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Abstract

Let F
p

denote the "eld with p elements and FM
p

its algebraic closure. We show that the singular cochain
functor with coe$cients in FM

p
induces a contravariant equivalence between the homotopy category of

connected p-complete nilpotent spaces of "nite p-type and a full subcategory of the homotopy category of
E
=
FM

p
-algebras. ( 2000 Published by Elsevier Science Ltd. All rights reserved.

MSC: primary 55P15; secondary 55P60

Introduction

Since the invention of localization and completion of topological spaces, it has proved extremely
useful in homotopy theory to view the homotopy category from the perspective of a single prime at
a time. The work of Serre, Quillen, Sullivan, and others showed that, viewed rationally, homotopy
theory becomes completely algebraic. In particular, Sullivan showed that an important sub-
category of the homotopy category of rational spaces is contravariantly equivalent to a sub-
category of the homotopy category of commutative di!erential graded Q-algebras, and that the
functor underlying this equivalence is closely related to the singular cochain functor. In this paper,
we o!er a similar theorem for p-adic homotopy theory.

Since the non-commutativity of the multiplication of the F
p

singular cochains is visible already
on the homology level in the Steenrod operations, one would not expect that any useful sub-
category of the p-adic homotopy category to be equivalent to a category of commutative
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di!erential graded algebras. We must instead look to a more sophisticated class of algebras, the
E
=

algebras [18]. E
=

algebras, roughly, are di!erential graded modules with an in"nitely coherent
homotopy associative and commutative multiplication. They provide a generalization of com-
mutative di!erential graded algebras that admits homology operations as commutativity obstruc-
tions generalizing the Steenrod operations. To capture p-adic homotopy theory, even the category
of E

=
F
p
-algebras is not quite su$cient; rather we consider E

=
algebras over the algebraic closure

FM
p

of F
p
. We prove the following theorem.

Main Theorem. The singular cochain functor with coezcients in FM
p

induces a contravariant equiva-
lence from the homotopy category of connected p-complete nilpotent spaces of xnite p-type to a full
subcategory of the homotopy category of E

=
FM
p
-algebras.

The homotopy category of connected p-complete nilpotent spaces of "nite p-type is a full
subcategory of the p-adic homotopy category, the category obtained from the category of spaces by
formally inverting those maps that induce isomorphisms on singular homology with coe$cients in
F
p
. The p-adic homotopy category itself can be regarded as a full subcategory of the homotopy

category, the category obtained from the category of spaces by formally inverting the weak
equivalences. We remind the reader that a connected space is p-complete, nilpotent, and of "nite
p-type if and only if its Postnikov tower has a principal re"nement in which each "ber is of type
K(Z/pZ, n) or K(Z\

p
, n), where Z\

p
denotes the p-adic integers.

By the homotopy category of E
=

FM
p
-algebras, we mean the category obtained from the category

of algebras over a particular but unspeci"ed E
=

FM
p

operad by formally inverting the maps in that
category that are quasi-isomorphisms of the underlying di!erential graded FM

p
-modules, the maps

that induce an isomorphism of homology groups. It is well-known that up to equivalence, this
category does not depend on the operad chosen. We refer the reader to [18, I] for a good
introduction to operads, E

=
operads, and E

=
algebras.

To complete the picture, we need to identify intrinsically the subcategory of the homotopy
category of E

=
FM

p
-algebras that the Main Theorem asserts an equivalence with. Although we can

write a necessary and su$cient condition for an E
=
FM

p
-algebra to be quasi-isomorphic to the

singular cochain complex of a connected p-complete nilpotent space of "nite p-type, it is relatively
unenlightening and di$cult to verify in practice. This condition is stated precisely in Section 7 and
is essentially the E

=
FM
p
-algebra analogue of the existence of a "nite p-type principal Postnikov

tower. Unsurprisingly, restricting consideration to simply connected spaces makes the identi"ca-
tion signi"cantly easier. In fact, we can write necessary and su$cient conditions for an E

=
FM
p
-

algebra to be quasi-isomorphic to the singular cochain complex of a 1-connected space of "nite
p-type in terms of its homology and the generalized Steenrod operation P0.

Characterization Theorem. An E
=

diwerential graded FM
p
-algebra A is quasi-isomorphic in the

category of E
=

FM
p
-algebras to the singular cochain complex of a 1-connected (p-complete) space of

xnite p-type if and only if HiA is zero for i(0, H0A"FM
p
, H1A"0, and for i'1, HiA is xnite

dimensional over FM
p

and generated as an FM
p
-module by the xxed points of the operation P0.

Succinctly, the Characterization Theorem states that an E
=

FM
p
-algebra A is quasi-isomorphic to

the singular cochain complex of a 1-connected space of "nite p-type if and only if the homology of
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A looks like the cohomology of such a space as a module over the generalized Steenrod
algebra.

Comparison with other approaches

The papers [13,17,26] and the unpublished ideas of Dwyer and Hopkins [8] all compare p-adic
homotopy theory to various homotopy categories of algebras (or coalgebras). We give a short
comparison of these results to the results proved here.

The "rst announced results along the lines of our Main Theorem appeared in [26]. The
arguments there are not well justi"ed, however, and some of the results appear to be wrong.

More recently, Goerss [13,17] has compared the p-adic homotopy category with the homotopy
categories of simplicial cocommutative coalgebras and cosimplicial commutative algebras. In
particular, Goerss [13] proves that the p-adic homotopy category embeds as a full subcategory of
the homotopy category of cocommutative simplicial FM

p
-coalgebras. The analogue of the Charac-

terization Theorem is not known in this context. It is straightforward to describe the relationship
between the results of Goerss [13] and our Main Theorem. There is a functor from the homotopy
category of simplicial cocommutative coalgebras to the homotopy category of E

=
algebras given

by normalization of the dual cosimplicial commutative algebra [15] (see also Section 1 below).
Applied to the singular simplicial chains of a space, we obtain the singular cochain complex of that
space. Our Main Theorem implies that on the subcategory of nilpotent spaces of "nite p-type, this
re"ned functor remains a full embedding. This gives an a$rmative answer to the question asked in
[17, 6.3].

The unpublished ideas of Dwyer and Hopkins [8] for comparing the p-adic homotopy category
to the homotopy category of E

=
ring spectra under the Eilenberg}MacLane spectrum HFM

p
, would

give a `brave new algebraa version of our Main Theorem. A proof of such a comparison can be
given along similar lines to the proof of our Main Theorem. We sketch the argument in Appendix
C. The analogue of the Characterization Theorem in this context was not considered in [8], but can
be proved by essentially the same arguments as the proof of our Characterization Theorem.
A direct comparison between our approach and this approach to p-adic homotopy theory would
require a comparison of the homotopy category of E

=
HFM

p
ring spectra and the category of

E
=

FM
p
-algebras, and also an identi"cation of the composite functor from spaces to E

=
di!erential

graded FM
p
-algebras as the singular cochain functor. We will provide this comparison and this

identi"cation in [19,20].

1. Outline of the paper

Since the main objects we work with in this paper are the cochain complexes, it is convenient to
grade di!erential graded modules `cohomologicallya with the di!erential raising degrees. This
makes the cochain complexes concentrated in non-negative degrees, but forces E

=
operads to be

concentrated in non-positive degrees. Along with this convention, we write the homology of
a di!erential graded module M as HHM. We work almost exclusively with ground ring FM

p
;

throughout this paper, CHX and HHX always denote the cochain complex and the cohomology of
X taken with coe$cients in FM

p
. We write CH(X;F

p
) and HH(X;F

p
) for the cochain complex and the
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cohomology of X with coe$cients in F
p

or CH(X; k) and HH(X;k) for these with coe$cients in
a commutative ring k.

The "rst prerequisite to the Main Theorem is recognizing that the singular cochain functor can
be regarded as a functor into the category of E-algebras for some E

=
FM

p
-operad E. In fact, for the

purpose of this paper, the exact construction of this structure does not matter so long as the
(normalized) cochain complex of a simplicial set is naturally an E-algebra. However, we do need to
know that such a structure exists. This can be shown as follows.

The work of Hinich and Schechtman in [15] gives the singular cochain complex of a space or
the cochain complex of a simplicial set the structure of a `May algebraa, an algebra over an
acyclic operad Z, the `Eilenberg}Zilbera operad. The operad Z is not an E

=
operad however

since it is not R-free and since it is non-zero in both positive and negative degrees. To "x this, let
ZM be the `(co)-connective covera of Z: ZM (n) is the di!erential graded FM

p
-module that is equal to

Z(n) in degrees less than zero, equal to the kernel of the di!erential in degree zero, and zero in
positive degrees. The operadic multiplication of Z lifts to ZM , making it an acyclic operad.
Tensoring ZM with an E

=
operad C gives an E

=
operad C and a map of operads EPZ. The

cochain complex of a simplicial set then obtains the natural structure of an algebra over the
E
=

operad E.
We write E for the category of E-algebras. Since we are assuming that the functor CH from spaces

to E-algebras factors through the category of simplicial sets, we can work simplicially. As is fairly
standard, we refer to the category obtained from the category of simplicial sets by formally
inverting the weak equivalences as the homotopy category; this category is equivalent to the
category of Kan complexes and homotopy classes of maps and to the category of CW spaces and
homotopy classes of maps. Since the cochain functor converts F

p
-homology isomorphisms and in

particular weak equivalences of simplicial sets to quasi-isomorphisms of E-algebras, the (total)
derived functor exists as a contravariant functor from the homotopy category to the homotopy
category of E-algebras. We prove the Main Theorem by constructing a right adjoint U from the
homotopy category of E-algebras to the homotopy category and showing that it provides an
inverse equivalence on the subcategories in question.

In order to construct the functor U and to analyze the composite UCH, we need some tools to
help us understand the homotopy category of E-algebras. The tools we need are precisely those
provided by Quillen's theory of closed model categories [25] (see also [9]). Unfortunately, we have
not been able to verify that the category of E-algebras is a model category. Nevertheless, the
category of E-algebras is close enough that most of the standard model category arguments apply,
and we obtain the results we need. These theorems are summarized in Section 2.

Various steps in the proofs of the Main Theorem and the Characterization Theorem require
understanding of the derived coproduct and the homotopy pushout of E-algebras. We summarize
the results we need in Section 3; the proofs of these results are in Section 14.

We construct in Section 4 a contravariant functor ; from the category of E-algebras to the
category of simplicial sets that is the right adjoint to CH. Our model theoretic results allow us to
show that the right derived functor of; exists and is right adjoint to the derived functor of CH; this
derived functor is our functor U mentioned above. Precisely, U is a contravariant functor from the
homotopy category of E-algebras to the homotopy category, and we have a canonical isomorphism

H
0
(X,UA)+hM E(A,CHX)
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for a simplicial set X and an E-algebra A. Here and elsewhere, H
0

denotes the homotopy category
and hM E denotes the homotopy category of E-algebras.

We write u
X

for the `unita of the derived adjunction XPUCHX. For the purposes of this paper,
we say that a simplicial set X is resolvable by E

=
FM
p
-algebras or just resolvable if the map u

X
is an

isomorphism in the homotopy category. In Section 5, we prove the following two theorems.

Theorem 1.1. Let X be the limit of a tower of Kan xbrations 2PX
n
P2X

0
. Assume that the

canonical map from HHX to ColimHHX
n

is an isomorphism. If each X
n

is resolvable, then X is
resolvable.

Theorem 1.2. Let X,>, and Z be connected simplicial sets of xnite p-type, and assume that Z is simply
connected. Let XPZ be a map of simplicial sets, and let >PZ be a Kan xbration. If X,>, and Z are
resolvable, then so is the xber product X]

Z
>.

These theorems allow us to argue inductively up towers of principal Kan "brations. The
following theorem proved in Section 6 provides a base case.

Theorem 1.3. K(Z/pZ,n) and K(Z\
p

, n) are resolvable for n*1.

We conclude that every connected p-complete nilpotent simplicial set of "nite p-type is resolv-
able. The Main Theorem is now an elementary categorical consequence:

H
0
(X,>)+H

0
(X,UCH>)+hM E(CH>,CHX)

for X, > connected p-complete nilpotent simplicial sets of "nite p-type.
The proof of the Characterization Theorem is presented in Sections 7}10.
We mention here one more result in this paper. This result is needed in the proof of Theorem 1.3

but appears to be of independent interest. The work of May [22] provides the homology of
E
=

algebras in characteristic p with operations Ps and bPs (when p'2) for s3Z. It follows from
a check of the axioms and the identi"cation of bP0 as the Bockstein that when these operations are
applied to the F

p
-cochain complex of a simplicial set they perform the Steenrod operation of the

same names, where we understand Ps to be the zero operation for s(0 and the identity for s"0.
The `algebra of all operationsa B therefore surjects onto the Steenrod algebra A with kernel
containing the two-sided ideal generated by 1!P0. The following theorem describes the precise
relationship between B and A.

Theorem 1.4. The left ideal of B generated by (1!P0) is a two-sided ideal whose quotient B/(1!P0)
is canonically isomorphic to A.

The analogue of the Main Theorem for "elds other than FM
p

is discussed in Appendix A. In
particular, we show that the analogue of the Main Theorem does not hold when FM

p
is replaced by

any "nite "eld.
A discussion of the composite UCH when the Main Theorem does not apply and a comparison

with p-pro-"nite completion is given in Appendix B (see also Remark 5.1).
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2. The homotopy theory of E
=

algebras

In this section, we develop the homotopy theoretic results we need for the category of E-algebras.
In fact, the results of this section hold for the categories of algebras over the more general class of
operads described in Section 13. This class of operads includes all E

=
operads of di!erential graded

modules over a commutative ground ring. For convenience of notation for later reference, we state
everything in terms of the particular operad E of di!erential graded FM

p
-modules associated to the

given natural E
=

algebra structure on the cochain functor.
Although we do not prove that the category of E-algebras is a closed model category, the model

category framework provides a convenient language in which to present the results we need. We
assume familiarity with this language; we refer the unfamiliar reader to [9] for a good introduction
to model categories. In order to be able to use much of this language and in order to facilitate
constructions, we begin with the following well-known fact about categories of algebras over
operads of di!erential graded modules.

Proposition 2.1. The category of E-algebras is complete and cocomplete. Limits and xltered colimits
commute with the forgetful functor to diwerential graded modules.

The following de"nition speci"es the co"brations, "brations, and weak equivalences for our
model category results.

De5nition 2.2. We say that a map of E-algebras f :APB is a

(i) weak equivalence if it is a quasi-isomorphism.
(ii) xbration if it is a surjection.
(iii) coxbration if it has the left lifting property with respect to the acyclic "brations.

It is convenient to have a shorthand for indicating weak equivalences, "brations, and co"bra-
tions in diagrams. The following usage has become relatively standard.

Notation 2.3. The symbol `&a decorating an arrow indicates a map that is known to be or is
assumed to be a quasi-isomorphism. The arrow `{a indicates a map that is known to be or is
assumed to be a "bration. The arrow `Ma indicates a map that is known to be or is assumed to be
a co"bration.

We can identify the co"brations more intrinsically. In the following de"nition, for a di!eren-
tial graded module M, we denote by CM the cone on M; this is the di!erential graded module
whose underlying graded module is the sum of M and a copy of M shifted down, with di!erential
de"ned so that CM is contractible and the inclusion MPCM is a map of di!erential graded
modules.

De5nition 2.4. A map of E-algebras f : APB is relative cell inclusion if there exists a sequence of

E-algebra maps A"A
0

i0
P A

1
i1
P 2 such that
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(i) B+Colim i
n
under A.

(ii) Each map i
n
is formed as a pushout of E-algebras

where E denotes the free E-algebra functor, M
n`1

is a degreewise free di!erential graded module
with zero di!erential, CM

n`1
is the cone on M

n`1
, and the map M

n`1
PCM

n`1
is the canonical

inclusion.

We say that an E-algebra A is a cell E-algebra if the initial map FM
p
"E(0)PA is a relative cell

inclusion. A cell E-algebra A is xnite if each M
n
is "nitely generated and there is some N such that

M
n
"0 for n'N.

Clearly the relative cell inclusions are co"brations. The following proposition provides a near
converse.

Proposition 2.5. A map is a coxbration if and only if it is a retract of a relative cell inclusion.

The previous proposition is a formal consequence of a standard lift argument and the following
proposition that follows from an elementary application of the small objects argument.

Proposition 2.6. Any map of E-algebras f :APB can be factored functorially as f"p " i, where i is
a relative cell inclusion and p is an acyclic xbration.

We also mention the following lifting property. It follows by considering the left lifting property
for the relative cell inclusions EFM

p
[n]PECFM

p
[n], where FM

p
[n] denotes the degreewise free di!eren-

tial graded module with zero di!erential with one generator, in degree n.

Proposition 2.7. A map of E-algebras APB is an acyclic xbration if and only if it has the right lifting
property with respect to the coxbrations if and only if it has the right lifting property with respect to
coxbrations between cell E-algebras.

The previous two propositions give us one factorization property and one lifting property. We
cannot prove the other factorization and lifting properties in general. However, we can prove them
for co"brant E-algebras. We prove the following theorem in Section 13.

