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S I. INTRODUCTION 

LET p : Ed B be a fibre bundle with fibre F and group G, and let i : F-+ E denote the inclu- 

sion map. This paper is a contribution to the following long outstanding problem: Express 

the structure of the cohomology of E in terms of that of B and F and invariants of the 

bundle structure. 

Of course an answer or a partia1 answer to this question can sometimes be obtained 

by use of the spectral sequence. However, even in cases where the spectral sequence is 

trivial (i.e. the fibre is totally non-homologous to zero and E2 = E,) it may be difficult or 

impossible to determine the multiplicative structure or the action of the Steenrod algebra 

on H*(E,Z,), although the additive structure is completely determined. It is this aspect 

of the problem with which we are mainly concerned. 

The problem is further complicated by the fact that H*(E, 2,) has at least three different 

algebraic structures which are important: It is an algebra over Z,, it is a module over the 

Steenrod algebra LzZ,, and a module over the algebra H*(B, 2,) via the induced homo- 

morphism p*. (Actually, it is more interesting to consider it as a module over the quotient 

algebra R = H*(B)/kernel p*). 

Moreover, these different structures are not independent of each other; they must 

satisfy various identities. We list explicitly all these conditions and call any algebraic 

object which satisfies all of them an unstable dq-R-algebra. We also define the closely 

related notion of an unstable &r4,-R-nzodule. Once these definitions are fixed, it is clear how 

to define the free unstable dq-R-algebra generated by a given unstabfe &q-R-module. 

These ideas may also be looked on as rather natural generalizations of some basic concepts 

introduced by Steenrod and Epstein [8]: namely, given any unstable module X over the 

Steenrod algebra _G’,, there is defined thefree algebra, U(X), over ~4, generated by X. 

Our main theorem then asserts that under “appropriate” conditions, H*(E, Z,) is the 

free unstable d2-R-algebra generated by a certain unstable d2-R-module M c H*(E, Z,). 

t W.S.M. was partially supported by N.S.F. Grant G-18995 and F.P.P. was an Alfred P. Sloan Fellow 
and was partially supported by the U.S. Army Research Office. 
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precise definitions]. As Steenrod points out in [7], $7, this is precisely the additional struc- 

ture needed to convert the tensor product (over Z,) of left A-modules into an A-module 

such that the usual natural equivalences for the functors “Horn” and “0” remain true. 

If M and N are left A-modules, then M@ N (tensor product over Z,) is also a left A-module 

via the diagonal map 1(1, and if f : M+ M’ and g : N-, N’ are homomorphisms of left 

A-modules, then f@g : MQ N+ M’Q N’ is also a homomorphism of left A-modules. 

Following Steenrod (lot. cit.), if R is both an algebra over Z, and a left A-module, we 

will say that R is an algebra ocer the Hopf algebra A if the multiplication P: R Q R + R and 

the “unit” rl : Z,-+ R are homomorphisms of left A-modules (where A operates on Z, via 

the augmentation E : A -+Z,). A natural generalization of this notion is the following: 

Let R be an algebra over the Hopf algebra A, and let M be a left module over both of the 

rings R and A. We will say that M is an A - R module if the map R Q M-t M defining the 

R-module structure is a homomorphism of left A-modules. In terms of elements, this 

condition can be written as follows: For any CYEA, rE R, and mEM, 

(2.1) cz(rm)=C(-1) (dcg r)(deg ““‘(U;r)(rl’m) 

As we shall see later, A-R modules are fairly common objects, especially in algebraic 

topology. As a trivial example, if R is an algebra over the Hopf algebra A, then R, con- 

sidered as a left R-module in the usual way, is also an A-R module. A less trivial example 

is the following: Let X be a topological space, Y a subspace, and d4, the Steenrod algebra 

(mod p). Then H*(X, Y, Z,) is an d, - H*(X, Z,) module, with respect to the usual 

definitions. The following lemma, which will be needed shortly, gives an easy way to 

multiply the number of examples: 

LEMMA (2.2). Let A and R be as abooe. If M is a left A-R module, and N a left A-module, 

then MQ N is a left A-R module in a natural way. 

ProojI Let p : RQ M+M be the map defining the R-module structure on M and 

1 : N-, N the identity map. Since ,u and 1 are homomorphisms of left A-modules, so is 

pQl:RQMQN---+ MQN. 

This defines a structure of left R-module, and hence A-R module, on MQ N. 

It would clearly be desirable to be able to subsume the theory of A-R modules under 

the usual theory of modules over a single algebra. We will now show how this may be done. 

Our development of the ideas involved will be heuristic, since this has some advantages in 

this case. 

Let M be an A-R module and B(M) = Homzp(M, M) the graded algebra (over ZJ of 

all homogeneous Z,-endomorphisms of M. The R-module structure and A-module struc- 

ture on M determine homomorphisms 

p:R----+ b(M), 

cp’ : A----+ J’(M) 

of Z,-algebras with unit. Define a Z,-linear map 
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by the formula 
@:RQA- QM) 

@(r 0 a) = (cpr)(cp’a). 

The following question now presents itself: Is it possible to define a multiplication in R Q A 

such that 0 is a homomorphism of algebras (for any A-R module M)? If the answer to 

this question is “Yes”, then any A-R module is also a module over R Q A (with this new 

multiplication). 

It is readily seen that to define such a multiplication in R Q A, one should set 

(2.3) (7 0 a)(~ 0 b) = c (- 1) (dcgs)(deg “i’)r(a;s) Q (@) 

for any r, seR and a, SEA; here $(a) = Cur Q a;, as before. In terms of diagrams, this 
1 

multiplication is a linear map (R Q A) Q (R Q A) -+ R Q A which is the composition of four 

homomorphisms, as indicated by the following diagram: 

RQAQRQA 

I 

lBvi@I@l 

R@A@A@R@A 

(2.4) 
I l@l@T@l 

RQAQRQAQA 

1 

l@p@l@l 

RQRQAQA 

I 

mR@mA 

RQ A. 

In this diagram, the symbol “1” denotes an identity map, T : A Q R + R Q A is the “twist”, 

~1: A Q R + R defines the A-module structure on R, and mR and mA define multiplications 

in R and A respectively. 

