
tmf -BASED MAHOWALD INVARIANTS

J.D. QUIGLEY

Abstract. The 2-primary homotopy β-family, defined as the collection of Mahowald invariants

of Mahowald invariants of 2i, i ≥ 1, is an infinite collection of periodic elements in the stable

homotopy groups of spheres. In this paper, we calculate tmf -based approximations to this family.
Our calculations combine an analysis of the Atiyah-Hirzebruch spectral sequence for the Tate

construction of tmf with trivial C2-action and Behrens’ filtered Mahowald invariant machinery.
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1. Introduction

1.1. Greek letter families. Greek letter elements form infinite, periodic families in the stable
homotopy groups of spheres. These families were constructed at low chromatic heights by Adams
[1], Smith [35], and Toda [37], and their work led to the Greek letter construction which builds
analogous families at higher chromatic heights. This general procedure is effective in many cases,
but it requires the existence of certain generalized Moore spectra. These do not always exist, so the
number of Greek letter families which can be produced via the Greek letter construction is limited.

Miller, Ravenel, and Wilson [24] defined algebraic Greek letter elements in the E2-term of the
Adams-Novikov spectral sequence for the sphere. They then defined Greek letter elements as the
classes in homotopy which the algebraic Greek letter elements detect. This definition works at all
chromatic heights and all primes, but since algebraic Greek letter elements do not always survive in
the Adams-Novikov spectral sequence, some of the resulting Greek letter elements are zero.

In [23], Mahowald and Ravenel defined homotopy Greek letter elements. These elements are
defined at all chromatic heights and all primes, and moreover, they are always nonzero. Furthermore,
calculations at low heights suggest that homotopy Greek letter elements coincide with the Greek
letter elements as defined above (whenever they are nonzero). Homotopy Greek letter elements
have been completely calculated at chromatic height one, and they have been studied extensively at
chromatic height two in the odd-primary setting. They have also been calculated in low dimensions
at the prime two. This paper is a first step towards completely calculating the 2-primary homotopy
Greek letter family at chromatic height two.

1.2. The Mahowald invariant and homotopy Greek letter families. Homotopy Greek letter
elements are defined using the Mahowald invariant. Although our interest in the Mahowald invariant
is limited to chromatic homotopy theory in this paper, we note that the Mahowald invariant has
a wide array of applications, including unstable homotopy theory [20, 23], geometry [31, 36, 17],
equivariant homotopy theory [8], and motivic homotopy theory [26, 27, 28].
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The Mahowald invariant of a class α ∈ πt(S0)(p) in the p-local stable stems is a nontrivial coset

M(α) ⊂ πt+N−1(S0)(p) contained in a higher p-local stable stem. Let α ∈ πt(S0)(2). The Mahowald
invariant of α, denoted M(α), is the coset of completions of the diagram

(1)

St S−N+1

S0 ΣP∞−∞ ΣP∞−N

α

M(α)

'

where N > 0 is the minimal integer such that the left-hand composite from St to ΣP∞−N is nontrivial.
The spectrum P∞−N is the Thom spectrum of the (−N)-fold Whitney sum of the tautological bundle
over RP∞, and P∞−∞ is the inverse limit of these as N tends to infinity. In particular, the minimality
of N ensures that the coset M(α) is nontrivial. The map S0 → ΣP∞−∞ is a 2-adic equivalence by
Lin’s Theorem [19].

In [22, Conj. 12], Mahowald and Ravenel conjectured that the Mahowald invariant carries vn-
periodic classes to vn-torsion classes (with some exceptions). This conjecture has been verified by
explicit computation in many cases:

(1) When n = 0 and p = 2, Mahowald and Ravenel computed M(2i) for all i ≥ 1 and showed
all the elements in it are v1-periodic [23].

(2) When n = 0 and p ≥ 3, Mahowald and Ravenel and Sadofsky showed αi ∈ M(pi) for all
i ≥ 1 [23, 30].

(3) When n = 1 and p ≥ 5, Mahowald and Ravenel and Sadofsky proved βi ∈ M(αi) for all
i ≥ 1 [23, 30].

(4) When n = 1 and p ≥ 5, Sadofsky further proved that βp/2 ∈M(αp/2) [30].

(5) When n = 1 and p = 3, Behrens calculated that (−1)i+1βi ∈ M(αi) for i ≡ 0, 1, 5 mod 9
[4].

(6) When n = 1 and p = 2, Behrens determined M(x) for x ∈ π≤12(S0)(2). In particular, his

calculations imply that M(M(2i)) is v2-periodic for i ≤ 7 [5].

In all of these calculations, (iterated) Mahowald invariants contain Greek letter elements whenever
they exist and are nonzero [23]. This observation led Mahowald and Ravenel to make the following
definition.

Definition 1.1. [23, Def. 3.6] The p-primary i-th homotopy Greek letter element is defined by
αhi := M(pi), βhi := M(M(pi)), and so on.

The computations of Mahowald, Ravenel, Sadofsky, and Behrens may therefore be viewed as
computations of αhi at all primes, βhi at all primes p ≥ 5, βhi for i ≡ 0, 1, 5 mod 9 at the prime
p = 3, and βhi for i ≤ 7 at the prime p = 2.

1.3. The E-based Mahowald invariant. The Mahowald invariant is difficult to calculate directly:
one must understand a range of the stable homotopy groups of P∞−N for various N > 0, and this is
roughly as difficult as understanding the stable homotopy groups of spheres (cf. [11, 14]). Therefore
most Mahowald invariant calculations, including all of those listed above, rely on certain approx-
imations to the Mahowald invariant which use simpler homology theories than stable homotopy
groups.

Let E be a spectrum equipped with a trivial C2-action. By [16, Thm. 16.1], there is an equivalence

EtC2 ' lim
n

(ΣP∞−n ∧ E),
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where EtC2 is the C2-Tate construction. Let α ∈ πt(EtC2). The E-based Mahowald invariant of α,
ME(α), is the coset of completions of the diagram

St Σ−N+1E

EtC2 lim
←

(E ∧ ΣP∞−n) E ∧ ΣP∞−N

α

ME(α)

'

where N > 0 is minimal such that the left-hand composite from St to E ∧ ΣP∞−N is nontrivial.
Mahowald and Ravenel [23] and Sadofsky [30] used the BP -based Mahowald invariant to compute

M(pi), p ≥ 3, and M(M(pi)), p ≥ 5. However, BP cannot be used to calculate M(2i) using the
same techniques because BP does not detect the relevant elements in the 2-primary stable stems.
Instead, Mahowald and Ravenel calculated M(2i) using the bo-based Mahowald invariant. In more
detail, Davis and Mahowald [13] showed that there is an equivalence after 2-completion

botC2 '
∨
i∈Z

Σ4iHZ2,

so in particular 2i ∈ Z2
∼= π0(

∨
i∈ZHZ2) ∼= π0(botC2) for all i ≥ 1. Thus Mbo(2

i) is a well-defined
coset in π∗(bo). Mahowald and Ravenel computed this for all i ≥ 1, then lifted their results along
the Hurewicz map S0 → bo to determine αhi = M(2i) for all i ≥ 1.

With this example in mind, the calculation of M(M(2i)) should use the height two analog of bo,
connective topological modular forms tmf . Bailey and Ricka [2] showed that there is an equivalence
after 2-completion

tmf tC2 '
∨
i∈Z

Σ8ibo,

so Mtmf (α) is well-defined for any α ∈ π∗(bo). Thus Mtmf (Mbo(2
i)) is a well-defined coset in π∗(tmf ).

Mahowald and Ravenel’s calculations at chromatic height one suggest that at height two, M(M(2i))
may be determined by calculating Mtmf (Mbo(2

i)) for all i ≥ 1 and then lifting these calculations
along the Hurewicz map S0 → tmf .

1.4. Statement of main result. In this paper, we carry out the first step in the program outlined
above by computing Mtmf (Mbo(2

i)) for all i ≥ 1. In Theorem 1.2, the class η generates π1(bo) ∼= Z/2,
the class α generates π4(bo) ∼= Z2, and the class β is the Bott element which generates π8(bo) ∼= Z2.
The elements Mtmf (Mbo(x)) ∈ π∗(tmf ) are named as in [15]. The bo-based Mahowald invariants
Mbo(2

i) were calculated by Mahowald and Ravenel in [23].

