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§1. INTRODUCTION

LET p : E— B be a fibre bundle with fibre Fand group G, and let i : F— E denote the inclu-
sion map. This paper is a contribution to the following long outstanding problem: Express
the structure of the cohomology of E in terms of that of B and F and invariants of the
bundle structure.

Of course an answer or a partial answer to this question can sometimes be obtained
by use of the spectral sequence. However, even in cases where the spectral sequence is
trivial (i.e. the fibre is totally non-homologous to zero and £, = E) it may be difficult or
impossible to determine the multiplicative structure or the action of the Steenrod algebra
on H*(E, Z), although the additive structure is completely determined. It is this aspect
of the problem with which we are mainly concerned.

The problem is further complicated by the fact that H*(E, Z,) has at least three different
algebraic structures which are important: It is an algebra over Z, it is a module over the
Steenrod algebra #/,, and a module over the algebra H*(B, Z,) via the induced homo-
morphism p*. (Actually, it is more interesting to consider it as a module over the quotient
algebra R = H*(B)/kernel p*).

Moreover, these different structures are not independent of each other; they must
satisfy various identities. We list explicitly all these conditions and call any algebraic
object which satisfies all of them an unstable o/ —R-algebra. We also define the closely
related notion of an unstable o/ ~R-module. Once these definitions are fixed, it is clear how
to define the free unstable s/,-R-algebra generated by a given unstable &/, ~R-module.
These ideas may also be looked on as rather natural generalizations of some basic concepts
introduced by Steenrod and Epstein [8]: namely, given any unstable module X over the
Steenrod algebra &, there is defined the free algebra, U(X), over &, generated by X.

Our main theorem then asserts that under “appropriate” conditions, H*(E, Z,) is the
free unstable &,—R-algebra generated by a certain unstable &/,—R-module M < H*(E, Z,).

T W.S.M. was partially supported by N.S.F. Grant G-18995 and F.P.P. was an Alfred P. Sloan Fellow
and was partially supported by the U.S. Army Research Office.
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Thus in these cases, questions involving the structure of A*(E, Z,) as an algebra are reduced
to questions about the o/ ,-R-module M. The “appropriate” conditions just referred to are
the following: (a) H*(F, Z,) must be the free algebra, U(X), generated by some &/ ,-module
X c H*(F, Z,), with elements of X transgressive. (b) The ideal in A*(B, Z,) generated by
the image of X under transgression satisfies a certain condition which has been considered
by algebraists for many years (since Kronecker, 1882). (c) In the universal bundle with
fibre F and group G, the projection induces an epimorphism of the cohomology of the base
space onto that of the total space (Z, coefficients). This last condition seems less natural
than the first two. However, it is automatically satisfied in the case of principal bundles
(F = @), and also holds in many other cases.

As Steenrod and Epstein point out, condition (a) holds if G is one of the classical
groups, and F is an associated Stiefel manifold. It also holds in case G = F'is a product of
Eilenberg-MacLane spaces, and in various other cases; it is of fairly wide occurrence.
Condition (b) holds in case the fibre F is totally non-homologous to zero in £ (mod 2) and
in certain other important cases. Thus the hypotheses of our main theorems are satisfied
in many important cases.

Another of our achievements is to subsume the theory of ./ ,~R-modules under the
usual theory of modules over a single algebra, denoted by the symbol R® «/,. Thus no
elaborate new theory is needed to study these modules. The algebra R O &/, is called the
semi-tensor product of the algebras R and &/, (with respect to the given operations of &/,
on R) and it bears the same relation to the ordinary tensor product of R and &/, that the
semi-direct product of two groups bears to the ordinary direct product. This notion should
be of interest in its own right. In the appendix we give examples of the occurrence of this
concept in classical algebra.f

As is often the case, this study raises several new problems. The most obvious one is
the following: In the cases where H*(E, Z,) = the free unstable R «/,-algebra generated
by a sub-module M, how does one determine the structure of M? In many cases, M is an
extension of two known modules over a rather complicated ring (the semi-tensor product,
RO &,). Thus one has the problem of finding suitable invariants of the bundle (£, p, B, F)
to determine this unknown module extension. We hope to consider this problem in a future
paper.

The authors are deeply indebted to Dr. Edward D. Davis for information on the topics
in §7, and to the referee for suggestions for improving the presentation of this paper.

§2. THE SEMI-TENSOR PRODUCT OF ALGEBRAS

Throughout this paper (except in Appendix IT) all modules and algebras will be graded
by the non-negative integers and assumed to be “locally finite””. In this and the next two
sections, we work over the fixed ground field Z, (p prime). Let 4 be a Hopf algebra over
Z, with commutatice, associative diagonal map  : 4 —» A® A [cf. Steenrod, 7] or [8] for the

T The notion of semi-tensor product has been developed independently by J. P. Meyer.
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precise definitions]. As Steenrod points out in [7], §7, this is precisely the additional struc-
ture needed to convert the tensor product (over Z,) of left A-modules into an A-module
such that the usual natural equivalences for the functors “Hom’ and “®’’ remain true.
If M and N are left A-modules, then M® N (tensor product over Z,) is also a left A-module
via the diagonal map ¢, and if f : M —> M’ and g : N> N’ are homomorphisms of left
A-modules, then f®g: M® N— M @ N’ is also a homomorphism of left A-modules.

Following Steenrod (loc. cit.), if R is both an algebra over Z, and a left 4-module, we
will say that R is an algebra over the Hopf algebra A if the multiplication u: R® R— R and
the “unit” : Z,— R are homomorphisms of left A-modules (where 4 operates on Z, via
the augmentation ¢: A~ Z,). A natural generalization of this notion is the following:
Let R be an algebra over the Hopf algebra 4, and let M be a left module over both of the
rings R and A. We will say that M is an A — R module if the map R ® M — M defining the
R-module structure is a homomorphism of left 4-modules. In terms of elements, this
condition can be written as follows: For any «eA, reR, and meM,

2.0 a(rm) = Z (- 1)(dee r)(deg :;")(al{r)(agrm)
where /(2) = Yo @ . ‘

As we shall see later, A~-R modules are fairly common objects, especially in algebraic
topology. As a trivial example, if R is an algebra over the Hopf algebra 4, then R, con-
sidered as a left R-module in the usual way, is also an A-R module. A less trivial example
is the following: Let X be a topological space, Y a subspace, and &, the Steenrod algebra
(mod p). Then H*(X, Y,Z)) is an &/, — H*(X,Z,) module, with respect to the usual
definitions. The following lemma, which will be needed shortly, gives an easy way to
multiply the number of examples:

LEMMA (2.2). Let A and R be as above. If M is a left A~R module, and N a left A-module,
then M @ N is a left A-R module in a natural way.