It is clear that the multiplication thus defined in R Q A is distributive and has a 2-sided 

unit, 1 Q 1. It is not obvious that the multiplication is associative; since @ is a homo- 

morphism of algebras, and b(M) is an associative algebra, if we can choose M such that CD is 

a monomorphism, it will follow that the multiplication is associative. But such a choice is 

readily at hand: take M = R Q A (that R Q A is an R-A-module follows by setting M = R 

and N= A in Lemma (2.2)). Then one has 

Hence kernel @ = {0}, as required. 

= F ri(l Q UJ = C ri Q CZ~. 
‘ 
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DEFINITION (2.5). The semi-tensor product of R and A, denoted by RO A, is the 

Z,-algebra which has R Q A as its underlying Z,-cector space and its multiplication defined 

by (2.3) or (2.4) abore. 

The reason for calling this algebra “the semi-tensor product” is that it bears the same 

relation to the ordinary tensor product of algebras that the semi-direct product of groups 

bears to the usual direct product; see Appendix I, where this relation is further developed, 

and relations to the semi-direct product of Lie algebras are established. 

Note that the map R + R 0 A defined by r + r @ 1 is a monomorphism of Z,-algebras, 

as is the map A --f R 0 A defined by a --f 1 @a. Let M be an A-R module. Then M is an 

R 0 A-module if we define (r @ a)m = r(am). Conversely, if ,V is an R 0 A-module, then 

iM is an A-R module using the above imbeddings. Furthermore, a map of A-R-modules 

is linear over both A and R if and only if it is linear over R 0 A. Thus we have achieved 

our goal of subsuming the theory of A-R modules under the theory of modules over a single 

algebra. 

Next, suppose that A and R are as above, M is a left A and right R-module such that 

the structure map p:M@ R-+ M is a homomorphism of (left) A-modules, and N is a left 

A-R-module with structure map v : R 0 N --f N. Then we assert that 1Vf @ N has a natural 
R 

structure of left A-module. This follows from the fact that &IQ N is (by definition) the 
R 

cokernel of the map 
/1@1-1@v:M@R@N ----+lV@N 

which is clearly a homomorphism of left A-modules. One can carry this sort of thing even 

further, as follows: Let S and Talso be algebras over A. Assume that M is an S-R bimodule 

and N is an R-T bimodule (in symbols, sMR and RNT) such that all four structure maps 

s @ M - LW, p::f@R-M, 

v:R@N-N, NOT - r, 

are homomorphisms of left A-modules. Then it is well known that M@ N is an S-T- 
R 

bimodule (cf. MacLane, [5], p. 143); in this case, on account of the additional hypotheses, 

one sees immediately that both of the structure maps of this S-T bimodule are homo- 

morphisms of left A-modules. 

An important special case occurs if R is commutative; then the distinction between 

right and left R-modules disappears, and any R-module is also an R-R bimodule. Thus 

we have the following fact which we record for later use: 

LEMMA (2.6). Let R be a commutative, associate algebra ocer the Hopf algebra A. If 

M and N are left R 0 A-modules, then M@ N has a natural structure of left R 0 A-module. 
R 

93. THE FREE ALGEBRA UR(‘%f) 

For the rest of this paper, we take for A the mod p Steenrod algebra d,. The operations 
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of d, on H*(X) satisfy further properties than those embodied in the definition of an 

algebra over the Hopf algebra d,. Namely, for the case p = 2, 

(3.1) .Sq”.u =0 if degx < n, and 

(3.2) Sq”.u = x2 if degs = n. 

When p is an odd prime, we have 

(3.3) 9% = 0 if deg.x < 2n, 

(3.4) 6*9’“.u = 0 if deg x = 2~1, and 

(3.5) P”.x = xp if deg x = 2n. 

The following definitions are modelled on Steenrod and Epstein, [S]. 

DEFISITION (3.6). A module M over d, is called an unstable module over .tB, if (3.1) 

holds ivhen p = 2 or lf(3.3) and (3.4) hold when p is an odd prime. An algebra R over d, is 

called an unstable algebra over dp ifit is an unstable module over d, and zf(3.2) holds when 

p = 2 or if (3.5) holds when p is an odd prime. 

For the rest of this section, let R be a commutative, unstable algebra with unit over 

the Hopf algebra d,. 

DEFINITION (3.7). An algebra over R 0 d, is an R 0 &,-module which is an algebra 

over R (in the classical sense) and over ~2, (in the sense of Steenrod). An R Q &p-module M 

is unstable if it is unstable as an &,-module. An algebra over R 0 JZ?, is unstable 1f it is un- 

stable as an algebra over d,. 

DEFINITION (3.8). Let M be an R 0 dp-module. A base point for M is an RQzZP- 

homomorphism n : R -+ M. If M is an R 0 &,-algebra, we also require that n( 1) be the unit 

for M. 

Steenrod and Epstein [8] have defined the free tip-algebra generated by an &,-module. 

We now generalize this definition to RO&p-modules. 

DEFINITION (3.9). Let M be an unstable R 0 &p-moduIe with base point. A free R Q dp 

algebra generated by M is a pair (U, CD), where U is a commutative unstable R osQ,- 

algebra with base point and @: M-t U is an R 0 &,-homomorphism preserving the base point, 

such that the following “universal mapping condition” is satisfied: for any commutative 

unstable R 0 dp-algebra W with base point and any R 0 .&p-homomorphism u: M+ W pre- 

serving the base point, there exists a unique R 0 &P-homomorphisnl of algebras, C : U--+ W, 

preserving the base point such that 
0 

M *u 
\ 

\ // 
3\ /z 

\ 
L r(/ 

W 

is commutative. 

It is easy to prove that (U, Q) is unique up to isomorphism if it exists. In order to prove 
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existence, one could appeal to the general existence theorem of P. Samuel [6]; however, we 

will give a more constructive proof. For n > 0 let @i(M) denote the tensor product over R 

of n copies of M. By Lemma (2.6), @i(M) is an R 0 &,-module. By [8; p. 271 it is 

an unstable module. Let @i(M) =I o”,(M), where 0:(&V) = R, an R 0 dp-algebra 
flt0 

which is unstable as an Rod,-module. Let D be the ideal in @g(M) generated by all 

elements of the form xy - (- 1) degx’degYy,~. Clearly D is an RO&p-submodule. Define 

Y;(M) = @g(M)/D, and let Ysp”R(M) denote the image of @“,(.\I) in Y:(M). YE(M) is a 

commutative R 0 &,-algebra which is unstable as an R 0 &,-module. Clearly Y:(M) = R 

and Y;(M) = M. Let 17 : R -+ M denote the base point in M. Let E be the ideal in Y;(M) 

generated by 1 - q( 1). E is an R 0 d,-submodule, hence Yz(M)/E is also an R 0 91,- 

algebra. Define Q. : M- Y*,(M)/E by the natural map M = Y;(M) c 9’“;l(M) --f Yi(M)/E. 

