
Cocycle schemes and MU [2k,∞)–orientations

Eric Peterson

Abstract. We recall the study of MU [2k,∞)–orientations as elucidated by

Ando, Hopkins, and Strickland. Their work prompts us to investigate a par-

ticular algebraic moduli which, after 2–localization, we (together with Adam
Hughes and JohnMark Lau) fully describe for all values of k. It gives a strik-

ingly good (but imperfect) approximation of our topological motivator.

1. Motivation: Integration in extraordinary cohomology theories

There is a whole industry in algebraic topology dedicated to understanding
“orientations” of ring spectra, defined as follows:

Definition 1.1. Suppose that G(n)→ O(n) is a multiplicative system of structure
groups:

· · · G(n) G(n+ 1) · · ·

· · · O(n) O(n+ 1) · · · .
A G–orientation of a ring spectrum E is a map ϕ of ring spectra

ϕ : MG→ E,

where MG is the Thom spectrum associated to the system of structure groups.

Example 1.2. There are orientations MO → HF2 and MSO → HZ given by
coconnective truncation.

This definition is stanadard, but it may not make plain to an interloper why
this is of any special interest. The first observation (and the usual motivation) is
that evaluating such a map on a point gives rise to an E∗–valued genus

ϕ∗ : MG∗ → E∗,

i.e., a ring homomorphism which converts G–structured bordism classes to elements
of E∗.

Example 1.3. The induced maps π∗MO → π∗HF2 = F2 and π∗MSO → π∗HZ =
Z count the number of (signed) points in a dimension 0 (oriented) manifold.
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However, this is really just scratching the surface, and there are techniques for
getting a lot more out of an orientation than this simple invariant. For example,
Kochman [Koc78, Section 4] models the G–structured bordism groups MGm(X)
via a chain complex of monoids

· · · ∂−→
{
Zn → X

∣∣∣∣ Zn a compact n–manifold
with G–structure

}
∂−→
{
Zn−1 → X

∣∣∣∣ Zn−1 a compact (n− 1)–manifold
with G–structure

}
∂−→ · · · ,

where each map “∂” is given by restricting to the boundary of the source manifold.
Under this definition, we then consider the bordism homology group MGn−m(En),
where En is the nth space in the Ω–spectrum for the G–oriented ring spectrum E.
Using this model, one computes

MGnEn−m =

{
Mn ω−→ En−m

∣∣∣∣ M a closed n–dimensional G–manifold,
ω ∈ En−m(M) a class of codimension m

}/
∼ .

In terms of stable homotopy theory, the spectrum

MG ∧ Σ−(n−m)Σ∞+ En−m

contains in π−m information about G–structured bordism classes of dimension n
which are equipped with m–codimensional E–cohomology classes. Incorporating
the orientation ϕ, one can then build the composite

S−m (M,ω)−−−−→MG ∧ Σ−(n−m)Σ∞+ En−m
colimn→∞−−−−−−−→MG ∧ E ϕ∧1−−→ E ∧ E µ−→ E,

which gives a recipe for an element of π−mE. Classically, this element is identifiable.

Lemma 1.4. For ϕMO : MO → HF2 and ϕMSO : MSO → HZ, this assignment
is only interesting in the case m = 0, where

ϕMO : (Mn, ω ∈ Hn(M ;F2)) 7→
∫
M

ω ∈ F2 = π0HF2,

ϕMSO : (Mn oriented, ω ∈ Hn(M ;Z)) 7→
∫
M

ω ∈ Z = π0HZ. �

In general, we think of this as a way to extract an integral for E–cohomology classes
on G–structured manifolds.

Remembering the Pontryagin–Thom equivalence S 'MFramed, this construc-
tion suddenly gains widespread application: to any ring spectrum E, the unit map
ηE : S→ E associates a theory of integration for E–cohomology classes on framed
bordism classes by the orientation

MFramed ' S ηE−−→ E.

