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ABSTRACT. We prove that the Morava-K-theory-based Eilenberg-Moore spectral
sequence has good convergence properties whenever the base space is a p-local
finite Postnikov system with vanishing (n + 1)st homotopy group.

1. INTRODUCTION

Let F → E → B be a fibration of topological spaces. There are three classi-
cal spectral sequences allowing one to derive the singular homology of any one
of these three spaces from the singular homology of the other two. If H∗B and
H∗F are known (the latter as a module over π1B), the Serre spectral sequence
H∗(B; H∗(F)) =⇒ H∗(E) is a first quadrant spectral sequence which always con-
verges. Slightly less known is the bar spectral sequence (also known as the Rothen-
berg–Steenrod spectral sequence [RS65]), which allows one to compute H∗(B)
whenever F → E → B is a principal fibration. In this case, H∗(F) is a ring, H∗(E)
is a module over H∗(F), and the natural filtration of the bar construction on F
gives a spectral sequence TorH∗(F;Fp)(H∗(E; Fp), Fp) =⇒ H∗(B; Fp) which again is
a first-quadrant spectral sequence with good convergence properties. This spec-
tral sequence exists and converges with any coefficients (not just field coefficient),
but for the description of the E2-term as a Tor group one needs a Künneth isomor-
phism. In fact, one can replace H∗(−; Fp) by any generalized homology theory
having Künneth isomorphisms and still obtain a strongly convergent right half
plane spectral sequence.

This paper is about the dual of the bar spectral sequence, the Eilenberg-Moore
spectral sequence (EMSS)

CotorK∗(B)
∗∗ (K∗(E), K∗) =⇒ K∗(F).

Historically predating the bar spectral sequence, the EMSS is actually much harder
to understand because it is a second-quadrant (or left half-plane, for nonconnec-
tive theories K) spectral sequence; in general, it does not converge to its target in
any sense. Our main result is:

Theorem 1.1. Let p be an odd prime, K(n) the nth Morava K-theory at the prime p, and
E1 → B ← E2 be a diagram of spaces such that π∗B is a finite (graded) p-group and
πn+1(B) = 0. Let F = holim(E1 → B ← E2). Then the K(n)-based Eilenberg-Moore
spectral sequence,

E2
∗∗ = CotorK(n)∗(B)

∗∗ (K(n)∗(E1), K(n)∗(E2)) =⇒ K(n)∗F
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Ind-converges for any E1, E2. In particular, if E1, E2 are of the homotopy type of finite
CW-complexes, the above spectral sequence converges pro-constantly to K(n)∗F, which
has to be a finite K(n)∗-module.

Before discussing this result, a few words about the history of the problem are
in order. The case of K∗ = H∗(−; Fp) has been studied extensively [EM66, Smi70,
Dwy74, Dwy75], and the convergence issues arising here are the same as for any
connective theory K. Roughly, the question of convergence only depends on π1(B)
and its action on the homology of F.

Now let K be nonconnective and possessing Künneth isomorphisms. Thus K
is one of Morava’s extraordinary K-theories K(n) or an extension of it, which is
the case I am interested in in this work. The question of convergence becomes
much more intricate; in particular, nonconvergence can occur even for simply con-
nected base spaces. As an example, consider the path-loop fibration K(Z/2, 1) →
∗ → K(Z/2, 2) and K = K(1) = KU/2, mod-2 ordinary K-theory. In this case
K(1)∗(K(Z/2, 2)) = K(1)∗, but K(1)∗(K(Z/2, 1)) is nontrivial, so that there is no
chance for the (trivial) EMSS to converge. Theorem 1.1 says that this nonvanishing
of πn+1 is in fact the only obstruction to convergence if the base space has totally
finite homotopy groups which are p-groups. Note that the condition that the ho-
motopy groups are p-groups is not too restrictive because we can always replace
the fibration under consideration by its Z/p-localization, and the EMSS will never
know the difference (although the fiber might change drastically).

Previous work on the K(n)-based EMSS includes work by Tamaki [Tam94],
where he shows convergence when the base space is of the form Ωn−1ΣnX (he
mistakenly claims strong convergence), and work by Jeanneret and Osse [JO99],
where the authors show convergence whenever the base space has certain homo-
logical global finiteness properties, for example, if the base space is the classifying
space of a polynomial p-compact group.

The term “Ind-convergence” in Theorem 1.1 requires explanation. We first re-
call the classical notion of pro-convergence (called strong convergence in [Bou87,
Shi96], but different from Cartan-Eilenberg’s and Boardman’s notion of strong
convergence [CE99, Boa99]). Associated to F = holim(E1 → B ← E2), there is
a tower of K(n)-module spectra T•(E1, E2) = Tot• K(n)[CB(E1, E2)] coming from
the two-sided cobar construction of E1 and E2 over B, and a map K(n)[F] →
T•(E1, E2). The spectral sequence always converges conditionally to π∗(holim T•),
which may be different from K(n)∗(F). We say that the spectral sequence is pro-
constantly convergent if K(n)∗F → π∗T• is a pro-isomorphism from the constant
object K(n)∗F to this natural target. This in particular implies that the spectral se-
quence converges in a very strong sense, namely, only finitely many differentials
live at any bidegree, and in E∞ the filtration is finite in every total degree.

We consider the EMSS not as one spectral sequence, but as a whole directed
system of spectral sequences, one for each pair of finite sub-CW-complexes of E1
and E2. Similarly, the target K(n)∗F can be thought of as the directed system of
K(n)∗F′ where F′ runs through all finite sub-CW-complexes of F. We call the spec-
tral sequence Ind-convergent if the comparison map K(n)∗F → π∗T•(E1, E2) is an
isomorphism in the category of ind-pro-abelian groups. In particular, if E1 and E2
are finite CW-complexes, then T•(E1, E2) is ind-constant, thus K(n)∗F also has to
be ind-constant, which can only happen if K(n)∗(F) is finite. Furthermore, in this
case, since K(n)∗F is pro-constant, T• also has to be isomorphic to a pro-constant
tower, and we get the specialization mentioned in the theorem.

We also mention that Ind-convergence is a good enough notion to allow for a
comparison theorem of spectral sequences:



CONVERGENCE OF THE EILENBERG-MOORE SPECTRAL SEQUENCE 3

Corollary 1.2. Let (E′1 → B′ ← E′2)→ (E1 → B← E2) be a map of diagrams such that
the associated spectral sequences (E∗)′, E∗ converge Ind-constantly to K∗(F′) and K∗(F),
respectively. Then there is an induced ind-map (E∗)′ → E∗, and if for any s, (Es)′ → Es

is an ind-isomorphism, then K∗(F) ∼= K∗(F′).

We get an induced map because every finite sub-CW-complex of E′i maps to
another finite sub-CW-complex of Ei. The result follows from the fact that we get
an ind-isomorphism K∗(F)→ K∗(F′), and the ordinary group K∗(F) is simply the
colimit of the ind-group K∗(F).

The heuristic reason for introducing this slightly unwieldy notion of Ind-con-
vergence is that the natural target of the spectral sequence, holim T•, does not
commute with infinite colimits or even infinite coproducts because it is an inverse
limit. However, the fiber of a colimit of total spaces over a fixed base space is
just the colimit of the total spaces of the individual fibrations, and thus we have
to “train” the spectral sequence to commute with colimits. This is achieved by
passing to the ind-category.

Theorem 1.1 is proved by means of a series of results of possibly independent
interest. We collect the main steps here. Let K = K(n) be the nth Morava K-theory.

Theorem 1.3. For odd p, the K(n)-based Eilenberg-Moore spectral sequence Ind-converges
for the path-loop fibration on K(Z/p, m) whenever m 6= n + 1.

This result is proved in Section 7 by a complete computation of the spectral
sequence, aided by the computations of K(n)∗(K(Z/p, m)) for all m, n in [RW80].
It is likely that the result also holds for p = 2, but extra care is needed due the
non-commutativity of K(n) in this case.

To pass from a contractible total space to more general cases, in Section 5 we
prove:

Theorem 1.4. Let B be a space such that ∗ → B ← ∗ has an Ind-convergent EMSS.
Then so has E1 → B← E2 for any E1, E2.

We call a space B with this property Ind-convergent.
Finally, in Section 6 we show how to pass to more complicated base spaces than

just K(Z/p, m):

Theorem 1.5. Let F → Y → X be a fibration with F and X Ind-convergent. Then so is
Y.

Proof of Theorem 1.1. By Theorem 1.4, it suffices to consider the case E1 = E2 = ∗.
Since B has finite homotopy groups which are p-groups, it has a finite Postnikov
decomposition

B = Bk

��

...

��

B1

��

// K(Z/p, n3)

B0 = K(Z/p, n1) // K(Z/p, n2),

where none of the ni equal n + 1. By induction, Theorem 1.5 and Theorem 1.3, we
conclude that B is Ind-convergent. �
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Section 2 is an exposition of the construction of the Eilenberg-Moore spectral
sequence in the generality we need, and Section 4 deals with the structure of ind-
pro-objects.

2. THE GENERALIZED BOUSFIELD AND EILENBERG-MOORE SPECTRAL
SEQUENCES

Let ∆ denote the category whose objects are the finite ordered sets [n] = {0, . . . , n}
and whose morphisms are the monotonic maps. A cosimplicial object C• in a cat-
egory C is a functor C• : ∆→ C.

A standard way how cosimplicial objects arise is by the two-sided cobar construc-
tion. For this we need the following data:

• A monoidal structure (⊗, ∗) on C;
• a coalgebra B ∈ C with respect to ⊗. This means that there are maps

B→ B⊗ B, B→ ∗
with the usual associativity and unitality conditions;
• Right and left B-comodules E1 and E2. This means there are associative

and unital maps E1 → E1 ⊗ B and E2 → B⊗ E2.
We then define the cobar construction C•B(E1, E2) : ∆→ C by

Cn
B(E1, E2) = E1 ⊗ B⊗n ⊗ E2,

where the cofaces d1, . . . , dn−1 use the diagonal map, d0 uses the right coaction on
E1, dn uses the left coaction on E2, and the cofaces come from the counit B→ ∗.