Theorem 1.2. The following tables consist of the classes 2i ∈ π∗(HZ2), their bo-based Mahowald
invariants Mbo(2

i) ∈ π∗(bo), and the tmf -based Mahowald invariants of their bo-based Mahowald
invariants Mtmf (Mbo(2

i)). The remaining tmf -based Mahowald invariants are determined by the
rule Mtmf (Mbo(2

32 · x)) = Mtmf (β8x) = ∆8Mtmf (x).

x Mbo(x) Mtmf (Mbo(x))
20 1 1[0]
21 η ν[−2]
22 η2 ν2[−4]
23 α (c4 + ε)[−4]

x Mbo(x) Mtmf (Mbo(x))
24 β κ̄[−12]
25 βη η∆[−16]
26 βη2 κ̄ε[−18]
27 βα q[−20]

x Mbo(x) Mtmf (Mbo(x))
28 β2 η∆κ̄[−29]
29 β2η η2∆2[−33]
210 β2η2 ν∆2η2[−35]
211 β2α (c4 + ε)∆2[−36]

x Mbo(x) Mtmf (Mbo(x))
212 β3 η∆κ̄2[−41]
213 β3η η2∆2κ̄[−45]
214 β3η2 η3∆3[−49]
215 β3α ∆3c4[−52]

x Mbo(x) Mtmf (Mbo(x))
216 β4 η2∆2κ̄2[−58]
217 β4η ν∆4[−66]
218 β4η2 ∆4ν2[−68]
219 β4α ∆4(c4 + ε)[−68]

x Mbo(x) Mtmf (Mbo(x))
220 β5 2∆4κ̄[−76]
221 β5η η2∆5[−81]
222 β5η2 η∆κ̄5[−83]
223 β5α ∆4q[−84]
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x Mbo(x) Mtmf (Mbo(x))
224 β6 ∆4κ3[−90]
225 β6η η2∆5κ̄[−93]
226 β6η2 ∆6η3[−97]
227 β6α (c4 + ε)∆6[−100]

x Mbo(x) Mtmf (Mbo(x))
228 β7 ν∆6κ[−105]
229 β7η ν∆6κη[−105]
230 β7η2 ν∆6κν[−107]
231 β7α ∆7c4[−116]

Remark 1.3. In low dimensions, our calculations suggest that Mtmf (Mbo(2
i)) is a close approxi-

mation to M(M(2i)). In particular, we see that Mtmf (Mbo(2
i)) is in the Hurewicz image of tmf for

i ∈ {1, 2, 6} and it agrees with M(M(2i)) as calculated in [5].

Theorem 1.2 is proven in Section 4. We will say more about the proof in the next section.

1.5. Techniques: The Atiyah-Hirzebruch spectral sequence and filtered Mahowald in-
variant. The E-based Mahowald invariant is typically computed by analyzing the Atiyah-Hirzebruch
spectral sequence (AHSS) converging to π∗(E

tC2). For E = bo, this is a fairly simple computation
since the AHSS collapses at E4. The computation is not straightforward when E = tmf , and we do
not know precisely when the AHSS collapses. We analyze the AHSS up to the E8-page in Section
2, but this partial analysis does not suffice to calculate Mtmf (Mbo(2

i)) for all i ≥ 1. The necessary
additional machinery is described below.

Lin’s Theorem provides an interesting filtration of the stable stems by attaching to each class
α ∈ π∗(S0) the dimension of the cell of ΣRP∞−∞ where it is detected. In practice, calculating the
filtration of α is essentially equivalent to computing the Mahowald invariant of α. If E is a ring
spectrum, then the E-Adams filtration gives an alternative method for attaching a number to α;
namely, the stage of the E-Adams resolution of the sphere where α is detected [29, Ch. 2]. In [4],
Behrens combined these two filtrations of π∗(S

0) to obtain a bifiltration which he used to define
E-filtered Mahowald invariants, EM [k](α), k ≥ 0. These formalize the idea of computing “Mahowald
invariants up to E-Adams filtration k.” In particular, one has M(α) = EM [∞](α) if the E-based
Adams spectral sequence (ASS) converges, and if the spectral sequence has a vanishing line of finite

slope, then one has M(α) = EM
[k]

(α) for all k >> 0.
Behrens provides a procedure for lifting filtered Mahowald invariants into higher Adams filtration

[4, Procedure 9.1]. Roughly speaking, given an E-filtered Mahowald invariant EM [k](α), an algo-
rithmic analysis of the E-based Adams spectral sequence (ASS) and the attaching maps in ΣP∞−∞

allow one to compute EM
[k+1]

(α). This procedure was used to great effect in [4] and [5] to com-
pute Mahowald invariants of v1-periodic classes at the primes p = 2, 3. We note that to start the
procedure, one must also identify the first nontrivial filtered Mahowald invariant; this can usually
be done by consulting existing Ext-calculations such as [10].

To computeMtmf (Mbo(2
i)) for all i ≥ 1, we adapt Behrens’ filtered Mahowald invariant machinery

to the category of tmf -modules. In particular, we define the E-filtered tmf -based Mahowald invariant
by combining the E-Adams filtration of tmf with the filtration of tmf tC2 ' lim

←
(tmf ∧ΣP∞−∞) induced

by the cellular filtration of ΣP∞−∞. We provide a pseudo-algorithm for lifting E-filtered tmf -based
Mahowald invariants into higher Adams filtration in Section 4.2. As in Behrens’ calculations, we
consult existing Ext-calculations due to Davis and Mahowald [12] to determine the first nontrivial
HF2-filtered tmf -based Mahowald invariants. We summarize their computations in Section 3.

1.6. Ongoing and future work. We conclude by mentioning some ongoing and future work related
to the calculations in this paper.

1.6.1. Finite complexes and Greek letter families. In [5, Def. 3.1], Behrens proposed a different
definition of the homotopy Greek letter elements:

Definition 1.4 (Behrens). Suppose that X is a type n p-local finite complex for which BP∗(X) is

a free module over BP∗/I, for I = (pi0 , vi11 , . . . , v
in−1

n−1 ). Suppose that X has vkn-multiplication. Then
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we define the homotopy Greek letter element (α(n))hk/in−1,...,i0
to be the element of π∗(S

0) which

detects vkn ∈ π∗(X) in the E1-term of the AHSS.

This definition may depend on the choice of X and choice of detecting elements in the AHSS in
[5, Rem. 3.2]. However, if one takes X = S0/(2, η) to be a finite type 1 complex with a v11-self-map,
then the resulting elements αhi/1, i ≥ 1, coincide with the family elements αhi := M(2i), i ≥ 1,

defined using the Mahowald invariant. This suggests that if one takes X to be a type n complex
with a v1n-self-map, then the finite complex definition of the homotopy Greek letter elements may
produce the same elements as the Mahowald invariant definition.

In [7], Bhattacharya and Egger define a class of finite spectra which admit a v12-self-map. In work
in progress with Bhattacharya, we are calculating tmf -based approximations to the finite complex
definition of βhi for all i ≥ 1. We plan to compare our finite complex calculations to the Mahowald
invariant calculations in Theorem 1.2.

1.6.2. The 2-primary homotopy β-family. As noted above, the tmf -based Mahowald invariants we
calculated are approximations to the homotopy β-family at the prime two. In future work, we plan to
lift the computations in Theorem 1.2 (and their finite complex analogs calculated with Bhattacharya)
along the Hurewicz map S0 → tmf using the tmf -resolution.

1.7. Outline. In Section 2, we analyze the AHSS for tmf tC2 . The resulting E8-page is depicted in
Appendix A.

In Section 3, we introduce the algebraic E-based Mahowald invariant and review Davis and
Mahowald’s algebraic tmf -based Mahowald invariant calculations from [12]. These algebraic com-
putations serve as the starting point for our calculations of tmf -based Mahowald invariants.

In Section 4, we adapt Behrens’ filtered Mahowald invariant machinery to the category of tmf -
modules. We apply this to compute Mtmf (Mbo(2

i)) for all i ≥ 1. The result is summarized in
Theorem 1.2.

1.8. Conventions. Unless otherwise stated, everything outside of the Introduction is implicitly 2-
complete. We will write ‘AHSS’ for “Atiyah-Hirzebruch spectral sequence” and “Atiyah-Hirzebruch
spectral sequence converging to π∗(tmf tC2)” and ‘ASS’ for “Adams spectral sequence.”

The Mahowald invariant and E-based Mahowald invariant is a coset of elements, but we will write
“β = Mtmf (α)” instead of “β is contained in ME(α)” for conciseness.

