries the coproduct ∐s∈S 1 to the
set HomTop(X,S) of locally-constant S-valued functions on X. Using the criterion of Proposition A.3.10,
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we see that Γ(X,OX) preserves finite coproducts if and only if the canonical map S → HomTop(X,S) is
bijective when S is either empty or has two elements; that is, if and only if X is connected. �

Construction 6.3.13. Let C be a pretopos. The construction (X,OX) ↦ OX(X) determines a functor

from the category TopC of Definition 6.3.8 to the category of pro-objects Pro(C) = Funlex(C,Set)op. Since
every Stone space X is zero-dimensional, Proposition 6.3.12 shows that this construction restricts to a functor
Γ ∶ StoneC → Prowp(C).

We can now state the main result of this section:

Theorem 6.3.14. Let C be a small pretopos. Then the functor Γ ∶ StoneC → Prowp(C) of Construction
6.3.13 is an equivalence of categories.

We will give a detailed proof of Theorem 6.3.14 in §6.4. Let us give an informal sketch of the main idea.
Suppose that P ∶ C → Set is a weakly projective pro-object: that is, a functor which preserves finite limits and
effective epimorphisms. We would like to show that there is an essentially unique object (X,OX) ∈ StoneC
with an isomorphism P ≃ Γ(X,OX). We observe that the object (X,OX) must have the following features:

(a) Since OX preserves final objects and finite coproducts, we can identify O1∐1
X with the constant sheaf

on X associated to the two-element set {0,1}. Consequently, the set P (1∐1) can be identified with
the Boolean algebra of closed and open subsets of X, from which we can recover the topology of X
(by Stone duality).

(b) Since X is a Stone space, each of the sheaves OCX is determined by its values on closed and open
subsets U ⊆X. These can be recovered from the functor P by the formula

OCX(U) ≃ OC∐1X (X) ×O1∐1
X

(X) {U} ≃ P (C ∐ 1) ×P (1∐1) {U}.
This analysis suggests a recipe for reconstructing the pair (X,OX) from the functor P ; the essential content
of Theorem 6.3.14 is that this recipe works if (and only if) the functor P preserves finite limits and effective
epimorphisms.

Remark 6.3.15. Theorem 6.3.14 immediately implies (a version of) Deligne’s completeness theorem. Let
C be a small pretopos, and let u ∶ C → C ′ be a morphism in C with the property that, for every model
M of C, the map M(u) ∶ M(C) → M(C ′) is bijective. It follows that, for each object (X,OX) in

TopC , the induced map OCX → OC
′

X is an isomorphism of sheaves on X, and therefore induces a bijec-
tion Γ(X,OX)(C) → Γ(X,OX)(C ′). Theorem 6.3.14 then guarantees that composition with u induces a
bijection HomPro(C)(P,C) → HomPro(C)(P,C ′) for every weakly projective pro-object of Pro(C), so that u is
an isomorphism by virtue of Proposition 6.2.12. See Theorem 2.2.10 for a (slightly) stronger version.

6.4. The Proof of Theorem 6.3.14. Let C be a small pretopos. Our goal in this section is to prove
Theorem 6.3.14 by showing that the global sections functor

Γ ∶ StoneC → Prowp(C)
is an equivalence of categories. The proof will proceed in several steps. We first argue that the functor
Γ ∶ StoneC → Prowp(C) is conservative.

Lemma 6.4.1. Let X be a Stone space and let f ∶ F → G be a morphism in Shv(X). Suppose that f
induces a bijection θ ∶ (F ∐1)(X) → (G ∐1)(X) (where 1 denotes the final object of Shv(X)). Then f is an
isomorphism.

Proof. Unwinding the definitions, we see that θ is the map

∐
U

F (U) →∐
U

G (U)

induced by f , where both coproducts are indexed by the collection of all closed and open subsets of X.
Consequently, if θ is a bijection, then f induces a bijection F (U) → G (U) whenever U ⊆ X is closed and
open. Since X is a Stone space, the closed and open subsets of X form a basis for the topology of X. It
follows that f is an isomorphism of sheaves. �
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Lemma 6.4.2. Let C be a small pretopos and let (f,α) ∶ (X,OX) → (Y,OY ) be a morphism in the category
StoneC. If the induced map θ ∶ Γ(X,OX) → Γ(Y,OY ) is an isomorphism in Pro(C), then (f,α) is an
isomorphism in StoneC.

Proof. Let 1 denote a final object of C. For each finite set S, let SC = ∐s∈S 1 denote the corresponding object

of C. Then we can identify OSCX and OSCY with the constant sheaves SX and SY on X and Y , respectively.
If θ is an isomorphism of pro-objects, then composition with θ induces a bijection

Γ(Y,SY ) = HomPro(C)(Γ(Y,OY ), SC) → HomPro(C)(Γ(X,OX), SC) = Γ(X,SX).
Equivalently, composition with f induces a bijection HomTop(Y,S) → HomTop(X,S) for every finite set S.
Since X and Y are Stone spaces, it follows that f is a homeomorphism (Example 6.1.3). To complete the

proof, it will suffice to show that α induces an isomorphism f∗OCY → OCX in Shv(X), for each object C ∈ C.
Using the criterion of Lemma 6.4.1, this follows from the bijectivity of the map the bijectivity of the map

OC∐1Y (Y ) ≃ HomPro(C)(Γ(Y,OY ),C ∐ 1) → HomPro(C)(Γ(X,OX),C ∐ 1) ≃ OC∐1X (X).
�

Our next goal is to explain how to reconstruct the underlying topological space of an object (X,OX) ∈
StoneC directly from the pro-object Γ(X,OX).

Construction 6.4.3. Let C be a small pretopos and let 1 be a final object of C. Let Fin denote the category
of finite sets, and let g ∶ Fin→ C be the functor given on objects by g(S) = ∐s∈S 1. Then g is left exact, and
therefore induces a pair of adjoint functors

Pro(C)
F //Pro(Fin)
G
oo

where F is given by precomposition with g and G∣Fin ≃ g (see Remark 6.1.8). Let Φ ∶ Stone→ Pro(C) denote
the composition of G with the equivalence of categories Stone ≃ Pro(Fin) of Example 6.1.3. Then Φ has a
left adjoint Pro(C) → Stone (obtained by composing F with the inverse equivalence), which we will denote
by (P ∈ Pro(C)) ↦ (∣P ∣ ∈ Stone). These functors can be described more concretely as follows:

● If X is a Stone space given as the limit of a filtered diagram of finite sets {Sα}, then Φ(X) ∈ Pro(C)
is given by the limit of the diagram {∐s∈Sα 1}, where 1 denotes a final object of C.

● If P is a pro-object of C, then the Stone space ∣P ∣ is characterized (up to homeomorphism) by the
requirement that for any finite set S, we have a bijection

HomTop(∣P ∣, S) ≃ HomPro(C)(P,∐
s∈S

1) = P (∐
s∈S

1).

Example 6.4.4. Let C be a small pretopos, let (X,OX) be an object of StoneC , and let Γ(X,OX) be the
corresponding pro-object. Then we have a canonical homeomorphism ∣Γ(X,OX)∣ ≃X.

Lemma 6.4.5. Let C be a small pretopos and let P be a pro-object of C, which we view as a left-exact functor
P ∶ C → Set. Then P preserves finite coproducts if and only if the Stone space ∣P ∣ is a point.

Proof. This is a restatement of Proposition A.3.10. �

Lemma 6.4.6. Let f ∶X → Y be a continuous function between Stone spaces, let C be a small pretopos, and
suppose we are given a pullback diagram

P //

��

Q

��
Φ(X)

Φ(f) // Φ(Y )

in the category Pro(C). If Q is weakly projective, then P is also weakly projective.
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Proof. By virtue of Lemma 6.1.12 (and Example 6.1.3), we can realize f as the limit of a filtered diagram
{fα ∶ Xα → Yα}, where each fα is a map between finite sets. Then P is a limit of the filtered diagram of
pro-objects {Q ×Φ(Yα) Φ(Xα)}. Since the collection of weakly projective objects of Pro(C) is closed under
filtered limits (Remark 6.2.7), it will suffice to show that each of the fiber products Q×Φ(Yα)Φ(Xα) is weakly
projective. In other words, we may assume without loss of generality that X and Y are finite sets (with the
discrete topology).

Let us identify Φ(X) with the coproduct ∐x∈X 1, where 1 is a final object of C (moreover, this coproduct
can be taken either in the category C or Pro(C), by virtue of Lemma 6.1.11). Since Pro(C) is extensive
(Proposition 6.1.19), it follows that P decomposes as a coproduct ∐x∈X Φ({x}) ×Φ(Y ) Q. Because the
collection of weakly projective objects of Pro(C) is closed under coproducts (Remark 6.2.10), it will suffice
to show that each summand Φ({x}) ×Φ(Y ) Q is weakly projective. In other words, we may assume without
loss of generality that the set X consists of a single element x.

For each y ∈ Y , let Qy denote the fiber product Φ({y}) ×Φ(Y ) Q. Since Pro(C) is extensive (Proposition
6.1.19), we can identify Q with the coproduct ∐y∈Y Qy. Applying Proposition 6.2.11, we deduce that each
Qy is weakly projective. In particular, the object P = Qf(x) is weakly projective, as desired. �

Lemma 6.4.7. Let f ∶X → Y be a continuous function between Stone spaces, let C be a small pretopos, and
suppose we are given a pullback diagram

P //

��

Q

��
Φ(X)

Φ(f) // Φ(Y )

in Pro(C). Then the associated diagram of Stone spaces σ ∶

∣P ∣ //

��

∣Q∣

��
X

f // Y

is also a pullback square.

Proof. Arguing as in the proof of Lemma 6.4.6 (and using the fact that the functor ∣ ∣ ∶ Pro(C) → Stone
commutes with filtered limits), we can reduce to the case where X and Y are finite sets with the discrete
topology. For each y ∈ Y , set Qy = Φ({y}) ×Φ(Y ) Q. Since Pro(C) is extensive, the canonical maps

∐
x∈X

Qf(x) → P ∐
y∈Y

Qy → Q

are isomorphisms. Because the functor ∣ ∣ ∶ Pro(C) → Stone preserves finite coproducts (in fact, all colimits),
we can identify σ with the diagram of Stone spaces

∐x∈X ∣Qf(x)∣ //

��

∐y∈Y ∣Qy ∣

��
X // Y,

which is evidently a pullback square. �

Lemma 6.4.8. Let C be a small pretopos, let P be a weakly projective pro-object of C, and let u ∶ P → Φ(∣P ∣)
be the unit map for the adjunction of Construction 6.4.3. Let x be a point of the Stone space ∣P ∣, and form
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a pullback diagram

Px //

��

P

��
Φ({x}) // Φ(∣P ∣).

Then Px is a model of C (when viewed as a left exact functor from C to Set).

Proof. It follows from Lemma 6.4.6 that the functor Px ∶ C → Set preserves finite limits and effective epimor-
phisms. It will therefore suffice to show that Px preserves finite coproducts. Using the criterion of Lemma
6.4.5, we are reduced to showing that the Stone space ∣Px∣ consists of a single point. Equivalently, we must
show that the diagram of Stone spaces

∣Px∣ //

��

∣P ∣

id

��
{x} // ∣P ∣

is a pullback square, which is a special case of Lemma 6.4.7. �

Lemma 6.4.9. Let C be a small pretopos. Then the functor Φ ∶ Stone→ Pro(C) preserves finite coproducts.

Proof. Let {Xi}i∈I be a finite collection of Stone spaces; we wish to show that the canonical map θ ∶
∐i∈I Φ(Xi) → Φ(∐i∈I Xi) is an isomorphism in Pro(C). By virtue of Lemma 6.1.12 and Example 6.1.3, we
can assume that each Xi is written as the limit of a diagram {Xi,j}j∈J op , where J is a filtered category which
is independent of i. Since the formation of finite coproducts in Stone ≃ Pro(Fin) and Pro(C) commutes with
filtered limits (Lemma 6.1.18), we can identify θ with the limit of a diagram of morphisms {θj ∶ ∐i∈I Φ(Xi,j) →
Φ(∐i∈I Xi,j)}j∈J op . It will therefore suffice to show that each θj is an isomorphism. In other words, we are
reduced to showing that the restriction Φ∣Fin preserves finite coproducts, where we identify the category Fin
of finite sets with a full subcategory of Stone. This follows immediately from the construction of Φ. �

Lemma 6.4.10. Let C be a small pretopos, let P be a weakly projective pro-object of C, and let ∣P ∣ be the
Stone space of Construction 6.4.3. Let U0(∣P ∣) denote the collection of all closed and open subsets of ∣P ∣,
which we regard as a partially ordered set with respect to inclusion. Then:

(1) For each object C ∈ C, the construction

(U ∈ U0(∣P ∣)op) ↦ HomPro(C)(Φ(U) ×Φ(∣P ∣) P,C)
extends (in an essentially unique way) to a sheaf of sets OC∣P ∣ on the Stone space ∣P ∣.

(2) The functor

O∣P ∣ ∶ C → Shv(∣P ∣) C ↦ OC∣P ∣

is coherent: that is, it is a ∣P ∣-model of C, in the sense of Definition 6.3.1.

Proof. To prove (1), it will suffice to show that if U ⊆ ∣P ∣ is given as a finite union of pairwise disjoint closed
and open sets {Ui}i∈I , then the canonical map

HomPro(C)(Φ(U) ×Φ(∣P ∣) P,C) →∏
i∈I

HomPro(C)(Φ(Ui) ×Φ(∣P ∣) P,C).

In fact, we claim that Φ(U) ×Φ(∣P ∣) P is a coproduct of the objects {Φ(Ui) ×Φ(∣P ∣) P}i∈I in the category
Pro(C). Since Pro(C) is extensive (Proposition 6.1.19), we are reduced to showing that Φ(U) is a coproduct
of the objects {Φ(Ui)}i∈I . This is clear, since U is a coproduct of the objects Ui in the category of Stone
spaces, and the functor Φ preserves coproducts (Lemma 6.4.9).

For each object C ∈ C and each point x ∈ ∣P ∣, let OC∣P ∣,x denote the stalk of the sheaf OC∣P ∣ at the point x.

To prove (2), it will suffice (by virtue of Remark 6.3.7) to show that the functor

O∣P ∣,x ∶ C → Set C ↦ OC∣P ∣,x

is a model of C for each point x ∈ ∣P ∣. This is a restatement of Lemma 6.4.8. �
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In the situation of Lemma 6.4.10, we can regard the pair (∣P ∣,O∣P ∣) as an object of the category StoneC .
By definition, the functor Γ(∣P ∣,O∣P ∣) is given by the construction

(C ∈ C) ↦ OC∣P ∣(∣P ∣) = HomPro(C)(Φ(∣P ∣) ×Φ(∣P ∣) P,C) = HomPro(C)(P,C).
In other words, we have a canonical isomorphism of pro-objects v ∶ Γ(∣P ∣,O∣P ∣) ≃ P .

Lemma 6.4.11. Let C be a small regular extensive category, let P be a weakly projective pro-object of C,
and let v ∶ Γ(∣P ∣,O∣P ∣) ≃ P be the isomorphism described above. Then, for any object (X,OX) in StoneC,
composition with v induces a bijection

HomStone(C)((X,OX), (∣P ∣,O∣P ∣)) → HomPro(C)(Γ(X,OX), P ).

Proof. Fix a continuous map f ∶X → ∣P ∣, and let Homf
Stone(C)

((X,OX), (∣P ∣,O∣P ∣)) denote the summand of

HomStone(C)((X,OX), (∣P ∣,O∣P ∣)) consisting of those maps (X,OX) → (∣P ∣,O∣P ∣) for which the underlying

continuous map X → ∣P ∣ coincides with f . For each object C ∈ C, let f∗OCX denote the direct image of the

sheaf OCX under the function f . The construction C ↦ f∗OCX determines a left exact functor C → Shv(∣P ∣),
which we will denote by f∗OX (beware that this need not be a ∣P ∣-model of C). Let U denote the partially
ordered set of closed and open subsets of the Stone space ∣P ∣. Since U is a basis for the topology of ∣P ∣, we
can identify Shv(∣P ∣) with a full subcategory of Fun(Uop,Set). Under this identification, f∗OX and O∣P ∣

can be viewed as functors from Uop to the category Funlex(C,Set), or equivalently as functors from U to the
category Pro(C). Unwinding the definitions, we have a canonical bijection

Homf
Stone(C)

((X,OX), (∣P ∣,O∣P ∣)) ≃ HomFun(U,Pro(C))(f∗OX ,O∣P ∣).
For every pro-object Q of C, let Q denote the constant functor U0(X) → Pro(C) taking the value Q. Let

T ∶ U → Stone be the forgetful functor. By definition, we have a pullback diagram

O∣P ∣
//

��

P

��
Φ ○ T // Φ(∣P ∣)

in the category Fun(U ,Pro(C)). We therefore obtain a pullback diagram of sets

Homf
Stone(C)

((X,OX), (∣P ∣,O∣P ∣)) //

��

HomFun(U,Pro(C))(f∗OX , P )

��
HomFun(U,Pro(C))(f∗OX ,Φ ○ T ) // HomFun(U,Pro(C)(f∗OX ,Φ(∣P ∣)).

Using the adjunction of Construction 6.4.3 (and the observation that a functor of the form Q is a right Kan

extension of its restriction to the full subcategory {X} ⊆ U), we can rewrite this diagram as

Homf
Stone(C)

((X,OX), (∣P ∣,O∣P ∣)) //

��

HomPro(C)(Γ(X,OX), P )

��
HomFun(U,Stone)(∣f∗OX ∣, T ) // HomStone(∣Γ(X,OX)∣, ∣P ∣).

Here the right vertical map is independent of the function f ∶ X → ∣P ∣. Passing to a coproduct over all
choices of f , we obtain a pullback square

HomStone(C)((X,OX), (∣P ∣,O∣P ∣)) //

��

HomPro(C)(Γ(X,OX), P )

��
∐f ∶X→∣P ∣ HomFun(U,Stone)(∣f∗OX ∣, T ) θ // HomStone(∣Γ(X,OX)∣, ∣P ∣),
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where the top horizontal map is induced by composition with v. To prove that this map is bijective, it will
suffice to show that θ is bijective. For each continuous function f ∶ X → ∣P ∣, let us regard the construction
U ↦ f−1(U) as a functor from the partially ordered set U to the category of Stone spaces Stone. Using
Example 6.4.4, we can identify θ with the canonical map

∐
f ∶X→∣P ∣

HomFun(U,Stone)(f−1, T ) → HomStone(X, ∣P ∣).

Note that, given a continuous function f ∶ X → ∣P ∣, we can identify objects of HomFun(U,Stone)(f−1, T )
with continuous maps g ∶ X = f−1(∣P ∣) → T (∣P ∣) = P having the property that, for each closed and open
subset U ⊆ ∣P ∣, the map g carries f−1(U) into U . This condition is satisfied only when g = f , so the set
HomFun(U,Stone)(f−1, T ) has a single element having image f ∈ HomStone(X, ∣P ∣). Taking the disjoint union
over all possible values for the function f , we conclude that θ is a bijection. �

Proof of Theorem 6.3.14. Let C be a small pretopos. We wish to show that the functor

Γ ∶ StoneC → Prowp(C)

is an equivalence of categories. By virtue of Lemma 6.4.11, the functor Γ admits a right adjoint G, given
on objects by the formula G(P ) = (∣P ∣,O∣P ∣). Moreover, for each object P ∈ Prowp(C), the counit map v ∶
(Γ○G)(P ) = Γ(∣P ∣,O∣P ∣) → P is an isomorphism. It follows that the functor G is fully faithful. Consequently,
to show that Γ is an equivalence of categories, it will suffice to show that it is conservative, which follows
from Lemma 6.4.2. �

7. The Main Theorem

Let C be a small pretopos. The goal of this section is to prove Theorem 2.2.2, which asserts that the
category of left ultrafunctors FunLUlt(Mod(C),Set) is equivalent to the category of sheaves Shv(C). Our
strategy will be to introduce a third category Shvcont(Pro(C)) which is equipped with forgetful functors

Shv(C) φ←Ð Shvcont(Pro(C)) ψÐ→ FunLUlt(Mod(C),Set),

and to show that both of these functors as equivalences.
We begin by constructing the equivalence φ ∶ Shvcont(Pro(C)) → Shv(C). Recall that if C is a small

pretopos, then the category of pro-objects Pro(C) is regular and extensive, and can therefore be equipped
with the coherent topology of Definition B.5.3. We let Shv(Pro(C)) denote the category of sheaves for
the coherent topology, and Shvcont(Pro(C)) ⊆ Shv(Pro(C)) the full subcategory spanned by those sheaves
F ∶ Pro(C)op → Set which commute with filtered colimits (Definition 7.1.4). In §7.1 we observe that
precomposition with the inclusion C ↪ Pro(C) induces an equivalence of categories φ ∶ Shvcont(Pro(C)) ≃
Shv(C) (Corollary 7.1.5).

Recall that every model M of C can be regarded as a pro-object of C; more precisely, we can regard
the category of models Mod(C) as a full subcategory of Pro(C)op = Funlex(C,Set). It follows from the  Los
ultraproduct theorem that the category Mod(C) is closed under the formation of categorical ultraproducts

in Funlex(C,Set). Consequently, if F ∶ Pro(C)op → Set is a functor which commutes with filtered colimits,
then the restriction F ∣Mod(C) ∶ Mod(C) → Set inherits the structure of a left ultrafunctor (Proposition 1.4.9).

This construction determines a forgetful functor ψ ∶ Shvcont(Pro(C)) → FunLUlt(Mod(C),Set), and we would
like to show that ψ is an equivalence of categories.

Let StoneC denote the category introduced in Definition 6.3.8. Then Theorem 6.3.14 supplies a fully
faithful embedding Γ ∶ StoneC ↪ Pro(C), whose essential image is the full subcategory Prowp(C) ⊆ Pro(C)
of weakly projective pro-objects of C. In §7.2, we use the functor Γ to transport the coherent topology on
Pro(C) to a topology on StoneC , which we will refer to as the elementary topology (Definition 7.2.1). It follows
formally that precomposition with Γ induces an equivalence of categories Shvcont(Pro(C)) → Shvcont(StoneC),
where Shvcont(StoneC) denotes the category of functors F ∶ Stoneop

C
→ Set which are sheaves with respect

to the elementary topology and commute with filtered colimits (Corollary 7.2.4).
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Every functor F ∶ Stoneop
C
→ Set which is a sheaf for the elementary topology commutes with finite

products. In §7.5, we prove that that the converse holds if F commutes with filtered colimits (Proposition
7.2.5). In other words, we can identify Shvcont(StoneC) with the full subcategory of Fun(Stoneop

C
,Set)

spanned by those functors which preserve finite products and small filtered colimits. Using this identification,
we see that the functor ψ factors as a composition

Shvcont(Pro(C)) ≃ Shvcont(StoneC)
ψ′Ð→ FunLUlt(Mod(C),Set),

where ψ′ is an equivalence by virtue of Theorem 5.3.3. In §7.3, we use this strategy to complete the proof
of Theorem 2.2.2.

To prove Proposition 7.2.5, we will need to be able to recognize when a functor F ∶ Stoneop
C
→ Set is a

sheaf for the elementary topology. For this, it is convenient to give an alternative definition of the elementary
topology, which does not make reference to the embedding Γ ∶ StoneC ↪ Pro(C) of Theorem 6.3.14. In §7.4,
we show that a morphism f ∶ (X,OX) → (Y,OY ) in StoneC is a covering for the elementary topology if and
only if, for each point y ∈ Y , it is possible to choose a point x ∈ X for which f(x) = y and the induced map
OY,y → OX,x is an elementary embedding of models of C (Theorem 7.4.5). In §7.5, we prove Proposition 7.2.5
by combining this characterization of elementary coverings with a standard argument relating ultraproducts
and elementary embeddings (Lemma 7.5.4).

7.1. Sheaves on Pro(C). Let C be a small pretopos. Then the category of pro-objects Pro(C) is regular and
extensive (Corollary 6.1.20). We will regard Pro(C) as equipped with the coherent topology of Construction
B.5.3. We let Shv(Pro(C)) denote the category of set-valued sheaves with respect to the coherent topology
on Pro(C).

Remark 7.1.1. Let C be a small pretopos. By virtue of Proposition B.5.5, we can identify Shv(Pro(C))
with the full subcategory of Fun(Pro(C)op,Set) spanned by those functors F satisfying the following pair
of conditions:

(i) For every finite collection of objects {Pi}i∈I of Pro(C), the canonical map F (Pro(C)) → ∏i∈I F (Ci)
is bijective.

(ii) For every effective epimorphism P ↠ Q in Pro(C), the diagram of sets

F (P ) →F (Q) ⇉F (Q ×P Q)

is an equalizer.

Warning 7.1.2. Let C be a small pretopos. Then the category of pro-objects Pro(C) need not be small, or
even essentially small (in fact, Pro(C) is essentially small if and only if the pretopos C is trivial). Consequently,
one should exercise some care when working with sheaves on Pro(C):

● If F ∶ Pro(C)op → Set is a presheaf of (small) sets on Pro(C), then one cannot generally sheafify F
to produce a sheaf of (small) sets; the standard sheafification process involves passage to a direct
limit over all possible coverings, which need not exist in the category of (small) sets.

● The category Shv(Pro(C)) is not a Grothendieck topos (except in the case where C is trivial).

We now compare the category Shv(Pro(C)) with the topos Shv(C).

Proposition 7.1.3. Let C be a small pretopos and let F ∶ Pro(C)op → Set be a functor. Then:

(1) If F is a sheaf with respect to the coherent topology on Pro(C), then the restriction F ∣Cop is a sheaf
with respect to the coherent topology on C.

(2) If F ∣Cop is a sheaf with respect to the coherent topology on C and the functor F commutes with
filtered colimits, then F is a sheaf with respect to the coherent topology on Pro(C).

Proof. Assertion (1) follows immediately from the characterization of sheaves given in Proposition B.5.5.
We will prove (2). Assume that F ∣Cop is a sheaf and that the functor F carries filtered limits in Pro(C) to
filtered colimits of sets. We will show that F satisfies conditions (i) and (ii) of Remark 7.1.1:
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(i) Suppose we are given a finite collection of objects {Pi}i∈I in Pro(C) having coproduct P . We wish
to show that the canonical map

θ ∶ F (P ) →∏
i∈I

F (Pi)

is bijective. Using Lemma 6.1.12, we can write each Pi as the limit of a diagram {Pi,α}α∈Aop indexed
by the same filtered category A. Using Lemmas 6.1.18, we can identify P with the limit of the
coproduct diagram {∐i∈I Pi,α}α∈Aop , where each Pi,α belongs to C. Consequently, our assumption
on F allows us to identify θ with a filtered colimit of comparison maps

θα ∶ F (∐
i∈I

Pi,α) →∏
i∈I

F (Pi,α),

each of which is bijective by virtue of our assumption that F ∣Cop is a sheaf with respect to the
coherent topology on C (Proposition B.5.5).

(ii) Let f ∶ P ↠ Q be an effective epimorphism in Pro(C). We wish to show that the induced map

ρ ∶ F (P ) → Eq(F (Q) ⇉F (Q ×P Q))
is a bijection. Using Proposition 6.1.15, we can write f as the limit of a filtered diagram {fα ∶ Pα↠
Qα} of effective epimorphisms in the category C. Invoking our assumption on F , we can write ρ as
a filtered colimit of maps

ρα ∶ F (Pα) → Eq(F (Qα) ⇉F (Qα ×Pα Qα)),
each of which is bijective by virtue of our assumption that F ∣Cop is a sheaf with respect to the
coherent topology on C (Proposition B.5.5).

�

Definition 7.1.4. Let C be a small pretopos. We will say that a sheaf F ∈ Pro(C) is continuous if, for every
object X ∈ Pro(C) given as the limit of a filtered diagram {Xα} in C, the canonical map

limÐ→
α

F (Xα) →F (X)

is a bijection. Let Shvcont(Pro(C)) denote the full subcategory of Shv(Pro(C)) spanned by the continuous
sheaves on Pro(C).

Corollary 7.1.5. Let C be a small pretopos. Then the restriction functor F ↦F ∣Cop induces an equivalence
of categories Shvcont(Pro(C)) → Shv(C).

Proof. Combine Proposition 7.1.3 with Remark 6.1.7. �

We close this section by describing the relationship of our constructions with the theory of pro-étale
sheaves in algebraic geometry introduced by Bhatt and Scholze in [4]. The following discussion will play no
further role in this paper and can safely be omitted by the reader. We begin with a general observation.

Remark 7.1.6. Let C be a small pretopos, and let C0 ⊆ C be a full subcategory which is closed under finite
limits with the following additional property:

(∗) For every object C ∈ C, there exists an effective epimorphism C0 ↠ C with C0 ∈ C0.

Then we can identify the category of pro-objects Pro(C0) with a full subcategory of Pro(C) (Proposition
6.1.10). Condition (∗) guarantees that Pro(C0) contains all weakly projective pro-objects of C (Remark
6.2.9), and therefore forms a basis with respect to the coherent topology on Pro(C). Applying Proposition
B.6.3, we see that Pro(C0) inherits a Grothendieck topology for which the restriction functor Shv(Pro(C)) →
Shv(Pro(C0)) is an equivalence of categories.

In the special case where C0 is closed under the formation of coproducts and images in C, we can charac-
terize the induced topology on Pro(C0) more intrinsically: it is the coherent topology on Pro(C0) (which is
a regular extensive category by virtue of Corollary 6.1.20).
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Example 7.1.7 (The Pro-Étale Topology of a Scheme). Let X be a scheme. Following Bhatt-Scholze ([4]),
we say that a morphism of schemes f ∶ U →X is weakly étale if both f and the diagonal map δ ∶ U → U ×X U
are flat. Let SchX denote the category of all X-schemes and let Schproét

X denote the full subcategory spanned

by those X-schemes U for which the structure morphism f ∶ U → X is weakly étale. The category Schproét
X

admits a Grothendieck topology, where a collection of maps {fi ∶ Vi → U}i∈I is a covering if and only
if, for every quasi-compact open subset U0 ⊆ U , there exists a finite subset I0 ⊆ I for which the maps

{Vi ×U U0 → U0}i∈I0 are mutually surjective. We refer to this topology as the pro-étale topology on Schproét
X .

