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Homology Fibrations and the * Group-Completion”’
Theorem

D. McDuff (York) and G. Segal (Oxford)

A topological monoid M has a classifying-space BM, which is a space with a
base-point. There is a canonical map of H-spaces M —QBM from M to the space
of loops on BM, and it is a homotopy-equivalence if the monoid of connected
components oM is a group. The “group-completion™ theorem ([2-4, 6, 9])
describes the relationship between M and Q2 BM in general. Let us regard n=n,M
as a multiplicative subset of the Pontrjagin ring H, (M), using singular integral
homology. The map M -—>QBM induces a homomorphism of Pontrjagin rings,
and (because no(QBM) is a group) the image of = in H, (QBM) consists of units.

Proposition 1. If w is in the centre of H (M) then
H, M)z '1-5HJ(QBM).

Although several proofs of this theorem have appeared its importance for the
process of “Quillenization™! perhaps justifies our publishing the present one,
which is simple and conceptual. We shall prove, moreover, a stronger statement
than Proposition 1 in the two respects described in Remarks 1 and 2 below,
Qur method was suggested by Quillen’s second unpublished proof, and by
conversations with him for which we are very grateful. The use of homology
fibrations arose from [5]. We have listed some examples and applications of the
theorem at the end.

Remark 1. In Proposition 1 one need not assume that = is in the centre of
H_(M), but only that H (M)[n '] can be constructed by right fractions. Recall
that if 7 is a multiplicative subset of a ring A one says that 4[n '] can be con-
structed by right fractions if every element of it can be written ap ' with aeA,
pen, and if a,p; ' =a, p, ' if and only if a, p; =a, p, and p, p; =p, p; for some
pi.Pyem. A typical example is when 7 consists of the powers of an element xe A
such that ax = xa(a) for all acA, where « is an endomorphism of 4. This arises
as the Pontrjagin ring of the monoid of all maps §"— S" whose degrees are powers
of a prime p, as we shall see below.

' This word is due to 1. M. Gel'fand.
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We shall prove Proposition | by constructing a space M, whose homology
is obviously H (M)[x~'], and a homology equivalence M, —QBM. The basic
example is the case when M = [ | BZ,, where X, is the n'® symmetric group, and
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the monoid structure of M comes from juxtaposition £, x 2, —>Z,, .. Then M
will be Z x B .

Remark 2. To say that a map f: X —Y is a homology equivalence may have at
least two meanings. The weaker one is that f induces an isomorphism of integral
homology. The stronger is that f, : H,(X; f*A4) =, H(Y; A) for every coefficient
system A of abelian groups on Y. The map M, —QBM we shall construct will
be a homology equivalence in the stronger sense. Thus QBM, whose components
have of course abelian fundamental groups, is a *Quillenization” of M,.. The
advantage of allowing twisted coefficient systems is that one can conclude that
MwaéB\M/ is a homology equivalence as well as M, — Q2BM, where QBM is
the universal covering space of QBM, and M, is its pull-back to M_ . This means
that the fundamental group of M, must be perfect, and so our method incor-
porates a general proof that the commutator subgroup of (M) is perfect. If
isolated this would reduce to Wagoner’s argument in [11].

Everything we say below is true if homology equivalence is given either of
the above meanings. Nevertheless it will be convenient to adopt a middle definition,
allowing only abelian coefficient systems A on Y, Le. those such that for each yeY
the group of automorphisms of the coefficient group A4, at y induced by the
action of 7,(Y, y) is abelian. Of course any systemn coming from QBM is abelian.

Our main idea is that of a homology fibration. In [5] a homology fibration was
defined as a map p: E— B such that for each be B the natural map p~'(b) — F(p, b)
from the fibre at b to the homotopical fibre at b is a homology equivalence.
(F(p, b) is defined as the fibre-product B, x zE, where B, is the space of paths in B
beginning at b.) In this language to obtain a homology equivalence M, — QBM
it is enough to produce a homology fibration E— BM with E contractible and
with fibre M_, at the base-point.

If M is a topological group which acts on a space X one often considers the
space X,, fibred over BM with fibre X, associated to the universal bundle
EM — BM. But the construction of X, makes sense even if M is only a topological
monoid, for X,, can be described as the realization of the topological category
whose space of objects is X and whose space of morphisms is M x X, a pair (m, X)
being thought of as a morphism from x to mx. (Here, and in constructing BM also,
we use the “thick ” realization of simplicial spaces, denoted by || || in the appendix
to [9])

Qur main result is

Proposition 2. If M is a topological monoid which acts on a space X, and for
eachme M the map x+»mXx from X toitself is a homology equivalence, then X y,— BM
is a homology fibration with fibre X.