1.9. Acknowledgements. The author thanks Mark Behrens for his guidance throughout this
project, as well as Prasit Bhattacharya and a referee for helpful comments. The author also thanks
André Henriques for allowing the use and modification of the picture of π∗(tmf ) from [15] in an ear-
lier version. Finally, the author thanks Tilman Bauer and Hood Chatham, whose spectral sequence
programs were used to produce various figures. The author was partially supported by NSF grant
DMS-1547292.

2. The Atiyah-Hirzebruch spectral sequence for tmf tC2

We begin by analyzing the AHSS which arises from the cellular filtration of ΣP∞−∞ and converges

to π∗(tmf tC2). Differentials in this spectral sequence are induced by the attaching maps in P∞−n
which are detected by tmf . It is generally hard to determine such attaching maps unless they are
detected by primary squaring operations, so we cannot completely determine the differentials in
this spectral sequence. Instead, we run just enough differentials to make our tmf -based Mahowald
invariant calculations in Section 4.
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2.1. The Atiyah-Hirzebruch spectral sequence. The homotopy groups of tmf were computed
at p = 2 by Bauer in [3], and the homotopy groups of the Tate construction of tmf equipped with
a trivial C2-action were computed by Bailey and Ricka:

Theorem 2.1. [2, Theorem 1.1] There is an equivalence of spectra

tmf tC2 '
∏
i∈Z

Σ8ibo.

By [16, Thm. 16.1], the Tate construction of a spectrum X equipped with a trivial C2-action
may be described as a homotopy limit

XtC2 ' lim
k

(X ∧ ΣP∞−k).

The AHSS for tmf tC2 arises from the cellular filtration of ΣP∞−∞ by applying tmf ∗(−). The filtration

quotients of the cellular filtration Fi/Fi+1 ' Si are just spheres, so the E1-page of the AHSS

converging to π∗(tmf tC2) is given by

Es,t1 = tmf t(S
s) ∼= tmf t−s(S

0)⇒ πt(tmf tC2).

In other words, the E1-page consists of a copy of π∗(tmf ) in each filtration s. A picture of these
homotopy groups can be found in [15, “The homotopy groups of tmf and of its localizations”]. For
readability, we have recreated this image (minus some multiplicative extensions) in Figure 1.

For any integer r > 0, we write ν2(r) for its 2-adic valuation. We only need to compute finitely
many differentials on each page in view of the following lemma (which is a consequence of James
periodicity):

Lemma 2.2. The dr-differentials in the AHSS are periodic with period (2ν2(r), 2ν2(r)).

The d1-differentials are given by

d1(x[s]) = 2x[s− 1], s ≡ 1 mod 2,

where our notation is that α[i] is the copy of the class α occurring in Atiyah-Hirzebruch filtration i.
We obtain the E2-page depicted in Figures 2-3. In Figures 2-19, squares and bullets both represent
F2.

We next determine the E3-page. The d2-differentials are given by

d2(x[s]) = ηx[s− 2], s ≡ 1, 2 mod 4.

We obtain the E3-page depicted in Figures 4-7.
To compute the E4-page, we have d3-differentials

d3(x[s]) = 〈x, 2, η〉[s− 3], s ≡ 3 mod 4,

d3(x[s]) = 〈x, η, 2〉[s− 3], s ≡ 1 mod 4.

To compute these differentials we will use the Massey products from [18, Table 16] and Toda brackets
from [18, Table 19]. The unit map

S0 → tmf

is a map of E∞-ring spectra and therefore the induced map in homotopy groups preserves all higher
structure. In particular, we can use Isaksen’s computations to compute Toda brackets of classes in
tmf ∗ as long as those classes are in the Hurewicz image for tmf .

Lemma 2.3. [18, Table 19] The following Toda brackets hold in π∗(S
0):

η2 ∈ 〈2, η, 2〉, 2ν ∈ 〈η, 2, η〉, ε ∈ 〈ν2, 2, η〉.
The following Toda brackets hold in tmf ∗ for i ≥ 1:

ci−14 2c6 ∈ 〈ci4η2, 2, η〉.
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Lemma 2.4. For s ≡ 3 mod 4, there are nontrivial d3-differentials

d3(ν2[s]) = ε[s− 3], d3(∆η[s]) = ∆2ν[s− 3], d3(ν∆2ν2[s]) = ν∆2ε[s− 3],

d3(ν∆4ν[s]) = ε∆4[s− 3], d3(κ∆4η∆[s]) = κ∆42ν∆[s− 3], d3(ν∆6ν2[s]) = ν∆6ε[s− 3].

For s ≡ 1 mod 4, there are nontrivial d3-differentials

d3(2κ̄2[s]) = η2κ̄2[s− 3], d3(ν∆52[s]) = ν∆5η2[s− 3].

Proof. These follow from inspection of [15, Pages 190-191]. �

The E4-page is depicted in Figures 8-11. Before proceeding to the E5-page, we note that a large
portion of the elements in the E4-page survive to the E∞-page.

Lemma 2.5. Nontrivial elements in the E4-page of the AHSS of the form ci4η
j∆k[−N ] or 2c6c

i
4∆k[−N ]

with i ≥ 1, 1 ≤ j ≤ 3, k ≥ 0, and N > 0 survive to nontrivial elements in the E∞-page of the AHSS.

Proof. There are no multiplicative or higher multiplicative relations in tmf ∗ involving these classes
which could produce a dr-differential killing them in the AHSS for r ≥ 4. �

Next we compute the E5-page. The d4-differentials are given by

d4(x[s]) = νx[s− 4], s ≡ 1, 2, 3, 4 mod 8.

The E5-page is depicted in Figures 12-19.
There are no possible d5-differentials, since these would either correspond to attaching maps in

π4(S0) = 0 or a Toda bracket 〈x, ν, 2〉 which is not defined since 2ν 6= 0, or a Toda bracket 〈x, η, 2, η〉
which is zero for all x ∈ tmf ∗. Therefore we have E5 = E6.

We now calculate the E7-page. Since π5(S0) = 0, the d6-differentials are given by

d6(x[s]) = 〈x, η, ν〉[s− 6], s ≡ 5, 6 mod 8,

d6(x[s]) = 〈x, ν, η〉[s− 6], s ≡ 1, 2 mod 8.

To compute these differentials, we will use the Massey products from [3, Table 1] and [18, Table 19].

Lemma 2.6. [3, Table 1][18, Table 19] The following Toda brackets hold in tmf ∗:

ν2 ∈ 〈η, ν, η〉, ε ∈ 〈ν, η, ν〉, ε ∈ 〈2ν, ν, η〉, 2κ̄ ∈ 〈κη, η, ν〉.
Lemma 2.7. We have the following d6-differentials. For s ≡ 6 mod 8, we have

d6(κ∆4η[s]) = 2∆4κ̄[s− 6].

For s ≡ 1 mod 8, we have

d6(κη[s]) = κν2[s− 6], d6(ν∆22ν[s]) = ν∆2ε[s− 6], d6(κ∆4η[s]) = κ∆4ν2.

As the E7-page is fairly similar to the E5-page, we leave the construction of its charts as an
exercise for the reader.

We conclude with the E8-page. The possible d7-differentials are given by

d7(x[s]) = 〈x, 2, η, ν〉[s− 7], s ≡ 7 mod 8,

d7(x[s]) = 〈x, ν, η, 2〉[s− 7], s ≡ 1 mod 8.

These follow from the Toda bracket κ̄ ∈ 〈κ, 2, η, ν〉 in tmf ∗ [3, Table 1].
We then have the following list of d7-differentials.

Lemma 2.8. For s ≡ 7 mod 8, there are nontrivial d7-differentials

d7(κ[s]) = κ̄[s−7], d7(η∆κ[s]) = η∆κ̄[s−7], d7(κ∆4η[s]) = η∆4κ̄[s−7], d7(κ∆4κ[s]) = κ∆4κ̄[s−7].

The E8-page is depicted in a range in Appendix A.

