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 ON THE CHROMATIC TOWER

 By Norihiko MlNAMI

 Dedicated to Professor Yosimurafor his 60th birthday

 Abstract. We fix a prime p and work in the p-local stable homotopy category. Then, Hopkins'
 chromatic splitting conjecture essentially predicts the information of a p-completed finite spectrum,
 obtained using the first (n + 1) Morava AT-theories K(0), K{\),... ,K{n), may be obtained using a
 single higher Morava Af-theory K(m). (m > n+l). However, in spite of its importance, this conjecture
 is very difficult and subtle. Actually, Devinatz noted the conjecture is false, as soon as we omit the
 finiteness assumption to include such a nice infinite spectrum as the /7-completed BP spectrum. In
 this paper, we prove a result which reconciles Hopkins' chromatic splitting conjecture and Devinatz'
 observation about the p-completed BP spectrum. For the /7-completion of "nice" spectra, including
 finite spectra and the ?P-spectrum, our result essentially claims that the information obtained using
 the first (n+l) Morava ^-theories K(0), K(l),..., K(n), may be obtained using any m?k consecutive
 higher Morava tf-theories K(k +1), K(k + 2),..., K(m ? 1), K(m) with m ? k>n + so + l. Here,
 no is the Hopkins-Ravenel (Hovey-Sadofsky) uniform horizontal vanishing line for the ?(n)-based
 standard Adams-Novikov spectral sequence.

 1. Introduction. In this paper, we fix a prime /?, and we work in the p-local
 stable homotopy category.

 In mid 70's, Miller-Ravenel-Wilson [MRW77] introduced the chromatic spec
 tral sequence to compute the ?2-term of the Adams-Novikov spectral sequence
 for the stable homotopy groups of the sphere. Although this was originally alge
 braic, its geometric interpretation and realizations were soon given [JY80, Rav84,
 Rav87] in terms of the localization of spectra with respect to homology, invented
 by Bousfield [Bou79b]. This point of view was central in the success of the chro
 matic technology [Rav84, DHS88, HS98, Rav92]. To review necessary results,
 we recall some standard notations of Bousfield's localization of spectra:

 L?F = Bousfield localization of a spectrum F with respect to

 the homology theory ?*, defined by a spectrum E,

 LnF = Le{H)F

 = LKio)vK(i)v-vK(n)F [Rav84, 2.1.(d)],

 Manuscript received September 18, 2001.
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 450  NORIHIKO MINAMI

 where E(n) is the Johnson-Wilson spectrum [JW73] with E(n)* = Z(P)[v\9...,
 vn-x\[vn, Vn~l] and K(n) is the nth Morava ^-theory spectrum [Mor89] with
 K(n)* = ?p[vn, v~x] for n > 0 and K(0) = Hq9 the rational Eilenberg-MacLane
 spectrum.

 Then the natural maps [JY80, Rav84]

 LnF  Ln-xF

 LK(0)VK(X)V-VK(n-X)VK(n)F -> LK(0)VK(l)V-VK(n-l)F

 induce the map from F to the natural inverse system

 Ln+]F  LnF  + Ln-xF

 which further induces F ?? holimn LnF. This tower, yielding holimn LnF9
 is called the chromatic tower. Here and after, we will not explicitly name
 those maps induced by the natural transformations of Bousfield localiza
 tions like

 X

 LexX  Le2X

 with (Ei) > (E2) [Bou79a]. Now, Hopkins-Ravenel [Rav92] showed the
 following important theorem:

 Hopkins-Ravenel Chromatic Convergence Theorem. When F is finite, the
 natural map F ?> holim? LnF is an equivalence.

 Since the fiber of the /?-adic completion is always Hq = ?(0) = K(0) local, the
 equivalence F ^> holim? LnF also holds for any /^-completion of a finite spectrum
 F. The Hopkins-Ravenel chromatic convergence theorem is the essence of the
 chromatic philosophy.

 Hopkins [Hov95] went further to propose the following conjecture:

 Hopkins' Chromatic Splitting Conjecture. Let F be a p-completed finite
 spectrum. Then the canonical map Ln+\F ?> LnF factors through the canonical
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 ON THE CHROMATIC TOWER  451

 map Ln+iF -> LK(n+i)F.

 Ln+\F- Lk^+^F

 LnF

 Remark 1.1. (i) Hopkins and Hovey [Hov95] constructed the following com
 mutative diagram of cofiber sequences:

 F(L?_iS?,L?F) -> LnF -> LK(n)F

 i i i
 F(Ln-iS?,LnF) -y L?_iF -> Ln-XLK{n)F.