This should be compared with the fact that if x+-xm is a homotopy equivalence
for each m then X ,,— BM is a quasifibration. (When M is discrete this is a partic-
ular case of [7] (Lemma p.98); in general it is a particular case of [9] (1.5).)
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Notice that in the basic example the left action of M= || BZ, on M, =Z x BY
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is essentially the “shift” maps BX —BZ_ induced by embedding Z, in z,
as the permutations of {n, n+1,...}. These are homology equivalences but ot
homotopy equivalences, even though they induce the identity on [K; BX ] for
any compact space K. They would not be homology equivalences if we hag
allowed non-abelian coefficient systems.

To see how the group completion theorem follows from Proposition 2 let ys
begin with the case when oM is the natural numbers N. Choose meM in the
component 1eN, and iet X be the telescope M, formed from the sequence
M—M-—M--..., where each map is right multiplication by m. The homology
of M., is the direct limit of

H*(M]_AH*(M)W)H*(M)_‘)"H

which is precisely H,(M)[n "] because we have assumed the latter can be formeqd
by right fractions. For the same reason the action of M on M, on the left is by
homology equivalences. The space {M,),, is the telescope of a sequence of copies
of My, which is canonically contractible. (It is the standard EM of [8].) So (M,),,
is contractible, and the homotopical fibre of (M.}, — BM is QBM, and Proposi.
tion 2 yields Proposition 1.

The general case of Proposition 1 reduces at once to that where my M s
finitely generated, for both H (M)[n~'] and H,(2BM) are continuous under
direct limits. But if {s;,...,s, generate n then H (M)[n ']=H_(M)[s""],
where s=35,5, ... 5, and the preceding argument applies, defining M, as the
telescope generated by multiplication by any element m in the component s.

We come to the proof of Proposition 2. For technical convenience we shal]
adopt a stronger definition of homology-fibration than that of [5]. It is appropriate
only for base-spaces B which are locally contractible in the sense that each point
has arbitrarily small contractible neighbourhoods. But if M has this property
then BM has; and restricting to such M is immaterial for our purposes, as both
H, (M) and H, (QBM) are unchanged if M is replaced by the realization of its
singular complex.

Definition. A map p: E— B is a homology-fibration if each be B has arbitrarily
small contractible neighbourhoods U such that the inclusion p~ Y- p~YU)
is a homology-equivalence for each b" in U.

To justify this definition we must show that such a map is a homology-fibration
in the earlier sense. This will be done in Proposition 5 below.

The advantage of the new definition is that it makes the following proposition
obvious. (Cf. [5](5.2).)

Proposition 3. If
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is a commutative diagram in which pg, p,, p, are homology-fibrations, and pg '(b}—
pi H{fi(B) is a homology-equivalence for each be By, then the induced map of double-
mapping-cylinders

p: eyHE; - Eq— E,) — cyl(B, <~ By, — B,)
is a homology-fibration.

Proof. Each point of the lower cylinder has arbitrarily small neighbourhoods U
in the form of mapping-cylinders of maps ¥, — ¥, {i=0,1 or 2), and p "YU} is the
mapping-cylinder of pg'(V,) — p; (V).

Exactly as in [9](1.6) one deduces

Propositiond. If p: E— B is a map of simplicial spaces such that E,— B, is a
homology-fibration for each k=0, and for each simplicial operation 0: [k] - {I]
and each be B, the map p~1(b) — p~ 0% b) is a homology-equivalence, then the map
of realizations | E||—| BY} is a homology-fibration.

Proof. This follows from Proposition 3 because the realizations ||E} and || B]|
can be made up skeleton by skeleton, and | Bl,, is the double-mapping-cylinder
of (| B}l g_1y«4* x By— 4" x By), and so on.

Proposition 2 is a particular case of Proposition 4, for X,, and BM are the
realizations of simplicial spaces E and B such that E,= X x B, and B,=M*

To conclude we need the following justifying proposition.

Proposition 8. If B is a paracompact locally contractible space, and p: E— B
is a homology-fibration, then p~*(b)— F(p, b) is a homology-equivalence for each
beB.