Remark 2.9. We have only listed differentials on elements in π≤191tmf . The remaining differentials
are determined by the rule dr(∆

8x) = ∆8dr(x) which follow from the fact that ∆8 ∈ π192(tmf ) is
nonzero.
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3. Algebraic E-based Mahowald invariants via the Koszul spectral sequence

In this section, we recall Davis and Mahowald’s computation of the algebraic tmf -based Mahowald
invariants which will serve as our starting point for calculating tmf -based Mahowald invariants in

Section 4. Let M be an A(n)-module. Define Rn := P⊗(ξ2
n

1 , ξ2
n−1

2 , . . . , ξ2n, ξn+1) to be the tensor-
algebra on the above generators, and let Rσn denote the submodule consisting of monomials of length
n. The Koszul spectral sequence [21, Theorem 2.8] has the form

Eσ,s,t1 = Exts−σ,tA(n−1)(R
σ
n ⊗M)⇒ Exts,tA(n)(M).

This spectral sequence was used by Davis and Mahowald [12] to compute ExtA(2)(H
∗(RP∞N )) for

all N ∈ Z and by Mahowald and Shick [21] to define the chromatic filtration of the E2-page of the
ASS. It also appears as the “Davis-Mahowald spectral sequence” in recent work of Shick [33].

3.1. The Koszul spectral sequence for Ext∗∗A(1)(H
∗(ΣP∞N )). In this subsection, we demonstrate

the Koszul spectral sequence in a simple case. We include many details to give the reader an idea of
how to understand the computations in [12], which we will cite but not reprove in the sequel. The
first Koszul spectral sequence we consider has the form

Eσ,s,t1 = Exts−σ,tA(0) (P⊗(ξ21 , ξ2)σ)⇒ Exts,tA(1)(F2).

We begin by calculating the E1-page. Let Rσ1 = P (ξ21 , ξ2)σ.

Lemma 3.1. When σ is even, there is an isomorphism

Ext∗−σ,∗A(0) (Rσ1 ) =

(
σ−1⊕
i=0

F2[2i]

)
⊕ Z[σ]

where the functor (−)[k] shifts elements in bidegree (s, t) into bidegree (s, t + k). When σ is odd,
there is an isomorphism

Ext∗−σ,∗A(0) (Rσ1 ) =

σ⊕
i=0

F2[2i].

Proof. The A(0)-module R1
1 consists of classes [ξ21 ] and [ξ2]. The A(0)∗-coaction on ξ2 is restricted

from the A∗-coaction, so we have

ψ(ξ2) = ξ1 ⊗ ξ21 + 1⊗ ξ2,
from which we conclude Sq1(ξ2) = ξ21 . Therefore

R1
1
∼= Σ2A(0) ∼= H∗(Σ2V (0)),

and ExtA(0)(R
1
1) is just a shifted copy of F2.

The A(0)-module R2
1 consists of classes [ξ21 ⊗ ξ21 ], [ξ21 ⊗ ξ2], and [ξ2 ⊗ ξ2]. By the same argument

as above, we see that Sq1([ξ21 ⊗ ξ2]) = [ξ21 ⊗ ξ21 ], and Sq1[ξ2 ⊗ ξ2] = 0. Therefore we conclude

R2
1
∼= Σ4A(0)⊕ Σ6F2

∼= H∗(Σ4V (0) ∧ S6),

and ExtA(0)(R
2
1) is a shifted copy of F2 and a shifted copy of Z.

More generally, the elements of Rσ1 are in bijective correspondence with monotone increasing
strings (1, 1, . . . , 2, 2) of length σ. Elements with 2i entries of ‘2’ are related by Sq1 to elements with
2i+ 1 entries of ‘2’. The result then follows easily by induction on σ. �

We now calculate differentials. The d1-differentials in the Koszul spectral sequence are obtained
by dualizing the differential in the Koszul resolution (see e.g. [21, Sec. 2]). Using this fact, or by
comparing to other calculations of Ext∗∗A(1)(F2), we obtain the pattern of differentials depicted in

Figure 20.
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0 2 4 6 8 10 12
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1

Figure 20. The Koszul spectral sequence for Ext∗∗A(1)(F2). A � represents Z and

a • represents F2.

We can use the Koszul spectral sequence to compute ExtA(1)(H
∗(ΣP∞N )) for all N ∈ Z. In this

case, it takes the form

Eσ,s,t1 = Exts,tA(0)(R
σ
1 ⊗H∗(ΣP∞N ))⇒ Extσ+s,tA(1) (H∗(ΣP∞N )).

Recall that as an A(0)-module, H∗(ΣP∞N ) is 2-periodic with respect to N . In particular, we have
isomorphisms of A(0)-modules

H∗(ΣP∞2N−1) ∼=
⊕
i≥N

Σ2iH∗(V (0)),

H∗(ΣP∞2N ) ∼= Σ2N+1H∗(pt)⊕
⊕
i≥N

Σ2i+2H∗(V (0)).

The first splitting shows that in order to understand the Koszul spectral sequence for H∗(ΣP∞2N−1),
it suffices to analyze the Koszul spectral sequence for V (0). The second splitting shows that it
suffices to understand the spectral sequence for H∗(V (0)) and H∗(S0).

For H∗(S0), the Koszul spectral sequence was already analyzed. For H∗(V (0)), we recall that
H∗(V (0)) ∼= A(0) so we may apply change-of-rings to see that

Ext∗∗A(0)(R
σ
1 ⊗F2

H∗(V (0))) ∼= Ext∗∗F2
(Rσ1 ).

The differentials can again be calculated from the definition or from comparison with existing cal-
culations of Ext∗∗A(1)(H

∗(V (0))); we leave the details to the reader.

Altogether, this gives us sufficient information to calculate Ext∗∗A(1)(H
∗(ΣP∞N )) for all N ∈ Z.

We include a picture of Ext∗∗A(1)(H
∗(ΣP∞−9)) in Figure 21 as an example.

3.2. Algebraic E-based Mahowald invariants. Let α ∈ Exts,tA(n)(H
∗(ΣP∞−∞)). Applying Ext∗∗A(n)(H

∗(−))

to Diagram 1 produces a diagram

Exts,tA(n)(F2) Exts,t+N−1A(n) (F2)

Exts,tA(n)(H
∗(ΣP∞−∞)) Exts,tA(n)(H

∗(P∞−N )).

Malg
E (−)

νN

where N > 0 is minimal such that the left-hand composite is nontrivial (compare with [4, Def. 3.3]).

If E is a spectrum with cohomology A//A(n), then the coset of lifts γ ∈ Exts,t−N−1A(n) (F2) of the

element νN ◦ f(α) is the algebraic E-based Mahowald invariant of α. Recall that H∗(bo) ∼= A//A(1)
and H∗(tmf ) ∼= A//A(2), so we may define the algebraic bo-based and algebraic tmf -based Mahowald
invariants.
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Figure 21. The E∞-page of the Koszul spectral sequence for Ext∗∗A(1)(H
∗(ΣP∞−9)).

A • represents F2.

Let n = 1, 2. Elementary calculations with the Steenrod algebra and the A-module structure of
H∗(ΣP∞−∞) show that as an A(n)-module, H∗(ΣP∞−∞) splits as

H∗(ΣP∞−∞) ∼=
⊕
i∈Z

Σi2
n+1

A(n)//A(n− 1).

By change-of-rings, we then have

Exts,tA(n)(H
∗(ΣP∞−∞)) ∼=

⊕
i∈Z

Σi2
n+1

ExtA(n−1)(F2)

so ME
alg(α) is defined for any α ∈ Ext∗∗A(n−1)(F2).

The analysis in the previous section determined the bottom left term in the diagram for all N ∈ Z
when n = 1. We can therefore compute the algebraic bo-based Mahowald invariants by inspection
of the relevant Ext-groups and analysis of the order of 2-torsion in Exts,sA(1)(H

∗(P∞−2n−1)). Since

these calculations are similar to the calculations of the homotopical bo-based Mahowald invariants
of 2i which were computed by Mahowald and Ravenel in [23], we leave the details to the reader.

The result is given in the following theorem, where h1 is the generator of Ext1,2A(1)(F2) ∼= F2, α is the

generator of Ext3,7A(1)(F2) ∼= F2, and β is the generator of Ext4,12A(1)(F2) ∼= F2.

Theorem 3.2. The algebraic bo-based Mahowald invariant is determined by the relation Malg
bo (h40x) =

βMalg
bo (x) and the table

x Malg
bo (x)

1 1
h0 h1
h20 h21
h30 α

Remark 3.3. These algebraic bo-based Mahowald invariants agree with the (non-algebraic) bo-based
Mahowald invariants Mbo(2

i) after replacing x ∈ ExtA(1) by the element which it detects in the ASS
for bo∗. The bo-based Mahowald invariants can be lifted to spherical Mahowald invariants using the
bo-filtered Mahowald invariant [4, Section 7].