Now assume the C is complete and cotensored over topological spaces. Then
associated with any cosimplicial space C• there is a tower of spaces, called the
Tot-tower,

{Tots C•}s≥0, Tots C• = hom(∆•≤s, C•),
where ∆• denotes the cosimplicial space whose sth space ∆s = |∆[s]| is the stan-
dard s-simplex, ∆•≤s denotes the s-skeleton of ∆•, and “hom” is the mapping object
of C representing the cosimplicial maps, using the cotensor. This tower is the target
of a canonical map from Tot C• = holims Tots C• = hom(∆•, C•).

Being limits, Tot and Tots commute up to homotopy with any right adjoint func-
tor. For example, for a cosimplicial spectrum C•,

Tots Ω∞C• ' Ω∞ Tots C•,

but for cosimplicial spaces C•, usually

Tots Σ∞C• 6' Σ∞ Tots C•.

More generally, let K be a ring spectrum, and define K[X] to be the K-(bi-)module
spectrum K ∧ Σ∞(X+) on the space X. For any cosimplicial space C•, there is a
natural map of spectra

(2.1) K[Tots C•] Φ−→ Tots(K[C•])

which is rarely a homotopy equivalence.
For both towers there is a spectral sequence abutting to their respective homo-

topy inverse limits; it is, however, only the one on the right hand side whose E1-
and E2-terms have a convenient formulation. For we have a cofibration sequence
of spectra

(2.2) Σ−sNs(K[C•])→ Tots(K[C•])→ Tots−1(K[C•])

where the normalization Ns is the fiber of Cs → Ms−1(K[C•]), the latter being
the cosimplicial matching space [GJ99, Chapters VII.4, VIII.1]. This yields E2

s,t =
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πsKt(C•). This spectral sequence is the K-based Bousfield spectral sequence or homol-
ogy spectral sequence of a cosimplicial space [Bou87].

The spectral sequence belonging to the tower in the source of Φ, however, has
a more accessible target, namely π∗ holims K[Tots C•]. There is a map of towers

(2.3) {K[Tot C•]} P−→ {K[Tots C•]}s,

where the left tower is constant, and thus we get a comparison map from K∗ Tot C•

to the target of either spectral sequence. The question of whether this map is an
equivalence in some sense is at the heart of the convergence question, which will
be discussed in the next section.

2.1. The Eilenberg-Moore spectral sequence for parametrized spectra. We will
need to set up the Eilenberg-Moore spectral sequence in more generality than
usual. Let us first briefly recall the classical construction.

Let
F //

��

E1

p1

��

E2
p2
// B

be a homotopy pullback diagram of spaces. Since any topological space is a coal-
gebra with respect to the product by virtue of the diagonal map the and unique
map to a point, and similarly since any topological space over B is a comodule,
there is a cobar construction C• = C•B(E1, E2) : ∆ → Top. The Bousfield spectral
sequence associated to C• is called the Eilenberg-Moore spectral sequence.

It is crucial for the Eilenberg-Moore spectral sequence that the base space is
indeed a space and not, say, a spectrum. That is, we cannot expect a functorial
spectral sequence that takes as input a diagram of spectra E1 → B ← E2 and
which computes something that in the case of suspension spectra of spaces is the
suspension spectrum of the homotopy pullback. The abstract reason for this is
that homotopy pullbacks of spaces do not commute with suspension. And in fact
we cannot even set up a spectral sequence because a diagonal on B is needed
for the cobar construction. However, for E1 and E2 we only need a coaction of B,
never the diagonal. In this section, I will set up a convenient category of K-module
spectra over a space B and show that the Eilenberg-Moore spectral sequence can
be generalized for pairs of such K-module spectra over B.

Let B be a pointed space. The objects of the category (Top /B)∗ of sectioned

spaces over B are of the form (X
pX−→ B, sX), where sX : B → X is a section of

pX . The maps are given by maps f : X → Y over and under B. In the category
(Top /B)∗ one can define fiberwise homotopical constructions such as cofibers,
fibers, suspensions, smash products etc, which we will denote by adding a sub-
script B to the usual symbol, e.g. ∧B. The category (Top /B)∗ is also complete and
cocomplete. For details about these construction, consult e.g. [Smi70, MS06].

The category SpB will be the category of spectra over the space B. Since we
will later need a model structure on this category, and since it is convenient, al-
though probably not strictly necessary, to assume that the smash product is as-
sociative, we will take this to mean orthogonal spectra over B in the sense of
[MS06], where these categories along with their model structures are studied in
great depth. An object in this category is determined by a collection of spaces
X(V)

x−→ B in (Top /B)∗, where V runs through the set of inner product spaces
that embed into some universe, together with maps ΣW

B X(V) → X(V ⊕W). If
X ∈ (Top /B)∗ is a sectioned space, the fiberwise suspension spectrum Σ∞

B X is
an object in SpB. As for spaces, all homotopical constructions such as (co-)fibers,
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smash products, (co-)limits work in this fiberwise setting. Note that a spectrum
over B is not a spectrum in the usual sense; it is defined using the suspension over
B.

If X is a pointed space (not over B), we denote by XB the object (X× B→ B, s),
where s(b) = (∗, b). Similarly, if E is any spectrum, we denote by EB the spectrum
over B whose Vth space is (E(V))B. This is indeed a spectrum over B by means of
the structure maps

ΣW
B (E(V))B = (ΣW E(V))B → (E(V ⊕W))B.

In fact, the functor X → XB is right adjoint to the forgetful functor U : Top /B →
Top (forgetting the map to B). and E → EB is right adjoint to the U : SpB → Sp
sending (E→ B, s) to {En/s(B)}, which is an ordinary spectrum.

In particular, for an ordinary (strict) ring spectrum K, we have the notion of a
fiberwise K-module spectrum, i.e. a spectrum X ∈ SpB with an associative and
unital action KB ∧B X → X. We denote the category of K-bimodule spectra over B
by ModK /B. There is a fiberwise smash product ∧K,B : ModK /B×ModK /B →
ModK /B.

Now let K be a ring spectrum. For a space B, K[B] becomes a coalgebra in
(ModK,∧K, K). Furthermore, if E ∈ ModK /B, we can use the adjunction counit
E→ (U(E))B to produce a map

U(E)→ U(U(E)B) = U(E) ∧K K[B],

i. e. a right K[B]-comodule structure on U(E), and similarly on the left. Thus we
can define a cobar construction CK[B](E1, E2) = CK[B](U(E1), U(E2)) : ∆→ ModK.

If E1 → B← E2 is a diagram of spaces, we have that

Cn(K[E1] ∨ B, K[E2] ∨ B) ∼= K[E1] ∧K K[Bn] ∼= K[E2] = K[Cn
B(E1, E2)],

thus we recover our original cobar construction for spaces.
The description of the E1-term of the spectral sequence associated to this cosim-

plicial K-module spectrum becomes significantly simpler than in the generic Bous-
field spectral sequence since one can avoid the computation of the normalization
of the cosimplicial spectrum K[C•] as in (2.2).

Lemma 2.4. The cosimplicial spectrum CK[B](E1, E2) is codegeneracy-free, i.e. it is
the right Kan extension of a diagram Z : Λ → ModK, where Λ is the subcategory of
∆ with only injective monotonic maps as morphisms. This diagram is defined by Zn =
U(E1) ∧K K[B∧n] ∧U(E2).

Proof. The coface maps in Z• are defined by

d0(e1, b1, . . . , bn, e2) = (e1, p1(e1), b1, . . . , bn, e2),

dn+1(e1, b1, . . . , bn, e2) = (e1, b1, . . . , bn, p2(e2), e2)

and

di(e1, b1, . . . , bn, e2) = (e1, b1, . . . , bi, bi, . . . , bn, e2) for 1 ≤ i ≤ n.

Let I : Λ→ ∆ denote the inclusion functor. Then the right Kan extension over I of
any Λ-diagram of spectra Z• can explicitly be described as

RKan
I

Z•n =
∨

[n]�[k]

Zk

where the wedge runs over all surjections [n]→ [k] (of which there are (n
k)).
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For every such φ : [n] → [k], there is a map φ∗ : B∧k → (B+)∧k = Bn
+ given on

the ith coordinate (i = 1, . . . , n) by

φ∗i (b1, . . . , bk) =

{
∗; φ(i) = φ(i− 1)
bφ(i−1); otherwise

Now

K[Cn] = K[E1 × Bn × E2] = K ∧
(
(E1)+ ∧ (B+)

∧n ∧ (E2)+
)

(φ∗)←−−
∨

φ : [n]�[k]

K ∧
(
(E1)+ ∧ B∧k ∧ (E2)+

)
is an isomorphism compatible with the cosimplicial structure maps. �

Thus
E1

r,s = πr−s(U(E1) ∧K K[B∧n] ∧K U(E2)).

The E2-term also has a convenient description, at least if K∗ is a graded field. It is
given by

E2
r,s = CotorK∗B

r,s (π∗E1, π∗E2).

3. CONVERGENCE FOR BOUSFIELD-TYPE SPECTRAL SEQUENCES

Bousfield [Bou87] studied when the maps P and Φ of (2.3) and (2.1) are pro-
isomorphisms in the case of K = HFp, which would imply that the associated
spectral sequences all converge to K∗(Tot C•). Various criteria were given for con-
vergence [Bou87, Theorems 3.2, 3.4, 3.6], which generalize to the case of connective
homology theories K. However, convergence for periodic theories remained an in-
tricate problem.

3.1. Forms of convergence. Let us examine the notion of convergence in the Bous-
field spectral sequence more closely. We define a decreasing filtration F•K∗(Tot C•)
by

FsK∗(Tot C•) = ker
(

K∗(Tot C•) Φ∗◦P∗−−−→ π∗ Tots(K[C•])
)

.

Recall from [CE99, Boa99] that the spectral sequence is called strongly convergent
to K∗(Tot C•) if two conditions are satisfied:

(1) The natural map Fs/Fs+1K∗(Tot C•)→ Es,∗
∞ is an isomorphism and

(2) the filtration F•K∗(Tot C•) is complete Hausdorff, i. e.

lim Fs = lim1Fs = 0.

It is called completely convergent if it is strongly convergent and additionally,

lim
s

1π∗ Tots(K[C•]) = 0.