For simplicity, let us assume that X = Spec(R) is affine. Let C0 be the category of X-schemes of the

form Spec(A), where A is an étale R-algebra. Then the inclusion C0 ↪ Schproét
X extends to a fully faithful

embedding Pro(C0) ↪ Schproét
X whose essential image consists of those X-schemes of the form Spec(A),

where A is an ind-étale R-algebra (that is, an R-algebra which can be written as a filtered colimit of étale R-

algebras). Under this embedding, the functor P ↦ P̂ of Notation 6.1.22 corresponds to the forgetful functor
from R-schemes to topological spaces. It follows from Proposition 6.1.24 that a collection of morphisms
{Ui → U}i∈I is a covering with respect to the coherent topology on Pro(C0) if and only if it is a covering

with respect to the pro-étale topology of [4]. Moreover, the image of the inclusion Pro(C0) ↪ Schproét
X forms

a basis for the pro-étale topology (see Lemma 4.2.4 of [4]), so Proposition B.6.3 supplies an equivalence of

categories α ∶ Shv(Schproét
X ) → Shv(Pro(C0)).

The category C0 is usually not a pretopos. However, it can be identified with a full subcategory of the
pretopos C of constructible set-valued sheaves on X. Moreover, the inclusion C0 ↪ C satisfies condition
(∗) of Remark 7.1.6, and therefore induces an equivalence of categories β ∶ Shv(Pro(C)) → Shv(Pro(C0)).
Combined with the preceding analysis, we obtain an equivalence

Shv(Pro(C)) ≃ Shv(Pro(C0)) ≃ Shv(Schproét
X )

between the category Shv(Pro(C)) studied in this section with the category Shv(Schproét
X ) of pro-étale sheaves

studied in [4].
The preceding discussion can be extended to the case where X is any quasi-compact, quasi-separated

scheme; (with some minor modifications, since the category C0 need not admit finite limits).

7.2. Sheaves on StoneC. Using the results of §6 to “restrict” the coherent topology on Pro(C) to a topology
on the category StoneC of Definition 6.3.8, which we will refer to as the elementary topology (for reasons
which will become clear in §7.4).

Definition 7.2.1. Let C be a small pretopos. We will say that a collection of morphisms

{fi ∶ (Xi,OXi) → (X,OX)}i∈I
in the category StoneC is an elementary covering if the collection of maps

{Γ(fi) ∶ Γ(Xi,OXi) → Γ(X,OX)}i∈I
is a covering with respect to the coherent topology on Pro(C): that is, if there exists a finite subset I0 ⊆ I
for which the induced map

∐
i∈I0

Γ(Xi,OXi) → Γ(X,OX)

is an effective epimorphism of pro-objects.

Proposition 7.2.2. Let C be a small pretopos. Then:

(1) The collection of elementary coverings determines a Grothendieck topology on the category StoneC,
which we will refer to as the elementary topology.

(2) Precomposition with the global sections functor Γ ∶ StoneC → Pro(C) induces an equivalence of cate-
gories Shv(Pro(C)) → Shv(StoneC), where we endow Pro(C) with the coherent topology and StoneC
with the elementary topology.
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Proof. It follows from Proposition 6.2.12 that the full subcategory Prowp(C) ⊆ Pro(C) forms a basis for the
coherent topology on Pro(C). It follows from Proposition B.6.3 that the subcategory Prowp(C) inherits a
Grothendieck topology for which the restriction functor Shv(Pro(C)) → Shv(Prowp(C)) is an equivalence
of categories. Proposition 7.2.2 follows by transporting this topology along the equivalence of categories
Γ ∶ StoneC ≃ Prowp(C) supplied by Theorem 6.3.14. �

Definition 7.2.3. Let C be a small pretopos and let F ∶ Stoneop
C
→ Set be a sheaf for the elementary topology.

We will say that F is continuous if it commutes with small filtered colimits. We let Shvcont(StoneC ,Set)
denote the full subcategory of Shv(StoneC) spanned by the continuous sheaves.

Corollary 7.2.4. Let C be a small pretopos. Then composition with the global sections functor Γ ∶ StoneC ↪
Pro(C) induces an equivalence of categories Shvcont(Pro(C)) → Shvcont(StoneC).

Proof. By virtue of Proposition 7.2.2, it will suffice to show that a sheaf F ∈ Shv(Pro(C)) is continuous
if and only if the composition F ○Γ ∈ Shv(Stoneop

C
) is continuous. The “only if” direction is clear (since

the global sections functor Γ ∶ StoneC → Pro(C) commutes with filtered limits). To prove the converse, let
λ ∶ Pro(C) → Prowp(C) be the functor of Proposition 6.2.12, so that every object P ∈ Pro(C) is equipped
with an epimorphism ρP ∶ λ(P ) ↠ P . Let µ ∶ Pro(C) → Prowp(C) be the functor given on objects by the
formula µ(P ) = λ(λ(P )×P λ(P )). Our assumption that F is a sheaf guarantees that the coequalizer diagram
µ(X) ⇉ λ(X) →X in Pro(C) induces an isomorphism

F (P ) ≃ Eq(F (λ(P )) ⇉F (µ(P ))),
depending functorially on P . By construction, the functors λ and µ commute with filtered inverse limits.
Consequently, if F ∣Prowp(C)op commutes with filtered colimits, then the functor

P ↦F (P ) ≃ Eq(F (λ(P )) ⇉F (µ(P )))
also commutes with filtered colimits. Corollary 7.2.4 now follows from Theorem 6.3.14. �

Our proof of Theorem 2.2.2 will make use of the following characterization of continuous sheaves on
StoneC , which we prove in §7.5:

Proposition 7.2.5. Let C be a small pretopos and let F ∶ Stoneop
C
→ Set be a functor which commutes with

filtered colimits. The following conditions are equivalent:

(a) The functor F is a sheaf with respect to the elementary topology.
(b) The functor F carries finite coproducts in StoneC to products in Set.

7.3. The Proof of Theorem 2.2.2. We are now almost ready to prove the main result of this paper.

Proposition 7.3.1. Let C be a small pretopos. Then the construction of Proposition 1.4.9 (applied to the
inclusion Mod(C) ↪ Pro(C)op) induces an equivalence of categories

ψ ∶ Shvcont(Pro(C)) → FunLUlt(Mod(C),Set).

Proof. Note that the inclusion Mod(C) ↪ Pro(C)op is isomorphic to the composite functor

Mod(C)
M↦M
ÐÐÐ→ Stoneop

C

ΓÐ→ Pro(C)op.

Consequently, the functor ψ factors (up to isomorphism) as a composition

Shvcont(Pro(C)) F↦F ○ΓÐÐÐÐÐ→ Shvcont(StoneC)
ψ′Ð→ FunLUlt(Mod(C),Set),

where ψ′ obtained by applying the construction of Proposition 1.4.9 to the fully faithful embedding Mod(C) ↪
Stoneop

C
. The first map is an equivalence by virtue of Corollary 7.2.4. According to Proposition 7.2.5,

Shvcont(StoneC) is the full subcategory of Fun(Stoneop
C
,Set) spanned by those functors which preserve finite

products and small filtered colimits. Consequently, the functor ψ′ is an equivalence by virtue of Theorem
5.2.1 (and Warning 6.3.9). �
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Proof of Theorem 2.2.2. Let C be a small pretopos. Then the evaluation map ev ∶ C → FunUlt(Mod(C),Set)
of Construction 2.2.1 fits into a commutative diagram

C ev //

h

��

FunUlt(Mod(C),Set)� _

��
Shvcont(Pro(C)) ψ

∼
// FunLUlt(Mod(C),Set),

where ψ is the equivalence of Proposition 7.3.1 and h ∶ C → Shvcont(Pro(C)) associates to each object C ∈ C
the functor hC ∶ Pro(C)op = Funlex(C,Set) → Set given by evaluation at C (which is a sheaf, since it is
representable by the image of C in the category Pro(C)). We can therefore reformulate Theorem 2.2.2 as
follows:

(1) For each object F ∈ Shvcont(Pro(C)), the construction

(C ∈ C) ↦ HomShv(Pro(C))(hC , F̂ )

determines a functor F 0 ∶ C → Set which is a sheaf for the coherent topology on C.
(2) The construction F ↦F 0 induces an equivalence of categories Shvcont(Pro(C)) → Shv(C).

This is precisely the content of Corollary 7.1.5. �

7.4. Effective Epimorphisms and Elementary Embeddings. Let C be a small pretopos. Our goal in
this section is to give an alternative description of the elementary topology on the category StoneC , which
does not make reference to the embedding Γ ∶ StoneC ↪ Pro(C) of Theorem 6.3.14. First, we need to review
some terminology.

Definition 7.4.1. Let C be a pretopos and let f ∶ M → N be a morphism in the category of models
Mod(C). We will say that f is an elementary embedding if, for every object C ∈ C, the induced map
M(f) ∶M(C) → N(C) is a monomorphism of sets.

Example 7.4.2. Let C be a pretopos, let M be a model of C, and let µ be an ultrafilter on a set S. Then
the ultrapower diagonal ∆µ ∶ M → Mµ of Example 1.3.4 is an elementary embedding. This follows from
the observation that, for every set X, the ultrapower diagonal X →Xµ is a monomorphism of sets (Lemma
7.5.2).

Proposition 7.4.3. Let C be a small pretopos and let f ∶M → N be a morphism in Mod(C). The following
conditions are equivalent:

(1) The morphism f is an elementary embedding.
(2) For every object C ∈ C and every subobject C0 ⊆ C, the diagram

M(C0)
f //

��

N(C0)

��
M(C) f // N(C)

is a pullback square (in the category of sets).
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Proof. We first show that (2) implies (1). Let C be an object of C. Then the diagonal map δ ∶ C → C ×C
exhibits C as a subobject of C ×C. If condition (2) is satisfied, then the upper square in the diagram

M(C) //

��

N(C)

��
M(C ×C) //

��

N(C ×C)

��
M(C) ×M(C) // N(C) ×N(C)

is a pullback. Since M and N preserve finite products, the lower vertical maps are isomorphisms. It follows
that the outer rectangle is also a pullback square, so that the map M(C) → N(C) is injective.

We now show that (1) implies (2). Assume that f is an elementary embedding. Let C be an object of C
and let C0 ⊆ C a subobject. We wish to show that the diagram σ ∶

M(C0) //

��

N(C0)

��
M(C) // N(C)

is a pullback square. Let 1 denote the final object of C. Replacing C by C ∐ 1 and C0 by C0 ∐ 1 (and using
the fact that M and N preserve finite coproducts), we can reduce to the case where the projection map
C0 → 1 is an effective epimorphism.

Let R denote the subobject of C ×C given by the union of C (embedded diagonally in C ×C) with the
product C0 × C0. Since C is a pretopos, the equivalence relation R is effective. Let D = C/R denote the
coequalizer of the diagram R ⇉ C, and let D0 ⊆ D denote the image of the composite map C0 ↪ C ↠ D.
Note that effective epimorphisms C0 ↠ D0 and C0 ↠ 1 determine the same equivalence relation on C0 and
are therefore equivalent: that is, D0 is a final object of C.

Since the formation of images in C is compatible with pullback, we can identify the fiber product D0×DC
with the image of the map q ∶ C0×DC → C given by projection onto the second factor. Using the distributivity
of the lattice Sub(C ×C), we compute

C0 ×D C = (C0 ×C) ∩ (C ×D C)
= (C0 ×C) ∩R
= (C0 ×C) ∩ (C ∪ (C0 ×C0))
= ((C0 ×C) ∩C) ∪ ((C0 ×C) ∩ (C0 ×C0))
= C0 ∪ (C0 ×C0)
= C0 ×C0.

It follows that the image of q is contained in D0, so that the diagram

C0
//

��

D0

��
C // D

is a pullback square.
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Using the left exactness of the functor N , we deduce that σ can be extended to a commutative diagram

M(C0) //

��

N(C0)

��

// N(D0)

��
M(C) // N(C) // N(D)

where the right square is a pullback. Consequently, to show that σ is a pullback, it will suffice to show that
the outer rectangle is a pullback. This outer rectangle fits into another commutative diagram

M(C0) //

��

M(D0)

��

// N(D0)

��
M(C) // M(D) // N(D)

where the left square is a pullback (by virtue of the left exactness of M). It will therefore suffice to show
that the canonical map

θ ∶M(D0) → N(D0) ×M(D) N(D)
is a bijection. Since D0 is a final object of C and the functor M is left exact, the set M(D0) is a singleton.
It will therefore suffice to show that the fiber product N(D0) ×M(D) N(D) has at most one element. This
is clear, since the set N(D0) is also a singleton and the map M(D) → N(D) is injective (by virtue of our
assumption that f is an elementary embedding). �

In the setting of classical first-order logic, the requirement of Definition 7.4.1 is vacuous. Recall that a
pretopos C is said to be Boolean if, for every object X ∈ C, the partially ordered set Sub(X) is a Boolean
algebra (in other words, every subobject of X is a summand of X).

Proposition 7.4.4. Let C be a Boolean pretopos. Then every morphism f ∶ M → N in Mod(C) is an
elementary embedding.

Proof. We will show that f satisfies criterion (2) of Proposition 7.4.3. Let C be an object of C and let C0 ⊆ C
be a subobject; we wish to show that the diagram σ ∶

M(C0)
f //

��

N(C0)

��
M(C) f // N(C)

is a pullback. Since C is Boolean, the partially ordered set Sub(C) is a Boolean algebra. We can therefore
choose another subobject C1 ∈ Sub(C) which is complementary to C0, so that C0 ∪C1 = C and C0 ∩C1 = ∅.
It follows that inclusions C0 ↪ C ↩ C1 exhibit C as a coproduct of C0 with C1. Since the functors M and
N preserve finite coproducts, we can identify σ with the diagram

M(C0) //

��

N(C0)

��
M(C0) ∐M(C1) // N(C0) ∐N(C1),

so that the desired result follows from Proposition A.3.7 (or by direct inspection). �

The relevance of Definition 7.4.1 for us is the following:

Theorem 7.4.5. Let C be a small pretopos and let f ∶ (X,OX) → (Y,OY ) be a morphism in StoneC. The
following conditions are equivalent:

(1) The induced map Γ(X,OX) → Γ(Y,OY ) is an effective epimorphism in Pro(C).
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(2) For each point y ∈ Y , there exists a point x ∈ X such that f(x) = y and the map OY,y → OX,x is an
elementary embedding in Mod(C).

Corollary 7.4.6. Let C be a small pretopos and let (X,OX) → (Y,OY ) be a morphism in StoneC. If the
induced map Γ(X,OX) → Γ(Y,OY ) is an effective epimorphism in Pro(C), then the underlying map of
topological spaces X → Y is surjective. The converse holds if C is Boolean.

Proof. Combine Theorem 7.4.5 with Proposition 7.4.4. �

Corollary 7.4.7. Let C be a small pretopos and let {fi ∶ (Xi,OXi) → (X,OX)}i∈I be a collection of mor-
phisms in StoneC. Then the morphisms fi are an elementary covering (in the sense of Definition 7.2.1) if
and only if there exists a finite subset I0 ⊆ I satisfying the following condition:

(∗) For every point x ∈ X, there exists an index i ∈ I0 and a point y ∈ Xi such that fi(y) = x and the
map OX,x → OXi,y is an elementary embedding in Mod(C).

Corollary 7.4.8. [Amalgamation] Let C be a small pretopos, let f ∶ M → N be an arbitrary morphism in
Mod(C), and let g ∶ M → M ′ be an elementary embedding in Mod(C). Then there exists a commutative
diagram

M
g //

f

��

M ′

��
N

g′ // N ′

in Mod(C), where g′ is also an elementary embedding.

Proof. By virtue of Corollary 7.4.7, the elementary embedding g determines an elementary covering g ∶M ′ →
M in the category StoneC . Since the elementary coverings give rise to a Grothendieck topology on StoneC ,
we can find a collection of commutative diagrams

(Xi,OXi) //

��

M ′

g

��
N

f
// M

in StoneC where the left vertical maps form an elementary covering. Using Corollary 7.4.7, we conclude that
there is an index i and a point x ∈ Xi for which the left vertical map induces an elementary embedding
g′ ∶ N → OXi,x, in which case we obtain a commutative diagram of models

M
g //

f

��

M ′

��
N

g′ // OXi,x
with the desired property. �

Proof of Theorem 7.4.5. We proceed in several steps. Let f ∶ P → Q be an arbitrary morphism in Pro(C).
Consider the following assertion:

(i) The map f ∶ P → Q is an effective epimorphism in Pro(C).
We claim that (i) is equivalent to the following:

(ii) For every monomorphism u ∶ U ↪ V in Pro(C) and every commutative square

P //

f

��

U

u

��
Q //

??

V,
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there exists a dotted arrow rendering both triangles commutative.

The implication (i) ⇒ (ii) is clear. Conversely, if (ii) is satisfied for the inclusion Im(u) ↪ Q, then assertion
(i) follows. Note that, in the situation of (ii), the dotted arrow is automatically unique (by virtue of
our assumption that the morphism U → V is a monomorphism). According to Proposition 6.1.15, every
monomorphism in Pro(C) can be realized as a filtered limit of monomorphisms in C. Consequently, (ii) is
equivalent to the following a priori weaker condition:

(iii) For every monomorphism u ∶ C0 ↪ C in the category C and every square diagram

P //

��

C0

u

��
Q //

??

C,

there exists a dotted arrow rendering both triangles commutative.

Let us now suppose that P = Γ(X,OX) and Q = Γ(Y,OY ) for some objects (X,OX), (Y,OY ) ∈ StoneC .
Unwinding the definitions, we can rephrase (iii) as follows:

(iv) Let C ∈ C be an object and let sY ∈ Γ(Y,OY )(C) = OCY (Y ) be a section having image sX ∈ OCX(X).
Suppose that C0 is a subobject of C and that sX lifts to a section of the subsheaf OC0

X ⊆ OCX . Then

sY lifts to a section of the subsheaf OC0

Y ⊆ OCY .

We now restate (v) in contrapositive form:

(v) Let C ∈ C be an object and let C0 ∈ Sub(C) be a subobject. Suppose we are given a global section

sY ∈ OCY (Y ) having image sX ∈ OCX(X). If there exists a point y ∈ Y such that the stalk sY,y does

not belong to OC0

Y,y, then there exists a point x ∈X such that sX,x does not belong to OC0

X,x.

Note that assertion (v) follows immediately from (2), together with the criterion of Proposition 7.4.3 (if
(2) is satisfied, then we can choose a point x ∈ X for which f(x) = y and the induced map OY,y → OX,x is
an elementary embedding). We will complete the proof by showing that assertion (iv) implies (2).

Assume that (iv) is satisfied, and fix a point y ∈ Y . We wish to show that there exists a point x ∈X such
that f(x) = y and the induced map OY,y → OX,x is an elementary embedding. Suppose otherwise. Then,
for each point x ∈ f−1(y), the induced map OY,y → OX,x is not an elementary embedding. It follows that we

can choose an object C(x) ∈ C, a subobject C0(x) ∈ Sub(C(x)), and an element of ηx ∈ OC(x)
Y,y ∖OC0(x)

Y,y for

which the image of ηx in OC(x)
X,x belongs to OC0(x)

X,x . Let Ux be an open neighborhood of x in the fiber f−1{y}
for which the image of ηx in OC(x)

X,x′ belongs to OC0(x)
Y,y , for each x′ ∈ Ux. Since the fiber f−1{y} is compact,

we can choose finitely many points x1, . . . , xn ∈ f−1{y} for which the open sets Ux1 , Ux2 , . . . , Uxn cover the
fiber f−1{y}. Set C = C(x1)×⋯×C(xn), and let C0 ⊆ C be the union of the subobjects C0(xi)×∏j≠iC(xj).
Then we can identify {ηxi}1≤i≤n with a point η ∈ OCY,y. By construction, η does not belong to OC0

Y,y, but the

image of η in OCX,x belongs to OC0

X,x for each x ∈ f−1{y}.

Choose a lift of η to a point sV ∈ OCY (V ), for some open neighborhood V of Y . Let sf−1(V ) denote the

image of V in OCX(f−1(V )). Then there is a largest open subset W ⊆ f−1(V ) for which the restriction

sf−1(V )∣W is a section of the subsheaf OC0

X ⊆ OCX . By construction, the open set W contains the fiber f−1{y}.

Since f is a proper map, we can choose a smaller open set V ′ ⊆ V such that y ∈ V ′ and f−1(V ′) ⊆ W .

Replacing V by V ′, we can assume that sf−1(V ) belongs to OC0

X (f−1(V )).
Shrinking V further if necessary, we can arrange that V is both open and closed. In this case, we can

extend sV to a global section sY of the sheaf OC∐1Y ≃ OCY ∐1 (which is equal to sV on the open set V , and

carries the complement of V to the second summand of OC∐1Y ). Replacing C by the coproduct C ∐ 1 and

C0 by the coproduct C0 ∐ 1, we can assume that V = Y : that is, that sV is a global section of OCY . It then

follows from (iv) that sV is also a global section of the subsheaf OC0

Y ⊆ OCY , contradicting our choice of η. �
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7.5. The Proof of Proposition 7.2.5. Let C be a small pretopos, and let F ∶ Stoneop
C
→ Set be a functor.

If F is a sheaf for the elementary topology, then it carries finite coproducts in StoneC to products in Set.
Our goal in this section is to prove Proposition 7.2.5, which asserts that the converse holds provided that F
commutes with filtered colimits. To prove this, we must show that F satisfies descent for every elementary
covering (X,OX) → (Y,OY ). We begin by treating the case where the underlying topological spaces X
and Y consist of a single point. By virtue of Corollary 7.4.7, this reduces a concrete statement about the
behavior of the functor F = F ∣Mod(C) with respect to elementary embeddings:

Proposition 7.5.1. Let C be a small pretopos, let f ∶ M → N be an elementary embedding in Mod(C),
and let F ∶ Mod(C) → Set be a left ultrafunctor. Then the map of sets F (f) ∶ F (M) → F (N) is injective.
Moreover, the image of F (f) consists of those elements x ∈ F (N) which satisfy the following condition:

(∗) For every pair of morphisms u, v ∶ N → P in the category Mod(C) satisfying u ○ f = v ○ f , we
F (u)(x) = F (v)(x) in the set F (P ).

The proof of Proposition will require some preliminaries. We first make some elementary observations
concerning ultraproducts in the category of sets:

Lemma 7.5.2. Let X and S be sets, let µ be an ultrafilter on S, and let ∆µ ∶ X → Xµ be the ultrapower
diagonal of Example 1.3.4. Then ∆µ is injective.

Proof. Without loss of generality we may assume that X is nonempty, so that we can identify Xµ with the
set of equivalence classes of functions f ∶ S → X with respect to an equivalence relation ∼µ, where f ∼µ g if
and only if µ({s ∈ S ∶ f(s) = g(s)})) = 1. If f is the constant function with value x ∈ X and g is a constant
function with value y ∈ S (representing ∆µ(x) and ∆µ(y), respectively) then we have

(f ∼µ g) ⇔ (µ({s ∈ S ∶ x = y}) = 1) ⇔ (x = y).
�

Lemma 7.5.3. Let u ∶ X ↪ Y be an injective map of sets and let µ be an ultrafilter on a set S. Then the
diagram

X
∆µ //

u

��

Xµ

∫S udµ

��
Y

∆µ // Y µ

is a pullback square (in the category of sets).

Proof. Let y ∈ Y be an element with the property that ∆µ(y) = (∫S udµ)(x), for some x ∈ Xµ; we wish to
show that y belongs to the image of u. Then Xµ is nonempty, so X is nonempty; we may therefore assume
without loss of generality that x is represented by a tuple {xs}s∈S ∈ XS . Set I = {s ∈ S ∶ u(xs) = y}. The
equality ∆µ(y) = (∫S udµ)(x) guarantees that µ(I) = 1. In particular, the set I is nonempty. Choose an
element s ∈ I. Then y = u(xs) belongs to the image of u. �

Lemma 7.5.4. Let C be a small pretopos and let f ∶M → N be an elementary embedding in Mod(C). Then
there exists a set S, an ultrafilter µ on S, and a morphism g ∶ N →Mµ for which the composite map

M
fÐ→ N

gÐ→Mµ

coincides with the ultrapower diagonal δM ∶M ↪Mµ of Example 1.3.4.

Proof. To avoid confusion, let us use the notation TM to denote the image of a model M ∈ Mod(C) under
the inclusion Mod(C)op ↪ Pro(C). The elementary embedding f ∶M → N can then be identified with a map
of pro-objects TN ↠ TM , which we will denote by Tf . Our assumption that f is elementary guarantees that
Tf is an effective epimorphism in Pro(C) (Theorem 7.4.5), and can therefore be realized as the limit of a
filtered diagram {fs ∶ Cs ↠ Ds} of effective epimorphisms in C. Without loss of generality, we can assume
that this limit is indexed by (the opposite of) a directed partially ordered set (S,≤).
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For each s ∈ S, set Ps = Cs ×Ds TM (where the fiber product is formed in Pro(C). Since M is a model,
the pro-object TM is weakly projective so that each of the maps TM → Ds factors through fs. A choice of
factorization then determines a map us ∶ TM → Ps which is a section of of the projection map Ps → TM (note
that we do not require, and usually cannot arrange, that the morphisms us depend functorially on s). To
avoid confusion, let us write Ns for the image of Ps in the opposite category Pro(C)op ⊆ Fun(C,Set), so that
each us can be viewed as a natural transformation of functors Ns →M . Moreover, we can identify N with
the colimit limÐ→s∈SNs (as an object of the category Fun(C,Set)).

Since the partial ordering on S is directed, we can choose a cofinal ultrafilter µ on S. We now define
g ∶ N →Mµ to be the composition

N
wÐ→ ∫

S
Nsdµ

∫S usdµÐÐÐÐ→ ∫
S
Mdµ =Mµ,

where w is the morphism defined by applying Construction 5.3.6 (in the ultracategory Fun(C,Set)). The
identity g ○ f = ∆µ follows from Remark 5.3.7. �

Proof of Proposition 7.5.1. Let C be a small pretopos, let f ∶M → N be an elementary embedding in Mod(C),
and let F ∶ Mod(C) → Set be a left ultrafunctor. Using Lemma 7.5.4, we can choose a set S, an ultrafilter
µ on S, and a morphism g ∶ N →Mµ such that g ○ f is the ultrapower embedding ∆µ(M) ∶M →Mµ. Let
{σµ} be a left ultrastructure on F , so that the composite map

F (M)
F (∆µ(M))
ÐÐÐÐÐÐ→ F (Mµ)

σµÐ→ F (M)µ

is the ultrapower diagonal of the set F (M), and therefore injective (Lemma 7.5.2). It follows that the
composition F (∆µ(M)) = F (g) ○ F (f) is also injective, so that F (f) ∶ F (M) → F (N) is injective. We will
complete the proof by showing that if x ∈ F (N) is an element satisfying condition (∗) of Proposition 7.5.1,
then x belongs to the image of F (f). We have a commutative diagram

F (M)
F (f) //

F (∆µ(M))

��

F (N)

F (∆µ(N))

��
F (Mµ)

F (fµ) //

σµ

��

F (Nµ)
σµ

��
F (M)µ

F (f)µ // F (N)µ,
where the outer rectangle is a pullback square by Lemma 7.5.3. Consequently, to show that x belongs to the
image of F (f), it will suffice to show that F (∆µ(N)) belongs to the image of the map F (fµ) ∶ F (Mµ) →
F (Nµ). In fact, we claim that F (∆µ(N))(x) = F (fµ)(F (w)(x)). To prove this, it will suffice (by virtue
of our assumption that x satisfies (∗)) to show that the maps ∆µ(N), (fµ ○ w) ∶ N → Nµ have the same
restriction to M . This follows from Remark 5.3.7 together with the commutativity of the diagram

M

∆µ(M)

��

f // N

∆µ(N)

��
Mµ fµ // Nµ.

�

To deduce Proposition 7.2.5 from Proposition 7.5.1, we will need a bit of notation.

Construction 7.5.5. Let C be a small pretopos and let F ∶ Stoneop
C
→ Set be a functor. Assume that F

carries finite coproducts in StoneC to products in the category of sets. Fix an object (X,OX) in the category
StoneC , and let U0(X) denote the collection of all closed and open subsets of X. We define a functor

F (OX) ∶ U0(X)op → Set
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by the formula F (OX)(U) = F (U,OX ∣U). It follows from our assumption on F that the functor F (OX)
carries disjoint unions in U0(X) to products in Set, and therefore extends uniquely to a set-valued sheaf on
X (Corollary B.6.5) which we will also denote by F (OX). The stalks of this sheaf are given by the formula

F (OX)x ≃ limÐ→
U

F (OX)(U) = limÐ→
U

F (U,OX ∣U),

where the colimit is taken over the collection of all closed and open neighborhoods U ⊆ X of the point x.
Consequently, there is a natural map F (OX)x → F ({x},OX,x), which is an isomorphism if F commutes
with filtered colimits.

Remark 7.5.6. Let C be a small pretopos and let F ∶ Stoneop
C
→ Set be a functor which preserves finite

products and small filtered colimits. Then, for any object (X,OX) ∈ StoneC , the canonical map

ρ ∶ F (X,OX) → ∏
x∈X

F ({x},OX,x)

is injective. This follows from Construction 7.5.5, since a global section s of the sheaf F (OX) is determined
by the collection of stalks {sx ∈ F (OX)x ≃ F ({x},OX,x)}.