Q. is an R 0 &,-homomorphism preserving the base point. Define % : M-+ M as follows. 

If p = 2, I]M” = Sq”. Ifp is an odd prime, E.]M2”+i = 0 and i.jM’” = 9”. Let F denote the 

ideal in YE(M)/E generated by all elements of the form @,,(j.(m)) - (#o(m))p for mcM. 

The proof given in [8; p, 281 applies without change to prove that F is closed under d2. 

An analogous proof applies for p an odd prime. Define U = Yz(M)/E/F and Q, : hi+ U 

as the composition of a, with the canonical map Yi(M)/E+ U. It is readily seen that 

(U, Q) has the required properties. 

We will suppress the map @ from our notation and denote by U,(M) the free R 0 ,c4,- 

algebra generated by M. Clearly U,(-) is a covariant functor. When R = R” = .Z2, 

U,(M) reduces to the notion defined by Steenrod and Epstein [8]. 

PROPOSITION (3.10). Let M be an unstable R 0 &,-module with base point n. Let N, 

and N2 be sub R 0 &P-modules such that N, n N, = Im q and M = N, + N,. Then U,(M) 

is naturally isomorphic to U,(N,)@, U,(N,). 

The proof of Proposition (3.10) is straightforward and left to the reader. Let M be 

an unstable R O,01,-module with base point q : R --f M. Let M’ denote M @M with the 

two base points identified. Then the diagonal M+ M @M induces an R 0 &p-homomor- 

phism M-+ M’. Since U, is a covariant functor, we obtain the following corollary. 

COROLLARY (3.11). U,(M) has a diagonal map 11 : U,(M) -+ U,(M) OR U,(M) which 

is an R 0 d,-homomorphism. In particular, U,,(M) is a Hopf algebra ocer Z,. 

Of course U,(M) may have other diagonal maps. The map $ is a canonical one, 

independent of any choices. 

We need the following weak form of a structure theorem for the topological applica- 

tions. The theorem is a straightforward consequence of the construction of U,(M). There 

is an analogous result for p an odd prime which we omit. 

THEOREM (3.12). Let p = 2 and let M be an unstable R 0 z12-module. Let b, = q(l), 

b,, . . . be a set of homogeneous generators for M as an R-module. Then the monomials 

bi, . . . b,,, 0 < i, < i, < . . . < ik together with 1 generate U,(M) as an R-module. 

The following theorem is a more precise structure theorem for U,(M). Since we do 

not need this theorem for the topological applications, we postpone the proof until the ap- 
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pendix. In the topological applications, this result is obtained as a corollary free of 

charge. 

THEOREM (3.13). Let p = 2 and let M be an unstable R 0 &2-module with base point. 

Let b, = q(l), b,, . . . . b, be a homogeneous basis for M as an R-module. Then b,, . . . , b, is a 

simple system of generators (in the sense of A. Bore1 [2]) for U,(M) as an algebra over R. 

14. COVARIANT +-IZTE~X~NS 

The notion of the covariant &extension of a module is due to Cartan and Eilenberg 

[3; p. 281. It provides the algebraic machinery for our discussion of naturality in $5. We 

first review the definition and then state various properties. 

Let A and r be associative rings with unit and let q5 : A + r be a ring homomorphism. 

If M and N are A- and r-modules respectively, we say that f : M+ N is semilinear with 

respect to 4 ifJis a A-homomorphism where A operates on N via 4. 

DEFINITION (4.1). Let M be a left A-module and let C$ : A+T be a ring homomorphism. 

A covariant $-extension of M is a pair consisting ef a left r-module, (+,M, and a semi-linear 

mapf :M+ ,,,M such that the folIowing “universal mapping property” holds : if g : M -+ N 

is a semi-linear map, then there exists a unique r-homomorphism h: (+)M+ N such that the 

diagram 

/ 
M’ h 

\ 
\ 

!A 
\ 

is commutative. 

Clearly any two covariant &extensions are naturally isomorphic. To prove existence 

we take &4 = r @,M, and define f : M-, (+)M by f(m) = 1 @,,rn. 

The proofs of the following propositions are easy and are omitted. 

PROPOSITION (4.2). If f : M+ N is a A-homomorphism, there is defined an induced 

r-homomorphism c4,f : (+)M+ (,N. This defines an additive, right-exact, covariant functor 

from the category of left A-modules to the category of left r-modules. 

PROPOSITION (4.3). If M is a free left A-module with basis {bi}, then a semi-linear map 

f:M-+ (&,M defines a covariant $-extension if and only if {f (bi)} is a basis for (+,M as a 

left r-module. 

PROPOSIXON (4.4). Assume that A and r are graded, commutative rings. Let A be an 

algebra over A. Then CO) A is an algebra over J? in a canonical way. If A is associative, has a 

unit, or is commutative, then so is (+,A. 

PROPOSITION (4.5). Assume that A and r are algebras over the Hopf algebra d, and 
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that 4 : A--+ r is nn s9,-homomorphism. If M is an tic8,-A-module, then C,,Misan &p-T-module 

in a canonical way. Furthermore, IBM and I- are unstable, so is C4,M. 

The proof uses the coassociativity of d,. 

COROLLARY (4.6). Let 5 : AOd, -+ I?~.&, be the homomorphism induced by 4. 

Then o,M = cm, M; i.e. (r 0 J&‘~) OAQdd,M z I- @*M. 

COROLLARY (4.7). If A is an unstable algebra over AQ&,, then (+,A is an unstable 

algebra over r 0 d,. 

THEOREM (4.8). Let A and r be unstable algebras over the Hopf algebra I, and let 

C$ : A--+ r be an .zlp-homomorphism. Let M be an unstable A0 &p-module with base point. 