Remark 3.1. Assuming strong convergence, complete convergence is equivalent
to K[Tot C•] ' Tot K[C•]: In fact, strong convergence means that

K∗(Tot C•) ∼= lim
s

π∗ Tots(K[C•]);

the Milnor exact sequence

0→ lim
s

1πt+1 Tots K[C•]→ πt Tot(K[C•])→ lim
s

πt Tots(K[C•]→ 0

thus shows that the lim1-term vanishes if and only if K[−] commutes with Tot for
C•.
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The litmus test for the usability of any notion of convergence is whether it im-
plies the spectral sequence comparison theorem. For strong convergence, this was
proved in [Boa99, Theorem 5.3]:

Theorem 3.2 (Boardman). Let f : C• → D• be a map of cosimplicial spaces such
that the Bousfield spectral sequences for C• and D• converge strongly. If f induces
an isomorphism on any Es-term (1 ≤ s ≤ ∞) then f also induces an isomorphism
K∗(Tot C•)→ K∗(Tot D•).

There is a different and stronger version of the term strong convergence in the
context of the Bousfield or Eilenberg-Moore spectral sequence. In [Bou87, Shi96],
the Bousfield spectral sequence associated to a homology theory K and a cosim-
plicial space C• is called strongly convergent if the tower map

{Kt(Tot C•)}s
Φ∗◦P∗−−−→ {πt Tots(K[C•])}s

is a pro-isomorphism for each t, where the tower on the left hand side is constant.
Explicitly, this means that for every t ∈ Z and s ≥ 0, there is an N(s, t) ∈ N and a
map in the following diagram, making both triangles commute:

Kt(Tot C•)
Φ∗◦P∗ // πt Tots+N(s,t) K[C•]

vv ��

Kt(Tot C•)
Φ∗◦P∗ // πt Tots K[C•]

We will call this kind of convergence pro-constant convergence. If the function
N(s, t) can be chosen to be constant (say ≡ N), we call the tower map an N-
isomorphism and the spectral sequence N-convergent. In our applications, K is
a periodic homology theory, which means that if the spectral sequence is pro-
constantly convergent, we can choose N(s, t) to be independent of t; viz, take

N(s) = max{N(s, t) | 0 ≤ t < period of K}.
Recall the following well-known lemma, which is a generalization of [Bou87,

Lemma 3.5]:

Lemma 3.3. The Bousfield spectral sequence E∗∗∗ associated to a tower of spectra C• is
pro-constantly convergent if and only if

(1) For each s, t, there is an N = N(s, t) > 0 such that EN
s,t = E∞

s,t in the spectral
sequence and

(2) For each k there is an N(k) such that E∞
s,s+k = 0 for s ≤ N(k).

Moreover, the spectral sequence is N-convergent if and only if N(s, t) and N(k) above can
be chosen to be constant with value N.

Lemma 3.4. Pro-constant convergence implies complete convergence.

Proof. Let Y → X• be a tower of spectra under Y such that the associated spectral
sequence is pro-constantly convergent. By Lemma 3.3, this implies that for each
s, t, there is an n such that Es,t

n = Es,t
∞ . Thus the derived E∞ term RE∞ = lim1

r Zr is
zero, and by [Boa99], the spectral sequence is completely convergent. �

Remark 3.5. The Bousfield spectral sequence associated to a tower of spectra C•

is pro-constantly (resp. N-) convergent if and only if
(1) Φ : K[Tot C•]→ Tot K[C•] is a homotopy equivalence; and
(2) The tower πt Tot K[C•] is pro- (resp. N-) constant for each t.

The reason for this, as in Remark 3.1, is that for pro-constant towers, the derived
functor of the inverse limit is trivial.
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While complete convergence is a perfectly fine property to ensure that the spec-
tral sequence determines its target uniquely up to filtration, it has the technical
disadvantage that the levelwise cofiber of two completely convergent towers need
not be completely convergent, making it all but unusable for inductive arguments.
On the other hand, the tower Five Lemma [BK72] implies that pro-constant con-
vergence is preserved under taking levelwise cofibers. In general, there is no Five
Lemma for N-isomorphisms.

In the case of the Eilenberg-Moore spectral sequence, the convergence question
becomes a little bit simpler, but is still hard to tackle. In fact, one readily sees that
Tot0 C• = E1 × E2, whereas Toti C• ' F for all i ≥ 1. Thus the map P of (2.3)
is always an isomorphism in positive degrees. In Bousfield’s terms, in this case
“pro-convergence” implies pro-constant convergence.

4. PRO-OBJECTS AND IND-PRO-OBJECTS

In this section, we will study ind-pro-objects in K-module spectra and their
homotopical properties. We start with a motivating example illustrating our need
to introduce ind-structures.

Consider an infinite set of fibrations Ei → B with the same base space and
inclusions Ei → Ei+1, and let E =

⋃
i Ei. Then obviously, the fiber of E → B is

the union of the various fibers Fi of Ei → B. Thus, taking fibers commutes with
filtered colimits. However, if we study the construction of the Eilenberg-Moore
spectral sequence, we find that while

K(n)(X) = Totn K[CB(X)]

still commutes with filtered colimits (Totn is a finite limit),

K(X) = holim
n
K(n)(X) = Tot K[CB(X)]

might not because the inverse limit has no reason to commute with colimits. Thus,
in a way, K(X) is not “the correct target” of the spectral sequence. To offset this
deficit, we could think of X as the directed system of all compact subobjects of X,
i.e., all finite sub-CW-complexes of X if we assume X to be a CW-complex. Ap-
plying K to this system, we obtain a functor that now commutes with all filtered
colimits and thus represents a better target for the spectral sequence, which is now
really a filtered diagram of spectral sequences. Thus, instead of looking at towers
as objects in the pro-category Pro−ModK, we are now looking at ind-objects in
this pro-category, that is, objects in T = Ind−Pro−ModK.

Let C be any category. The category Pro−C has as objects pairs (I , X : I → C)
where I is a cofiltered small category and X is a functor. The morphisms are given
by

HomPro−C((I , X), (J , Y)) = lim
J

colim
I

HomC(X, Y).

It is useful to think of this as saying that giving a morphism is giving for every
j ∈ J a map X(i) → Y(j) for some i ∈ I , although this ignores the fact that
these have to be compatible in some way. Consult [AM69] for more details on
pro-categories.

Dually, the category Ind−C has as objects pairs (I , X) as above but with I a
filtered category; the morphisms are given by

HomInd−C((I , X), (J , Y)) = lim
I

colim
J

HomC(X, Y).

Recall [AM69, Appendix] that any map X → Y in Ind−C or Pro−C can be
represented by a level map, that is, there is a filtered category I (or, without loss
of generality, a directed set I), functors X′, Y′ : I → C, a natural transformation
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X′ → Y′ and isomorphisms X ∼= X′, Y ∼= Y′ in Ind−C (resp. Pro−C) such that
X → Y is the composite X ∼= X′ → Y′ ∼= Y. Similarly, any finite, loopless diagram
D → Ind−C or D → Pro−C is isomorphic to a diagram of levelwise maps.

However, an object X ∈ Ind−Pro−C is not necessarily isomorphic to a doubly
indexed system Xt

s, where t runs through an inverse set T and s runs through a
directed set S. Any such X is isomorphic to a diagram S → Pro−C, for a directed
set S. In particular, S is a loopless category, but since S is not finite, we cannot
replace this diagram by a levelwise diagram. Instead, X can always be represented
by a functor QS,α → C, where S is a directed set, α : Sop → {inverse sets} is a
functor, and QS,α is a poset with objects pairs (s, t) (s ∈ S, t ∈ α(s)) and (s, t) ≤
(s′, t′) if s ≤ s′ and t ≤ α(s < s′)(t′) ∈ α(s).

Remark 4.1. For later reference, we note that pro-pro-objects can be described in
a similar way, giving an inverse set S, a functor α : Sop → {inverse sets}, and a
functor X : QS,α → C. In this case, unlike for ind-pro-objects, the poset QS,α is
again an inverse set, and thus X can also be interpreted as an object in Pro−C. We
denote this tautological “reinterpretation functor” by D : Pro−Pro−C → Pro−C.
(The letter is supposed to remind one of the diagonal of a double tower.) Note that
D is not an equivalence of categories.

We call a natural transformation of functors X → Y : QS,α → C in Ind−Pro−C
a levelwise map. The fact that any ind- oder pro-map is isomorphic to a levelwise
map now easily generalizes to

Lemma 4.2. Every map in Ind−Pro−C is isomorphic to a levelwise map. �

In our applications, the category C will be either Top /B, the category of topo-
logical spaces over a base space B, or ModK /B, the homotopy K-module spectra
over B. Recall from Section 2.1 that there are forgetful functors U : Top /B → Top
(forgetting the map to B) and U : ModK /B → ModK (sending (X → B, s) to
X/s(B)). If K is a homology theory or π∗, we write K∗(X) for K∗(U(X)).

The category Top /B carries a model structure, where a map f is a weak equiva-
lence, fibration, or cofibration if the underlying map U( f ) in Top is a weak equiv-
alence, Serre fibration, or Serre cofibration. However, as is pointed out in great
detail in [MS06, Ch. 6], this model structure has bad properties: for example, the
fibrant replacement functor does not in general commute with cofibers, even up
to weak equivalence. However, there is a model structure, which May and Sig-
urdsson call the qf-structure, which has the same weak equivalences, but different
cofibrations and fibrations [MS06, Thm 6.2.5]. This allows us to equip the category
of spectra over B with a good model structure as well [MS06, Thm 12.3.10] whose
fibrant objects are the Ω-spectra over B. Similarly, the category of K-module spec-
tra over B carries a model structure [MS06, Thm 14.1.7]. In these two structures,
a map f : X → Y in SpB or in ModK /B, is a weak equivalences if it induces an
isomorphism on π∗, where we define

π∗(X) = π∗(hofib(X → B)) with hofib(X → B) = fiber(X f → B),

where X f → B is a fibrant replacement (in the May-Sigurdsson model structure)
of X → B.

The reader should be warned that constructing these model structures is a sub-
stantial amount of work. However, for our purposes, it is enough to know that
there exists a model structure with the right weak equivalences. We can use this
model structure as a black box.

Definition. A map X → Y in Ind−C or in Ind−Pro−C is an essentially levelwise
weak equivalence if it is isomorphic to a levelwise map which is a weak equivalence
on every level.
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It was proven in [Isa04] that a composite of essentially levelwise weak equiv-
alences is again an essentially levelwise weak equivalence (in fact, that the ind-
objects in any proper model category carry a model structure where the weak
equivalences are the essentially levelwise weak equivalences).