Proof. let u: R® M — M be the map defining the R-module structure on M and
1 : N— N the identity map. Since u and 1 are homomorphisms of left 4-modules, so is
. UR1:RIMPIN—>MN.
This defines a structure of left R-module, and hence A—R module, on M ® N.
It would clearly be desirable to be able to subsume the theory of A~R modules under

the usual theory of modules over a single algebra. We will now show how this may be done.

Our development of the ideas involved will be heuristic, since this has some advantages in
this case.

Let M be an A~R module and &(M) = Hom; (M, M) the graded algebra (over Z,) of
all homogeneous Z -endomorphisms of M. The R-module structure and 4-module struc-
ture on M determine homomorphisms

¢ : R—&(M),
¢ A— EM)
of Z -algebras with unit. Define a Z,-linear map
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O:R® A— (M)
by the formula

O(r ® a) = (pr)(¢’a).
The following question now presents itself: Is it possible to define a multiplication in R® A4
such that @ is a homomorphism of algebras (for any 4-R module M)? If the answer to
this question is “Yes”, then any A-R module is also a module over R® A (with this new
multiplication).

1t is readily seen that to define such a multiplication in R ® 4, one should set
(2.3) r®asRb) = Z (—1)(dee)e8a(015) ® (a)b)
for any r, seR and a, be A; here Y(a) =Za{®a§', as before. In terms of diagrams, this

multiplication is a linear map (R® 4) ® (R® 4) —» R® A which is the composition of four
homomorphisms, as indicated by the following diagram:

RRA®R®A
19y@1d1L
ROARA®R® A
-
(2.4) ROADR®A® A
19u@iD1
RR®A® A

mRr@ma4

R® A.
In this diagram, the symbol *“1”’ denotes an identity map, T: 4 ® R - R® A is the “twist”,
1 : A® R — R defines the A-module structure on R, and my and m, define multiplications
in R and A respectively.

It is clear that the multiplication thus defined in R ® A is distributive and has a 2-sided
unit, 1 ® 1. It is not obvious that the multiplication is associative; since ® is a homo-
morphism of algebras, and £(M) is an associative algebra, if we can choose M such that @ is
a monomorphism, it will follow that the multiplication is associative. But such a choice is
readily at hand: take M = R® A (that R® A is an R—-A4-module follows by setting M = R
and N = A in Lemma (2.2)). Then one has

[cp(; ne a,-)](l ®1) =7 rla(l® 1]

=Zri(1®ai)=zri®ai'

Hence kernel @ = {0}, as required.
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DEerINITION (2.5). The semi-tensor product of R and A. denoted by RGO A, is the
Z -algebra which has R® A as its underlying Z -vector space and its multiplication defined
by (2.3) or (2.4) above.

The reason for calling this algebra “the semi-tensor product” is that it bears the same
relation to the ordinary tensor product of algebras that the semi-direct product of groups
bears to the usual direct product; see Appendix I, where this relation is further developed,
and relations to the semi-direct product of Lie algebras are established.

Note that the map R— R© 4 defined by r—»r® 1 is a monomorphism of Z,-algebras,
as is the map 4 - RO A defined by a > ! ®a. Let M be an A-R module. Then M is an
R(Q® A-module if we define (r ® a)m = r(am). Conversely, if M is an R® A-module, then
M is an A-R module using the above imbeddings. Furthermore, a map of 4-R-modules
is linear over both 4 and R if and only if it is linear over R® 4. Thus we have achieved
our goal of subsuming the theory of 4—R modules under the theory of modules over a single
algebra.

Next, suppose that A and R are as above, M is a left A and right R-module such that
the structure map u: M @ R— M is a homomorphism of (left) A-modules, and N is a left
A-R-module with structure map v: R® N—> N. Then we assert that M ® N has a natural

R

structure of left A-module. This follows from the fact that M ® N is (by definition) the
R

cokernel of the map
HR®1T - 1RV MARQIN—MIN

which is clearly a homomorphism of left A-modules. One can carry this sort of thing even
further, as follows: Let S and T also be algebras over A. Assume that M is an S-R bimodule
and Nis an R-T bimodule (in symbols, My and zNy) such that all four structure maps

S M—M, L:M®R— M,
v:R®N —N, NQT—T,
are homomorphisms of left 4-modules. Then it is well known that M@ N is an S-T-

R
bimodule (cf. MacLane, [5], p. 143); in this case, on account of the additional hypotheses,
one sees immediately that both of the structure maps of this S-7 bimodule are homo-
morphisms of left A-modules.

An important special case cccurs if R is commutative; then the distinction between
right and left R-modules disappears, and any R-module is also an R-R bimodule. Thus
we have the following fact which we record for later use:

LeEMMA (2.6). Let R be a commutative, associate algebra over the Hopf algebra A. If
M and N are left RO A-modules, then M ® N has a natural structure of left RO A-module.

R

§3. THE FREE ALGEBRA Ur(M)
For the rest of this paper, we take for 4 the mod p Steenrod algebra .«#,. The operations
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of &, on H*(X) satisfy further properties than those embodied in the definition of an
algebra over the Hopf algebra &/,. Namely, for the case p =2,

3.1 Sq¢"x =0 if degx<n, and
(3.2) Sq"x =x* if degx=n.

When p is an odd prime, we have

(3.3) P'x=0 if degx <2n,

(3.4) 6*P"x =0 if degx=2n, and
(3.5 P'x =xP if degx=2n.

The following definitions are modelled on Steenrod and Epstein, [8].

DEFINITION (3.6). A module M over o, is called an unstable module over <4, if (3.1)
holds when p =2 or if (3.3) and (3.4) hold when p is an odd prime. An algebra R over o, is
called an unstable algebra over &, if it is an unstable module over of , and if (3.2) holds when
p =2 or if (3.5) holds when p is an odd prime.

For the rest of this section, let R be a commutative, unstable algebra with unit over
the Hopf algebra o/ ,.