 Thus, Hopkins' Chromatic Splitting Conjecture is equivalent to any one of the
 following:

 F(Ln-\S?,LnF) ? LnF ?> Ln-\F is null-homotopic.
 Ln-\F ?> Ln-\LK(n)F is a split injection. (This is where the name "chro

 matic splitting" comes from.)
 (ii) Together with the Hopkins-Ravenel Chromatic convergence theorem F -^

 holim? LnF, Hopkins' chromatic splitting conjecture claims that the canonical map

 n

 is a split injection [Hov95] and that there is an equivalence

 F ^ holimnLK(n)F,

 where the inverse system is given by the composite

 LK(n+\)F ?> LnF ? Lk{h)F

 with the first map being the one predicted to exist in Hopkins' chromatic splitting
 conjecture.

 (iii) Conceptually, this conjecture claims that the information of ap-completed
 finite spectrum, obtained by using the first (n + 1) Morava ^-theories

 K(0\ K(l)9...9K(n),

 may be obtained by using a single higher Morava ^-theory K(m). (m>n+ 1).
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 452  NORIHIKO MINAMI

 However, in spite of its obvious importance and some advances in analo
 gous problems in the unstable homotopy theory [Bou99, W?199, Mini], Hopkins'
 chromatic splitting conjecture has rejected various attempts, except some compu
 tational evidences for small n by Shimomura and his collaborators (e.g. [SY95]).
 Although there is a realted conjecture in [Hov95] concerning the structure of
 F(Ln-iS?9LnF)9 which was meant to be a part of a program to prove the Hopkins
 Chromatic Splitting Conjecture in our (restricted) sense, Shimomura and Wang
 [SW] recently disproved it for the case n = 29p = 3. To make the situation worse,
 even for the Hopkins Chromatic Splitting Conjecture in our (restricted) sense,
 Devinatz [Dev98] noted the conjecture is false, as soon as we omit the finite
 ness assumption to include such a nice infinite spectrum as the /^-completed BP
 spectrum.

 The purpose of this paper is to prove a general result, valid for a large class
 of spectra, which contains /7-completed finite spectra, focused in the Hopkins'
 chromatic splitting conjecture, and the /^-completed 5P-spectrum, found to yield
 Devinatz' counter-example. Naturally, our result does not claim so much for p
 completed finite spectra as Hopkins' chromatic splitting conjecture, but reconciles
 with Devinatz' counter-example.

 To specify what kind of spectra we can deal with, we prepare a definition.

 Definition 1.2. A spectrum X is called robust with type r, if the following
 conditions are satisfied:

 (1) bounded below;

 (2) for each d9 BPd(X) is a finitely generated Z?-module;
 (3) there exists some r > 0 (r may stand for "type"), such that

 (a) X = lrTNTX (for r > 0, this condition is the same as
 Lr_iZ=*);

 (b) for each k> r, the cofiber sequence

 NkX - MkX - Nk+lX

 induces a short exact sequence

 0 -+ BP*(NkX) -> BP*(MkX) -> BP*(NMX) -> 0.

 Now our main theorem states:

 Main Theorem, (i) Given n9 let sq be the Hopkins-Ravenel uniform horizontal
 vanishing line for the standard E(n)-based Adams-Novikov spectral sequence (see
 e.g. [Rav92]), and m and k be nonnegative integers m9 k with

 m ? k>n + so + l.
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 ON THE CHROMATIC TOWER  453

 Then, for any spectrum F, which is the smash product of a robust spectrum and a
 finite spectrum, the canonical map LmT ? LnT factors through the canonical map
 LmT ? LK(k+l)WK(k+2)\/-VK(m-l)VK(m)T.

 LmT - LK(k+l)VK(k+2)W-\/K(m-l)VK(m)T

 LnT

 (ii) Suppose further that k > n, then the following horizontal maps are split
 injections:

 LnT - LnLK(k+l)\/K(k+2)V-\/K(m-l)\/K(m)T

 Ln(LmT) - Ln(Lf[(k+l)WK(k+2)W-\/K(m-\)VK(m)T).

 Since both the p-completed sphere and the p-completed ?P-spectrum are
 robust [Rav84, 6.1], p-completed finite spectra, focused in the Hopkins' chromatic

 splitting conjecture, and the p-completed J3P-spectrum, found to yield Devinatz'
 counter-example, both satisfy the assumption of our Main Theorem.

 Conceptually, the Main Theorem claims the information of F, obtained by
 using the first (n + 1) Morava ^-theories

 *(0), K(l)9...9K(n),

 may be obtained by using any m ? k consecutive higher Morava ?T-theories

 K(k + 1), K(k + 2),..., K{m - 1), K(m)

 with m ? k> n + so + l (cf. Remark 1.1. (iii)).
 Note that Main Theorem (ii) follows from Main Theorem (i), for we have

 the following diagram

 F(LkSr,LmT) - LmT -> LK(k+l)VK(k+2)V---VK(m-l)VK(m)T

 LnT,

 where the top sequence is a cofiber sequence with F(LkS?,LmT) =
 LkF(Lk&9LmT).
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 454  NORIHIKO MINAMI

 On the other hand, setting T = X A F with X robust and F finite, we find
 Main Theorem (i) follows from the following with Y = F(Lk^9LmT) A DF by
 the S-duality.

