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Homology Fibrations and the "Group-Completion" 
Theorem 

D. McDuff (York) and G. Segal (Oxford) 

A topological monoid M has a classi~ing-space BM, which is a space with a 
base-point. There is a canonical map of H-spaces M -~f2BM from M to the space 
of loops on BM, and it is a homotopy-equivalence if the monoid of connected 
components rooM is a group. The "group-completion" theorem ([2-4, 6, 9]) 
describes the relationship between M and ~2BM in general. Let us regard rr = ~r0M 
as a multiplicative subset of the Pontrjagin ring H,(M), using singular integral 
homology. The map M---~QBM induces a homomorphism of Pontrjagin rings, 
and (because ~o(f2BM) is a group) the image of~  in H,(f~BM) consists of units. 

Proposition 1. If n is in the centre ~?f H,(M) then 

H,(M)[n l] _~ H,(~BM).  

Although several proofs of this theorem have appeared its importance ['or the 
process of "Quillenization ''1 perhaps justifies our publishing the present one, 
which is simple and conceptual. We shall prove, moreover, a stronger statement 
than Proposition 1 in the two respects described in Remarks 1 and 2 below. 
Our method was suggested by Quillen's second unpublished proof, and by 
conversations with him for which we are very grateful. The use of homology 
fibrations arose from [5]. We have listed some examples and applications of the 
theorem at the end. 

Remark 1. In Proposition 1 one need not assume that n is in the centre of 
H,(M), but only that H , (M) [~  1] can be constructed by right fractions. Recall 
that if ~ is a multiplicative subset of a ring A one says that A [rc 1] can be con- 
structed by right fractions if every element of it can be written ap ~ with a~A, 
p ~ ,  and if alp ~ ~=azp2 1 if and only ifalp'l=azp2 and P~P]=PzP'a for some 
p'~, p~ e re. A typical example is when ~z consists of the powers of an element x~A 
such that ax=x~(a) for all a~A, where ~ is an endomorphism of A. This arises 
as the Pontrjagin ring of the monoid of all maps S"--,S" whose degrees are powers 
of a prime p, as we shall see below. 

This word is due to I. M. Gel'land. 
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We shall prove Proposition 1 by constructing a space M+ whose homology 
is obviously H,(M)[n-I] ,  and a homology equivalence M+-~QBM+ The basic 
example is the case when M = I ]  BZ,, where 27, is the n " symmetric group, and 

n_>_O 
the monoid structure of M comes from juxtaposition Z, x 27,,-+2;,, ,,. Then M+ 
will be 7/• B27~. 

Remark 2. To say that a map f :  X ~  Y is a homology equivalence may have at 
least two meanings. The weaker one is that f induces an isomorphism of integral 
homology. The stronger is that f , "  H , ( X ; f * A )  +Z+ 1t,(Y; A) for every coefficient 
system A of abelian groups on Y. The map M~-+~BM we shall construct will 
be a homology equivalence in the stronger sense. Thus g2BM, whose components 
have of course abelian fundamental groups, is a "Quillenization" of M~. The 
advantage of allowing twisted coefficient systems is that one can conclude that 
i~/+~Q"-B~ is a homology equivalence as well as M+-~QBM, where QBf"M is 
the universal covering space of QBM, and ~f~ is its pull-back to M+. This means 
that the fundamental group of ~/~ must be perfect, and so our method incor- 
porates a general proof that the commutator subgroup of nl(M +) is perfect. If 
isolated this would reduce to Wagoner's argument in [11]. 

Everything we say below is true if homology equivalence is given either of 
the above meanings. Nevertheless it will be convenient to adopt a middle definition, 
allowing only abelian coefficient systems A on Y, i.e. those such that for each y~ Y 
the group of automorphisms of the coefficient group A v at y induced by the 
action of nt(Y, y) is abetian+ Of course any system coming from QBM is abelian. 

Our main idea is that of a homology fibration. In [5] a homology fibration was 
defined as a map p: E ~  B such that for each b e B the natural map p-~(b)-~ F(p, b) 
from the fibre at b to the homotopical fibre at b is a homology equivalence. 
(F(p, b) is defined as the fibre-product Pb x BE, where Pb is the space of paths in B 
beginning at b.) In this language to obtain a homology equivalence M~-+ (~BM 
it is enough to produce a homology fibration E-+BM with E contractible and 
with fibre M+ at the base-point. 

If M is a topological group which acts on a space X one often considers the 
space X~ fibred over BM with fibre X, associated to the universal bundle 
EM-~ BM. But the construction of X~t makes sense even if M is only a topological 
monoid, for X~ can be described as the realization of the topological category 
whose space of objects is X and whose space of morphisms is M x X, a pair (m, x) 
being thought of as a morphism from x to mx. (Here, and in constructing BM also, 
we use the "thick" realization of simplicial spaces, denoted by [1 ]t in the appendix 
to [93.) 

Our main result is 

Proposition 2. I f  M is a topological monoid which acts on a space X, and for 
each m ~ M the map x~-*m x from X to itself is a homology equivalence, then XM--~ BM 
is a homology fibration with fibre X. 