Then (+,,(U,,(M)) is naturally isomorphic to U,(,,,M) OS unstable algebras over r 0 ~4,. 

Proof: Let i : M-+ U,,(M), j : (+,M+ U,(,,,M), 4” : Al+ (++,M. Then j4” : M+ U, 

(c+,M) is an AO,rQ,-homomorphism. Let j#” : U,,(M) -+ U,((+,M) be the unique extension; 

it is semi-linear with respect to 4. Let a : o,(U,,(M)) -+ U&,M) be the unique I--homo- 

morphism such that the diagram 

s commutative. Furthermore, (+,( V,,(M)) . IS an unstable IY 0 dP-algebra by corollary (4.7) 

and ,,,j : cm,M-+ (+)( U,,(M)) is a r 0 &P-homomorphism. Hence there is a unique r 0 -c9,- 

homomorphism p : U&,,M) -+ (+,( U,,(M)) such that 

is commutative. Using standard diagram chasing techniques, one easily proves that a and 

/3 are isomorphisms and inverses of one another. 

95. THE MAIN THEOREM 

We now apply the algebraic notions developed so far to the study of the cohomology 

structure of the total space of certain fibre spaces. We will assume p = 2 throughout this 

and the next two sections. 

Let < = (E, p, B, F, G) be a fibre bundle with fibre F and group G. Let to = (I?,, pO, 

B,, F, G) denote the universal bundle with fibre F and group G. Following are the three 

basic assumptions on F and G, and we assume these throughout this section. 

(i) There is an &9,-module X such that H*(F) = U(X) and the elements of X are trans- 

gressive in the universal bundle. 

(ii) The local coefficient system defined by H*(F) is trivial in the universal bundle. 
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(iii) pz : H*(B,) -, H*(E,) is an epimorphism and Ker p;f is the ideal generated by the 

image of X under transgression. 

These conditions are fulfilled, for example, in the following five cases, the first of which 

will be treated more thoroughly in 96. 

(1) F= Y,,, = O(n)/O(n - r) and G = O(n), 

(2) F = U(n)/U(n - r) and G = U(n), 

(3) F= Sp(n)/Sp(n - r) and G = 5$(n), 

(4) F= 0(2n)/U(n) and G = 0(2n), 

(5) F=G= a product of Eilenberg-MacLane spaces.7 

We need the following notions in order to state our assumptions on the particular 

bundle 5. Let S be a graded algebra over 2,. A sequence of homogeneous elements 

31, . . . . S “, . . . (finite or infinite) is called an S-sequence if si+l is not a zero divisor in the 

quotient algebra S/(s,, . . . . si), where (sl, ,.,, Si) denotes the ideal generated by sir . . . . Si* 

An ideal I c S is called a Bore1 idealf if there is an S-sequence sl, . . ., s,, . . . such that 

(3 Ir . ..)=Zand dimsi>O. 

Now given 5, let tr = (E,, pT, B,,T(F), G) denote the bundle associated to t with 

fibre T(F), the cone on F. (ET is the mapping cylinder ofp.) Note that& is an isomorphism. 

Let k : E+ ET and k : E, + (ET, E) be the inclusions. Let 1: H*(E,-, E) + H*(B) be defined 

by I = (p:)-‘li* and note that p* = k*p,. Hence, from the exact sequence of the pair 

(ET, E) we obtain the exact sequence: 

(5.1) . . .-Hq(E,,E)A H’(B) -41;H”(E)A H4+l(ET,E+... 

Since pg is an isomorphism, H*(ET, E), H*(B), and H*(E) are modules over H*(B). l33y 

the results of $2, they are all H*(B) O.&,-modules. Furthermore, I, p* and 6 are 

H*(B) O.&,-homomorphisms. Let f : B-t B,, g : E-r E,,, and h : (ET, E)-+ (E,,., E,,) be 

the classifying maps for 5. We have the following commutative diagram. 

PO’.W(EJ 60 ‘0 

Hq+l&T, E,) -+Hq+ ‘(B,) 

9’ 

1 

io ’ 

\ 7 jo’ 

/ 

H’(F) 61 Hqi’(T(F), F) 

I 1 

h* /’ 

i* 
6 z 

j* 

P* 
I 

-+fF(E) tH’+ ‘(E,, E)N H”+‘(R) 

FIG. I. 

t Some applications of this case will be given in a future paper. 

$ These notions are quite old, at least in the case of polynomial rings, cf. the Cambridge Tract by F. S. 
Macauley entitled The Algebraic Theory of Modular Sysfems (1916) and Kronecker’s paper in Crelle’s J. 
92 (1882), especially p. 80, where a Bore1 ideal is called an “ideal of the principal class”. For a summary 
of recent work on local rings which uses these notions together with complete references, see MacLane, 
[5], Chapter VII. These ideas occur in $11 of Borel’s thesis [2] in a context similar to ours. In Appendix 6 
of Vol. II of Commufariue Algebra by Zariski and Samuel, S-sequences are called “prime sequences”. 
This seems to be a better name, but it has not been widely adopted. 
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Since it is not obvious at first sight, it should be pointed out that the homomorphisms 

in Fig. 1 determine the transgression. To be precise: 

LEMMA (5.1). The transgression in the bundle (E, p, B, F,l is defined by -l(j*)-‘6,. 

Proof. Consider the diagram in Fig. 2. By definition, the transgression is determined 

FIG. 2. 

by k*(pz)-‘62. Jt follows from the hexagonal lemma that the two ways of going around 

this diagram are the negatives of each other; hence the lemma. 

Let M’(5) denote the H*(B)-submodule of N*(&., E) generated by h*(H*(E,,,, E,)). 

Since H*(E,r, E,) is an &*,-module, M’(c) is an .d,-submodule and hence an H*(B) 0 A’,- 

submodule of H*(E=, E). 

Define M(r) = M’(c) n &H*(E)). M(r) IS an H*(B) Q d2-submodule. Ker p* operates 

trivially on @H*(E)) and hence on M(5). Thus M(t) is a module over R = H*(B)/Ker p*. 

Clearly R is an algebra over the Hopf algebra .rJ, and hence M(c) is an R 0 d,-module. 
6 

Define N(t) = 6-‘(M(o). It is obvious that 0 
P. 

--f R--1 N(l) --) M(t) -+ 0 is an exact sequence 

of unstable Rod*-modules, and p* is a base point for N(5). 