Theorem 2.8. Any map of E-algebras f : APB can be factored functorially as f"q " j, where j is
a relative cell inclusion that has the left lifting property with respect to the xbrations, and q is
a xbration. If A is coxbrant then j is in addition a quasi-isomorphism.
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Corollary 2.9. Let A be coxbrant. Then a map of E-algebras APB is an acyclic coxbration if and only
if it has the left lifting property with respect to the xbrations.

Corollary 2.10. A map of E-algebras APB is a xbration if and only if it has the right lifting property
with respect to the acyclic coxbrations between cell E-algebras.

Using the fact that all E-algebras are "brant, the factorization and lifting properties above
provide su$cient tools to make the homotopy theory formalized by Quillen in [25] useful for
studying the category hM E, the localization of the category E obtained by formally inverting the
quasi-isomorphisms. Anticipating Theorem 2.13 below, we have already started referring to hM E as
the homotopy category of E-algebras; we now state the de"nition of homotopy.

De5nition 2.11. Let A be an E-algebra. A (Quillen) cylinder object for A is an E-algebra IA
equipped with maps L

0
, L

1
: APIA and p : IAPA such that L

0
#L

1
: APAPIA is a co"bration,

p is a quasi-isomorphism, and the composite p " (L
0
#L

1
) is the folding map APAPA. We say that

maps of E-algebras f
0
, f

1
: APB are (Quillen left) homotopic if there is a map f : IAPB such that

f
0
"f " L

0
and f

1
"f " L

1
; we call f a (Quillen left) homotopy from f

0
to f

1
. We denote by nE(A,B) the

quotient of the mapping set E(A,B) by the equivalence relation generated by `homotopica.

In the case when A is a co"brant E-algebra, we can glue cylinder objects as in [25, Lemmas 1-3]
and see that `homotopica is already an equivalence relation on nE(A,B).

Since our "brations are the surjections, the map p is always an acyclic "bration, and so it is easy
to see that for arbitrary E-algebras A,B, C, composition in E induces an associative composition

nE(B,C)]nE(A,B)PnE(A,C),

making nE a category. The following proposition, the E-algebra analogue of the Whitehead
Theorem, is straightforward to deduce from the factorization and lifting properties above.

Proposition 2.12. Let A be a coxbrant E-algebra. A quasi-isomorphism of E-algebras BPC induces
a bijection n(A,B)Pn(A,C).

Since homotopic maps in E(A,B) represent the same map in hM E, the localization functor EPhM E
factors through the category nE. Let nE

c
denote the full subcategory of nE consisting of the

co"brant E-algebras. We therefore obtain a functor nE
c
PhM E by restriction. The following

theorem, the analogue of Quillen [25, Theorems 1-1@], is now an immediate consequence of the
previous proposition.

Theorem 2.13. The functor nE
c
PhM E is an equivalence of categories. In particular hM E has small Hom

sets.

Another fundamental theorem that we can prove in this context is the analogue of [25, Theorem
4-3], needed for the construction of U in Section 4. The proof follows the standard one for model
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categories with only minor modi"cations and is left to the reader. Although we apply it to
a contravariant functor in the construction of U, we write it here in the familiar covariant form
because this gives a much clearer and unambiguous statement.

Theorem 2.14. Let ¸ :EPM and R :MPE be left and right adjoints between the category of
E-algebras E and a closed model category M.

(i) If ¸ preserves coxbrations between coxbrant objects and R preserves xbrations, then the left
derived functor of ¸ and the right-derived functor of R exist and are adjoint. Moreover, ¸ converts
quasi-isomorphisms between coxbrant E-algebras to weak equivalences, and the restriction of the
left derived functor of ¸ to the coxbrant E-algebras is naturally isomorphic to the derived functor of
the restriction of ¸.

(ii) Suppose that (i) holds and in addition for any coxbrant E-algebra A and any xbrant object > in M,
a map APR> is a quasi-isomorphism if and only if the adjoint ¸AP> is a weak equivalence.
Then the left derived functor of ¸ and the right derived functor of R are inverse equivalences.

The lifting properties provide the following useful alternative hypotheses.

Theorem 2.15. The hypothesis of Theorem 2.14 (i) is equivalent to each of the following.

(i) ¸ preserves coxbrations between coxbrant objects and acyclic coxbrations between coxbrant
objects.

(ii) R preserves xbrations and acyclic xbrations.

We note here for future reference that the analogues of the previous two theorems also hold
when E or M (or both) is replaced by an undercategory A/E for a co"brant E-algebra A.

3. The E
=

torsion product

We use the results on the homotopy theory of E-algebras of the last section to study coproducts
and homotopy pushouts of E-algebras in this section. We show that the homology of these is
closely related to the di!erential torsion product. We state the results in this section for the
category of algebras over the operad E of di!erential graded FM

p
-modules, but except as noted they

apply more generally to the category of algebras over any E
=

operad of di!erential graded modules
over a commutative ring.

De5nition 3.1. Let APB and APC be maps of E-algebras. We de"ne the E
=

torsion product of
B and C under A by

E
=

TorH
A
(B,C)"HH(B@P

A{
C@),
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where A@ is a co"brant approximation of A and B@ and C@ are co"brant approximations of B and
C in the category of E-algebras under A@, i.e. A@ is co"brant and we have the following commutative
diagrams with arrows quasi-isomorphisms, "brations, and co"brations as indicated:

We omit A from the notation, writing E
=

TorH(B,C), when A is the initial object.

The standard lift and homotopy arguments combined with the following theorem imply that the
E
=

torsion product is well-de"ned and that it only depends on the diagram BQAPC in the
homotopy category of diagrams of this form.

Theorem 3.2. Given the following diagram of E-algebras, with the vertical maps quasi-isomorphisms
and the right-hand horizontal maps coxbrations

if A, A@, B, and B@ are coxbrant, then the induced map of pushouts

B@P
A{

C@PBP
A
C

is a quasi-isomorphism.

Proof. Factor the map A@PB@ as a co"bration A@PBA followed by a quasi-isomorphism BAPB@;
it su$ces to show that the induced maps BAP

A{
C@PB@P

A{
C@ and BAP

A{
C@PBP

A
C are both

quasi-isomorphisms. As noted at the close of the last section, Theorems 2.14 and 2.15 hold with
E and M replaced with the undercategories X/E and >/E when X and > are co"brant E-algebras.
Applying this for the adjoint pair of functors induced by a map XP> and applying the argument
for Brown's lemma [9, 9.9], it follows that for co"brant E-algebras, the pushout of a weak
equivalence along a co"bration is a weak equivalence. The theorem then follows by noting that the
map BAP

A{
C@PB@P

A{
C@ is the pushout of a weak equivalence along a co"bration and the map

BAP
A{

C@PBP
A
C can be factored as a sequence of pushouts of weak equivalences along co"bra-

tions. h

Corollary 3.3. Let A, B be coxbrant E-algebras, APB a map of E-algebras and APC a coxbration
of E-algebras. Then the canonical map E

=
TorH

A
(B,C)PHH(BP

A
C) is an isomorphism.

The next theorem compares the E
=

torsion product to the ordinary di!erential torsion product
over the ground ring. Since our di!erential graded modules are integer graded, we should say a few
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words about what we mean by the di!erential torsion product. For di!erential graded modules
M,N, let TorH(M,N) be the homology of the left derived functor of the bifunctor (!)?(!) on
M,N. This derived functor is proved to exist for example in [18, Section III.4], and it coincides with
the left derived functor obtained by "xing one of the variables M or N. We have a canonical map
TorH(M,N)PHHM?HHN, which is an isomorphism in the case of main interest since FM

p
is a "eld.

Returning to the context above, for A the initial object, the map

E(2)?B@?C@PE(2)?(B@=C@)?(B@=C@)PB@PC@

induces a map from the di!erential torsion product TorH(B,C) to the E
=

torsion product
E
=

TorH(B,C). In Section 14, we prove the following theorem.

Theorem 3.4. The map TorH(B,C)PE
=

TorH(B,C) is an isomorphism.

We use the previous theorem to construct a spectral sequence for the calculation of E
=

TorH
A
(B, C)

for general A. For this, we need the bar construction in the category of E-algebras. Given E-algebra
maps APB and APC, the bar construction bv(B,A,C) is the simplicial E-algebra that is given in
simplicial degree n by

bn(B,A,C)"BP AP2PA
h&i&j

n &!#5034

PC.

Regarding BP
A
C as a constant simplicial E-algebra, the map BPCPBP

A
C induces a map of

simplicial E-algebras bv(B, A,C)PBP
A
C and therefore a map of di!erential graded modules on

their normalizations, N(bv(B,A,C))PBP
A
C. In fact the normalization of a simplicial E-algebra is

naturally an E-algebra via the shu%e map [18, p. 51], and this is actually a map of E-algebras, but
we do not need this fact here. The fact we do need is given in the following theorem, proved in
Section 14.

Theorem 3.5. Let A, B be coxbrant E-algebras, APB a map of E-algebras and APC a coxbration of
E-algebras. Then the canonical map

N(bv(B,A,C))PBP
A
C

is a quasi-isomorphism.

Since FM
p

is a "eld, the following is an immediate consequence of the previous theorem and
Theorem 3.4. Although less immediate it still holds for E

=
operads over an arbitrary commutative

ground ring.

Corollary 3.6. There is a left half-plane cohomological spectral sequence with

Ep,q
2

"Torp,q
H
H
A
(HHB,HHC),

converging strongly to E
=
Torp`q

A
(B, C).
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4. Construction of the functor U

We construct the functor U whose restriction provides the inverse equivalence of the Main
Theorem. As mentioned in the introduction, we construct U as the derived functor of a functor
; from the category of E-algebras to the category of simplicial sets, adjoint to the cochain functor.
We begin by reinterpreting the cochain functor as a limit.

Consider the cosimplicial simplicial set D"D[ ) ] given by the standard simplexes. Then CHD[ ) ]
is a simplicial E-algebra. For an arbitrary set S, write P(S,CHD[n]) for the product of copies of
CHD[n] indexed on S. Then for a simplicial set X, P(X,CHD[ ) ]) is a cosimplicial simplicial
E-algebra. Write M(X,CHD) for the end, the equalizer in the category of E-algebras of the diagram

<
n

P(X
n
, CHD[n])] <

f > m?n

f */ D01

P(X
m
, CHD[n]).

By construction, M(X, CHD) is an E-algebra, contravariantly functorial in the simplicial set X.

Proposition 4.1. The cochain functor CH is canonically naturally isomorphic to M(!, CHD) as
a functor from simplicial sets to E-algebras.

Proof. For each element of X
n
, there is a canonical map D[n]PX

n
, and the collection of all such

maps induces a map of E-algebras

CHXP<
n

P(X
n
,CHD[n]).

By naturality, this map factors through the equalizer to induce a map of E-algebras
CHXPM(X,CHD). The underlying di!erential graded module of an equalizer of E-algebras is the
equalizer of the underlying di!erential graded modules. It follows that the induced map
CHXPM(X,CHD) is an isomorphism of the underlying di!erential graded modules and therefore
an isomorphism of E-algebras. h

The description of CH given by Proposition 4.1 makes it easy to recognize CH as an adjoint. For
an E-algebra A, let ;A be the simplicial set whose set of n-simplices ;

n
A is the mapping set

E(A,CHD[n]). Clearly, ;A is a contravariant functor of A. For a simplicial set X, the set of
simplicial maps from X to;A, D01Set(X,;A) is by de"nition the end of the cosimplicial simplicial
set Setm

n
(X,;A)"Set(X

m
,;

n
A) that in cosimplicial degree m and simplicial degree n consists of the

set of maps of sets from X
m

to ;
n
A. Consider the cosimplicial simplicial bijection

Set(X
m
,;

n
A)"Set(X

m
,E(A,CHD[n]))

+<
Xm

E(A,CHD[n])+EAA, <
Xm

CHD[n]B"E(A,P(X
m
, CHD[n])).
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Passing to ends gives a bijection

D01Set(X,;A)+E(A,CHX),

natural in A and X. Thus, we have proved the following proposition.

Proposition 4.2. The functors ; and CH are contravariant right adjoints between the category of
simplicial sets and the category of E-algebras.

We now use the results of Section 2 on adjoint functors. Since we stated Theorems 2.14 and 2.15
in terms of covariant functors, we apply them to ;, CH viewed as an adjoint pair between the
category of E-algebras and the opposite to the category of simplicial sets. As such, ; is the left
adjoint. Taking the closed model category structure on the opposite category of simplicial sets as
the one opposite to the standard one [25] on the category of simplicial sets, the `"brationsa are the
maps opposite to monomorphisms and the `weak equivalencesa are the maps opposite to weak
equivalences. It follows that the functor CH converts `"brationsa to surjections and `weak
equivalencesa to quasi-isomorphisms. It then follows from Theorems 2.14 and 2.15 that the
left-derived functor of ; :EP(D01Set)01 exists and is adjoint to the right derived functor of
CH : (D01Set)01PE. When we regard ; as a contravariant functor, this derived functor is the
right-derived functor, and we obtain the following proposition.

Proposition 4.3. The (right)-derived functor U of ; exists and gives an adjunction hM E(A,
CHX)+H

0
(X,UA).

Applying Theorem 2.15 again, we obtain the following proposition, which is needed in the proofs
of Theorems 1.1 and 1.2 in the next section.

Proposition 4.4. The functor; converts coxbrations of E-algebras to Kan xbrations of simplicial sets.

According to Theorem 2.14, the derived functor U is constructed by "rst approximating an
arbitrary E-algebra with a co"brant E-algebra and then applying ;. This gives us the following
standard observation.

Proposition 4.5. Let X be a simplicial set and APCHX a quasi-isomorphism, where A is a coxbrant
E-algebra. The unit of the derived adjunction XPUCHX is represented by the map XP;A.

Instead of using the standard model structure on the category of simplicial sets, we can use the
`HH(!; F

p
)-localamodel structure constructed in [1]. In this structure, the co"brations remain the

monomorphisms but the weak equivalences are the F
p
-homology equivalences. Since the functor

CH has the stronger property of converting F
p
-homology isomorphisms to quasi-isomorphisms, the

derived adjunction factors as an adjunction between the homotopy category of E-algebras and the
p-adic homotopy category. Although we do not need it in the remainder of our work, we see that
the functor ; has the following strong HH(!;F

p
)-local homotopy properties.
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Proposition 4.6. The functor ; converts E-algebra coxbrations to HH(!; F
p
)-local xbrations. For

a coxbrant E-algebra A, ;A is an HH(!;F
p
)-local simplicial set.

5. The 5bration theorems

In this section, we prove Theorems 1.1 and 1.2 that allow us to construct resolvable simplicial
sets out of other resolvable simplicial sets. The proofs proceed by choosing co"brant E-algebra
approximations and applying Propositions 4.4 and 4.5 of the previous section.

Proof of Theorem 1.1. By Proposition 2.6, a map of E-algebras can be factored as a co"bration
followed by an acyclic "bration. Applying this to the E-algebras CHX

n
, we can construct the

following commutative diagram of E-algebras.

Let A"ColimA
n
. From the universal property, we obtain a map APCHX. The assumption that

HHX"ColimHHX
n

then implies that the map APCHX is a quasi-isomorphism.
Applying the functor;, we see that;A is the limit of ;A

n
. We have the following commutative

diagram:

The bottom row is a tower of Kan "brations by Proposition 4.4 and the vertical maps are weak
equivalences by Proposition 4.5 and the assumption that the X

n
are resolvable. It follows that the

map of the limits XP;A is a weak equivalence, and we conclude that X is resolvable. h

Remark 5.1. The argument above actually proves a more general result than stated in Theorem
1.1. Let X

=
"LimX

n
for a tower of Kan "brations of Kan complexes. Assume that each X

n
is

resolvable and that X
=

is non-empty. If XPX
=

induces an isomorphism HHXP ColimHHX
n
,

then the argument above factors the unit of the derived adjunction XP UCHX through a natural
isomorphism in the homotopy category X

=
PUCHX. If we assume the Main Theorem for

a moment, then when X is connected and of "nite p-type, we can apply this observation to the
Bous"eld}Kan p-completion tower R

n
X for R"F

p
. We conclude that for any connected X of

"nite p-type, the unit of the derived adjunction XPUCHX is naturally isomorphic in the
homotopy category to the Bous"eld}Kan p-completion map XPR

=
X.
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The proof of Theorem 1.2 is similar, but needs in addition the following result that relates the
E
=

torsion product to the usual di!erential torsion product and is proved at the end of this section.

Lemma 5.2. Let X, >, and Z be as in Theorem 1.2. The E
=

torsion product E
=
TorH

C
H
Z
(CHX,CH>) is

canonically isomorphic to the usual diwerential torsion product TorH
C
H
Z
(CHX,CH>). Under this isomor-

phism, the composite

TorH
C
H
Z
(CHX,CH>)PHH(CHXP

C
H
Z
CH>)PHH(CH(X]

Z
>))"HH(X]

Z
>)

is the Eilenberg}Moore map.