Proof of Proposition 7.2.5. Let C be a small pretopos and let F ∶ Stoneop
C
→ Set be a functor which preserves

finite products and small filtered colimits. We wish to show that F is a sheaf with respect to the elementary
topology. Define F ∶ Mod(C) → Set by the formula F (M) = F (M). Note that F admits a left ultrastructure,
and therefore satisfies the conclusions of Proposition 7.5.1.

We first argue that F is a separated presheaf. Suppose we are given a collection of morphisms

{(Xi,OXi) → (X,OX)}i∈I
which comprise a covering with respect to the elementary topology; we wish to show that the induced map

F (X,OX) →∏
i∈I

F (Xi,OXi)

is injective. This map fits into a commutative diagram

F (X,OX) //

��

∏i∈I F (Xi,OXi)

��
∏x∈X F ({x},OX,x) // ∏i∈I∏x∈Xi F ({x},OXi,x),

where the vertical maps are injective by virtue of Remark 7.5.6. It will therefore suffice to show that the
lower horizontal map is injective. This is clear: for each point x ∈ X, we can choose an index i ∈ I and a
point x ∈ Xi lying over x for which the map of models OX,x → OXi,x is an elementary embedding, so that
Proposition 7.5.1 guarantees the injectivity of the induced map F ({x},OX,x) →F ({x},OXi,x).

To complete the proof that F is a sheaf, suppose that we are given a collection of elements si ∈ F (Xi,OXi)
satisfying the following compatibility condition:

(∗) For every commutative diagram

(W,OW ) //

��

(Xi,OXi)

��
(Xj ,OXj) // (X,OX)

in StoneC , the elements si and sj have the same image in F (W,OW ).
We wish to show that there exists an element s ∈ F (X,OX) having image si in each F (Xi,OXi) (the
uniqueness of s is automatic by the preceding argument).

Without loss of generality, we may assume that the set I is finite. For each point y ∈Xi, we let si,y denote
the image of si under the map F (Xi,OXi) → F ({y},OXi,y) ≃ F 0(OXi,y). Fix a point x ∈ X. Choose an
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index i ∈ I and a point y ∈ Xi lying over x for which the map of models OX,x → OXi,y is an elementary
embedding. Applying (∗) in the case where W is a single point, we deduce the following:

(∗′) For each index j ∈ I, each point z ∈Xj lying over x, and each commutative diagram

M OXi,yoo

OXj ,z

OO

OX,xoo

OO

in Mod(C), the elements si,y and sj,z have the same image in F (M).
Applying (∗′) in the case i = j and z = y and invoking (c), we conclude that si,y has a unique preimage
sx under the map F (OX,x) → F (OXi,y). We claim that the element sx satisfies the following additional
condition:

(∗′′) For each index j ∈ I and each point j ∈Xj lying over x, the canonical map ρ ∶ F (OX,x) → F (OXj ,z)
carries sx to sj,z.

To prove (∗′′), we note that Corollary 7.4.8 guarantees the existence of a commutative diagram

M OXi,yoo

OXj ,z

u

OO

OX,xoo

OO

in the category Mod(C), where the map u is an elementary embedding. It then follows from (∗′) that ρ(sx)
and sj,z have the same image under the map F (u) ∶ F (OXj ,z) → F (M). Since u is an elementary embedding,
Proposition 7.5.1 guarantees that F (u) is injective, so we must have ρ(sx) = sj,z.

Let F (OX) be the sheaf of sets on X given by Construction 7.5.5, so that we can identify each of
the sets F (OX,x) with the stalk of F (OX) at the point x. It follows that we can lift sx to an element
sU(x) ∈ F (OX)(U(x)) = F (U(x),OX ∣U(x)) for some closed and open neighborhood U(x) of the point x.
For each j ∈ I, let Uj(x) denote the inverse image of U(x) in Xj and let s′j denote the image of sU(x) under

the canonical map F (U(x),OX ∣U(x)) →F (Uj(x),OXj ∣Uj(x)). Then we can identify s′j with a section of the

sheaf F (OXj) over the open set Uj(x), and sj with a global section of the sheaf F (OXj). Let Vj(x) ⊆ Uj(x)
denote the open subset of Uj(x) consisting of those points z for which sj and s′j have the same image in the

stalk F (OXj)z ≃ F (OXj ,z). It follows from (∗′′) that the set Vj(x) contains the preimage Xj ×X {x} of the
point x. Because each of the maps Xj → X is proper (since both Xj and X are compact and Hausdorff),
we can choose an open subset U ′(x) ⊆ U(x) containing x which satisfies Xj ×X U ′(x) ⊆ Vj(x) for each j ∈ I.
Since X is a Stone space, we may further assume that U ′(x) is closed. Replacing U(x) by U ′(x), we may
assume that U(x) has been chosen so that sU(x) and sj have the same image in F (Uj(x),OXj ∣Uj(x)) for
each j ∈ J .

Because X is compact, the open covering {U(x)}x∈X admits a finite subcover U(x1), U(x2), . . . , U(xn).
Since X is a Stone space, we can further assume (by shrinking the open sets U(xm) if necessary) that
the sets U(x1), U(x2), . . . , U(xn) are disjoint. Applying assumption (a′), we deduce that there is a unique
element s ∈ F (X,OX) having image sU(xm) in each F (U(xm),OX ∣U(xm)). It follows immediately from the
construction that each of the maps F (X,OX) →F (Xj ,OXj) carries s to sj . �

8. The Envelope of an Ultracategory

In §5, we proved that every ultracategoryM can be obtained from the construction of Proposition 1.3.7.
That is, one can obtain any ultrastructure on a category M by embedding it into a larger category M+

in such a way that M has ultraproducts in M+. However, the category M+ is not uniquely determined.
Moreover, the specific construction that we studied in §5 is not the most economical: the category Stoneop

M
of

Construction 4.1.1 contains many objects which do not arise as products of objects ofM, and are therefore
not needed in the construction of ultraproducts in M.
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In this section, we show that for every ultracategory M, there is an “optimal” choice for an embedding
M↪ Env(M) which induces the ultrastructure onM. We will refer to the category Env(M) as the envelope
of M. It is characterized (up to equivalence) by the following features:

(a) The full subcategory M has ultraproducts in Env(M) (giving rise to the ultrastructure on M via
the construction of Proposition 1.3.7).

(b) Every object of Env(M) can be written as a product of objects belonging to M.
(c) Every object of M is coconnected when viewed as an object of Env(M) (see Definition 8.2.1).

The embedding M↪ Stoneop
M

of Remark 4.2.6 has properties (a) and (c), but not property (b). However,
this is easily remedied: we can simply take Env(M) to be the full subcategory of of Stoneop

M
generated by

M under products. This category admits several other concrete descriptions, which we outline in §8.4.
The data of an ultracategory M and its envelope Env(M) are equivalent: either can be reconstructed

from the other. Consequently, it is possible to entirely dispense with ultracategories and work only with
their envelopes. The advantage of this approach is that one does not need to keep track of any additional
information: the ultrastructure on M is completely determined by the structure of Env(M) as an abstract
category. Moreover, there is a relatively simple characterization of those categories which arise in this
way. In §8.2, we introduce the notion of an ultracategory envelope (Definition 8.2.2). By definition, an
ultracategory envelope is a category E satisfying a few simple axioms. These axioms guarantee that E induces
an ultrastructure on a certain full subcategory Ecc ⊆ E , and that E can be recovered (up to equivalence) as
the envelope of Ecc. To prove this, we show in §8.6 that the relationship between E and Ecc is governed
by a universal mapping property (Theorem 8.2.6). This property is most conveniently formulated using the
language of right ultrafunctors, which we introduce in §8.1.

8.1. Right Ultrafunctors. We now consider a variant of Definition 1.4.1:

Definition 8.1.1 (Right Ultrafunctors). LetM and N be categories with ultrastructure and let F ∶ M → N
be a functor. A right ultrastructure on F consists of the following data:

(∗) For every collection of objects {Ms}s∈S of the categoryM and every ultrafilter µ on S, a morphism
γµ ∶ ∫S F (Ms)dµ→ F (∫SMsdµ) in the category N .

These morphisms are required to satisfy the following conditions:

(0) For every collection of morphisms {fs ∶Ms →M ′
s} in the category M and every ultrafilter µ on S,

the diagram

∫S F (Ms)dµ

∫S F (fs)dµ

��

γµ // F (∫SMsddµ)

F (∫S fsdµ)

��
∫S F (M ′

s)dµ
γµ // F (∫SM ′

sdµ)

commutes. In other words, we can regard γµ as a natural transformation

γµ ∶ (∫
S
(●)dµ) ○ FS → F ○ ∫

S
(●)dµ

of functors from MS to N .
(1) For every collection {Ms}s∈S of objects of M indexed by a set S and every element s0 ∈ S, the

diagram

∫S F (Ms)dδs0

F (εS,s0) ''

γδs0 // F (∫SMsdδs0)

εS,s0ww
F (Ms0)

commutes (in the category N ).
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(2) For every collection {Mt}t∈T of objects of M indexed by a set T , every collection ν● = {νs}s∈S of
ultrafilters on T indexed by a set S, and every ultrafilter µ on S, the diagram

∫T F (Mt)d(∫S νsdµ))

∆µ,ν●

��

γ∫S νsdµ // F (∫T Mtd(∫S νsdµ))

F (∆µ,ν●)

��
∫S(∫T F (Mt)dνs)dµ

∫S γνsdµ // ∫S F (∫T Mtdνs)dµ
γµ // F (∫S(∫T Mtdνs)dµ)

commutes (in the category N ).

A right ultrafunctor fromM to N is a pair (F,{γµ}), where F is a functor from M to N and {γµ} is a right
ultrastructure on F .

Example 8.1.2. Let M = {∗} denote the category having a single object and a single morphism (so that
M admits a unique ultrastructure), and let N denote the category of sets (endowed with the categorical
ultrastructure). Then the datum of a functor F ∶ M → N is equivalent to the datum of the set X = F (∗). A
right ultrastructure {γµ} on F associates to each ultrafilter µ on a set S a map

XS qµÐ→ ∫
S
F (∗)dµ

γµÐ→ F (∫
S
∗dµ) =X,

which we will denote by f ↦ ∫S f(s)dµ. Using axioms (1) and (2) of Definition 8.1.1, we see that the
construction (f, µ) ↦ ∫S f(s)dµ endows X with the structure of an ultraset (Definition 3.1.1), or equivalently
with the structure of a compact Hausdorff space (Theorem 3.1.5).

The rest of this section is devoted to some general remarks about the theory of right ultrafunctors. For
the most part, these can be regarded as counterparts to observations that we made in §1.4 concerning left
ultrafunctors. Beware that there is no formal mechanism for reducing questions about right ultrafunctors to
questions about left ultrafunctors, because the theory of ultracategories is not “self-dual” (an ultrastructure
on a category M does not induce an ultrastructure on the opposite category Mop, because the Fubini
transformations for the ultrastructure on M need not be invertible).

Remark 8.1.3. Let F ∶ M → N be a functor between ultracategories and let {σµ} be an ultrastructure on
F (in the sense of Definition 1.4.1). Then the collection of inverse maps {σ−1

µ } is a left ultrastructure on F .

Conversely, if {γµ} is a right ultrastructure on F for which each of the maps γµ ∶ ∫S F (Ms)dµ→ F (∫SMsdµ)
is an isomorphism, then the collection of inverse maps {γ−1

µ } is an ultrastructure on F .

Remark 8.1.4 (Adjoint Functors). Let M and N be ultracategories and suppose we are given a pair of
adjoint functors

M
F //N ,
G
oo

with unit map u ∶ idM → G ○ F and counit v ∶ F ○G→ idN . Then:

● Every right ultrastructure {γµ} on G determines a left ultrastructure on F , which assigns to each
collection {Ms}s∈S and each ultrafilter µ on S the composite map

F (∫
S
Msdµ)

F (∫S u(Ms)dµ)ÐÐÐÐÐÐÐÐ→ F ∫
S
(G ○ F )(Ms)dµ

F (γµ)ÐÐÐ→ (F ○G)(∫
S
F (Ms)dµ)

v(∫S F (Ms)dµ)ÐÐÐÐÐÐÐÐ→ ∫
S
F (Ms)dµ.
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● Every left ultrastructure {σµ} on F determines a right ultrastructure on G, which assigns to each
collection of objects {Nt}t∈T and each ultrafilter ν on T the composite map

∫
T
G(Nt)dν

u(∫T G(Nt)dν)ÐÐÐÐÐÐÐÐ→ (G ○ F )(∫
T
G(Nt)dν)

G(σν)ÐÐÐ→ G(∫
T
(F ○G)(Nt)dν)

G(∫T v(Ns)dν)ÐÐÐÐÐÐÐÐ→ G(∫
S
Nsdν).

These constructions determine mutually inverse bijections

{Left ultrastructures on F} ≃ {Right ultrastructures on G}.

Definition 8.1.5. Let M and N be categories with ultrastructure, let F,F ′ ∶ M → N be functors from M
to N , and suppose that F and F ′ are equipped with right ultrastructures {γµ} and {γ′µ}, respectively. We
will say that a natural transformation u ∶ F → F ′ is a natural transformation of right ultrafunctors if, for
every collection of objects {Ms}s∈S of M and every ultrafilter µ on S, the diagram

∫S F (Ms)dµ
γµ //

∫S u(Ms)dµ

��

F (∫SMsdµ)

u(∫SMsdµ)

��
∫S F ′(Ms)dµ)

γ′µ // F ′(∫SMsdµ)

commutes (in the category N ).

We let FunRUlt(M,N) denote the category whose objects are right ultrafunctors (F,{γµ}) fromM to N
and whose morphisms are natural transformations of right ultrafunctors.

Remark 8.1.6. LetM and N be ultracategories. Then the construction (F,{σµ}) ↦ (F,{σ−1
µ }) determines

a fully faithful embedding FunUlt(M,N) → FunRUlt(M,N), whose essential image consists of those right
ultrafunctors (F,{γµ}) for which each of the maps γµ is invertible (see Remark 8.1.3).

Remark 8.1.7 (Limits of Right Ultrafunctors). Let M and N be ultracategories. Suppose that we are

given a diagram {Fα} in the category FunRUlt(M,N) with the property that, for every object M ∈ M, the
diagram {Fα(M)} admits a limit in N . Then:

● The construction (M ∈ M) ↦ lim←Ðα Fα(M) determines a functor F ∶ M → N .

● There is a unique right ultrastructure on F for which each of the natural maps λα ∶ F → Fα is a
natural transformation of left ultrafunctors.

● The maps λα exhibit F as a limit of the diagram {Fα} in FunRUlt(M,N).
In particular, if the ultracategory N admits small limits, then the category FunRUlt(M,N) also admits small

limits, which are preserved by the forgetful functor FunRUlt(M,N) → Fun(M,N).

Construction 8.1.8 (Composition of Right Ultrafunctors). Let M, M′, and M′′ be ultracategories. Let
(F,{γµ}) be a right ultrafunctor from M to M′, and let (F ′,{γ′µ}) be a right ultrafunctor from M′ to

M′′. Then the composite functor F ′ ○F admits a right ultrastructure, which associates to each collection of
objects {Ms}s∈S of M and each ultrafilter µ on S the composite map

∫
S
(F ′ ○ F )(Ms)dµ

γ′µÐ→ F ′(∫
S
F (Ms)dµ)

F ′
(γµ)ÐÐÐÐ→ (F ′ ○ F )(∫

S
Msdµ).

This construction determines a composition law

FunRUlt(M′,M′′) → FunRUlt(M,M′) → FunRUlt(M,M′′).

Remark 8.1.9. We can use Construction 8.1.8 to construct a (strict) 2-category UltR as follows:

● The objects of UltR are ultracategories.
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● For every pair of objects M,N ∈ UltR, the category of morphisms from M to N is given by
FunRUlt(M,N).

● The composition law on UltR is given by Construction 8.1.8.

More informally: UltR is the category whose objects are ultracategories, whose morphisms are right ultra-
functors, and whose 2-morphisms are natural transformations of right ultrafunctors.

We close this section by establishing a counterpart of Proposition 1.4.9:

Proposition 8.1.10. Let M+ and N + be categories which admit small products and let F + ∶ M+ →N + be a
functor which preserves small products. Suppose that M⊆M+ is a full subcategory which has ultraproducts
in M+, that N ⊆ N + is a full subcategory which has ultraproducts in N +, and that F + carries objects of M
to objects of N , so that we can regard F = F +∣M as a functor from M to N . Then:

(i) For every collection of objects {Ms}s∈S of M and every ultrafilter µ on S, there is a unique map
γµ ∶ ∫S F (Ms)dµ→ F (∫S F (Ms)dµ) having the property that, for each subset S0 ⊆ S with µ(S0) = 1,
the diagram

∏s∈S0
F (Ms)

q
S0
µ

��

F +(∏s∈IMs)∼oo

F+
(q
S0
µ )

��
∫S F (Ms)dµ

γµ // F (∫SMsdµ)

commutes (in the category N +).
(ii) The morphisms {γµ} of (i) determine a right ultrastructure on the functor F .

Proof. Assertion (i) follows from the fact that the maps {qS0
µ ∶ ∏s∈S0

F (Ms) → ∫S F (Ms)dµ} exhibit

∫S F (Ms)dµ as a colimit of the diagram {∏s∈S0
F (Ms)}µ(S0)=1 (together with our assumption that F +

commutes with products). To prove (ii), we argue that the morphisms {γµ} satisfy condition (2) of Defini-
tion 8.1.1 (conditions (0) and (1) are immediate from the construction). Fix a collection of objects {Mt}t∈T
ofM indexed by a set T , a collection of ultrafilters {νs}s∈S on T indexed by a set S, and an ultrafilter µ on
the set S. Set λ = ∫S νsdµ. We wish to show that the diagram σ ∶

∫T F (Mt)d(λ)

γλ

��

∆µ,ν● // ∫S(∫T F (Mt)dνs)dµ

∫S γνsdµ

��
∫S F (∫T Mtdνs)dµ

γµ

��
F (∫T Mtdλ)

F (∆µ,ν●) // F (∫S(∫T Mtdνs)dµ)

commutes (in the category N ). Let u, v ∶ ∫T F (Mt)d(λ) ⇉ F (∫S(∫T Mtdνs)dµ) be the maps given by
clockwise and counterclockwise composition around the diagram σ. To show that u = v, it will suffice to
show that u ○ qT0

λ = v ○ qT0

λ for every subset T0 ⊆ T satisfying λ(T0) = 1. Set S0 = {s ∈ S ∶ νs(T0) = 1}, so that
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µ(S0) = 1. Consider the diagram

∫T F (Mt)
∆µ,ν● //

γλ

��

∫S(∫T F (Mt)dνs)dµ

∫S γνsdµ

��

∏s∈S0
(∫T F (Mt)dνs)

q
S0
µ

44

∏s∈S0 γνs

��
∏t∈T0

F (Mt)

{q
T0
νs }s∈S0

44

q
T0
λ

bb

∏s∈S0
F (∫T Mtdνs)

q
S0
µ // ∫S F (∫T Mtdνs)dµ

γµ

��

F +(∏t∈T0
Mt)

∼

OO

F (q
T0
λ

)

uu

F ({q
T0
νs }s∈S)// F +(∏s∈S0

(∫T Mtdνs))

∼

OO

F (q
S0
µ )

**
F (∫T Mtdλ)

F (∆µ,ν●) // F (∫S(∫T Mtdνs)dµ)

in the category N +. Note that the inner region of the diagram commutes by the construction of the maps
γνs , the upper region commutes by the construction of the Fubini transformation for the ultrastructure on
N , the lower region commutes by the construction of the Fubini transformation for the ultrastructure on
M, the region on the left commutes by the construction of γλ, the region on the upper right commutes by
functoriality, and the region on the lower right commutes by the construction of γµ. It follows by a diagram

chase that u ○ qT0

λ = v ○ qT0

λ , as desired. �

Remark 8.1.11. In the situation of Proposition 8.1.10, the maps {γµ} are invertible if and only if the
functor F + satisfies condition (∗) of Proposition 1.4.9. In this case, the right ultrastructure on F given by
Proposition 8.1.10 is given by the image, under the identification of Remark 8.1.3, of of the the ultrastructure
on F supplied by Proposition 1.4.9.

8.2. Ultracategory Envelopes. In this section, we introduce the notion of an ultracategory envelope (Def-
inition 8.2.2), and show that it is equivalent to the notion of a ultracategory introduced in §1. First, we need
some terminology.

Definition 8.2.1. If E is a category which admits finite products, then we say that an object X ∈ E is
coconnected if it is connected when viewed as an object of the opposite category Eop. In other words, we say
that X is coconnected if the functor HomE(●,X) carries finite products in the category E to disjoint unions
in the category of sets. We let Ecc denote the full subcategory of E spanned by the coconnected objects.

Definition 8.2.2. An ultracategory envelope is a category E which satisfies the following axioms:

(E1) The category E admits small products.
(E2) Every object X ∈ E can be written as a (small) product ∏s∈SXs, where each factor Xs is a cocon-

nected object of E .
(E3) The full subcategory Ecc ⊆ E of coconnected objects has ultraproducts in E . In other words, for every

collection {Xs}s∈S of coconnected objects of E and every ultrafilter µ on S, the direct limit

∫
S
Xsdµ = limÐ→

µ(S0)=1

∏
s∈S0

Xs

exists and is a coconnected object of E .

Remark 8.2.3. Let E be an ultracategory envelope and let Ecc ⊆ E be the full subcategory spanned by the
coconnected objects. In what follows, we will always regard Ecc as an ultracategory by equipping it with the
ultrastructure supplied by Proposition 1.3.7.
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Remark 8.2.4. Let M+ be a category and let M⊆M+ be a subcategory which has ultraproducts in M+.
Let E ⊆M+ be the full subcategory spanned by products of objects that belong toM. Then E automatically
satisfies conditions (E1) and (E3) of Definition 8.2.2. If every object of M is coconnected as an object of
E , then E also satisfies (E2) and is therefore an ultracategory envelope. Moreover, in this case, we have
Ecc ≃M.

In §8.4, we will show that every ultracategory M arises (up to equivalence) from the construction of
Remark 8.2.3:

Theorem 8.2.5. Let M be an ultracategory. Then there exists an ultracategory envelope Env(M) and an
equivalence of ultracategories M≃ Env(M)cc.

In the situation of Theorem 8.2.5, we will refer to the category Env(M) as the envelope of M. It is
determined (up to equivalence) by the ultracategory M. This is a consequence of the following universal
property, which we will establish in §8.6:

Theorem 8.2.6. Let E be an ultracategory envelope, let M+ be a category which admits small products,
and let M ⊆ M+ be a full subcategory which has ultraproducts in M+. Let Fun′(E ,M+) denote the full
subcategory of Fun(E ,M+) spanned by those functors F which preserve small products and carry coconnected
objects of E to objects ofM. Then the construction of Proposition 8.1.10 induces an equivalence of categories
Fun′(E ,M+) → FunRUlt(Ecc,M).

It follows from Theorems 8.2.5 and 8.2.6 that the notions of ultracategory and ultracategory envelope are
interchangeable.

Notation 8.2.7. Let E and E ′ be ultracategory envelopes. We say that a functor F ∶ E → E ′ is a functor
of ultracategory envelopes if F preserves small products and carries coconnected objects of E to coconnected
objects of E ′. We let FunEnv(E ,E ′) denote the full subcategory of Fun(E ,E ′) spanned by the functors

of ultracategory envelopes. We let CatEnv denote the (strict) 2-category whose objects are ultracategory

envelopes, where the category of morphisms from E to E ′ in CatEnv is given by FunEnv(E ,E ′). Note that we

can regard CatEnv as a (non-full) subcategory of the 2-category of categories.

Corollary 8.2.8. The construction E ↦ Ecc induces an equivalence of 2-categories CatEnv → UltR; here
CatEnv is the 2-category of ultracategory envelopes (Notation 8.2.7) and UltR is the 2-category of Remark
8.1.9.

Proof. Essential surjectivity follows from Theorem 8.2.5. It will therefore suffice to show that for every
pair of ultracategory envelopes E and E ′, the construction of Proposition 8.1.10 induces an equivalence of
categories FunEnv(E ,E ′) → FunRUlt(Ecc,E ′ cc), which is a special case of Theorem 8.2.6. �

8.3. Application: Classification of Right Ultrafunctors. Let C be a small exact category and let
Funreg(E ,Set) denote the category of regular functors from E to the category of sets. In §2.4, we noted that
a functor F ∶ Funreg(E ,Set) → Set which preserves small products and small filtered colimits admits a unique
ultrastructure (Remark 2.4.6). In this section, we prove a more general form of this result (Corollary 8.3.5),
which we deduce from a more general statement in the setting of right ultrastructures. Our starting point is
the following result, which is obtained by applying Theorem 8.2.6 in the special case M=M+:

Proposition 8.3.1. Let E be an ultracategory envelope and letM be a category which admits small products
and filtered colimits. Then the construction of Proposition 8.1.10 induces an equivalence of categories

Fun∏(E ,M)→ FunRUlt(Ecc,M).
Here Fun∏(E ,M) denotes the full subcategory of Fun(E ,M) spanned by those functors which preserve small
products, and we regard M as endowed with the categorical ultrastructure of Example 1.3.8.

Corollary 8.3.2. LetM be an ultracategory which admits small products. Let N be a category which admits
small products and small filtered colimits, which we endow with the categorical ultrastructure of Example
1.3.8. Then the forgetful functor θ ∶ FunRUlt,∏(M,N) → Fun∏(M,N) is an equivalence of categories. Here



104 ULTRACATEGORIES

Fun∏(M,N) denotes the full subcategory of Fun(M,N) spanned by those functors which preserve small

products, and FunRUlt,∏(M,N) ⊆ FunRUlt(M,N) is defined similarly.

Remark 8.3.3. We can state Corollary 8.3.2 more informally as follows: if M and N are ultracategories
which admit small products, and the ultrastructure on N is categorical, then any functor F ∶ M → N which
preserves small products admits a unique right ultrastructure.

Proof of Corollary 8.3.2. By virtue of Theorem 8.2.5, we may assume without loss of generality thatM= Ecc

for some ultracategory envelope E . In this case, we can use Proposition 8.3.1 to identify θ with the restriction
functor Fun′(E ,N) → Fun∏(Ecc,N), where Fun′(E ,N) is the full subcategory of Fun(E ,N) spanned by those
functors F for which both F and F ∣Ecc preserve small products. To show that θ is an equivalence of categories,
it will suffice to prove the following:

(i) Every functor F0 ∶ Ecc →N admits a right Kan extension F ∶ E → N .
(ii) Let F ∶ E → N be a functor for which the restriction F0 = F ∣Ecc preserves small products. Then F is

a right Kan extension of F0 if and only if F preserves small products.

We first prove (i). Assume that F0 ∶ Ecc → N is a functor which preserves small products, and let X be an

object of E . Then we can factor X as a product ∏Es∈SXs, where each Xs is coconnected and the superscript
indicates that the product is formed in the category E . Since Ecc admits small products, the collection of

objects {Xs}s∈S also admits a product in the subcategory Ecc, which we will denote by ∏E
cc

s∈SXs. We then

have a canonical map u ∶ ∏E
cc

s∈SXs →∏Es∈SXs, and composition with u induces a bijection

HomEcc(Y,∏E
cc

s∈S
Xs) → HomE(Y,∏

E

s∈S
Xs)

for every coconnected object Y ∈ Ecc. It follows that ∏E
cc

s∈SXs is a final object of the category Ecc ×E E/X , so
that the inverse limit

lim←Ð
Y ∈Ecc ×E E/X

F0(Y )

exists and is equivalent to F0(∏E
cc

s∈SXs). This proves (i), and the following version of (ii):
(ii′) A functor F ∶ E → N is a right Kan extension of F0 = F ∣Ecc if and only if, for every collection of

objects {Xs}s∈S of Ecc, the canonical map

F0(∏
E
cc

s∈S
Xs) → F (∏E

s∈S
Xs)

is an isomorphism.

We conclude by observing that if F0 preserves small products, then the criterion of (ii′) is equivalent to the
requirement that F also preserves small products. �

Example 8.3.4. Let M be an ultracategory. Assume that the underlying category of M admits small
products and filtered colimits. Let N = M denote the same category, but equipped with the categorical
ultrastructure of Example 1.3.8. It follows from Corollary 8.3.2 that there is a unique right ultrastructure
on the identity functor id ∶ M ≃ N . For every collection of objects {Ms}s∈S and every ultrafilter µ on S, this
ultrastructure determines a canonical map

γµ ∶ limÐ→
µ(S0)=1

∏
s∈S0

Ms → ∫
S
Msdµ,

where the left hand side is the categorical ultraproduct of Construction 1.2.2 and the right hand side is
supplied by the ultrastructure on M. This map can be described concretely: for example, the composition
(γµ ○ qµ) ∶ ∏s∈SMs → ∫SMsdµ is given by the composition

(∏
s∈S

Ms)
∆µÐÐ→ (∏

s∈S

Ms)µ = ∫
S
(∏
s∈S

Ms)dµ→ ∫
S
Msdµ,

where ∆µ is the ultrapower diagonal of Example 1.3.4.
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Corollary 8.3.5. Let M and N be categories which admit small products and small filtered colimits, and
egard M and N as equipped with the categorical ultrastructures of Example 1.3.8. Let FunUlt,∏(M,N)
denote the full subcategory of FunUlt(M,N) spanned by those functors which preserve small products. Then

the forgetful functor FunUlt,∏(M,N) → Fun(M,N) is a fully faithful embedding, whose essential image is
spanned by those ultrafunctors F ∶ M → N which preserve small products and small filtered colimits.

Remark 8.3.6. Corollary 8.3.5 implies in particular that if F ∶ M → N is a functor which preserves small
products and small filtered colimits, then it admits a unique ultrastructure (namely, the ultrastructure given
by Proposition 1.4.9).

