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1 Hochschild homology

Good references for Hochschild homology are [Lod13, Chapter 1] and [Wei94,
Chapter 9]. Let k be a commutative ring, A a k-algebra, and M an (A,A)-
bimodule.

Definition 1.1. The cyclic bar construction of A with coefficients in M is the
simplicial k-module Bcyc(A;M) with n-simpliciesM⊗kA⊗kn and face maps
and degeneracies given by the following formulae:

di(m⊗a1⊗ · · · ⊗an) =


ma1⊗a2⊗ · · · ⊗an i = 0,

m⊗a1⊗ · · · ⊗aiai+1⊗ · · · ⊗an 0 < i < n,

anm⊗a1⊗ · · · ⊗an−1 i = n,

si(m⊗a1⊗ · · · ⊗an) = m⊗a1⊗ · · · ⊗ai⊗ 1⊗ai+1⊗ · · · ⊗an
Definition 1.2. The Hochschild homology of Awith coefficients inM are the
homotopy groups of the geometric realization of the cyclic bar construction:

HHkn(A;M) := πn|B
cyc(A;M)|.

These are also the homology groups of the associated (via the Dold-Kan
correspondence) Hochschild chain complex C•(A;M).

0 M M⊗kA M⊗kA⊗kA · · ·b b b

where b =
∑n
i=0(−1)

idi.

Example 1.3. WhenM = A = k, the Hochschild complex is

k k k k k · · ·
0 1 0 1

and therefore

HHn(k) =

{
k (n = 0),

0 (n > 0).
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Example 1.4 ([Lod13, 1.1.6]). The zeroth Hochschild homology of Awith coeffi-
cients inM is the module of coinvariants ofM:

HH0(A;M) =MA :=
M/
〈ma− am | m ∈M,a ∈ A〉

When M = A, HH0(A) = A/[A,A], the quotient of A by its commutator
submodule. If A is abelian, the commutator submodule is zero so HH0(A) = A.

Example 1.5 ([Wei94, 9.1.2]). Let G be a group and let A = k[G] be the group
algebra of G with coefficients in k. Let M be a right G-module, considered as
an (A,A)-bimodule with trivial left action. Then the Hochschild homology of
A with coefficients in M is the group homology of G with coefficients in M:
HH∗(A;M) = H∗(G;M).

Example 1.6 ([Wei94, 9.1.4]). Let n be a positive integer and assume that k is
a field of characteristic coprime to n. Let A = k[x]/〈xn+1〉. Then HHi(A) =
A/xnA for all i ≥ 1.

2 Topological Hochschild homology

The original references for topological Hochschild homology are [B8̈5b, B8̈5c,
B8̈5a], although they are hard to find (email me if you’d like a copy). The section
on the Loday construction follows [AR05, Section 3].

Fix a symmetric monoidal category of spectra (Sp,∧, S). Denote the monoidal
category of commutative ring spectra in Sp by (CommRingSp,∧, S), and the
monoidal category of R-algebra spectra for a ring spectrum R by (AlgSpR,∧R, S).

2.1 The Loday Construction

The Loday construction gives a concise description for topological Hochschild
homology via

THH(R) = R⊗ S1.

where S1 is a simplicial model of the circle with n-many n-simplicies. A good
description of this construction of the spectrum THH(R) can be found in [AR05,
Section 3], and we follow it here.

Let R be a commutative ring spectrum and let U be a finite set. Define

R⊗U :=
∧
u∈U

R;

this is the smash product of one copy of R for each element of U. This is again a
commutative ring spectrum. It is often convenient to specify the copy of R in
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the smash product corresponding to u ∈ U by {u}⊗R, so we will write

R⊗U =
∧
u∈U

R⊗{u}.

If f : U → V is a function of finite sets, define f⊗R : U⊗R → V ⊗R as
follows. For each v ∈ V , define a map

∧
u∈f−1(v)

R
fv−→ R⊗{v}

by iterated multiplication; since R is a commutative ring spectrum, there is no
ambiguity in the order of multiplication. If f−1(v) is empty, this is the unit map
S → R⊗{v}. The function R⊗ f : R⊗U → R⊗V is the smash product over all
v ∈ V of the maps fv.