This also gives a further interpretation of orientations in general: the sequence of
ring maps

S→MSO
ϕ−→ HZ

can then be thought of as a factorization which witnesses some overdeterminacy
of the naturally occurring framed integral. After all, given a framed manifold one
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can integrate a top-dimensional integral cohomology class, but actually a mere
orientation of the tangent bundle is all that is required to produce an integral.1

Recognizing that O and SO form the beginning of the Postnikov tower for O,
we are inspired to ask the following:

Question 1.5. Given a ring spectrum ηE : S → E, through what stage of the
Postnikov filtration does ηE factor?

Here’s a somewhat longer list of known orientations of cohomology theories:

S · · · MO[8,∞) MO[4,∞) MO[2,∞) MO[1,∞)

MFramed · · · MString MSpin MSO MO

tmf kO HZ HF2.

The first two vertical maps are classical; the orientation MSpin → kO is due to
Atiyah, Bott, and Shapiro [ABS64, Joa97]; and the orientation

σ : MString→ tmf

is due to Ando, Hopkins, Rezk, and Strickland [AHR, AHS01, AS01, HAS99].
One can see an interesting correspondence beginning to take form: the level of
Postnikov filtration on the top is matched (imperfectly) by the chromatic height of
the spectrum on the bottom. The precise nature of this correspondence is pretty
widely open, and our goal is to shed computational light on one aspect of it, mo-
tivated by the construction of the String–orientation of tmf . Their first step is to
instead consider maps

MString MU [6,∞)

tmf E.

σ

approximating σ on both sides. The replacement of MString by MU [6,∞) is meant
to be simpler because MU [6,∞) is closer to MU , whose theory of orientations is
exceedingly well–understood: this the theory of complex orientations. Accordingly,
E is chosen to be a complex-orientable spectrum approximating tmf . Their game,
then, is to scale the Postnikov tower from orientations MU → E to gain an un-
derstanding of orientations MU [6,∞)→ E, then use this knowledge to show that
wisely chosen approximations suffice to construct the desired map σ.

2. The algebraic geometry of the Thom construction

Chromatic homotopy theory, the study of complex-oriented cohomology theo-
ries, is naturally cast as a marriage of arithmetic geometry and algebraic topology.
According to the taste of the author, the exposition can vary widely in which of
these two fields is favored, and the version set forward by Ando, Hopkins, and
Strickland is one of the more arithmetically dense. Their basic object is:

1Take this lightly, as this factorization is also a witness that oriented manifolds which cannot
be framed support such integrals as well.
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Definition 2.1 ([Str99, Definition 8.11], [AHS01, Section 2.1.2]). For a space X
and ring spectrum E, we write XE for the formal affine scheme

XE = Spf E0X

topologized by the lattice of compact subspaces of X.

This visibly requires some niceness — for instance, E0X has to be a commu-
tative ring, E has to be sufficiently self-entwined so that “E0” carries all of the
interesting information, and the formal topology on E0X has to be handled deli-
cately. Details are available for the interested reader [Str99, Section 8.2], but for
our purposes it suffices to say that they arrange their situation so that this is the
case. Here is the basic sort of theorem you can expect to see in their language:

Theorem 2.2 ([Str99, Section 8.6]). There is a bijection between ring spec-

trum maps MUP → E and isomorphisms between CP∞E and the affine line Â1 =
Spf E0JxK. �

Before discussing bordism orientations further, we will take the time to trans-
late some other theorems about complex-orientable cohomology theories into this
language. Of course, the main point of choosing a complex orientation is to provide
Thom isomorphisms for complex vector bundles, so this gives us a wide body of
results to work on translating. For instance, the complex-oriented E–cohomology
of the projectivization P(V ) of a rank n vector bundle V on a space X has a
presentation as

E∗P(V ) ∼= E∗XJtK/cV (t),

where cV (t) is the total Chern class of V , i.e.,

cV (t) = tn − c1(V )tn−1 + c2(V )tn−2 − · · ·+ (−1)ncn(V ).