Proof of Theorem 1.2. Using Proposition 2.6, choose cell E-algebras A, B, C, quasi-isomorphisms
APCHZ, BPCHX, CPCH>, and relative cell inclusions APB, APC such that the following
diagram commutes:

Let D"BP
A
C and consider the map DPCH(X]

Z
>). By Lemma 5.2 and well-known results on

the Eilenberg}Moore map (e.g. [27, 3.2]), the map DPCH(X]
Z
>) is a quasi-isomorphism. It

follows that the unit of the derived adjunction is represented for X]
Z
> as the map X]

Z
>P;D.

We have the following commutative diagram:

The assumption that X, >, and Z are resolvable implies that all four maps between the top and
bottom squares are weak equivalences, and we conclude that X]

Z
> is resolvable. h

The proof of Lemma 5.2 consists of a comparison of the bar construction in the category of
E-algebras with the cochain complex of the cobar construction of simplicial sets. Recall that for
maps of simplicial sets XPZ and >PZ, the cobar construction Cobarv(X,Z,>) is the cosim-
plicial simplicial set that is given in cosimplicial degree n by

Cobarn(X,Z,>)"X]Z]2]Z
h&i&j

n &!#5034

]>
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with face maps induced by diagonal maps and degeneracies by projections. The cochain complex
CH(Cobarv(X,Z,>)) is then a simplicial E-algebra. The normalization N(CH(Cobarv(X,Z,>))) is
a di!erential graded FM

p
-module; there is a canonical map from the usual di!erential torsion

product to the homology

TorH
C
H
Z
(CHX,CH>)PHH(N(CH(Cobarv(X,Z,>)))),

which is an isomorphism when X, >, and Z are of "nite p-type. On the other hand, considering
X]

Z
> as a cosimplicial simplicial set constant in the cosimplicial direction, the inclusion

X]
Z
>PX]> induces a map of cosimplicial simplicial sets X]

Z
>PCobarv(X,Z,>) and

therefore a map of di!erential graded FM
p
-modules

N(CH(Cobarv(X,Z,>)))PCH(X]
Z
>).

The composite map

TorH
C
H
Z
(CHX,CH>)PHH(N(CH(Cobarv(X,Z,>))))PHH(X]

Z
>)

is by de"nition the Eilenberg}Moore map; see for example [27].

Proof of Lemma 5.2. Let A, B, and C be as in the proof of Theorem 1.2 above. The various
projection maps of X](Z]2]Z)]> induce a map

BP(AP2PA)PCPCHXP(CHZP2PCHZ)PCH>PCH(X](Z]2]Z)]>).

Theorem 3.4 and the KuK nneth theorem imply that the composite above is a quasi-isomorphism.
We obtain a degreewise quasi-isomorphism of simplicial E-algebras

bv(B,A,C))PCH(Cobarv(X,Z,>))

and therefore a quasi-isomorphism of di!erential graded FM
p
-modules

N(bv(B,A,C))PN(CH(Cobarv(X,Z,>)))

that makes the following diagram commute:

By Theorem 3.5, the left vertical arrow is a quasi-isomorphism. By de"nition, HH(BP
A
C) is the

E
=

torsion product E
=

TorH
C
H
Z
(CHX,CH>) and the bottom horizontal map induces on homology

the canonical map E
=

TorCHZ(CHX,CH>)PCHXP
C
H
Z
CH>. The lemma now follows. h

6. A model for CHK(Z/pZ,n)

In this section, we prove Theorem 1.3 that K(Z/pZ, n) and K(Z\
p
, n) are resolvable for n*1. We

prove the resolvability of K(Z/pZ,n) by constructing an explicit cell E-algebra model of
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CHK(Z/pZ,n) that lets us analyze the unit of the derived adjunction. The case of Z\
p

follows easily
from the case of Z/pZ and the work of the previous section.

The construction of our cell model requires the use of the generalized Steenrod operations for
E
=

algebras [18, Section I.7, 22]. The theory of May [22] gives F
p
-linear (but not FM

p
-linear)

operations on the homology of an E-algebra. In this section, we only need the operation P0. This
operation preserves degree and performs the p-th power operation on elements in degree zero.
Using this fact, naturality, and the fact that the operations commute with `suspensiona [22, 3.3],
the following observation can be proved by the argument of May [22, 8.1].

Proposition 6.1. For any simplicial set X, the operation P0 on HHX induced by the E-algebra structure
is the identity on elements of HHX in the image of HH(X;F

p
).

In Section 11, we describe all of the E
=

algebra Steenrod operations on HHX in terms of the
usual Steenrod operations on HH(X;F

p
).

For n*1, let K
n
be a model for K(Z/pZ, n) such that the set of n-simplices of K

n
is Z/pZ, e.g. the

`minimala model [21, Section 23]. Then we have a fundamental cycle k
n
of CnK

n
which represents

the cohomology class in HnK
n

that is the image of the fundamental cohomology class of
Hn(K(Z/pZ,n);F

p
). Write FM

p
[n] for the di!erential graded FM

p
-module consisting of FM

p
in degree

n and zero in all other degrees, and let FM
p
[n]PCHK

n
be the map of di!erential graded FM

p
-modules

that sends 13FM
p

to k
n
. Let E denote the free functor from di!erential graded FM

p
-modules to

E-algebras. We obtain an induced map of E-algebras a :EFM
p
[n]PCHK

n
that sends the funda-

mental class i
n

of EFM
p
[n] to the fundamental class k

n
of CHK

n
.

The operation P0 is not the identity on the fundamental homology class of EFM
p
[n]. We obtain

our cell E-algebra model of CHK
n
, by forcing (1!P0)[i

n
] to be zero as follows. Let p

n
be an element

of EFM
p
[n] that represents (1!P0)[i

n
]. Since (1!P0)[k

n
] is zero in HHK

n
, a(p

n
) is a boundary in

CnK
n
. Choose an element q

n
of Cn~1K

n
such that dq

n
"a(p

n
). Write CFM

p
[n] for the cone on FM

p
[n],

the di!erential graded FM
p
-module that is FM

p
in dimensions n!1 and n and zero in all other

dimensions, with the di!erential FM
p
PFM

p
the identity. We have a canonical map

q
n
:CFM

p
[n]PCHK

n
sending the generators to q

n
and a(p

n
). We have a canonical map

FM
p
[n]PCFM

p
[n], and a map p

n
: FM

p
[n]PEFM

p
[n] that sends the generator 1 to the element p

n
. The

diagram of di!erential graded k-modules on the left below then commutes:

It follows that the diagram of E-algebras on the right above commutes. Let B
n

be the E-algebra
obtained from the following pushout diagram in the category of E-algebras.
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We therefore obtain a map a : B
n
PCHK

n
. We prove the following theorem in Section 12.

Theorem 6.2. The map a : B
n
PCHK

n
is a quasi-isomorphism.

Corollary 6.3. K
n

is resolvable.

Proof. Applying ; to the pushout diagram that de"nes B
n
, we obtain the following pullback

diagram of simplicial sets:

The vertical maps are Kan "brations since the inclusion EFM
p
[n]PECFM

p
[n] is a co"bration. The

following two propositions, 6.4 and 6.5, then imply that ;B
n

is a K(Z/pZ,n).
By Theorem 6.2, the unit of the derived adjunction K

n
PUCHK

n
is represented by the map

K
n
P;B

n
. Since ;B

n
is a K(Z/pZ, n), to see that the map is a weak equivalence, we just need to

check that the induced map on n
n
is an isomorphism. The p distinct homotopy classes of maps from

Sn to K
n
induce maps CHK

n
PCHSn that di!er on homology. It follows that the composite maps

B
n
PCHSn di!er on homology and are therefore di!erent maps in hM E. We conclude from the

adjunction isomorphism hM E(B
n
, CHSn)+H

0
(Sn,;B

n
) that the map K

n
P;B

n
is injective on n

n
, and

is therefore an isomorphism on n
n
. h

Proposition 6.4. ;ECFM
p
[n] is contractible.

Proof. ECFM
p
[n] is a cell E-algebra and the map FM

p
PECFM

p
[n] is a quasi-isomorphism, so the map

;ECFM
p
[n]P;FM

p
"* is a weak equivalence of Kan complexes. h

Proposition 6.5. ;EFM
p
[n] is a K(FM

p
, n) and the map ;p

n
induces on n

n
the map 1!U, where

U denotes the Frobenius automorphism of FM
p
.

Proof. We have canonical isomorphisms

;EFM
p
[n]"E(EFM

p
[n],CHD)+M(FM

p
[n],CHD),
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where M denotes the category of di!erential graded FM
p
-modules. Thus, ;EFM

p
[n] is the simplicial

set which in dimension m is the set of cocycles in CnD[m]. This is the minimal K(FM
p
, n) [21, 23.7!].

The map of simplicial sets D[n]PD[n]/LD[n] induces a bijection

E(EFM
p
[n],CHD[n])+M(FM

p
[n],CHD[n])+M(FM

p
[n],CH(D[n]/LD[n])).

On the other hand, since Cn~1(D[n]/LD[n])"0, we have a canonical identi"cation

E(EFM
p
[n],CH(D[n]/LD[n]))+M(FM

p
[n],CH(D[n]/LD[n]))+Hn(D[n]/LD[n]).

By naturality, the map Hn(D[n]/LD[n])PHn(D[n]/LD[n]) induced by p
n
must be 1!P0. Under the

isomorphism

Hn(D[n]/LD[n])+Hn(D[n]/LD[n];F
p
)?FM

p
+FM

p
,

we can identify the operation 1!P0 as 1!' by Proposition 6.1 and the Cartan formula
[22, 2.7!]. h

We complete the proof of Theorem 1.3 by deducing that K(Z\
p

, n) is resolvable for n*1.

Proof of Theorem 1.3. We see by induction and Theorem 1.2 that K(Z/pmZ,n) is resolvable for
n*1 by considering the following "ber square:

where PK(Z/pZ, n#1) is some contractible simplicial set with a Kan "bration to K(Z/pZ,n#1).
Since K(Z\

p
, n) can be constructed as the limit of a tower of Kan "brations

2PK(Z/pmZ,n)P2PK(Z/pZ n),

and the natural map HHK(Z\
p
, n)PColimHHK(Z/pmZ,n) is an isomorphism, we conclude from

Theorem 1.1 that K(Z\
p
, n) is resolvable. h

7. The image subcategory

The purpose of this section is to identify the E-algebras that are quasi-isomorphic to the cochain
complexes of connected (p-complete) nilpotent simplicial sets of "nite p-type. As mentioned in the
introduction, the condition characterizing these E-algebras is essentially the E-algebra analogue of
the existence of a "nite p-type principal Postnikov tower. Since the functors relatingE-algebras and
simplicial sets are contravariant, towers of principal "brations of simplicial sets correspond to
`complexesa of E-algebras, formed by attaching `cellsa. We make this precise in the following
de"nitions.
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De5nition 7.1. An augmented E-algebra is an E-algebra B together with a map of E-algebras
BPFM

p
(the augmentation). A B-cell (CB,B) is an augmented E-algebra CB together with a co"b-

ration of augmented E-algebras BPCB such that the augmentation CBPFM
p

is a quasi-iso-
morphism. For a map of E-algebras f : BPA, we say that AP

B
CB is formed by attaching a B-cell

along f.

The cells we use are built out of the cell E-algebras B
n
of Section 6. Since FM

p
"E0, the maps of

di!erential graded FM
p
-modules FM

p
[n]P0 and CFM

p
[n]P0 induce a map of E-algebras B

n
PFM

p
that

we take as an augmentation. Let (CB
n
,B

n
) be a B

n
-cell.

Let B
1,n

"B
n
. By the Main Theorem, we can choose a map b

n
: B

n`1
PB

1,n
that sends the

fundamental class of Hn`1B
n`1

to the Bockstein class of Hn`1B
1,n

. Let B
2,n

"B
1,n
P

Bn`1
CB

n`1
.

Then ;B
2,n

is a K(Z/p2Z,n) and it follows from Lemma 5.2 that the map B
2,n

PCHK(Z/p2Z,n) is
a quasi-isomorphism. By the Main Theorem, we can "nd a map b

2
: B

n`1
PB

2,n
that sends the

fundamental class of Hn`1B
n`1

to the class in Hn`1B
2,n

corresponding to the second Bockstein in
Hn`1K(Z/p2Z,n). Inductively, we can form B

m,n
together with a co"bration B

m~1,n
PB

m,n
and

a quasi-isomorphism B
m,n

PCHK(Z/pmZ,n) by attaching the B
n`1

-cell (CB
n`1

,B
n`1

) along the
map b

m~1
, and we can choose a map b

m
: B

n`1
PB

m,n
that sends the fundamental class of

Hn`1B
n`1

to the class in Hn`1B
m,n

corresponding to the m-th Bockstein in Hn`1K(Z/pmZ,n ).
Let B

=,n
"ColimB

m,n
. The quasi-isomorphisms B

m,n
PCHK(Z/pmZ,n) induce a quasi-isomor-

phism B
=,n

PCHK(Z\
p

, n). Let B\
n
"B

=,n
, and choose a B\

n
-cell (CB\

n
, B\

n
). We can now de"ne the

`complexesa that we work with.

De5nition 7.2. A BH-complex is an E-algebra A"ColimA
j
such that A

0
"FM

p
and for each j'0

either A
j`1

"A
j
or A

j`1
is formed from A

j
by attaching a B

mj,nj`1
-cell for some m

j
*1 or m

j
"R,

where Mn
j
N is some unbounded non-decreasing sequence of positive numbers. A special BH-complex

is a BH-complex in which for each j, either m
j
"1 and the B

nj
-cell is (CB

nj
, B

nj
) or m

j
"R and the

B\
nj

-cell is (CB\
nj

,B\
nj

).

We allow the case A
j`1

"A
j

in order to permit the possibility that A"A
j

for some j. The
assumption that the non-decreasing sequence of positive integers Mn

j
N be unbounded is equivalent

to the requirement that it repeat a given number at most "nitely many times. Thus, a BH-complex is
an E-algebra formed from FM

p
by inductively attaching B

m,n`1
-cells, for non-decreasing n, "nitely

many for each n*1. The analogy between BH-complexes and Postnikov towers is made clear by
the following theorem and its proof.

Theorem 7.3. The following conditions on an E-algebra A are equivalent.

(i) A is quasi-isomorphic to CHX for some connected (p-complete) nilpotent simplicial set of xnite p-
type.

(ii) A is quasi-isomorphic to a BH-complex.
(iii) A is quasi-isomorphic to a special BH-complex.

Thus, the homotopy category of connected p-complete nilpotent spaces of xnite p-type is equivalent to
the full subcategory of the homotopy category of E-algebras consisting of the special BH-complexes.

62 M.A. Mandell / Topology 40 (2001) 43}94



Proof. We prove (i) N (iii) N (ii) N (i).
Suppose A is quasi-isomorphic to a connected nilpotent simplicial set of "nite p-type X;

replacing X by its p-completion if necessary, we can assume that X is p-complete. Then X has
a principally re"ned Postnikov tower X

j
whose "bers are all K(Z/pZ, n)'s and K(Z\

p
, n)'s with at

most "nitely many of each type for each n. Lemma 5.2 allows us to approximate inductively CHX
j

by the jth stage of a special BH-complex. In the colimit, we obtain a special BH-complex and
a quasi-isomorphism to CHX. This proves (i) N (iii).

The implication (iii) N (ii) is trivial.
For the implication (ii) N (i), start with a BH-complex A"ColimA

j
. By Proposition 4.4,

;A"Lim;A
j
is the limit of principal Kan "brations of Kan complexes. In fact, by the construc-

tion of the B
m,n
's, ;A"Lim;A

j
is a principally re"ned Postnikov tower whose "bers are

K(Z/pmZ, n)'s and K(Z\
p

, n)'s with only "nitely many for each n. In particular,;A and each;A
j
are

connected p-complete nilpotent simplicial sets of "nite p-type. Clearly, FM
p
"A

0
PCH;A

0
is

a quasi-isomorphism. Inductive application of Lemma 5.2 shows that the maps A
j
PCH;A

j
are

quasi-isomorphisms, and we conclude that the map APCHX is a quasi-isomorphism. h

Remark 7.4. We can re"ne the argument above to see that an E-algebra is quasi-isomorphic to
a "nite stage special BH-complex if and only if it is quasi-isomorphic to CHX for some space X that
has a "nite stage "nite type principally re"ned Postnikov tower. Likewise, an E-algebra is
quasi-isomorphic to a "nite stage special BH-complex with no B\

n`1
-cells (for all n) if and only if it is

equivalent to CHX for some space X with only "nitely many nontrivial homotopy groups, all of
which are "nite p-groups. If we choose CB

n
to be a "nite cell E-algebra, such a BH-complex is then

also a "nite cell E-algebra.