Let CL : N(5) + H*(E) be the inclusion. Let Z : U,(N(Q) + H*(E) be the induced homo- 

morphism of algebras over RO,r9, (see 3.9). Our main theorem is the following; it will 

be proved in $8. 

THEOREM (5.2). Let < be afibre bundle such that F and G satisfy (i), (ii), and (iii) above. 

Also, assume that the ideal in H*(B) generated by the image of X under transgression is a 

Bore1 ideal. Then Cr : U,(N(<)) + H*(E) is an isomorphism. 

$6. SOME EXAMPLES OF APPLICATIONS OF THEOREM (5.2) 

Before giving the proof of Theorem (5.2), we discuss some special cases in more detail 

for the sake of illustration. Let F= V,,,, the Stiefel manifold of r-frames in R”, and let 

G = O(n). Let {hi-,}, n - r < i 2 n, be the standard simple system of generators for H*(V,,,) 

(cf. [2], Proposition (10.3). Let X be the Z,-module generated by (hi_,}. Then H*(V,,,) = 

U(X) by [8], chap. IV, $6. The universal bundle t,, is (BO(n - r), pO, BO(n), V,,,, O(n). 

H*(BO(n)) is a polynomial ring on the universal Stiefei-Whitney classes, Wi, i = 1, . . . . n, 

and p: is an epimorphism with Kerpz the ideal generated by Wi, i = n - r + 1, . . . . n. 

Since r(hi_l) = Wi, n - r -C is n, hypotheses (i), (ii), and (iii) are satisfied. 

Since I is a monomorphism, there exist unique classes U,EH’(BO(n - r),, BO(n - r)), 

n - r < is n such that /(U,.) = IVi. Using the Wu formulae, we find that the action of -01? 

on Ui is given by 
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(6.1) 

Given c = (E, p, B, V,,,, O(n)), define ui(c) = h*(Ui)~Hi(ET, E), n - r < is n. 

We now assume that 5 is a fibre bundle with fibre totally non-homologous to zero. This 

is equivalent to the condition that f*( WJ = IV,(<) = 0, n - r < is n or to the condition that 

p*: H*(B) + H*(E) is a monomorphism. In this case the image of X under transgression 

is (01 and (0) is a Bore1 ideal. Thus Theorem (5.2) applies. Here R = H*(B), M(S) = M’(r) 

= the H*(B)-submodule of H*(&, E) generated by {U,(t)}, n - r < is n. Let ai_i~Ni-‘(5) 

c H’-‘(E) be such that 6(n,_i) = Ui(& n - r < i 5 n. It follows from the proof of Theorem 

(5.2) that { 1, ai_i} is an H*(B)-basis for N(t), that {V,(s)} is an H*(B)-basis for M(i), and 

that an H*(B)-basis for H*(E) is given by 1 and monomials c(~, . c[+ n - r 5 i, < . . . < ik < n. 

(6.1) gives the structure of M(t) as an H*(B) 0 zzJz-module. Hence to complete our know- 

ledge of the structure of H*(E) as an H*(B) 0 &,-algebra, we need only study the extension 

in the exact sequence 

P’ J 

(6.2) O-H*(B) - IV(<) - M(5) -0. 

This is an exact sequence of H*(B) 0 &,-modules which splits over H*(B). In a subsequent 

paper, we hope to study such extensions in detail. 

Using the techniques discussed in $4, we now discuss the naturality properties in this 

case. 

Let s’ = (E, p, B, V,,,, O(n)) and 5’ = (E’, p’, B’, V,,,, O(n)) and let f: 5 + (' be a bundle 

map. Assume 5’ (and hence 5) has a totally non-homologous to zero fibre. Clearly f* : 

M(t’)+ M(t) and fg : N(<')+ N(t), and thus we have a commutative diagram: 

P” 

O-H*(B’)- N(y)----+ ’ ’ -0 

/In’ lfr* d’ ‘L’C[;* 

P’ 1 6 

o- ff*(B) - N(5) - &) -0. 

LEMMA (6.1). fz a&j‘* are covariant (.f E)-exfensions. 

Pros6 f* is a covariant (f*,)-extension because M(5’) is a free H*(B’)-module on 

Cr,(t’) and M(5) is a free H*(B)-module onf*(Ui(S’)) = Ui(S).fz is a covariant (fE)-exten- 

sion because we can choose ai_ 1 =f2(a:_1). 

COROLLARY (6.2). f E : H*(E’) + H*(E) is a cocariant (fz)-extension. 

Proof: This follows immediately from Theorem (5.2), Theorem (4.8), and Lemma (6.1). 

COROLLARY (6.3). H*(E) z H*(B)@,.C,.,H*(E’) as an H*(B) Cl &,-algebra. 

A similar discussion could be given in case the group O(n) was replaced by the unitary 

group, u(n), or the symplectic group, Sp(n), with the corresponding Stiefel manifold as 

fibre. There is not as much interest in these cases, however. 

Next, we consider a totally different kind of application of Theorem (5.2). 
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Letf : Y+ X be a continuous mapping of topological spaces such that the kernel of the 

induced homomorphism f * : H*(X, ZJ + H*( Y, 2,) is a Bore1 ideal in H*(X, Zz). Let 

p : E+ X be a principal fibre space over X with fibre a product of Eilenberg-MacLane 

spaces such that kernel p* = kernelf* ; it is well known that it is always possible to exactly 

“kill off” the kernel off * by such a fibre space construction. It then follows automatically 

from Theorem (5.2) that H*(E, Z,) is a free unstable R 0 &,-algebra, U,(N), generated by 

some sub-module N (here R = H*(B)/kernel f*). This result is true independent of the 

choices of Eilenberg-MacLane spaces which compose the fibre. 

$7. A THEOREM ON THE SPECTRAL SEQUENCE OF CERTAIN FIBRE SPACES 

In this section we prove a theorem which shows that under certain hypotheses it is 

possible to determine the successive terms E,, E,, , . . of the spectral sequence of a fibre space 

from the knowledge of the transgression. While this theorem is more or less “known”, 

it has never appeared in print in a form convenient for our purposes. It should be of inde- 

pendent interest. 