DErFINITION (3.7). An algebra over RQ &, is an RO o ,-module which is an algebra
over R (in the classical sense) and over o4 , (in the sense of Steenrod). An RO o -module M
is unstable if it is unstable as an o -module. An algebra over RQ® o, is unstable if it is un-
stable as an algebra over 57 ,.

DEFINITION (3.8). Let M be an RO -module. A base point for M is an RO -
homomorphism n:R— M. If M is an RO & j-algebra, we also require that n(1) be the unit
for M.

Steenrod and Epstein [8] have defined the free o/ -algebra generated by an &/ -module.
We now generalize this definition to R© &/ ,-modules.

DEFINITION (3.9). Let M be an unstable R© s/ ;-module with base point. A free RO,
algebra generated by M is a pair (U, ), where U is a commutative unstable RO ,-
algebra with base point and ®: M — U is an RO o ,-homomorphism preserving the base point,
such that the following “universal mapping condition” is satisfied: for any commutative
unstable RO o -algebra W with base point and any RO o -homomorphism a: M — W pre-
serving the base point, there exists a unique R QO s/ -homomorphism of algebras, & : U— W,
preserving the base point such that

is commutative.

It is easy to prove that (U, ®) is unique up to isomorphism if it exists. In order to prove
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existence, one could appeal to the general existence theorem of P. Samuel [6]; however, we
will give a more constructive proof. For n > 0 let @%(M) denote the tensor product over R
of n copies of M. By Lemma (2.6), ®}(M) is an RO & ,-module. By [8; p. 27] it is
an unstable module. Let @{(M) =3 @%(M), where @R(M) =R, an RO ,-algebra

nZ0

which is unstable as an RO.szlp-modlzle. Let D be the ideal in ®@%(M) generated by all
elements of the form xy — (—1)##~"48Yyx, Clearly D is an RQ o/ ,-submodule. Define
FHM) = @FM)/D, and let P%(M) denote the image of @%(M) in Lr(M). Lr(M)is a
commutative R © & ,-algebra which is unstable as an R© &/ ,-module. Clearly FHM) =R
and LL(M)= M. Let n: R— M denote the base point in M. Let E be the ideal in & %(M)
generated by 1 —n(l1). E is an RO & ,-submodule, hence F(M)/E is also an RO -
algebra. Define ®, : M — S %(M)/E by the natural map M = & }(M) = S (M) - S R(M)/E.
®, is an RO & ,-homomorphism preserving the base point. Define 2 : M — M as follows.
If p=2, AIM" = Sq". If p is an odd prime, A{M?"*!1 =0 and A|M?" = P". Let F denote the
ideal in & {(M)/E generated by all elements of the form ®y(i(m)) — (Do(m))” for me M.
The proof given in [8; p. 28] applies without change to prove that F is closed under &/,.
An analogous proof applies for p an odd prime. Define U= ¥3(M)/E/Fand ® : M- U
as the composition of ®, with the canonical map £}(M)/E— U. It is readily seen that
(U, @) has the required properties.

We will suppress the map ® from our notation and denote by Ug(M) the free RQ & -
algebra generated by M. Clearly Ugx(—) is a covariant functor. When R= R°=2Z7,,
Ur(M) reduces to the notion defined by Steenrod and Epstein [8].

PROPOSITION (3.10). Let M be an unstable RQ s/ ;-module with base point n. Let N,
and N, be sub RO & -modules such that Nyn N, =1Im n and M = N, + N,. Then Ug(M)
is naturally isomorphic to Ux(N)®z Ug(N,).

The proof of Proposition (3.10) is straightforward and left to the reader. Let M be
an unstable RO & ,-module with base point n : R— M. Let M’ denote M @M with the
two base points identified. Then the diagonal M — M @ M induces an RO & ,-homomor-
phism M - M’. Since Uy is a covariant functor, we obtain the following corollary.

COROLLARY (3.11). Ux(M) has a diagonal mapy : Ug(M)— Ug(M) @ g Ur(M) which
is an RQ & ,-homomorphism. In particular, Uz,(M) is a Hopf algebra over Z,.

Of course Ugx(M) may have other diagonal maps. The map ¢ is a canonical one,
independent of any choices.

We need the following weak form of a structure theorem for the topological applica-
tions. The theorem is a straightforward consequence of the construction of Ug(M). There
is an analogous result for p an odd prime which we omit.

THEOREM (3.12). Let p=2 and let M be an unstable RO & ,-module. Let by = n(l),
by,... be a set of homogeneous generators for M as an R-module. Then the monomials
by, «.. b, 0<iy <iy < ... <y together with 1 generate Ug(M) as an R-module.

The following theorem is a more precise structure theorem for Ugx(M). Since we do
not need this theorem for the topological applications, we postpone the proof until the ap-
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pendix. In the topological applications, this result is obtained as a corollary free of
charge.

THEOREM (3.13). Let p=2 and let M be an unstable R(Q s ,-module with base point.
Let by =n(1), by, ..., b, be a homogeneous basis for M as an R-module. Then b, ..., b, is a
simple system of generators (in the sense of A. Borel [2]) for Ug(M) as an algebra over R.

§4. COVARIANT ¢-EXTENSIONS

The notion of the covariant ¢-extension of a module is due to Cartan and Eilenberg
[3; p. 28]. It provides the algebraic machinery for our discussion of naturality in §5. We
first review the definition and then state various properties.

Let A and T be associative rings with unit and let ¢ : A— T be a ring homomorphism,
If M and N are A- and I'-modules respectively, we say that f: M — N is semilinear with
respect to ¢ if /is a A-homomorphism where A operates on N via ¢.

DeFiNITION (4.1). Let M be a left A-module and let ¢ : A—T be a ring homomorphism.
A covariant ¢-extension of M is a pair consisting of a left T-module, M, and a semi-linear
map f: M— M such that the following “universal mapping property” holds: if g: M — N
is a semi-linear map, then there exists a unique T-homomorphism h: 4, M — N such that the
diagram
»M

is commutative.

Clearly any two covariant ¢-extensions are naturally isomorphic. To prove existence
we take 4,M =T ®, M, and define f: M — ,\M by f(m) =1 Q@ m.

The proofs of the following propositions are easy and are omitted.