It follows that the construction U⊗R is functorial in U. We extend it degree
wise to simplicial finite sets K to define a simplicial spectrum

R⊗K : [q] 7→ R⊗Kq

with face and degeneracy maps R⊗di and R⊗ sj.

Definition 2.1. The Loday construction LK(R) of a commutative ring spectrum
Rwith respect to a simplicial finite set K is the geometric realization of R⊗K.

LK(R) := |R⊗K|

Remark 2.2.

(a) The choice of name Loday Construction comes from [HHL+18].

(b) The definition of the Loday construction K⊗R depends only on the geo-
metric realization of the simplicial set K, up to weak equivalence. See for
example [AR05, Lemma 3.8].

(c) For any simplicial spectrum X•, its geometric realization is given by the
coend

|X•| :=

∫ [n]∈∆
(Xn)∧ |∆n|+.

This is in analogy to the geometric realization of a simplicial set K•, which
is given by the coend

|K•| :=

∫ [n]∈∆
Kn ×∆n.

The construction and its properties are detailed in [EKMM07, Chapter X].
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(d) The Loday construction describes how the category of ring spectra with
the smash product is tensored over simplicial finite sets.

Definition 2.3. The topological Hochschild homology of a commutative ring
spectrum R is the spectrum

THH(R) = |LS1(R)| = |R⊗ S1|.

If we restrict to the category of R-algebra spectra and use instead the smash
product over R, then we obtain a relative Loday construction, which we denote
LK(R;A). In this manner, the category of R-algebra spectra is tensored over
simplicial finite sets. To distinguish this from the tensor over simplicial finite
sets as a commutative ring specturm, we write this as A⊗R S1.

Definition 2.4. The topological Hochschild homology of an R-algebra spec-
trum X is the spectrum

THHR(A) = |LS1(A;R)| = |A⊗R S1|.

In this notation, THHS(A) is the topological Hochschild homology of A as
an S-algebra, i.e. a ring spectrum. We will sometimes drop the superscript if the
base ring spectrum is understood.

Remark 2.5. It is also possible to define the topological Hochschild homology
THHR(A;M) of an R-algebra A with coefficients in an A-moduleM, but this is
not necessary for our purposes. See [EKMM07, IX.1.1].

2.2 Connection to Hochschild homology

Why does this deserve to be called topological Hochschild homology? Let k be
a discrete commutative ring and let A be a k-algebra. Assume that A is flat as a
k-algebra. Consider

THHHk(HA) = |HA⊗Hk S1|.

Since S1 has q-many q-simplicies, the simplicial spectrum HA⊗Hk S1 has q-
simplicies:

HA∧Hk HA∧Hk · · ·∧Hk HA︸ ︷︷ ︸
q

The homotopy of this spectrum is

A⊗kA⊗kA⊗k · · · ⊗kA︸ ︷︷ ︸
q

.
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In fact, the degeneracies and face maps of HA⊗Hk S1 become the degenera-
cies and faces of the cyclic bar construction after applying π∗ level-wise. In
particular,

π∗(HA⊗Hk S1) ∼= Bcyc(A).

Therefore,

π∗ THHHk(HA) = π∗|HA⊗Hk S1| ∼= π∗|Bcyc(A)| = HHk∗ (A).

(See also [EKMM07, IX.1.7])
Here is a handy table to clarify the analogy.

unstable stable
space spectrum
Z S

Z-module (abelian group) S-module (spectrum)
Z-algebra (ring) S-algebra (ring spectrum)
k-algebra R-algebra spectrum
tensor product ⊗k smash product ∧R
cyclic bar construction Bcyc(A) Loday construction R⊗ S1
realization of the cyclic bar construction |Bcyc(A)| topological Hochschild spectrum THH(R)

Hochschild homology HHn(A) = πn|Bcyc(A)| πn THH(R)

Indeed, computing topological Hochschild homology often comes down to
computing Hochschild homology.