Lemma 4.3. Let

(4.4)

X
f
//

p
��

Y

p
��

X′
f ′
// Y′,

be a commutative diagram in ModK /B such that the induced map of homotopy cofibers
C f → C f ′ induces the trivial map on homotopy groups.

(1) For Ỹ′ = X′ ∪X Y ∈ ModK /B, there is a commutative diagram

X
f
//

��

Y

��

}}

Ỹ′
  

X′
f ′
//

>>

Y′,

where X′ → Ỹ′ induces an injective map in homotopy.
(2) There is an object X̃ ∈ ModK /B which extends the diagram:

X
f
//

��

  

Y

��

X̃

==

~~

X′
f ′
// Y′.

The map π∗(X̃) → π∗(Y) is always surjective, and it is bijective if π∗( f ) is
injective.

(3) If we have a map of diagrams D1 → D of the form (4.4), given by X1 → X,
Y1 → Y, etc., and X̃ as in (2), there is a completion X̃1 of D1 as in (2) and a map
X̃1 → X̃ making everything commute:

X
f
//

��

Y

p

��

X̃

>>

��

X′
f ′
// Y′

X1
f1
//

��

��

Y1

p1

��

��

X̃1

  

??

��

X′1
f ′1 //

""

Y′1
!!
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(4) If we have a map of diagrams D1 → D as in (4) and X̃ as in (1), there is a
completion X̃1 of D1 as in (1) and a map X̃1 → X̃ making everything commute:

X
f
//

p

��

Y

��

Ỹ′

��

X′
f ′
//

>>

Y′

X1
f1
//

��

p

��

Y1

��

��

Ỹ′1

��

  

X′1
f ′1 //

""

??

Y′1
""

Proof. Let b ∈ B be the base point of B. For any X ∈ SpB, we will denote by b∗X
its fiber over the base point of B, and for M ∈ Sp, b! M = M ∨ B ∈ SpB denotes the
left adjoint of b∗.

For part (1), note that there is a homotopy cofiber sequence X′ → Ỹ′ → C f and
thus a commutative diagram with exact rows:

π∗+1C f

0
��

// π∗X′ // π̃∗Ỹ′

��

π∗+1C f ′ // π∗X′
f ′
// π∗Y′.

Thus π∗+1C f → π∗(X′) is zero, hence π∗X′ → π∗Ỹ′ is injective.
For (2), a dual argument to the one just given could be applied to show that

X′ ×Y′ Y → Y is surjective in homotopy. However, if f is injective, this map will
in general not be an isomorphism in homotopy. Thus we will construct a different
object X̃ in between X and X′×Y′ Y which has the required injectivity preservation
property.

let V = coker(π∗X
π∗ f−−→ π∗Y) ∈ ModK∗ . Since Y is fibrant, so is b∗Y, and we

can find a K-module map g : M → b∗Y for some cofibrant K-module M realizing
a section of π∗Y → V = π∗M. By adjointness, this map can be realized as a map

φ : b! → Y in ModK /B. By construction, the map X ∨B (M ∨ B)
( f ,φ)−−→ Y induces a

surjection in π∗, and a bijection if π∗ f is injective.
Moreover, the map M → b∗Y → b∗C f → b∗C f ′ is zero in homotopy by as-

sumption. Since it is a map of K-modules, it is therefore null-homotopic, and thus
M → b∗Y → b∗Y′ lifts to a map M → b∗X′ with adjoint ψ : b! M → X′. The
maps p ◦ φ and f ′ ◦ ψ ◦ φ are homotopic by construction. Choose a homotopy
H : I× b! M → Y′ such that H0 = p ◦ φ and H1 = f ′ ◦ ψ ◦ φ. Since f ′ is a fibration,
we have a lift in the diagram

M
ψ◦φ

//

i1
��

X′

f ′
����

I⊗M
H
//

H̃
<<

Y′

We now have a map M→ X′ ×Y′ Y given by (H̃0, φ) in ModK /B. Thus we obtain
a map

X̃ = X ∨B b! M→ X′ ×Y′ Y
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satisfying the conditions of (2).
Note that the construction of X̃ is by no means functorial. Assertion (3) is a

partial substitute for this deficiency. To show (3), consider the following diagram:

X1
f1

//

��

Y1

��

X̃×X′ X′1 // Y×Y′ Y′1

I claim that this diagram satisfies the assumptions of (2). Since X̃ → Y, X′ → Y′,
and X′1 → Y′1 are fibrations, so is the fiber product, thus the bottom map is a
fibration. Moreover, X̃ ×X′ X′1 is fibrant as a fiber product of fibrant spaces. We
need to produce a map

π∗Y1 → π∗(X̃×X′ X′1) = π∗X̃×π∗X′ π∗X′1

making the resulting triangles commute in homotopy. A map π∗Y1 → π∗X′1 is
given by φ1; furthermore, since π∗X̃ → π∗Y is surjective, we can find a section
π∗Y → π∗X̃ whose composite with π∗X̃ → π∗X′ is φ. By the commutativity of

π∗Y1
φ1
//

��

π∗X′1

��

π∗Y
φ
// π∗X′,

we obtain a well-defined diagonal map making everything commute in homotopy.
The proof for (4) is not dual to (3). (The dual assertion would be that given

(D1, φ1), we can find φ in D compatible with φ1). It is in fact easier. Consider the
diagram

X1 //

��

Y1

��

X′1 // Ỹ′ ×Y′ Y′1.

This diagram satisfies the conditions of (4) because the original map φ still works.
The resulting Ỹ′1 maps down to Ỹ and to Y′1. Also π∗Ỹ′1 → π∗Y′1 is injective because
π∗Ỹ′1 → π∗(Ỹ′ ×Y′ Y′1) = π∗Ỹ′ ×π∗Y′ π∗Y

′
1 is injective by construction and π∗Ỹ′ →

π∗Y′ is injective by assumption. �

Proposition 4.5. The ind-weak equivalences in Ind−ModK /B are exactly the essen-
tially levelwise weak equivalences.

Similarly, the ind-pro-weak equivalences in Ind−Pro−ModK /B are the essentially
levelwise weak equivalences.

By the two-out-of-three property for essentially levelwise weak equivalences,
we have the liberty to produce any composition of levelwise weak equivalences
and ind-(pro-)isomorphisms in the proof of the proposition.

Proof. Let f : X → Y be an ind-weak equivalence in Ind−ModK /B. We may
assume f is given by a levelwise map fs : Xs → Ys. The condition that f is an ind-
weak equivalence means that for every s there is an s′ > s and a map φ : π∗Ys →
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π∗Xs′ such that the diagram

π∗Xs //

��

π∗Ys

��

φ

zz

π∗Xs′ // π∗Ys′

commutes. By passing to a cofinal subsystem (inducing an ind-isomorphism), we
may assume that there are no t between s and s′.

We will procede in two steps, first factoring X → Y as X → X̃ → Y where
the first map is an ind-isomorphism and the second map is a levelwise map that
is surjective in homotopy, and then factoring X̃ → Y as X̃ → Ỹ → Y such that
Ỹ → Y is an ind-isomorphism and X̃ → Ỹ is a levelwise weak equivalence.

First, using functorial cofibrant-fibrant replacement, we may assume that all Xs
and Ys are cofibrant and fibrant in ModK /B. By another functorial factorization,
we may assume that Xs → Ys is a fibration in ModK for all s. All these operations
induce levelwise weak equivalences.

Applying Lemma 4.3(2) inductively, we obtain a diagram

Xs //

��

X̃s

��}}

f̃s
// Ys

��

Xs′ //

��

X̃s′

��}}

f̃s′ // Ys′

��

Xs′′ //

��

X̃s′′

��

~~

f̃s′′ // Ys′′

��

...
...

...

with maps f̃ which are surjective in π∗. Thus, we have found an ind-isomorphism
X → X̃ and a levelwise surjective map X̃ → Y.

Now let us assume that X → Y is a levelwise cofibration (in ModK) of fibrant-
cofibrant objects in ModK /B, which is levelwise surjective in π∗. Then, arguing as
before but using Lemma 4.3(1), we get a factorization of X → Y as a map X → Ỹ
which is a levelwise isomorphism in π∗, followed by an ind-isomorphism Ỹ → Y.

The proof for Ind−Pro−ModK /B is very similar. Without loss of generality
by Lemma 4.2, let f : X → Y be a levelwise map, where X, Y : QS,α → ModK /B
are functors. We assume the we have prepared f by levelwise cofibrant/fibrant
replacement as before, so that Lemma 4.3 is applicable when we need it.

Since f is assumed to be an ind-pro-weak equivalence, this means that for every
s there is an s′ > s such that for every t′ ∈ α(s′) there is a t ∈ α(s), t < α(s < s′)(t′),
and a map φ : π∗Yt

s → π∗Xt′
s′ such that the diagram

π∗Xt
s

//

��

π∗Yt
s

��

φ

{{

π∗Xt′
s′

// π∗Yt′
s′

commutes. As before, by passing to a cofinal subsystem, we may assume that s′ is
a direct successor of s. In the first step, we apply Lemma 4.3(2) and (3) to produce
a factorization Xt

s → X̃t
s → Xt′

s′ with Xt′
s → Yt

s surjective in homotopy. We cannot
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simply do this for every s and t because the construction of X̃ in Lemma 4.3 is not
functorial. Fix s and assume X̃t

s has been constructed for some t′ < t′1. Consider
the diagram

Xt
s

f
//

��

Yt
s

��

X̃t
s

>>

��

Xt′
s′ f ′

// Yt′
s′

Xt1
s

f1
//

��

��

Yt
s

��

��

X̃t1
s

  

>>

��

Xt′1
s′

f ′1 //

!!

Yt′1
s′

  

By Lemma 4.3(3), we can find X̃t1
s and maps as indicated in the diagram. Pro-

ceeding inductively, we obtain a pro-object X̃s for all s ∈ S. For varying s, these
assemble to an ind-pro-object by means of the maps

X̃t
s → Xt′

s′ → X̃t′
s′ .