In their language, one writes:

Lemma 2.3 ([Str99, Proposition 8.28]). The formal scheme P(V )E is finite (of
degree n) and free over XE, and it forms a closed subscheme — i.e., it is an effective
Weil divisor — of the curve CP∞E ×XE (thought of as an XE–scheme). �

Corollary 2.4 ([Str99, Proposition 8.31]). The induced map BU(n)E → Div+
n CP∞E

is an isomorphism, where Div+
n CP∞E is the formal scheme classifying effective Weil

divisors of degree n. �

Projectivization leads to another essential theorem in vector bundle geometry:
the splitting principle. Fixing V over X, there is a map f : Y → X such that
f∗V splits naturally as a sum of line bundles and the induced map E∗f , for any
complex-orientable E, is injective.

Lemma 2.5. Fixing a vector bundle V over a space X, there is a map f : Y → X
such that YE → XE is finite and faithfully flat, and f∗EP(V )E = P(f∗V )E splits as
a sum of points. �

We can also directly interpret the cohomology of the Thom spectrum XV ,
although this takes a little more vocabulary. In classical language, a Thom iso-

morphism is an E0X–module isomorphism Ẽ0XV ∼= E0X, and the entire theory
of modules is recast by algebraic geometers as the theory of quasicoherent sheaves
over affine schemes.
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Lemma 2.6 ([Str99, Definition 8.33]). The quasicoherent sheaf L(V ) over XE

determined by E0XV is a trivializable line bundle. �

A remarkable feature of the algebro-geometric language employed in this section
is that many things we are first taught to think of as structures in topology —
here is a collection of Thom isomorphisms, for instance, or a consequence of a
calculation that begins with invoking the existence of some basis — can be easily
recast as properties of the associated geometric objects — here are trivializable
invertible sheaves, without a chosen trivializing section. This allows us to make
concise distinctions between facts about a complex-oriented cohomology theory and
facts about a complex-orientable cohomology theory, without a particular complex
orientation taken as reference. In fact, the theorem at the beginning of this section
can be stated without such a reference object:

Theorem 2.7 ([Str99, Section 8.6], [AHS01, Example 2.53]). Let L denote
the tautological line bundle on CP∞. The sheaf L(L) on CP∞E is invertible exactly
when E is complex-orientable, in which case it is trivializable. Trivializations then
biject with ring maps MUP → E.

Sketch of proof. A trivialization of L(L) gives rise to a trivialization of

L(L×n ↓ (CP∞)×n) ∼= L(L)�n ↓ (CP∞E )×n.

Applying the splitting principle to a vector bundle V over a space X to produce
a map f : Y → X, the resulting sheaf L(f∗V ) pulls back from L(L×n), hence re-
ceives a trivialization. Finally, trivializations descend along finite flat maps. To see
that these trivializations are suitably compatible, write ζ : XE → CP∞E × XE for
the zero-section and I(P(V )E) for the ideal sheaf of functions vanishing on P(V )E .
There is then is an equivalence ζ∗I(P(V )E) ∼= L(V ). The projectivization construc-
tion converts sums of bundles to sums of divisors, and hence the trivialization of
L(V ⊕W ) is the product of the trivializations for L(V ) and L(W ). Applying these
constructions to the universal bundles over the spaces BU(n), this data constructs
a ring map MUP → E. �

3. Orientations for MSU and MU [6,∞)

We now return to the study of ring maps MU [2k,∞) → E for positive k.
Because we went through the analysis above, we can see where the crucial pieces
of input lie: first we should develop a version of the splitting principle for these
structured bundles, and then we should tease apart the resulting mess of formal
schemes.

Suppose that V is a vector bundle over X and that Y → X is the space over
X guaranteed to us by the splitting principle for V . Now consider first the case of
k = 1, where V has been lifted as in

BU BU × Z

X.

+n·1

V
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The analog of the splitting principle for BU–structured bundles then says that over
Y as in Lemma 2.5, there is an isomorphism

f∗(V − n · 1) ∼=

 n⊕
j=1

Lj

− n · 1 ∼= n⊕
j=1

(Lj − 1),

where now both the left– and right–hand sides have a natural interpretation as
vector bundles of virtual rank 0.

For the case k = 2, select a further lift

BSU BU BU × Z

X.

+n·1

V
Ṽ

We record the following analogous Lemma and proof:

Lemma 3.1. The bundle f∗Ṽ is equivalent (as BSU–classes) to a sum of bundles
of the form (H− 1)(H′ − 1) for H, H′ complex line bundles.