ProposiTiON (4.2). If f: M~ N is a A-homomorphism, there is defined an induced

I-homomorphism (4 f : 4,M — (4,N. This defines an additive, right-exact, covariant functor
from the category of left A-modules to the category of left T-modules.

PrROPOSITION (4.3). If M is a free left A-module with basis {b;}, then a semi-linear map
J i M — 4, M defines a covariant ¢-extension if and only if {f(b,)} is a basis for M as a
left T-module.

PROPOSITION (4.4). Assume that A and T are graded, commutative rings. Let A be an
algebra over A. Then (4 A is an algebra over I in a canonical way. If A is associative, has a
unit, or is commutative, then so is @4

PROPOSITION (4.5). Assume that A and T are algebras over the Hopf algebra o , and
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that ¢ : A~ T is an o -homomorphism. If M is an o/ ;-A-module, then 4 M is an o/ ;-T-module
in a canonical way. Furthermore, if M and I are unstable, so is (4 M.

The proof uses the coassociativity of o ,,.

COoROLLARY (4.6). Let ¢ :AQH,»T O, be the homomorphism induced by ¢.
Then (M=~ @sM; e T OH,)Brow, M~ T @M.

CoROLLARY (4.7). If A is an unstable algebra over AQ o ,, then 4,A is an unstable
algebra over T © & .

THEOREM (4.8). Let A and U be unstable algebras over the Hopf algebra o , and let
¢ : A>T be an o -homomorphism. Let M be an unstable AO o ;-module with base point.
Then 4(U\(M)) is naturally isomorphic to Ur(4yM) as unstable algebras over T O o .

Proof. Let i: M—U\(M), j: M- U(pM), ¢* : M— 4 M. Thenjo* : M- Ur
((5yM) is an AQ«# -homomorphism. Let j¢* : U,(M)— Ur(4, M) be the unique extension;
it is semi-linear with respect to ¢. Let a : (4, (Ux(M)) = Ur(4yM) be the unique I'-homo-

morphism such that the diagram
/(‘?)(UA(f\’!))

4

s Ur((pyM)

s commutative. Furthermore, 4,(U,(M)) is an unstable I © & -algebra by corollary (4.7)
and (4] 1 (¢yM = o (Us(M)) is a T O o -homomorphism. Hence there is a unique I' O &/ -
homomorphism 8 : Up(4,M) — (4,(Ux(M)) such that

Ugln™M)

/'/
@M f

WU A M)

is commutative. Using standard diagram chasing techniques, one easily proves that « and
B are isomorphisms and inverses of one another. .

§5. THE MAIN THEOREM

We now apply the algebraic notions developed so far to the study of the cohomology
structure of the total space of certain fibre spaces. We will assume p =2 throughout this
and the next two sections.

let £=(E, p, B, F, G) be a fibre bundle with fibre F and group G. Let &, =(E,, pg,
By, F, G) denote the universal bundle with fibre F and group G. Following are the three
basic assumptions on F and G, and we assume these throughout this section.

(i) There is an o/,-module X such that H*(F) = U(X) and the elements of X are trans-
gressive in the universal bundle.

(if) The local coefficient system defined by H*(F) is trivial in the universal bundle.
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(i) p§ : H*(By)—> H*(E,) is an epimorphism and Ker p? is the ideal generated by the
image of X under transgression.

These conditions are fulfilled, for example, in the following five cases, the first of which
will be treated more thoroughly in §6.

(1) F=V,,=0m)/0(n—r) and G =0(n),

(2) F=UW)/U(n—r) and G = U(n),

(3) F=Sp(n)/Sp(n —r) and G = Sp(n),

(4) F=0(2n)/U(n) and G = 0(2n),

(5) F=G =a product of Eilenberg-MacLane spaces.}

We need the following notions in order to state our assumptions on the particular
bundle {. Let S be a graded algebra over Z,. A sequence of homogeneous elements
Sgs «+«s Sp .- (finite or infinite) is called an S-sequence if s5;,, is not a zero divisor in the
quotient algebra S/(sy, ..., s;), where (s, ..., 5;) denotes the ideal generated by s, ..., S;.
An ideal /<= S is called a Borel ideal} if there is an S-sequence s, ..., such that
(54, ...)=7 and dim s, > 0.

Ry e

Now given &, let &, =(Ey, py, Br,T(F), G) denote the bundle associated to ¢ with
fibre T(F), the cone on F. (Er is the mapping cylinder of p.) Note that p} is an isomorphism.
Letk: E—Erand k: Er > (Er, E) be the inclusions. Let | : H*(Ey, E) » H*(B) be defined
by I=(p})"'k* and note that p* = k*p;. Hence, from the exact sequence of the pair
(Er, E) we obtain the exact sequence:

.1 coi—HYE,E) > HY(B)-L 5 HYE)Y -2 S HIT Y (Ep E}—...

Since p} is an isomorphism, H*(E,, E), H*(B), and H*(E) are modules over H*(B). By
the results of §2, they are all H*(B)(©® sf,-modules. Furthermore, /, p* and J are
H*(B)© o ,-homomorphisms. Let f: B— By, g : E~E,, and h: (Er, E)— (Eyy, E;) be
the classifying maps for £&. We have the following commutative diagram.

0o* o9 in
_’Hq(Eo) =Hq+l(EOT7 Eo)_’Hq+l(Bo)
io* jo*
s* HY(F)—2~ H**}(F(F), F) " ”
‘e j*
p* ' [ ! +1
——HYE) »H¢"(E;, E)—H""'(B)

FiG. L.

1 Some applications of this case will be given in a future paper.

1 These notions are quite old, at least in the case of polynomial rings, cf. the Cambridge Tract by F. S.
Macauley entitled The Algebraic Theory of Modular Systems (1916) and Kronecker’s paper in Crelle’s J.
92 (1882), especially p. 80, where a Borel ideal is called an “ideal of the principal class”. For a summary
of recent work on local rings which uses these notions together with complete references, see MacLane,
[5], Chapter VII. These ideas occur in §11 of Borel’s thesis [2] in a context similar to ours. In Appendix 6
of Vol. Il of Commutative Algebra by Zariski and Samuel, S-sequences are called “prime sequences”.
This seems to be a better name, but it has not been widely adopted.
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Since it is not obvious at first sight, it should be pointed out that the homomorphisms
in Fig. | determine the transgression. To be precise:

LEMMA (3.1). The transgression in the bundle (E, p, B, F) is defined by —I(j*)™14,.