8. The characterization theorem

We de"ned BH-complexes in the last section having in mind an analogy with the de"nition of
a principally re"ned Postnikov tower. We prove the Characterization Theorem in this section
having in mind an analogy with the construction of the principal Postnikov tower of a simply
connected space. Usually, the main tool in the construction of a principal Postnikov tower is the
Hurewicz theorem, of which we have no analogue in the category of E-algebras. Instead, we are
forced to work with the Eilenberg}Moore spectral sequence of Corollary 3.6 and implicitly
a Bockstein spectral sequence. To avoid repeating lengthy hypotheses, we use the following
terminology in this section and the next two.

De5nition 8.1. We say that an E-algebra A is 1-connected if HnA"0 for n(0, H0A"FM
p
, and

H1A"0. We say that A is xnite type if for each n, HnA is a "nite dimensional FM
p
-module. When A is

"nite type, we say that A is spacelike if for each n, HnA is generated as an FM
p
-module by "xed points

of P0.

De5nition 8.2. Let f :APB be a map of E-algebras. We say that f is an n-equivalence if the induced
map HiAPHiB is an isomorphism for i(n and an injection for i"n. We say that f is an
n-approximation if the induced map HiAPHiB is an isomorphism for i)n.

M.A. Mandell / Topology 40 (2001) 43}94 63



Most of the work needed for the proof of the Characterization Theorem goes into the following
two lemmas. We prove these in the next two sections.

Lemma 8.3. Let A be a BH-complex, let B be a 1-connected xnite type spacelike E-algebra, and let
f : APB be an n-equivalence of E-algebras for some n*1. Then f factors through an n-approximation
f @ :A@PB such that A@ is formed from A by attaching a xnite number of B

1,n`1
-cells.

Lemma 8.4. Let A be a BH-complex, let B be a 1-connected xnite type spacelike E-algebra, and let
f : APB be an n-approximation of E-algebras for some n*1. If f is not an (n#1)-equivalence, then
f factors through a map f @ : A@PB such that dim(kerHn`1f @ )(dim(kerHn`1f ), and A@ is formed from
A by attaching a single B

m,n`1
-cell for some m*1 or m"R.

Proof of the characterization theorem. Let B be a 1-connected "nite type spacelike E-algebra. Then
the map FM

p
PB is a 2-equivalence. Alternately applying Lemma 8.3 and applying Lemma 8.4

(multiple times) inductively constructs a BH-complex A and a quasi-isomorphism APB. Since in
the construction of A, each B

m,n`1
-cell attached has n*2, ;A is 1-connected. The Characteriza-

tion Theorem then follows from the Main Theorem and Theorem 7.3. h

9. Co5ber sequences and the Proof of Lemma 8.3

This section is devoted to the proof of Lemma 8.3. Thinking in terms of the analogous lemma for
spaces, we should be able to attach the B

1,n`1
-cells in the statement along the trivial map. The

proof of Lemma 8.3 then reduces to "nding maps from FM
p
P

B1,n`1
CB

1,n`1
to B for B

1,n`1
-cells

(CB
1,n`1

,B
n`1

). We "nd these by working with co"ber sequences; the following de"nitions are
standard.

De5nition 9.1. Let A be a co"brant augmented E-algebra, and let IA be a cylinder object for A. We
de"ne the cone of A to be the augmented E-algebra CA"IAP

A
FM
p

(via L
1
). We de"ne the

suspension of A to be the E-algebra SA"FM
p
P

A
CA (via L

0
). For any co"brant E-algebra B and any

map of E-algebras f :APB, the coxber of f is the E-algebra Cf"BP
A

CA.
Choosing a diagonal lift in the diagram

induces a map SAPSAPSA and a map CfPCfPSA. Just as in a closed model category, these
maps make SA is a co-group object in hM E and give Cf an SA co-action in hM E. In particular, for any
E-algebra D, hM E(SA,D) is naturally a group and hM E(Cf,D) is naturally a hM E(SA,D)-set. It is not hard
to see that these structures are independent of the choice of lift used, and that S extends to a functor
from hM E to co-group objects in hM E. We have a canonical inclusion map b :BPCf, and when in
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addition B is an augmented E-algebra and f is a map of augmented E-algebras, we obtain
a canonical collapse map c : CfPSA. Although usually stated in the `pointeda context, the usual
arguments (e.g. [25, Section 3]) apply in this context to show that the maps Sqf, Sqb, and Sqc induce
a long `exacta sequence of mapping set functors for q*0. We state this only in the case we need,
avoiding the complications of the q"0 case.

Proposition 9.2. Let A and B be coxbrant augmented E-algebras, and let f : APB be a map of
augmented E-algebras. For an arbitrary E-algebra D, the sequence

hM E(S2B,D) S
2
f
H

&" hM E(S2A,D) Sc
H

&" hM E(SCf,D) Sb
H

&" hM E(SB,D) Sf
H

&" hM E(SA,D)

is an exact sequence of groups.

For a free E-algebra EX, the diagonal map XPX=X induces a co-multiplication
EXPE(X=X)+EXPEX, making EX into an abelian co-group object in E. It is not hard to see
that suspension commutes with the free functor. We need this observation only in the simplest case,
which we state as the "rst part of the following proposition.

Proposition 9.3. For each n, there is a canonical isomorphism of EFM
p
[n] and SEFM

p
[n#1] as co-group

objects in hM E. The induced natural transformation

p : Hn`1FM
p
[m#1]"hM E(FM

p
[n#1], FM

p
[m#1])

PhM E(SFM
p
[n#1],SFM

p
[m#1])+hM E(FM

p
[n],FM

p
[m])"HnFM

p
[m]

commutes with the homology operations Ps for all s.

Proof. Let DH[1]"CHD[1] denote the standard 1-simplex di!erential graded FM
p
-module. Then

E(FM
p
[n#1]?DH[1]) is a cylinder object for EFM

p
[n#1] and there are canonical isomorphisms

EFM
p
[n]+E(FM

p
[n#1]?DH[1]/(FM

p
=FM

p
))

+FM
p
PEFM

p*n`1+
E(FM

p
[n#1]?DH[1])PEFM

p*n`1+
FM

p
"SEFM

p
[n#1].

It is easy to check that this is an isomorphism of abelian co-groups in E. The fact that the
operations Ps commute with p for A"EFM

p
[n] follows from looking at the sequence

EFM
p
[m]PECFM

p
[m#1]PEFM

p
[m#1],

and applying [22, 3.3]. h

The following proposition is an easy consequence of the previous proposition or of the Main
Theorem and Theorem 7.3.

Proposition 9.4. For n'0, there is an isomorphism (in hM E), B
n
KSB

n`1
.

The augmented E-algebra B
n`1

is the co"ber of the map p
n`1

:EFM
p
[n#1]PEFM

p
[n#1]. Prop-

osition 9.3 and the naturality of the operation 1!P0 identify the exact sequence of Proposition 9.2
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for B
n`1

as the sequence

Hn~1D 1~P
0

&&" Hn~1DPhM E(SB
n`1

,D)PHnD 1~P
0

&&" HnD.

This allows us to identify the mapping group hM E(SB
n`1

, D) when we understand the operation
P0 on HHD. In particular, when 1!P0 is surjective on Hn~1D, we obtain an isomorphism (of
groups) between hM E(SB

n`1
,D) and the kernel of 1!P0 on HnD. Although we use this principally

for SB
n`1

, the identi"cation is most naturally stated via Proposition 9.4 in terms of B
n
.

Proposition 9.5. Let n'0 and let D be an E-algebra. If the operation 1!P0 is surjective on Hn~1D,
then the association of a map B

n
PD to the element of HnD given by image of the fundamental class

induces a bijection between hM E(B
n
, D) and the xxed points of P0 in HnD.

Proof of Lemma 8.3. Choose a basis Sa
1
,2, a

q
T for the "xed points of P0 in HnA and expand this

to a basis Sa
1
,2, a

q
, b

1
,2, b

r
T of the "xed points of P0 in HnB. By the previous two propositions,

we can "nd maps f
j
:SB

n`1
PB such that the composite B

n
PSB

n`1
PB sends the fundamental

class of B
n

to b
j
. Then

A@"APSB
n`1
P2PSB

n`1

is formed from A by attaching a "nite number of B
1,n`1

-cells and the map

f @"f#f
1
#2#f

r
: APSB

n`1
P2PSB

n`1
PB

is easily seen by Theorem 3.4 to be an n-approximation. h

10. Proof of Lemma 8.4

The de"nition of BH-complex in Section 7 and the statement of Lemma 8.4 leave us complete
freedom in choosing the cells (CB

m,n`1
,B

m,n`1
). We take advantage of this freedom here in the

proof of Lemma 8.4. In particular, we choose speci"c cells (C
m,n`1

,B
m,n`1

) which admit co"bra-
tions C

m,n`1
PC

m`1,n`1
under the maps B

m,n`1
PB

m`1,n`1
such that for C

=,n`1
"

Colim
m
C

m,n`1
, (C

=,n`1
,B

=,n`1
) is a B

=,n`1
-cell. Regarding these cells, we have the following

lemma, the proof of which occupies most of this section.

Lemma 10.1. Let f :APB be as in Lemma 8.4, and let x3ker(Hn`1f ) be a non-zero xxed point of P0.
Let g : B

m,n`1
PA be a map that sends the fundamental class of Hn`1B

m,n`1
to x for some

1)m(R, and let

f
g
: A

g
"AP

Bm,n`1
C

m,n`1
PB

be some map extending f. If dim(kerHn`1f
g
)"dim(kerHn`1f ), then g extends to a map

h : B
m`1,n`1

PA and f
g

extends to a map

f
h
: A

h
"AP

Bm`1,n`1
C

m`1,n`1
PB.
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Proof of Lemma 8.4 from Lemma 10.1. Choose a map g
1
: B

1,n`1
PA sending the fundamental

class to x. By Proposition 9.5, the composite f " g
1
: B

1,n`1
PB is homotopic to the trivial map (the

augmentation of B
1,n`1

composed with the unit of B). It follows that f " g
1

extends to a map

AP
B1,n`1

IB
1,n`1

P
B1,n`1

FM
p
PB

for a cylinder object IB
1,n`1

. By choosing a diagonal lift in the diagram

and composing with the map above, we obtain a map

f
g1

: A
g1
"AP

B1,n`1
C

1,n`1
PB

extending f. Inductively, for as long as possible, choose maps g
m`1

: B
m`1,n`1

PA and
f
gm`1

: A
gm`1

PB extending the maps g
m

and f
gm
. If g

m
, f
gm

cannot be extended to some g
m`1

, f
m`1

, then
A@"A

gm
, f @"f

gm
satis"es the conclusion of Lemma 8.3 by Lemma 10.1. Otherwise, let

g"Colim g
m
, let A@"AP

B=,n`1
C

=,n`1
, and let f @"Colim f

gm
,

f @: A@"AP
B=,n`1

C
=,n`1

"AP
B=,n`1

ColimC
m,n`1

PB.

We have assumed that the map B
=,n`1

PC
=,n`1

is a co"bration, and so we can use the
Eilenberg}Moore spectral sequence of Corollary 3.6 to calculate the e!ect on homology of the
inclusion of A in A@: It is an isomorphism on Hi for i(n#1 and is the quotient by the submodule
generated by x on Hn`1. It follows that the image of Hn`1A@ in Hn`1B coincides with the image of
Hn`1A, but the dimension of Hn`1A@ is one less than the dimension of Hn`1A, and so the
dimension of kerHn`1f @ is one less than the dimension of ker Hn`1f. h

Recall that the augmented E-algebras B
m,n`1

for m'1 are constructed inductively by attaching
a B

n`2
-cell along a map b

m~1
:B

n`2
PB

m~1,n`1
representing the (m!1)-st Bockstein. We did not

specify how to choose the B
n`2

-cell in Section 7; we now assume that CB
n`2

is a cone
IB

n`2
P

Bn`2
FM

p
for some cylinder object IB

n`2
. Let S"CB

n`2
P

Bn`2
CB

n`2
. For later convenience,

choose and "x a quasi-isomorphism q:B
n`1

PSB
n`2

PS. Let IS be a cylinder object for S, and let
CS be the cone ISP

S
FM

p
.

We choose the cell (C
1,n`1

, B
1,n`1

) arbitrarily and for m'1 we choose the cells (C
m,n`1

,B
m,n`1

)
inductively as follows. Choose a map CB

n`2
PC

m,n`1
so that the restriction B

n`2
PC

m,n`1
factors

through the map b
m

: B
n`2

PB
m,n`1

, i.e. "nd a diagonal lift in the following diagram:
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Consider the map

c
n
: S"CB

n`2
P

Bn`2
CB

n`2
PCB

n`2
P

Bn`2
C

m,n`1

and let C
m`1,n`1

"Cc
n

be the co"ber. Since c
n

is a quasi-isomorphism by Theorem 3.2 and an
augmented map, C

m`1,n`1
is augmented and its augmentation is a quasi-isomorphism. Note that

B
m`1,n`1

P
Bm,n`1

C
m,n`1

"CB
n`2
P

Bn`2
C

m,n`1
, and so we obtain co"brations B

m`1,n`1
PC

m`1,n`1
and C

m,n`1
PC

m`1,n`1
under B

m,n`1
. We let C

=,n`1
"ColimC

m,n`1
as required. Since by con-

struction the maps B
m`1,n`1

P
Bm,n`1

C
m,n`1

PC
m`1,n`1

are co"brations for all m, we have that the
map B

=,n`1
"ColimB

m,n`1
PC

=,m`1
is a co"bration.

Proof of Lemma 10.1. Let g, A
g
, and f

g
be as in the statement and suppose that

dim(kerHn`1f
g
)"dim(kerHn`1f ). Looking at the Eilenberg}Moore spectral sequence of Corol-

lary 3.6 that calculates the homology of A
g
, we see that the composite map g"b

m
:B

n`2
PA must

send the fundamental class to zero, and the image of Hn`1f
g

must be the same as the image of
Hn`1f, since otherwise we would have dim(kerHn`1f

g
)"dim(kerHn`1f )!1. Since g "b

m
sends the

fundamental class to zero, it follows from Proposition 9.5 that we can extend g"b
m

to a map
b : CB

n`2
PA. Using the map CB

n`2
PC

m,n`1
in the construction of C

m,n`1
, we obtain a map

a : SPA
g
; let y be the image in Hn`1A

g
of the fundamental class of Hn`1B

n`1
under the map

a " q : B
n`1

PA
g
.

We can change the choice of map b by `addinga a map c : SB
n`2

PA via the map
CB

n`2
PCB

n`2
P SB

n`2
under B

n`2
. Doing so changes y by adding the image of the fundamental

class in Hn`1A
g

of c composed with APA
g
. In particular, since the image of Hn`1A in Hn`1B

coincides with the image of Hn`1A
g
in Hn`1B, we can choose b so that y is in the kernel of Hn`1f

g
.

Let h : B
m`1,n`1

PA be the map induced by g together with such a choice of b. Then the composite
map

SPB
m`1,n`1

P
Bm,n`1

C
m,n`1

PA
g
PB

sends the fundamental class of Hn`1S to zero, and so this map extends to a map CSPB. This
speci"es a map

f
h
: AP

Bm`1,n`1
C

m`1,n`1
+(A

g
P

Bm,n`1
B

m`1,n`1
)P

S
CSPB

that extends f
g
. h

11. The algebra of generalized Steenrod operations

The key to the proof of Theorem 6.2 is a study of the algebra of all generalized Steenrod
operations of May [22]. Precisely, let B be the free associative F

p
-algebra generated by the Ps and

(if p'2) the bPs [22, 2.2, Section 5] for all s3Z modulo the two-sided ideal consisting of those
operations that are zero on all `Adem objectsa [22, 4.1] of `C(p,R)a of May [22, 2.1]. The Adem
objects of C(p,R) include all E

=
algebras over any E

=
k-operad for any commutative F

p
-algebra k.

In this section, we prove Theorem 1.4 and provide the main results needed in the next section to
prove Theorem 6.2. We use the standard arguments e!ective in studying the Steenrod and
Dyer-Lasho! algebras to analyze the structure of B.
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De5nition 11.1. We de"ne length, admissibility, and excess as follows:

(i) p"2: Consider sequences I"(s
1
,2, s

k
). The sequence I determines the operation

PI"Ps12Psk. We de"ne the length of I to be k. Say that I is admissible if s
j
*2s

j`1
for

1)j(k. We de"ne the excess of I by

e(I)"s
k
#

k~1
+
j/1

(s
j
!2s

j`1
)"s

1
!

k
+
j/2

s
j
.

(ii) p'2: Consider sequences I"(e
1
, s

1
,2, e

k
, s

k
) such that e

i
is 0 or 1. The sequence I determines

the operation PI"be1Ps12bekPsk, where b0Ps means Ps and b1Ps means bPs. We de"ne the
length of I to be k. Say that I is admissible if s

j
*ps

j`1
#e

j`1
. We de"ne the excess of I by

e(I)"2s
k
#e

1
#

k~1
+
j/1

(2s
j
!2ps

j`1
!e

j`1
)"2s

1
#e

1
!

k
+
j/2

(2s
j
(p!1)#e

j
).