Theorem 2.6 ([EKMM07, IX.1.11]). Let E and R be commutative ring spectra,
and A a commutative R-algebra. If E∗(A) is flat over E∗(R), then there is a
spectral sequence of E∗(R)-modules

E2i,j
∼= HHE

∗(R)
j (E∗(A))i =⇒ Ei+j(THHR(A))

Proof sketch [MS93, Proposition 3.1] (c.f. [EKMM07, Theorem X.2.9]). Given a sim-
plicial spectrum X•, there is a simplicial filtration on |X•| and a spectral sequence
(called the skeleton spectral sequence)

E1i,j = Ei(Xj) =⇒ Ei+j(|X•|)

When X• is the simplicial spectrum A⊗ S1 whose realization is THH(A), then

E1∗ (Xj) = E∗(A
∧R(j+1)) ∼= (E∗A)

⊗E∗R(j+1),

this last isomorphism by the flatness assumption. The homology of this complex
computes the ordinary Hochschild homology of E∗A, so we have

E2i,j = HHE∗Rj (E∗A)i,
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where j is the homological degree and i is the simplicial degree of the graded
E∗R-algebra E∗A.

Bökstedt uses this spectral sequence in [B8̈5c] when R = S, and E = A =

HFp to find the homology of the spectrum THH(HFp), which is then used to
compute the homotopy type of this spectrum. With these choices of R,E and A,
we have

E2i,j
∼= HH(HFp)∗S

j ((HFp)∗(HFp))i =⇒ (HFp)i+j THHS(HFp).

This can be simplified: notice that

(HFp)∗S = π∗(HFp ∧ S) = π∗(HFp) = Fp in degree 0

Also, notice that (HFp)
∗(HFp) = [HFp,HFp] is the set of all cohomology oper-

ations mod p, or the Steenrod algebra. So (HFp)∗(HFp) is the dual Steenrod
algebra, which we write Ap. So the E2-page of this spectral sequence simplifies
to computing

E2i,j = HHFp
j (Ap)i =⇒ (HFp)i+j THHS(HFp).

Theorem 2.7 ([B8̈5c, Theorem 1.1a]). As rings, THH∗(HFp) ∼= Fp[σ] where σ is
in degree 2.

He also computes the topological Hochschild homology of the integers.

Theorem 2.8 ([B8̈5c, Theorem 1.1b]).

THHn(Z) =


Z (n = 0),

0 (n = 2i, i > 0),
Z/iZ (n = 2i− 1).

3 The trace map

The trace map is a way to extract information about K-theory, which is hard to
compute, via topological Hochschild homology, which is significantly easier to
compute. This frequently loses information, but the trace map factors through
topological cyclic homology, which is much closer to K-theory.

3.1 Hochschild Homology of an Exact Category

Let C be an exact category.
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Definition 3.1 ([McC94, Section 2]). The additive cyclic nerve of C is the sim-
plicial abelian group Ncyc• (C) with N-simplicies

Ncycn (C) =
⊕

(c0,c1,...,cn)

HomC(c1, c0)⊗Z HomC(c2, c1)⊗Z · · · ⊗Z HomC(cn, cn−1)⊗Z HomC(c0, cn)

where the sum runs over all (n+ 1)-tuples (c0, c1, . . . , cn) of objects in C. The
face maps and degeneracies are

di(α0⊗α1⊗ · · · ⊗αn) =
{
α0⊗α1⊗ · · · ⊗αiαi+1⊗ · · · ⊗αn 0 ≤ i < n
αnα0⊗α− 1⊗ · · · ⊗αn i = n

si(α0⊗ · · · ⊗αn) =
{
α0⊗ · · · ⊗αi⊗ idci+1 ⊗αi+1⊗ · · · ⊗αn 0 ≤ i < n
α0⊗ · · · ⊗αn⊗ idc0i = n

Definition 3.2. The Hochschild homology groups of an exact category C are
the homotopy groups of the geometric realization of the additive cyclic nerve.

HHn(C) := πn|N
cyc
• (C)|

This is an appropriate generalization of Hochschild homology, insofar as
it agrees with the Hochschild homology of a ring when C is the category of
finitely generated projective modules over that ring.