Proof. Consider the diagram in Fig. 2. By definition, the transgression is determined

H([+1(ET’ E)
H"+1(B) Hq+1 TF F)
ol >Hq 1 ErJF)( :T
H 4B, by) ‘ HI(F)
p\‘\Hqul(E, F)/
FiG. 2.

by k*(p3)~'8,. Tt follows from the hexagonal lemma that the two ways of going around
this diagram are the negatives of each other; hence the lemma.

Let M'({) denote the H*(B)-submodule of H*(E;, E) generated by h*(H*(Eor, Ep)).

Since H*(E oy, Ep) is an o7 ,-module, M'(¢) is an .7,-submodule and hence an H*(B) @.91,
submodule of H*(E,, E).

Define M($) = M'($)nS6(H*(E)). M(&)is an H*(B) ® &/ ,-submodule. Ker p* operates
trivially on 6(H*(E)) and hence on M(¢). Thus M(¢) is a module over R = H*(B)/Ker p*.
Clearly R is an algebra over the Hopf algebra </, and hence M(¢) is an RO & ,-module.

p* a
Define N(&) =6~ '(M(&)). It is obvious that 0 — R—— N(&)— M(£) - 0 is an exact sequence
of unstable R© & ,-modules, and p* is 4 base point for N(£).

Let o : N(&) » H*(E) be the inclusion. Let &@: Up(N(E)) - H*(E) be the induced homo-

morphism- of algebras over R® o, (see 3.9). Our main theorem is the following; it will
be proved in §8.

THEOREM (5.2). Let & be a fibre bundle such that F and G satisfy (i), (ii), and (iii) above.
Also, assume that the ideal in H*(B) generated by the image of X under transgression is a
Borel ideal. Then & : Ug(N(E))— H*(E) is an isomorphism.

§6. SOME EXAMPLES OF APPLICATIONS OF THEOREM (5.2)

Before giving the proof of Theorem (5.2), we discuss some special cases in more detail
for the sake of illustration. Let F=V,, the Stiefel manifold of r-frames in R", and let
G=0(n). Let{h,_;},n—r<i=<n, be the standard simple system of generators for H*(V,,,)
(cf. [2], Proposition (10.3). Let X be the Z,-module generated by {#,_,}. Then H*(V,,) =
U(X) by [8], chap. IV, §6. The universal bundle &, is (BO(n —r), po, BO(n), V,,, O(n).
H*(BO(n)) is a polynomial ring on the universal Stiefel-Whitney classes, W, i=1, ..., n,
and p§ is an epimorphism with Ker p¥ the ideal generated by W, i=n—r+1,...,n
Since t(h;_,) = W, n—r < i< n, hypotheses (i), (ii), and (iii) are satisfied.

Since / is a monomorphism, there exist unique classes U;e H'(BO(n — r)y, BO(n —r)),

n—r <i%nsuch that {U;) = W, Using the Wu formulae, we find that the action of <,
on U; is given by '
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(6.1) S¢(U) = Y (‘ — i 5T 1)W,_5- Ui,

5=0
Given ¢ = (E, p, B, V,,,, O(n)), define U (&) =h*(U)eH(Er, E),n—r<iZn.

We now assume that ¢ is a fibre bundle with fibre totally non-homologous to zero. This
is equivalent to the condition that f*(W,) = W) =0, n — r <i< n or to the condition that
p*:H*(B)— H*(E) is a monomorphism. In this case the image of X under transgression
is {0} and {0} is a Borel ideal. Thus Theorem (5.2) applies. Here R = H*(B), M(&) = M'(§)
= the H*(B)-submodule of H*(E;, E) generated by {U (&)}, n—r<i<n. Leta,_,eN""'(¢)
< H'"Y(E) be such that §(a;_,) = U(&), n — r < i< n. It follows from the proof of Theorem
(5.2) that {1, a,_,} is an H*(B)-basis for N(¢), that {U(&)} is an H*(B)-basis for M(&), and
that an H*(B)-basis for H*(E)is given by 1 and monomials a;, ... a;,n—r<i, < ... < <n.
{6.1) gives the structure of M(&) as an H*(B) (O o/ ,-module. Hence to complete our know-
ledge of the structure of H*(E) as an H*(B) © &7,-algebra, we need only study the extension
in the exact sequence

* g
6.2) 0—— H*(B)——s N(&)— M(&)—0.
This is an exact sequence of H*(B) ® &/ ,-modules which splits over H*(B). In a subsequent
paper, we hope to study such extensions in detail.

Using the techniques discussed in §4, we now discuss the naturality properties in this
case. .

Let {=(E,p, B, V,,,0(n) and &' = (£, p’, B', V,,, 0(n)) and let f:{ > " be a bundle
map. Assume ¢’ (and hence £) has a totally non-homologous to zero fibre. Clearly f*:
M(EY - M(&) and f5: N(&')— N(£), and thus we have a commutative diagram:

e 5

0 H*(B') s N(&")—> M(&)——0

IB* Se* P

. 4

i 1 i
0— H*(B) N(&) M(&) 0.
LEMMA (6.1). f% and f* are covariant ( f )-extensions.

Proof. f* is a covariant (f})-extension because M(') is a free H*(B’)-module on
U(&) and M(¢) is a free H*(B)-module on f*(U(&")) = U¢). £} is a covariant (f§)-exten-
sion because we can choose a;_; = f5(a’i_,).

COROLLARY (6.2). f%: H*(E)— H*(E) is a covariant ( f})-extension.
Proof. This follows immediately from Theorem (5.2), Theorem (4.8), and Lemma (6.1).
COROLLARY (6.3). H*(E) = H*(B)® y+pyH*(E") as an H*(B) © </ ,-algebra.

A similar discussion could be given in case the group 0(n) was replaced by the unitary
group, U(n), or the symplectic group, Sp(n), with the corresponding Stiefel manifold as
fibre. There is not as much interest in these cases, however.