In either case, by convention, the empty sequence determines the identity operation, has length
zero, is admissible, and has excess !R. If I and J are sequences, we denote by (I,J) their
concatenation.

Proposition 11.2. The set MPIDI is admissibleN is a basis of the underlying F
p
-module of B.

Proof. It follows from the Adem relations [22, 4.7] that the set generates B as a F
p
-module. Linear

independence follows by examination of the action on HH(GF
p
[n]) as n gets large, where G denotes

the free G-algebra functor for some E
=

F
p
-operad G. This follows for example from McClure [23,

2.2 or 2.6]. h

Proposition 11.3. If s'0 then P~s(P0)s"0 and (if p'2) bP~s(P0)s"0.

Proof. Here P~s(P0)s and bP~s(P0)s are meant to denote P~s or bP~s composed with s factors of
P0. The Adem relations [22, 4.7] for beP~sP0 when s'0 are given by

beP~sP0"
=
+

i/~=

(!1)~s~iA
(p!1)i!1

s!i!1 BbeP~(s~i)P~i,

where we understand e"0 when p"2, and we understand the binomial coe$cient (n
k
)"0 when

k(0 or k'n. The binomial coe$cient in the expression above therefore can be non-zero only
when s/p)i)s!1. Then P~1P0"0 and bP~1P0"0 since for these the coe$cients are zero for
all values of i. Assume by induction that P~t(P0)t"0 for all t such that 1)t(s; we see that P~sP0
and bP~sP0 are both in the left ideal generated by MP~tD1)t(sN and hence by the inductive
hypothesis are annihilated by (P0)s~1; therefore, P~s(P0)s"0 and bP~s(P0)s"0. h

We can now prove the "rst half of Theorem 1.4.

Proposition 11.4. The left ideal of B generated by (1!P0) is a two-sided ideal.
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Proof. By Proposition 11.2, it su$ces to show that for every admissible sequence I, (1!P0)PI is an
element of the left ideal generated by (1!P0). Let I"(e

1
, s

1
,2, e

k
, s

k
) be an admissible sequence

(where if p"2 each e
j
"0 and we think of this sequence as (s

1
,2, s

k
)). If s

k
(0 then by the

previous proposition

PI"PI(1!(P0)~sk)"PI(1#P0#2#(P0)~sk~1)(1!P0)

is in the ideal and hence (1!P0)PI is as well. We can therefore assume that s
k
*0, and it follows

from admissibility that s
j
*0 for all j. We proceed by induction on k, the length of I.

The statement is trivial for k"0 (the empty sequence); now assume by induction that the
statement holds for all sequences J of length less than k. We can write I as the concatenation
((e, s), J) for some sequence J of length k!1. If s"0, the Adem relation for P0bP0 is
P0bP0"bP0P0, and we see that

(1!P0)PI"(1!P0)beP0PJ"beP0(1!P0)PJ

is in the ideal by induction. For s'0, the Adem relation for P0Ps takes the form

P0Ps"+ (!1)iA
(p!1)(s!i)!1

(p!1)s#i!1 BPs~iPi.

When i'0 the binomial coe$cient is zero, when i"0 we get the term PsP0, and when i(0 we get
terms of the form binomial coe$cient times Ps~iPi that we know from the work above are in the
ideal; therefore, we can write P0Ps"PsP0#a(1!P0) for some a. An entirely similar argument
shows that P0bPs can also be written P0bPs"bPsP0#a(1!P0) for some a. It follows that

(1!P0)PI"(1!P0)bePsPJ"(bePs#a)(1!P0)PJ

is in the ideal by induction, and this completes the argument. h

For the other half of Theorem 1.4, we need a canonical map from B to the Steenrod algebra A. It
can be shown [22, 10.5] that the Steenrod operations on the cohomology of a simplicial set arise
from the action of B from a C(p,R) structure on the cochains with coe$cients in F

p
. However, it is

important for our purposes to relate the action of B obtained from the E-algebra structure to the
Steenrod algebra. The previous proposition implies that if x is an element of a left B-module that is
"xed by P0, then the submodule Bx generated by x is "xed by P0. It follows from this observation
and Proposition 6.1 that for any simplicial set X, the F

p
-submodule HH(X;F

p
) of HHX is

a B-submodule. It then follows from the axioms that uniquely identify the Steenrod operations that
the action of Ps on HH(X;F

p
) coincides with the Steenrod operation of the same name. Further-

more, by looking at CHK
n
, it is possible to identify bPs as the composite of the operation Ps and the

Bockstein. Thus, we understand the canonical map BPA as follows.

Proposition 11.5. Let k be a commutative F
p
-algebra and let G be an E

=
operad of diwerential graded

k-algebras. For any G-algebra structure on CH(X; k) that is natural in the simplicial set X, the
operations Ps and ( for p'2) bPs act on an element of HH(X;F

p
)LHH(X; k) by the Steenrod

operations of the same name.
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Remark 11.6. The previous proposition and the Cartan formula [22, 2.2] allow the identi"cation
the operations on HHX in terms of the Steenrod operations. When X is of "nite p-type,
HHX+HH(X;F

p
)?F

p
FM

p
, and so every element of HnX can be written as a linear combination

a
1
x
1
#2#a

m
x
m

for some elements x
1
,2, x

m
in HH(X;F

p
) and a

1
,2, a

m
in FM

p
. Then

bePs(a
1
x
1
#2#a

m
x
m
)"U(a

1
)bePsx

1
#2#U(a

m
)bePsx

m
,

where U denotes the Frobenius automorphism of FM
p
. In general HHX is the limit of HHXa where

Xa ranges over the "nite subcomplexes of X.

Proof of Theorem 1.4. The map BPA is clearly surjective. Since the relation P0"1 holds in A,
the map BPA factors through the ring B/(1!P0) and certainly remains surjective. To see that
it is injective, note that Propositions 11.2 and 11.3 imply that B/(1!P0) is generated as
an F

p
-module by those PI for admissible sequences I"(e

1
, s

1
,2, e

k
, s

k
) such that s

j
'0 for each j;

the image of these elements in A form an F
p
-module basis, and in particular are linearly

independent. h

12. Unstable modules over B

In this section, we prove Theorem 6.2. The proof is based on a comparison of free unstable
modules over A with free unstable modules over B.

De5nition 12.1. A module M over B is unstable if for every x3M, PIx"0 for any I with excess e(I)
greater than the degree of x.

Observe that a module over the Steenrod algebra is unstable if and only if it is unstable as
a module over B. Also observe that if M"HHA for an object of C(p,R), e.g. an E

=
k-algebra A for

a commutative F
p
-algebra k, then M is unstable [22, 5.(3)}(4)].

We denote by A6/
n

and B6/
n

the free unstable A and B-modules on one generator in degree n; we
denote these generators as a

n
and b

n
respectively. The following proposition generalizes the

standard basis theorem for A6/
n

and follows easily from Proposition 11.2.

Proposition 12.2. The set MPIb
n
D I is admissible and e(I))nN is an F

p
-module basis of B6/

n
.

We can identify the B-modules HHEFM
p
[n] in terms of free unstable B-modules. For this, we need

the following terminology.

De5nition 12.3. A restricted F
p
-module is a graded F

p
-module M together with an additive

endomorphism (the restriction) that multiplies degrees by p, i.e. takes elements of degree n to
elements of degree np. The enveloping algebra of M is the free graded commutative F

p
-algebra on

M modulo the relation that the restriction is the pth power operation.

An unstable B-module is naturally a restricted F
p
-module by neglect of structure; its enveloping

algebra inherits an unstable B-module structure via the Cartan formula.
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Proposition 12.4. If G is an E
=
F

p
-operad, then HHGF

p
[n] is the enveloping algebra of B6/

n
.

HHEFM
p
[n] is the extended FM

p
-algebra on the enveloping algebra of B6/

n
.

Proof. The argument of McClure [23, 2.6] applies to prove the "rst statement. The second
statement follows from the "rst. h

To use this in the proof of Theorem 6.2, we need to understand the map on homology induced by
the map EFM

p
[n]PEFM

p
[n] in the construction of B

n
. In the following proposition, (1!P0) denotes

the map of B-modules B6/
n
PB6/

n
that sends the generator to 1!P0 times the generator.

Proposition 12.5. For n*1, the sequence

0PB6/
n

(1~P
0)&&" B6/

n
PA6/

n
P0

is exact and split in the category of restricted F
p
-modules.

Proof. The fact that B6/
n
PA6/

n
is onto is clear since it is a map of B-modules and A6/

n
is generated

as a B-module by the image of the generator of B6/
n

. Similarly, exactness in the middle is clear from
examination of the F

p
-module bases of B6/

n
and A6/

n
. Thus, it remains to show that the map

B6/
n
PB6/

n
is injective and split in the category of restricted F

p
-modules.

We proceed by writing an explicit splitting f :B6/
n
PB6/

n
in the category of restricted F

p
-modules

as follows. It su$ces to specify f on PIb
n
for each admissible I"(e

1
, s

1
,2, e

k
, s

k
) with e(I))n. If

s
k
(0, choose

f (PIb
n
)"PI(1#P0#(P0)2#2)b

n
.

This is well-de"ned by Proposition 11.3. If e
k
#s

k
'0 or if I is empty, then choose f (PIb

n
) to be

zero. Let n(I) denote the largest number n such that the subsequence (e
k~n`1

, s
k~n`1

,2, e
k
, s

k
) is all

zeros; if e
k
O0 or s

k
O0 then n(I)"0. We have chosen f (PI) when n(I) is zero; when n(I)'0,

writing I as the concatenation (J, (0, 0)) where n(J)"n(I)!1, we inductively choose

f (PIb
n
)"!PJb

n
#f (PJb

n
).

It is immediate from the construction and the fact that pth power operations do not raise the
excess above n that f is a map of restricted F

p
-modules. We need to verify that the composite of

f and the map (1!P0) is the identity. Let us denote by M
~

the F
p
-submodule of B6/

n
generated by

PIb
n
for those I"(e

1
, s

1
,2, e

k
, s

k
) with s

k
(0; let us denote by M

`
the F

p
-submodule generated by

PIb
n

for those I"(e
1
, s

1
,2, e

k
, s

k
) with s

k
*0 or k"0; clearly B6/

n
is the internal direct sum

M
~
=M

`
. The map (1!P0) sends PIb

n
to PI(1!P0)b

n
; it clearly sends M

`
into M

`
, and it

follows from Propositions 11.3 and 12.2 that it sends M
~

to M
~

. Thus, it su$ces to check that the
composite is the identity on each of these submodules.

On M
~

, f sends ab
n

to a(1#P0#(P0)2#2)b
n
. It follows that the composite sends ab

n
to

a(1!P0)(1#P0#(P0)2#2)b
n
"ab

n
, and so the composite is the identity on M

~
.

72 M.A. Mandell / Topology 40 (2001) 43}94



To see that the composite is the identity on M
`
, it su$ces to check it on a standard basis

element, PJb
n
, where J"(e

1
, s

1
,2, e

k
, s

k
) is an admissible sequence with e(J))n and s

k
*0. Write

I for the concatenation (J, (0, 0)). Observe that I is admissible and e(I)"e(J))n, so

f (PJ(1!P0)b
n
)"f (PJb

n
)!f (PIb

n
)"f(PJb

n
)!(!PJb

n
#f (PJb

n
))"PJb

n
.

It follows that the composite is the identity. h

Proof of Theorem 6.2. Let VM denote the composite of the enveloping algebra functor and the
functor (!)?F

p
FM

p
. Since this is the free functor from restricted F

p
-modules to graded commutative

FM
p
-algebras, it preserves colimits. To avoid confusion, let us note the (isomorphic) image of B6/

n
in

B6/
n

under the map (1!P0) discussed above by I
n
; by Proposition 12.5, B6/

n
is isomorphic as

a restricted F
p
-module to the direct sum I

n
=A6/

n
, and it follows that the ring VM B6/ is isomorphic to

the ring VM I
n
?VM A6/

n
. We therefore obtain isomorphisms

TorH,HVM In
(FM

p
, VM B6/

n
)+FM

p
?VM In

VM B6/
n

+VM A6/
n

,

where the "rst map is the projection from the torsion product to the tensor product and the second
map is induced by VM applied to the quotient map B6/

n
PA6/

n
.

On the other hand, Proposition 12.4 identi"es HHEFM
p
[n] as VM B6/

n
. It is well-known that

HHK
n
"HHK(Z/pZ,n) can be identi"ed with VM A6/

n
. We see from Proposition 11.5 that the

map a from EFM
p
[n] to CHK

n
in the construction of B

n
induces on homology groups the map

VM B6/
n
PVM A6/

n
obtained by applying VM to the quotient map B6/

n
PA6/

n
. Likewise, the map

p
n
:EFM

p
[n]PEFM

p
[n] in the construction of B

n
induces the map VM B6/

n
PVM B6/

n
obtained by applying

VM to the map (1!P0) :B6/
n
PB6/

n
; in other words, we can identify the map induced by p

n
on

homology as the inclusion VM I
n
PVM B6/

n
. Corollary 3.6 provides a spectral sequence that calculates

the homology groups of the pushout B
n

and that has as its E2 term TorH,HVM In
(FM

p
, VM B6/

n
). From the

discussion of the last paragraph, we see that this spectral sequence degenerates at E2 with no
extension problems and that the map from B

n
to CHK

n
is a quasi-isomorphism. h

13. Cell algebras over 6at operads

The purpose of this section is to present the proof of Theorem 2.8. The argument is no more
complicated to describe in full generality, and so we present it here this way. This should cause no
confusion since the discussion in this section relates to the main lines of argument in this paper only
through Theorem 2.8. In this section, k denotes a "xed but arbitrary commutative ground ring, and
we consider the following class of operads of di!erential graded k-modules.

De5nition 13.1. For a ring R, we say that a di!erential graded right R-module M is right R-yat if
the functor M?

R
(!) preserves quasi-isomorphisms in the category of di!erential graded left

R-modules, or equivalently, if the natural map from the di!erential torsion product TorH
R
(M,N) to

HH(M?
R
N) is an isomorphism for every di!erential graded left R-module N. We say that an

operad of di!erential graded k-modules F is yat if for each n, F(n) is right k[R
n
]-#at.
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We have de"nitions of "brations, co"brations, and relative cell inclusions of F-algebras
completely analogous to those given in Section 2 for E-algebras. We denote by F the freeF-algebra
functor on di!erential graded k-modules. The following theorem is the main result we prove in this
section.

Theorem 13.2. Let F be a yat operad of diwerential graded k-modules, let A be a coxbrant F-algebra,
and let Z be a diwerential graded k-module. Then the canonical map APAP FCZ is a quasi-
isomorphism.

Let APB be a map of F-algebras, and let FB be the free di!erential graded k-module with zero
di!erential that has one generator z

b
in dimension n for each element b of B in dimension n!1. Let

x
b
denote the unique element of the di!erential graded k-module CFB whose di!erential is z

b
. We

then have a map of di!erential graded k-modules FBPB that sends x
b
to b for all b. The induced

map of F-algebras APFCFBPB is a surjection and the canonical map APAPFCFB is a relative
cell inclusion and clearly has the left lifting property with respect to "brations. Thus, we obtain the
following corollary of the previous theorem, of which Theorem 2.8 is the special case k"FM

p
,

F"E.

Corollary 13.3. Let F be a yat operad of diwerential graded k-modules. Any map of F-algebras
f : APB can be factored functorially as f"q " j, where j is a relative cell inclusion that has the left
lifting property with respect to the xbrations, and q is a xbration. If A is coxbrant then j is in addition
a quasi-isomorphism.

We begin the proof of Theorem 13.2 by noticing that the underlying di!erential graded k-module
of a coproduct of the form APFX decomposes as a direct sum of pieces homogeneous in X. We
make this precise as follows.

Notation 13.4. For an F-algebra A, de"ne ;
i
A to be the di!erential graded k[R

i
]-module that

makes the following diagram a coequalizer:

=
jw0

F( j#i)?
k*Rj+

(FA)(j)PP=
jw0

F( j#i)?
k*Rj+

A(j)P;
i
A

Here we understand the superscript ( j) to denote the jth tensor over k power with
(FA)(0)"A(0)"k. One map is induced by the F-algebra structure map FAPA, and the other is
induced by the operadic multiplication of F.

Note that ;
0
A is canonically isomorphic to A, and ;

1
A is by de"nition the `universal

enveloping algebraa of A [12, 1.6.4]. More generally, the collection U
A
"M;

n
AN assembles into an

operad with the universal property that the set of U
A
-algebra structures on a di!erential graded

k-module X is naturally in one-to-one correspondence with the set of pairs (m,g) where m : FXPX
is an F-algebra structure on X and g : APX is a map F-algebras for this structure, cf. [11, 1.18].
Our use for this construction is given by the following proposition.
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Proposition 13.5. For a diwerential graded k-module X, there is a natural isomorphism of diwerential
graded k-modules

APFX+=;
i
A?

k*Ri+
X(i).