 Theorem 1.3. Given n9 let so be the Hopkins-Ravenel uniform horizontal van
 ishing line for the standard E(n)-based Adams-Novikov spectral sequence. Then,

 for any nonnegative integers m9 k with

 m ? k> n + so + l

 and for any robust spectrum X9 any map of the form

 f: LjcY ?? LmX

 always yields the null composite

 LjcY > LmX > LnX.

 Whereas the assumptions on X (and so T) are rather technical, we will discuss
 some related qualitative properties of general bounded below harmonic spectra
 in a sequel [Min3].

 This paper is organized as follows:
 (1) Introduction.
 (2) The modified Adams-Novikov spectral sequence.
 (3) The spectral sequence for [Y9Lm(Xi)].
 (4) Proof of Theorem 1.3.

 Acknowledgments. Some of our results were obtained while the author was
 visiting JAMI at the Johns Hopkins University during the spring of 2000. The
 author would like to express his gratitude to the members of the JAMI and the
 Johns Hopkins University, especially, Martin Bendersky, Mike Boardman, Don
 Davis, Jean-Pierre Meyer, Jack Morava, Takashi Ono, and Steve Wilson, for their
 hospitalities.

 2. The modified Adams-Novikov spectral sequence. In this section, we
 review the modified Adams-Novikov spectral sequence of Devinatz-Hopkins
 [Dev97] and Franke [Franke]. We mostly follow Devinatz-Hopkins [Dev97].

 Definition 2.1. (i) A spectrum / is said to be E-injective9 if the following two
 conditions are satisfied:

 (1) EJ is an injective ^Zs-comodule;
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 ON THE CHROMATIC TOWER  455

 (2) the natural transformation

 [X9I}*^Kom*EmE(E*X9E*l)

 is an isomorphism for any X.
 (ii) Given a spectrum X, its geometric E-injective embedding is a spectra map

 j:X-+I

 such that the target / is E-injective and that the induced map

 ?*(/): ?*(X) - ?*(/)

 is an embedding of E*X in an ^E-injective comodule ?*(/).

 Modified Anss. Let E represent a Landweber exact cohomology theory with E*
 concentrated in even dimensions. Then, for any spectra Y andX9 we may construct
 a spectral sequence abutting to [Y9X] as follows:

 (1) Starting with Fq = X9 construct a sequence of spectra {F/}/>o and spectra
 maps {pf. Fi ?> F/-i}/>i induced from cofiber sequences

 FM ^ F, ^ ir'Ji ^i EFW,

 where F\ ?^ Z_/// is a geometric E-injective embedding. Then, maps

 e := q0: X ? Jq

 d, := tqi o n: J? ^U ZMFl+l -% Jl+l

 induce

 v e j do T d\ T ??2 A ? > JQ -> J\ - J2 - * * ' ,

 which we call a geometric E-injective resolution of X.
 (2) A geometric E-injective resolution induces an algebraic E^E-injective

 resolution ofE*(X):

 E-,00 E*(do) E*{di) ?*(d2)
 0 -+ E*(X)-> E*(J0)-> E*(/i)-> E+(J2)->

 such that the cofiber sequences

 ZsqS
 s - ?s -* ?* fs+X ZSF, ?-U J, -^U Zs+iF,
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 456  NORIHIKO MINAMI

 realize its splices:

 Ker?*(?*)  E+{Js)  lmE*(ds)

 I
 Em&qt) E*(rs)

 E*(LSFS) -> E*(Js) - E*?Ls+lFs+l)

 (3) For another spectrum Y, impose a filtration on

 [Y,X\

 so thatf: Y ?> X has a filtration equal to or larger than s, iff has a liftf: Y ?> Fs
 {which of course satisfies f = (p\ o -ps) of).

 Ps+2  Fs+i  Ps+l

 <is+l

 S S+ Js+l

 <ls

 Ps

 f ..-'"

 Fi  Pi

 q\

 S"1*

 F0=X

 Jo

 Then the resulting spectral sequence enjoys the following properties:
 (a) The spectral sequence is independent of any particular geometric E

 injective resolution of X from the E2-term on, with

 F2' = Extj^E (F* Y, E*X).

 (b) IfE*(Y) is E*-projective, then the spectral sequence may be identified with
 the ordinary Adams-Novikov spectral sequence with the canonical relative injective
 resolution [Rav84].