Next, we consider a totally different kind of application of Theorem (5.2).
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Let f: Y- X be a continuous mapping of topological spaces such that the kernel of the
induced homomorphism f* : H*(X, Z,)—» H*(Y, Z,) is a Borel ideal in H*(X, Z,). Let
p: E— X be a principal fibre space over X with fibre a product of Eilenberg-MacLane
spaces such that kernel p* =kernel /*; it is well known that it is always possible to exactly
“kill oft” the kernel of f* by such a fibre space construction. It then follows automatically
from Theorem (5.2) that H*(E, Z,) is a free unstable R o ,-algebra, Ug(N), generated by
some sub-module N (here R= H*(B)/kernel f*). This result is true independent of the
choices of Eilenberg-Maclane spaces which compose the fibre.

§7. A THEOREM ON THE SPECTRAL SEQUENCE OF CERTAIN FIBRE SPACES

In this section we prove a theorem which shows that under certain hypotheses it is
possible to determine the successive terms E,, Ej5, ... of the spectral sequence of a fibre space
from the knowledge of the transgression. While this theorem is more or less “known”,
it has never appeared in print in a form convenient for our purposes. It should be of inde-
pendent interest.

Let S be a commutative algebra with unit over Z,. Let x;€S,i=1, ..., n Let
A(uy, ..., u,) denote the exterior algebra on uy, ..., u, over Z,. The Koszul complex (E, d)
over S is defined to be E=S® A (y, ..., u,) with d: E— E defined by d(x,) = x;, d/S=0.
E is graded by setting edeg S =0 and edeg u; = 1, where ‘‘edeg” denotes “‘exterior degree”.
Clearly d? =0 and it is easy to check that Hy(E) = S/(x,, ..., x,) and H(E)=0forg>n,

ProposiTION (7.1). If x4, ..., X, is an S-sequence, then H(E) =0 for ¢ > 0.

In general, the converse of this proposition is not true. However, we do have the
following partial converse:

ProPOSITION (7.2). If S is a graded commutative algebra with all degrees = 0, degree
x; > 0forl £i<n, and H (E)=0for q > 0, then (x,, ..., x,) is an S-sequence.

COROLLARY. Under the hypotheses of Proposition (1.2), the property of Xy, ..., X, being
an S-sequence is independent of the order of the x;'s.

The proof of these two propositions is based on the following construction (cf. Exer-
cise 3 on p. 218 of [5]). Let

Ek)=S® A(uy,..,u), 1skgn.

Then E(k) is a sub-complex of E(k + 1), hence we have an exact sequence
i é

(Sy) ...i»Hq(E(k - 1))-—:-—>Hq(E(k))i—>Hq(E(k)/E(k — 1))—‘>
Note that E(k — 1) is not an ideal in E(k), only a sub-S-module.
Next, note that we have
Eky=Ek—-1)®Ek-1)u,
(direct sum of S-modules). Hence we have an isomorphism of S-modules,
E(k — 1)——> E(k)/E(k — 1)
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defined by x—coset of (x-u,) for any xeE(k —1). Moreover, this isomorphism is an iso-
morphism of complexes, although it shifts degrees by one unit. By making use of this
isomorphism, the exact sequence (S,) is transformed into the following exact sequence of
S-modules:
» i* 3
(S2) ... — H(E(k — 1))—— H(E(k))— H,_(E(k — 1))—>...

and it is readily verified that the homomorphism u : H(E(k — 1)) —» H(E(k — 1)) is defined
by p(a) = a- x, for any ae H(E(k - 1)).

The exact sequence (S,) suffices to prove Proposition (7.1) by induction on k.

To prove Proposition (7.2), we now give E=S® A (4, ..., u,) a different graded

structure as follows. S is assumed to already have a non-trivial graded structure. Give the
exterior algebra A (uy, ..., 4,) a graded structure by the rule

degree u; = degree x; — 1, 1gign.
Then give the tensor product E a graded structure according to the usual rule for tensor

products. This new degree will be called the toral degree and denoted by a superscript.
Note that the differentiation 4 has total degree + 1. '

These two graded structures on E (defined by the exterior degree and the total degree)
are compatible with one another in an obvious sense.

The exact sequences (S;) and (S,) are now exact sequences of graded S-modules,
graded by the total degree. We have

total degree u = degree x, > 0.

It follows that if A (E(k — 1)) #0, then p: H(E(k — 1)) = H(E(k — 1)) is not an epimor-
phism, therefore H (E(k))#0. In other words, if H (E(k)) =0, then H (E(k — 1)) =0.

Applying this argument in the case where H (E(k)) =0 for all 4 >0, we see that the
exact sequence (S,) reduces to the following:

uw
0—— Ho(E(k — 1))—— Ho(E(k — 1)) — H(E(k)) —0
I i
Si(xyy ooes Xk~ 1) SH(xyy ey Xk 1)
Thus we see that y is a monomorphism. We can now use this argument for k=n, n—1,
n-—2, ... in succession to conclude that (x,, ..., x,) is an S-sequence, as required.

We now generalize Propositions (7.1) and (7.2). Let 4’, 4, and S be graded algebras
over Z,. Let A" = 4 and assume that y,, ..., y, is a simple system of generators for 4 as an
algebra over 4", Let x;€S8, i=1, ..., n, with dim x;>0. Assume givend : S®A->5S® A4
such that d]4" =0, d(y,) = x;, and d|S=0.

S
ProrosiTION (7.3). If Xy, ..., X, is an S-sequence, then H(SQ A) x ——— ® A’

X5 ooy X,
as an algebra over Z, and as a module over S. (x5 o %)

Proof. Define ¢: S®A->S®A(yy, ..., u,)R® A, a map of S-modules, by ¢(s®
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ayy ... yi)=s@uyA ... Au, ®ad’. ¢ is an isomorphism and commutes with the
differentiations, Hence ¢, : H(S®A)—> H(S® A (uy, ..., u,)® A’) is an isomorphism.
S
However, H(S® Ay, ..., ) AV HSE® A (U, -, 1)) QA" = zr—x) ®A’, the
X{s eees Xp

latter isomorphism by Proposition (7.1}, Let ¢, :S@A'»S®Aand , : S®A -»S® A
(uy, ..., u)® A" be the obvious maps. Clearly, ¥, =¢y,. Let S®A’ have the trivial
differentiation. Then ¥/, , = ¢, ¥« With ¥, and ¥,, epimorphisms of algebras. Hence ¢,
is an isomorphism of algebras.