Proof of Corollary 8.3.5. It follows from Corollary 8.3.2 that the forgetful functor θ ∶ FunUlt,∏(M,N) →
Fun(M,N) is fully faithful. Any functor F ∶ M → N belonging to the essential image of θ must preserve
small products (by definition) and small filtered colimits (by Proposition 5.3.4). Conversely, if F ∶ M → N
preserves small products and small filtered colimits, then it admits an ultrastructure by virtue of Proposition
1.4.9, and therefore belongs to the essential image of θ. �

8.4. Construction of the Envelope. Let M be an ultracategory. Our goal in this section is to prove
Theorem 8.2.5, which asserts the existence of an ultracategory envelope Env(M) and an equivalence of
ultracategories M ≃ Env(M)cc. We give a quick proof based on the constructions of §5. However, we also
outline two other constructions of the category Env(M), which are independent of the ideas developed in
§5 (see Remark 8.4.5 and Proposition 8.4.7).

Definition 8.4.1. Let M be an ultracategory. We will say that an object (X,OX) of StoneM is free if it
can be written as a small coproduct of objects of the form M , where M belongs to M. Equivalently, an
object (X,OX) of StoneM is free if it is isomorphic to (βT,OβT ), where OβT is the ultrafunctor associated
by Proposition 4.2.8 to a collection of objects {Mt}t∈T .

We let Env(M) denote the full subcategory of Stoneop
M

spanned by the free objects (X,OX). We will
refer to Env(M) as the envelope of M.

Example 8.4.2. Let Y be a compact Hausdorff space, regarded as an ultracategory having only identity
morphisms. Then the envelope Env(Y ) can be identified with the opposite of the full subcategory of Top/Y

spanned by those continuous maps f ∶ X → Y , where X is a topological space of the form βS, for some set
S; see Example 4.1.4.

Example 8.4.3. Let C be a small pretopos and regard the category of models Mod(C) as endowed with
the ultrastructure of Remark 2.1.2. Then the envelope Env(Mod(C)) can be identified with the smallest full
subcategory of Fun(C,Set) which contains Mod(C) and is closed under small products. This follows from
Theorem 6.3.14. However, it can also be proved directly, by showing that the full subcategory of Fun(C,Set)
generated by Mod(C) under products satisfies the axioms of Definition 8.2.2. The essential observation is

that every model of M of C is coconnected when viewed as an object of Funlex(C,Set) = Pro(C)op (beware
that M is usually not coconnected as an object of the larger category Fun(C,Set)).

Theorem 8.2.5 is a consequence of the following more precise assertion:

Theorem 8.4.4. LetM be an ultracategory. Then the category Env(M) of Definition 8.4.1 is an ultracate-
gory envelope. Moreover, the construction M ↦M induces an equivalence of ultracategoriesM→ Env(M)cc.

Proof. By virtue of Theorem 4.2.7 and Remark 8.2.4, it will suffice to show that for each object M ∈ M, the
object M ∈ Env(M) is coconnected. This is a consequence of Example 5.1.2. �

Remark 8.4.5. Let M be an ultracategory. One we have granted the existence of an envelope Env(M),
it is not difficult to work out the structure of Env(M) directly from the definitions. Note that every object
of Env(M) must factor as a product of objects {Ms}s∈S belonging to M (moreover, this factorization is
essentially unique: see Proposition 8.5.5). Moreover, giving a map from a product ∏t∈T Nt to a product
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∏s∈SMs is equivalent to giving a family of maps {us ∶ ∏t∈T Nt →Ms}s∈S . Each of the maps us then factors
uniquely as a composition

∏
t∈T

Nt
qνsÐÐ→ ∫

T
Ntdνs

gsÐ→Ms

for some morphism gs in the category M (see Lemma 8.6.2). Moreover, the composition law on morphisms
in Env(M) is determined by the ultrastructure on the category M ≃ Env(M)cc. This analysis supplies an
equivalence of Env(M) with a category Env′(M), which can be described explicitly as follows:

● An object of Env′(M) is a set S together with a collection {Ms}s∈S of objects ofM which is indexed
by S. We will denote such an object simply by {Ms}s∈S .

● Let {Ms}s∈S and {Nt}t∈T be objects of Env′(M). A morphism from {Nt}t∈T to {Ms}s∈S is a
collection of pairs {(νs, gs)}s∈S , indexed by S, where each νs is an ultrafilter on T and each gs is a
morphism from ∫T Ntdνs to Ms in the category M.

● Let g ∶ {Nt}t∈T → {Ms}s∈S be a morphism in Env′(M) given by {(νs, gs)}s∈S , and let f ∶ {Ms}s∈S →
{Lr}r∈R be a morphism in Env′(M) given by {(µr, fr)}r∈R. Then the composition (f ○g) ∶ {Nt}t∈T →
{Lr}r∈R is defined to be {(λr, hr)}r∈R, where each λr denotes the ultrafilter on T given by ∫S νsdµr,
and each hr ∶ ∫T Ntdλr → Lr is the morphism given by the composition

∫
T
Ntdλr = ∫

T
Ntd(∫

S
νsdµr)

∆µr,ν●ÐÐÐÐ→ ∫
S
(∫

T
Ntdνs)dµr

∫S gsdµrÐÐÐÐÐ→ ∫
S
Msdµr

frÐ→ Lr.

It is not difficult (albeit somewhat tedious) to prove Theorem 8.2.5 directly by showing that the category
Env′(M) is an ultracategory envelope, and that the construction M ↦ {M} defines an equivalence of
ultracategories from M to the full subcategory of coconnected objects of Env′(M).

Remark 8.4.6. Let us define a quasi-ultracategory to be a categoryM equipped with ultraproduct functors

MS →M {Ms}s∈S ↦ ∫
S
Msdµ,

together with natural transformations

εS,s0 ∶ ∫
S
Msdδs0 ≃Ms0 ∆µ,ν● ∶ ∫

T
Ntd(∫

S
νsdµ) → ∫

S
(∫

T
Ntdνs)dµ,

which are not required to satisfy any further conditions (that is, we omit axioms (A), (B), and (C) of
Definition 1.3.1).

Let us say that a quasi-ultracategory M admits an envelope if it is equivalent (as a quasi-ultracategory)
to the category of coconnected objects Ecc of some ultracategory envelope E . Taken together, Theorem
8.2.5 and Proposition 1.3.7 assert that a quasi-ultracategory M admits an envelope if and only if it is an
ultracategory: that is, if and only if it satisfies axioms (A), (B), and (C). Consequently, any construction
of the envelope of an ultracategory M must make essential use of these axioms at some point. Here it is
instructive to contrast the approaches of Definition 8.4.1 and Remark 8.4.5:

● In the construction of Remark 8.4.5, axioms (A) and (C) are needed immediately to show that the
category Env′(M) is well-defined. In fact, axiom (C) is precisely equivalent to the associativity of
the composition law on Env′(M), and axiom (A) is equivalent to the assertion that, for every object
{Ms}s∈S of Env′(M), the morphism {(δs, εS,s)}s∈S ∶ {Ms}s∈S → {Ms}s∈S is a left unit with respect
to composition (the fact that it is also a right unit follows from Corollary 1.3.6).

● In the construction of Definition 8.4.1, the envelope Env(M) is realized as a full subcategory of
the larger category Stoneop

M
, which is well-defined even if we do not assume that M satisfies axioms

(A), (B), and (C). However, axioms (A) and (C) are needed to construct certain objects of the
category Stoneop

M
(Proposition 4.2.8), and these objects span the full subcategory Env(M) that we

are interested in.

We now give another description of the category Env(M).

Proposition 8.4.7. Let M be an ultracategory which is locally small (that is, for every pair of objects
M,N ∈ M, the collection of morphisms HomM(M,N) is small). Then:
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(1) Let M ∈ M be an object and let hM ∶ M → Set denote the functor corepresented by M , given by the
formula hM(N) = HomM(M,N). Then hM admits a unique right ultrastructure.

(2) The category Env(M)op is equivalent to the smallest full subcategory of FunRUlt(M,Set) which
contains each of the objects corepresentable functors hM (equipped with the right ultrastructures
described by (1)) and is closed under small coproducts.

Proof. Let hM ∶ Env(M) → Set denote the functor represented by the object M ∈ Env(M). Then hM

preserves small products, and therefore determines a right ultrastructure on the restriction hM ≃ hM ∣M (see
Proposition 8.1.10). This proves the existence statement of (1). To prove uniqueness, we observe that any
other right ultrastructure on hM can be obtained by applying the same construction to some other product-
preserving functor F ∶ Env(M) → Set equipped with an isomorphism e ∶ hM ≃ F ∣M (Proposition 8.3.1). By
Yoneda’s lemma, the map e extends uniquely to a natural transformation e ∶ hM → F of set-valued functors
on Env(M). Since e is an isomorphism and the functors hM and F both commute with products, it follows
that e is an isomorphism. This proves the uniqueness statement of (1).

We now prove (2). Using Proposition 8.3.1 again, we can identify FunRUlt(M,Set) with the category

Fun∏(Env(M),Set) of product-preserving functors from Env(M) to the category of sets. We now ob-

serve that the Yoneda embedding Env(M)op → Fun∏(Env(M),Set) is a fully faithful embedding which
preserves small coproducts, and therefore induces an equivalence from Env(M)op to the full subcategory of

Fun∏(Env(M),Set) generated under coproducts by objects of the form hM . �

Remark 8.4.8. In theory, Proposition 8.4.7 supplies a construction of the envelope Env(M) which is
independent of both Definition 8.4.1 and Remark 8.4.5. However, our proof of Proposition 8.4.7 depends
on an assumption that Env(M) already exists. Without the universal property of Proposition 8.3.1, it is

not clear how to work with the category of right ultrafunctors FunRUlt(M,Set) (for example, to show that

coproducts of corepresentable right ultrafunctors exist in FunRUlt(M,Set)).
In the situation of Proposition 8.4.7, one can give a similar description of the larger category CompM ⊇

Env(M)op.

Proposition 8.4.9. Let M be an ultracategory which is locally small. Then the construction (X,OX) ↦
HomCompM(●, (X,OX)) determines a fully faithful embedding

CompM
θÐ→ Fun∏(Env(M),Set) ≃ FunRUlt(M,Set).

Proof. Let (Y,OY ) and (Z,OZ) be objects of CompM and let u ∶ θ(Y,OY ) → θ(Z,OZ) be a natural
transformation of functors from Env(M) to Set. For every morphism ξ ∶ (X,OX) → (Y,OY ) in the category
CompM, where (X,OX) belongs to Env(M)op ⊆ CompM, we let u(ξ) ∶ (X,OX) → (Z,OZ) denote the
image of ξ under u. We wish to show that there is a unique morphism (f,α) ∶ (Y,OY ) → (Z,OZ) in CompM
satisfying u(ξ) = (f,α) ○ ξ for all ξ as above.

For each point x ∈ X, let ξx ∶ ({y},OY,y) ↪ (Y,OY ) be the canonical map, so that u(ξy) ∶ ({y},OY,y) →
(Z,OZ) determines a point f(y) ∈ Z and a morphism αy ∶ OZ,f(y) → OY,y in the ultracategoryM; we regard
{αy}y∈Y as a natural transformation of functors OZ ○f → OY . We will prove the following:

(∗) The pair (f,α) is a morphism from (Y,OY ) to (Z,OZ) in the category CompM. That is, the
function f is continuous and α is a natural transformation of left ultrafunctors.

Assume (∗) for the moment. We will complete the proof of Proposition 8.4.9 by showing that (f,α) is the
unique morphism in CompM satisfying u(ξ) = (f,α) ○ ξ for all ξ ∶ (X,OX) → (Y,OY ) with (X,OX) in
Env(M)op. Uniqueness is clear: by construction, (f,α) is characterized by the requirement that we have an
equality u(ξy) = (f,α) ○ ξy for each y ∈ Y . To show that the equality u(ξ) = (f,α) ○ ξ holds in general, we
can decompose (X,OX) as a coproduct and thereby reduce to the case where (X,OX) =M for some object
M ∈ M. In this case, the map ξ factors uniquely as a composition

M
ξ′Ð→ ({y},OY,y)

ξyÐ→ (Y,OY )
for some point xy ∈ Y , so we can replace ξ by ξy in which case the desired identity holds by construction.
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It remains to prove (∗). Fix a set S and a map g ∶ S → Y . Set (X,OX) = ∐s∈SOY,f(s), where the

coproduct is taken in CompM, so that we can amalgamate the maps ξg(s) to a single map ξ ∶ (X,OX) →
(Y,OY ). Then u(ξ) ∶ (X,OX) → (Z,OZ) is a morphism in CompM. Using Proposition 4.2.9, we can
identify X with the Stone-Čech compactification βS, and OX with the left ultrafunctor of Proposition 4.2.8.
Consequently, the morphism u(ξ) associates to each ultrafilter µ ∈ βS a point h(µ) ∈ Z and a morphism
α′µ ∶ OZ,h(µ) → OX,µ = ∫SOY,f(s) dµ in the ultracategory M. From the functoriality of u, we deduce the
following:

(a) For each ultrafilter µ on S, the point h(µ) ∈ Z is given by f(∫S g(s)dµ), and the map α′µ by the
composition

OZ,h(µ)
α∫S g(s)dµÐÐÐÐÐ→ OY,∫S g(s)dµ

σµÐ→ ∫
S
OY,g(s) dµ,

where σµ is determined by the left ultrastructure on the functor OY .

In particular, we can identify u(ξ) ∶ (X,OX) = ∐s∈SOY,f(s) → (Z,OZ) given by amalgamating the maps

u(ξg(s)) for s ∈ S. This yields a different description of h(µ) and α′µ:

(b) For each ultrafilter µ on S, the point h(µ) ∈ Z is given by ∫S(f ○ g)(s)dµ, and the map α′µ by the
composition

OZ,h(µ) = OZ,∫S(f○g)(s)dµ
σ′µÐ→ ∫

S
OZ,(f○g)(s) dµ

∫S αg(s)dµÐÐÐÐÐÐ→ ∫
S
OY,g(s) dµ,

where σ′µ is determined by the left ultrastructure on the functor OZ .

It follows from (a) and (b) that we have f(∫S g(s)dµ) = ∫S(f ○ g)(s)dµ for every map g ∶ S → X and
every ultrafilter µ on S. That is, f is a morphism of ultrasets, and is therefore continuous (Theorem 3.1.5).
Moreover, (a) and (b) also imply the commutativity of the diagram

OZ,h(z)
σ′µ //

α∫S g(s)dµ

��

∫SOZ,(f○g)(s) dµ

∫S αg(s)dµ

��
OY,∫S g(s)dµ

σµ // ∫SOY,g(s) dµ,

so that α is a natural transformation of left ultrafunctors. �

Example 8.4.10. LetM= {∗} denote a category with a single object and a single morphism. In this case,

the fully faithful embedding CompM ↪ FunRUlt(M,Set) is an equivalence of categories; essential surjectivity
follows from Example 8.1.2 (and Theorem 3.1.5).

8.5. Digression: Categories with Unique Factorization. Let E be an ultracategory envelope, let M+

be a category which admits small products, and letM⊆M+ be a full subcategory which admits categorical
ultraproducts in M+. To prove Theorem 8.2.6, we must show that every right ultrafunctor F ∶ Ecc → M
admits an essentially unique extension to a functor F + ∶ E → M+ which preserves small products. At the
level of objects, it is clear what we need to do: since every object X ∈ E factors as a product of coconnected
objects {Xs}s∈S , the functor F + must satisfy F +(X) ≃ ∏s∈S F (Xs). However, to see that this construction is
functorial, it will be important to know that the factorization X ≃ ∏s∈SXs is essentially unique (Proposition
8.5.5). For the proof, we will not need the full strength of our assumption that E is an ultracategory envelope.

Definition 8.5.1. Let E be a category. We will say that E has unique factorization if it satisfies the following
axioms:

(E1) The category E admits small products.
(E2) Every object X ∈ E can be written as a (small) product ∏s∈SXs, where each factor Xs is a cocon-

nected object of E .

Example 8.5.2. Every ultracategory envelope is a category with unique factorization.
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Example 8.5.3. Let E be any category which admits small products, and let E ′ ⊆ E be the smallest full
subcategory which contains all coconnected objects of E and is closed under products. Then E ′ is a category
with unique factorization.

Example 8.5.4. The category Set admits small coproducts, and a set S is connected (as an object of Set)
if and only if it consists of a single element. Moreover, every set S can be written as a coproduct ∐s∈S{s}
of connected objects of Set. It follows that the opposite category Setop has unique factorization.

However, Setop is not an ultracategory envelope: if µ is an ultrafilter on a set S, then the ultraproduct

∫S{s}dµ (computed in the category Setop) can be described concretely as the the subset of S given the
intersection ⋂µ(S0) S0. If µ is a nonprincipal ultrafilter, then this intersection is the empty set, which is not
a coconnected object of Setop.

Our goal in this section is to prove the following result, which will be needed in the proof of Theorem
8.2.6.

Proposition 8.5.5. Let E be a category with unique factorization (Definition 8.5.1). Suppose we are given
families of coconnected objects {Xs}s∈S and {Yt}t∈T , and let f ∶ ∏s∈SXs →∏t∈T Yt be an isomorphism. Then
there exists a bijection ρ ∶ S ≃ T and a collection of isomorphisms fs ∶Xs ≃ Yρ(s) such that f is the the product

map ∏s∈SXs
{fs}ÐÐ→∏s∈S Yρ(s) ≃ ∏t∈T Yt.

The proof of Proposition 8.5.5 will require a few preliminaries.

Lemma 8.5.6. Let E be a category with unique factorization containing morphisms u ∶ X → X ′ and v ∶
Y → Y ′, and suppose that the product map (u × v) ∶ X × Y → X ′ × Y ′ is an isomorphism. Then u and v are
isomorphisms.

Proof. Fix an object Z ∈ E ; we will show that composition with u and v induce bijections

φ ∶ HomE(X ′, Z) → HomE(X,Z) ψ ∶ HomE(Y ′, Z) → HomE(Y,Z).
Writing Z as a product of coconnected objects, we may assume without loss of generality that Z is cocon-
nected. In this case, the coproduct of the maps φ and ψ (in the category of sets) can be identified with the
map

HomE(X ′ × Y ′, Z) → HomE(X × Y,Z)
given by precomposition with u × v, and is therefore bijective. �

Lemma 8.5.6 immediately implies the following slightly stronger assertion:

Lemma 8.5.7. Let E be a category with unique factorization and let {us ∶ Xs → Ys}s∈S be a collection of
morphisms in E. Suppose that the product map ∏s∈SXs → ∏s∈S Ys is an isomorphism. Then each us is an
isomorphism.

Lemma 8.5.8. Let E be a category with unique factorization, let {Xs}s∈S be a collection of coconnected
objects of E having product X = ∏s∈SXs. Then every direct factor of X has the form ∏s∈I Xs for some
subset I ⊆ S.

Proof. Suppose we are given a pair of maps f ∶X → Y and g ∶X → Z which exhibit X as a product of Y and
Z in the category E . For each s ∈ S, let ps ∶ X → Xs be the projection map. Since each Xs is coconnected,
composition with f and g induce a bijection

HomE(Y,Xs) ∐HomE(Z,Xs) → HomE(X,Xs).

In particular, each of the maps ps factors uniquely either as a composition X
fÐ→ Y

p−sÐ→Xs or X
gÐ→ Z

p+sÐ→Xs.
Let I ⊆ S be the collection of those indices s for which ps factors through f . Then {p−s}s∈I and {p+s}s∉I
induce maps u ∶ Y →∏s∈I Xs and v ∶ Z →∏s∉I Xs, and the product map

(u × v) ∶ Y ×Z →∏
s∈S

Xs

is an isomorphism. Applying Lemma 8.5.6, we deduce that u and v are isomorphisms. �
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Remark 8.5.9. Let E be a category which admits finite products, so that E has a final object 1. Then an
object X ∈ E is coconnected if and only if it satisfies the following pair of conditions:

● The set HomE(1,X) is empty.
● For every pair of objects Y,Z ∈ E , the canonical map

HomE(Y,X) ∐HomE(Z,X) → HomE(Y ×Z,X)

is bijective. In other words, every f ∶ Y ×Z → X factors (uniquely) through either Y or Z (but not
both).

In particular, the final object 1 ∈ E is not coconnected.

Lemma 8.5.10. Let E be a category with unique factorization and let {Xs}s∈S be a collection of coconnected
objects of E having product X = ∏s∈SXs. Then X is coconnected if and only if S is a singleton.

Proof. We will show that if X is coconnected, then S is a singleton (the converse is immediate). We first
note that S is nonempty (since the final object 1 ∈ E is not coconnected; see Remark 8.5.9). If S has more
than one element, then we can write S = I ∐J for nonempty subsets I, J ⊆ S. We then have projection maps
p ∶ X → XI∏s∈I Xs and q ∶ X → XJ = ∏s∈J Xs which exhibit X as a product of XI and XJ . Using the
coconnectivity of X, we deduce that the identity map idX factors (uniquely) through either p or q. Without
loss of generality, we may assume that idX = f ○ p for some map f ∶ XI → X. For each s ∈ J , let gs ∶ Xs → 1
be the projection map. Then the composition

X ≃XI ×∏
s∈J

Xs
f×{gs}ÐÐÐÐ→X ×∏

s∈J

1 ≃X

is the identity map idX . It follows from Lemma 8.5.7 that each gs is an isomorphism. This is a contradiction,
since the objects Xs are coconnected and therefore cannot be final objects of E . �

Proof of Proposition 8.5.5. Let E be a category with unique factorization and let f ∶ ∏s∈SXs ≃ ∏t∈T Yt be an
isomorphism in E , where each Xs and each Yt is coconnected. For each s0 ∈ S, the composition of f−1 with
the projection map ∏s∈SXs → Xs0 exhibits Xs0 as a direct factor of ∏t∈T Yt. It follows from Lemma 8.5.8
that this factor must have the form ∏t∈I Yt, for some subset I ⊆ T . Since Xs0 is coconnected, we must have
I = {ρ(s0)} for some element ρ(s0) ∈ T (Lemma 8.5.10). It follows that f fits into a commutative diagram

∏s∈SXs
f //

��

∏t∈T Yt

��
Xs0

fs // Yρ(s0)

for some isomorphism fs0 ∶Xs0 ≃ Yρ(s0). To complete the proof, it will suffice to show that ρ is bijective. This
follows by the same analysis (with the roles of S and T reversed): for each element t0 ∈ T , the composition

∏s∈SXs
fÐ→ ∏t∈T Yt → Yt0 exhibits Yt0 as a coconnected direct factor of ∏s∈SXs, which is therefore of the

form Xs0 for some unique element s0 ∈ S. �

Remark 8.5.11. Let E be a category with unique factorization. Then, for every pair of objects X,Y ∈ E ,
the projection maps X ← X × Y → Y are epimorphisms in E . In other words, for every object Z ∈ E , the
canonical maps

HomE(X,Z) iÐ→ HomE(X × Y,Z) j←Ð HomE(Y,Z).

To prove this, we can factor Z as a product of coconnected objects and thereby reduce to the case where Z
is coconnected. In this case, i and j are inclusions of complementary summands (Remark 8.5.9).
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8.6. The Proof of Theorem 8.2.6. We begin with some general observations concerning ultracategory
envelopes.

Remark 8.6.1. Let E be an ultracategory envelope, and suppose we are given a collection of coconnected
objects {Xs}s∈S indexed by a set S. For each ultrafilter µ on S, we let

∫
S
Xsdµ ≃ limÐ→

µ(S0)=1

∏
s∈S0

Xs.

denote the categorical ultraproduct of Construction 1.2.2. For each subset S0 ⊆ S, the canonical map

∏s∈SXs → ∏s∈S0
Xs is projection onto a direct factor, and is therefore an epimorphism in E (Remark

8.5.11). Passing to the direct limit, we see that the map qµ ∶ ∏s∈SXs↠ ∫SXsdµ of Notation 1.2.3 is also an
epimorphism in E .

Lemma 8.6.2. Let E be an ultracategory envelope, let {Xs}s∈S be a collection of coconnected objects of E,
and let Y be another coconnected object of E. Then composition with the maps qµ ∶ ∏s∈SXs ↠ ∫SXsdµ of
Notation 1.2.3 induces a bijection

∐
µ∈βS

HomEcc(∫
S
Xsdµ,Y ) → HomE(∏

s∈S

Xs, Y ).

In other words, every morphism ∏s∈SXs → Y factors uniquely through qµ ∶ ∏s∈SXs ↠ ∫SXsdµ for some
uniquely determined ultrafilter µ on S.

Proof. For each subset S0 ⊆ S, set XS0 = ∏s∈S0
Xs. Our assumption that Y is coconnected guarantees that

the map

HomE(XS0 , Y )∐HomE(XS∖S0 , Y ) → HomE(XS , Y )
is bijective. In particular, every map f ∶ XS → Y factors through exactly one of the projection maps
XS0 ↞XS ↠XS∖S0 . It follows that the map

µ ∶ P (S) → {0,1} µ(S0) =
⎧⎪⎪⎨⎪⎪⎩

1 if f factors through XS ↠XS0

0 otherwise.

is an ultrafilter on S, which is uniquely determined by the requirement that f factors through the map
qµ ∶XS ↠ lim←Ðµ(S0)=1

XS0 = ∫SXsdµ. �

From Lemma 8.6.2, we can immediately deduce a weak version of Theorem 8.2.6.

Proposition 8.6.3. Let E be an ultracategory envelope, let M+ be a category, and let M ⊆ M+ be a full
subcategory which has ultraproducts in M+. Then the functor Fun′(E ,M+) → FunRUlt(Ecc,M) of Theorem
8.2.6 is fully faithful.

Proof. Let F +,G+ ∶ E → M+ be functors which preserve small products and carry Ecc into M and let
α ∶ F → G be a natural transformation. We wish to show that if α is a natural transformation of right
ultrafunctors, then it extends uniquely to a natural transformation between F + and G+.

For each object X ∈ E , choose a set S(X) and a collection of maps {pX,s ∶ X → Xs}s∈S(X) which exhibit
X as a product of coconnected objects Xs of E (by virtue of Proposition 8.5.5, this product decomposition
is essentially unique; however, we do not yet need to know this). Since the functor G+ preserves products,
there is a unique map α+(X) ∶ F +(X) → G+(X) which fits into a commutative diagram

F +(X)

α+(X)

��

{F+
(pX,s)}s∈S(X)// ∏s∈S(X) F (Xs)

∏s∈S(X) α(Xs)

��
G+(X)

{G+
(pX,s)}s∈S(X)// ∏s∈S(X)G(Xs).



112 ULTRACATEGORIES

It is clear that if α extends to a natural transformation from F + to G+, then the extension must be given by
X ↦ α+(X). Moreover, from the uniqueness of α+(X) (and the naturality of α) we see that α+(X) = α(X)
when X is coconnected. It will therefore suffice to show that α+ is a natural transformation. That is, we
must show that for any morphism f ∶X → Y in the category E , the left square in the diagram

F +(X)
F+

(f) //

α+(X)

��

F +(Y )
{F+

(pY,t)}t∈S(Y ) //

α+(X)

��

// ∏t∈S(Y ) F (Yt)

{α(Yt)}

����
G+(X)

G+
(f) // G+(Y )

{G+
(pY,t)}t∈S(Y ) // ∏t∈S(Y )G(Yt)

commutes. Since the right square commutes by construction and the horizontal maps on the right are
bijective, it will suffice to show that the outer square commutes: that is, for each t ∈ S(Y ), we have a
commutative diagram σ ∶

F +(X)
F+

(ft) //

α+(Y )

��

F (Yt)

α(Yt)

��
G+(X)

G+
(ft) // G(Yt),

where ft denotes the composition pY,t ○ f . Using Lemma 8.6.2, we see that ft factors (uniquely) as a

composition X
qµÐ→ ∫S(X)

Xsdµ
f0Ð→ Yt for some ultrafilter µ on the set S(X). Unwinding the definitions, we

can identify σ with the outer rectangle in the diagram

∏s∈S(X) F (Xs)
qµ //

∏s∈S(X) α(Xs)

��

∫S(X)
F (Xs)dµ //

∫S(X) α(Xs)dµ

��

F (∫S(X)
Xsdµ)

F (f0) //

α(∫S(X)Xsdµ)

��

F (Yt)

α(Yt)

��
∏s∈S(X)G(Xs)

qµ // ∫S(X)
G(Xs)dµ // G(∫S(X)

Xsdµ)
G(f0) // G(Yt).

Here the left square commutes by the functoriality of the ultraproduct construction, the right square com-
mutes by the naturality of α, and the middle square commutes by virtue of our assumption that α is a
natural transformation of right ultrafunctors. �

To complete the proof of Theorem 8.2.6, it will suffice to prove the following:

Proposition 8.6.4. Let E be an ultracategory envelope, let M+ be a category, and let M ⊆ M+ be a full
subcategory which has ultraproducts in M+. Let F ∶ Ecc → M be a right ultrafunctor. Then there exists
a functor F + ∶ E → M+, which preserves small products and carries Ecc into M, and an isomorphism
α ∶ F +∣Ecc ≃ F of right ultrafunctors from Ecc to M.

The proof of Proposition 8.6.4 requires a straightforward but somewhat lengthy construction. For the
remainder of this section, we fix an ultracategory envelope E , a categoryM+ which admits small products, a
full subcategoryM⊆M+ which admits categorical ultraproducts inM+, and a right ultrafunctor (F,{γµ})
from Ecc to M.

Construction 8.6.5 (The Functor F + on Objects). For each object X ∈ E , choose a collection of maps
{pX,s ∶ X → Xs}s∈S(X) which exhibit X as a product of coconnected objects Xs of E (as in the proof of

Proposition 8.6.3). We let F +(X) denote a product ∏s∈S(X) F (Xs), formed in the category M+. Note that

when X is coconnected, then S(X) is a singleton (Lemma 8.5.10) so we can arrange that F +(X) belongs to
M.
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Notation 8.6.6. Let f ∶X → Y be a morphism in the category E , where Y is coconnected. It follows from
Lemma 8.6.2 that f factors uniquely as a composition

X ≃ ∏
s∈S(X)

Xs

qµfÐÐ→ ∫
S(X)

Xsdµf
f0Ð→ Y

for some uniquely determined ultrafilter µf on S(X). Let ϕf ∶ F +(X) → F (Y ) denote the morphism inM+

given by the composition

F +(X) = ∏
s∈S(X)

F (Xs) → ∫
S(X)

F (Xs)dµf
γµfÐÐ→ F (∫

S(X)
Xsdµf)

F (f0)ÐÐÐ→ F (Y ).