Proof. Over Y , we may split two lines off of V = L1+L2+V ′. Because (L1−ε)
and (L2 − ε) both have natural BU–structures, they can both be interpreted as
classes in kU2(Y ) = [Y,BU ]. It follows that their product (L1 − ε)(L2 − ε) has a
natural SU–structure, where we cup the two classes in kU2(Y ) to form a class in
kU4(Y ), and hence the sum

Ṽ + (L1 − ε)(L2 − ε)

has a natural SU–structure as well.2 The underlying bundle has the form

(V − nε) + (L1 − ε)(L2 − ε) = (V ′ + L1 + L2 − nε) + (L1 − ε)(L2 − ε)
= (V ′ + L1 + L2 − nε)

− (L1 − ε)− (L2 − ε) + (L1L2 − ε)
= (V ′ + L1L2)− (n− 1)ε.

This is the virtualization of a vector bundle of one rank fewer, so we can induct.
To ground the induction, we need only know that all rank 1 bundles with SU–

structure are trivial. This follows because admitting an SU–structure is identical
to having vanishing first Chern class, but complex line bundles are determined by
their first Chern classes. �

Lemma 3.2 (Hopkins3). In the case k = 3, BU [6,∞)–bundles decompose into
sums of BU [6,∞)–bundles of the form (H− 1)(H′ − 1)(H′′ − 1). �

In light of these enhanced splitting principles for the structure groups SU and
U [5,∞), we are moved to study the universal maps

2In general, the ring structure gives a lift (CP∞)×k → BU [2k,∞) of the k–fold external

product of the reduced tautological bundle. This lift does not actually depend on the ring struc-
ture: it also exists because the bottom several Chern classes of the external product vanish, and

it is unique because there are no odd-degree classes in kU∗(CP∞)×k.
3This has been claimed without proof [Hop95, pg. 558]. However, I do not know an elemen-

tary proof of this, along the lines of Lemma 3.1.
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(CP∞E )×2 BSUE ,

(CP∞E )×3 BU [6,∞)E .

(L1−1)(L2−1)

(L1−1)(L2−1)(L3−1)

These maps have some evident properties:

(1) They are symmetric: trading Lj and Lk gives an isomorphic bundle.
(2) They are rigid : replacing Lj by the trivial line gives the zero bundle.
(3) They are DivCP∞E –linear : one can act by a line bundle H ∈ kU0CP∞

using the product map

kU0 × kU6
µ−→ kU6

which gives simultaneous decompositions

(L1 − 1)H(L2 − 1) = (L1 − 1)(HL2 −H) = (L1 − 1)(HL2 − 1)− (H− 1)(L1 − 1)

= (HL1 −H)(L2 − 1) = (HL1 − 1)(L2 − 1)− (H− 1)(L2 − 1).

Equating these last two expressions gives a kind of 2–cocycle condition.

With these observations in hand, one is led to investigate the following functions:

Definition 3.3 ([AHS01, Definition 2.42]). A k–variate symmetric 2–cocycle for

E is a trivialization of the line bundle L(
⊗k

j=1(Lj − 1)) on (CP∞)×kE satisfying a

symmetry condition, a rigidity condition, and the linearity condition4

f(t, x+CP∞E y, . . .)

f(t, x, . . .)
=
f(t+CP∞E x, y, . . .)

f(x, y, . . .)
.

We write Ck(CP∞E ; I(0)) for the set of such.

These are the sections which one “expects” to come fromBU [2k,∞)–structures.
The main theorem of Ando, Hopkins, and Strickland is that these considerations
are sufficient:

Theorem 3.4 ([AHS01, Corollary 2.52]). For E a complex-orientable ring
spectrum and k ≤ 3 an integer, such a trivializing section determines a ring map
MU [2k,∞)→ E.