This should be compared with the fact that ifx~-~xm is a homotopy equivalence 
for each m then XM-+ BM is a quasifibration. (When M is discrete this is a partic- 
ular case of [7] (Lemma p. 98); in general it is a particular case of [9] (1.5).) 
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Notice that in the basic example the left action of M = L[ BS, on Moo = 2~ • BZ~ 
n>O 

is essentially the "shift" maps BSoo~BZoo induced by embedding S ,  in r~ 
as the permutations of {n, n +  1 . . . .  }. These are homology equivalences but not 
homotopy equivalences, even though they induce the identity on [K; BZ~] for 
any compact space K. They would not be homology equivalences if we had 
allowed non-abelian coefficient systems, 

To see how the group completion theorem follows from Proposition 2 let us 
begin with the case when n0M is the natural numbers N. Choose m~M in the 
component leIN, and let X be the telescope Moo formed from the sequence 
M-~M-,M--~..., where each map is right multiplication by m. The homology 
of Moo is the direct limit of 

H , ( M )  - ,  H , ( M )  ~ H,(M)-~---, 

which is precisely H,(M)[n-~] because we have assumed the latter can be formed 
by right fractions. For the same reason the action of M on Moo on the left is by 
homology equivalences. The space (M~) M is the telescope of a sequence of copies 
of MM, which is canonically contractible. (It is the standard EM of [8].) So (M~) M 
is contractible, and the homotopical fibre of (Moo)~a --~ BM is f2BM, and Proposi- 
tion 2 yields Proposition 1. 

The general case of Proposition 1 reduces at once to that where no M is 
finitely generated, for both H, (M)[n  -~] and H,(~2BM) are continuous under 
direct limits. But if {sl . . . . .  Sk} generate n then H,(m)[n-1]=H,(m)[s~l], 
where s=s~s 2 ..~ s k, and the preceding argument applies, defining Moo as the 
telescope generated by multiplication by any element m in the component s. 

We come to the proof of Proposition 2, For technical convenience we shall 
adopt a stronger definition ofhomology-fibration than that of [5]. It is appropriate 
only for base-spaces B which are locally contractible in the sense that each point 
has arbitrarily small contractible neighbourhoods. But if M has this property 
then BM has; and restricting to such M is immaterial for our purposes, as both 
H,(M) and H,(OBM) are unchanged if M is replaced by the realization of its 
singular complex. 

Definition. A map p: E- ,B  is a homology-fibration if each b~B has arbitrarily 
small contractible neighbourhoods U such that the inclusion p-~(b')-~,p-t(U) 
is a homology-equivalence for each b' in U. 

To justify this definition we must show that such a map is a homology-fibrati0n 
in the earlier sense. This will be done in Proposition 5 below. 

The advantage of the new definition is that it makes the following proposition 
obvious. (Cf. [5] (5.2).) 

Proposition 3. /f 

E1 ~ - Eo . . . . . . . .  ~ Ez 

Pl i Po i P2 

B1 ~-~?~ ....... Bo - - ? 7 '  B2 
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is a commutative diagram in which Po, Pl, P2 are homology-fibrations, and Po l(b) --~ 
p/-l(f~(b)) is a homology-equivalence for each be Bo, then the induced map of double- 
mapping-cylinders 

p: cyt(El ~- Eo -~ E2) --~ cyl (B, +- B o --* Bz) 

is a homoIogy-fibration. 

Proof. Each point of the lower cylinder has arbitrarily small neighbourhoods U 
in the form of mapping-cylinders of maps V o - .  V i ( i=0,  1 or 2), and p-~(U) is the 
mapping-cylinder of Po 1(Vo) --, Pi-1(Vii) . 

Exactly as in [9] (1.6) one deduces 

Proposition 4. If p: E ~ B is a map of simplicial spaces such that E k - ~  B k is a 
homology-fibration .[br each k=>0, and for each simplicial operation 0: [k] -~  [l] 
and each b ~ Bt the map p-l(b)--~ p-1(0" b) is a homology-equivalence, then the map 
of realizations II EII-~ II Bll is a homology-fibration. 

Proof. This follows from Proposition 3 because the realizations ItEI[ and Lf B][ 
can be made up skeleton by skeleton, and NBIt~R) is the double-mapping-cylinder 
of (11B[[~k_t/~-A k x Bk-~A k x BR), and so on. 

Proposition 2 is a particular case of Proposition 4, for X M and BM are the 
realizations of simpticial spaces E and B such that Ek = X x B k and B k = M k. 

To conclude we need the following justifying proposition. 

Proposition 5. I f  B is a paracompact locally contractible space, and p: E--~ B 
is a homologyzfibration, then p-l(b)-~F(p,  b) is a homology-equivalence for each 
b~B. 