Example 8.6.7. Let X be an object of E and take f ∶X → Y to be the projection map pX,s0 ∶X →Xs0 for
some s0 ∈ S(X). In this case, the map ϕf ∶ F +(X) → F (Y ) = F (Xs0) of Notation 8.6.6 is defined to be the
composition

F +(X) = ∏
s∈S(X)

F (Xs) → ∫
S(X)

F (Xs)dδs0
γδs0ÐÐ→ F (∫

S(X)
Xsdδs0)

F (εS(X),s0)ÐÐÐÐÐÐ→ (F (Xs0)),

where εS(X),s0 ∶ ∫S(X)
Xsdδs0 ≃ Xs0 is the isomorphism of Example 1.2.7. Using condition (1) of Definition

8.1.1, we can rewrite this composition as

F +(X) = ∏
s∈S(X)

F (Xs) → ∫
S(X)

F (Xs)dδs0
εS(X),s0ÐÐÐÐ→ F (Xs0),

which coincides with the projection map ∏s∈S(X) F (Xs) → F (Xs0).

Remark 8.6.8. Suppose that we are given a composable pair of morphisms X
fÐ→ Y

gÐ→ Z in the category E ,
where both Y and Z are coconnected. Then the morphism ϕg○f ∶ F +(X) → F (Z) of Notation 8.6.6 factors
as a composition F (g) ○ ϕf .

To define the functor F + on morphisms, we will prove the following:

Lemma 8.6.9. Let f ∶ X → Y be a morphism in E. Then there is a unique morphism F +(f) ∶ F +(X) →
F +(Y ) in the category M+ with the following property:

(∗) For every morphism g ∶ Y → Z in E, where Z is coconnected, the diagram

F +(X)

ϕg○f $$

F+
(f) // F +(Y )

ϕgzz
F (Z)

commutes.

Proof. For each s ∈ S(Y ), let fs ∶ X → Ys denote the composition X
fÐ→ Y

pY,sÐÐ→ Ys. Using Lemma 8.6.2, we
see that fs factors as a composition

X = ∏
t∈S(X)

Xt

qνsÐÐ→ ∫
S(X)

Xtdνs
fsÐ→ Ys,

for some uniquely determined ultrafilter νs on S(X) and morphism fs ∶ ∫S(X)
Xtdνs → Ys between cocon-

nected objects of E . Let us define F +(f) to be the unique morphism from F +(X) to F +(Y ) having the
property that, for each s ∈ S(Y ), the composite map

F +(X) F+
(f)ÐÐÐ→ F +(Y ) = ∏

s′∈S(Y )

F (Ys′) → F (Ys)

coincides with ϕfs . It follows from Example 8.6.7 that F +(f) is the unique morphism from F +(X) to F +(Y )
which satisfies condition (∗) in those cases where g ∶ Y → Z is one of the projection maps pY,s ∶ Y → Ys.
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To complete the proof, we must show that the morphism F +(f) satisfies condition (∗) for any morphism
g ∶ Y → Z, where Z is coconnected. Using Lemma 8.6.2, we can factor the morphism g as a composition

Y = ∏
s∈S(Y )

Ys
qµÐ→ ∫

S(Y )
Ysdµ

g0Ð→ Z

for some ultrafilter µ on S(Y ). By virtue of Remark 8.6.8, we may replace the map g ∶ Y → Z with the
epimorphism qµ ∶ ∏s∈S(Y ) Ys↠ ∫S(Y )

Ysdµ, and thereby reduce to the case where g0 is the identity map. Let

λ denote the ultrafilter on S(X) given by ∫S(Y )
νsdµ, so that g ○ f is given by the composition

X = ∏
t∈S(X)

Xt
qλÐ→ ∫

S(X)
Xtdλ

∆µ,ν●ÐÐÐ→ ∫
S(Y )

(∫
S(X)

Xtdνs)dµ
∫S(Y ) fsdµÐÐÐÐÐÐ→ ∫

S(Y )
Ysdµ,

where ∆µ,ν● is the Fubini transformation of Notation 1.2.9. It follows that ϕg○f is given by the clockwise
composition in the diagram

∏t∈S(X) F (Xt)
qλ //

{qνs}s∈S(Y )

��

∫S(X)
F (Xt)dλ

γλ //

∆µ,ν●

��

F (∫S(X)
Xtdλ)

F (∆µ,ν●)

��

∏s∈S(Y ) ∫S(X)
F (Xt)dνs

qλ //

∏s∈S(Y ) γνs

��

∫S(Y )
(∫S(X)

F (Xt)dνs)dµ

∫S(Y ) γνsdµ

��
∏s∈S(Y ) F (∫S(X)

Xtdνs)

∏s∈S(Y ) F (fs)

��

qλ // ∫S(Y )
F (∫S(X)

Xtdνs)dµ)
γµ //

∫S(Y ) F (fs)dµ

��

F (∫S(Y )
(∫S(X)

Xtdνs)dµ)

F (∫S(Y ) fsdµ)

��
∏s∈S(Y ) F (Ys)

qλ // ∫S(Y )
F (Ys)dµ

γµ // F (∫S(Y )
Ysdµ),

while the counterclockwise composition coincides with ϕg ○ F +(f). It will therefore suffice to show that the
diagram commutes. Here the commutativity is immediate except for the rectangle in the upper right, which
commutes by virtue of the compatibility of the maps γ with the ultrapower diagonals in the categories Ecc

and M (condition (2) of Definition 8.1.1). �

Let f ∶ X → Y and g ∶ Y → Z be a pair of morphisms in the category E . It follows immediately from

the definitions that the composite map F +(X) F+
(f)ÐÐÐ→ F +(Y ) F+

(g)ÐÐÐ→ F +(Z) satisfies condition (∗) of Lemma
8.6.9, and therefore coincides with F +(g ○ f). Similarly, for each object X ∈ E , the identity map idF+(X)

satisfies condition (∗) of Lemma 8.6.9, and therefore coincides with F +(idX). Consequently, we can regard
Construction 8.6.5 and Lemma 8.6.9 as defining a functor F + ∶ E →M+.

Notation 8.6.10. For each coconnected object X of E , let αX ∶ F +(X) → F (X) denote the morphism ϕidX

of Notation 8.6.6.

Lemma 8.6.11. The construction X ↦ αX of Notation 8.6.10 determines a natural isomorphism of functors
F +∣Ecc ≃ F .

Proof. We first note that X is a coconnected object of E , then the set S(X) has a single element s (Lemma
8.5.10) and the projection map pX,s ∶X →Xs is an isomorphism. It follows from Example 8.6.7 and Remark
8.6.8 that the map αX ∶ F +(X) = Xs → X is the inverse isomorphism p−1

X,s. To complete the proof, it will
suffice to show αX is natural in X: that is, for every morphism f ∶ X → Y between coconnected objects of
E , we have a commutative diagram

F +(X)
F+

(f) //

αX

��

F +(Y )

αY

��
F (X)

F (f) //// F (Y ).
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The clockwise composition coincides with ϕf by virtue of condition (∗) of Lemma 8.6.9, and the counter-
clockwise composition coincides with ϕf by Remark 8.6.8. �

Lemma 8.6.12. The functor F + ∶ E →M+ preserves small products.

Proof. Since E is an ultracategory envelope, every object of E can be decomposed as a product of coconnected
objects. It will therefore suffice to show that the functor F + preserves products of coconnected objects.
Suppose we are given a collection of maps {ui ∶ X → Xi}i∈I which exhibit X as a product of the objects
Xi; we wish to show that the maps F +(ui) ∶ F +(X) → F +(Xi) exhibit F +(X) as a product of the objects
{F +(Xi)}i∈I . By virtue of Proposition 8.5.5, we may assume without loss of generality that I = S(X) and
each us is the projection map pX,s ∶ X → Xs chosen in Construction 8.6.5. In this case, we can identify
F +(us) with the composition

F +(X) = ∏
s′∈S(X)

Xs′ →Xs

α−1XsÐÐ→ F +(Xs),

from which the desired result is immediate. �

Proof of Proposition 8.6.4. The functor F + ∶ E → M+ carries Ecc into M by construction, and preserves
small products by Lemma 8.6.12. Using Remark 1.4.10, we can regard F +∣Ecc as a right ultrafunctor from
Ecc toM. To complete the proof, it will suffice to show that α is a natural isomorphism of right ultrafunctors.
In other words, we wish to show that for every collection of coconnected objects {Xt}t∈T of E and every
ultrafilter µ on T , the diagram

∫T F (Xt)dµ

γµ

��

∫T α
−1
Xt
dµ
// ∫T F +(Xt)dµ

γ′µ

��
F (∫T Xtdµ)

α−1
∫T Xtdµ // F +(∫T Xtdµ)

commutes, where γ′µ is determined by the right ultrastructure structure on F +∣Ecc,op .

Writing the ultraproduct ∫T F +(Xt)dµ as a filtered colimit of products ∏t∈T0
F +(Xt), we are reduced to

proving an equality

γ′µ ○ (∫
T
α−1
Xtdµ) ○ q

T0
µ = α−1

∫T Xtdµ
○ γµ ○ qT0

µ

for each T0 ⊆ T with µ(T0) = 1. Set Y = ∏t∈T0
Xt, where the product is formed in the category E . Using

Proposition 8.5.5, we can choose a bijection ρ ∶ S(Y ) ≃ T0 such that each of the projection maps Y →
∏t∈T0

Xt →Xρ(s) factors as a composition Y
pY,sÐÐ→ Ys

usÐ→Xρ(s), where us is an isomorphism. Since µ(T0) = 1,
we can write µ as the pushforward ρ∗(µ0) for some ultrafilter µ0 on the set S(Y ). Consider the diagram

∏s∈S(Y ) F (Ys)
∏s∈S(Y ) F (us)

∼
//

qµ0

��

∏t∈T0
F (Xt)

∏t∈T0 α
−1
Xt //

q
T0
µ

��

∏t∈T0
F +(Xt)

q
T0
µ

��
∫S(Y )

F (Ys)dµ0

γµ0

��

∫S(Y ) F (us)dµ0

∼
// ∫T F (Xt)dµ

γµ

��

∫T α
−1
Xt
dµ
// ∫T F +(Xt)dµ

γ′µ

��
F (∫S Ysdµ0)

F (∫S(Y ) usdµ0

∼
// F (∫T Xtdµ)

α−1
∫T Xtdµ // F +(∫T Xtdµ).

Note that the composition of the horizontal maps at the top of the diagram can be identified with the
comparison isomorphism F +(Y ) = F +(∏t∈T0

Ys) → ∏t∈T0
F +(Xt). Invoking the definition of γ′µ, we see that

clockwise composition around the diagram yields the map F +(qT0
µ ) ∶ F +(Y ) = F +(∏t∈T0

Xt) → F +(∫T Xtdµ).
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On the other hand, counterclockwise composition yields the morphism α−1

∫T Xtdµ
○ϕv, where ϕv is defined as

in Notation 8.6.6. Using condition (∗) of Lemma 8.6.9, we deduce that the outer square of this diagram
commutes. Consequently, to show that the rectangle on the right side commutes, it will suffice to show that
the two squares on the right commute. Taking inverses of the horizontal maps and noting that we can write
µ = ρ∗(µ0) = ∫S(Y )

δρ(s)dµ0, we are reduced to proving the commutativity of the diagram

∏s∈S(Y ) F (Ys)

qµ0

��

∏t∈T0
F (Xs)

∏F (u−1s )oo

q
T0
µ

��
∫S(Y )

F (Ys)dµ0

γµ0

��

∫S(Y )
F (Xρ(s))dµ0

∫S(Y ) F (us)dµ0

∼
oo

γµ0

��

∫T F (Xt)dµ∼

∆µ0,ρoo

γµ

��
F (∫S(Y )

Ysdµ0) F (∫S(Y )
Xρ(s)dµ0)

F (∫S(Y ) usdµ0)

∼
oo F (∫T Xtdµ);∼

F (∆µ0,ρ
);

oo

here ∆µ0,ρ denotes the ultraproduct diagonal of Notation 1.3.3, so the lower right square commutes by virtue
of our assumption that the maps {γν} comprise a right ultrastructure on F . �

In this appendix, we review some well-known concepts and results from category theory and sheaf theory
which are needed in the body of this paper. Since these ideas are treated extensively elsewhere in the
literature, our exposition is somewhat terse.

Appendix A. Category Theory

A.1. Regular Categories.

Definition A.1.1. Let C be a category which admits fiber products, and suppose we are given a morphism
f ∶ X → Y in C. Let X ×Y X denote the fiber product of X with itself over Y , and let π,π′ ∶ X ×Y X → X
denote the projection maps onto the two factors. We will say that f is an effective epimorphism if it exhibits
Y as a coequalizer of the maps π,π′ ∶ X ×Y X ⇉ X. In other words, f is an effective epimorphism if, for
every object Z ∈ C, composition with f induces a bijection

HomC(Y,Z) ≃ {u ∈ HomC(X,Z) ∶ u ○ π = u ○ π′}.

Remark A.1.2. Let C be a category which admits fiber products. Then every effective epimorphism is an
epimorphism. In the category of sets, the converse is true: if g ∶ X → Y is a surjective map of sets, then
we can recover Y as the quotient of X by the equivalence relation R = X ×Y X = {(x,x′) ∶ g(x) = g(x′)}.
However, this need not be true in a general category.

Definition A.1.3. Let C be a category. We will say that C is regular if the following conditions are satisfied:

(R1) The category C admits finite limits.

(R2) Every morphism f ∶X → Z in C can be written as a composition X
g↠ Y

h↪ Z, where g is an effective
epimorphism and h is a monomorphism.

(R3) The collection of effective epimorphisms in C is closed under pullbacks. That is, if we are given a
pullback diagram

X ′ //

f ′

��

X

f

��
Y ′ // Y

in C where f is an effective epimorphism, the morphism f ′ is also an effective epimorphism.

In the situation of Definition A.1.3, the factorization demanded by (R2) is depends functorially on the
morphism f ∶X → Z.
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Proposition A.1.4. Let C be a category which admits fiber products, and suppose we are given a commutative
square

X

p

��

f // U

j

��
Y

g //

h

>>

V.

If p is an effective epimorphism and j is a monomorphism, then there exists a unique morphism h ∶ Y → U
(as indicated by the dotted arrow) satisfying j ○ h = g and h ○ p = f .

Proof. Let π,π′ ∶X ×Y X ⇉X be the projection maps. Then we have

j ○ f ○ π = h ○ p ○ π = h ○ p ○ π′ = j ○ f ○ π′.

Since j is a monomorphism, it follows that f ○π = f ○π′. Our assumption that p is an effective epimorphism
then guarantees that there is a unique morphism h ∶ Y → U satisfying h ○ p = f . We will complete the
proof by showing that j ○ h = g. Since p is an epimorphism (Remark A.1.2), this follows from the identity
j ○ h ○ p = j ○ f = g ○ p. �

It follows from Proposition A.1.4 that if C is a category which admits pullbacks and satisfies axiom (R2) of
Definition A.1.3, then the collections of monomorphisms and effective epimorphisms comprise a factorization
system on the category C. In particular, we have the following consequences:

Corollary A.1.5. Let C be a category which admits pullbacks and which satisfies condition (R2) of Definition

A.1.3. Then, for every morphism f ∶X → Z in C, the factorization X
g↠ Y

h↪ Z of condition (R2) is unique
up to (unique) isomorphism.

Proof. Suppose we are given another factorization X
g′↠ Y ′ h

′

↪ Z, where g′ is an effective epimorphsim and
h′ is a monomorphism. Invoking Proposition A.1.4, we deduce that there exists a unique map u ∶ Y → Y ′

for which the diagram

X

f

��

f ′ // Y ′

g′

��
Y

u

>>

g // Z

commutes. Similarly, there is a unique morphism v ∶ Y ′ → Y for which the diagram

X

f ′

��

f // Y

g

��
Y ′

v

>>

g′ // Z.

The uniqueness assertion of Proposition A.1.4 then guarantees that u ○ v = idY ′ and v ○ u = idY . �

Notation A.1.6. In the situation of Corollary A.1.5, the monomorphism h ∶ Y ↪ Z exhibits Y as a subobject
of Z, which we will denote by Im(f) and refer to as the image of f . It follows from Proposition A.1.4 that
the image Im(f) depends functorially on the morphism f . More precisely, every commutative diagram

X
f //

��

Z

��
X ′

f ′ // Z ′
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induces a map v ∶ Im(f) → Im(f ′), which is determined by the requirement that the diagram

X //

��

Im(f) //

v

��

Z

��
X ′ // Im(f ′) // Z ′

commutes.

Remark A.1.7. Let C be a category which admits pullbacks, satisfying condition (R2) of Definition A.1.3.
Let f ∶X → Y be a morphism in C. Then:

(a) The morphism f is an effective epimorphism if and only if the induced map Im(f) ↪ Y is an
isomorphism.

(b) The morphism f is a monomorphism if and only if the induced map X ↠ Im(f) is an isomorphism.

Proposition A.1.8. Let C be a category which admits pullbacks. Suppose that the collection of effective
epimorphisms in C is closed under pullbacks (Definition A.1.3). Then the collection of effective epimorphisms
in C is closed under composition.

Proof. Let f ∶ X ↠ Y and g ∶ Y ↠ Z be effective epimorphisms in C; we wish to show that the composite
map g ○ f ∶ X → Z is also an effective epimorphism. Let π,π′ ∶ X ×Z X → X denote the projection maps,
and suppose we are given a morphism u ∶ X → C satisfying u ○ π = u ○ π′. We wish to show that there
exists a unique morphism w ∶ Z → C such that u = w ○ g ○ f . The uniqueness of w is clear (since f and g
are epimorphisms; see Remark A.1.2). To prove existence, we first observe that u coequalizes the projection
maps X ×Y X ⇉ X. Invoking our assumption that f is an effective epimorphism, we deduce that there is
a unique map v ∶ Y → C satisfying u = v ○ f . It will therefore suffice to prove that we can write v = w ○ g
for some map w ∶ Z → C. Since g is an effective epimorphism, this is equivalent to showing that the map v
coequalizes the projection maps π,π′ ∶ Y ×Z Y → Y . Let F ∶ X ×Z X → Y ×Z Y denote the map induced by
F , so that we have equalities

v ○ π ○ F = v ○ f ○ π = u ○ π = u ○ π′ = v ○ f ○ π′ = v ○ π′ ○ F.
It will therefore suffice to show that the morphism F is an epimorphism. In fact, we can write F as a
composition of morphisms

X ×Z X →X ×Z Y → Y ×Z Y,
each of which is a epimorphism because it is a pullback of f (hence an effective epimorphism). �

Remark A.1.9. One can also prove the following variant of Proposition A.1.8: if C is a category with fiber
products which satisfies axiom (R2) of Definition A.1.3, then the collection of effective epimorphisms in C
is closed under composition. This follows from the observation that the collections of monomorphisms and
effective epimorphisms determine a factorization system on C (and are therefore closed under composition).

Corollary A.1.10. Let C be a regular category, and suppose we are given a pair of effective epimorphisms
f ∶ C ↠ D and f ′ ∶ C ′ ↠ D′ in C. Then the product map (f × f ′) ∶ C × C ′ → D ×D′ is also an effective
epimorphism.

Proof. The product map f × f ′ can be written as a composition

C ×C ′ f×idC′ÐÐÐÐ→D ×C ′ idD ×f ′ÐÐÐÐ→D ×D′.

Each of these maps is an effective epimorphism (the first because it is a pullback of f , and the second
because it is a pullback of f ′). Since the collection of effective epimorphisms in C is closed under composition
(Proposition A.1.8), it follows that f × f ′ is also an effective epimorphism. �

Proposition A.1.11. Let C be a category which admits pullbacks and satisfies condition (R2) of Definition
A.1.3. Then C satisfies condition (R3) of Definition A.1.3 if and only if it satisfies the following variant:
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(∗) The formation of images in C is compatible with pullback. That is, for every pullback diagram

X
f //

��

Z

��
X ′

f ′ // Z ′

in C, the induced diagram τ ∶
Im(f) //

��

Z

��
Im(f ′) // Z ′

is also a pullback square.

Proof. Form a commutative diagram

X
g //

��

Im(f ′) ×Z′ Z
h //

��

Z

��
X ′

g′ // Im(f ′) h′ // Z ′

where g′ is an effective epimorphism, h′ is a monomorphism, and the right square is a pullback. Then h
is also a monomorphism. Since the outer rectangle is a pullback, it follows that the left square is also a
pullback. If condition (R3) is satisfied, then g is an effective epimorphism. It follows that we can identify τ
with the right square of the preceding diagram, so that τ is a pullback square and (∗) is also satisfied. For
the converse, suppose that (∗) is satisfied and that we are given a pullback diagram

X ′ //

f ′

��

X

f

��
Y ′ // Y

where f is an effective epimorphism. Then the monomorphism Im(f) ↪ Y is an isomorphism (Remark
A.1.7). Using (R3), we conclude that the monomorphism Im(f ′) ↪ Y ′ is also an isomorphism, so that f ′ is
an effective epimorphism as desired. �

A.2. Exact Categories.

Definition A.2.1. Let C be a category which admits finite limits and let X be an object of C. We say that
a subobject R ⊆ X ×X is an equivalence relation on X if, for every object Y ∈ C, the image of the induced
map

HomC(Y,R) → HomC(Y,X ×X) ≃ HomC(Y,X) ×HomC(Y,X)
is an equivalence relation on the set HomC(Y,X).

Example A.2.2. Let C be a category which admits finite limits and let f ∶ X → Y be a morphism in C.
Then the fiber product X ×Y X can be regarded as an equivalence relation on the object X.

Definition A.2.3. Let C be a category which admits finite limits and let X be an object of C. We will say
that an equivalence relation R on X is effective if there exists an effective epimorphism f ∶X ↠ Y such that
R =X ×Y X (as subobjects of X ×X).

Notation A.2.4. Let C be a category which admits finite limits, let X be an object of C, and let R be
an effective equivalence relation on X. Then there exists an effective epimorphism f ∶ X → Y in C such
that R = X ×Y X. The assumption that f is an effective epimorphism then implies that it exhibits Y as
the coequalizer of the diagram R ⇉ X. In particular, Y is determined (up to unique isomorphism) by the
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equivalence relation R; we will emphasize this dependence by denoting Y by X/R. It follows the construction
R ↦X/R induces a bijection

{Effective equivalence relations R ⊆X ×X}

∼

��
{Effective epimorphisms f ∶X ↠ Y }/isomorphism;

the inverse bijection carries an effective epimorphism f ∶ X → Y to the equivalence relation X ×Y X of
Example A.2.2.

Proposition A.2.5. Let C be a regular category, let X be an object of C, and let R ⊆X×X be an equivalence
relation on X. The following conditions are equivalent:

(1) The equivalence relation R is effective.
(2) There exists a morphism f ∶X → Y such that R =X ×Y X (as a subobject of X ×X).

Proof. The implication (1) ⇒ (2) is immediate. For the converse, suppose that R = X ×Y X for some

morphism f ∶X → Y . Since C is regular, the morphism f factors as a composition X
g↠ Im(f) h↪ Y , where g

is an effective epimorphism and h is a monomorphism. The desired conclusion follows from the observation
that R can also be identified with the fiber product X ×Im(f) X. �

Definition A.2.6. Let C be a category. We say that C is exact if it satisfies the following axioms:

(R1) The category C admits finite limits.
(R2′) Every equivalence relation on an object X ∈ C is effective.
(R3) The collection of effective epimorphisms in C is closed under pullbacks. That is, if we are given a

pullback diagram

X ′ //

f ′

��

X

f

��
Y ′ // Y

in C where f is an effective epimorphism, the morphism f ′ is also an effective epimorphism.

Example A.2.7. The category of sets is exact.

Proposition A.2.8. Let C be a category. If C is exact (in the sense of Definition A.2.6), then it is regular
(in the sense of Definition A.1.3).

The proof requires the following elementary observation:

Lemma A.2.9. Let C be a category which admits fiber products. Suppose we are given a pullback diagram

X ′
f ′ //

g′

��

Y ′

g

��
X

f // Y

in C, where both f and f ′ are effective epimorphisms. If g′ is an isomorphism, then g is also an isomorphism.

Proof. We have a commutative diagram

X ′ ×Y ′ X ′ ////

��

X ′ //

g′

��

Y ′

g

��
X ×Y X //// X // Y

where the rows are coequalizer diagrams and the left and middle vertical maps are isomorphisms. It follows
that g is an isomorphism as well. �
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Proof of Proposition A.2.8. We must show that C satisfies axiom (R2) of Definition A.1.3. Let f ∶ X → Z
be a morphism in C, and let R = X ×Z X be the equivalence relation of Example A.2.2. Since C is exact,
the equivalence relation R is effective. We can therefore choose an effective epimorphism g ∶ X ↠ Y such
that R coincides with X ×Y X (as subobjects of X ×X). Our assumption that g is an effective epimorphism
guarantees that it exhibits Y as a coequalizer of the diagram R ⇉ X. Consequently, there is a unique
morphism h ∶ Y → Z satisfying h ○ g = f . To complete the proof, it will suffice to show that h is a
monomorphism: that is, that the diagonal map δ ∶ Y → Y ×Z Y is an isomorphism. We have a commutative
diagram of pullback squares

X ×Y X δ′ //

��

X ×Z X //

��

X ×X
g×g

��
Y

δ // Y ×Z Y // Y × Y.

Since g is an effective epimorphism, axiom (R3) of Definition A.2.6 and Proposition A.1.8 guarantee that
the vertical maps in the above diagram are effective epimorphisms. Since X ×Z X and X ×Y X are both
equal to R as subobjects of X ×X, the map δ′ is an isomorphism. Applying Lemma A.2.9, we conclude that
δ is an isomorphism, as desired. �

A.3. Extensive Categories.

Definition A.3.1. Let C be a category which admits fiber products, and let X,Y ∈ C be objects which
admit a coproduct X ∐Y . We will say that X ∐Y is a disjoint coproduct of X and Y if the following pair of
conditions is satisfied:

● Each of the maps X → (X ∐ Y ) ← Y is a monomorphism.
● The fiber product X ×X∐Y Y is an initial object of C.

Definition A.3.2. Let C be a category which admits finite limits. We will say that C is extensive if it
satisfies the following conditions:

(E1) The category C has finite coproducts, and coproducts in C are disjoint.
(E2) The formation of finite coproducts in C is preserved by pullbacks. More precisely, for every morphism

f ∶X → Y in C, the pullback functor

f∗ ∶ C/Y → C/X f∗(U) = U ×Y X

preserves finite coproducts.

Remark A.3.3. It is possible to define the notion of extensive category without assuming that C admits
fiber products; in this case, condition (E2) needs to be reformulated. For details, we refer the reader to [5].

Example A.3.4. The category of sets is extensive.

Remark A.3.5. Let C be an extensive category which admits fiber products. Then C has an initial object,
which we will denote by ∅. For any morphism f ∶ C → ∅ in C, axiom (E2) of Definition A.3.2 guarantees
that the pullback functor f∗ ∶ C/∅ → C/C preserves initial objects. In particular, the pullback f∗(∅) ≃ C is
an initial object of C/C , so that C is an initial object of C (and f is automatically an isomorphism).

Remark A.3.6. Let C be an extensive category which admits fiber products, with initial object ∅. For
every object C ∈ C, there is a unique morphism f ∶ ∅ → C in C. It follows from Remark A.3.5 that the
fiber product ∅ ×C ∅ is also an initial object of C, so that the relative diagonal map δ ∶ ∅ → ∅ ×C ∅ is an
isomorphism. It follows that f is a monomorphism in C. That is, the initial object ∅ can be regarded as a
subobject of any other object C ∈ C (which is then a least element of the partially ordered set Sub(C)).

We now collect some facts about extensive categories which will be useful in the body of this paper.
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Proposition A.3.7. Let C be an extensive category which admits fiber products. Then, for every pair of
morphisms f ∶ C →D and f ∶ C ′ →D′ in C, the diagram

C //

f

��

C ∐C ′

f∐f ′

��
D // D ∐D′

is a pullback square.

Proof. Using axiom (E2) of Definition A.3.2, we can identify the fiber product (C ∐C ′) ×(D∐D′)D with the
coproduct of objects

X = C ×(D∐D′) D ≃ C ×D (D ×(D∐D′) D)
Y = C ′ ×(D∐D′) D ≃ C ′ ×D′ (D′ ×(D∐D′) D).

Since coproducts in C are disjoint, the canonical map D →D∐D′ is a monomorphism, so the map C →X is
an isomorphism. It will therefore suffice to show that Y is an initial object of C. This follows from Remark
A.3.6, since (D′ ×D∐D′ D is an initial object of C. �

Proposition A.3.8. Let C be an extensive category which admits fiber products and let f ∶ C ↠ D and
f ′ ∶ C ′ ↠ D′ be effective epimorphisms in C. Then the induced map (f ∐ f ′) ∶ C ∐ C ′ → D ∐D′ is also an
effective epimorphism in C.