Furthermore, the commutative diagram

Xt1
s //

��

X̃t1
s

��~~

Xt′
s′

// X̃t′
s′

shows that X → X̃ is an ind-pro-isomorphism. By construction, X̃t
s → Yt

s is surjec-
tive in homotopy.

We leave the dual construction of Ỹ → Y and of a levelwise weak equivalence
X̃ → Ỹ to the reader. �

5. INDEPENDENCE OF THE TOTAL SPACE

The aim of this section is to prove Theorem 1.4.
Fix a multiplicative homology theory K. For the results of this section, K does

not need to be a field (i.e. have Künneth isomorphisms for any two spaces). We
define the categories

T = Ind−Pro−ModK and A = Ind−Pro−ModK∗ .

For a CW-complex X, let F (X) be the directed set of finite subcomplexes of X.
Denote by Kfib : (Top×Top)/B→ T the functor with

Kfib(X1 → B← X2) = {K[F′]}F′∈F (holim(X1→B←X2))

where K[F′] ∈ Pro−ModK as an object indexed over the one-point category, or,
according to taste, as a constant tower.

Similarly, define a functor K : (Top×Top)/B→ T by

K(X1 → B← X2) = {Tots K[CB(X′1, X′2)]}s≥0,X′1∈F (X1), X′2∈F (X2)
.

We write Kfib
∗ = π∗ and K∗ = π∗K : Kfib : (Top×Top)/B→ A.

The map Φ : K[holim X1 → B ← X2] → {Tots K[CB(X1, X2)]}s extends to a
natural transformation Φ : Kfib → K as follows: if F′ is a finite subcomplex of
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holim(X1 → B ← X2) then its images in X1 and X2 are finite subcomplexes, and
we get a comparison map

K[F′]→ {Tots K[CB(im(F′ → X1), im(F′ → X2))]}s≥0

These assemble to a map in T .

Definition. We call a diagram X1 → B ← X2 of spaces ind-pro-constantly conver-
gent, or, more briefly, Ind-convergent, if π∗Φ(X1 → B ← X2) is an isomorphism in
A.

We call a map X → B Ind-convergent if X → B ← Y is Ind-convergent for
every Y → B, and we call a space B Ind-convergent if every homotopy pullback
diagram X1 → B← X2 is Ind-convergent.

Remark 5.1. By saying that π∗Φ is an isomorphism, we really mean that Φ induces
an isomorphism after applying the graded group valued functor ∏i πi, which a
priori is stronger than requiring that for every k, πk induces an isomorphism.
However, since in the context of this paper (if not this section) all homotopy groups
are homotopy groups of K-modules for periodic theories K, the two notions coin-
cide.

Note that if X1 and X2 are finite CW-complexes, K(X1 → B ← X2) is ind-
constant, but Kfib(X1 → B ← X2) is ind-constant if and only if K∗(F) is finite.
Thus Ind-convergence of B implies in particular that the fiber of a fibration with
total space a finite CW-complex has finite K-homology. In this situation, Ind-
convergence is the same as pro-constant convergence.

Example 5.2. This example shows that Ind-convergence is weaker than pro-con-
stant convergence. Let B = S1, Ei = S1, and pi : Ei → B multiplication by i. Thus,
Fi is the discrete space with i points. The HZ-based Eilenberg-Moore spectral se-
quence for Ei → B is i-convergent; more specifically,

E2
∗∗ = Z[x]⊗

∧
(y),

where x is in bidegree (−1, 1) and y is in bidegree (0, 1), and we have differentials

di(y) = xi.

This shows that for E = äi Ei, E→ B cannot be pro-constantly convergent because
there are differentials of arbitrary length. However, E → B is Ind-convergent
because äi≤n Ei → B, which is n-convergent, constitutes a cofinal subsystem of
the finite sub-CW-complexes of E.

Theorem 5.3. Let Y → B ← ∗ be an Ind-convergent map for some Y → B, where K∗ is
a graded field. Then Y → B is Ind-convergent.

A cohomological version of this theorem (in terms of pro-constant convergence)
was proven in [Hod75, JO99] under some cohomological finiteness conditions on
K∗(X). More strongly, [Sey78] claims that the cohomological finiteness condition
is not necessary if B is a finite-dimensional CW-complex, but the proof seems to
contain mistakes. Our formulation does not require any such restriction; however
we need the rather strong assumption of Ind-convergence to begin with.

Theorem 1.4 is an immediate corollary.
Fix a map Y → B, and abbreviate K(X → B ← Y) as K(X) and Kfib(X → B ←

Y) as Kfib(X).

Lemma 5.4. Kfib
∗ (X) and K∗(X) are homology theories on the category (Top /B)∗ of

sectioned spaces over B with values in A in the sense of Dold [Dol71]. This means: in
addition to the usual axioms for a homology theory h on (Top /B)∗ (long exact sequence,
excision), the following two axioms are satisfied:
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(CYL) For any X → B, p : X × [0, 1] → B, h∗(X × {0}) → h∗(X × [0, 1]) is an
isomorphism;

(EXC) If

A //

��

X1

��

X2 // X

is a pushout square in Top and p : X → B is a map then we have an exact Mayer-
Vietoris sequence.

Remark 5.5. The additional axioms have an analog for G-spaces. In general, if a
G-equivariant map X → Y is also a homotopy equivalence, it need not induce an
isomorphism on some G-equivariant homology theory because the homotopy in-
verse need not be G-equivariant. It does so, however, if the homology theory only
depends on the homotopy fixed point or orbits for some subgroup; for example,
Borel homology satisfies the analogue of (CYL) and (EXC).

Proof of Lemma 5.4. Let us first consider Kfib. The functor

X 7→ K∗(F) = colim Kfib
∗ (X)

is a homology theory by [Dol71, 3.4]; furthermore a sequence in Ind−ModK∗ is
exact if and only if its colimit sequence is exact. This shows that we have long exact
sequences. To verify the wedge axiom, we show that Kfib maps filtered hocolimits
to colimits. Note that

holim(hocolim
i

Xi → B← Y) ' hocolim
i

holim(Xi → B← Y),

so that we only need to see that

{K∗F}F′∈F (hocolimi Fi)
∼= colim

i
{K∗(F′i )}F′i ∈F (Fi)

∼= {K∗(F′i )}i,F′i ∈F (Fi)

where the colimit is taken in Ind−ModK∗ and the last isomorphism is its defini-
tion in any ind-category. Since any finite sub-CW-complex of a hocolim is already
contained in an Fi, the two indexing systems are mutually cofinal, and the iso-
morphism is shown. Axiom (CYL) is clearly satisfied because the homotopy fibers
of X and of X × [0, 1] are homotopy equivalent; finally, (EXC) is satisfied because
the homotopy pullback functor sends pushout squares in a total space to pushout
squares.

Now consider K. The functor X 7→ π∗(Tots K[CB(X, Y)]) is a homology theory
by construction (as an iteration of taking cofibers and smash products with B and
Y of the suspension spectrum of X), and levelwise exact sequences induce exact se-
quences in Pro−ModK∗ , thus X 7→ {π∗(Tots K[CB(X, Y)])}s is a homology theory
with values in Pro−ModK∗ (not satisfying the wedge axiom!) and thus induces a
homology theory on finite CW-complexes over B.

Now let U → V be a map in (Top /B)∗, we may assume an inclusion of CW-
complexes. For any V′ ∈ F (V), let U′ = U ∩ V′ ∈ F (U). Then the sequence
K∗(U)→ K∗(V)→ K∗(V/BU) has the level representation

{K∗(U′)→ K∗(V′)→ K∗(V′/BU′)}V′∈F (V).

Since this sequence is levelwise exact by the above, it is exact in A. The wedge
axiom is also satisfied:

K(hocolim Xi) = {K(X′)}X′∈F (hocolim(Xi)
= {K(X′)}i, X′∈F (Xi)

= colimK(Xi).
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The axioms (CYL) and (EXC) are satisfied levelwise in Pro−ModK whenever the
total spaces are finite CW-complexes, and an argument similar to the one above
for exact sequences shows that they hold essentially levelwise in A. �

The added value of the axioms (CYL) and (EXC) is that a natural transformation
of homology theories satisfying the axioms is a natural isomorphism if and only if
it is an isomorphism on points [Dol71, Theorem 4.1]:

Theorem 5.6. Let Φ : h→ h′ : (Top /B)∗ → A be a natural transformation of homology
theories, where A is some abelian category. Then Φ(X → B) is an isomorphism for all
X → B iff Φ(∗ → B) is an isomorphism for all points in B. �

Proof of Theorem 5.3. Putting h = Kfib, h′ = K in Theorem 5.6, using Lemma 5.4,
we obtain that Φ(X → B) is an isomorphism. �

6. TRANSITIVITY OF CONVERGENCE

The principal aim of this section is to prove Theorem 1.5. This will follow rather
easily from the following, more general result.

Theorem 6.1. Let F1 → X
π1−→ B1, F2 → X

π2−→ B2 be two fibrations of connected
spaces. Denote by F the fiber of F1 → B2, which is the same as the fiber of F2 → B1.
Let K be a homology theory which is a field, and assume that X → Bi are Ind-convergent
for i = 1, 2. Then the fibration F1 → B2 is Ind-convergent if and only if the fibration
F2 → B1 is Ind-convergent.

The following corollary is the special case of B = B1, B2 = X and explains why
I call this result a transitivity property.

Corollary 6.2. Let F → X → B be a fibration sequence such that X → B and F → X
are Ind-convergent. Then B is Ind-convergent. �

We are now in a position to derive Theorem 1.5 from Theorem 6.1.

Corollary 6.3 (Theorem 1.5). Let F → Y → X be a fibration with F and X Ind-
convergent. Then so is Y.

Proof. Consider the diagram

ΩX //

��

∗ //

��

X

F //

��

Y // X

��
Y Y // ∗

Since X is Ind-convergent, both upper rows are Ind-convergent, and the middle
vertical row is 0-convergent because the fibration is trivial. By Theorem 6.1, F → Y
is Ind-convergent (to K∗(ΩX)). Applying Corollary 6.2 to ΩX → F → Y, we find
that Y is Ind-convergent. �

Now consider the category Ind−Pro−ModK /B of ind-pro-K-module spectra
over a fixed base space B. The functor π∗ : ModK /B → ModK∗ which sends X
to π∗(U(X)) extends to a functor π∗ : Ind−Pro−ModK /B → A. Similarly, the
functor

Tot• CB : ModK /B→ Pro−ModK /B
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extends to a functor

Tot• CB : Ind−Pro−ModK /B→ Ind−Pro−Pro−ModK /B
Ind− lim−−−−−→ Ind−Pro−ModK /B.