We now prove the main theorem of this section.
THEOREM (7.4). Let p: E— B be a fibre space with fibre F and let i : F— E. Assume
(a) in the mod 2 spectral sequence, E¥? ~ HP(B) ® HY(F),
(b) H*(F) = U(X) for some & ,-module X, and X is transgressive,
(c) the ideal in H*(B) generated by the image of X under transgression is a Borel ideal.
Then (a) EP*=EP°QE>2<r £ o,
(B) Im i* = U(X"), where X' < X is the kernel of the transgression (restricted to X).
and X' =X nIm i*,
(y) Ker p* is the ideal in (c) above.

Proof. Let v : X —H*(B)/Q* denote the transgression restricted to X. Here O* is
the subgroup by which H*(B) must be factored so that tis well defined. Let p : X —» H*(B)
be a Z,-homomorphism such that

H*(B)

\
H*(B)/Q*

is commutative. Let X' = Ker t. We now prove the following three conditions by induc-
tion on r = 2:

(i) Ef’q — E,’."O ® E?,q’
(i) E&* = u(x' . xq),

g=r—1
(iii) EX° = H*B))(p(X' + ... + X' %).
The case r = 2 is true by hypothesis. Assume true for r. EF¥, = H(E??) under d,. By (i),
(X' + > X"). By hypothesis

q=r-1

(c), the ideal in E*° generated by 1(X"~!) is a Borel ideal. We now apply Proposition (7.3)
r 8 y

d, is determined by d4{E°,*. By (ii), d, is determined by t
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with A=UX'+ ¥ X9, A'=UX+Y X9, S=E*° and{x;}=/{t(z)},where
=

g=r—1 r
) . E*O0 @
z;1s a Z,-basis for X'~ mod X’. Hence, EX* =m ® U(X’ +¥ X"). To complete
T a=r

the induction, we note that EF%/(t(X"™ 1)) = H*B)/(p(X' + ... + X"™")). Condition («)
is now proved by induction on r. Conditions (8) and (y) follow easily by letting r - co.
Q.E.D.

§8. PROOF OF THEOREM (5.2)

First of all, we apply Theorem (7.4) to conclude that E%? = E2° ® E%? and Im i*
=U(X"), where X' =Ker 1. Hence H*(E) is a free R-module with basis obtained as fol-
lows: let {b;} be a Z,-basis for Im i*. Let b;e H*(E) be such that i*(b}) =b;. Then {b;}
is an R-basis for H*(E). This follows from the fact that E%? = E2° ® E%9. The rest of the
proof will be devoted to showing the existence of a set of elements {z;} = H*(E)such that

@ {i*(z)} is a Z,-basis for X’ and

(II) {8(z))} is a set of generators for M(£) as an R-module. Theorem (5.2) follows
from these two properties as follows: {z;} u {1} is an R-basis for N(£) by (I) and (1I) and
hence the non-repeating monomials in {z;} and 1 generate Ug(N(£)) as an R-module by
Theorem (3.12). Also, from (I) it follows that {i*(z,)} is a simple system of generators for
Im i* = U(X") over Z,. Thus the non-repeating monomialst in {z;} and 1 give an R-basis
for H*(E). Thus & : Ugr(N(&)) » H*(E) sends a system of generators over R onto an
R-basis in a 1-1 manner, proving that & is an isomorphism.

Choose generators {v;} for Ker p* as an ideal such that v}, v3, ... is an H*(B)-sequence.

Let v;eH*(Ey, E) be such that I(v;) = vi. Let W be the H*(B)-submodule of H*(Ey, E)

generated by {v;}. We claim that H*(Ey, E) =Im 6@ W, a direct sum as H *(B)-modules.

Clearly Im & and Wgenerate H*(Ey, E), since { W) = Ker p*. We now show thatImd n W =
k

{0}. Leta= Y b;-v,,e WnImd, where b,eH*(B) and b;+ 0. We prove a contradiction
i=1

by induction on k. If k = 1, then I(a) = b, -v,; = O with b, % 0 and v, + 0, which is a con-
tradiction as v, is not a zero divisor. Assume that we have proved that /(a) = 0 implies

n n
a=0ifk<n Leta= 3} b;v,. Assumel(a)=0= X b;-v,,. Since v, is not a zero
i=1 i=1
divisor in

n—1 n—1 .
H*B)/(v},, -..n Uy, _ ) by=3_ ¢;v,. Hence ¥ (b, + ¢}, ) v;, = 0. By induction,

i=1 i=1
n—1 n—1

n—1 n
21 (b; + cvg) v, = 0= Z1bi.vw + 2 0,0, = 2 by, =a.
i= i= i=1 i=1

t Here we are also making use of the following fact which seems to be known, but is not mentioned
in the literature: If X is an unstable module over &/,, and {4:} is any Z,-basis for X, then the b¢’s are a
simple system of generators for the free algebra U(X). It is not too difficult to give a direct proof.



THE COHOMOLOGY STRUCTURE OF CERTAIN FIBRE SPACES—I 63

Since elements of X are transgressive in the universal bundle &, §,(X) < Im/} in
Fig. 1 (cf. Lemma (5.1)). Hence we can choose a Z,-homomorphism 8, of degree I,
0o:X - H*(Eyr, Ey), such that j§0, =3J,|X. Since p§ is an epimorphism, §, = 0 and /, is
a monomorphism onto Ker p§. By hypothesis (iii), H*(Eqr, Eo) is generated by 8,(X) as
an H*(B;)-module. Define 6: X - H*(E, E) by 8 = h*8,. Then j*0 = §,|X and /8(x) is
a representative of t(x) for any xeX. Hence M'(¢) is the H*(B)-submodule of H*(Ey, E)
generated by 6(X).

Let X = X'®X" as a Z,-module, where X’ = Kert. Let {q;} be a homogeneous
Z,-basis for X" and {c;} be a homogeneous Z,-basis for X", arranged in order of increasing
degree. Then {/6(c,)} generates Ker p* and is an H*(B)-sequence. Hence we can choose
v; = 0(c;) and {v;} generates W as an H*(B)-module,

Nowlet x’eX’. Then0(x’) = e + w.where eclm d and wel. Weclaimthatj*(w) = 0.
To prove this claim, let e = d(e’) for some ¢'e H*(E). Let w =%b,-0(c,), b;e H*(B). Then
B(x") = 6(e") + Zb;-0(c;). Apply j* and we obtain §,(x") = j*0(x") =j*3() + Ze(b,)"
J*0(c) = 8,i*(e") + Ze(b;)-5,(c,), where €: H*(B) »Z, is the augmentation. Since §, is an
isomorphism, we see that x' — i*(e") =% e(b,)-¢;. Since x'e X" and e (b)) -c;e X", i*(e)
€ XnImi* = X' by Theorem (7.3). Thus x" — i*(¢) = 0=Ze(b;) c;. Therefore (b;) =0
for all i and j*(sv) = 0 as required.