3.3. Algebraic tmf -based Mahowald invariants. We now summarize David and Mahowald’s
analysis of the Koszul spectral sequence for Ext∗∗A(2)(F2) and Ext∗∗A(2)(H

∗(P∞N )). The first of these

has the form

Eσ,s,t1 = ExtA(1)(P (ξ41 , ξ
2
2 , ξ3)σ)⇒ ExtA(2)(F2).
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In [12, Proposition 5.4], they compute the E1-term of this spectral sequence by computing ExtA(1)(R
σ
2 )

using the same ideas as in our proof of Lemma 3.1. They then show that d1 is h2- and v82-linear,
and arrive at a closed formula for the d1-differential [12, Theorem 5.6]. Finally, they show that
E2 = E∞. The chart is depicted in [12, Theorem 2.6]. One may compare their calculations to those
of Iwai-Shimada [34] or the machine calculations depicted in [6, Figure 6.1].

After understanding F2, they turn to H∗(ΣP∞N ). Recall that as an A(1)-module, H∗(ΣP∞N )
decomposed into infinitely many suspensions of A(1)//A(0), and as an A(2)-module, H∗(ΣP∞N )
decomposed into infinitely many suspensions of A(2)//A(1). In fact, H∗(ΣP∞N ) may be decomposed
as an A(2)-module in several different ways.

Example 3.4. Bailey and Ricka define L0 to be the spectrum (S1 ∪2 e2 ∪η e4 ∪ν e8)+, and they
construct a cofiber sequence of tmf -modules

Σ−8ktmf ∧ P∞−1 → tmf ∧ P∞−1−8k → Σ−8ktmf ∧ L0.

This cofiber sequence plays a fundamental role in their proof of the spectral splitting of tmf tC2 [2,
Theorem 1.1].

Davis and Mahowald use a different splitting than Baily and Ricka which we outline now. They
begin by defining Mi (for i = 0, 1, 3, 4, 7) to be the smallest A(2)-module in which Sqig0 6= 0, where
g0 is a class in degree zero. For example, H∗(L0) ∼= ΣM7 ⊕ F2. They then use the Koszul spectral
sequence to compute ExtA(2)(Mi). These Ext-groups are presented in [12, Theorems 2.6-2.9] and
can also be computed using Ext-calculators of Bruner [9] or Perry [25].

Given these Ext-groups, one can then compute ExtA(2)(H
∗(P∞N )) forN odd using exact sequences

relating P∞N to A(2)-modules whose cohomology is known. For example, the exact sequence

0→ H∗(P∞1 )→ Q→ Σ−9M7 ⊕ Σ−1F2 → 0

is used to compute ExtA(2)(H
∗(P∞1 )). Here, Q is the quotient of H∗(P∞−∞) by the A(2)-module gen-

erated by classes in degree less than−9. We note thatQ appears in the calculation of ExtA(2)(H
∗(P∞N ))

for all N odd. Once one has these calculations for N odd, one can compute ExtA(2)(H
∗(P∞N )) for

N even using the exact sequences

0→ H∗(P∞N )→ H∗(P∞N−1)→ ΣN−1F2 → 0 and 0→ H∗(P∞N+1)→ H∗(P∞N )→ ΣNF2 → 0.

By the above discussion, we have

ExtA(2)(Q) ∼=
⊕
i≥−1

ExtA(1)(Σ
8i−1F2).

Let f : ExtA(1)(F2) → ExtA(2)(Q) denote the obvious inclusion. In computing ExtA(2)(H
∗(P∞N )),

one completely determines the image of ExtA(1)(F2) inside of ExtA(2)(H
∗(P∞N )), including the

minimal N < 0 where the image of a class α ∈ ExtA(1)(F2) is first nontrivial under f∗. This leads
to the following theorem.

Theorem 3.5. [12, Theorem 3.5] The algebraic tmf -based Mahowald invariant is determined by the

relations Malg
tmf (h40x) = v41M

alg
tmf (x) and Malg

tmf (β2x) = v82M
alg
tmf (x) and

x Malg
tmf (x)

1 1
h0 h1
h20 h21
h30 h31
h1 h2

x Malg
tmf (x)

h21 h22
α a
αh0 d
αh20 dh1
αh30 eh20

x Malg
tmf (x)

β g
βh0 gh1
βh20 a2

βh30 ad
βh1 v42h1

x Malg
tmf (x)

βh21 v42h
2
2

βα v42c
αβh0 dg
αβh20 a3

αβh30 v41v
4
2h

2
2
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4. tmf -based Mahowald invariants

We now apply our partial computation of the AHSS for π∗(tmf tC2) to compute the tmf -based
Mahowald invariants in Theorem 1.2. In Section 4.1, we recall the definition of the E-based Ma-
howald invariant and the filtered Mahowald invariant. We then define the H-filtered tmf -based
Mahowald invariant and record several results needed for our calculations. To help the reader navi-
gate our calculations, we provide a pseudo-algorithm for calculating tmf -based Mahowald invariants
in Section 4.2. In Section 4.3, we calculate several v1-periodic tmf -based Mahowald invariants which
allow us to eliminate many classes in high Adams filtration from consideration in our v2-periodic
calculations. In Section 4.4, we calculate the tmf -based Mahowald invariants Mtmf (Mbo(2

i)) for all
i ≥ 1. These results are assembled in Theorem 1.2.

4.1. Preliminaries. We start by recalling the E-based Mahowald invariant and the filtered Ma-
howald invariant. We then combine these to define the filtered tmf -based Mahowald invariant.

4.1.1. E-based Mahowald invariants. We begin with E-based Mahowald invariants.

Definition 4.1. Let α ∈ πt(EtC2). The E-based Mahowald invariant of α is the coset of completions
of the diagram

St Σ−N+1E

EtC2 lim
←

ΣP∞−N ∧ E ΣP∞−N ∧ E

α

ME(α)

'

where N > 0 is minimal so that the left-hand composite from St to ΣP∞−N ∧ E is nontrivial.

Remark 4.2. The S0-based Mahowald invariant is the ordinary Mahowald invariant defined in the
Introduction. We will sometimes refer to this as the spherical Mahowald invariant in the sequel.

Remark 4.3. We can enlarge the diagram above to define Mtmf (Mbo(α)) as the coset of dashed
arrows:

botC2 St Σ−N−M+2tmf

ΣP∞−N Σ−N+1bo

Σ−N+1tmf tC2 Σ−N+2P∞−M ∧ tmf

α

Mbo(α)

Mtmf (Mbo(α))

As we were unable to completely calculate the AHSS for tmf tC2 , we cannot compute tmf -based
Mahowald invariants immediately from the definition since we cannot determine the minimal N for
which any element α ∈ π∗(tmf tC2) is detected. Instead, we will compute the tmf -based Mahowald
invariant using the filtered Mahowald invariant machinery set up by Behrens in [4].

4.1.2. Filtered Mahowald invariants. The filtered Mahowald invariant is a sequence of approxima-
tions which arise from combining the Adams filtration of π∗(S

0) and the Atiyah-Hirzebruch filtration
of ΣRP∞−∞. We will not give a full review of this machinery here; we refer the reader to [5, Sec. 5]
for an introduction and rigorous definition.

Definition 4.4. Let E be a spectrum for which the E-based ASS for S0 converges and let α ∈ πt(S0).
Then the k-th E-filtered Mahowald invariant of α is defined in [5, Def. 5.1] and is denoted by

M [k](α) ∈ Ek,∗1 (S0),

where the right-hand side is the E1-page of the E-based ASS for S0. We will suppress E from the
notation since we will always take E = HF2 in this paper.
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Example 4.5. When k = 1 and E = HFp, this recovers the algebraic Mahowald invariant studied
by Mahowald and Shick in [21] and Shick in [32]. The algebraic Mahowald invariants of many
low-dimensional classes were computed by Bruner in [10] and serve as a starting point for many of
Behrens’ computations.

Remark 4.6. There is some indeterminacy in the definition of the filtered Mahowald invariant since
one can vary the amount of the Atiyah-Hirzebruch filtration considered at each Adams filtration; the
situation is depicted graphically in [4, Fig. 2]. This indeterminacy will be relevant in some of the
calculations below.

The filtered Mahowald invariant was originally defined to compute spherical Mahowald invariants,
so we must modify it to compute tmf -based Mahowald invariants.