Proof. Set R = C ×D C and R′ = C ′ ×D′ C ′. Using Proposition A.3.7, we see that the canonical maps

R →D ×D∐D′ ((C ∐C ′) ×D∐D′ (C ∐C ′))
R′ →D′ ×D∐D′ ((C ∐C ′) ×D∐D′ (C ∐C ′))

are isomorphisms. Combining this with axiom (E2), we obtain an isomorphism

R ∐R′ → (C ∐C ′) ×D∐D′ (C ∐C ′).
Consequently, to show that f ∐ f ′ is an effective epimorphism, it will suffice to show that the diagram

(R ∐R′) ⇉ (C ∐C ′) → (D ∐D′)
is a coequalizer. This is clear, since f and f ′ are effective epimorphisms and the collection of coequalizer
diagrams is closed under the formation of coproducts. �

Proposition A.3.9. Let C be an extensive category which admits finite limits and let Fin denote the category
of finite sets. Then there is an essentially unique functor F ∶ Fin → C which preserves finite coproducts and
finite limits, given on objects by the formula F (S) = ∐s∈S 1, where 1 is the final object of C. More precisely,

if we let Funlex,∐(Fin,C) denote the full subcategory of Fun(Fin,C) spanned by those functors which preserve

finite limits and finite coproducts, then Funlex,∐(Fin,C) is equivalent to the category ∗ having a single object
and a single morphism.

Proof. Let Fun∐(Fin,C) be the full subcategory of Fun(Fin,C) spanned by those functors which preserve
finite coproducts. Note that a functor F ∶ Fin → C belongs to Fun∐(Fin,C) if and only if it is a left Kan
extension of its restriction to the full subcategory of C spanned by the final object 1. It follows that the
construction F ↦ F (1) induces an equivalence Fun∐(Fin,C) → C. In particular, if we let Fun′(Fin,C)
denote the full subcategory of Fun(Fin,C) spanned by those functors which preserve finite coproducts and
final objects, then Fun′(Fin,C) is equivalent to the full subcategory {1} ⊆ C. In particular, the category
Fun′(Fin,C) contains an essentially unique functor F , given on objects by F (S) = ∐s∈S 1. To complete the
proof, it will suffice to show that the functor F is left exact. Since F preserves final objects, it is sufficient
to show that it preserves fiber products. Suppose we are given maps of finite sets S0 → S ← S1; we wish to
show that the canonical map

θ ∶ F (S0 ×S S1) → F (S0) ×F (S) F (S1)
is an equivalence. Note that, as functors of S0, both the domain and codomain of θ commute with finite
coproducts. We may therefore assume without loss of generality that S0 has a single element, having image
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s ∈ S. Similarly, we may assume that S1 has a single element having image s′ ∈ S. We now consider two
cases:

● If s ≠ s′, then the fiber product S0 ×S S1 is empty. It follows that the domain of θ is an initial object
of C. It will therefore suffice to show that the codomain of θ is also an initial object of C. Applying
Remark A.3.5 to the map

F (S0) ×F (S) F (S1) → F ({s}) ×F (S) F (S ∖ {s}),
we are reduced to showing that F ({s})×F (S) F (S ∖{s}) is an initial object of C, which follows from
the disjointness of coproducts in C.

● If s = s′, then we can identify θ with the relative diagonal of the morphism u ∶ F ({s}) → F (S).
Consequently, to show that θ is an isomorphism, it will suffice to show that u is a monomorphism.
This follows from the disjointness of coproducts in C, since u is the inclusion of a summand.

�

Proposition A.3.10. Let C and D be extensive categories which admit finite limits, and let G ∶ C → D be a
functor which preserves finite limits. The following conditions are equivalent:

(1) The functor G preserves finite coproducts.
(2) Let F ∶ Fin→ C be as in Proposition A.3.9. Then the composition G ○ F preserves finite coproducts.
(3) The functor G preserves initial objects, and the canonical map G(1) ∐ G(1) → G(1 ∐ 1) is an

equivalence in D (here 1 denotes a final object of C).

Proof. The implications (1) ⇒ (2) ⇒ (3) are immediate. Assume that G satisfies (3); we wish to show
that for every pair of objects C,C ′ ∈ C, the canonical map θ ∶ G(C) ∐G(C ′) → G(C ∐C ′) is an equivalence.
Choose maps C → 1 and C ′ → 1′, where 1 and 1′ are final objects of C (which we can take to be the same,
but will distinguish notationally for the sake of clarity). We have a commutative diagram

G(C) ∐G(C ′) //

θ′

��

G(1) ∐G(1′)

��
(G(1) ×G(1∐1′) G(C ∐C ′)) ∐ (G(1′) ×G(1∐1′) G(C ∐C ′)) //

θ′′

��

G(1) ∐G(1′)

��
G(C ∐C ′) // G(1 ∐ 1′)

and we wish to show that the left vertical composition θ = θ′′ ○ θ′ is an isomorphism. Note that the bottom
square of this diagram is a pullback (since D is extensive) and the right vertical maps are isomorphisms (by
virtue of assumption (3)), so the map θ′′ is an isomorphism. It will therefore suffice to show that θ′ is an
isomorphism. Using our assumption that θ is left exact, we are reduced to showing that both squares in the
diagram

C //

��

C ∐C ′

��

C ′oo

��
1 // 1 ∐ 1′ 1′oo

are pullbacks, which follows from Proposition A.3.7. �

A.4. Pretopoi and Models.

Definition A.4.1. Let C be a category. We say that C is a pretopos if it is exact and extensive.

Example A.4.2. The category of sets is a pretopos (combine Example A.2.7 with Example A.3.4).

Example A.4.3. Let C be a pretopos and let C0 ⊆ C be a full subcategory which is closed under the
formation of finite limits and finite coproducts, and satisfies the following further condition:



124 ULTRACATEGORIES

(∗) For every object X ∈ C0 and every equivalence relation R ⊆X ×X which belongs to C0, the quotient
X/R also belongs to C0.

Then C0 is a pretopos.

Example A.4.4. The category Fin of finite sets is a pretopos. This follows from Examples A.4.2 and A.4.3.

Definition A.4.5. Let C and D be pretopoi. We will say that a functor F ∶ C → D is a pretopos functor if
F preserves finite limits, finite coproducts, and carries effective epimorphisms in C to effective epimorphisms
in D. We let FunPretop(C,D) denote the full subcategory of Fun(C,D) spanned by the pretopos functors.

If C is a pretopos, then a model of C is a pretopos functor M ∶ C → Set. We let Mod(C) denote the full
subcategory of Fun(C,Set) spanned by the models of C.
A.5. Distributive Lattices.

Definition A.5.1. Let L be a partially ordered set. We say that L is a lattice if every finite subset of L has
a least upper bound and a greatest lower bound. Equivalently, L is a lattice if it has a least element 0 ∈ L,
a largest element 1 ∈ L, and every pair of elements x, y ∈ L have a least upper bound x ∨ y (called the join
of x and y) and a greatest lower bound x ∧ y (called the meet of x and y).

We say that a lattice L is distributive if, for every triple of elements x, y, z ∈ L, we have the distributive
law

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).
Example A.5.2. Let C be a regular extensive category. Then, for every object X ∈ C, the partially ordered
set Sub(X) of subobjects of X is a distributive lattice. The largest element of Sub(X) is the object X, the
least element is the initial object ∅ of C. Given a pair of subobjects X0,X1 ⊆ X, their join and meet are
given by the formulae

X0 ∨X1 = Im(X0 ∐X1 →X) X0 ∧X1 =X0 ×X X1.

The distributive law follows from the assumption that coproducts and images in C are compatible with the
formation of pullbacks.

Definition A.5.3. . Let L and L′ be lattices. A lattice homomorphism from L to L′ is a function µ ∶ L→ L′

which preserves least upper bounds and greatest lower bounds of finite subsets: that is, µ satisfies the
identities

µ(0) = 0 µ(x ∨ y) = µ(x) ∨ µ(y)
µ(1) = 1 µ(x ∧ y) = µ(x) ∧ µ(y).

If L is a distributive lattice, we let Spec(L) denote the set of all lattice homomorphisms µ ∶ L → {0 < 1}.
We refer to Spec(L) as the spectrum of L.

Example A.5.4. Every Boolean algebra B is a distributive lattice. Moreover, the spectrum of B as a
Boolean algebra coincides with its spectrum as a distributive lattice.

Remark A.5.5. Let L be a distributive lattice. Then the spectrum Spec(L) can be equipped with a
topology, having a basis of open sets of the form

Ux = {µ ∈ Spec(L) ∶ µ(x) = 1}
where x ranges over the elements of L. Moreover, the construction x ↦ Ux induces an isomorphism of
distributive lattices

L→ {Quasi-compact open subsets U ⊆ Spec(L)}.
Remark A.5.6. The construction L ↦ Spec(L) is functorial: for every homomorphism of distributive
lattices λ ∶ L→ L′, composition with λ induces a continuous map of topological spaces Spec(L) → Spec(L′).
Moreover, formation of the spectrum is compatible with filtered colimits. If L is a distributive lattice which
is given as the colimit of a filtered diagram {Lα}, then the induced map

Spec(L) → lim←ÐSpec(Lα)
is a homeomorphism of topological spaces.
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We will need the following:

Proposition A.5.7. Let λ ∶ L → L′ be a homomorphism of distributive lattices. The following conditions
are equivalent:

(a) The homomorphism λ is injective.
(b) The induced map of topological spaces Spec(L′) → Spec(L) is surjective.

Proof. Suppose first that (b) is satisfied, and let x, y ∈ L satisfy λ(x) = λ(y). We wish to show that x = y.
We will prove this under the assumption that x ≤ y (the general case then follows by applying this argument
with the pair (x, y) replaced by (x ∧ y, x) and (x ∧ y, y)). Assume, for a contradiction, that x ≠ y. Let P
denote the collection of all subsets I ⊆ L which are closed downward, closed under joins, and contain the
element x, but do not contain y. Then P is nonempty (it contains the subset L≤x = {z ∈ L ∶ z ≤ x}). Applying
Zorn’s lemma, we conclude that P contains a maximal element p ⊆ L. Define µ ∶ L→ {0 < 1} by the formula

µ(z) =
⎧⎪⎪⎨⎪⎪⎩

0 if z ∈ p
1 otherwise.

We claim that µ is a lattice homomorphism. The compatibility of µ with the formation of joins follows
from our assumption that p is closed under joins, and the formula µ(1) = 1 follows from our assumption
that y ∉ p (so also 1 ∉ p, since p is closed downward). To complete the proof, it will suffice to show that
µ(z ∧ z′) = µ(z) ∧ µ(z′). Equivalently, we must show that if z ∧ z′ belongs to p, then either z or z′ belongs
to p. Assume otherwise. Then the sets

I = {w ∈ L ∶ (∃v ∈ p)w ≤ v ∨ z} I ′ = {w′ ∈ L ∶ (∃v′ ∈ p)w′ ≤ v′ ∨ z′}

are subsets of L which are downward closed, closed under joins, and properly contain p. It follows from the
maximality of p that both I and I ′ must contain y. That is, we have y ≤ v∨z and y ≤ v′∨z′ for some v, v′ ∈ p.
Applying the distributive law, we obtain

y ≤ (v ∨ z) ∧ (v′ ∨ z′) = (v ∧ v′) ∨ (v ∧ z′) ∨ (z ∧ v′) ∨ (z ∧ z′) ∈ p,

which is a contradiction. This completes the proof that µ is a lattice homomorphism. If (b) is satisfied, then
we can write µ = µ′ ○ λ, for some lattice homomorphism µ′ ∶ L′ → {0 < 1}. The identity λ(x) = λ(y) then
shows that µ(x) = µ(y), which is a contradiction.

We now show that (a) implies (b). Assume that λ is injective, and let µ ∶ L → {0 < 1} be a lattice
homomorphism. Let Q denote the collection of all subsets I ⊆ L′ which are closed downward, closed under
joins, contain λ(x) for each element x ∈ L satisfying µ(x) = 0, and do not contain λ(x) for elements x ∈ L
satisfying µ(x) = 1. Our assumption that λ is injective guarantees that the set

{y ∈ L′ ∶ (∃x ∈ L)[µ(x) = 0 and y ≤ λ(x)]}

belongs to Q. In particular, Q is nonempty. We can therefore choose a maximal element q ∈ Q. Define
µ′ ∶ L′ → {0 < 1} by the formula

µ′(y) =
⎧⎪⎪⎨⎪⎪⎩

0 if y ∈ q
1 otherwise.

By construction, we have µ = µ′○λ. We will complete the proof by showing that µ′ is a lattice homomorphism,

so that µ is the image of µ′ under the map Spec(L′) ○λÐ→ Spec(L). Arguing as above, we are reduced to
showing that if we are given a pair of elements y, y′ ∈ L′ such that y ∧ y′ belongs to q, then either y or y′

belongs to q. Assume otherwise: then the sets

J = {w ∈ L′ ∶ (∃v ∈ q)w ≤ v ∨ y} J ′ = {w′ ∈ L′ ∶ (∃v′ ∈ q)w′ ≤ v′ ∨ y′}

are downward closed, closed under joins, and properly contain q. It follows from the maximality of q that
J must contain an element of the form λ(x) where µ(x) = 1, and J ′ must contain an element of the form



126 ULTRACATEGORIES

λ(x′) where µ(x′) = 1. We therefore have λ(x) ≤ v ∨ y and λ(x′) ∧ v′ ∨ y′, for some elements v, v′ ∈ q. Using
the distributive law and the fact that λ is a lattice homomorphism, we obtain

λ(x ∧ x′) = λ(x) ∧ λ(x′)
≤ (v ∨ y) ∧ (v ∨ y′)
= (v ∧ v′) ∨ (v ∧ y′) ∨ (y ∧ v′) ∨ (y ∧ y′)
∈ q.

Since µ(x ∧ x′) = µ(x) ∧ µ(x′) = 1, this contradicts our assumption that q belongs to Q. �

Appendix B. Sheaf Theory

In this section, we review the theory of Grothendieck topologies and the associated sheaf theory.

B.1. Grothendieck Topologies.

Definition B.1.1. Let C be a category. A sieve on C is a full subcategory C(0) ⊆ C with the following

property: for every morphism f ∶ C ′ → C in C, if C belongs to C(0), then C ′ also belongs to C(0). If C ∈ C is
an object, then a sieve on C is a sieve on the overcategory C/C .

Let f ∶ D → C be a morphism in the category C. If C(0)
/C

⊆ C/C is a sieve on the object C, then we let

f∗ C(0)
/C

denote the sieve on D consisting of those morphisms g ∶ E → D such that the composite morphism

(f ○ g) ∶ E → C belongs to C(0)
/C

. We will refer to f∗ C(0)
/C

as the pullback of the sieve C(0)
/C

.

Remark B.1.2. Let C be a category containing an object C and let {fi ∶ Ci → C}i∈I be a collection of

morphisms having codomain C. Then there is a smallest sieve C(0)
/C

⊆ C/C which contains each fi: namely, the

full subcategory of C/C spanned by those morphisms g ∶D → C which factor as a composition D → Ci
fiÐ→ C,

for some i ∈ I. We will refer to C(0)
/C

as the sieve generated by the morphisms fi. We say that a sieve C(0)
/C

is

finitely generated if it is generated by a finite collection of morphisms in C.
Definition B.1.3. Let C be a category. A Grothendieck topology on C is a procedure which assigns to each
object C ∈ C a collection of sieves on C, which we refer to as covering sieves. This assignment is required to
have the following properties:

(T1) For each object C ∈ C, the sieve C/C is a covering sieve on C.

(T2) For each morphism f ∶ D → C in C and each covering sieve C(0)
/C

⊆ C/C on C, the pullback f∗ C(0)
/C

is

a covering sieve on D.

(T3) Let C(0)
/C

⊆ C/C be a covering sieve on an object C ∈ C and let C(1)
/C

be another sieve having the

property that for every morphism f ∶ D → C belonging to C(0)
/C

, the pullback f∗ C(1)
/C

is a covering

sieve on D. Then C(1)
/C

is a covering sieve on C.

If C is equipped with a Grothendieck topology, then we will say that a collection of morphisms {fi ∶ Ci → C}
is a covering if it generates a covering sieve on C (see Remark B.1.2).

Example B.1.4. Let X be a topological space and let U(X) denote the partially ordered set of all open
subsets of X, regarded as a category. Then we can equip U(X) with a Grothendieck topology, where a
collection of morphisms {Ui ⊆ U}i∈I is a covering of an object U ∈ U(X) if U = ⋃i∈I Ui.
Example B.1.5. Let C be a category and let F ∶ Cop → Set be a functor. We will say that a sieve C(0)

/C
⊆ C/C

is a F -covering if, for every morphism f ∶D → C in C, the canonical map

F (D) → lim←Ð
E∈(f∗ C

(0)
/C )

F (E)

is bijective. The collection of F -covering sieves determines a Grothendieck topology on C: axioms (T1) and
(T2) are immediate from the definition, and axiom (T3) follows by an easy interchange of limits argument.
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B.2. Sheaves for a Grothendieck Topology. Let C be a category equipped with a Grothendieck topology.
We say that a functor F ∶ Cop → Set is a sheaf if it satisfies the following condition: for each object C ∈ C
and each covering sieve C(0)

/C
⊆ C/C , the canonical map

F (C) → lim←Ð
D∈(C

(0)
/C )op

F (D)

is a bijection.

Notation B.2.1. Let C be a category equipped with a Grothendieck topology. We let Shv(C) denote the
full subcategory of Fun(Cop,Set) spanned by those functors which are sheaves on C.
Example B.2.2. Let X be a topological space and let U(X) denote the partially ordered set of open subsets
of X. We let Shv(X) denote the category Shv(U(X)), where U(X) is endowed with the Grothendieck
topology of Example B.1.4. We will refer to objects of Shv(X) as sheaves on X.

Remark B.2.3. Let C be a category equipped with a Grothendieck topology and let F ∶ Cop → Set be a
functor. Then F is a sheaf if and only if every covering sieve (for our Grothendieck topology on C) is a
F -covering sieve (in the sense of Example B.1.5). In other words, the Grothendieck topology of Example
B.1.5 is the finest Grothendieck on C with respect to which F is sheaf.

The following result is standard (see [11] for a textbook account):

Proposition B.2.4. Let C be a small category equipped with a Grothendieck topology. Then the inclusion
functor Shv(C) ↪ Fun(Cop,Set) admits a left adjoint L ∶ Fun(Cop,Set) → Shv(C). Moreover, the functor L
preserves finite limits.

We refer to the functor L ∶ Fun(Cop,Set) → Shv(C) as the sheafification functor.

Warning B.2.5. In §7, we will study sheaves on the category Pro(C) of pro-objects of a (small) pretopos C.
The category Pro(C) is not small, and Proposition B.2.4 does not apply to this situation. In order to sheafify
a presheaf F ∶ Pro(C)op → Set taking values in the category of small sets, one needs to allow sheaves which
take non-small values. For us, this is irrelevant; we will have no need to sheafify any set-valued presheaves
on Pro(C).
Definition B.2.6. Let C be a category. For each object C ∈ C, we let hC ∶ Cop → Set denote the functor
represented by C, given on objects by the formula hC(D) = HomC(D,C). We say that a Grothendieck
topology on C is subcanonical if each of the functors hC is a sheaf. In this case, the construction C ↦ hC
determines a fully faithful embedding h ∶ C ↪ Shv(C), which we will refer to as the Yoneda embedding.

Remark B.2.7 (Sheafified Yoneda Embedding). Let C be a small category equipped with a Grothendieck

topology. For each object C ∈ C, we let h̃C denote the sheafification of the representable functor hC =
HomC(●,C). The functor C ↦ h̃C then determines a functor h̃ ∶ C → Shv(C), which we will refer to as the
sheafified Yoneda embedding. Beware that this terminology is somewhat misleading: if the Grothendieck
topology on C is not subcanonical, then the functor h̃ ∶ C → Shv(C) is not fully faithful.

B.3. Example: The Regular Topology.

Definition B.3.1. Let C be a regular category (Definition A.1.3), and let C(0)
/C

be a sieve on an object C ∈ C.
We say that C(0)

/C
is a regular covering sieve if it contains an effective epimorphism D↠ C.

Proposition B.3.2. Let C be a regular category. Then the collection of regular covering sieves determines
a Grothendieck topology on C.

Proof. Axiom (T1) of Definition B.1.3 follows from the fact that each identity map idC ∶ C → C is an
effective epimorphism in C, and axiom (T2) from fact that effective epimorphisms in C are stable under
pullback (axiom (R3) of Definition A.1.3). Axiom (T3) follows from the fact that the collection of effective
epimorphisms in C is closed under composition (Proposition A.1.8). �
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Definition B.3.3. Let C be a regular category. We will refer to the Grothendieck topology of Proposition
B.3.2 as the regular topology on C.

Remark B.3.4. Let C be a regular category. Then a collection of morphisms {fi ∶ Ci → C}i∈I is a covering
for the regular topology if and only if some fi ∶ Ci → C is an effective epimorphism. In particular, the regular
topology on C is the coarsest Grothendieck topology for which effective epimorphism D ↠ C generates a
covering sieve.

Proposition B.3.5. Let C be a regular category. Then a functor F ∶ Cop → Set is a sheaf with respect to
the regular topology if and only if it satisfies the following condition:

(∗) For every effective epimorphism D↠ C in C, the diagram of sets

F (C) →F (D) ⇉F (D ×C D)
is an equalizer.

Corollary B.3.6. Let C be a regular category. Then the regular topology on C is subcanonical. That is, for
every object E ∈ C, the representable functor hE(●) = HomC(●,E) is a sheaf for the regular topology.

Proof. By virtue of Proposition B.3.5, it suffices to verify that for every effective epimorphism D↠ C in C,
the diagram of sets

HomC(C,E) → HomC(D,E) ⇉ HomC(D ×C D,E)
is an equalizer. This is precisely the definition of an effective epimorphism. �

Proposition B.3.5 is a consequence of the following:

Lemma B.3.7. Let C be a category which admits fiber products, let f ∶D → C be a morphism in C, and let

C(0)
/C

⊆ C/C be the sieve generated by f . Then the canonical map

lim←Ð
E∈C

(0),op
/C

F (E) → Eq(F (D) ⇉F (D ×C D))

is a bijection.

Proof. Fix an element η ∈ F (D). Unwinding the definitions, we see that η can be lifted to an element of the
inverse limit lim←ÐE∈C(0),op/C

F (E) if and only if, for every pair of maps u, v ∶ E →D in C satisfying f ○u = f ○ g,

the induced maps F (u),F (v) ∶ F (D) → F (E) carry η to the same point of F (E) (moreover, the lifting
is unique if it exists). To verify this condition, it suffices to treat the universal case where E = D ×C D and
u, v ∶ E →D are the projection maps. �

Proof of Proposition B.3.5. Let C be a regular category and let F ∶ Cop → Set be a functor. Then F is a
sheaf for the regular topology if and only if every regular covering sieve is a F -covering sieve, in the sense of
Example B.1.5 (Remark B.2.3). By virtue of Remark B.3.4, this is equivalent to the requirement that every
effective epimorphism D ↠ C in C generates a F -covering sieve. According to Lemma B.3.7, this holds if
and only if F satisfies condition (∗) of Proposition B.3.5. �

B.4. Example: The Extensive Topology.

Definition B.4.1. Let C be an extensive category which admits pullbacks, and let C(0)
/C

be a sieve on

an object C ∈ C. We say that C(0)
/C

is a extensive covering sieve if it contains a finite collection of maps

{Ci → C}i∈I which exhibit C as a coproduct of the collection {Ci}i∈I .

Proposition B.4.2. Let C be an extensive category which admits pullbacks. Then the collection of extensive
covering sieves determines a Grothendieck topology on C.

Proof. Axioms (T1) and (T3) of Definition B.1.3 follow immediately from the definition, and (T2) follows
from axiom (E2) of Definition B.4.3. �
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Definition B.4.3. Let C be an extensive category which admits pullbacks. We will refer to the Grothendieck
topology of Proposition B.4.2 as the extensive topology on C.
Remark B.4.4. Let C be an extenstive category. Then a collection of morphisms {fi ∶ Di → C}i∈I is a
covering for the extensive topology if and only C can be written as a finite coproduct ∐j∈J Cj , where each
of the inclusion maps Cj ↪ C factors through fi ∶Di → C for some i (which might depend on j).

In particular, the extensive topology on C is the coarsest topology having the property that, for every
finite collection of objects {Cj}j∈J with coproduct C = ∐j∈J Cj , the inclusion maps {Cj ↪ C}j∈J comprise a
covering.

Proposition B.4.5. Let C be an extensive category which admits pullbacks. Then a functor F ∶ Cop → Set
is a sheaf with respect to the extensive topology if and only if it preserves finite products (that is, it carries
finite coproducts in C to products of sets).

Corollary B.4.6. Let C be an extensive category which admits pullbacks. Then the extensive topology on C
is subcanonical.

We will deduce Proposition B.4.5 from the following:

Lemma B.4.7. Let C be an extensive category which admits pullbacks and let F ∶ Cop → Set be a functor
having the property that F (∅) is a singleton (where ∅ denotes an initial object of C). Let {Ci}i∈I be a

finite collection of objects of C having coproduct C = ∐i∈I Ci, and let C(0)
/C

⊆ C/C be the sieve generated by the

tautological maps Ci → C. Then the canonical map

lim←Ð
D∈C

(0),op
/C

F (D) →∏
i∈I

F (Ci)

is bijective.

Proof. Suppose we are given an element η ∈ ∏i∈I F (Ci), given by a tuple {ηi ∈ F (Ci)}i∈I ; we wish to show
that η can be lifted uniquely to a point

η = {ηD}
D∈C

(0)
/C

∈ lim←Ð
D∈C

(0),op
/C

F (D).

Uniqueness is clear: for any morphism f ∶D → C which belongs to the sieve C(0)
/C

, we can choose a factorization

of f as a composition D
f ′Ð→ Ci → C, so that ηD must be given by the image of ηi under the map F (f ′) ∶

F (Ci) → F (D). To prove existence, it will suffice to show that this construction is independent of the
factorization chosen. Since coproducts in C are disjoint, the tautological maps Ci → C are monomorphisms;
consequently, the morphism f ′ ∶ D → Ci is uniquely determined once i is fixed. Consequently, it will suffice
to show that if we have a commutative diagram σ ∶

D
f ′ //

f ′′

��

Ci

��
Cj // C,

then ηi and ηj have the same image in the set F (D). Note that the disjointness of coproducts in C guarantees
that the fiber product Ci ×C Cj is an initial object of C, so that D is also initial (Remark A.3.6). It follows
that the set F (D) is a singleton, so the desired equality is automatic. �

Proof of Proposition B.4.5. Let C be an extensive category which admits pullbacks and let F ∶ Cop → Set
be a functor; we wish to show that F is a sheaf for the extensive topology if and only if it preserves
finite products. Note that, if ∅ denotes the initial object of C, then the empty sieve is a covering of ∅.
Consequently, if F is a sheaf for the extensive topology, then the set F (∅) must be a singleton. Let us
henceforth assume that this condition is satisfied. Then F is a sheaf for the extensive topology if and only
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if every extensive covering sieve is a F -covering sieve, in the sense of Example B.1.5 (Remark B.2.3). By
virtue of Remark B.4.4, this is equivalent to the requirement that for every finite collection of objects {Ci}i∈I
having coproduct C, the inclusion maps {Ci ↪ C}i∈I generate a F -covering sieve C(0)

/C
⊆ C/C . It follows from

axiom (E2) of Definition A.3.2 that the formation of this sieve is compatible with pullback, so we only need
to check that the canonical map

θ ∶ F (C) → lim←Ð
D∈(C

(0)
/C )op

F (D)

is a bijection. Using Lemma B.4.7, we can identify θ with the canonical map F (C) → ∏i∈I F (Ci), so that
F is a sheaf if and only if it commutes with finite products. �

B.5. Example: The Coherent Topology. We now combine the constructions of §B.3 and §B.4.

Definition B.5.1. Let C be a category which is regular and extensive. We will say that a sieve C(0)
/C

⊆ C/C
on an object C ∈ C is a coherent covering sieve if it contains a finite collection of morphisms {Ci → C}i∈I for
which the induced map ∐i∈I Ci → C is an effective epimorphism in C.

Arguing as in the proofs Proposition B.3.2 and Proposition B.4.2, one obtains the following:

Proposition B.5.2. Let C be a category which is regular and extensive. Then the collection of coherent
covering sieves determines a Grothendieck topology on C.

Definition B.5.3. Let C be a regular extensive category. We will refer to the Grothendieck topology of
Proposition B.5.2 as the coherent topology on C.

Remark B.5.4. The coherent topology on a category C can be defined more generally when the category
C is coherent; see [7].

Let C be a regular extensive category. The coherent topology on C is the coarsest Grothendieck topology
which refines both the regular and extensive topologies on C. In particular, a functor F ∶ Cop → Set is a sheaf
for the coherent topology if and only if it is a sheaf for both the regular and extensive topologies. Using
Propositions B.3.5 and B.4.5, we obtain the following:

Proposition B.5.5. Let C be a regular extensive category. Then a functor F ∶ Cop → Set is a sheaf with
respect to the coherent topology (Definition B.5.3) if and only if satisfies the following pair of conditions:

(1) The functor F preserves finite products. That is, for every finite collection of objects {Ci}i∈I of C,
the canonical map F (∐i∈I Ci) → ∏i∈I F (Ci) is bijective.

(2) For every effective epimorphism D↠ C in C, the diagram of sets

F (C) →F (D) ⇉F (D ×C D)

is an equalizer.

Corollary B.5.6. Let C be a regular extensive category. Then the coherent topology on C is subcanonical.
That is, for every object E ∈ C, the representable functor hE(●) = HomC(●,E) is a sheaf for the coherent
topology.

Remark B.5.7. Let C be a small category which is regular and extensive. Then the regular and extensive
topologies on C are compatible in the following sense:

● If F ∶ Cop → Set is a sheaf for the extensive topology and F̃ is the sheafification of F with respect
to the regular topology, then F̃ is also a sheaf for the extensive topology (that is, it commutes with
finite products), and therefore also for the coherent topology.

In other words, if F ∶ Cop → Set is any functor, then its sheafification for the coherent topology can be
computed in two steps: sheafification for the extensive topology, followed by sheafification for the regular
topology.
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B.6. Bases. In practice, it is often useful to describe a sheaf by specifying its value only on a restricted
class of objects.