Notes on proof. They reduce from general E to E = MU , then from there
to E = Hk for k a prime field. They then perform the brutal calculation of the avail-
able such sections in the algebraic model and compare with SpecHk∗MU [2k,∞),
made accessible by Singer’s calculation below. They find that the topological and al-
gebraic objects have the same graded ranks and that one surjects onto the other. �

In the case of k = 0 and k = 1, this degenerates to exactly the classical analysis.
In the case where E is an elliptic spectrum, they further show that the associated
elliptic curve begets a canonical section in the k = 3 case.5 This unicity is the main
punchline in the construction of the (complex, nonparametrized) σ–orientation.
It’s also possible, by placing more hypotheses on E, to extend this same mode of
analysis to ring maps MString→ E [HAS99].

4To explain the notation in this last condition, CP∞E is a smooth formal group, owing to the

tensor product of line bundles, and we denote its group operation by “+CP∞
E

”.
5Remarkably, attaching elliptic data to E does not give a canonical section for k < 3!
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4. Orientations for MU [2k,∞)?

Several things go wrong in trying to extend this analysis to MU [2k,∞) for
k ≥ 4, which forms the real subject of this note. In fact, something immediately
obstructs any attempt to continue the algebro-geometric analysis described. The
following theorem is key to their result:

Theorem 4.1 ([Sin68, Sto63]). There are classes θ2j ≡ cj (mod decomposables)
such that

HF2
∗(BU [2k,∞)) ∼=

HF2
∗(BU)

〈θ2j | σ2(j − 1) < k − 1〉
⊗Op[Sq3 ι2k−3],

where Op[Sq3 ι2k−3] is the Steenrod–Hopf sub-algebra of HF2
∗K(Z, 2k−3) generated

by Sq3 ι2k−3. �

Corollary 4.2 ([HLP13, Remark 8.1]). There are odd classes in HF2∗BU [2k,∞)
for k ≥ 4.

Proof. The class Sq7 Sq3 ι2k−3 ∈ Op[Sq3 ι2k−3] is non-zero once k ≥ 4. �

By consequence, there are also odd classes in HF2∗MU [2k,∞), and there are
similar statements at primes p ≥ 3. This means that we’re not allowed to form
the affine scheme “SpecHFp∗MU [2k,∞)” for k ≥ 4, and so the Ando–Hopkins–
Strickland program is immediately stymied.

Nonetheless, we can still perform a purely algebraic analysis. In order to find
more concrete footing, consider the following result of Ando, Hopkins, and Strick-
land:

Lemma 4.3 ([AHS01, Theorem 2.50]). For k ≤ 3, the Thom diagonal map

E∗MU [2k,∞)⊗E∗ E∗BU [2k,∞)← E∗MU [2k,∞)

models the tensor product map

Ck(CP∞E ; I(0))× Ck(CP∞E ;O)→ Ck(CP∞E ; I(0)⊗O)
∼=−→ Ck(CP∞E ; I(0)),

where Ck(CP∞E ;O) denotes the set of k–variate Gm–valued functions satisfying the
linearity, symmetry, and 2–cocycle conditions. �

This presents Ck(CP∞E ; I(0)) as a torsor for Ck(CP∞E ;O). In particular, there is
a noncanonical isomorphism between them, and we may as well study the untwisted
version, which is a considerable gain in concreteness. Moreover, our case of interest

is E = HF2, so that CP∞HF2
= Ĝa over SpecF2, where we too can perform the

brutal calculation analogous to the proof of Theorem 3.4:

Theorem 4.4 ([HLP13, Theorem 7.7]). There is a presentation of F2–algebras

O(Ck(Ĝa;O)) = F2[zn | ν2ϕ(n, k) ≤ ν2n]⊗
⊗ Γ[bn,γ2(n,k) | ν2ϕ(n, k) > ν2n]⊗
⊗ F2[bn,i | γ2(n, k) < i < Dn,k]/〈b2n,i〉,

where n ≥ k ranges over integers, Dn,k is the coefficient of the generating function
∞∏
i=0

1

1− tx2i
=
∑
n,k

Dn,kx
ntk,



COCYCLE SCHEMES AND MU [2k,∞)–ORIENTATIONS 9

and γp(n, k) = max{0,min{k − σp(n), νp(n)}} counts the number of divided power
classes introduced already.

The same construction as the universal map in Section 3 begets a ring map

O(Ck(Ĝa;O))→ HF2∗BU [2k,∞).