Definition 4.7. Let E be a spectrum for which the E-based ASS for tmf converges and let α ∈
πt(bo). Then the k-th E-filtered tmf -based Mahowald invariant of α is defined by replacing π∗(−)
by tmf ∗(−) in [5, Def. 5.1]. We will denote it by

M
[k]
tmf (α) ∈ Ek,∗1 (tmf )

where the right-hand side is the E1-page of the E-based ASS for tmf . Again, we will suppress E
from the notation since we will always take E = HF2.

In order to compute M
[k+1]
tmf (α) from M

[k]
tmf (α), we will need the following specializations of [5,

Thm. 6.4] and [5, Thm. 6.5]. We refer the reader to [4, Sec. 4] for the definition of the K-Toda
bracket 〈K〉(β) (where K is a finite complex and β ∈ π∗(S0)).

Lemma 4.8. (1) There is a (possibly trivial) HF2-Adams differential (in the ASS for tmf ∗)

dr(M
[ki]
tmf (α)) = 〈P−Ni+1

−Ni
〉(M [ki+1]

tmf (α)).

(2) There is an equality of (possibly trivial) elements in tmf ∗

〈P−Ni

M 〉(M [ki]
tmf (α)) = 〈P−Ni+1

M 〉(M [ki+1]
tmf (α)).

Here, α ∈ tmf ∗ denotes an element which α detects in the HF2-based ASS.

These provide a method for lifting our calculations into higher Adams filtration. To get started,
we will be aided by the following tmf -based analog of [5, Theorem 6.6].

Lemma 4.9. The algebraic tmf -based Mahowald invariant agrees with the first nontrivial HF2-
filtered tmf -based Mahowald invariant.

4.1.3. A simplification using the ASS for tmf . In [5], Behrens uses Bruner’s computations [10] of
the algebraic Mahowald invariant of various classes in Ext∗∗A (F2) as a starting point for computing
the H-filtered (spherical) Mahowald invariant. The algebraic tmf -based Mahowald invariants we
will need in order to start computing the tmf -based Mahowald invariants of the bo-based Mahowald
invariants of 2i were given in Theorem 3.5. To lift these into higher Adams filtration, we need the
following facts about the differentials in the ASS for tmf .

Lemma 4.10. The differentials in the ASS converging to tmf ∗ are v322 - and v41-linear.

Proof. Multiplication by the permanent cycle ∆8 detects v322 in the ASS, so the differentials are v322 -
linear. Similarly, multiplication by the permanent cycle w1 detects v41 in the ASS, so the differentials
are v41-linear. �

In view of the v82-periodicity of the algebraic tmf -based Mahowald invariants and the v322 - and v41-
periodicity of the differentials in the ASS, it suffices to compute the tmf -based Mahowald invariants
Mtmf (Mbo(2

i)), 0 ≤ i ≤ 31, in order to determine Mtmf (Mbo(2
i)) for all i ≥ 1.
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4.2. Psuedo-algorithm for computation. Before we begin computing, we give a schematic for
calculating Mtmf (α). Our standard approach is as follows:

(1) Determine the algebraic approximation Malg
tmf (α) to the tmf -based Mahowald invariant by

consulting Theorem 3.5.
(2) If this approximation survives in the ASS for tmf and there are no elements of higher Adams

filtration which survive in the AHSS for tmf tC2 which can detect α, then this is Mtmf (α).
Otherwise, continue to Step (3).

(3) Check if there is an obvious way of applying Lemma 4.8 to lift this approximation into higher
Adams filtration.
(a) If yes, lift the element and return to the beginning of Step (2).
(b) If no, and if α does not survive in the ASS for tmf , check the AHSS to see which

elements lie in higher Adams filtration which can detect α.
(i) If there is only one element, that element is Mtmf (α).
(ii) If there is more than one element, show that all but one of these are tmf -based

Mahowald invariants of other elements. The remaining element is Mtmf (α).
(c) If no, and if α does survive in the ASS for tmf , and if there are elements of higher

Adams filtration which survive in the AHSS for tmf tC2 which can detect α, then try
another element. In this case, the elements in higher Adams filtration (or the current
approximation) must be ruled out from being Mtmf (α) by showing that they are the
tmf -based Mahowald invariant of different elements α′, α′′, · · · 6= α.

Remark 4.11. This will not always work, and we may employ other ad hoc arguments below. For
example, we can read several low-dimensional tmf -based Mahowald invariants off of the E8-page of
the AHSS, so we do not need to employ more elaborate machinery.

4.3. v1-periodic tmf -based Mahowald invariants. With the schematic from Section 4.2 in mind,
our first goal is to show that classes in high Adams filtration are tmf -based Mahowald invariants
of v0-periodic classes. In particular, we will show that Mtmf (24i+jβk) contains ci4η

j∆k for i ≥ 1,

0 ≤ j ≤ 2, and k ≥ 0, and when j = 3, it contains 2c6c
i−1
4 ∆k.

Convention 4.12. We will include the cell of ΣP∞−N where an element in π∗(tmf tC2) is detected in
square brackets after its tmf -based Mahowald invariant. For example, the expression Mtmf (1) = 1[0]

means that 1 ∈ π0(tmf tC2) is detected by 1 ∈ π0(tmf ) on the 0-cell of ΣP∞−∞.

The proof of the following theorem occupies the remainder of this subsection.

Theorem 4.13. For i ≥ 1, j ≥ 0, and k ∈ {0, 1}, the following tmf -based Mahowald invariants
hold, possibly up to the addition of elements in higher Adams filtration.

(1) Mtmf (24iβjαk) = ∆jci4[−16j − 8i− 4k],
(2) Mtmf (24i+1βjαk) = ∆jci4η[−1− 16j − 8i− 4k],
(3) Mtmf (24i+2βjαk) = ∆jci4η

2[−2− 16j − 8i− 4k],

(4) Mtmf (24i+3βjαk) = ∆jci−14 2c6[−4− 16j − 8i− 4k].

We begin with the cases where j = k = 0.

Lemma 4.14. For i ≥ 1, we have the following tmf -based Mahowald invariants.

(1) Mtmf (24i) = ci4[−8i],
(2) Mtmf (24i+1) = ci4η[−1− 8i],
(3) Mtmf (24i+2) = ci4η

2[−2− 8i],

(4) Mtmf (24i+3) = ci−14 2c6[−4− 8i].

Proof. Observe that Malg
tmf (24i) = M

[4i]
tmf (24i) = ci4[−8i] for all i ≥ 1. In the ASS for tmf , ci4

is a permanent cycle. Moreover, examination of the AHSS along with Lemma 2.5 shows that
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ci4[−8i] survives to the E8-page. There are no classes in higher Adams filtration and higher Atiyah-
Hirzebruch filtration which could detect ci4[−8i], so by the tmf -analog of [5, Cor. 6.2], we see that
ci4[−8i] is the tmf -based Mahowald invariant of 24i.

The remaining cases follow from dimensions considerations and examination of the AHSS. More
precisely, we have

|Mtmf (24i)| ≤ |Mtmf (24i+1)| ≤ |Mtmf (24i+2)| ≤ |Mtmf (24i+3)| ≤ |Mtmf (24i+4)|
for all i ≥ 1. In the AHSS, this implies that the collection of elements {Mtmf (24i+j)}3j=1 is situated

between Mtmf (24i) and Mtmf (24i+4) for all i ≥ 1. Since 24i+j = 2j · 24i, the Adams filtration of
Mtmf (24i+j) must be at least the Adams filtration of Mtmf (24i). The result then follows by checking

that ci4η[−1−8i], ci4η
2[−2−8i], and ci−14 2c6[−4−8i] are the only elements which could satisfy these

conditions on stem, Adams filtration, and Atiyah-Hirzebruch filtration. �

The cases where j = 0 and k = 1 require a slight modification:

Lemma 4.15. For i ≥ 1, we have the following tmf -based Mahowald invariants.

(1) Mtmf (24iα) = ci4[−4− 8i],
(2) Mtmf (24i+1α) = ci4η[−5− 8i],
(3) Mtmf (24i+2α) = ci4η

2[−6− 8i],

(4) Mtmf (24i+3α) = ci−14 2c6[−8− 8i].

Proof. We begin with Malg
tmf (24iα) = M

[4i+3]
tmf (24iα) = ci4a[−8− 8i] for all i ≥ 1. There is an Adams

differential d2(ci4a) = c4h2 for all i ≥ 0, from which we conclude that M
[4i+5]
tmf (24iα) = ci4[−4 − 8i].