Theorem 3.3 ([McC94, Corollary 2.4.4]). When A is a commutative ring,

HHn(A) = HHn(Projfg(A)),

where Projfg(A) is the category of finitely generated projective A-modules.

We may likewise define the topological Hochschild homology of any cate-
gory enriched in spectra. This is done in [BM12, Section 10].

3.2 The trace map

This section follows [McC94] and [KM00].
For an exact category C, we may construct the K-theory space of C via the

Waldhausen S• construction: K(C) = Ω|S•C|. The trace map is defined via a
map from S•C to Ncyc(C) by inverting a weak equivalence as in the diagram
below.

S•C N
cyc
0 S•C N

cyc
• S•C

N
cyc
• (S1C)

N
cyc
• (C)

id

trace

'

id
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This gives a map from the q-simplicies of S•C to the (q− 1)-simplicies of
N
cyc
• (C). Upon taking realizations, this gives a map of spaces

K(C) = Ω|S•C|→ |Ncyc• (C)|

and taking homotopy groups, this gives a homomorphism

Kn(C)→ HHn(C).

When C = Projfg(A) is the category of finitely generated projective A-modules,
then this homomorphism is

Kn(A)→ HHn(A).

A similar construction is made for topological Hochschild homology in
[BM12, Section 10].

3.3 Dennis trace

For any ring R, we construct the K-theory space of R via the plus construc-
tion: K(R) = BGL(R)+. The Hurewicz map gives a homomorphism from the
homotopy of this space to its homology.

Kn(R) = πn(BGL(R)+) h−→ Hn(BGL(R)+;Z)

By properties of the plus-construction, the homology of BGL(R)+ and the ho-
mology of BGL(R) agree. Moreover, for any groupG, the homology of BG is the
same as the homology of G. So we may extend the Hurewicz homomorphism’s
codomain to be the group homology Hn(GL(R);Z).

Kn(R) = πn(BGL(R)+) h−→ Hn(BGL(R)+;Z) ∼= Hn(GL(R);Z) (1)

By [Wei94, Example 9.1.2], there is a homomorphism from the group homology
of G to the Hochschild homology of Z[G], for any ring Z.

Hn(G;Z)→ HHn(Z[G])

In the case G = GLm(R), there is an inclusion Z[GLm(R)] → Mm(R), where
Mm(R) is the ring of m×m matrices with coefficients in R. By Morita invari-
ance of Hochschild homology, this last term is isomorphic to HHn(R), and the
isomorphism is induced by the trace map tr : Mm(R)→ R. The composite yields
a homomorphism:

Hn(GLm(R);Z)→ HHn(Z[GLm(R)])→ HHn(Mm(R))
tr∗−−→
∼=

HHn(R).

Now taking the colimit over allm, these together yield a homomorphism

Hn(GL(R);Z) ∼= colim
m

Hn(GLm(R);Z)→ HHn(R) (2)

The composite of (2) and (1) is referred to as the Dennis Trace Map, after Keith
Dennis.
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3.4 An example

Example 3.4. We can try to find the K-theory of Z using the Dennis trace map.
We have

HHn(Z) =

{
Z (n = 0),

0 (n > 0).

So this can’t give us any information about the K-theory of Z, except K0(Z) = 0,
which we already knew. This shortcoming is resolved by lifting the trace map
to topological Hochschild homology in the next section.

Theorem 3.5 ([B8̈5a, Theorem 1.1]). The trace map π2k−1K(Z)→ π2k−1 THH(Z)

is surjective for all positive integers k.

Example 3.6. In Example 3.4, we tried to use the Dennis trace map to learn
about the K-theory of the integers, but this failed because HHn(Z) = 0 for
n ≥ 0. Let’s try again with the trace map K(Z)→ THH(Z). We have

THHn(Z) =


Z (n = 0),

0 (n = 2j, j > 0),
Z/j (n = 2j− 1).

And moreover, the trace map K2i−1(Z) → THH2i−1(Z) is surjective, so we
learn that K2i−1(Z) is nontrivial for each i. This is a whole lot more than we
learned with the Dennis trace!
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