The technical heart of Theorem 6.1 is the following lemma.

Lemma 6.4. Let f : X → Y be a map in Ind−Pro−ModK /B such that π∗ f : π∗X →
π∗Y is an isomorphism in A. Then f induces an isomorphism

π∗ Tot• CB(X)→ π∗ Tot• CB(Y)

in A.

Proof. Since Cs
B(X) = U(X) ∧K K[Bs], f induces a levelwise ind-pro-isomorphism

on π∗CB. The cofibration sequence in Ind−Mod−K/B

Cs
B(X)→ Tots−1 CB(X)→ Tots CB(X)

induces a long exact sequence on homotopy. By inductive use of the Five Lemma,
f thus induces an isomorphism f s

∗ : π∗ Tots CB(X)→ π∗ Tots CB(Y) for each s ≥ 0.
Assembling these objects for all s, the resulting object is an ind-object in the

subcategory of Pro−Pro−ModK /B generated by all objects indexed by I × N,
where I is an arbitrary cofiltered category. The limit of such an object M : I×N→
ModK /B is just that same object M, considering the indexing category I ×N as a
single cofiltered category.

Choose a level representation for f . Thus X, Y : QI,α → ModK /B and f is a
natural transformation of such functors. Since the f s are defined on the level of
ModK /B and then induced up to the ind-pro-category, they are also level maps.
for the same level representation. Since f s

∗ is an isomorphism, there exists for each
i′ ∈ I an i(s, i′) ∈ S and for each j ∈ α(i′) a j′(s, j) ∈ α(i) as well as a map
g : π∗Y(i′, j′(s, j))→ π∗X(i(s, i′), j), which together represent an inverse of f s

∗.
Now π∗ Tot• CB(X) : QI,α×N→ ModK∗ , and f •∗ is a levelwise map to π∗ Tot• CB(Y).

To give an inverse of this map in A amounts to specifying for each i′ ∈ I an
i(s, i′) ∈ S, for each (j, s) ∈ α(i′)×N a j′(s, j).....

Choose representation X : I → Pro−ModK /B and Y : I′ → Pro−ModK /B.
Now since f∗ : π∗X → π∗Y

The functor lim: Pro−Pro−ModK /B → Pro−ModK /B can be represented
as follows on an object M indexed by I ×N such as

By assumption, f : X → Y is an ind-pro-weak equivalence in the category
Ind−Pro−ModK /B. By Proposition 4.5, we may assume that there is a directed
set S, a functor α : Sop → {inverse sets}, functors M, N : QS,α → ModK /B, and a
commutative diagram

X
K∧ f

//

Ind−Pro−∼= αX
��

Y

Ind−Pro−∼=αY
��

M
f̃
// N

where the vertical maps αX and αY are ind-pro-isomorphisms and f̃ is a levelwise
weak equivalence. Now note that the functor

Tot• CB : ModK /B→ Pro−ModK

X 7→ {Tots CB(X)}s≥0
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extends to a functor

Ind−Pro−ModK /B
Ind−Pro−Tot• CB−−−−−−−−−−→ Ind−Pro−Pro−ModK

Ind−D−−−−→ Ind−Pro−ModK,

where D : Pro−Pro−C → Pro−C is the tautological functor of Remark 4.1.
We thus obtain isomorphisms

Tot• CB(X) ∼= Tot• CB(M) and Tot• CB(Y) ∼= Tot• CB(N)

as well as a levelwise weak equivalence CB( f̃ ) : CB(M) → CB(N). This induces a
levelwise weak equivalence of total towers in every degree and thus an ind-pro-
isomorphism

π∗ Tot• CB(X) ∼=Ind−Pro π∗ Tot• CB(M)

∼= Tot• CB(N) ∼=Ind−Pro π∗ Tot• CB(Y).

�

Consider the diagram of fibrations

(6.5) F //

��

F1

��

// B2

F2 //

��

X
π2 //

π1

��

B2

>
��

B1 B1
> // ∗

To compare the two Eilenberg-Moore spectral sequences abutting to the K-homo-
logy of F, we construct a bicosimplicial space

Cst(X) = X× Bs
1 × Bt

2

We have
Tot C•t(X) = F1 × Bt

2 and thus Tot Tot C••(X) = F;
on the other hand we have

Tot Cs•(X) = Bs
1 × F2.

We denote the “horizontal” total space Tot{Cst}s by Toth C•• and the “vertical”
total space by Totv C••.

Lemma 6.6. Given a diagram as in (6.5) with X → B1 Ind-convergent, there is an
isomorphism

K(F1 → B2)
∼=−→ K(X → B1 × B2).

Proof. Since X → B1 is Ind-convergent, the map

{K[F]}F∈F (F1)
= Kfib(X → B1)→ K(X → B1) = {Tot• K[CB1(X′)]}X′∈F (X).

is an ind-pro-weak equivalence as well as a map over B2. By Lemma 6.4, it induces
an ind-pro-weak equivalence

K(F1 → B2) ={Tot• K[CB2(F′)]}F′∈F (F1)

→{Tot• CB2(Tot• CB1(X′))}X′∈F (X)

∼={Tot• Tot•h K[C••(X′)]}X′∈F (X).

Since the diagonal N ↪→ N×N is cofinal, the right hand side is

{Tot• Tot•h K[C••(X′)]} ∼= {diag Tot• Tot•h K[C••(X′)]} ∼= K(X → B1 × B2).
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�

Proof of Theorem 6.1. From Diagram 6.5, we obtain a diagram in T from the various
comparison maps

Kfib(F2 → B1)
convergence of F2 → B1

// K(F2 → B1)

Lemma 6.6 for X → B2∼
��

Kfib(X → B1 × B2) K(X → B1 × B2)

Kfib(F1 → B2)
convergence of F1 → B2

// K(F1 → B2).

Lemma 6.6 for X → B1∼

OO

The two-out-of-three property in this diagram finishes the proof of the theorem.
�

7. THE HOPF CORING FOR MORAVA K-THEORY OF EILENBERG-MAC LANE
SPACES

In this section, we completely analyze the K(n)-based Eilenberg-Moore spectral
sequence for path-loop fibrations on mod-p Eilenberg-Mac Lane spaces, where p
is the same prime as the characteristic of K(n)∗. As n ≥ 1 is fixed in this section,
we will abbreviate K(n) by K. Throughout this section, p is assumed to be odd (an
assumption made in the crucial input [RW80], and also necessary to ascertain that
K(n) is a homotopy commutative ring spectrum). It is likely that the convergence
result also holds for p = 2.

In order to understand the K-based Eilenberg-Moore spectral sequence for the
Eilenberg-Mac Lane spaces Hi = K(Z/p, i), it will be necessary to understand the
algebra structure of K∗(H∗) quite well. Ravenel and Wilson study the structure
of K∗(H∗) in [RW80], and all the necessary information can be extracted from that
paper. However, they use the bar spectral sequence, which is known to converge,
to compute K∗Hi+1 from K∗Hi. In our case, we are interested in the Eilenberg-
Moore spectral sequence, and from a knowledge of K∗Hi+1 and K∗Hi we want
to conclude that the spectral sequence converges for i < n. Since we know what
the answer should be, we could guess what the differentials would have to be, and
that guess is in fact correct, but unfortunately provides no proof for convergence.
Thus we need to study E∗Hi for other homology theories E 6= K, for which we
know the EMSS converges, and then compare it to the K-based EMSS, deriving
the differentials there in a rigid way. By the various multiplicative properties of
the EMSS as described below, we can restrict ourselves to computing the E-based
EMSS for H1 and E = k(n), connective Morava K-theory, to derive the differentials
in all other cases for K.

Since K is a graded field, we have a Künneth isomorphism

K∗(Hr × Hs)
∼= K∗(Hr)⊗K∗ K∗(Hs)
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for all r and s, and thus K∗(Hr) is a coalgebra, and therefore the gadget K∗(H∗)
obtains the structure of a Hopf ring, i. e., it is a ring object in the category of coalge-
bras. For a survey on this kind of algebraic structure, consult [Wil00]. The impor-
tant data here are operations Ψ, +, ∗, ◦, where

Ψ : Ks(Hr)→ (K∗(Hr)⊗K∗ K∗(Hr))s ;

+ : Ks(Hr)⊗ Ks(Hr)→ Ks(Hr);

∗ : Ks′(Hr)⊗ Ks′′(Hr)→ Ks′+s′′(Hr);

◦ : Ks′(Hr′)⊗ Ks′′(Hr′′)→ Ks′+s′′(Hr′+r′′).

The coproduct and addition are the usual maps in homology; the ∗-product is
the “additive” product coming from the (infinite) loop space structure of Hr; and
the ◦-product is the “multiplicative” product coming from the ring spectrum map
Hr × Hr′ → Hr+r′ . As usual, ∗ distributes over +, but there is a second layer of
distributivity; namely, in the Sweedler notation Ψ(a) = ∑(a) a′ ⊗ a′′,

a ◦ (b ∗ c) = ∑
(a)

(a′ ◦ b) ∗ (a′′ ◦ c).

By convention, we give ◦ operator precedence over ∗, so that we could write the
summand in the above formula without parentheses.

Both products are Ψ-comodule maps. There are, of course, a number of other
structural maps corresponding to units, counits, and coinverses. We denote by
[1] : π0(H0)→ K0(H0) the image of the unit under the Hurewicz homomorphism,
which is the unit for the ◦-product. Similarly, denote by [0]r ∈ K0(Hr) are the units
for the ∗-products in degree r.

Notation. In our computations, we will need to deal with algebras, coalgebras,
and Hopf algebras over Fp or K∗. We adopt the following standard notation:

P(x): is the Hopf algebra whose underlying algebra is the polynomial alge-
bra on x and whose underlying coalgebra is the divided polynomial coal-
gebra. We denote the standard additive generators by xi, as usual.

Pk(x): is the quotient of P(x) whose underlying algebra is the truncated poly-
nomial algebra P(x)/(xpk

).
Γ(x): is the Hopf algebra dual of P(x): its underlying algebra is the divided

polynomial algebra, and its underlying coalgebra is the tensor coalgebra.
We denote the standard additive generators by xi.