 (c) The filtration works well with respect to the composition, and the compo
 sition of maps may be studied by the Yoneda pairing at the E2-term:

 Jl+S2A+t2 ,
 Extg;? (F*Z,F*F) ? Ext?J (F*7,E*X) -> Ext^2'1""2 (F*Z,E*X)

 The spectral sequence constructed above is called E-based modified Adams
 Novikov spectral sequence abutting to [Y,X]. In practice, the following proposition
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 ON THE CHROMATIC TOWER  457

 is very useful:

 Proposition 2.2. (i) Any sequence of spectra

 v e j do j d\ j d2 X ? Jo - J\ - J2 -

 inducing an algebraic E*E-injective resolution ofE*(X)

 ?*(?) E*(do) E*{dx) E*(d2)
 0 -+ ?*(X)-> ??(70)- ?*(7i)- ?*(72)->

 is a geometric E-injective resolution ofX.
 (ii) The association of a geometric E-injective resolution as in (i) is natural

 with respect to maps between such sequences of spectra:

 e do di ?2
 X - 70 - Jx - 72 ->

 *' d0 d'l d2
 X' -> J'0 - J[ - J'2 -

 Proof (i) Starting with Fo = X, we shall construct a sequence of spec
 tra {F/}/>o and spectra maps {/?/: F/ ?> F/_i}/>i such that the cofiber se
 quences

 X'F^-> ZSFS-> Js -^ S5+1Fs+i-> Z5+1F,

 realize its splices:

 0 - KerE+(ds) -> E*(JS) - 1mE*(ds) -> 0

 -I ll l
 E*(Lsqs) E*(rs) E*?LSFS) - E*(Js) - E*(Zs+lFs+l) -> 0,

 by induction on /.
 Suppose F/'s have been constructed satisfying these conditions for / < s. We

 will define qs: Fs ? lrsJs and construct Fs+\ as the cofiber of lrlq59 where qs
 is required to factorize as in the following diagram:

 ds-2 ds-\ ds
 h-2 -> Js-\ - Js- Js+l

 ^ v~xqs-x ? ^ ?qss< rs-i^ / '"?-i^Si / r??
 V-XFs-x ZSFS 2i+1F,+1.
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 458 NORIHIKO MINAMI

 Since E*(JS) is ^E-injective, the short exact sequence

 0 - E*??-lFs-i)-> ?*(/,-i)-> E*(LSFS) - 0,
 induces another short exact sequence

 C-5-l)* (T-1^-!)*

 HE(LSFS,JS) - HE(Js-uJs) ? HEQ?-lFs-iJs)

 where we have abbreviated as HE(X9 Y) = Hom^ (E*(X)9E*(Y)).
 Consider the element

 [ds-x] G [Js-xJs] =HE(Js-i,Js) = HomEmE(E*(Js-i),E*(Js)).

 Since

 (*-2)*[*-i] = 0eHamEmE(Em(Js-2), ?>(/,)),

 (4-2)* = (r,_2)*o(r-1^_i)*,

 and since

 (r5_2)*: Hom^i^??-1^-!),?*(/,)) -> Hom^(Z<*(/s_2), ?*(/.))

 is injective, we see

 (2?" Vi)*[*-il = 0 G Hom^^CE'-1^-!),?*(/,)).

 Thus, from the exact sequence, there is a unique element

 [Zsqs]elXsFS9Js]

 such that

 fo-irpFft] = [*_i] G [/,-i,/,].

 Then, r5: /5 ? Xs+1FJ+i is defined as the cofiber of I,sqs: 2SF5 ?> JS9 and it
 is easy to see that this cofiber sequence induces a short exact sequence of E*E~
 comodules, as desired.

 (ii) This may be shown in a straightforward manner, just like (i).
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 ON THE CHROMATIC TOWER  459

 It is also standard and useful to interpret the spectral sequence in terms of
 a tower under X. For this purpose, we define a sequence of spectra {X/}/>o by
 cofiber sequences

 Pl?---?Pl+l 7T; FM->X-UX/,
 and the spectra maps {/?/: X/ ?> X/_i}/>i by the following commutative diagram
 of cofiber sequences:

 Fi+l - F? -> JTlJi - XF/+1 -y ZFZ -y Z"^/,

 Pi?--?Pi+i  PYO ? Opt

 IX  IX

 *i - xi-\ - irl+1j? -  ipt  29/-1 ?Pi ?*ii?i

 SXZ -?2? IX^ - jr^Ji

 2p/f
 I - ?-/+17/ - VFl+l IF,+1 -^?* IF, -?-? y-/+W.-1U y2^, . ?/Vl > y2^, _LIL^ T-/+2

 Proposition 2.3. For a given geometric E-injective resolution ofX

 Xe j do T d\ T d2 ?> Jq - Ji - J2 -> ,

 there is a map from X to a tower of spectra and spectra maps {pi: Xi ?? X/_i}/>i
 such that:

 (i) x0 = /o;
 (2) There are cofiber sequences

 Pi Xi ?> xi-i
 4l-\

 r-o-"/,
 Z-(?-i)j=

 2Xi

 ?mc? //iai

 r/^  r'. v/i  ?<?,
 di = l!qi o r?: Jt -U Z%- JM ;

 (3) For any spectrum Y, the spectral sequence for

 [y,holimX/],
 pi
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 460  NORIHIKO MINAMI

 defined by the tower {pi: Xi ? X/_i}/>i, may be identified with the modified
 Adams-Novikov spectral sequence which computes [Y9X\.