Let S be a commutative algebra with unit over Zz. Let x,ES, i = I, ., n. Let 

A (u,, . . . . II”) denote the exterior algebra on pi, . . . . U, over Z,. The Koszul complex (E, d) 

over S is defined to be E= S@ A(u,, . . . . u”) with d : E-+ E defined by d(Ui) = Xi, d/S = 0. 

E is graded by setting edeg S = 0 and edeg ui = 1, where “edeg” denotes “exterior degree”. 

Clearly d2 = 0 and it is easy to check that H,(E) = S/(x,, . . . . x,,) and H,(E) = 0 for 4 > n. 

PROPOSITION (7.1). Ifx,, . . . . x, is an S-sequence, then H,(E) = 0 for q > 0. 

In general, the converse of this proposition is not true. However, we do have the 

following partial converse : 

PROPOSITION (7.2). If S is a graded commutative algebra with all degrees 2 0, degree 

-Ti > 0 for 1 5 i 5 n, and H4 (E) = Ofor q > 0, then (x,, . . . . x,) is an S-sequence. 

COROLLARY. Under the hypotheses of Proposition (7.2), the property of x1, . . . . x, being 

an S-sequence is independent of the order of the xi’s. 

The proof of these two propositions is based on the following construction (cf. Exer- 

cise 3 on p. 218 of [5]). Let 

E(k) = S@ A (Ui, ..., 4, l<kgn. _ 

Then E(k) is a sub-complex of E(k + I), hence we have an exact sequence 

(S,) . . . a. H,(E(k - 1)) 
i. 

j* - H@(k)) - H,(E(k)/E(k - 1)): . . . 

Note that E(k - 1) is not an ideal in E(k), only a sub-S-module. 

Next, note that we have 

E(k) = E(k - 1) @ E(k - 1). 11~ 

(direct sum of S-modules). Hence we have an isomorphism of S-modules, 

E(k - 1)- E(k)lE(k - 1) 
: 
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defined by x+coset of (x.uJ for any x&(k - 1). Moreover, this isomorphism is an iso- 

morphism of complexes, although it shifts degrees by one unit. By making use of this 

isomorphism, the exact sequence (St) is transformed into the following exact sequence of 

S-modules : 

w 

i* 

(S,) . . . -H,(E(k - l))- H,(J%V) - H,_ ,(E(k - 1)): . . . 

and it is readily verified that the homomorphism p : H,(E(k - 1)) + H,(E(k - 1)) is defined 

by /c(a) = a.,~, for any aEH,(E(k - 1)). 

The exact sequence (Sz) suffices to prove Proposition (7.1) by induction on k. 

To prove Proposition (7.2) we now give E = S@ A (u,, . . . . u,) a different graded 

structure as follows, S is assumed to already have a non-trivial graded structure. Give the 

exterior algebra A (u,, . . . . u,) a graded structure by the rule 

degree ui = degree xi - 1, 1SiSR. 

Then give the tensor product E a graded structure according to the usual rule for tensor 

products. This new degree will be called the total degree and denoted by a superscript. 

Note that the differentiation d has total degree + 1. 

These two graded structures on E (defined by the exterior degree and the total degree) 

are compatible with one another in an obvious sense. 

The exact sequences (St) and (S,) are now exact sequences of graded S-modules, 

graded by the total degree. We have 

total degree p = degree xk > 0. 

It follows that if H,(E(k - 1)) # 0, then p : H,(E(k - 1)) -+ H,(E(k - 1)) is not an epimor- 

phism, therefore H&E(k)) # 0. In other words, if H&E(k)) = 0, then H,(E(k - 1)) = 0. 

Applying this argument in the case where H,(E(k)) = 0 for all q >O, we see that the 

exact sequence (S,) reduces to the following: 

O----+H,(E(k - l))- ’ H,(E(k - 1)) - H,@(k)) - 0 

II /I 

S/b 1, ..., xk- I> S/(x 1, . . . . Sk-,) 

Thus we see that p is a monomorphism. We can now use this argument for k = n, n - 1, 

n - 2, . . . in succession to conclude that (x,, . . . . x,) is an S-sequence, as required. 

We now generalize Propositions (7.1) and (7.2). Let A’, A, and S be graded algebras 

over 2,. Let A’ c A and assume that y,, . . . . y, is a simple system of generators for A as an 

algebra over A’. Let x,ES, i= 1, . . . . n, with dim xi > 0. Assume given d : S @ A --, S @ A 

such that d/A’ = 0, d(yi) = xi, and d[S = 0. 

PROPOSITION (7.3). If x1, . .., x, is an S-sequence, then H(S@ A) NN 
S 

(XI, ...1 x,) 
@A’ 

as an algebra ouer Z, and as a module over S. 

Proof Define C$ : SO A + SO A (u,, .., u,,) @A’, a map of S-modules, by C$(S 0 
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U‘yi, ... yi*)=SQUilA ... AUi~Qa’. q5 is an isomorphism and commutes with the 

differentiations, Hence 4* : H(S @ A) -+ H(S@ A (ul, . . , u,) @ A’) is an isomorphism. 
P 

However, H(S@ A (u,, . . . . u,)@A’)z:(S@A(u,, . . ..zl”))@A’~ 
3 

(X 
@A’, the 

‘, . . . . X”) 
latter isomorphism by Proposition (7.1). Let It/r : S@ A’ + S @ A and ti2 : SO A’ -+ SQ A 

(U 1, . . . . u,) @A’ be the obvious maps. Clearly, \c/2 = q5 It/r. Let S@A’ have the trivial 

differentiation. Then ti2* = 4*rl/r* with $r* and $ 2.+ epimorphisms of algebras. Hence 4* 

is an isomorphism of algebras. 

We now prove the main theorem of this section. 

THEOREM (7.4). Let p : E + B be a jibre space with jibre F and let i : F + E. Assume 

(a) in the mod 2 spectral sequence, E,Pvq z HP(B) @J Hq(F), 

(b) H*(F) = U(X) for some tiz-module X, and X is transgressice. 

(c) the ideal in H*(B) generated by the image of X under transgression is a Bore1 ideal. 

Then (a) E,Pqq = E,“*’ @ EFSq2 5 r < co, - 

(p) Im i* = U(X’), where X’ c X is the kernel of the transgression (restricted to X). 

andX’=XnImi*, 

(y) Ker p* is the ideal in (c) above. 