Indeed, we have
〈ΣP−5−8i−9−8i 〉ci4 = h2c

i
4.

The class ci4 is a permanent cycle in the ASS for tmf and ci4[−4 − 8i] survives to the E∞-page of
the AHSS. It follows that ci4[−4− 8i] is the tmf -based Mahowald invariant of 24iα.

The remaining cases follow from dimension reasons and examination of the AHSS (compare with
the proof of Lemma 4.14). �

We now move to the general case. We include a proof for k = 0; the case k = 1 is identical up to
filtration shifts. To start, we calculate Mtmf (24i+3βj) with j even.

Lemma 4.16. For all j ≥ 0 even, we have

Mtmf (23βj) = ∆jη3[−3− 16j]

up to the addition of elements in higher Adams filtration. For all j ≥ 0 even and i ≥ 1, we have

Mtmf (24i+3βj) = ∆jci−14 2c6[−4− 16j − 8i]

up to the addition of elements in higher Adams filtration.

Proof. For all j even, we have Malg
tmf (23βj) = M

[4j+3]
tmf (23βj) = ∆jh31[−3− 16j]. This is a permanent

cycle and it survives in the AHSS by Lemma 2.5, so by the tmf -based analog of [5, Thm. 6.1], we
conclude thatMtmf (23βj) = ∆jη3[−3−16j] up to the addition of elements in higher Adams filtration.

By the same argument, for all i ≥ 1 and j even, we have Mtmf (24i+3βj) = ∆jci−14 2c6[−4− 16j− 8i]
up to the addition of elements in higher Adams filtration. �

Keeping j even but varying the power of 2, we have the following.

Lemma 4.17. Theorem 4.13 holds for i ≥ 1 and j ≥ 0 even.

Proof. The argument is similar to the proof of Lemma 4.14. We obtain dimension bounds on
Mtmf (24i+`βj), ` 6= 3, by comparing to the dimension of Mtmf (24i+3βj) calculated in Lemma 4.16.
These bounds determine analogous bounds on the Atiyah-Hirzebruch filtration of Mtmf (24i+`βj).
Examination of the AHSS reveals that the only elements with sufficiently high Adams filtration, i.e.
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the only elements which could detect Mtmf (24i+`βj), are in {∆jci4η
`[−` − 16j − 8i]}2`=0. Indeed,

every other element satisfying these restrictions on Atiyah-Hirzebruch filtration and Adams filtration
is already a tmf -based Mahowald invariant. The lemma then follows by matching the ` in 24i+`βj

to the ` in ∆jci4η
`[−`− 16j − 8i]. �

Lemma 4.18. Theorem 4.13 holds for i ≥ 1 and j ≥ 0 (including j odd).

Proof. We argue using dimension and filtration restrictions as above. First observe thatMtmf (24i+mβ2`+1)
must lie between Mtmf (24i+mβ2`) and Mtmf (24i+mβ2`+2) in the Atiyah-Hirzebruch spectral se-
quence, and further, its Adams filtration is restricted by the Adams filtration of these elements.
Examination of the AHSS reveals that the only elements in these restricted Atiyah-Hirzebruch and
Adams filtrations which are not already tmf -based Mahowald invariants are the elements claimed
in Theorem 4.13. The result follows by matching 24i+mβ2`+1 to the (4i+m)-th element in this list
of elements. �

4.4. tmf -based Mahowald invariants approximating βhi . We now compute the tmf -based Ma-
howald invariants of classes of the form Mbo(2

i), i ≥ 1. We begin with the classes of the form
βi = Mbo(2

4i).

Proposition 4.19. We have the following tmf -based Mahowald invariants:

(1) Mtmf (1) = 1[0],
(2) Mtmf (β) = κ̄[−12],
(3) Mtmf (β2) = η∆κ̄[−29]
(4) Mtmf (β3) = η∆κ̄2[−41],
(5) Mtmf (β4) = η2∆2κ̄2[−58],
(6) Mtmf (β5) = 2∆4κ̄[−76],
(7) Mtmf (β6) = ∆4κ3[−90],
(8) Mtmf (β7) = ν∆6κ[−105].

Proof. (1) This is clear from the definition.

(2) We begin with Malg
tmf (β) = M

[4]
tmf (β) = κ̄[−12]. Recall that κ̄ is detected by g in the ASS.

Inspection of the AHSS shows that there are no classes in higher Adams filtration which can
detect β, so we conclude that Mtmf (β) = κ̄[−12].

(3) We begin with Malg
tmf (β2) = M

[8]
tmf (β2) = ∆2[−32]. There is an Adams differential d2(∆2) =

h221v1x35 from which we conclude M
[10]
tmf (β2) = x35h

2
21[−29]. Indeed, we have

〈ΣP−30−33 〉x35h221 = v1x35h
2
21.

The class x35h
2
21 detects η∆κ̄. Inspection of the AHSS shows that there are no classes in

higher Adams filtration which can detect β2, so we conclude that Mtmf (β2) = η∆κ̄[−29].

(4) We begin withMalg
tmf (β3) = M

[12]
tmf (β3) = ∆2κ̄[−44]. There is an Adams differential d2(∆2κ̄) =

v1x35h
6
21 from which we conclude M [14](β3) = x35h

6
21[−41]. Indeed, we have

〈ΣP−42−45 〉x35h621 = v1x35h
6
21.

The class x35h
6
21 detects η∆κ̄2. Inspection of the AHSS shows that there are no classes in

higher Adams filtration which can detect β3, so we conclude that Mtmf (β3) = η∆κ̄2[−41].

(5) We begin with Malg
tmf (β4) = M

[16]
tmf (β4) = ∆4[−64]. There is an Adams differential d3(∆4) =

x35h
12
21 from which we conclude M

[19]
tmf (β4) = x35h

11
21[−58]. Indeed, we have

〈ΣP−59−65 〉x35h1121 = x35h
12
21.

The class x35h
11
21 detects η2∆2κ̄2. Inspection of the AHSS shows that there are no classes in

higher Adams filtration which can detect β4, so we conclude that Mtmf (β4) = η2∆2κ̄2[−58].



24 J.D. QUIGLEY

(6) We begin withMalg
tmf (β5) = M

[20]
tmf (β5) = ∆4κ̄[−76]. There is an Adams differential d3(∆4κ̄) =

x35h
16
21 from which we would like to conclude M

[23]
tmf (β5) = x35h

15
21[−70]. Indeed, we have

〈ΣP−71−77 〉x35h1521 = x35h
16
21.

However, the class x35h
15
21 detects ∆42κ = ∆2η2κ̄3 which does not survive in the AHSS.

In order to calculate Mtmf (β5), we must vary the bifiltration of ΣP∞−∞. Note that 2 ·∆4κ̄
is nonzero in tmf ∗ and that 2∆4κ̄[−76] survives in the AHSS. Varying the bifiltration of
ΣP∞−∞ so that Adams filtration 23 occurs before Atiyah-Hirzebruch filtration −76 gives

M
[23]
tmf (β5) = 2∆4κ̄[−76]. There are no classes in higher Adams filtration which can detect

β5, so we conclude that Mtmf (β5) = 2∆4κ̄[−76].

(7) We begin with Malg
tmf (β6) = M

[24]
tmf (β6) = ∆6[−96]. There is an Adams differential d2(∆6) =

∆4h221v1x35 from which we conclude M
[26]
tmf (β6) = ∆4h221x35[−93]. Indeed, we have

〈ΣP−94−97 〉∆4x35h
2
21 = ∆4h221v1x35.

There is a differential d3(∆4x35h
2
21) = x35h

21
21 from which we conclude that M

[27]
tmf (β6) 6=

∆4h221x35[−93]. Inspection of the AHSS shows that the only class in Adams filtration greater
than 26 which can detect β6 is ∆4κ3, so we must have Mtmf (β6) = ∆4κ3[−90].

(8) We begin with Malg
tmf (v281 ) = M

[28]
tmf (β7) = ∆6κ̄[−108]. This class does not survive in the ASS,

and inspection of the AHSS shows that the only classes in higher Adams filtration which
can detect β7 are ν∆6κ, ν∆6κη, and ν∆6ν. We will see below that Mtmf (v281 η) = ν∆6κη
and Mtmf (β7η2) = ν∆6κν, so we conclude that Mtmf (v281 ) = ν∆6κ[−105].

�

We now compute the tmf -based Mahowald invariants of classes of the form βiη = Mbo(2
4i+1).