 We now recall the main theorem of [Min2].

 Theorem 2.4. There does exist a uniform horizontal vanishing line for the
 Eoo-term of the E(n)-based modified Adams-Novikov spectral sequence. More
 precisely, there is some height s\ and a function 4>9 independent of Y9X9 such
 that

 Es?(Y9X) = 0 for s>si9

 Ep*(Y9X) = E%(Y9X) for r > <f>(s)

 for the E(ny based modified Adams-Novikov spectral sequence which computes

 [Y9LnX] = [LnY9LnX].

 Actually, we may take s\ = so+n9 where sq is the Hopkins-Ravenel (Hovey-Sadofsky)
 height of the uniform horizontal vanishing line for the ordinary E(n)-based Adams
 Novikov spectral sequence.

 We thank the referee for pointing out that such a uniform horizontal van
 ishing line for the Eoo-term of the is(w)-based modified Adams-Novikov spectral
 sequence was already established in [HSt99, Prop. 6.5]. However, the horizontal
 vanishing line height established in [HSt99, Prop. 6.5] is (n + l)s?>9 which is much
 larger than so + n'm general.

 Now, since the proof of Theorem 2.4 in [Min2] showed the iterated
 composite

 px op2 o .. oPsi+l: FSl+i -> X

 is trivial, we immediately get the following corollary:

 Corollary 2.5. nSl: X ? XSl is a split injection.

 We now make the following definition in the spirit of [JLY81] (see also
 [Yos84], where a uniform approach is given for the main theorems of [JY80] and
 [JLY81]):

 Definition 2.6. (1) Denote by ?(n) the category defined by

 Obj?(n) = ?,(n)*?'(n)-comodules

 Mor?(rt) = E(n)* -module
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 ON THE CHROMATIC TOWER  461

 (2) An ? (?)*-module M is called ?{n)-injective, if, for any i > 0 and C
 ObjS{n),

 ExiiE(n)m(C,M) = 0.

 (3) w.inj ? dini?(?) M is defined so as to be less than d + 1 if, for any j > d
 and C e ObjSin),

 Ex4(?)t(C,M) = 0.

 Using this concept, we see the above horizontal line results may be slightly
 improved for some special type of spectra:

 Theorem 2.7. Let X be a spectrum such that the following conditions are sat
 isfied for some integer r with 0 < r < n (r may stand for "type");

 (1) X = yL~TNTX (for t > 0, this condition is the same as LT_iX = *);

 (2) for each k>r, the cofiber sequence

 NkX - MkX -> NMX

 induces a short exact sequence

 0 - BP*(NkX) - BP*(MkX) - BP*(Nk+lX) - 0.

 F/ien we may slightly lower the uniform horizontal vanishing line for the E(n)
 based modified Adams-Novikov spectral sequence, computing [?,L?X], to so +
 n ? t. Here so is the Hopkins-Ravenel (Hovey-Sadofsky) height of the uniform
 horizontal vanishing line for the ordinary E(n)-based Adams-Novikov spectral
 sequence.

 In particular,

 ^ny^so+n?r)'' ^A > LnXSQ+n?T

 is a split injection.

 Proof We start with the canonical geometric F(n)-injective resolution of X
 [Min2, Corollary 4.2] up to the stage n ? r ? 1:

 m v A j Jl? j A dn~T~2 ? / (1) A ?> 7o - */l - * * ' - Jn-T-\
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 462  NORIHIKO MINAMI

 We now wish to show E{n)*(Ln~TFn-T) is ?(rc)-injective. First, since an E(n)*
 injective module is ?(n)-injective, [Min2, Lemma 4.1] implies E(n)*(J?) (0 < / <
 n ? r ? 1) are all ?(n)-injective. This immediately implies, for any / > 0 and an
 ?,(?)*?'(n)-comodule C,

 Ex?E{n)^C9E{nUir-TFn-T)) = Ex^J^EinU^-T-'F^T-O)

 = = E<(nr_1 iC9E{nUJ}Fx))

 = Bx^nlr(C9E(nUFo))

 = Ex^nlT(C9E(nUX)).

 Thus, it suffices to show

 w.inj - dim?(?) E(n)*(Ln rFw_r) < n - r + 1.

 However, this immediately follows from the following long exact sequence

 0 -+ E(n)*X -+ E(n\MTX -+ E(n)*MT+x

 ->-> E(n)*Mn-xX -+ E(n)*MnX -> 0,

 where E(ri)*(MiX) (r < / < n) are all ?(n)-injective by [JLY81], as was remarked
 in [Min2, Theorem 3.1].