Definition B.6.1. Let C be a category equipped with a Grothendieck topology. We will say that a full
subcategory D ⊆ C is a basis for C if, for every object C ∈ C, there exists a covering {fi ∶ Di → C}i∈I , where
the set I is small and each Di belongs to D.

Example B.6.2. Let X be a topological space and let U(X) be the partially ordered set of open subsets
of X, endowed with the Grothendieck topology of Example B.1.4. Then a full subcategory U0(X) ⊆ U(X)
is a basis in the sense of Definition B.6.1 if and only if it is a basis in the usual sense: that is, every open
subset of X can be realized as a union of open sets belonging to U0(X).
Proposition B.6.3. Let C be a category equipped with a Grothendieck topology and let D ⊆ C be a basis.
Then there is a unique Grothendieck topology on the category D with the following property: a collection of
morphisms {Di →D}i∈I in D is a covering if and only if it is a covering in C.

Proof. Let us say that a sieve D(0)

/D
⊆ D/D is a covering if it contains a collection of morphisms {fi ∶Di →D}i∈I

which form a covering in C. Axioms (T1) and (T3) of Definition B.1.3 follow immediately from the definitions
(and do not require the assumption that D is a basis for C). To verify (T2), suppose we are given a covering

sieve D(0)

/D
on an object D ∈ D and a morphism f ∶ D′ → D in the category D; we wish to show that the

pullback f∗D(0)

/D
⊆ D/D′ is a covering sieve on D′. Let C(0)

/D
⊆ C/D denote the sieve generated by D(0)

/D
, so that

the pullback f∗ C(0)
/D

⊆ C/D′ is a covering sieve. In other words, there exists a covering {gi ∶ Ci → D′}i∈I in C
such that each of the composite maps f ○ gi ∶ Ci → D belongs to the sieve C(0)

/D
, which means there exists a

commutative diagram

Ci //

gi

��

Di

g′i
��

D′
f // D

where each g′i ∶ Di → D belongs to the sieve D(0)

/D
. Using our assumption that D ⊆ C is a basis, we conclude

that each of the objects Ci admits a covering {D′
i,j → Ci}j∈Ji , where the objects D′

i,j belong to D. Then the

composite maps {D′
i,j → Ci

giÐ→D′}i∈I,j∈Ji comprise a covering of D′ by objects of the sieve f∗D(0)

/D
. �

Proposition B.6.4. Let C be a category equipped with a Grothendieck topology and let D ⊆ C be a basis.
Regard D as equipped with the Grothendieck topology of Proposition B.6.3. Then precomposition with the
inclusion D ↪ C induces an equivalence of categories

Shv(C) → Shv(D) F ↦F ∣Dop .

Corollary B.6.5. Let X be a Stone space, let U(X) denote the partially ordered set of all open subsets
of X, and let U0(X) ⊆ U(X) be the collection of all closed and open subsets of X. Then the construction
F ↦F ∣U0(X) induces a fully faithful embedding

Shv(X) ⊆ Fun(U(X)op,Set) → Fun(U0(X)op,Set),
whose essential image is spanned by those functors F ∶ U0(X)op → Set with the following property:

(∗) For every finite collection of pairwise disjoint closed and open subsets {Ui ⊆ X}i∈I , the canonical
map

F (⋃
i∈I

Ui) →∏
i∈I

F (Ui)

is bijective.

Proof. Since X is a Stone space, the collection of closed and open subsets of X forms a basis for the topology
of X. Applying Proposition B.6.4, we deduce that the restriction functor Shv(X) → Fun(U0(X)op,Set) is a
fully faithful embedding whose essential image is spanned by those functors F ∶ U0(X)op → Set which are
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sheaves with respect to the topology on U0(X) given by open coverings. Note that if U is a closed and open
subset of X, then any covering of U by closed and open subsets admits a refinement {Ui ⊆ U}i∈I where the
index set I is finite and the sets Ui are pairwise disjoint. It follows that the topology of Proposition B.6.3 is
the coarsest Grothendieck topology on U0(X) for which every such collection {Ui ⊆ U}i∈I is a covering. It
follows that a functor F ∶ U0(X)op → Set is a sheaf (with respect to the Grothendieck topology of Proposition
B.6.3) if and only if, for every collection of pairwise disjoint closed and open subsets Ui ⊆ X with union U ,
the inclusion maps {Ui ⊆ U} are an F -covering (in the sense of Example B.1.5). Unwinding the definitions,
this is equivalent to the requirement that for each closed and open subset V ⊆ U , the canonical map

F (V ) → lim←Ð
W⊆Ui∩V

F (W ) ≃∏
i∈I

F (Ui ∩ V )

is bijective. To verify this condition, we may assume without loss of generality that U = V , in which case it
is precisely the criterion of (∗). �

Proposition B.6.4 is a consequence of the following more precise assertion:

Proposition B.6.6. Let C be a category equipped with a Grothendieck topology, let D ⊆ C be a basis, and let
F ∶ Cop → Set be a functor. Then F is a sheaf if and only if it satisfies the following pair of conditions:

(a) The restriction F ∣Dop ∶ Dop → Set is a sheaf (with respect to the Grothendieck topology of Proposition
B.6.3).

(b) The functor F is a right Kan extension of its restriction F ∣Dop .

Proof of Proposition B.6.4 from Proposition B.6.6. If the category C is small, then Proposition B.6.4 is an
immediate consequence of Proposition B.6.6. However, in §7, we would like to apply Proposition B.6.4 in a
situation where C is not small. In this case, there is a potential technicality: if F 0 ∈ Shv(D) is a sheaf and
F is a right Kan extension of F 0 (given by the formula

F (C) = lim←Ð
D∈(D×C C/C)op

F 0(D),

when F might potentially fail to be a set-valued sheaf because it values F (C) might not be small. However,
this is impossible: Definition B.6.1 guarantees that there exists a covering {fi ∶ Di → C}i∈I of the object C
by a small collection of objects of D, so that F (C) can be identified with a subset of ∏i∈I F 0(Di) and is
therefore small. �

Proof of Proposition B.6.6. Suppose first that F ∶ Cop → Set is a sheaf; we will show that it satisfies condi-
tions (a) and (b) of Proposition B.6.6. Set F 0 = F ∣Dop and let F̂ be a right Kan extension of F 0, given
by the formula

F̂ (C) = lim←Ð
D∈(D×C C/C)op

F 0(D)

(if the category C is not small, then the functor F̂ might a priori take non-small values, but we will see in

a moment that this is not the case). We have a canonical map θ ∶ F → F̂ which is an isomorphism when
restricted to D. To prove (b), we must show that θ is an isomorphism. Fix an object C ∈ C, let D/C denote

the fiber product D×C C/C , and let C(0)
/C

⊆ C/C denote the sieve generated by D/C . Since D is a basis for the

topology on C, the sieve C(0)
/C

is covering. The map θ(C) fits into a commutative diagram

F (C)
θ(C) //

��

F̂ (C)

��
lim←ÐC′∈(C

(0)
/C )op

F (C ′) θ′ // lim←ÐC′∈(C
(0)
/C )op

F̂ (C ′),
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where the left vertical map is bijective by virtue of our assumption that F is a sheaf, and the right vertical

map is bijective by virtue of the fact that F̂ is a right Kan extension of its restriction to D. Since the sieve C(0)
/C

is generated by D/C (and θ is an isomorphism when restricted to D), we conclude that θ′ is a monomorphism.

It follows that θ(C) is a monomorphism. Applying the same argument to θ(C ′) for C ′ ∈ C(0)
/C

, we conclude

that θ′ is a monomorphism whose image is the collection of elements η ∈ lim←ÐC′∈(C
(0)
/C )op

F̂ (C ′) having the

property that, for each C ′ ∈ (C(0)
/C

), the image of η ∈ F̂ (C ′) belongs to the image of θ(C ′). Invoking again

the fact that C(0)
/C

is generated by D/C , we see that it suffices to check this condition in the case where C ′

belongs to D/C , in which case it is automatic because θ(C ′) is bijective. It follows that θ′ is a bijection, so
that θ(C) is also a bijection. This completes the proof of (b).

We now verify (a). Let D be an object of D and let D(0)

/D
be a covering sieve on D; we wish to show that

the canonical map ρ ∶ F 0(D) → lim←ÐD′∈(D
(0)
/D )op

F 0(D′) is bijective. Let C(0)
/D

⊆ C/D denote the sieve generated

by D(0)

/D
. Our assumption that D(0)

/D
is covering for the Grothendieck topology of Proposition B.6.3 guarantees

that C(0)
/C

is covering for the original Grothendieck topology on C. The map ρ factors as a composition

F 0(D) = F (D) ρ′Ð→ lim←Ð
C′∈(C

(0)
/D )op

F (C ′) ρ′′Ð→ lim←Ð
D′∈(D

(0)
/D )op

F 0(D′),

where ρ′ is a bijection by virtue of our assumption that F is a sheaf, and the map ρ′′ is bijective because
F is a right Kan extension of its restriction to Dop. This completes the proof of (b).

We now prove the converse. Suppose that F satisfies conditions (a) and (b); we wish to show that F is

a sheaf on C. Fix a covering sieve C(0)
/C

⊆ C/C . Set D/C = D×C C/C and D(0)

/C
= D×C C(0)/C

. We wish to show

that the upper vertical map in the diagram

F (C) //

��

lim←ÐC′∈(C
(0)
/C )op

F (C ′)

��
lim←ÐD∈D

op

/C
F (D) // lim←ÐD∈(D

(0)
/C )op

F (D)

is bijective. We conclude by observing that the vertical maps are bijective by virtue of (b), and the lower
horizontal map by virtue of (a) (together with our assumption that D is a basis for C). �

Appendix C. Topos Theory

C.1. Grothendieck Topoi.

Definition C.1.1. A Grothendieck topos is a category X satisfying the following axioms:

(1) The category X is exact (Definition A.2.6).
(2) The category X admits small coproducts, and coproducts in X are disjoint (Definition A.3.1).
(3) The formation of small coproducts in X is compatible with pullback. That is, for every collection of

objects {Xi}i∈I having coproduct X = ∐i∈I Xi and every morphism f ∶ Y → X, the projection maps
{Xi ×X Y → Y }i∈I exhibit Y as a coproduct of the objects {Xi ×X Y }i∈I .

(4) The category X is locally small, and there exists a small subcategory X 0 which generates X in the
sense that every object X ∈ X admits an effective epimorphism ∐i∈I Ui↠X, where each Ui belongs
to X 0.

Remark C.1.2. Every Grothendieck topos is a pretopos.

Example C.1.3. The category Set is a Grothendieck topos.
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Example C.1.4. Let C be a small category and let X be a Grothendieck topos. Then the category Fun(C,X)
is a Grothendieck topos. In particular, for any small category C, the category of presheaves Fun(Cop,Set) is
a Grothendieck topos.

Proposition C.1.5. Let X be a Grothendieck topos and let X 0 ⊆ X be a full subcategory. Suppose that the
inclusion functor X 0 ↪ X admits a left adjoint L ∶ X → X 0 which preserves finite limits. Then X 0 is also a
Grothendieck topos.

Remark C.1.6. In the situation of Proposition C.1.5, the existence of the left adjoint L ∶ X → X 0 guarantees
that the subcategory X 0 ⊆ X is closed under the formation of finite limits. In particular, the meaning of our
assumption that L preserves finite limits does not depend on whether we regard L as an object of Fun(X ,X 0)
or Fun(X ,X).
Corollary C.1.7. Let C be a small category equipped with a Grothendieck topology. Then the category of
sheaves Shv(C) is a Grothendieck topos.

Proof. Combine Proposition C.1.5, Example C.1.4, and Proposition B.2.4. �

Remark C.1.8. Proposition C.1.5 has a converse: every Grothendieck topos is equivalent to Shv(C), for
some small category C equipped with a Grothendieck topology (Theorem C.4.1). In fact, this is often taken
as the definition of a Grothendieck topos.

Remark C.1.9. In the situation of Definition C.1.1, condition (4) is automatically satisfied if the category
X is accessible. Conversely, every Grothendieck topos is locally presentable as a category (and in particular
accessible): this follows from the fact that every Grothendieck topos can be identified with Shv(C), for some
small category C equipped with a Grothendieck topology (Theorem C.4.1).

Proof of Proposition C.1.5. Let X be a Grothendieck topos, let X 0 ⊆ X be a full subcategory, and let
L ∶ X → X 0 be a left adjoint to the inclusion functor. Assume that the functor L preserves finite limits.
We wish to show that X 0 is a Grothendieck topos. We first show that X 0 is exact: that is, that it satisfies
axioms (R1), (R2′), and (R3) of Definition A.2.6. Axiom (R1) follows from Remark C.1.6. To verify (R2′),
suppose we are given an object X ∈ X 0 and an equivalence relation R ⊆X ×X in the category X 0. Without
loss of generality, we may assume that X = LX for some object X ∈ X and R = LR for some equivalence
relation R ⊆ X ×X (for example, we can take X = X and R = R). Since X satisfies axiom (R2′), we can
choose a coequalizer diagram

R ⇉X →X/R
in the category X . Applying the functor L (which preserves all colimits which exist in C, since it is a left
adjoint), we obtain a coequalizer diagram

R ⇉X → L(X/R).
To show that the equivalence relation R is effective in X 0, it will suffice to show that the diagram σ ∶

R //

��

X

��
X // L(X/R)

is a pullback square in X 0. This follows from our assumption that L preserves pullback squares, since σ is
the image under L of the diagram

R //

��

X

��
X // X/R,

which is a pullback diagram in X (since every equivalence relation in X is effective). This completes the
proof of (R2′), and also gives the following characterization of effective epimorphisms in the category X 0:
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(∗) A morphism f ∶ X → Y in X 0 is an effective epimorphism (in the category X 0) if it and only if it is

isomorphic to a morphism of the form Lf ∶ LX → LY , where f ∶ X → Y is an effective epimorphism
in X .

We now complete the proof that X 0 is exact by verifying condition (R3) of Definition A.2.6. Suppose we
are given a pullback square τ ∶

X ′ //

f ′

��

X

f

��
Y ′ // Y

in X 0, where f is an effective epimorphism in X 0. We wish to show that f
′

is also an effective epimorphism
in X 0. By virtue of (∗), we can assume that f = Lf for some effective epimorphism f ∶ X → Y in C. Using
the assumption that L preserves pullbacks, we see that τ can be identified with the image under L of a
pullback diagram

Y ′ ×Y X //

f
′

��

X

f
��

Y ′ ×Y Y // Y

in the category X . Our assumption that X is exact then guarantees that f
′

is an effective epimorphism in

X , so that f ′ = Lf ′ is an effective epimorphism in X 0 by virtue of (∗).
Every small collection of objects {Xi}i∈I of the category X 0 admit a coproduct in X 0, which can be

obtained by forming the coproduct ∐i∈I Xi in the category X and then applying the functor L. We claim
that for every pair of objects X,Y ∈ X 0, their coproduct in X 0 is disjoint. Without loss of generality, we
may assume that X = LX and Y = LY for some objects X,Y ∈ X . We then have a commutative diagram

∅ //

��

X

f
��

Y
g // X ∐ Y ,

and our assumption that X has disjoint coproduct guarantees that this diagram is a pullback square and
that f and g are monomorphisms. Applying the functor L, we obtain a diagram

L∅ //

��

X

f
��

Y
g // L(X ∐ Y )

which exhibits L(X ∐ Y ) as a coproduct of X and Y in C0. Since L preserves fiber products, this diagram
is a pullback square and f and g are monomorphisms. It follows that X and Y have a disjoint coproduct in
the category X 0.

We now show that the formation of small coproducts in X 0 is compatible with pullbacks. We now complete
the proof by showing that C0 satisfies the axiom (E2). Let f ∶ X → Y be a morphism in X 0 and suppose
we are given a small collection of morphisms {Yi → Y }i∈I . Let ∐i∈I Yi denote a coproduct of the collection
{Yi}i∈I in the category X , so that L(∐i∈I Yi) is a coproduct of the collection {Yi}i∈I in the category X 0.
We wish to show that the pullback X ×Y L(∐i∈I Yi) can be identified with a coproduct of the collection
{X ×Y Yi}i∈I . In other words, we wish to show that the canonical map

θ ∶ L(∐
i∈I

(X ×Y Yi)) →X ×Y L(∐
i∈I

Yi)
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is an isomorphism. This is clear: we can identify θ with the image under L of the canonical map

θ ∶ ∐
i∈I

(X ×Y Yi) →X ×Y ∐
i∈I

Yi,

which is an isomorphism in X by virtue of our assumption that X is a Grothendieck topos.
We complete the proof by observing that if X is generated by a small collection of objects {Xi}i∈I , then

X 0 is generated by the small collection of objects {LXi}i∈I . �

C.2. Geometric Morphisms.

Definition C.2.1. Let X and Y Grothendieck topoi. A geometric morphism from X to Y is a pretopos
functor F ∗ ∶ Y → X which preserves small coproducts. We let Fun∗(Y,X) denote the full subcategory of
Fun(Y,X) spanned by the geometric morphisms from X to Y.

More concretely, a geometric morphism from X to Y is a functor F ∗ ∶ Y → X which preserves finite limits,
small coproducts, and effective epimorphisms.

Example C.2.2. Let X be a Grothendieck topos and let f ∶X → Y be a morphism in X . Then the pullback
functor

X /Y → X /X Z ↦ Z ×Y X
is a geometric morphism from X /X to X /Y .

Example C.2.3. Let C be a small category equipped with a Grothendieck topology. Then the sheafification
functor L ∶ Fun(Cop,Set) → Shv(C) is a geometric morphism of topoi.

Definition C.2.1 has several other formulations. To establish their equivalence (Proposition C.2.9 below),
we need some preliminaries.

Lemma C.2.4. Let X be a Grothendieck topos containing an object X. Then:

(1) Every set of subobjects {Xi ⊆ X}i∈I has a least upper bound ⋃i∈I Xi in the partially ordered set
Sub(X).

(2) If F ∗ ∶ X → Y is a geometric morphism of topoi, then we have F ∗(⋃i∈I Xi) = ⋃i∈I(F ∗(Xi)) in
Sub(F ∗(X)).

(3) The collection of subobjects Sub(X) is small.

Remark C.2.5. Let X be a Grothendieck topos containing an object X with a subobject Y ⊆X. Applying
assertion (2) of Lemma C.2.4 to the pullback functor ●×X Y of Example C.2.2, we deduce that the formation
of unions in Sub(X) satisfies the infinite distributive law Y ∩ (⋃i∈I Xi) = ⋃i∈I(Y ∩Xi). In other words, the
partially ordered set Sub(X) is a frame.

Proof of Lemma C.2.4. For assertion (1), we note that ⋃i∈I Xi can be characterized as the image of the map

∐i∈I Xi → X (obtained by amalgamating the inclusions Xi ↪ X). Assertion (2) follows by construction,
since geometric morphisms preserve the formation of coproducts and images. To prove (3), we note that
that if {Gi}i∈I is a set of generators for X , then a subobject Y ⊆X is determined (as an object of Sub(X))
by the collection of subsets {HomX (Gi, Y ) ⊆ HomX (Gi,X)}i∈I . �

Lemma C.2.6. Let X be a Grothendieck topos and suppose we are given a pair of morphisms f, g ∶ Y →X
in X having the same domain and codomain. Then:

(1) There is a smallest equivalence relation R ⊆ X ×X such that the pair (f, g) ∶ Y → X ×X factors
through R. We will refer to R as the equivalence relation generated by (f, g).

(2) If F ∗ ∶ X → Y is a geometric morphism of topoi, then F ∗(R) ⊆ F ∗(X) × F ∗(X) is the equivalence
relation generated by the pair of morphisms F ∗(f), F ∗(g) ∶ F ∗(Y ) → F ∗(X).

Proof. We define an increasing sequence of subobjects

R0 ⊆ R1 ⊆ R2 ⊆ ⋯ ⊆X ×X
as follows:
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● We take R0 to be the smallest subobject of X ×X which contains the images of the maps

(f, g) ∶ Y →X ×X (g, f) ∶ Y →X ×X δ ∶X →X ×X,
where δ is the diagonal.

● For n > 0, let Rn denote the image of the map Rn−1 ×X Rn−1 → X ×X. That is, Rn is the smallest
subobject of X × X with the property that, for every triple of maps a, b, c ∶ Z → X such that
(a, b) ∶ Z → X ×X and (b, c) ∶ Z → X ×X factor through Rn−1, then (a, c) ∶ Z → X ×X factors
through Rn.

Note that if (f, g) ∶ Y → X ×X factors through some equivalence relation E ⊆ X ×X, then E must contain
each Rn and must therefore contain the union R = ⋃nRn. We will complete the proof by showing that R is
an equivalence relation on X. It is immediate from the definition that R is reflexive (since R0 contains the
image of the diagonal δ ∶X ↪X×X) and symmetric (each of the relations Rn is symmetric by construction).
It will therefore suffice to show that R is transitive. Suppose we are given a triple of maps a, b, c ∶ Z →X for
which the maps

(a, b) ∶ Z →X ×X (b, c) ∶ Z →X ×X
factor through R. For each n ≥ 0, let Zn denote the subobject of Z given by the intersection (a, b)−1Rn ∩
(b, c)−1Rn. By construction, each of the maps (a, c) ∶ Z → X × X carries Zn into Rn+1, so that Zn ⊆
(a, c)−1(R). Since the formation of unions of subobjects is compatible with pullback (by part (2) of Lemma
C.2.4), we see that Z = ⋃nZn, so that Z = (a, c)−1(R) as desired. This completes the proof of (1). Assertion
(2) follows by construction, since geometric morphisms preserve the formation of pullbacks, images, and
unions of subobjects (Lemma C.2.4). �

Proposition C.2.7. Let X be a Grothendieck topos. Then X admits small colimits. Moreover, every
geometric morphism F ∗ ∶ X → Y preserves small colimits.

Proof. By definition, the category X admits small coproducts, and every geometric morphism F ∗ ∶ X → Y
preserves small coproducts. It will therefore suffice to show that every pair of morphisms f, g ∶ Y →X admits
a coequalizer in X , which is preserved by every geometric morphism F ∗ ∶ X → Y. Let R ⊆ X ×X be the
equivalence relation generated by the pair (f, g) (Lemma C.2.6). Unwinding the definitions, we see that a
morphism h ∶ X → X ′ factors (uniquely) through X/R if and only if the fiber product X ×X′ X ⊆ X ×X
contains R, or equivalently that the map (f, g) ∶ Y → X ×X factors through X ×X′ X. It follows that the
quotient map X ↠ X/R exhibits X/R as a coequalizer of the morphisms f and g. For every geometric
morphism F ∗ ∶ X → Y, the induced map F ∗(X) ↠ F ∗(X/R) exhibits F ∗(X/R) as the quotient of F ∗(X)
by the equivalence relation

F ∗(X) ×F ∗(X/R) F
∗(X) ≃ F ∗(X ×X/R X) ≃ F ∗(R) ⊆ F ∗(X) × F ∗(X).

It follows from part (2) of Lemma C.2.6 that this is the equivalence relation generated by F ∗(f), F ∗(g) ∶
F ∗(Y ) → F ∗(X). �

Corollary C.2.8. Let X be a Grothendieck topos. Then colimits in X are universal. That is, for every
morphism f ∶X → Y in X , the pullback functor

X /Y → X /X Z ↦ Z ×Y X
preserves small colimits.

Proof. Combine Example C.2.2 with Proposition C.2.7. �

Proposition C.2.9. Let X and Y be Grothendieck topoi, and let F ∗ ∶ X → Y be a functor which preserves
finite limits. The following conditions are equivalent:

(1) The functor F ∗ is a geometric morphism from Y to X : that is, it preserves small coproducts and
effective epimorphisms.

(2) The functor F ∗ preserves small colimits.
(3) The functor F ∗ admits a right adjoint F∗ ∶ Y → X .
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Proof. The implication (3) ⇒ (2) is immediate, and the reverse implication follows from the adjoint functor
theorem. The implication (1) ⇒ (2) follows from Proposition C.2.7. We complete the proof by showing
that (2) ⇒ (1). Suppose that F ∗ ∶ X → Y preserves small colimits and finite limits and let f ∶ Y ↠ X is an
effective epimorphism in X ; we wish to show that F ∗(f) is an effective epimorphism in Y. By definition, the
map f exhibits X as a coequalizer of the projection maps Y ×X Y ⇉ Y . Since F ∗ preserves finite limits, it
follows that F ∗(f) exhibits F ∗(X) as the coequalizer of the projection maps F ∗(Y )×F ∗(X)F

∗(Y ) ⇉ F ∗(Y ),
so that F ∗(f) is an effective epimorphism. This shows that (2) ⇒ (1). �

Remark C.2.10. In the situation of Proposition C.2.9, the functor F ∗ ∶ X → Y and its right adjoint
F∗ ∶ Y → X are equivalent data: either can be recovered (up to canonical isomorphism) from the other. It
is common to emphasize the role of the functor F∗, and to refer to the functor F∗ ∶ Y → X as a geometric
morphism from Y to X .

C.3. Diaconescu’s Theorem.

Theorem C.3.1 (Diaconescu). Let C be a small category which admits finite limits, and let X be a
Grothendieck topos. Then composition with the Yoneda embedding h ∶ C ↪ Fun(Cop,Set) induces a fully
faithful embedding

Fun∗(Shv(C),X) → Fun(C,X).
The essential image of this embedding consists of those functors f ∶ C → X which preserve finite limits.

Before giving the proof of Theorem C.3.1, let us describe some of its consequences. Let C be a small
category which admits finite limits. Suppose that C is equipped with a Grothendieck topology, and let
L ∶ Fun(Cop,Set) → Shv(C) be the sheafification functor. Then composition with L induces a fully faithful
embedding

Fun∗(Shv(C),X) ○LÐ→ Fun∗(Fun(Cop,Set),X),
whose essential image consists of those geometric morphisms f∗ ∶ Fun(Cop,Set) → X having the property
that the right adjoint f∗ ∶ X → Fun(Cop,Set) factors through the full subcategory Shv(C) ⊆ Fun(Cop,Set).
Combining this observation with Theorem C.3.1, we obtain the following:

Corollary C.3.2. Let C be a small category which admits finite limits. Suppose that C is equipped with a
Grothendieck topology, and h̃ ∶ C → Shv(C) denote the sheafified Yoneda embedding (Remark B.2.7). Then,

for any Grothendieck topos X , composition with h̃ induces a fully faithful embedding θ ∶ Fun∗(Shv(C),X) ↪
Fun(C,X), whose essential image is spanned by those functors f ∶ C → X which preserve finite limits and
satisfy the following additional condition:

(∗) For each object X ∈ X , the functor HomX (f(●),X) ∶ Cop → Set is a sheaf on C.

Remark C.3.3. In the situation of Corollary C.3.2, condition (∗) is equivalent (under the assumption that
f preserves finite limits) to the following more concrete assertion:

(∗′) For every covering {Ci → C}i∈I in the category C, the induced map ∐i∈I f(Ci) → f(C) is an effective
epimorphism in the topos X .

Corollary C.3.4. Let C be a small regular category, endowed with the regular topology of Definition B.3.3.
Let X be any Grothendieck topos. Then composition with the Yoneda embedding h ∶ C → Shv(C) induces
a fully faithful embedding Fun∗(Shv(C),X) → Fun(C,X), whose essential image is spanned by the regular
functors f ∶ C → X : that is, functors which preserve finite limits and effective epimorphisms.

Proof. Combine Corollary C.3.2 with Proposition B.3.5. �

Corollary C.3.5. Let C be a small extensive category which admits finite limits, endowed with the extensive
topology of Definition B.4.3. Let X be any Grothendieck topos. Then composition with the Yoneda embedding
h ∶ C → Shv(C) induces a fully faithful embedding Fun∗(Shv(C),X) → Fun(C,X), whose essential image is
spanned by those functors f ∶ C → X : which preserve finite limits and finite coproducts.

Proof. Combine Corollary C.3.2 with Proposition B.4.5. �
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Corollary C.3.6. Let C be a small regular extensive category, endowed with the coherent topology of Defini-
tion B.5.3. Let X be any Grothendieck topos. Then composition with the Yoneda embedding h ∶ C → Shv(C)
induces a fully faithful embedding Fun∗(Shv(C),X) → Fun(C,X), whose essential image is spanned by those
functors f ∶ C → X : which preserve finite limits, finite coproducts, and effective epimorphisms.

In particular, if C is a pretopos, then composition with h induces an equivalence Fun∗(Shv(C),X) ≃
FunPretop(C,X).

Proof. Combine Corollary C.3.2 with Proposition B.5.5. �

We now turn to the proof of Theorem C.3.1. We begin by recalling that for any small category C,
the presheaf category Fun(Cop,Set) is freely generated under small colimits by the image of the Yoneda
embedding h ∶ C ↪ Fun(Cop,Set). More precisely, suppose that X is any category which admits small
colimits, and let LFun(Fun(Cop,Set),X) denote the full subcategory of Fun(Fun(Cop,Set),X) spanned by
those functors which preserve small colimits. Then composition with the Yoneda embedding induces an
equivalence of categories

LFun(Fun(Cop,Set),X) ○hÐ→ Fun(C,X);
the inverse equivalence is given by left Kan extension along h. To prove Theorem C.3.1, we must show that if C
admits finite limits and X is a Grothendieck topos, then a colimit preserving functor F ∶ Fun(Cop,Set) → X
preserves finite limits if and only if the composition F ○ h ∶ C → X preserves finite limits. The “only if”
direction is clear (since the Yoneda embedding h ∶ C ↪ Fun(Cop,Set) preserves small limits), and does not
require the assumption that X is a Grothendieck topos. We can therefore reformulate Theorem C.3.1 as
follows:

Proposition C.3.7. Let C be a small category which admits finite limits, let X be a Grothendieck topos,

and let F ∶ Fun(Cop,Set) → X be a functor which preserves small colimits. If the composite functor C hÐ→
Fun(Cop,Set) FÐ→ X preserves finite limits, then F preserves finite limits.