Γk(x): is the sub-Hopf algebra of Γ(x) on the generators xi (0 ≤ i < pk).∧
(x): is the exterior Hopf algebra on a primitive generator.

Ru(x): is the Hopf algebra P(x)/(xp − ux) (where u is a unit) with x primi-
tive.

We will use the convention that x(i) = x∗pi
and x(i) = xpi . If x ∈ Ks(Hr), we will

write |x| = (s, r).

The following lemma is basic multiplicative homological algebra:

Lemma 7.1. If A is a (graded) commutative algebra over a field k of characteristic p,
Tor∗∗(A) =def TorA

∗∗(k, k) is a commutative and cocommutative Hopf algebra. In partic-
ular,

• Tor∗∗(
∧
(y)) ∼= Γ(σy);

• Tor∗∗(P(x)) ∼=
∧
(σx);

• Tor∗∗(Pn(x)) ∼=
∧
(σx)⊗ Γ(φx).

Here and in the following, σx denotes the suspension, i. e. the element in Tor1 which
is represented in the bar resolution by [a], and φx denotes the “transpotence” element in
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Tor2, which is represented in the bar resolution by any of the classes [xi | xj] with i, j ≥ 1,
i + j = pn (up to units).

Dually, if C is a cocommutative coalgebra over k, Cotor∗∗(C) =def CotorC
∗∗(k, k) is a

commutative and cocommutative Hopf algebra as well, with
• Cotor∗∗(

∧
(y)) ∼= P(σy);

• Cotor∗∗(Γ(x)) ∼=
∧
(σx);

• Cotor∗∗(Γn(x)) ∼=
∧
(σx)⊗ P(φx).

Again, σx denotes the dual of the suspension and φx denotes the “cotranspotence” element
in Cotor2, which is represented in the bar resolution by ∑ i+j=n

i, j≥1
ui[xi | xj] for some units

ui we do not care about.

7.1. Getting started: K∗H1 → K∗H0. We start our computation by studying the
differentials of the EMSS for the path-loop fibration on H1 = K(Z/p, 1) in connec-
tive Morava K-theory k. We have, as coalgebras,

E∗(H0) = E∗[Z/p] for any E(7.2)

kev
∗ (H1) = Γn(a)(7.3)

kodd
∗ (H1) = 〈y1, y2, . . . 〉/(vn) with |yi| = 2i− 1(7.4)

The result for k is easily computed with the Atiyah-Hirzebruch spectral sequence.
Since k is not a graded field, k∗(H1) need not be a coalgebra, and indeed is not. But
we can compute the cobar spectral sequence modulo the Serre class of vn-torsion
groups, so that we have a Künneth isomorphism again and an isomorphism of
Hopf algebras

E2
s,t = Cotors,t(Γn(x)) =

∧
(σa)⊗ P(φa) (Lemma 7.1)

The only way this can converge is to have a differential

d2p−1(vp
nσa) = (φa)(1).

Inverting vn, we derive the same differential in the K-based EMSS, and we thus
have convergence there, too, with

E∞
s,t = E2p

s,t = P1(φa),

where v−1
n φa represents [1] − [0] ∈ K0(H0), and we have a ∗-multiplicative ex-

tension (v−1
n φa)(1) 99K v−1

n φa. In fact, we have 2p-convergence since there are no
longer differentials and the filtration in E∞ is bounded by 2p.

7.2. Morava K-theory of Eilenberg-Mac Lane spaces a.k.a. Automorphisms of
Siegel domains. Unfortunately, we will need to juggle around with multi-indices
quite a bit. A multi-index I is an n-tuple (i0, i1, . . . , in−1) with iν ∈ {0, 1}. For such
multi-indices we will need some operators, functions, and constructions, which
we assemble in the following definition. The reader is advised to skip it and refer
back to it when the notation is used. Beware that our sI is what in [RW80] and
[Wil84] would be called s−1 I, and our usage of multi-indices differs from [RW80]
but agrees with [Wil84].

Definition.
• Constructions. Denote by ∆k the index (δlk)l , where 0 ≤ l ≤ n− 1.

Denote by ∆[k] the index (1, . . . , 1, 0, . . . , 0) (k copies of ones) and ∇[k]
for the index (0, . . . , 0, 1, . . . , 1) (k copies of ones).
• Operations. For a multi-index I = (i0, i1, . . . , in−1), let s(I) denote the shift

(i1, i2, . . . , in−1, 0).
Also denote by cI the cyclic permutation (i1, i2, . . . , in−1, i0).



24 TILMAN BAUER

• Functions. Let tε(I) + 1 (the number of trailing ε) denote the smallest k
with in−k 6= ε, or ∞ if I = (1− ε, . . . , 1− ε). Denote by lε(I) (the number
of leading ε) the smallest k such that ik = 0.

We write
aI = a◦i0

(0) ◦ a◦i1
(1) ◦ a◦in−1

(n−1)

where the a(i) ∈ K∗(H1) are defined as in (7.3). Thus, |aI | = (∑ν iν pν, ∑ I).

Theorem 7.5 (Ravenel-Wilson). In terms of the classes defined above, we have an iso-
morphism of K∗-algebras

K∗(H∗) ∼=
⊗

I
i0=0

Pt1(I)+1(aI)⊗ Ru(a∆[n]),

for some unit u ∈ K×∗ , where I = (i0, . . . , in−1) runs through all multi-indices.
The coproduct is completely determined by stating that

(7.6) Ψ(ai) =
i

∑
j=0

ai−j ⊗ aj.

The classes aI for i0 = 1 do not appear as generators in Theorem 7.5, but they are
nonzero and thus can be expressed in terms of the generators. This computation
is a reformulation of Ravenel-Wilson’s.

Lemma 7.7. Let m = l1(I), I 6= ∆[n]. Then

aI = (−1)m ∑ I
(

acm I
)(m)

Corollary 7.8. As K∗-modules,

K∗(H∗) =
⊗

I
P1(aI) = M∗∗.

The coalgebra structure is given by (7.6) and the fact that Ψ is an algebra morphism with
respect to ◦ and also with respect to the above algebra structure for the multiplication ∗.

In particular, if
Ψp : K∗(Hr)→ (K∗(Hr))

⊗p

denotes p-fold comultiplication, then

Ψp(aI) =

{
0; if i0 = 1(

asI)⊗p
+ decomposables; otherwise.

Proof. Using Lemma 7.7, it is elementary to see that M∗∗ ∼= K∗(H∗) as K∗-modules.
The Hopf ring K∗(H∗) is generated as an K∗-algebra by primitives and one

group-like element a∆[0] =def [1]− [0]0. To prove the claims about the coalgebra
structure, we only have to notice that aI is primitive when i0 = 1. Clearly, a(0) is
primitive. If x is primitive and y is any other element in the augmentation ideal,
then

Ψ(x ◦ y) = Ψ(x) ◦Ψ(y) = ∑
(y)

(
x ◦ y′ ⊗ [0] ◦ y′′ + [0] ◦ y′ ⊗ x ◦ y′′

)
= x ◦ y⊗ [0] + [0]⊗ x ◦ y,

and thus x ◦ y is also primitive. This shows that all elements of the form aI with
i0 = 1 are primitive. Conversely, if i0 = 0, then Ψp(aI) =

(
asI)⊗p (mod ∗), and

thus aI is not primitive. �
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Corollary 7.9. Choose a basis of K∗(H∗) containing the generators aI in M∗∗. In the
dual basis, let xI be the dual of aI . Denote by H̃ the connected component of 0 in H. Then
modulo phantoms,

(7.10) K∗(H̃∗) ∼=
⊗
i0=1

Pt0(I)+1 (xI) .

Proof. For a Hopf algebra A with a chosen basis, denote by P(A) its primitives and
by Q(A) its indecomposables as a submodule (using the basis).

First note that P(M∗∗) ⊂ Q(M∗∗). (This is not true in K∗(H∗)!)
Now K∗(H̃∗) is precisely the sub-co-Hopf ring generated by the indecompos-

ables, i. e., the duals of the ∗-primitives.
Thus the classes xI with i0 = 1 generate K∗(H̃∗). The algebra structure follows

by inspection of the coproduct. �

In any commutative and cocommutative Hopf algebra over Fp with suitable
finiteness hypothesis, there are Frobenius and Verschiebung maps corresponding
to the p-fold product and coproduct. In the case of a Hopf ring, they interact with
the circle product in a simple way [RW80, Section 7]. We recall the definitions and
basic properties for the reader’s convenience.

Definition. For a graded algebra A over Fp, define the Frobenius homomorphism
F : A → A to be the pth power map x → x(1). Similarly, for a graded coalgebra
C over Fp which, as a graded vector space, is the colimit of coalgebras Cn of finite
type, define the Verschiebung V : C → C to be the continuous dual of the Frobenius
on the pro-finite type algebra C∨.

For H-spaces X of finite type, the filtration Cn of K∗(X) is by definition given
by the skeletal filtration of X. The spaces Hk are of finite type.

Lemma 7.11 ([RW80, Lemma 7.1]). In a commutative and cocommutative Hopf ring A,
(1) V and F are Hopf algebra maps multiplying resp. dividing the degree by p;
(2) VF(x) = FV(x) = [p] ◦ x;
(3) V(x ◦ y) = V(x) ◦V(y);
(4) Ψp(x) ≡ V(x)⊗ · · · ⊗V(x) (mod asymmetric terms);
(5) F(V(x) ◦ y) = x ◦ F(y).

The following results are dual to the pairing of bar spectral sequences intro-
duced in [TW80] or, in the case of the Eilenberg-Mac Lane spectrum, [RW80, Sec-
tion 1].

Proposition 7.12 (Module structures on EMSS). Given a map of spaces X × T
µ−→ Y

and a field spectrum K. Let En(X) denote the K-based EMSS for the path-loop fibration
on X, similarly for Y. Then there are homomorphisms

En(X)⊗K∗ K∗(T)
µ̃−→ En(Y)

such that
dn(µ̃(x, η)) = µ̃(dn(x), η) for x ∈ En(X), η ∈ K∗(T),

and if x is a permanent cycle representing a class ξ ∈ K∗(ΩX) then µ̃(x, η) is also
permanent cycle and represents the class Ωµ∗(ξ, η) ∈ ΩY.