 Now that we know E(n)*(Ln~T Fn-T) is ?(n)-injective, the rest of the proof
 runs exactly as "Completion of the proof of Theorem 1.1"
 in [Min2].

 3. The spectral sequence for [7,Lm(Z/)]. Let X be a type r robust spec
 trum (cf. Definition 1.2) and ? be a Landweber exact cohomology theory with
 ?* concentrated in even dimensions, as in the Modified ANSS in ?2. Then, we
 may construct a tractable geometric ??-injective resolution of X9 as follows:

 (2) X-^Jo^Jx"

 (3) Jk= V EA?AiAMT+k-iX9
 0<i<k
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 on the chromatic tower 463

 which is constructed by applying X_T to the "total complex" of the following:

 tfx = ntx

 EANTX

 (4) F A F A NTX

 MTX

 EAMtX

 -+ EA?AMrX

 EA?A2ANrX -y EA?A2AMTX

 Mr+1X

 F A MT+1X

 F A F A MT+iX

 F A FA? A MT+?X

 Here, the horizontal arrows are the usual chromatic sequence, the vertical arrows
 are the canonical 5F-based relative injective Adams-Novikov resolution of X, and
 (2) does become a geometric SF-injective resolution of X by [Min2, Cor. 4.2]
 and [JLY81]. Note that (2) gives us a tower over X

 ->F2->F1-+F0=X

 and a tower under X

 Xi+\  Xi  Xi

 by Proposition 2.2 and Proposition 2.3.
 Fix an integer m with m > r. We first construct a spectral sequence to

 compute [Y,LmX] for arbitrary Y. We do this simply by applying Lm to the
 geometric 5P-injective resolution and the corresponding towers over and lower
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 X constructed above for the case E = BP:

 LmPs+2
 EmFs+i

 LmPs+l
 -> LmFs

 Lmqs+i

 UnPs

 Lmqs

 Z LmJs

 EmF\
 LmP\

 Lmq\

 Z.~lLmJi

 .- Y

 F/nFo = LmX

 Une

 LmJo.

 Proposition 3.1. Let E^iY, LmX) be the E2-term of the spectral sequence con
 structed above for a type r robust spectrum X. Then there is a natural map from this
 spectral sequence to the E(m)-based modified Adams-Novikov spectral sequence,
 both computing [Y,LmX], which becomes an isomorphism after the E2-term on:

 F2' (Y,LmX) ?? Ext?(w^?(m) (Y,LmX).

 Before its proof, we recall the following useful reformulation of Ohka
 wa's theorem [Ohk93], which generalized [Yos88], due to [Nee97][CS98, Prop 4.6].

 Lemma 3.2. For any spectrum Y, there is a cofiber sequence

 F,

 which enjoys the following properties :
 (1) Qis a wedge sum of finite spectra;
 (2) P is a direct summand of a wedge sum of finite spectra;
 (3) For any homology theory h*, the induced long exact sequence is reduced to

 short exact sequences

 0^KP-+KQ->KY -+0.

 Proof of Proposition 3.1. Recall that Lm is smashing [Rav92] and that

 LmMxX =
 (MiX for / < m;

 [ * for / > m.

 Then, substituting the map

 LmBP -> E(m)
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 for E in (4), we have a canonical map from

 465

 ZTLmX = LmNTX  MrX

 BP A LmNTX  - BPAMTX

 BPABPALmNTX -y BPABPAMrX

 BP A BPA2 A LmNrX - BPABPA2AMTX

 -> MmX

 -+ BPA MmX

 BPABPAMmX

 BP A BPA2 A MmX

 to

 I LmX = LmNTX

 E(m) A LmNTX

 - MTX

 E(m) A MTX

 E(m) A E(m) A LmNrX -> E(m) A E(m) A MTX

 E(m) A MmX

 -? ?(m) A ?(m) A MmX

 This induces the desired map between the spectral sequences.
 To see that this induces an isomorphism of the ^-terms, it suffices to show

 the following map

 Erf?mBP(BP+Y,BP*MiX) - Exts?{m^Eim)(E(m)*Y9E(m)*MiX)

 is an isomorphism for any Y and X by the usual double complex spectral sequence.
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 But this may be done in the following order:
 (1) By Lemma 3.2, we may assume F is a finite spectrum. Then, by the

 Landweber filtration theorem [Lan76], it suffices to show

 Ext*/W (BP*/Ii9BP*MiX) - Exts?{mhE(m) (E(m)*/Ii9E(m)*MiX)

 is an isomorphism for 0 < i < m.
 (2) By the obvious Bockstein long exact sequences, we may assume

 i = 0 in 1.