Proof. A check of universal properties reveals that the coproduct on the left is the coequalizer of
a pair of maps from F((FA)=X) to F(A=X). The proposition follows by a comparison of
coequalizers. h

The inclusion of A into APFX corresponds to the inclusion of the summand ;
0
A on the right

hand side. Since (CZ)(i) is acyclic for all i'0, Theorem 13.2 is an immediate consequence of the
following lemma.

Lemma 13.6. For a yat operad F and a coxbrant F-algebra A, ;
i
A is right k[R

i
]-yat for each i.

The remainder of this section is devoted to proving Lemma 13.6. We "x the #at operad F and
the co"brantF-algebra A. We can assume without loss of generality that A is a cellF-algebra, and
so we can write A"ColimA

n
for some cell F-algebras F(0)"A

0
MA

1
M2, degreewise free

di!erential graded k-modules M
1
,M

2
,2 with zero di!erential, and maps M

n`1
PA

n
such that

A
n`1

"A
n
PFMn`1

FCM
n`1

. Let N
n
"M

1
=2=M

n
, and let N"ColimN

n
"=M

n
. For conveni-

ence, we understand N
0
"M

0
"0.

Our argument for Lemma 13.6 is an inductive analysis of the following "ltration on the
di!erential graded modules;

i
A

n
that generalizes the "ltration given by the direct sum decomposi-

tion of Proposition 13.5.

Notation 13.7. Let B be an F-algebra, let X be a di!erential graded k-module, and let g :XPB be
a map of di!erential graded k-modules. Let ;m

i
g be the di!erential graded k[R

i
]-submodule of

;
i
(BPFX

FCX) of elements of degree m or less in CX, i.e. the submodule generated by the image of
the elements

f?x
a1
?2?x

aj
3F( j#i)?(B=CX)(j) for j*0

in which at most m of x
a1
,2,x

aj
3B=CX map to a non-zero element under the canonical

projection B=CXPCX. We write ;m
i
A

n
for ;m

i
g when g is the given map M

n
PA

n~1
; we

understand ;m
i
A

0
";

i
A

0
"F(i).

In order to understand this "ltration, it is convenient to do some work in the category of graded
k-modules. Forgetting the di!erential, we can regard F as an operad in the category of
graded k-modules. We denote by FA the free functor from graded k-modules to F-algebras
of graded k-modules. To avoid confusion, we refer to F-algebras of graded k-modules as
FA-algebras, reserving the term F-algebra for F-algebras of di!erential graded k-modules. Note
that when X is a di!erential graded k-module, then the underlying FA-algebra of FX is canonically
isomorphic to FAX.

Recall that for a di!erential graded k-module X, the underlying graded k-module of CX is the
direct sum of X and a copy of X shifted one degree down. We denote by pX the graded
k-submodule of CX consisting of the shifted copy of X. Then since A

n`1
"A

n
PFMn`1

FCM
n`1

, we

M.A. Mandell / Topology 40 (2001) 43}94 75



have that as FA-algebras, A
n`1

"A
n
PFApM

n`1
. Passing to colimits, we obtain the following

proposition.

Proposition 13.8. The map of graded k-modules pNPA induces an isomorphism of FA-algebras
FApNPA.

The di!erential that makes FApN into A is the obvious one determined by the Leibniz rule and
the operadic multiplication of F, writing the di!erential of an element of pM

n
(the image of the

corresponding element of M
n

in A
n~1

) as an element of FApN. We can give a description of the
underlying graded k[R

i
]-module of;

i
A, generalizing the description of A above. For i*0, let;A

i
A

be the graded right k[R
i
]-module

;A

i
A"=

jw0

F( j#i)?
k*Rj+

(pN)(j).

A comparison of (now split) coequalizers gives the following result.

Proposition 13.9. The underlying graded k[R
i
]-module of ;

i
A is canonically isomorphic to ;A

i
A.

An entirely analogous description of the underlying graded k[R
i
]-modules of ;

i
A

n
holds. More

generally, we can describe the underlying graded k[R
i
]-module of ;m

i
A

n
as the graded submodule

of ;
i
A

n
generated by elements of

f?x
a1
?2?x

aj
3F( j#i)?

k*Rj+
(pN

n
)(j)

in which at most m of x
a1
,2, x

aj
map to a non-zero element under the canonical projection

pN
n
PpM

n
. Since M

n
is a direct summand of N

n
, for n'0 we can identify the inclusion of;m

i
A

n
in

;
i
A

n
as the map of graded k[R

i
]-modules

=
=
j/0

.!9(j,m)
=
l/0

F( j#i)?
k*Rj~lCR

l+
(pN

n~1
)(j~l)?(pM

n
)(l)

P

=
=
j/0

j
=
l/0

F( j#i)?
k*Rj~lCR

l+
(pN

n~1
)(j~l)?(pM

n
)(l)

+ =
j/0

F( j#i)?
k*Rj+

(pN
n
)(j).

This identi"cation is vital to our argument; we use it through the following immediate conse-
quence.

Proposition 13.10. For all i*0, m,n'0, the inclusion ;m~1
i

A
n
P;m

i
A

n
is a split monomorphism of

the underlying graded k[R
i
]-modules. We have an isomorphism of diwerential graded k[R

i
]-modules

;m
i
A

n
/;m~1

i
A

n
+;

i`m
A

n~1
?

k*Rm+
(CM

n
/M

n
)(m).

Monomorphisms of di!erential graded modules that are split on the underlying graded modules
play an important role in the proof of Lemma 13.6, and so we introduce the following terminology.
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De5nition 13.11. Let R be a ring and let f :¸PM be a map of di!erential graded right R-modules.
We say that f is an almost split monomorphism if the map of underlying graded right R-modules is
a split monomorphism.

If ¸PM is an almost split monomorphism of di!erential graded right R-modules, then for any
left R-module P, the sequence

0P¸?
R

PPM?
R
PP(M/¸) ?

R
PP0

is exact, and so induces a long exact sequence on homology groups. From this observation and the
de"nition of right R-#at, we obtain the following proposition.

Proposition 13.12. Let ¸PM be an almost split monomorphism of diwerential graded right R-
modules. If any two of ¸, M, M/¸ are right R-yat then so is the third.

We need one more observation on #at di!erential graded modules. The following proposition is
an easy consequence of the de"nition. We apply it below with R"k[R

m`i
], S"k[R

m
], and

¹"k[R
i
] for i,m*0.

Proposition 13.13. Let R, S, and T be k-algebras, let S?
k
¹PR be a map of k-algebras, let L be

a diwerential graded left S-module, and let M be a diwerential graded right R-module. If M is right
R-yat, R is right S?

k
¹-yat, and L is right k-yat, then M?

S
¸ is right T-yat.

Finally, we complete our argument with the proof of Lemma 13.6.

Proof of Lemma 13.6. By passage to the sequential colimit, it su$ces to prove that ;m
i
A

n
is right

k[R
i
]-#at for each i,m, n*0. In the case n"0, this is equivalent to the assumption that F is a #at

operad. Assume by induction that this holds for ;m
i
A

n~1
for all i,m.

Since ;0
i
A

n
";

i
A

n~1
+Colim;m

i
A

n~1
, it is right k[R

i
]-#at by the inductive hypothesis. In

general, for m'0, the inclusion of ;m~1
i

A
n

in ;m
i
A

n
is an almost split monomorphism of

di!erential graded right k[R
i
]-modules, and the quotient

;m
i
A

n
/;m~1

i
A

n
+;

m`i
A

n~1
?

k*Rm+
(CM

n
/M

n
)(m)

is right k[R
i
]-#at by Proposition 13.13. Then by Proposition 13.12 and induction on m, we

conclude that ;m
i
A

n
is right k[R

i
]-#at. h

14. Proof of Theorems 3.4 and 3.5

The proofs of Theorems 3.4 and 3.5 rely heavily on the work of the last section and we follow the
conventions and notations introduced there. In particular, k is a commutative ground ring and
F is a #at operad of di!erential graded k-modules, and we prove the theorems in this context. Of
course, we do not expect the homology of a coproduct to be the di!erential torsion product for an
arbitrary #at operad, e.g. the operad for associative k-algebras, so for the generalization of
Theorem 3.4, we must restrict to operads that are also `acyclica: We say that an operad F is acyclic
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if it comes equipped with an acyclic augmentation, a map of operads FPN that is a compon-
entwise quasi-isomorphism, where N is the operad for commutative k-algebras, N(n)"k. We
prove the following generalizations of Theorems 3.4 and 3.5.

Theorem 14.1. Let F be an acyclic yat operad, and let B and C be coxbrant F-algebras. The
canonical map

F(2)?B?CPF(2)?(B=C)?(B=C)PBPC

induces an isomorphism TorH
k
(B,C)PHH(BPC).

Theorem 14.2. Let F be a yat operad, let A, B be coxbrant F-algebras, APB a map of F-algebras
and APC a coxbration of F-algebras. Then the canonical map N(b(B,A,C))PBP

A
C is a quasi-

isomorphism.

The proofs of these theorems consist of very similar arguments that study the "ltrations
described in Notation 13.7 on the underlying di!erential graded module of a pushout of F-
algebras. We use the following observation many times in these arguments; it is an immediate
consequence of the Tor version of the de"nition of a right R-#at di!erential graded module.

Proposition 14.3. If XP> is a quasi-isomorphism of right R-yat diwerential graded modules, then the
map X?

R
ZP>?

R
Z is a quasi-isomorphism for any diwerential graded left R-module Z.

We begin with the proof of Theorem 14.1. The following proposition gives the base case for the
main part of the argument below.

Proposition 14.4. Let F be an acyclic yat operad, and let B be a coxbrant F-algebra. The natural map

F(2)?(B?F(i))PF(i#1)?BP;
i
B

is a quasi-isomorphism.

Proof. The natural map we have in mind is the composite of the map induced by the operadic
multiplication and the canonical map in De"nition 13.4. The "rst map is a quasi-isomorphism
since F is acyclic and B is k-#at by Lemma 13.6. Thus, to see that the composite is a quasi-
isomorphism, we only need to check that the map F(i#1)?BP;

i
B is a quasi-isomorphism.

We assume without loss of generality that B is a cell F-algebra; write B"ColimB
n

where
B
0
"F(0) and B

n
"B

n~1
PFMn

FCM
n

for some M
n

as in De"nition 2.4. Since
F(i#1)?B+ColimF(i#1)?B

n
and ;

i
B+Colim;

i
B

n
, it su$ces to show that the map

F(i#1)?B
n
P;

i
B

n
is a quasi-isomorphism for each n. The case n"0 follows from the assump-

tion that F is #at and acyclic. Assume by induction that this map is a quasi-isomorphism for
B
n~1

for all i.
Write ;m

i
B

n
for ;m

i
g as in Notation 13.7 for g the given map M

n
PB

n~1
above. The map

F(i#1)?B
n
P;

i
B

n
restricts to a map

F(i#1)?;m
0
B
n
P;m

i
B
n
.
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In other words, F(i#1)?B
n
P;

i
B

n
is a "ltered map. Consider the map of strongly convergent

spectral sequences associated to this "ltered map. The map on E1-terms consists of the maps

F(i#1)?(;
s
B

n~1
?

k*Rs+
(CM

n
/M

n
)(s))P;

s`i
B
n~1

?
k*Rs+

(CM
n
/M

n
)(s).

These map are quasi-isomorphisms by Proposition 14.3 since each map
F(i#1)?;

s
B
n~1

P;
s`i

B
n~1

is a quasi-isomorphism by the inductive hypothesis. It follows that
the map of spectral sequences is an isomorphism from E2 onwards. The map

F(i#1)?B
n
+Colim

m
F(i#1)?;m

0
B

n
PColim

m
;m

i
B
n
+;

i
B

n

is therefore a quasi-isomorphism. h

Proof of Theorem 14.1. We can assume without loss of generality that B and C are cell F-algebras.
Write C"ColimC

n
where C

0
"F(0) and C

n
"C

n~1
PFMn

FCM
n
for some M

n
as in De"nition 2.4.

It su$ces to prove that the map F(2)?(B?C
n
)PBPC

n
is a quasi-isomorphism for each n. In fact,

it is convenient for our inductive argument to prove that the map

F(2)?(B?;
i
C

n
)P;

i
(BPC

n
)

is a quasi-isomorphism for all i, n*0. In the case n"0, this follows from the previous proposition;
assume by induction that this holds for C

n~1
for all i.

Let ;m
i
C

n
denote ;m

i
g as in Notation 13.7 for g the given map M

n
PC

n~1
, and let ;m

i
(BPC

n
)

denote ;m
i
h for h the composite M

n
PC

n~1
PBPC

n~1
; we understand;m

i
C

0
";

i
C

0
"F(i) and

;m
i
(BPC

0
)";

i
(BPC

0
)";

i
B. The map displayed above restricts to a map

F(2)?(B?;m
i
C

n
)P;m

i
(BPC

n
)

and induces a map of the strongly convergent spectral sequences associated to these "ltrations. The
map on E1-terms consists of the maps

F(2)?B?;
s`i

C
n~1

?
k*Rs+

(CM
n
/M

n
)(s)P;

s`i
(BPC

n~1
)?

k*Rs+
(CM

n
/M

n
)(s),

which are quasi-isomorphisms by the inductive hypothesis and Proposition 14.3. It follows that the
map of spectral sequences is an isomorphism from E2 onwards. The map

F(2)?(B?;
i
C

n
)+Colim

m
F(2)?(B?;m

i
C

n
)PColim

m
;m

i
(BPC

n
)+;

i
(BPC

n
)

is therefore a quasi-isomorphism. h

We now proceed with the proof of Theorem 14.2. As in the proof of Theorem 14.1 above, it is
convenient to prove the more general result that (with the hypothesis of Theorem 14.2) the natural
map

N(;
i
bv(B,A, C))P;

i
(BP

A
C)

is a quasi-isomorphism for all i. We need the following observation for our argument.

Proposition 14.5. Let F be a yat operad, and let APB and APC be maps of coxbrant F-algebras.
Then N(;

i
bv(B,A, C)) is a right k[R

i
]-yat diwerential graded module.
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Proof. For a di!erential graded left k[R
i
]-module X,

N(;
i
bv(B,A,C))?

k*Ri+
X+N(;

i
bv(B,A,C)?

k*Ri+
X).

The proposition now follows from Lemma 13.6. h

The proof of Theorem 14.2 begins with the following special case.

Proposition 14.6. Let F be a yat operad, and let APB be a map of coxbrant F-algebras. The natural
map N(;

i
bv(B, A,A))P;

i
B is a quasi-isomorphism.

Proof. By the usual argument, the map of simplicial F-algebras bv(B,A,A)PB is a homotopy
equivalence. Applying the functor ;

i
, we have that the map ;

i
bv(B,A, A)P;

i
B is a homotopy

equivalence of simplicial di!erential graded k[R
i
]-modules and so its normalization is a chain

homotopy equivalence of di!erential graded k[R
i
]-modules. h

Proof of Theorem 14.2. We assume without loss of generality that B is a cell F-algebra and the
map APC is a relative cell inclusion. Write C"ColimC

n
where C

0
"A and

C
n
"C

n~1
PFMn

FCM
n
for some di!erential graded k-modules M

n
as in De"nition 2.4. It su$ces to

prove that the natural map

N(;
i
bv(B,A,C

n
))P;

i
(BP

A
C

n
)

is a quasi-isomorphism for all i, n*0. The case for C
0

follows from the previous proposition;
assume by induction that this holds for C

n~1
.

De"ne ;m
i
(BP

A
C

n
)";m

i
g for g the composite map M

n
PC

n~1
PBP

A
C

n~1
. De"ne

;m
i
b
j
(B,A,C) analogously. The simplicial map b (B,A,C

n
)PBP

A
C

n
restricts to a simplicial map

;m
i
bv(B,A,C

n
)P;m

i
(BP

A
C

n
).

We take the normalization and consider the induced map on the strongly convergent spectral
sequences associated to these ;m

i
"ltrations. We can identify the map on E1-terms as the map

N(;
s`i

bv(B, A,C
n~1

))?
k*Rs+

(CM
n
/M

n
)(s)P;

s`i
(BP

A
C

n~1
)?

k*Rs+
(CM

n
/M

n
)(s),

which is a quasi-isomorphism by the inductive hypothesis and Proposition 14.3. It follows that the
map of spectral sequences is an isomorphism from E2 onwards. The map

N(;
i
bv(B,A,C

n
))+Colim

m
N(;m

i
bv(B,A, C

n
))

PColim
m
;m

i
(BP

A
C

n
)+;

i
(BP

A
C

n
)

is therefore a quasi-isomorphism. h

Appendix A. Other 5elds

We use the techniques developed in the body of the paper to discuss when the analogue of the
Main Theorem holds for a "eld k. We prove the following theorem. In this theorem, U denotes the
Frobenius endomorphism on a "eld of positive characteristic.

80 M.A. Mandell / Topology 40 (2001) 43}94



Theorem A.1. Let k be a xeld. The singular cochain functor with coezcients in k induces an
equivalence between the homotopy category of HH(!; k)-local [1] nilpotent spaces of xnite k-type and
a full subcategory of the homotopy category of E

=
k-algebras if and only if k satisxes one of the

following two conditions

(i) k"Q, the xeld of rational numbers.
(ii) k has positive characteristic and 1!U is surjective.