Proof. Let P be the space of paths in B beginning at b, and let 12 P— B be the
end-point map, a Hurewicz fibration. Then f*E is F(p, b). Choose a basis # for
the topology of B consisting of contractible sets. Then there is a basis #* for the
topology of P consisting of contractible sets U such that f(U)e# and f: U-— f(U)
is a Hurewicz fibration. #* consists of sets P(¢,, ..., t; Uy, ooo. Ups Vi, oo W),
where O=t,<t, < - <ty =1, and U;sV,cU,>V,c-.-c U,V belong to 4,
a path « belongs to this set if a(t,}e ¥, and a([t;_, t; <= U for i=1, ..., k. Because
f: U—=f(U) is both a homotopy-equivalence and a Hurewicz fibration when
Ue#*, the pull-back f*E|U is homotopy-equivalent to E|f(U). Thus f*E—F
is a homology-fibration in our sense, and Proposition 5 follows from the partic-
ular case:

Proposition 6. If p: E— B is a homology-fibration (with B paracompact and
locally contractible ), and B is contractible, then p~*(b)— E is a homology-eguivalence
for each beB.

Proof. Let # be a basis for B consisting of contractible sets U such that
p~Y(b)—p~1(U) is a homology equivalence for each be U. There is a Leray spectral
sequence for the covering of E by the p~1(U). One obtains it as in [8] by forming
a space E, homotopy-equivalent to E which maps to the nerve | 4| so that above
a point of the open simplex [U,cU; <---cU,] of the nerve one has p 1 (Uy).



Homology Fibrations and the “ Group-Completion” Theorem 283

The spectral sequence comes from the filtration of E4 by the inverse-images of
the skeletons of |8|. It is H(|B]; #,) = H(E), where #, is the local coefficient
system U H (p~{U)) on #. But LZ’{ is homotopy~equ1valmt to B, which is
contractible, so Hy(|8; #,)= H (E), as we want.

Examples. (i) If M is a discrete monoid whose enveloping group is G, and G
can be constructed from M as the set of formal fractions m,m, ! with m, and m,
in M, then Proposition 2 mmplies that BM ~ BG.

(ii) The case M = || BZ,, where %, is the n'® symmetric group. has already
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been mentioned. 1t is closely related to the basic example of algebraic K-theory,
where M =] ] BAut{P), and P runs through the finitely generated projective

P

modules over a fixed discrete ring A, and the composition law in M comes from
the direct sum of modules. Then M,. can be taken to be Ky(4)x BGL _(A4), as
one can form the telescope M —>M—M-—..- by successively adding the free
A-module on one generator. As with X the shifts GL (A)—GL_{4) induce
homology isomorphisms because they are conjugate to the identity on each
GL,(A).

(i) If M =[] G(p"), where G,{p") is the space of maps S* '--S" ! of degree p*

K20

{for some prime p), and the composition is composition of maps, then one has an
example where n is not in the centre of H_(M). Each component of M is the
telescope of

Gn(l} -> Gn(p} e Git(pz) >,

where the maps are composition on the left with a standard map of degree p.
This telescope is the same up to homotopy as one component of the space of
maps from §” ! to the telescope §” !> " '->§" ... whose maps have degree p,
i.e. as one component of Map(S"~1; 5" "{[p 1), where " '[p "']is " ! localized
away from p. Comparing homotopy groups one finds that M, can be identified
with Z x G,(1)[p '} The right-hand action of M on M, is by homotopy equiv-
alences, so the homology fibration of Proposition 2 is actually a quasifibration,
and M, ~QBM. Thus enlarging the monoid of homotopy equivalences of §" !
to the monoid of maps of degree p* has the effect of localizing the classifying
space, a result essentially equivalent to the “mod p Dold theorem” of Adams [1].

In this example because the right-hand action of M on M, is by homotopy
equivalences H,(M)[n~'] can be formed by left {ractions. But it cannot be
formed by rlght fractions. For example G,(p") is homotopically a circle, and
composition on the right with a map of degree p is a homotopy equivalence
GH(p")— G,{p** 1), and the telescope formed from it is not local for the left action.

(iv) A closely related example is M= || BZ, where composition comes

Kz O

from the cartesian product of permutations. Then M, ~Z x BII, where IT=
fim X is the group of periodic permutations of Z whose period is a power of p.
But QBM is Z x Q[p '], where Q is one component of Q5. This {ollows from
the Barratt-Priddy-Quillen homology isomorphism BX,—Q; for BX , has the
homology of Q up to a dimension tending to mfinity with k, and in the telescope
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defining M,, the map BZ—BZX .+ corresponds to multiplying by p in the
H-space structure of Q.

Examples (iii) and (iv) have been studied by Tornehave and Snaith in works
to appear.
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