 (3) Then the map is an isomorphism by the Hovey-Sadofsky change of rings
 theorem [HS99].
 Now the proof is complete.

 Theorem 3.3. Let X be a type r robust spectrum. Then, the cofiber sequence

 X_m_ Nm+\X ? X ?? LmX

 induces a long exact sequence of the E2-terms:

 -> Ext ;~U+T(BP*Y9BP*Nm+?X) - Exts?^BP(BP*Y9BP*X)

 - Ext?U^(m)(?(^)*^?(^)*^) - Ext ;''+r (BP*Y9BP*Nm+lX)

 - e<p\bp (?P* Y9 BP*X) -> Exts^E(m) (E(m)* Y9 E(m)*X) - .

 In particular, the Thorn reduction

 Erf??,mBP(BPmY,BPl,X) - Ext?*m),?(m)(?(m),r,?(m)*X)

 is injective for s <m ? r and bijective for s < m ? r.

 Proof. By the affirmative proof of the smashing conjecture [Rav92], smashing

 (5)  irm-xNm+xs* - S? - Lm5?.
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 with (2) gives us the following:

 X-m-'Nm+lX -

 I
 X ?

 1
 EmX

 J'o

 I
 Jo

 -> J"

 -A

 -+ Ji

 I
 where

 =?A*

 Jl =  \lo<i<k-(m-T) BP A BFS A AfT+*_?X if * > m - r
 * if A: < m ? r

 A = V BPABPA'AMT+k-iX
 0<i<k

 =Ai

 /? =  \/k-(m-r)<i<kBPr\BP A Mr+*_?X if ? > m - T
 =Ai

 V<K/<*5P A 5P A Mr+fc-/X if ifc < m - T

 and the vertical maps are canonical inclusions and projections of direct summands.
 This gives us the following short exact sequence of chain complexes

 HomBp^Bp{BP*Y,BP*J'Q) - UomBP^BP (BP*Y,BP*J[)

 HomBP^BP (BP* Y, BP*Ji) HomBP^BP (BP* Y, BP*J0)

 0 - HomBPittBp(BP*Y,BP*J0f) - HomBPmBP(BP*Y,BP*J[')

 whose resulting long exact sequence is easily seen to be the desired one by
 Proposition 3.1.

 Remark 3.4. (i) Applying the functor [Y, ?] to (4) with E - BP, we get
 a double complex. Then the corresponding double complex spectral sequence
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 looks like

 Exts?F^BP(BP*Y,BP*MuX) =* Ext^-y (BP*Y,BP*X),

 where X is a type r robust spectrum. Note that the special case Y = X = 5?
 with r = 0 is nothing but the original Miller-Ravenel-Wilson chromatic spectral
 sequence [MRW77].

 (ii) Hikida-Shimomura [HiShi94] first stated Theorem 3.3 for the special
 case Y = 5?. Unfortunately, their proof contains a fatal mistake. Actually, in the
 proofs of Lemma 3.15 (p. 653) and Proposition 3.13 (p. 652), they had to use
 a "Hopf algebroid map" (B,Z) -> (J?.Z,-), where (5,Z) = (E(n)*,E(n)*E(n)) and
 (??,?j) = (?XO^?XO* ??P* BP*BP <g)Bp* K(i)*). Of course, this does not make
 sense, unless n = i. However, as our proof indicates, Theorem 3.3 for the special
 case Y = 5? more or less follows from [HS99].

 Lemma 3.5. Let X be a bounded below spectrum such that BP?{X) is a finitely

 generated Z? -module for each d. Then, for any spectrum Y and nonnegative inte
 ger i,

 ExtBP*BP (BP*MiY, BP*X) = 0 (for any s, t.).

 Proof By the smashing conjecture [Rav92], we see BP*MiY -
 (BP A MiSP)*Y. Thus, by Lemma 3.2 with h = BP A Af,5?, we may assume
 y is a finite spectrum.

 Now, let us call a sub Z?P*&P-comodule of BP*M?SP vanishing, if it is simul

 taneously a sub v?~1BP*-module and

 ExtBP*BP (c> BP*X) = 0 (for any s, t,)

 for its arbitrary sub-quotient ??P*?P-comodule C, which is simultaneously a sub

 v?~lBP*-module. Then, if we could show BP^Mi^ itself is vanishing, then we
 can prove the claim by induction on the number of cells in Y.

 Applying the Milnor sequence, we can apply Zorn's lemma to get a maximal
 sub vanishing BP*BP-comodule M inside BP*MiS?.