It follows in particular that the analogue of the Main Theorem does not hold when k is a "nite
"eld. The smallest "eld of characteristic p for which 1!U is surjective is the "xed "eld in FM

p
of

Z\
p
¢Gal (FM

p
/F

p
).

For the "nite "elds F
q
, we can be more speci"c about the relationship between the p-adic

homotopy category and the homotopy category of E
=

F
q
-algebras. The following theorem was

suggested by Dwyer and Hopkins.

Theorem A.2. Let q"pn. For connected p-complete nilpotent spaces of xnite p-type X and Y, there is
a natural bijection

hM EF
q
(CH(X;F

q
),CH(>;F

q
))+H

0
(>,KX),

where hM EF
q

denotes the homotopy category of E
=

F
q
-algebras and K denotes the free loop space

functor.

Proof of Theorem A.1. (Outline). For an arbitrary "eld k, there is no di$culty in providing a natural
E
k
-algebra structure on the cochains of simplicial sets, for some E

=
k-operad E

k
. For example, the

work of Hinich and Schechtman [15] and the construction described in Section 1 produce such
a structure. Write E

k
for the category of E

k
-algebras. We can form the adjoint functor;(!;k) from

E
k
-algebras to simplicial sets by the simplicial mapping set

;v(A; k)"E(A,CH(D[ ) ]; k)).

Arguing as in Section 4, we obtain the following proposition.

Proposition A.3. The functors CH(!; k) and ;(!; k) are contravariant right adjoints between the
category of E

k
-algebras and the category of simplicial sets. Their right derived functors exist and give

an adjunction between the homotopy category of E
k
-algebras and the homotopy category.

We say that a simplicial set is k-resolvable if the unit of the derived adjunction XPU(CH(X; k); k)
is an isomorphism in the homotopy category. As an elementary consequence of the previous
proposition, we see that CH(!; k) gives an equivalence as in the statement of the theorem if and
only if every connected HH(!; k)-local nilpotent simplicial set of "nite k-type is k-resolvable. The
base "eld FM

p
is irrelevant in Sections 2}5, and the arguments there apply to prove the following

propositions that allow us to argue inductively up principally re"ned Postnikov towers.

Proposition A.4. Let X"LimX
n

be the limit of a tower of Kan xbrations. Assume that the canonical
map from HH(X; k) to ColimHH(X

n
; k) is an isomorphism. If each X

n
is k-resolvable, then X is

k-resolvable.
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Proposition A.5. Let X, >, and Z be connected simplicial sets of xnite k-type, and assume that Z is
simply connected. Let XPZ be a map of simplicial sets, and let>PZ be a Kan xbration. If X, >, and
Z are k-resolvable, then so is the xber product X]

Z
>.

A connected space is nilpotent, HH(!; k)-local, and of "nite k-type if and only if its Postnikov
tower has a principal re"nement with "bers:

(i) K(Q, n) when k is characteristic zero.
(ii) K(Z/pZ, n) or K(Z\

p
, n) when k is characteristic p'0.

By the argument in Section 6, K(Z\
p
, n) is easily seen to be k-resolvable when K(Z/pZ,n) is. The

theorem is therefore a consequence of the following two propositions.

Proposition A.6. Let k be a xeld of characteristic zero. K(Q, n) is k-resolvable if and only if k"Q.

Proof. Write E for the free E
k
-algebra functor. Let a : Ek[n]PCH(K(Q,n); k) be any map of

E
k
-algebras that sends the fundamental class of k[n] to the fundamental class of

HH(K(Q,n); Q)LHH(K(Q, n); k). Since k is characteristic zero, it is easy to see that a is a quasi-
isomorphism, so the unit of the derived adjunction is represented by the map K(Q,n)P;Ek[n]. It
is straightforward to check that;Ek[n] is a K(k, n) and the map K(Q, n)PK(k, n) induces on n

n
the

inclusion QLk. h

Proposition A.7. Let k be a xeld of characteristic p'0. K(Z/pZ,n) is k-resolvable if and only if 1!U
is surjective on k.

Proof. We can construct a model B
n_k

for CH(K
n
, k) exactly as in Section 6 and prove that the map

a
k
:B

n_k
PCH(K

n
; k) is a quasi-isomorphism just as in Section 12. We are therefore reduced to

checking when the map K
n
P;B

n_k
is a weak equivalence. Again, we have ;B

n_k
given by a Kan

"bration square

The argument of Proposition 6.5 then applies to show that ;Ek[n] is a K(k, n) and the map ;p
n

induces on n
n
the map 1!U. It follows that;B

n_k
is a K(Z/pZ,n) if and only if 1!U is surjective.

When 1!U is surjective, it is straightforward to verify that the map K
n
P;B

n_k
is a weak

equivalence. h

Proof of Theorem A.2. (Outline). Let q"pn and consider the "nite "eld F
q
. From the work above, it

su$ces to show that there is a natural isomorphism KXPU(CH(X;F
q
); F

q
) in the homotopy

category for X connected, p-complete, nilpotent, and of "nite p-type.
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To make the argument, we need to assume that we have a map of operads of FM
p
-algebras

EF
q
?F

q
FM

p
PE; we have such a map in the case when EF

q
and E are constructed from the

Eilenberg}Zilber operad of Hinich and Schechtman [15] as outlined above and in Section 1. By
changing E if necessary, we can assume without loss of generality that this map is an isomorphism.
Then we have an extension of scalars functor E :EF

q
PE de"ned by E(!)"(!)?F

q
FM
p
. The

functor E preserves co"brations and quasi-isomorphisms and is left adjoint to the forgetful functor
that regards an E-algebra as an EF

q
-algebra. In particular, we have the following proposition.

Proposition A.8. There is a canonical natural isomorphism of simplicial sets ;(E(!))+
EF

q
(!; CHD[ ) ]).

Let W"Un denote the nth iterate of the Frobenius automorphism on FM
p
. Since W is a map of

F
q
-algebras, we obtain a map of simplicial EF

q
-algebras

CHD[ ) ]+CH(D[ ) ];F
q
)?F

q
FM

p
*$cW

&&" CH(D[ ) ]; F
q
)?F

q
FM

p
+CHD[ ) ].

We obtain a natural automorphism W on ;(E!). Thus, we can regard ;(E!) as a functor from
the category of EF

q
-algebras to the category of Z-equivariant simplicial sets. We can regard

;(!; F
q
) as a functor to the category of Z-equivariant simplicial sets by giving;(!; F

q
) the trivial

Z-action. The natural map ;(!;F
q
)P;(E!) induced by the inclusion CH(D[ ) ]; F

q
)PCHD[ ) ]

is then Z-equivariant.
For a Z-equivariant simplicial set X, let XhW be the homotopy equalizer of the maps id and

W (where as above W generates the Z-action): Let XhW be the simplicial set that makes the following
diagram a pullback:

Since the natural transformation ;(!; F
q
)P;(E!) factors through the "xed points of W, we

obtain a natural map ;(!; F
q
)P;(E!)hW. We prove below the following theorem.

Theorem A.9. The natural map ;(A;F
q
)P;(EA)hW is a weak equivalence when A is coxbrant.

Theorem A.9 is the main fact needed for Theorem A.2.

Proof of Theorem A.2. Let X be a simplicial set, let APCH(X;F
q
) be a co"brant approximation in

the category of EF
q
-algebras, and let BPCHX be a co"brant approximation in the category of

E-algebras. Since EA is co"brant, we can choose a map of E-algebras APB so that the composite
EAPCHX coincides with the composite of EAPECH(X;F

q
) and the natural map of E-algebras

ECH(X;F
q
)PCHX. Then we have a composite map

XP;BP;EA,
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natural in X in the homotopy category, which is a weak equivalence when X is connected
p-complete nilpotent of "nite p-type by the Main Theorem. It is straightforward to check that the
map XP;EA factors through;(A;F

q
), and so is Z-equivariant when we give X the trivial action.

Consider the maps

;(A;F
q
)P(;EA)hWQXhW.

By Theorem A.9, the "rst map is a weak equivalence. When X is a connected p-complete nilpotent
Kan complex of "nite p-type, the second map is a weak equivalence and XhW is a model for the free
loop space KX. h

For the proof of Theorem A.9, we recall the de"nition of a cosimplicial resolution from Dwyer
and Kan [7]. For an object A of EF

q
, a cosimplicial resolution of A is a cosimplicial EF

q
-algebra

Av together with a quasi-isomorphism A0PA such that A0 is co"brant, each coface map in Av is an
acyclic co"bration, and each map (dH,An)PAn`1 is a co"bration, where (dH,An) is the object
described in [7, 4.3]: the colimit of the diagram in EF

q
with objects

f for each i, 0)i)n#1, a copy of An labelled (di,An),
f for each (i, j), 0)i(j)n#1, a copy of An~1 labelled (djdi,An~1) (we understand A~1"F

q
),

and maps

f for each (i, j), 0)i(j)n#1, a map (djdi,An~1)P(dj,An) given by the map di : An~1PAn,
f for each (i, j), 0)i(j)n#1, a map (djdi,An~1)P(di,An) given by the map dj~1 : An~1PAn.

Although EF
q
is not a model category, the following analogues of the results of [7, Section 6] still

hold.

Proposition A.10. Let Av be a cosimplicial resolution. The functor EF
q
(Av,!) from EF

q
-algebras to

simplicial sets preserves xbrations and weak equivalences.

Proof. That EF
q
(Av,!) preserves "brations and acyclic "brations follows from the standard

arguments (omitted) in [7, Section 6]. Since EF
q
(Av,!) preserves acyclic "brations, to see that it

preserves all weak equivalences, it su$ces to show that it preserves weak equivalences between cell
EF

q
-algebras. Since for cell EF

q
-algebras, we can factor a map as an acyclic co"bration followed by

a "bration, we can apply the dual of the argument for Brown's lemma [9, 9.9]. h

Proposition A.11. Let k"F
q

or FM
p
. For any cosimplicial resolution of EF

q
-algebras Av, the maps of

simplicial sets

EF
q
(Av, k)PdiagEF

q
(Av, CH(D[ ) ]; k))QEF

q
(A0,CH(D[ ) ]; k))

are weak equivalences.
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Proof. Since all the face maps of CH(D[ ) ]; k) are acyclic "brations, the "rst map is a weak
equivalence by the previous lemma. The simplicial E

k
-algebra CH(D[ ) ]; k) has the dual property

that mapping into it converts acyclic co"brations to acyclic Kan "brations, and so the second map
is a weak equivalence. h

Proof of Theorem A.9. Since the weak equivalences in Proposition A.11 are Z-equivariant maps of
Kan complexes (where for k"F

q
we understand the trivial action), it su$ces to show that the map

EF
q
(Av, F

q
)PEF

q
(Av, FM

p
)hW

is a weak equivalence. Factor the diagonal map FM
p
PFM

p
]FM

p
as an acyclic co"bration FM

p
PP

composed with a "bration PPFM
p
]FM

p
, and let Q be the EF

q
-algebra that makes the following

diagram a pullback:

The unit map F
q
PQ is a weak equivalence, and so the map EF

q
(Av, F

q
)PEF

q
(Av, Q) is a weak

equivalence. Since EF
q
(Av,!) preserves pullbacks and "brations, we have that the following

diagram is the pullback of a Kan "bration:

Choosing a diagonal lift in the following diagram,

we obtain a weak equivalence EF
q
(Av, FM

p
)hWPEF

q
(Av, Q) factoring the weak equivalence

EF
q
(Av, F

q
)PEF

q
(Av, Q) above through the map EF

q
(Av,F

q
)PEF

q
(Av, FM

p
)hW. h

Appendix B. Pro-categories and p-pro-5nite completion

In this section we describe the relationship between the unit of the derived adjunction
XPUCHX and p-pro-"nite completion in the sense of Sullivan [28, Section 3; 24, Section 2.1].
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The idea that there should be some relationship was "rst suggested by W.G. Dwyer. We prove the
following theorem.

Theorem B.1. For any connected simplicial set X, the composite map

XPUCHXPU(CH(X;F
p
)?F

p
FM
p
)

is p-pro-xnite completion.

Here we are giving CH(X;F
p
)?F

p
FM

p
the structure of an E-algebra via the natural isomorphism

CH(X;F
p
)?F

p
FM

p
+CH

#0/5
XK "ColimCHXa, where XK "MXaN denotes the `completion of Xa [24, Sec-

tion 2.1; 14, Section 1.2.2], the projective system of levelwise "nite quotients of X. The system of
maps XPXa induces a map of E-algebras CH(X;F

p
)?F

p
FM

p
PCHX that induces the map

UCHXPU(CH(X;F
p
)?F

p
FM

p
) above.

In other words, for the theorem above, we have used a version of the cochain functor that factors
through the category of pro-"nite simplicial sets. From this perspective, it is clear that the theorem
we should try to prove is that the functor CH

#0/5
from the category of pro-"nite simplicial sets to the

category of E-algebras is a Quillen adjoint (to `;K a) and that the natural transformation
XP;K ¸CH

#0/5
X is p-pro-"nite completion in the sense of Morel [24, Section 2.1], where ¸ is some

co"brant approximation functor. Unfortunately, this is not true; there is no adjoint functor;K from
the category of E-algebras to the category of pro-"nite simplicial sets. To see this, note that the set
of maps of pro-"nite simplicial sets from the (constant) standard simplex D[n] to any pro-"nite
simplicial set is naturally a compact space, and so the set of maps from an E-algebras A to
CH

#0/5
D[n]+CHD[n] would have to be a compact space with an action of E(A,A) through continu-

ous maps. On the other hand, E(EFM
p
[n],CHD[n])+FM

p
is countable and FM

p
LE(EFM

p
[n],EFM

p
[n])

acts transitively.
If we look at a larger category, the pro-category of simplicial sets, then an adjoint functor does

exist. Letting pro-S denote the pro-category of simplicial sets, the cochain functor CH
#0/5

: pro-
SPE most natural to consider is the functor that takes a pro simplicial set X"MXaN to the
E-algebra ColimCHXa. We prove the following lemma below.

Lemma B.2. The functor CH
#0/5

: pro-SPE has a right adjoint ;
#
, i.e. there is a bijection pro-

S(X,;
#
A)+E(A,CH

#0/5
X), natural in pro simplicial sets X and E-algebras A.

For the proof of Lemma B.2, we consider the functor CH from pro-S to ind-E, the ind-category of
E-algebras, the opposite category of the pro-category of E01. The functor ; : ind-EPpro-S is
a right adjoint to CH. We have an obvious functor Colim : ind-EPE, and CH

#0/5
"ColimCH. Of

course Colim is a left adjoint (to the constant functor), but in fact it is also a right adjoint. Lemma
B.2 is an immediate consequence of the following proposition, setting ;

#
A";cA.

Proposition B.3. The functor Colim : ind-EPE has a left adjoint c :EPind-E.

The proof of the previous proposition is easy, but requires the following terminology.
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De5nition B.4. We say that an E-algebra A is compact if for any B"MBaN in ind-E, the natural map
ColimE(A,Ba)PE(A, ColimB) is a bijection. We say that an E-algebra A is xnitely presented if
A a coequalizer (in E)

ENPEMPA

for "nitely generated di!erential graded FM
p
-modules M and N.

Clearly, EM is compact when M is "nitely generated, and so "nitely presented E-algebras are
compact. For an arbitrary E-algebra consider the category R

A
whose objects consist of ordered

pairs (M,N) where M is a "nitely generated di!erential graded submodule of A and N is a "nitely
generated di!erential graded submodule of EM sent to zero under the induced map EMPA; the
maps in R

A
are the inclusions. We have a functor D

A
from R

A
to "nitely presented E-algebras,

sending (M,N) to the coequalizer (in E) of the maps ENPEM induced by the inclusion NPEM
and the zero map NPEM. The category R

A
is "ltered, and c(!)"D

(~)
speci"es a well-de"ned

functor from E to ind-E. Since the canonical map ColimR
A
D

A
PA is an isomorphism, we have that

for any B"MBaN in ind-E,

E(A, ColimB)+E(ColimcA, ColimB)+LimR
A
E(D

A
, ColimB)

+LimR
A
Colim (D

A
, Ba)"ind-E(cA,B).

This proves Proposition B.3. We "nd it useful to note here the following easy observations.

Proposition B.5. A xnite cell E-algebra is xnitely presented.

Proposition B.6. The functor c(!) is an equivalence between E and the full subcategory of ind-E
consisting of the inductive systems of compact E-algebras.