More than this, this map is equivariant for the coaction of O(Aut Ĝa), i.e., it is a
map of comodules for the dual Steenrod algebra. Accordingly, it factors

O(Ck(Ĝa;O)) HF2∗BU [2k,∞)

even part

even sub-Steenrod-Hopf algebra.

Conjecture 4.5 ([HLP13, Remark 8.2]). The longest map is an isomorphism.

Evidence. The Poincaré series of the source of the isomorphism is accessible
from Theorem 4.4. Singer’s method gives partial information about the coaction
of the dual Steenrod algebra on the topological side, which is enough to make an
educated guess about the Poincaré series of the restricted algebraic target. As far
out as we can check (through some thousands of bidegrees) these series agree.

This means that the algebraic approximation is actually pretty good — much,
much closer than you might initially think! This begets a natural question, if we
want to use this calculation in homotopy theory:

Question 4.6 ([HLP13, Remark 8.5]). Is there a space X(k) with SpecE∗X(k) ∼=
Ck(ĜE ;O) for E a complex–orientable cohomology theory? In particular, is there
a space whose HF2–homology realizes this particular subset of the HF2–homology
of BU [2k,∞)?

These spaces should probably have some other nice properties if they’re to
be truly useful. However, because these hypothetical spaces are so close to such
already-famous spaces, there are many dangerous theorems to steer around.

Lemma 4.7. The spaces X(k) cannot collectively form the spaces of an Ω–spectrum.

Proof. The results of Adams and Priddy [AP76] show that any connective
spectrum delooping BSU is p–locally equivalent to kU [4,∞). Since we have X(2) =
BSU , this would force X(k) = BU [2k,∞) for all k. However, we know that
BU [8,∞) does not model X(4). �

Nonetheless, the putative spaces X(k) may individually be infinite loopspaces,
with associated spectra x(k). These, too, are prohibited from being too interesting.
Recall that part of the Ando–Hopkins–Strickland program was to study a particular
lifting problem, which K(2)–locally looks like

MO[8,∞) MU [6,∞)

EO2 E2,
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where E2 is a Morava E–theory associated to a supersingular elliptic curve and
EO2 is its homotopy fixed points under the action of a maximal finite subgroup of
the automorphisms of the curve. These sorts of factorizations are largely prohibited
at higher chromatic heights.

Lemma 4.8. There cannot exist a diagram of ring spectra

S MO[j,∞) xo(k) EOp−1

MU [j,∞) x(k) Ep−1.

for any prime p ≥ 5 and for any choice of k and j.

Proof. Already the “outer” rectangle is prohibited from existing, with the
xo(k) → x(k) column removed. Namely, Hovey has shown [Hov97, Proposition
2.3.2] that there cannot exist a map of ring spectra MO[j,∞) → EOp−1 because
the homotopy element α1/1 is visible in π∗EOp−1 but not in π∗MO[j,∞). �

This means that, even if x(k) → Ep−1 does exist in any sense, there cannot ex-
ist a map xo(k) → EOp−1 factoring it which participates at all naturally with
orientations by connective real bordism theories.

In spite of these results, there is an interesting sequence of infinite loopspaces
that overlaps with the well–understood part of this analysis.

Definition 4.9. A Wilson space is a connected p–local H–space which is indecom-
posable and which has Z(p)–free homotopy and homology.

Theorem 4.10 ([Wil75, Corollary 6.8]). Wilson spaces all appear as BP 〈n〉k
for varying values of n and k. �

At p = 2, the first few Wilson spaces are indicated in the following table:

k 1 2 3 4 · · ·
Yk BU BSU BU [6,∞) BP 〈2〉8 · · · .

Their ordinary homology is known as a Hopf ring, computed by Sinkinson [Sin76]
following along the lines of Ravenel and Wilson’s analysis [RW77] of HFp∗MU2,
and the result doesn’t look very much like what we described above. Nonetheless,
the primacy of Wilson spaces and their overlap with the Ando–Hopkins–Strickland
results is encouraging. In light of our summary here, perhaps some connection
would be uncovered if we could answer the following question:

Question 4.11. Is there a splitting principle for BP 〈2〉8–classes?
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