 It now suffices to show M = BP*Mi&. Suppose not. Then, by the Landweber
 filtration theorem [Lan76], there is a sub 5F*?P-comodule M' of BP*Mi$? with
 a short exact sequence of &P*?P-comodules:

 0 -+ M -> M' -+ vrlBP*/Ii - 0.
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 If we could show

 (6) Ext?/w (vrlBP*/Ii9BP*X) = 0 (for any s91.)9

 then we can easily see that M' is also vanishing, which is a contradiction.
 Thus, it only suffices to prove (6). But this can be easily shown in the

 following order:

 (1) Observe ExtsBP^BP (BP*9BP*X) is a finitely generated Z^-module, because
 BPd{X) is so for each d9 and vanishes when t ? s is sufficiently small, because
 of the bounded below assumption on X.

 (2) By the Bockstein long exact sequence, coming from

 X V' i

 o -+ ?/y//_i ?^ sp* A-i -> bp*/I? -> o,

 observe that the properties in 1 also hold for ExtBPBP (BP*/Ii9BP*X).
 (3) In the Milnor sequence

 0^limlExts-p%(BP*/I?9BP*X) - Ex$*KBP(vrlBP*/Ii9BP*X)

 -+ lim? Exts?*P^BP (BP* /Ii9 BP*X) ^ 09

 observe that both lim? and lim1 vanish by 2.
 Now the proof is complete.

 Corollary 3.6. Let X be a bounded below spectrum such that BP?(X) is a

 finitely generated Z? -module for each d. Then, for any spectrum Y and nonnegative
 integer i9 m9

 ExtE{m)*E(m) (E(m)*MiY9 E(m)*X) = 0 (for any t and s with s < m ? r.).

 Proof This is an immediate consequence of Theorem 3.3 and Lemma 3.5.

 Actually, we should really understand not only X and LmX but also Lm(Xi). To
 compute [Y9 Lm(Xi)]9 we construct its spectral sequence, arising from the truncated
 tower under Lm(Xi):

 LmiXt)

 Lm(Xi) = Lm(Xi) - Lm(Z/_i)
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 Proposition 3.7. Let ES2(Y9Lm(Xi)) be the E2-term of the spectral sequence
 constructed above. IfX is a robust spectrum (of type r), then the natural map

 Ext?[m)i?(m)(?(m)*r,?(m)?X) - E?(Y,Lm(X,)),

 induced by the canonical map from the tower

 Lm(Xi+x)

 LmX

 LmiXi)  Lm(Xi-\)

 to the truncated tower

 LmiXi)

 Lm(Xi)

 Lm&t)  ?mffi-l)

 IS

 bijective if s < /;
 injective if s = /,

 and, for s > /,

 ?f(7,Lm(X/)) = 0.

 Proof This is simply because

 Ext*L .an* (E(m)*Y9E(m)*X) - ?f(7,Lm(X/))

 is the induced homology map of the chain complexes, which is obtained by
 applying the functor [Y9 ?] to the following commutative diagram:

 Jl  Ji+x  "*" ?1+2

 l 1
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 Here
 =?A*

 l" -  V*-(m-T)<?<* BP A BP A Mr+k-iX if k > m - r;

 I Vo<;<*BP A fipA? A ^W-fX if k < m - T,

 as in the proof of Theorem 3.3.

 4. Proof of Theorem 1.3. We start with the following important lemma:

 Lemma 4.1. Let X be a type r robust spectrum. Then, for any map M[Y ?
 Lm(X/), the composite

 MtY-^ Lm(Xt) ^ LmiXt-O,

 is trivial for I < m ? r.

 Proof. This is an immediate consequence of Corollary 3.6 and Proposition 3.7.

 Corollary 4.2. Let X be a type r robust spectrum. Then for any map f: L^Y ?
 LmX, the composite

 LkY LmX ?> Lm(Xm_r_i_fc)

 is trivial.

 Proof. Since the composite

 JTkMkY - LkY ^ LmX - Lw(Xm_r_i)

 is null by Lemma 4.1, we have the following commutative diagram:

 irhMkY - LkY - Lk-XY
 f

 LmX  ^m(X/n?r?!/

 Replacing/ by/' and so on, we iterate the same argument to obtain the following
 commutative diagram:

 LkY

 f

 LmX

 - Ljc-lY ?

 Lm{Xm?T ? \)

 - LoY -

 :/"

 Lm(Xm_T_k)  Lm(Xm_r_i_jc).

 Now the proof is complete.
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 Proof of Theorem 1.3. Since the assumption m ? k > n + so + 1 holds if and
 only if m ? r ? 1? k> so + n ? r, we have the following commutative diagram:

 LkY  f  LmX

 LnX

 Lm\Xm?r?x?k )

 Ln(XSQ+n?T).

 Since the top horizontal composite is null by Corollary 4.2 and the bottom hori
 zontal arrow is a split injection by Theorem 2.7, we see the composite

 LfcY > LmX LnX

 is null, as desired.

 Department of Mathematics, Nagoya Institute of Technology, Gokiso, Showa
 ku, Nagoya 466-8555, Japan
 E-mail: norihiko@math.kyy.nitech.ac.jp
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