Proof. Let f ∶ C → X denote the composition F ○ h. Since f and h preserve final objects, the functor F
preserves final objects. It will therefore suffice to show that F preserves pullbacks. For every pair of maps

F 0
αÐ→F

β←ÐF 1

in the presheaf category Fun(Cop,Set), let θα,β denote the natural map

F (F 0 ×F F 1) → F (F 0) ×F (F) F (F 1).
Let us say that a presheaf F ∈ Fun(Cop,Set) is good it it satisfies the following condition:

(∗) For every pair of objects C,D ∈ C equipped with maps hC
αÐ→F

β←Ð hD, the comparison map

θα,β ∶ F (hC ×F hD) → F (hC) ×F (F) F (hD)
is an isomorphism in X .

Note that, if we regard F and the map α ∶ hC →F as fixed, then the constructions

F 1 ↦ F (hC ×F F 1)
F 1 ↦ F (hC) ×F (F) F (F 1)

carry colimits in the category Fun(Cop,Set)/F to colimits in X . Consequently, the collection of those
objects F 1 ∈ Fun(Cop,Set)/F which θα,β is an isomorphism is closed under small colimits. Since every
object of Fun(Cop,Set) can be realized as a colimit of representable functors, we see that every good object
F ∈ Fun(Cop,Set) satisfies the following stronger version of condition (∗):

(∗′) For every object C ∈ C and every pair of morphisms hC
αÐ→F

β←ÐF 1 in Fun(Cop,Set), the comparison
map

θα,β ∶ F (hC ×F F 1) → F (hC) ×F (F) F (F 1)
is an isomorphism in X .
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Applying the same argument with the roles of α and β reversed, we see that every good object F ∈
Fun(Cop,Set) satisfies the following even stronger condition:

(∗′′) For every pair of morphisms F 0
αÐ→F

β←ÐF 1 in Fun(Cop,Set), the comparison map

θα,β ∶ F (hC ×F F 1) → F (hC) ×F (F) F (F 1)
is an isomorphism in X .

To complete the proof of Proposition C.3.7, it will suffice to show that every object of Fun(Cop,Set) is good.
We first treat the case where F = ∐i∈I hEi is a coproduct of representable functors. In this case, any map
α ∶ hC → F arises from a morphism C → Ei in the category C, and any morphism β ∶ hD → F arises from
a morphism D → Ej in the category C. If i ≠ j, then the domain and codomain of the map θα,β are both
initial objects of X (since coproducts are disjoint in both Fun(Cop,Set) and X , and the functor F preserves
initial objects), so that θα,β is automatically an isomorphism. In the case i = j, we can identify θα,β with
the comparison map f(C ×Ei D) → f(C) ×f(Ei) f(D) which is an isomorphism by virtue of our assumption
that f preserves finite limits.

Since the final object 1 of Fun(Cop,Set) is a representable presheaf (representable by the final object of
C), it follows that the object 1 is good. Using (∗′′), we see that the functor F ∶ Fun(Cop,Set) → X commutes
with products.

Now suppose that F is an arbitrary presheaf on C. Choose an effective epimorphism u ∶ F ′ ↠ F ,
where F ′ is a coproduct of representable presheaves. Then u is a levelwise surjection, so any pair of maps

hC
αÐ→F

β←Ð hD as in (∗) can be written as compositions

hC
αÐ→F ′ uÐ→F

u←ÐF ′ β←Ð hD.

In this case, the comparison map θα,β factors as a composition

F (hC ×F hD) θ′Ð→ F (hC) ×F (F ′) F (F ′ ×FhD)
θ′′Ð→ F (hC) ×F (F ′) F (F ′ ×F F ′) ×F (F ′) F (hD)
θ′′′Ð→ F (hC) ×F (F ′) (F (F ′) ×F (F) F (F ′)) ×F (F ′) F (hD)
≃ F (hC) ×F (F) F (hD).

Since F ′ is good, it follows from (∗′′) that the maps θ′ and θ′′ are isomorphisms. Consequently, to show that
F is good, it will suffice to show that the map θ′′′ is an isomorphism. For this, we show that the comparison
map

θu,u ∶ F (F ′ ×F F ′) → F (F ′) ×F (F) F (F ′)
is an isomorphism in X .

Set R = F ′ ×F F ′, which we regard as a subobject of F ′ ×F ′. Note that F ′ ×F ′ can be written as a
coproduct of representable presheaves, so that the comparison map

F (R) ≃ F (R ×F ′ ×F ′ R) → F (R) ×F (F ′ ×F ′) F (R)
is an isomorphism. It follows that we can identify F (R) with a subobject of F (F ′ ×F ′) ≃ F (F ′) ×F (F ′).
Since u is an effective epimorphism, we can identify F with the coequalizer of the projection maps R ⇉F ′.
Because the functor F preserves colimits, we obtain a coequalizer diagram

F (R) ⇉ F (F ′) F (u)ÐÐÐ→ F (F )
in the topos X . It follows that the fiber product F (F ′)×F (F) F (F ′) can be identified with the equivalence

relation on F (F ′) generated by F (R) ⊆ F (F ′) ×F (F ′). (see the proof of Proposition C.2.7). To complete
the proof that the θu,u is an isomorphism, it will suffice to show that F (R) is already an equivalence relation
on F (F ′). Reflexivity and symmetry are clear. To verify transitivity, we must show that the natural map

ρ ∶ F (R) ×F (F ′) F (R) → F (F ′) × F (F ′)
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factors through F (R). Since F ′ is good, we can use (∗′′) to identify the domain of ρ with F (R ×F ′ R) ≃
F (F ′ ×F F ′ ×F F ′). The existence of the desired factorization is now obvious (it can be obtained by
applying the functor F to the canonical map

F ′ ×F F ′ ×F F ′ id×u×idÐÐÐÐ→F ′ ×F F ×F F ′ .

�

C.4. Giraud’s Theorem. Corollary C.1.7 admits a converse:

Theorem C.4.1 (Giraud). Let X be a category. The following conditions are equivalent:

(1) There exists a small category C which admits finite limits, a Grothendieck topology on C, and an
equivalence of categories X ≃ Shv(C).

(2) There exists a small category C, a Grothendieck topology on C, and an equivalence of categories
X ≃ Shv(C).

(3) There exists a small category C and a fully faithful embedding X ↪ Fun(Cop,Set) which admits a left
adjoint L ∶ Fun(Cop,Set) → X which preserves finite limits.

(4) The category X is a Grothendieck topos (in the sense of Definition C.1.1).

The implication (1) ⇒ (2) is immediate, (2) ⇒ (3) follows from Proposition B.2.4, and the implication
(3) ⇒ (4) from Proposition C.1.5. To show that (4) ⇒ (1), we need some preliminaries.

Construction C.4.2 (The Canonical Topology). Let X be a Grothendieck topos. We will say that a sieve

X (0)

/X
on an object X ∈ X is a canonical covering sieve if it contains a set of morphisms {Ui →X}i∈I for which

the induced map ∐i∈I Ui →X is an effective epimorphism in X .

Remark C.4.3. If X is a Grothendieck topos, then a sieve X (0)

/X
is a canonical covering sieve if and only if

there is no proper subobject X ′ ⊊X such that each morphism f ∶ U →X in X (0)

/X
factors through X ′ (if this

condition is satisfied, then X can be realized as the join of the images Im(f) where f ∶ U → X ranges over

all morphisms belonging to X (0)

/X
; note that the collection of such images is small by virtue of Lemma C.2.4.

Lemma C.4.4. Let X be a Grothendieck topos and let {fi ∶ Xi ↠ Yi}i∈I be a small collection of effective
epimorphisms in X . Then the coproduct map f ∶ ∐i∈I Xi →∐i∈I Yi is also an effective epimorphism in X .

Proof. Set Y = ∐i∈I Yi and U = Im(f) ⊆ Y . Since the formation of coproducts in X is pullback-stable, we
can identify U with the coproduct of the inverse images Ui = U ×Y Yi. By construction, each of the maps
fi ∶ Xi ↠ Yi factors through Ui. Since fi is an effective epimorphism we conclude that Ui = Yi, so that
U = ∐i∈I Ui = ∐i∈I Yi = Y . �

Proposition C.4.5. Let X be a Grothendieck topos. Then the collection of canonical covering sieves deter-
mines a Grothendieck topology on X .

We refer to the Grothendieck topology of Proposition C.4.5 as the canonical topology on X .

Proof of Proposition C.4.5. Axiom (T1) of Definition B.1.3 is immediate, and (T2) follows from the assump-
tion that small coproducts and effective epimorphisms in X are stable under pullback. To prove (T3), it
suffices to show that for every effective epimorphism f ∶ ∐i∈I Ui↠X and collection of effective epimorphisms
{gi ∶ ∐j∈Ji Vi,j ↠ Ui}i∈I , the composite map

∐
i∈I,j∈Ji

Vi,j
∐i giÐÐÐ→∐

i∈I

Ui
fÐ→X

is an effective epimorphism. This follows from Proposition A.1.8 and Lemma C.4.4. �

Remark C.4.6. Let X be a Grothendieck topos and let X 0 ⊆ X be a full subcategory. Then X 0 generates
X (in the sense of Definition C.1.1 if and only if X 0 is a basis for the canonical topology on X (Definition
B.6.1). In this case, X 0 inherits a Grothendieck topology (Proposition B.6.3), which we will refer to as the
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restricted canonical topology on X 0. Beware that this terminology is potentially confusing: the restricted
canonical topology on X 0 depends not only on X 0 as an abstract category, but on its realization as a full
subcategory of the topos X .

Remark C.4.7. Let X be a Grothendieck topos and let X 0 ⊆ X be a full subcategory which generates X .
Regard X as equipped with the canonical topology of Proposition C.4.5 and X 0 with the restricted canonical
topology of Remark C.4.6. Then composition with the inclusion X 0 ⊆ X induces an equivalence of categories
Shv(X) ≃ Shv(X 0). This is a special case of Proposition B.6.4.

Proposition C.4.8. Let X be a Grothendieck topos. Then the Yoneda embedding h ∶ X ↪ Fun(X op,Set)
induces an equivalence of X with the category Shv(X) of sheaves with respect to the canonical topology on
X .

Proof. Let X 0 ⊆ X be a small full subcategory which generates X . Then Remark C.4.7 supplies an equivalence
Shv(X) ≃ Shv(X 0), so that Shv(X) is a Grothendieck topos by virtue of Corollary C.1.7. We leave it to
the reader to verify that for every object X ∈ X , the representable presheaf hX = HomX (●,X) is a sheaf
for the canonical topology. We wish to prove the converse. Let F be an object of Shv(X); we wish to
show that F is representable. Since X 0 is small, we can choose a map α ∶ F ′ → F , where F ′ is a small
coproduct of sheaves representable by objects X ∈ X 0, such that the map of sets F ′(X) →F (X) is surjective
for each X ∈ X 0. Then the induced map F ′ ∣X op

0
→ F ∣X op

0
is an effective epimorphism in the category of

presheaves Fun(X op
0 ,Set) and therefore also in the category of sheaves Shv(X 0). Since the restriction functor

Shv(X) → Shv(X 0) is an equivalence of categories, it follows that α is an effective epimorphism in Shv(X). It
follows from the definition of the canonical topology on X that the construction X ↦ hX carries coproducts
and effective epimorphisms in X to coproducts and effective epimorphisms in Shv(X). Consequently, the
sheaf F ′ ∈ Shv(X) is representable by an object U ∈ X (which might not belong to X 0).

Let us now treat the special case where F is given as a subobject of a representable sheaf hX ∈ Shv(X).
In this case, we can identify α with a map of representable functors hU → hX which, by virtue of Yoneda’s
lemma, is induced by a morphism α ∶ U → X in the category X . Since the functor Y ↦ hY preserves
finite limits and effective epimorphisms, it preserves the formation of images. Consequently, the sheaf
F = Im(α ∶ hU → hX) can be identified with hIm(α), and is therefore representable as desired.

We now treat the general case. The effective epimorphism α ∶ hU →F exhibits F as the quotient of hU
by an equivalence relation R ⊆ hU ×hU ≃ hU×U . The preceding argument shows that R is representable by a
subobject R ⊆ U ×U , which is easily seen to be an equivalence relation. Since the functor Y ↦ hY preserves
finite limits and effective epimorphisms, it preserves the formation of quotient by equivalence relations. We
therefore obtain a canonical isomorphism F ≃ hU /hR ≃ hU/R, so that F is representable as desired. �

By definition, for any Grothendieck topos X we can select a small full subcategory X 0 ⊆ X which generates
X . Enlarging X 0 if necessary, we can assume that X 0 is closed under finite limits in X . Consequently, the
implication (4) ⇒ (1) of Theorem C.4.1 follows from Remark C.4.7 together with the following:

Corollary C.4.9. Let X be a Grothendieck topos, and let X 0 ⊆ X be a full subcategory which generates
X . Then the restricted Yoneda embedding X ↦ hX ∣X op

0
induces an equivalence of categories X → Shv(X 0),

where X 0 is equipped with the restricted canonical topology of Remark C.4.6.

Proof. Combine Proposition C.4.8 with Remark C.4.7. �

C.5. Coherent Topoi. Let X be a Grothendieck topos. We will say that a set of morphisms {Ui → X}i∈I
is a covering if it is a covering for the canonical topology of Proposition C.4.5: that is, if the induced map

∐i∈I Ui →X is an effective epimorphism in X .

Definition C.5.1. Let X be a Grothendieck topos. We say that an object X ∈ X is quasi-compact if every
covering {Ui →X}i∈I (for the canonical topology) has a finite subcovering: that is, there exists a finite subset
I0 ⊆ I for which the maps {Ui →X}i∈I0 are also a covering.

Proposition C.5.2. Let X be a Grothendieck topos and let X be an object of X . Suppose that X admits a
covering {Ui →X}i∈I . If the set I is finite and each Ui is quasi-compact, then X is quasi-compact.
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Proof. Let {Vj →X}j∈J be any covering of X. Then, for each i ∈ I, the collection of morphisms {Ui ×X Vj →
Ui}j∈J is also a covering. Using our assumption that each Ui is quasi-compact, we deduce that there exists
a finite subset J0 ⊆ J such that each of the collections {Ui ×X Vj → Ui}j∈J0 is a covering. We then have a
commutative diagram

∐i∈I∐j∈J0 Ui ×X Vj //

��

∐i∈I Ui

��
∐j∈J0 Vj

// X

where the upper horizontal and right vertical map are effective epimorphisms (Proposition A.3.8). It follows
that the lower horizontal map is also an effective epimorphism, so that {Vj →X}j∈J0 is a covering of X. �

Remark C.5.3. Let X be a Grothendieck topos containing a pair of objects X and Y . If the coproduct
X ∐ Y is quasi-compact, then X and Y are quasi-compact.

Proposition C.5.4. Let X be a Grothendieck topos and let X qc ⊆ X be the full subcategory spanned by the
quasi-compact objects. Then X qc is essentially small (that is, it is equivalent to a small category).

Proof. Let X 0 ⊆ X be a small full subcategory which generates X . Enlarging X 0 if necessayr, we may assume
that X 0 is closed under finite coproducts. For each object X ∈ X , we can choose a covering {Ui →X}, where
each Ui belongs to X 0. If X is quasi-compact, this covering admits a finite subcover. We can therefore
choose a single object U ∈ X 0 and an effective epimorphism U ↠ X. It follows that X can be identified
with the coequalizer of a diagram R ⇉ U , for some equivalence relation R ⊆ U × U . Since X 0 is small and
the collection Sub(U × U) of subobjects of U × U is small (Lemma C.2.4), it follows that the collection of
isomorphism classes of quasi-compact objects of X is small. �

Definition C.5.5. Let X be a Grothendieck topos. We will say that an object X ∈ X is quasi-separated if,
for every pair of morphisms U → X ← V , where U and V are quasi-compact, the fiber product U ×X V is
also quasi-compact.

Remark C.5.6. Let X be a Grothendieck topos and let X ∈ X be a quasi-separated object. Then every
subobject U ⊆X is also quasi-separated.

Beware that the requirement of Definition C.5.5 is sometimes satisfied for uninteresting reasons. For
example, if X = Shv(Rn) is the category of sheaves on the Euclidean space Rn, then the only quasi-compact
object of X is the initial object. In this case, every object of X is quasi-separated. For Definition C.5.5 to
be meaningful, we need to ensure that there exists a good supply of quasi-compact objects.

Definition C.5.7. Let X be a Grothendieck topos. We will say that X is coherent if there exists a collection
of objects U satisfying the following conditions:

(a) The collection U generates X : that is, every object X ∈ X admits a covering {Ui → X}, where each
Ui belongs to U .

(b) The collection U is closed under finite products. In particular, it contains a final object of X .
(c) Every object of U is quasi-compact and quasi-separated.

If these conditions are satisfied, then we say that an object X ∈ X is coherent if it is quasi-compact and
quasi-separated. We let X coh denote the full subcategory of X spanned by the coherent objects.

Remark C.5.8. Let X be a coherent Grothendieck topos. Then the final object of X is quasi-separated.
It follows that the collection of quasi-compact objects of X is closed under finite products.

Our next goal is to show that if X is a coherent Grothendieck topos, then we can take the full subcategory
U ⊆ X of Definition C.5.7 to be the category of coherent objects X coh. To prove this, it suffices to show that
the category of coherent objects X coh is closed under finite products. In fact, we have the following:

Proposition C.5.9. Let X be a coherent Grothendieck topos. Then the full subcategory X coh ⊆ X is closed
under finite limits.
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To prove Proposition C.5.9, it will be convenient to employ another characterization of the class of quasi-
separated objects.

Lemma C.5.10. Let X be a coherent Grothendieck topos. Then an object X ∈ C is quasi-separated if and
only if it satisfies the following condition:

(∗) For every quasi-compact object U ∈ X and every pair of morphisms f, g ∶ U → X, the equalizer
Eq(U ⇉X) is quasi-compact.

Proof. Suppose first that X is quasi-separated, and that we are given a pair of morphisms f, g ∶ U → X; we
wish to show that the equalizer Eq(U ⇉X) is quasi-compact. Let U be as in Definition C.5.7, and choose a
covering {Ui → U}i∈I where each Ui belongs to U . Since U is quasi-compact, we can assume that this covering
is finite. Then f and g induce maps fi, gi ∶ Ui → X, having an equalizer Eq(Ui ⇉ X) ≃ Eq(U ⇉ X) ×U Ui.
It follows that Eq(U ⇉ X) admits a finite covering by the objects Eq(Ui ⇉ X). It will therefore suffice to
show that each Eq(Ui ⇉ X) is quasi-compact. In other words, we may replace U by Ui and thereby reduce
to the case where U ∈ U .

Unwinding the definitions, we see that the equalizer Eq(U ⇉X) can be identified with the fiber product

(U ×X U) ×U×U U.
Note that the product U × U belongs to U , and is therefore quasi-separated. Since U and and U ×X U are
quasi-compact (the second by virtue of our assumption that X is quasi-separated), it follows that Eq(U ⇉X)
is also quasi-compact.

We now prove the converse. Assume that condition (∗) is satisfied; we wish to prove that X is quasi-
separated. Choose quasi-compact objects U,V ∈ X equipped with maps U → X ← V ; we wish to show that
the fiber product U ×X V is quasi-compact. Unwinding the definitions, we can identify U ×X V with the
equalizer of a diagram (U ×V ) ⇉X. The desired result now follows from (∗), since U ×V is a quasi-compact
object of X (Remark C.5.8). �

Lemma C.5.11. Let X be a coherent Grothendieck topos and let X,Y ∈ X be quasi-separated objects. Then
the product X × Y is quasi-separated.

Proof. Suppose we are given a pair of maps U →X ×Y ← V , where U and V are quasi-compact. We wish to
show that the fiber product Z = U ×X×Y V is quasi-compact. This follows from Lemma C.5.8, since Z can
be identified with the equalizer of a pair of maps U ×X V ⇉ Y . �

Proof of Proposition C.5.9. Let X be a coherent Grothendieck topos. Then the final object 1 ∈ X is coherent
(since 1 belongs to any full subcategory U ⊆ X satisfying the requirements of Definition C.5.7). It will
therefore suffice to show that for every diagram U →X ← V in X coh, the fiber product U ×X V is coherent.
The quasi-compactness of U ×X V follows from our assumption that U and V are quasi-compact and that X
is quasi-separated. To show that U ×X V is quasi-separated, it will suffice to show that the product U × V
is quasi-separated (Remark C.5.6), which is a special case of Lemma C.5.11. �

We now establish some further closure properties of coherent objects.

Proposition C.5.12. Let X be a coherent Grothendieck topos. Then the full subcategory X coh ⊆ X is closed
under finite coproducts.

Proof. Let {Xi}i∈I be a collection of coherent objects of X indexed by a finite set I, having coproduct
X = ∐i∈I Xi. Then X is quasi-compact (Proposition C.5.2); we must show that it is also quasi-separated.
Suppose we are given maps U →X ← V , where U and V are quasi-compact; we wish to show that the fiber
product U ×X V is quasi-compact. For each i ∈ I, set Ui = U ×X Xi and Vi = V ×X Xi. Then each Ui is
summand of U , hence quasi-compact (Remark C.5.3); similarly each Vi is quasi-compact. It follows that
each of the fiber products Ui ×Xi Vi is quasi-compact, so that the coproduct

∐
i∈I

Ui ×Xi Vi ≃ U ×X V

is quasi-compact by virtue of Proposition C.5.2. �
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Proposition C.5.13. Let X be a coherent Grothendieck topos. Suppose that we are given an effective
epimorphism f ∶ X ↠ Y in X . If X is coherent and the equivalence relation R = X ×Y X is quasi-compact,
then Y is coherent.

Proof. It follows from Proposition C.5.2 that Y is quasi-compact. We claim that Y is quasi-separated.

Suppose we are given morphisms U
fÐ→ Y

g←Ð V , where U and V are quasi-compact objects of X ; we wish
to show that the fiber product U ×Y V is quasi-compact. Set Ũ = U ×Y X, so that we have an effective
epimorphism Ũ ×Y X → U ×Y X. By virtue of Proposition C.5.2, we can replace U by Ũ and thereby reduce
to the case where f lifts to a map f ∶ U → X. Similarly, we may assume that g lifts to a map g ∶ V → X. In
this case, we can identify U ×Y V with the fiber product (U × V ) ×X×X R. Since X ×X is quasi-separated
(Lemma C.5.11) and R is quasi-compact, we are reduced to showing that the product U×V is quasi-compact,
which is a special case of Remark C.5.8. �

Corollary C.5.14. Let X be a coherent Grothendieck topos. Then the full subcategory X coh ⊆ X is an
essentially small pretopos.

Proof. The category X coh is essentially small by virtue of Proposition C.5.4. To show that it is a pretopos,
it will suffice (by virtue of Example A.4.3) to show that the full subcategory X coh ⊆ X is closed under
the formation of finite limits, finite coproducts, and quotients by equivalence relations. This follows from
Propositions C.5.9, C.5.12, and C.5.13. �

C.6. Finitary Grothendieck Topologies. We now provide some examples of coherent Grothendieck topoi.

Definition C.6.1. Let C be a category. We say that a Grothendieck topology on C is finitary if, for every
collection of morphisms {fi ∶ Ui →X}i∈I in C which cover X, there exists a finite subset I0 ⊆ I such that the
collection of morphisms {fi ∶ Ui →X}i∈I0 is also a covering of X.

Example C.6.2. Let C be a regular category (extensive category, regular and extensive category). Then
the regular topology (extensive topology, coherent topology) on C is finitary.

Proposition C.6.3. Let C be a small category which admits finite limits which is equipped with a finitary
Grothendieck topology. Then the Grothendieck topos Shv(C) is coherent. Moreover, the sheafified Yoneda

embedding h̃ ∶ C → Shv(C) carries each object of C to a coherent object of Shv(C).

Proof. Let U ⊆ Shv(C) denote the full subcategory spanned by objects of the form h̃C , where C ∈ C. Then

U generates the topos Shv(C). Moreover, the functor C ↦ h̃C preserves finite limits, and therefore finite
products. It follows that U is closed under finite products. We will complete the proof by showing that for
each C ∈ C, the sheaf h̃C is quasi-compact and quasi-separated as an object of Shv(C).

We first verify quasi-compactness. Choose a covering {F i → h̃C}i∈I in the Grothendieck topos Shv(C).
Note that the identity map idC ∶ C → C determines a section s ∈ h̃C(C). It follows that there exists a

covering {Cj → C}j∈J in the category C such that, for each j ∈ J , the image sj ∈ h̃C(Cj) of s can be lifted
to an element s̃j ∈ F ij(Cj) for some ij ∈ I. Since the topology on C is finitary, we may assume without loss

of generality that J is finite. Setting I0 = {ij}j∈J ⊆ I, we deduce that {F i → h̃C}i∈I0 is a finite subcover of

{F i → h̃C}i∈I .
We now argue that each of the sheaves h̃C is quasi-separated. Choose quasi-compact objects F ,G ∈ Shv(C)

equipped with maps F → h̃C ← G ; we wish to show that the fiber product F ×h̃C G is quasi-compact. Note

that F admits a covering {F i → F}i∈I , where each F i belongs to U . Since F is quasi-compact, we may
assume that I is finite. Then {F i ×h̃C G }i∈I is a finite covering of F ×h̃C G . It will therefore suffice to show
that each F i ×h̃C G is quasi-compact. Replacing F by F i, we are reduced to the case where F has the

form h̃D for some object D ∈ C. In this case, the map F → h̃C can be identified with an element of h̃C(D).
Passing to a covering of D (which we may also assume to be finite), we may assume that this element lies in

the image of the map hC(D) → h̃C(D). In other words, we may assume that the map F → h̃C arises from

applying the functor h̃● to a morphism D → C in the category C. Similarly, we may assume that the map
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G → h̃C arises by applying h̃● to a morphism E → C in C. In this case, the fiber product F ×h̃C G can be

identified with h̃D×CE , which is quasi-compact by the first part of the argument. �

Proposition C.6.4. Let X be a Grothendieck topos. The following conditions are equivalent:

(a) The Grothendieck topos X is coherent (in the sense of Definition C.5.7).
(b) There exists a small pretopos C and an equivalence X ≃ Shv(C), where C is equipped with the coherent

topology.
(c) There exists a small category C which admits finite limits, a finitaryGrothendieck topology on C, and

an equivalence of categories X ≃ Shv(C).

Proof. The implication (b) ⇒ (c) is immediate (Example C.6.2), and the implication (c) ⇒ (a) follows from
Proposition C.6.3. We will show that (a) ⇒ (b). Assume that X is coherent, and let X coh denote the full
subcategory of X spanned by the coherent objects. Then X coh is an essentially small pretopos (Corollary
C.5.14). Let C ⊆ X coh be a small full subcategory which is equivalent to X . Then the subcategory C generates
X , so Corollary C.4.9 supplies an equivalence X ≃ Shv(C), where C is equipped with the restricted canonical
topology of Remark C.4.6. By definition, a collection of morphisms {Ci → C}i∈I in C form a covering for
the restricted canonical topology if and only if the induced map ∐i∈I Ci → C is an effective epimorphism
in X . Since C is a quasi-compact object of X , this is equivalent to the requirement that there exists a
finite subset I0 ⊆ I such that the map ∐i∈I0 Ci → C is an effective epimorphism in X , or equivalently in the
pretopos C itself. It follows that the restricted canonical topology on C coincides with the coherent topology
of Definition B.5.3, so that X satisfies (b). �

The pretopos C appearing in part (b) of Proposition C.6.4 is actually determined (up to equivalence) by
the Grothendieck topos X : it can always be identified with the category X coh of coherent objects of X . This
is a consequence of the following:

Theorem C.6.5. Let C be a small pretopos, which we endow with the coherent topology of Definition B.5.3.
Then the Yoneda embedding h ∶ C ↪ Shv(C) induces an equivalence of categories C ≃ Shv(C)coh.

Proof. It is clear that the Yoneda embedding h ∶ C ↪ Shv(C) is fully faithful, and Proposition C.6.3 guarantees
that the essential image of h is contained in Shv(C)coh. To establish Theorem C.6.5, we must prove the
converse: that every coherent object F ∈ Shv(C) is representable by an object of C. Choose a covering
{hXi →F}i∈I in Shv(C). Since F is quasi-compact, we can assume that I is finite. Setting X = ∐i∈I Xi, we
can arrange that there is an effective epimorphism α ∶ hX ↠F for some object X ∈ C.

We now complete the proof in the special case where there exists a monomorphism β ∶ F ↪ hY , for some

object Y in C. In this case, we can identify F with the image of the composite map hX
αÐ→F

βÐ→ hY . Since
the Yoneda embedding is fully faithful, this composite map is induced by a morphism u ∶ X → Y in the
category C. It follows from the definition of the coherent topology that the Yoneda embedding C ↪ Shv(C)
preserves finite limits and effective epimorphisms, and therefore commutes with the formation of images. In
particular, we obtain an isomorphism F ≃ Im(hu) ≃ hIm(u), so that F is representable by an object of C as
desired.

We now treat the general case. Let α ∶ hX ↠ F be as above, and set R = hX ×F hX . Then R is a
coherent object of Shv(C) (Proposition C.5.9), and it can be realized as a subsheaf of hX × hX ≃ hX×X .
Applying the first part of the argument, we can write R = hR for some subobject R ⊆ X ×X. Using the
fact that R is an equivalence relation on hX , it follows easily that R is an equivalence relation on X in the
pretopos C. Because C is exact, there exists an effective epimorphism v ∶ X ↠ X/R having the property
that R = X ×X/R X (as subobjects of X × X). Applying the Yoneda embedding, we obtain an effective
epimorphism of sheaves hX ↠ hX/R such that hX ×hX/R hX ≃ hR ≃ R. It follows that hX/R can be identified
with the quotient of hX by the equivalence relation R, and is therefore isomorphic to F . �
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