In the cobar resolution, µ̃ is given by

[x1 | · · · | xs]⊗ η 7→∑
(η)

[µ∗x1, η(1)) | · · · | µ∗(xs, η(s))],

where the sum is given by Ψs(η) = ∑(η) η(1)⊗ · · · ⊗ η(s).
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Proof. Denote by X• (resp. Y•) the cobar construction CX(∗, ∗) (resp. CY(∗, ∗)).
Then the canonical map

Xs × T
id×diags

−−−−−→ Xs × Ts → (X× T)s µs

−→ Ys

induces a map of cosimplicial spaces. We thus obtain a map of total towers

(Tots X•)× T → Tots (X• × T)→ Tots Y•

which, on homotopy inverse limits, agrees with the standard map

(ΩX)× T
Ωµ−→ ΩY given by (Ωµ)(γ, η)(t) = µ(γ(t), η).

Applying K[−], we obtain the following diagram:

K[(Tots X•)× T] //

��

K[Tots Y•]

��

Tots K[X• × T] // Tots K[Y•].

Since
π∗ Tots K[X• × T] ∼= π∗ Tots K[X•]⊗K∗ K∗(T),

we obtain a commutative square

K∗(Tots X•)⊗K∗ K∗(T) //

��

K∗(Tots Y•)

��

D1
s∗(X)⊗K∗ K∗(T) // D1

s∗(Y)

and hence a map of spectral sequences compatible with the filtration. The descrip-
tion of µ̃ in the cobar complex follows directly from this construction, as the s-fold
diagonal on X is used in defining µ̃. �

Let K be a commutative ring spectrum, and denote by rEn
s,t the E-based EMSS

for the path-loop fibration on Hr; we write E∗∗∗ for the collection of all such spectral
sequences for r ≥ 0.

Corollary 7.13. There is a homomorphism

◦ : rEm
s,t ⊗ Kt′(Hr′)→ r+r′Em

s,t+t′

compatible with the circle product

◦ : Kt−s Hr ⊗ Kt′Hr′ → Kt+t′−s Hr+r′

For x ∈ En and η ∈ K∗H∗,
dn(x ◦ η) = dn(x) ◦ η.

If x is a permanent cycle representing a class ξ ∈ K∗H∗, then x ◦ y is also a permanent
cycle, and it represents ξ ◦ y.

Proof. This is a special case of Prop. 7.12 for C = Hr, X = H′r, D = Hr+r′ , and
µ = ◦. �

The following proposition follows from the multiplicative pairing and the rela-
tion between Frobenius and Verschiebung stated in Lemma 7.11(5):

Proposition 7.14. Let x ∈ rEn
∗∗ and η ∈ K∗(Hr′). Assume that dn(x) = z(1) for some

permanent cycle z ∈ En
∗∗ representing a class ζ ∈ K∗(Hr). Then there is an m ≥ n and a

permanent cycle representing ζ ◦V(η) such that x ◦ η is an (m− 1)-cycle and

dm(x ◦ η) = t(1).
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Proposition 7.15 (Determination of the EMSS for H∗). We have:
(1) As K∗-Hopf algebras,

Tor∗∗(K∗H̃∗) ∼=
⊗
i0=1

(
∧
(σxI)⊗ Γ (φxI)) .

(2) Dually, E2
∗∗ = Cotor∗∗(K∗H∗) is given by

E2
∗∗ ∼=

⊗
i0=1

(∧ (
σaI)⊗ (φaI)) .

(3) The cotranspotence φaI is represented in the cobar complex by the class

φaI ≡
p−1

∑
l=1

ul

[(
as−t0(I) I

)∗l ∣∣∣∣ (as−t0(I) I
)∗(p−l)

]
for units ul ∈ F×p , modulo classes that are more than p times decomposable.

Furthermore, setting m = l0(I), we have that

φ(a(0)) ◦ aI =

{
0; if m = 0

φ
(

asm(I)+∆n−m
)

; otherwise

or, equivalently,

φ(aI) = φ(a(0)) ◦
(

as−(t0(I)+1) I
)

(4) The only sources of differentials are the factors of the form σaI with i0 = 1:
(a) If l = ∆[m] for some m ≥ 1 then

d2pm−1(σaI) = φ(aI)(m)

(b) Otherwise, let m = l1(I) be the number of leading ones in I and m′ =
l0(sm I) be the number of zeroes following the m ones in I. Then

d2pm−1(σaI) =
(

φacm+k−1sI+∆n−m′
)(m)

(5) The spectral sequence collapses at E2pn
with

E2pn

∗∗ = E∞
∗∗ =

⊗
i0=1

Pt1(s−t0(I) I)φ(aI).

(6) In E∞
∗∗, aI is represented by φasl0(I)I+∆n−l0(I) if i0 = 0.

Proof. (1 and 2): This is a routine calculation using Corollary 7.9, using the basic
building blocks from Lemma 7.1.
(3): If R = Pk(x) is divided power algebra on x, then the transpotence element
in the cobar complex is given by any one of the homologous representatives [xl |
xpk−l ]. Dually, the cotranspotence is given by the sum of the duals of these classes.
Thus

(7.16) φ(aI) =
pt0(I)+1−1

∑
k=1

[(
xk

I

)∨ ∣∣∣∣ (xpt0(I)−k
I

)∨]
.

Now if k = k0 + k1 p+ · · ·+ kr pr with 0 ≤ ki < p, the dual of xk
I is decomposable

as (
xk

I

)∨
=

1
k0!k1! · · · kr!

(
aI
)∗k0 ∗

(
as−1 I

)∗k1 ∗ · · · ∗
(

as−r I
)∗kr

.

If we denote by Q(k) = k0 + · · ·+ kr the sum of the p-digits of k, the dual of xk
I is

thus decomposable into Q(k) factors. In order for the k-summand in (7.16) to have
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p or less factors, we therefore need that Q(k) + Q(pt0(I)+1 − k) ≤ p. This is the
case if and only if k = l pt0(I) for 1 ≤ l ≤ p− 1, proving the first formula of part
(3).

For the second formula, first note that φ(a(0)) = ∑
p−1
l=1 ul

[
a∗l
(n−1)

∣∣ a∗(p−l)
(n−1)

]
mod-

ulo (p + 1)-decomposables. Now for I with i0 = 0,[
a∗l(n−1)

∣∣ a∗(p−l)
(n−1)

]
◦ aI =

[(
a(n−1) ◦ asI

)∗l ∣∣∣∣ (a(n−1) ◦ asI
)∗(n−l)

]
The sum of the right hand sides can be written (up to (p + 1)-decomposables) as
φ(aI′), where I′ is the multi-index sI + ∆n−1, shifted to the left such that i′0 = 1.
This amount is given by the number m− 1 in the statement. The last formula of
(3) follows by reindexing.
(6): By the computation of the EMSS for H1, φ(a0) represents the class [1]− [0] =
a∆[0] ∈ K0(H0). Thus aI = ([1]− [0]) ◦ aIbJ is represented by

(φa0) ◦ aI = φasl0(I) I+∆n−l0(I) for i0 = 0.

(4): We have computed that d2p−1(σa(0)) = (φa(0))(1). By (6), the class φa(0) repre-
sents [1]− [0].

We are thus in the situation of Prop. 7.14, and there is a j and a permanent cycle
t representing ([1]− [0]) ◦ asI = asI such that

dj(σaI) = dj(σa(0) ◦ aI−∆0) = t(1).

We now apply Lemma 7.7 to asI to get:

asI = ±
(

acm−1sI
)(m−1)

,

where m = l1(I). We will study which class represents acm−1sI .
Write

I =

m︷ ︸︸ ︷
1 · · · 1

m′︷ ︸︸ ︷
0 · · · 0I′,

where m ≥ 1, m′ ≥ 0, and I′ is either empty or starts with a 1, and if m′ = 0 then I
is empty. Then

cm−1sI =

m′︷ ︸︸ ︷
0 · · · 0I′0

m−1︷ ︸︸ ︷
1 · · · 1,

and thus (6) tells us that acm−1sI is represented by φ(aJ) with

J =


I′0

m︷ ︸︸ ︷
1 · · · 1

m′−1︷ ︸︸ ︷
0 · · · 0; I′ nonempty

m︷ ︸︸ ︷
1 · · · 1

m′︷ ︸︸ ︷
0 · · · 0; I′ empty.

This determines all the differentials. For (5), note that any I with i0 = 1 is of the
form J as above, with uniquely determined numbers m, m′ and subindices I′. This
means that all the classes φ(aI) are torsion (of order pt1(s−t0(I) I)) in E∞ and that all
the classes σ(aI) support differentials. �

Theorem 7.17. Let n > 0 and t 6= n + 1 be integers. Then the Eilenberg-Moore spectral
sequence

E2
r,s = Cotor

K(n)∗(H̃t)
r,s (K(n)∗, K(n)∗) =⇒ K(n)∗ (Ht−1)

converges 2pn-constantly.
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Proof. From Prop. 7.15(5) we know that

E2pn

∗∗ = E∞
∗∗ =

⊗
i0=1

Pt1(s−t0(I) I)φ(aI).

and from Ravenel-Wilson’s computation (Theorem 7.5), we know that

K∗(H∗) ∼=
⊗
i0=0

Pt1(I)+1(aI)⊗ R(a∆[n]),

Furthermore, we know by Prop. 7.15(6) that the comparison map from the latter to
the target of the spectral sequence is such that aI (for I 6= ∆[n]) is represented by

φasl0(I)I+∆n−l0(I) . Since these classes have the same multiplicative order, we observe
that the comparison map is an isomorphism.

Note that the spectral sequence does not converge for t = n+ 1 (the class a∆[n] ∈
K∗(Hn) has no representative in E∞), which is not surprising since K∗(Hn+1) = 0.
However, for t > n + 1, the EMSS again converges for trivial reasons: source and
target are trivial. �

Proof of Theorem 1.3. In Theorem 7.17 we proved pro-constant convergence, and
since K(n)∗(Hr) is a finite K(n)∗-module for all r by the calculations of Ravenel
and Wilson, {K(n)∗(X)}X∈F (Hr)

is ind-constant. Thus we have Ind-convergence.
�
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