To take advantage of the adjoint functor;
#
, we need a homotopy theory for the category pro-S

of pro simplicial sets. This theory is provided in the recent work of Isaksen [16], where it is shown
that the category pro-S is a closed model category. Following the terminology there, say that
a map f :XP> is a level map if X and > are indexed on the opposite of the same "ltered category
I and f is represented by a map of diagrams on I01. A map f : XP> in pro-S is a strong weak
equivalence if it is a level map where for all n*0, b3I, there exists aPb in I01 such that for every
choice of basepoint in Xa, there is a map n

n
>bPn

n
Xa that makes the following diagram commute:

A weak equivalence in pro-S is a map in pro-S that is isomorphic to a strong weak equivalence. It
is proved in [16] that a level map is a weak equivalence if and only if it is a strong weak equivalence.
Thus, since every map in pro-S is isomorphic to a level map, when X is a pro connected based
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simplicial set, a map XP> is a weak equivalence if and only if it induces a pro-isomorphism of
each homotopy pro-group Mn

n
XaNPMn

n
>bN.

The co"brations are the maps isomorphic to level maps that are level co"brations; in particular
all objects are co"brant. It is shown that the constant pro-simplicial set on a Kan simplicial set with
only "nitely many nontrivial homotopy groups is "brant in pro-S and a Kan "bration between
such simplicial sets is a "bration in pro-S. It follows that we can identify the functor
HH

#0/5
X"HH(CH

#0/5
X) as the set of maps from X to K(FM

p
, n) in the homotopy category of pro-S.

Thus, CH
#0/5

converts co"brations to "brations and preserves weak equivalences. As an immediate
consequence of Theorems 2.14 and 2.15, we obtain the following proposition.

Proposition B.7. The (right) derived functor U
#

of ;
#

exists and gives an adjunction
hM E(A,CH

#0/5
X)+pro-S(X,U

#
A).

The functor CH from the homotopy category to the homotopy category of E-algebras factors as
the composite of the constant functor and CH

#0/5
, and so it follows that the functor U is the

composite of U
#
and the right-derived functor of Lim. The forgetful functor from Morel's model

category of pro-"nite simplicial sets to Isaksen's model category of pro simplicial sets is a right
adjoint that preserves "brations and acyclic "brations, and so the right-derived functor of Lim
from the homotopy category of pro-"nite simplicial sets to the homotopy category is the composite
of the right-derived functor of the forgetful functor and the right-derived functor of Lim from the
homotopy category of pro simplicial sets to the homotopy category. Since pro-"nite completion in
the sense of Sullivan is the composite of the completion functor from simplicial sets to pro-"nite
simplicial sets and the right-derived functor of Lim [24, Section 2.1], Theorem B.1 is an immediate
consequence of the following lemma.

Lemma B.8. Let X be a connected simplicial set. There is a xbrant pro-xnite simplicial set >, a weak
equivalence of pro-xnite simplicial sets XK P>, and a coxbrant approximation APCH

#0/5
> such that

the map >P;
#
A is a weak equivalence of pro simplicial sets.

The remainder of the section is devoted to the proof of Lemma B.8. According to Morel [24,
Section 2.1], we can take >"M>aN to have the property that each >a is a connected `p-espace
xnisa, i.e. has "nitely many non-trivial homotopy groups, all of which are "nite p-groups. Choose
such a > and write I for the "ltering category opposite to the category that indexes >. It is not
hard to see that we can make an I diagram of co"brant E-algebras Aa with a natural acyclic
"bration AaPCH>a and with the property that A"ColimAa is also co"brant. For example, it is
straightforward to check that ¸CH>a has this property where ¸ is the co"brant approximation
functor obtained by the small object argument in Proposition 2.6. Alternatively, after replacing
> with an isomorphic object if necessary, we can assume that I is a co"nite strongly directed
category, and then such a diagram Aa is easily constructed by induction. Note that however the
Aa are constructed, the induced map APCH

#0/5
> is an acyclic "bration. We choose > and A in this

way in order to make the following observation.

Proposition B.9. For > and A as above, for each a, the map from the constant pro simplicial set >a to
;

#
Aa is a weak equivalence.
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Proof. According to Remark 7.4, since >a has only "nitely many nontrivial homotopy groups, all
of which are "nite p-groups, there is a "nite cell E-algebra B and a quasi-isomorphism BPCH>a.
By Proposition B.5, ;

#
B is isomorphic to the constant pro simplicial set on ;B, and so by the

Main Theorem, the map >aP;#
B is a weak equivalence. But by the left lifting property, the map

BPCH>a can be factored through a quasi-isomorphism BPAa, and so the map>aP;#
Aa is also

a weak equivalence. h

Let J be the category whose set of objects is the disjoint union of the sets of objects of the
R

Aa
where a ranges over the objects of I. For a3R

Aa
, b3R

Ab
, we have a map aPb in J for each

map AaPAb in I that maps the pair of di!erential graded submodules (M,N) corresponding to
a into the pair of di!erential graded submodules corresponding to b. Clearly J is a "ltered
category. The functors D

Aa
:R

Aa
PE assemble to a functor D :JPE, which we regard as an

element of ind-E. We have a canonical map DPMAaN covering the forgetful functor JPI and
inducing an isomorphism ColimDPColimAa"A. Since D is a diagram of compact E-algebras,
the map DPMAaN factors through an isomorphism DPcA by Proposition B.6.

Proof of Lemma B.8. If we choose a basepoint for X, we obtain compatible basepoints for the
>a so that > is a system of based connected simplicial sets. Then it su$ces to show that the map
>P;

#
A induces a pro-isomorphism of each homotopy pro-group n

n
>Pn

n
;

#
A. By construction,

the map >P;
#
A factors through the map >PM;AaN; we base ;Aa and the simplicial sets in

;
#
Aa at the image of the basepoint of>a. Looking at D, we can identify n

n
;

#
A as the limit (over a in

I) in pro-groups of the pro-groups Mn
n
;

#
AaN. Since n

n
> is the limit (over a in I) in pro-groups of

the constant pro-groups n
n
>a, the lemma now follows from Proposition B.9. h

Appendix C. E
=

ring spectra under HFM
p

We sketch how the arguments in this paper can be modi"ed to prove the following unpublished
theorem of Dwyer and Hopkins [8] comparing the p-adic homotopy category with the homotopy
category of E

=
HFM

p
ring spectra.

Theorem C.1 (Dwyer}Hopkins). The free mapping spectrum functor F((!)
`
, FM

p
) induces an equiva-

lence between the homotopy category of connected p-complete nilpotent spaces of xnite p-type and
a full subcategory of the homotopy category of E

=
HFM

p
ring spectra.

By the homotopy category of E
=

HFM
p

ring spectra, we mean the category obtained from the
category of E

=
ring spectra under the (co"brant) E

=
ring spectrum HFM

p
by formally inverting the

weak equivalences. The free mapping spectrum F(X
`
,HFM

p
) is naturally an E

=
ring spectrum with

an E
=

ring map

HFM
p
"F(*`

, HFM
p
)PF(X

`
, HFM

p
)

induced by the collapse map XP*. The functor F((!)
`

, FM
p
) therefore takes values in the category

of E
=

HFM
p

ring spectra. This functor is the spectrum analogue of the singular chain complex. Its
right derived functor represents unreduced ordinary cohomology with coe$cients in FM

p
in the
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sense that there is a canonical map n
~H(F(X

`
, FM

p
))PHH(X;FM

p
) that is an isomorphism if X is

a CW complex.
It is convenient for us to use a modern variant of the category of E

=
HFM

p
ring spectra, the

category of commutative HFM
p
-algebras, a certain subcategory introduced in [10]. The forgetful

functor from commutative HFM
p
-algebras to E

=
HFM

p
ring spectra induces an equivalence of

homotopy categories. We have a commutative HFM
p
-algebra variation of the free mapping spectrum

functor, given by

FX"S'LF(X
`
, HFM

p
).

There is a natural map FXPF(X
`

,HFM
p
) that is always a weak equivalence, and so it su$ces to

prove that the functor F induces an equivalence between the homotopy category of connected
p-complete nilpotent spaces of "nite p-type and a full subcategory of the homotopy category of
commutative HFM

p
-algebras. We denote the category of commutative HFM

p
-algebras as C. By [10,

VII.4.10], C is a closed model category with weak equivalences the weak equivalences of the
underlying spectra; we denote its homotopy as hM C.

The commutative HFM
p
-algebra FX is the `cotensora of HFM

p
with X [10, VII.2.9]. In general, the

cotensor AX of a commutative HFM
p
-algebra A with the space X is the commutative HFM

p
-algebra

that solves the universal mapping problem C(!,AX)+U(X,C(!, A)), where U denotes the
category of (compactly generated and weakly Hausdor!) spaces. Similarly, the tensor A?X of
A with the space X is the commutative HFM

p
-algebra that solves the universal mapping problem

C(A?X,!)+U(X,C(A,!)). Clearly, when they exist, AX and A?X are unique up to canonical
isomorphism, and [10, VII.2.9] guarantees that they exist for any A and any X. The signi"cance of
the identi"cation of FX as the cotensor is in the following proposition.

Proposition C.2. The functor ¹ :CPU dexned by ¹A"C(A,HFM
p
) is a continuous contravariant

right adjoint to F. In other words, there is a homeomorphismU(X,¹A)+C(A,FX), natural in the space
X and the commutative HFM

p
-algebra A.

We have introduced the notion of tensor here to take advantage of Elmendorf et al. [10,
VII.4.16] that identi"es the tensor A?I as a Quillen cylinder object when A is co"brant. This
allows us to relate the homotopies in the sense of Quillen with topological homotopies de"ned in
terms of (!)?I or in terms of paths in mapping spaces. In particular, since all objects in C are
"brant, it follows that the natural transformation n

0
(C(A,!))PhM C(A,!) is an isomorphism

when A is co"brant. Since the adjunction isomorphismU(X,¹A)+C(A,FX) is a homeomorphism,
letting X vary over the spheres, we obtain the following proposition.

Proposition C.3. The functor T preserves weak equivalences between coxbrant objects.

As a slight generalization of the proof of Elmendorf et al. [10, VII.4.16], it is elementary to check
that when A is a co"brant object ofC and APB is a co"bration, the map (A?I)P

A
BPB?I is an

acyclic co"bration and therefore (since every object is "brant) the inclusion of a retract. Since
¹ also converts pushouts to pullbacks, applying ¹ and using the tensor adjunction, we obtain the
following proposition.
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Proposition C.4. The functor T converts coxbrations to xbrations.

The functors F and ¹ are therefore a model category adjunction. In particular, we obtain the
following proposition.

Proposition C.5. The (right) derived functors F and T of F and T exist and give a contravariant right
adjunction H

0
(X,TA)+hM C(A,FX).

For the purposes of this section, let us say that a space X is HFM
p
-resolvable if the unit of the

derived adjunction XPTFX is a weak equivalence. Thus, we need to show that if X is a connected
p-complete nilpotent space of "nite p-type, then X is HFM

p
-resolvable. Again, we work by induction

up principally re"ned Postnikov towers. The following analogue of Theorem 1.1 can be proved
from Proposition C.4 by essentially the same argument used to prove Theorem 1.1 from Proposi-
tion 4.4.

Proposition C.6. Let X"LimX
n

be the limit of a tower of Serre xbrations. Assume that the canonical
map from HHX to ColimHHX

n
is an isomorphism. If each X

n
is HFM

p
-resolvable, then X is resolvable.

We have in addition the following analogue of Theorem 1.2.

Theorem C.7. Let X, >, and Z be connected spaces of xnite p-type, and assume that Z is simply
connected. Let XPZ be a map, and let>PZ be a Serre xbration. If X, >, and Z are HFM

p
-resolvable,

then so is the xber product X]
Z
>.

The proof of this theorem is essentially the same in outline as the proof of Theorem 1.2. The
analogue of Lemma 5.2 can be proved by observing that the bar construction of the co"brant
approximations in C is equivalent to the (thickened) realization of F applied to the cobar
construction of the singular simplicial sets on the spaces Xv, >v, and Zv. Some "ddling with the
"ltration induced by the cosimplicial direction of the cobar construction and the "ltration induced
by the skeletal "ltration of the singular simplicial sets allows the identi"cation of
TorF@Zv@

~H (FDXvD,FD>vD) as TorH
C
H
Z
(CHX,CH>) and the composite map

TorH
C
H
Z
(CHX,CH>)+TorF@Zv@

~H (FDXvD,FD>vD)Pn
~HF(DXv]Zv

>vD)+HH(X]
Z
>)

as the Eilenberg}Moore map.
To complete the proof of Theorem C.1, we need to see that K(Z/pZ, n) is HFM

p
-resolvable. It then

follows as in Section 1.3 that K(Z\
p
, n) is HFM

p
-resolvable and by induction up principal Postnikov

towers that every connected p-complete nilpotent space of "nite p-type is HFM
p
-resolvable. The

remainder of the appendix is devoted to sketching a proof of the following theorem.

Theorem C.8. For n*1, K(Z/pZ, n) is HFM
p
-resolvable.

The homotopy groups of a commutative HFM
p
-algebra have an action by the algebra B, and it is

elementary to show that for the `freea commutative HFM
p
-algebra on the spectrum S~n, denoted

PS~n
HFM

p
in [10], n

~HPS~n
HFM

p
is VM B6/

n
, the extended FM

p
-algebra on the enveloping algebra of the free
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unstable B-module on one generator in degree n. We construct a commutative HFM
p
-algebra B

n
as

the commutative HFM
p
-algebra that makes the following diagram a pushout in C:

Here p
n
is any map in the unique homotopy class that on homotopy groups sends the fundamental

class of n
~n

S~n
HFM

p
to 1!P0 applied to the fundamental class. Choosing a map

a : PS~nFM
p
PFK(Z/pZ,n) that represents the fundamental class of Hn(K(Z/pZ,n)), and a null

homotopy PCS~nFM
p
PFK(Z/pZ,n) for the map p

n
" a : PS~nFM

p
PFK(Z/pZ, n), we obtain an induced

map B
n
PFK(Z/pZ, n).

Proposition C.9. For n*1, the map B
n
PFK(Z/pZ,n) is a weak equivalence.

The proof uses the Eilenberg}Moore spectral sequence of Elmendorf et al. [10, IV.4.1] in place of
the Eilenberg}Moore spectral sequence of Section 3, but otherwise is the same as the proof of
Theorem 6.2.

Since B
n
is a co"brant commutative HFM

p
-algebra, the unit of the derived adjunction is represent-

ed by the map K(Z/pZ,n)P¹B
n

adjoint to the map constructed above. Since B
n

is de"ned as
a pushout of a co"bration, Proposition C.4 allows us to identify ¹B

n
as the pullback of "bration.

Looking at the mapping spaces and using the freeness adjunction, we see that ¹B
n
is the homotopy

"ber of an endomorphism on K(FM
p
, n). Write a

n
for the induced endomorphism on FM

p
. To see that

¹B
n
is a K(Z/pZ,n), it su$ces to show that a

n
is 1!U. Once we know that ¹B

n
is a K(Z/pZ, n), the

argument of Corollary 6.3 shows that the map K(Z/pZ,n)P¹B
n
is a weak equivalence, completing

the proof of Theorem C.8.
Unfortunately, the simple argument given in Proposition 6.5 to identify a

n
as 1!U in the

algebraic case does not have a topological analogue. Here we must use homotopy theory to make
this identi"cation. The key observation is that the commutative HFM

p
-algebras B

n
are related by

`suspensiona. We make this precise in the following proposition. For this proposition, note that the
de"nition of B

n
makes sense for n"0, although the map B

0
PFK(Z/pZ, 0) may not be a weak

equivalence.

Proposition C.10. For n'0, B
n~1

is homotopy equivalent as a commutative HFM
p
-algebra to the

pushout of the following diagram:

where the map B
n
PHFM

p
is the augmentation B

n
PFK(Z/pZ,n)PF*"HFM

p
induced by the inclu-

sion of the basepoint of K(Z/pZ, n) and the map B
n
PB?S1 is induced by the inclusion *PS1.
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For an augmented commutative HFM
p
-algebra A, denote the analogous pushout for A as RCA. If

we give PS~n
HFM

p
the augmentation induced by applying P to the map Sn

HFM
p
P*, then RCPS~n

HFM
p
is

canonically isomorphic to PS~n`1
HFM

p
. This gives us a canonical suspension homomorphism

p : n8
~n

APn8
~n`1

RCA, where n8 H is the kernel of the augmentation map nHAPnHHFM
p
. The

following proposition is closely related to and can be deduced from [22, 3.3].

Proposition C.11. The suspension homomorphism p commutes with the operation Ps for all s.

We can choose the map p
n

in the construction of B
n

to be augmented for the augmentation
described on PSn

HFM
p
above. Then it follows from the previous proposition that RCpn

is homotopic to
p
n~1

. This observation can be used to prove Proposition C.10.
It follows from Proposition C.10 that ¹B

n~1
is the loop space of ¹B

n
. In fact, we see from the

discussion above that the "ber sequence for ¹B
n~1

¹B
n~1

PK(FM
p
, n!1)PK(FM

p
, n!1)

is the loop of the corresponding "ber sequence for ¹B
n
. In particular, a

n
and a

n~1
are the same

endomorphisms of FM
p
. Since P0 performs the pth power map on classes in degree zero, a

0
is 1!U.

We conclude that a
n

is 1!U.

15. For further reading

The following references are also of interest to the reader: [2}6, 14, 28, 29].
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