Proof. Let r : X-+H*(B)/Q* denote the transgression restricted to X. Here Q* is 

the subgroup by which H*(B) must be factored so that T is well defined. Let p : X-t H*(B) 

be a Z,-homomorphism such that 

is commutative. Let X’ = Ker r. We now prove the following three conditions by induc- 

tion on r 22: 

(i) EFVq = _E,“*’ @ EF*q, 

(ii) EF** = U X’ + ,=T_,Xq , 
1 

(iii) E:*’ = P(B)/(p(X’ + . . . + xr-‘)). 

The case r = 2 is true by hypothesis. Assume true for r. E,P;Q, = H(Efq) under dr. By (i), 

dr is determined by dJEf,*. By (ii), dr is determined by T 
I( 

X’ + f X4 
) 

. By hypothesis 
q=r- 1 

(c), the ideal in ET,’ generated by r(X’-‘) is a Bore1 ideal. We now apply Proposition (7.3) 
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with A = U(X’ + 5 X4), A’ = U(X’+ 5 X4); S = ET*‘, and(xi} = {r(z,)},where 
q=r-I g=, 

zi is a Z,-basis for Xr-’ mod X’. Hence, EF;*l = E’*o 
(rw- ‘)) 

@ U( X’ +g,F). To complete 

the induction, we note that E:~“/(t(X’-‘)) = H*(B)/(p(X’ + . . . +Xr-I)). Condition (ff) 

is now proved by induction on r. Conditions (B) and (y) follow easily by letting r + 03. 

Q.E.D. 

$8. PROOF OF THEOREM (5.2) 

First of all, we apply Theorem (7.4) to conclude that Egg = Ez” @E”,.g and Im i* 

= U(X’), where X’ =Ker r. Hence H*(E) is a free R-module with basis obtained as fol- 

lows: let {bi} be a Z,-basis for Im i*. Let ~;EH*(E) be such that i*(bi) =bi. Then (6:) 

is an R-basis for H*(E). This follows from the fact that EC4 = ITGo @E2. The rest of the 

proof will be devoted to showing the existence of a set of elements (zi} c H*(E) such that 

(I) (i*(zi)) is a Z,-basis for x’ and 

(II) {6(Zi)} is a set of generators for M(t) as an R-module. Theorem (5.2) follows 

from these two properties as follows: {zi} u { 1) is an R-basis for N(5) by (I) and (1I) and 

hence the non-repeating monomials in {zi} and 1 generate U,(N(t)) as an R-module by 

Theorem (3.12). Also, from (I) it follows that {i*(zi)} is a simple system of generators for 

Im i* = U(X’) over Z,. Thus the non-repeating monomialst in {zi} and 1 give an R-basis 

for H*(E). Thus Cc : U,(N(t)) + H*(E) sends a system of generators over R onto an 

R-basis in a l-l manner, proving that Cc is an isomorphism. 

Choose generators (0:) for Ker p* as an ideal such that vi, vi, . . . is an H*(B)-sequence. 

Let vi~H*(Er, E) be such that /(vi) = vi. Let W be the H*(B)-submodule of H*(ET, E) 

generated by (vi]. We claim that H*(Er, E) =Im 60 W, a direct sum as H*(B)-modules. 

Clearly Im 6 and Wgenerate H*(E,, E), since I(W) = Kerp*. We now show that Im 6 A W = 

{O}. Let a = C bi.vg, E Wn Im 6, where bid*(B) and bit_ 0. We prove a contradiction 
i=l 

by induction on k. If k = 1, then I(a) = b, . t.~q~ = 0 with b, + 0 and vi, + 0, which is a con- 

tradiction as v,: is not a zero divisor. Assume that we have proved that I(a) = 0 implies 

n=Oifk<n. Leta= f: bi.vgi. AssumeI(n)=O= i bi.vq:. Since vq. ’ is not a zero 
i=l i=l 

divisor in 
n- 1 n-1 

H*mI(V;,, -1.. Vi”_, ), b,= C ci-vqi. Hence x (b, + c~v~~)~v~~ = 0. By induction, 
i=l i=l 

n-1 n-l II-1 

C (bi + ~~v;~)-vg, = O=iFlbiwg,, + C civ;,;vq,= 2 bi.vg, = a. 
i=l i=l i= 1 

t Here we are also making use of the following fact which seems to be known, but is not mentioned 
in the literature: If Xis an unstable module over du’,, and {/A} is any Z,-basis for X, then the bt’s are a 
simple system of generators for the free algebra U(X). It is not too difficult to give a direct proof. 
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Since elements of X are transgressive in the universal bundle <,,, 6,(X) c Irnj: in 

Fig. 1 (cf. Lemma (5.1)). Hence we can choose a Z,-homomorphism Q0 of degree 1, 

0,:X-t H*(EoT, E,), such thatj:8, =d,lX. Since p: is an epimorphism, S, = 0 and I, is 

a monomorphism onto Ker p:. By hypothesis (iii), H*(EoT, E,) is generated by e,,(X) as 

an H*(B,)-module. Define 8: X+ H*(ET, E) by 0 = h*O,. Then j*Q = 6,1X and M(x) is 

a representative of T(.Y) for any .YEX. Hence M’(t) is the H*(B)-submodule of H*(E,-, E) 

generated by f?(X). 

Let X = X’@X” as a Z,-module, inhere X’ = Ker T. Let {ni) be a homogeneous 

Z,-basis for X’ and {ci> be a homogeneous Z,-basis for X”, arranged in order of increasing 

degree. Then {le(c,)} generates Kerp* and is an H*(B)-sequence. Hence we can choose 

Ui = B(ci) and {ui} generates W as an H*(B)-module. 

Now lets’ EX’. Then U(Y) = e + II’. where e E Im 6 and IL’ E 8’. We claim thatj*(w) = 0. 

To prove this claim, let e = 6(e’) for some e’ E H*(E). Let )v =Cbi.O(ci). bie H*(B). Then 

e(Y) = 6(e’) + Ui.O(ci). Apply j* and we obtain 6,(x’) = j* O(Y) =j*S(e’) + c~(bJ* 

j*O(ci) = J,i*(e’) + Ce(bi).S,(ci), where E : H*(B) +Z2 is the augmentation. Since 6, is an 

isomorphism, we see that .Y’ - i*(e’) =I: e(bi).ci. Since X’E X’ and ~E(~J.c~E X”, i*(e’) 

E Xn Im i* = X’ by Theorem (7.3). Thus I’ - i*(e’) = 0 =CE(bi).ci. Therefore I = 0 

for all i and j*(rv) = 0 as required. 