Proof. Let P be the space of paths in B beginning at b, and let f :  P---~ B be the 
end-point map, a Hurewicz fibration. Then f *  E is F(p, b). Choose a basis ~ for 
the topology of B consisting of contractible sets. Then there is a basis ~*  for the 
topology of P consisting of contractible sets U such that f (U)~  ~ and f :  U--~f(U) 
is a Hurewicz fibration. ~*  consists of sets P(tx, . . . ,  tk; U 1 . . . . .  Uk; V 1 . . . . .  l/k), 

where 0 = t  o < t  l < . . . < t k = l ,  and U I ~ V ~ c U  2 ~ V  2 C . . . c U k D V  k belong to ~ ;  
a path ct belongs to this set if ct(fi)e Vii and e([q_~, fi])= U~ for i=  1 . . . . .  k. Because 
f :  U ~ f ( U )  is both a homotopy-equivalence and a Hurewicz fibration when 
UE~*,  the pull-back f * E I U  is homotopy-equivalent to Elf(U). Thus f *  E-~P 
is a homology-fibration in our sense, and Proposition 5 follows from the partic- 
ular case: 

Proposition@ If p: E-~B is a homoIogy-fibration (with B paracompact and 
locally contractible), and B is contractible, then p-l(b)--~E is a homology-equivalence 
for each b ~ B. 

Proof Let N be a basis for B consisting of contractible sets U such that 
p-l(b)__~p-l(U) is a homology equivalence for each b e U. There is a Leray spectral 
sequence for the covering of E by the p-l(U). One obtains it as in [8] by forming 
a space E~ homotopy-equivalent to E which maps to the nerve I~NI so that above 
a point of the open simplex [Uo c U 1 c...cUp] of the nerve one has p-l(Uo). 
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The spectral sequence comes from the filtration of E~ by the inverse-images of 
the skeletons of l:SJ. It is Hp(I~]; ~ )  ~ H.(E), where ~ is the local coefficient 
system U~-~Hq(U~(U)) on ~. But l~l is homotopy-equivalent to B, which is 
contractible, so H0(l~Sl; ~Zr Hq(E), as we want. 

Examples. (i) If M is a discrete monoid whose enveloping group is G, and G 
can be constructed from M as the set of formal fractions m~m 2 ~ with m I and m 2 
in M, then Proposition 2 implies that B M ~  BG. 

(ii) The case M = IJ  BX,,  where L', is the n ~ symmetric group, has already 
n>O 

been mentioned. It is closely related to the basic example of algebraic K-theory, 
where M =  H BAut(P), and P runs through the finitely generated projective 

e 
modules over a fixed discrete ring A, and the composition law in M comes from 
the direct sum of modules. Then M~ can be taken to be Ko(A) • BGL~(A), as 
one can form the telescope M - ~ M - - , M - , , - .  by successively adding the free 
A-module on one generator. As with S,~ the shifts GL~(A)~GL~,(A) induce 
homology isomorphisms because they are conjugate to the identity on each 
GL,,(A). 

(iii) If M = [ l  G,(Pk), where G,(p k) is the space of maps S" 1--,S" ~ of degree pk 
k>0 

(for some prime p), and the composition is composition of maps, then one has an 
example where ~ is not in the centre of H.(M). Each component of M is the 
telescope of 

G.(1) ~-~ G,(p) --~ G,,(p 2) --~.,-, 

where the maps are composition on the left with a standard map of degree p. 
This telescope is the same up to homotopy as one component of the space of 
maps from S" - ~ to the telescope S" - ~-~ S" - ~-+ S" ~ -~--- whose maps have degree p, 
i.e. as one component of Map(S" ~; S" -l[p ~]), where S "~ l[p 1 ]  is S"- 1 localized 
away from p. Comparing homotopy groups one finds that ;vI~ can be identified 
with N x G, ft)[p ~]. The right-hand action of M on M~ is by homotopy equiv- 
alences, so the homology fibration of Proposition 2 is actually a quasifibration, 
and M,~ ~-OBM. Thus enlarging the monoid of homotopy equivalences of S" ~1 
to the monoid of maps of degree pk has the effect of localizing the classifying 
space, a result essentially equivalent to the "'rood p Dold theorem" of Adams [1]. 

In this example because the right-hand action of M on M,~ is by homotopy 
equivalences H. (M)[~  -1] can be formed by left fractions. But it cannot be 
formed by right fractions. For example G2(p k) is homotopically a circle, and 
composition on the right with a map of degree p is a homotopy equivalence 
G2(ff ) _~ G2(pk~ l), and the telescope formed from it is not local for the left action, 

(iv) A closely related example is M =  IJ  BZ'p~, where composition comes 

from the cartesian product of permutations. Then M ~ I ~  x B H, where H =  
tim Z~ is the group of periodic permutations of/~ whose period is a power of p. 
But t2BM is 2~ • Q[p -~], where Q is one component of t2~S ~. This follows from 
the Barratt-Priddy-Quillen homology isomorphism BZ.~-~Q; for BZ~,~ has the 
homology of Q up to a dimension tending to infinity with k, and in the telescope 
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d e f i n i n g  M ~  t h e  m a p  BXe~--~BZek+I c o r r e s p o n d s  to  m u l t i p l y i n g  by  p in t he  

H - s p a c e  s t r u c t u r e  o f  Q. 

E x a m p l e s  (iii) a n d  (iv) h a v e  b e e n  s t u d i e d  by  T o r n e h a v e  a n d  S n a i t h  in  w o r k s  

to  a p p e a r .  
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