For each basis element q; of X7, there exist unique e;€Im § and w; e W such that 0(a;) =
e; + w;and j*(w;) = 0. Choose z;€ H*(E)such that e; =3(z;) for each i. Note that 9,i*(z;) =
J*o(z;) = j*(e;) = j*(0(a;) — w;) = d,(a;). Thus i*(z,) = a; and condition (I) is proven. Since
8(X) generates M’(&) and {6(c,)} generates W, it is clear that W <= M'(¢). Hence M'(§) =
M) @ W. Therefore (z;) = e; generates M(&) as an H*(B)-module, and hence as an
R-module, proving (II). This completes the proof of Theorem (5.2).

APPENDIX I

The semi-direct product of groups and the semi-direct product (or split extension) of
Lie algebras are well established algebraic notions of long standing. It seems that the semi-
tensor product of algebras as defined in §2 is the analogous notion in the theory of associa-
tive algebras, and it deserves to be considered as one of the basic constructions in the subject.
In support of this thesis we present the following examples, all of which are of a classical
nature. In all these examples, the grading will be trivial, i.e. every element has degree 0.

Let K be a field and = an abstract group. Let K(x) denote the group algebra of = over
K. It is easily seen that K(x x n) = K(r) ® ¢ K(n). Define  : K(n) > K(n) ®x K(n) by
Y(x) = x ® x for xer and extend linearly. Thus K(n) is a Hopf algebra over K; these facts
are all well known. Now let n be the semi-direct product of n” and =" with respect to a
homomorphism« : n” > Aut (n'). K(n")is a Hopf algebra and the action of =" on =’ deter-
mines an action of K(n") on K(rn’) so that K(x') is an algebra over the Hopf algebra K(n")
in the sense of Steenrod. One can now readily show that K(z) = K(n') © K(=").

Let R be a Galois extension of K of degree n with = as the Galois group. Then R is
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an algebra over the Hopf algebra K(n) and RO K(n) turns out to be a ‘“‘crossed product
with trivial factor set” ({l] Chap. VIII). In this case RO K(r) is isomorphic to the algebra
of all n x n matrices over K.

As another example, let L be a Lie algebra over K and let U(L) denote the universal
enveloping algebra of L. Then U(L) has a natural augmentation [4; p. 268] and a natural
diagonal map [4; p. 275] and is thus a Hopf algebra. If L is the semi-direct sum or split
extension of L" and L” [4; p. 17], the action of L” on L’ determines an action of the Hopf
algebra U(L") on U(L’). Again, U(L)~ U(L")® U(L").

Finally, let R be an associative algebra and L a Lie algebra of derivations on R. Then
U(L) acts on R and R is an algebra over the Hopf algebra U(L). The algebra RO U(L)
was used by Jacobson [4; p. 175] to construct the standard complex for the cohomology of
a Lie algebra.

APPENDIX II

We give here an outline of the proof of Theorem (3.13). We wish to acknowledge that
this proof was suggested by N. Jacobson.

Since p=2, R is a commutative ring in the classical sense and we will ignore the
grading. With respect to the given basis by, b,, ..., b,, we write

(i) Ab) = 3 o;by, lzizn, and i(by) = b,.
/=0
Note that
(ii) A(}: r,»b,-) = riMb),  wherer;eR.

Referring to the construction of Ug(M) in §3, we see that FSR(M)/E~ R[b,, ..., b,], &
polynomial ring over R and that F is the ideal generated by {A(6,) — b}li=1, ..., n}. It is
clear, by induction, that the set of monomials

{b,% ... birle; =0 or 1} generates R[by, ..., b,)/F = Ugr(M). Thus we must prove that these
monomials are independent over R. We first prove it in the special case where R is the
algebraic closure of Z,(a4o, ..., %,,), and the a;;e R are algebraically independent over Z,.
In this case 4 : M — M is monomorphism. If A were nota monomorphism, it would not be a
monomorphism when we “specialized” the «;;. Taking «;;=J;; we see that 1 is a mono-
morphism. Now we apply Theorem (13) of [4; p. 192] to conclude that M has a basis g, =
bo=1, a,, ..., a, such that (a;)=a;, 0 £ i< n. Hence Ug(M) = Rla,, ..., a,)/F, where F
is generated by {a? —a;}. The theorem for this case now follows easily by induction on
n {(cf. [4; chapt. T, §7]). Thus Ug(M) has a basis {b7* ... bi"le;=0 or 1} over R. In terms
of this basis one can compute explicit formulas for the constants of multiplication for this
algebra (see [4; chapt. I]) by use of (i) and the fact that b7 = i(h,) in Up(M). These constants
will be certain polynomials in {«;;} over Z,. The fact that Ug(M) is commutative and
associative is equivalent to the fact that these polynomials satisfy certain identities. These
identities will still be satisfied if we replace the «;;’s by arbitrary elements from a commuta-
tive associative algebra with unit over Z,.
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Now let R be arbitrary. We construct an associative, commutative algebra W with
unit over R as follows. As an R-module, W is free on symbols {bi' ... b:*e; =0 or 1}.
The constants of multiplication for W are the polynomials mentioned above with the
indeterminants replaced by elements «,;6 R. Then W is a commutative, associative algebra.
There is an obvious map of algebras § : R[b,, ..., b,] = W. fis an epimorphism and clearly
Ker f o F. However, each monomial 5% ... bf", ¢; =0 or 1 in R[b,, ..., b,}/F maps onto a
basis element in W and hence {b7' ... bi*|¢; = 0 or 1} are independent in Ugx(M).

This proof would generalize to prove an analogous basis theorem for p an odd prime
in case R had only elements of even degree and M were a free R-module on a finite basis.
We conjecture that the theorem is true in the locally finite case with p arbitrary.
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