For each basis element ai of X’, there exist unique ei EIm 6 and I.v/i E W such that O(ai) = 

ei + )vi andj*(bvi) = 0. Choose zi E H*(E) such that ei = S(z,) for each i. Note that 6,i*(z,) = 

j*A(zJ =j*(e,) = j*(O(a,) - wi) = 6,(ni). Thus i*(zi) = ai and condition (I) is proven. Since 

e(X) generates M’(5) and {U(c,)) generates W, it is clear that W c M’(r). Hence M’(r) = 

M(t) @ W. Therefore 6(zi) = ei generates M(c) as an H*(B)-module, and hence as an 

R-module, proving (II). This completes the proof of Theorem (5.2). 

APPENDIX I 

The semi-direct product of groups and the semi-direct product (or split extension) of 

Lie algebras are well established algebraic notions of long standing. It seems that the semi- 

tensor product of algebras as defined in $2 is the analogous notion in the theory of associa- 

tive algebras, and it deserves to be considered as one of the basic constructions in the subject. 

In support of this thesis we present the following examples, all of which are of a classical 

nature. In all these examples, the grading will be trivial, i.e. every element has degree 0. 

Let K be a field and TI an abstract group. Let K(z) denote the group algebra of rc over 

K. It is easily seen that K(n x n) =: K(z) OK K(n). Define II/ : K(n) *K(n) OK K(n) by 

$(.x) = x @ x for x E TC and extend linearly. Thus K(n) is a Hopf algebra over K; these facts 

are all well known. Now let 71 be the semi-direct product of 7-t’ and T(” with respect to a 

homomorphism CI : n” + Aut (n’). K(n”) is a Hopf algebra and the action of x” on TI’ deter- 

mines an action of K(n”) on K(n’) so that K(n’) is an algebra over the Hopf algebra K(n”) 

in the sense of Steenrod. One can now readily show that K(z) = K(n’) 0 K(L’). 

Let R be a Galois extension of K of degree n with n as the Galois group. Then R is 
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an algebra over the Hopf algebra K(n) and R 0 K(n) turns out to be a “crossed product 

with trivial factor set” ([1] Chap. VIII). In this case R 0 K(rc) is isomorphic to the algebra 

of all n x n matrices over K. 

As another example, let L be a Lie algebra over K and let U(L) denote the universal 

enveloping algebra of L. Then U(L) has a natural augmentation [4; p. 2681 and a natural 

diagonal map [4; p. 2751 and is thus a Hopf algebra. If L is the semi-direct sum or split 

extension of L’ and L” [4; p. 171, the action of L” on L’ determines an action of the Hopf 

algebra U(L”) on U(L’). Again, U(L) z U(L’) 0 U(L”). 

Finally, let R be an associative algebra and L a Lie algebra of derivations on R. Then 

U(L) acts on R and R is an algebra over the Hopf algebra U(L). The algebra RQ U(L) 

was used by Jacobson [4; p. 1751 to construct the standard complex for the cohomology of 

a Lie algebra. 

APPENDIX II 

We give here an outline of the proof of Theorem (3.13). We wish to acknowledge that 

this proof was suggested by N. Jacobson. 

Since p = 2, R is a commutative rin g in the classical sense and we will ignore the 

grading. With respect to the given basis 6,, b,, . . . . b,, we write 

(i) I = i U;jb,, lZiZ:, and i.(b,) = b,. 
/=o 

Note that 

where vi E R. 

Referring to the construction of U,(M) in $3, we see that Y~(M)/Ez R[b,, ..,, b,], a 

polynomial ring over R and that F is the ideal generated by (l(bi) - f$]i = 1, . . . . n}. It is 

clear, by induction, that the set of monomials 

{ble’ . . . @/ai = 0 or l} generates R[b,, . . . . b,]/F = U,(M). Thus we must prove that these 

monomials are independent over R. We first prove it in the special case where R is the 

algebraic closure of Z,(a,,, . . . . SL,,), and the aijeR are algebraically independent over Z,. 

In this case I : M + M is monomorphism. If 1. were not a monomorphism, it would not be a 

monomorphism when we “specialized” the czij. Taking rij = dij we see that I is a mono- 

morphism. Now we apply Theorem (13) of [4; p. 1921 to conclude that A4 has a basis a, = 

6, = 1, a,, . . . . a, such that A(a,) = ai, 0 5 i 5 tr. Hence U,(M) = R[a,, . . . . n,]/F, where F 

is generated by {a; - a,}. The theorem for this case now follows easily by induction on 

n (cf. [4; chapt. II, $71). Thus U,(M) has a basis {be,’ . bfyjci = 0 or I} over R. In terms 

of this basis one can compute explicit formulas for the constants of multiplication for this 

algebra (see [4; chapt. I]) by use of(i) and the fact that bf = i.(bi) in U,(M). These constants 

will be certain polynomials in {aij} over Z2. The fact that U,(M) is commutative and 

associative is equivalent to the fact that these polynomials satisfy certain identities. These 

identities will still be satisfied if we replace the slij’s by arbitrary elements from a commuta- 

tive associative algebra with unit over Z2. 
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Now let R be arbitrary. We construct an associative, commutative algebra W with 

unit over R as follows. As an R-module, W is free on symbols {6”,’ . . . 6f;” Iei = 0 or 1). 

The constants of multiplication for W are the polynomials mentioned above with the 

indeterminants replaced by elements ~ijE R. Then W is a commutative, associative algebra. 

There is an obvious map of algebras p : R[b,, ., b,] -+ W. p is an epimorphism and clearly 

Ker /I =) F. However, each monomial b”,’ . . . b:, .zi = 0 or 1 in R[b,, . . . . b,]/F maps onto a 

basis element in W and hence {b”,’ . . b>jei = 0 or I} are independent in U,(M). 

This proof would generalize to prove an analogous basis theorem for p an odd prime 

in case R had only elements of even degree and IV were a free R-module on a finite basis. 

We conjecture that the theorem is true in the locally finite case with p arbitrary. 
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