Proposition 4.20. We have the following tmf -based Mahowald invariants:

(1) Mtmf (η) = ν[−2],
(2) Mtmf (βη) = η∆[−16],
(3) Mtmf (β2η) = η2∆2[−33],
(4) Mtmf (β3η) = η2∆2κ̄[−45],
(5) Mtmf (β4η) = ν∆4[−66],
(6) Mtmf (β5η) = η2∆5[−81],
(7) Mtmf (β6η) = η2∆5κ̄[−93],
(8) Mtmf (β7η) = ν∆6κη[−105].

Proof. (1) This follows from inspection of the AHSS.

(2) We begin with Malg
tmf (βη) = M

[5]
tmf (βη) = η∆[−16]. Inspection of the AHSS shows that

there are no classes in higher Adams filtration which can detect βη, so we conclude that
Mtmf (βη) = η∆[−16].

(3) We begin with Malg
tmf (β2η) = M

[9]
tmf (β2η) = ∆2ν[−34]. This class does not survive in the cor-

rect Atiyah-Hirzebruch filtration to detect β2η in the AHSS, so we know that Mtmf (β2η) 6=
∆2ν[−34]. The next two classes which could detect β2η in the AHSS are η∆κ̄ and η2∆2.
We have shown above that η∆κ̄ detects β2, so it cannot detect β2η. Therefore we conclude
that η2∆2[−33] detects β2η.

(4) We begin with Malg
tmf (β3η) = M

[13]
tmf (β3η) = ∆3η[−48]. There is an Adams differential

d2(∆3η) = v1x35h
7
21 from which we conclude M

[15]
tmf (β3η) = x35h

7
21[−45]. Indeed, we have

〈ΣP−46−49 〉x35h721 = v1x35h
7
21.

The class x35h
7
21 detects η2∆2κ̄. Inspection of the AHSS shows that there are no classes in

higher Adams filtration which can detect β3η, so we conclude thatMtmf (β3η) = η2∆2κ̄[−45].
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(5) We begin with Malg
tmf (β4η) = M

[17]
tmf (β4η) = ∆4ν[−66]. This class survives in the AHSS and

ASS. Inspection of the AHSS shows that there are no classes in higher Adams filtration
which can detect β4η, so we conclude that Mtmf (β4η) = ν∆4[−66].

(6) We begin with Malg
tmf (β5η) = M

[21]
tmf (β5η) = ∆5η[−80]. This class supports an Adams dif-

ferential d3(∆5η) = x35h
17
21. Since |Mtmf (β5η)| ≥ |Mtmf (β5)| = |2∆4κ̄| = 116, we see that

the only classes in higher Adams filtration and high enough stem which could detect β5η in
the AHSS are η∆4κ̄[−76] and η2∆5[−81]. Since η2∆5 = η∆5 · η, we find that varying the
bifiltration of ΣP∞−∞ so that Adams filtration 24 occurs before Atiyah-Hirzebruch filtration

−81 gives M
[24]
tmf (β5η) = η2∆5[−81]. There are no classes in higher Adams filtration which

can detect β5η, so we conclude that Mtmf (β5η) = η2∆5[−81].

(7) We begin with Malg
tmf (β6η) = M

[25]
tmf (β6η) = ∆6ν[−98]. This class does not survive in the

AHSS. The only class in higher Adams filtration which can detect β6η is η2∆5κ̄, so we
conclude that Mtmf (β6η) = η2∆5κ̄[−93].

(8) We begin with Malg
tmf (β7η) = M

[29]
tmf (β7η) = ∆7η[−112]. This class does not survive in the

ASS. The only classes in higher Adams filtration which can detect β7η are ν∆6κη and
ν∆6κν. We will see below that Mtmf (β7η2) = ν∆6κν, so we conclude that Mtmf (β7η) =
ν∆6κη[−105].

�

We now compute the tmf -based Mahowald invariants of classes of the form βiη2 = Mbo(2
4i+2).

Proposition 4.21. We have the following tmf -based Mahowald invariants:

(1) Mtmf (η2) = ν2[−4],
(2) Mtmf (βη2) = κ̄ε[−18],
(3) Mtmf (β2η2) = ν∆2η2[−35],
(4) Mtmf (β3η2) = η3∆3[−49],
(5) Mtmf (β4η2) = ∆4ν2[−68],
(6) Mtmf (β5η2) = η∆κ̄5[−83],
(7) Mtmf (β6η2) = ∆6η3[−97],
(8) Mtmf (β7η2) = ν∆6κν[−107].

Proof. (1) This follows from inspection of the AHSS.

(2) We begin with Malg
tmf (βη2) = M

[6]
tmf (βη2) = ∆ν2[−20]. There is an Adams differential

d3(∆ν2) = (c4 + ε)κ̄η from which we conclude M [8](βη2) = (c4 + ε)κ̄[−18]. Indeed, we
have

〈ΣP−19−21 〉(c4 + ε)κ̄ = η(c4 + ε)κ̄.

The class (c4 + ε)κ̄ detects κ̄ε. Inspection of the AHSS shows that there are no classes in
higher Adams filtration which can detect βη2, so we conclude Mtmf (βη2) = κ̄ε[−18].

(3) We begin with Malg
tmf (β2η2) = M

[10]
tmf (β2η2) = ∆2ν2[−36]. This class does not survive in the

correct column to detect β2η2 in the AHSS, so Mtmf (β2η2) 6= ∆2ν2. The only other classes
which can detect β2η2 are η2∆2 and ν∆2η2. The class η2∆2 already detected β2η, so we
conclude that ν∆2η2[−35] detects β2η2.

(4) We begin with Malg
tmf (β3η2) = M

[14]
tmf (β3η2) = ∆3ν2[−52]. There is an Adams differential

d2(∆3ν2) = v1x35h
8
21 from which we conclude M

[16]
tmf (β3η2) = x35h

8
21 + η3∆3. Indeed, we

have

〈ΣP−50−53 〉(x35h821 + η3∆3) = v1(x35h
8
21 + η3∆3).

The class x35h
8
21 + η3∆3 detects η3∆3. Inspection of the AHSS shows that there are no

classes in higher Adams filtration which can detect β3η2, so we conclude that Mtmf (β3η2) =
η3∆3[−49].
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(5) We begin with Malg
tmf (β4η2) = M

[18]
tmf (β4η2) = ∆4ν2[−68]. Inspection of the AHSS shows

that there are no classes in higher Adams filtration which can detect β4η2, so we conclude
that Mtmf (v161 η

2) = ∆4ν2[−68].

(6) We begin with Malg
tmf (β5η2) = M

[22]
tmf (β5η2) = ∆5ν2[−84]. This class does not survive in

the AHSS. The only class in higher Adams filtration which can detect β5η2 is η∆κ̄5, so we
conclude that Mtmf (β5η2) = η∆κ̄5[−83].

(7) We begin with Malg
tmf (β6η2) = M

[26]
tmf (β6η2) = ∆6ν2[−100]. This class does not survive in

the AHSS. The only class in higher Adams filtration which can detect β6η2 is ∆6η3, so we
conclude that Mtmf (β6η2) = ∆6η3[−97].

(8) We begin with Malg
tmf (β7η2) = M

[30]
tmf (β7η2) = ∆7ν2[−116]. This class does not survive in

the ASS. The only class in higher Adams filtration which can detect β7η2 is ν∆6κν, so we
conclude that Mtmf (β7η2) = ν∆6κν[−107].

�

We now compute the tmf -based Mahowald invariants of classes of the form βi−1α = Mbo(2
4i+3).

Proposition 4.22. We have the following tmf -based Mahowald invariants:

(1) Mtmf (α) = (c4 + ε)[−4],
(2) Mtmf (βα) = q[−20],
(3) Mtmf (β2α) = (c4 + ε)∆2[−36],
(4) Mtmf (β3α) = ∆3c4[−52],
(5) Mtmf (β4α) = ∆4(c4 + ε)[−68],
(6) Mtmf (β5α) = ∆4q[−84],
(7) Mtmf (β6α) = ∆6(c4 + ε)[−100],
(8) Mtmf (β7α) = ∆7c4[−116].

Proof. (1) We begin with Malg
tmf (α) = M

[3]
tmf (α) = a[−8]. There is a differential d2(a) = ν(c4 + ε)

from which we conclude M
[5]
tmf (α) = (c4 + ε)[−4]. Indeed, we have

〈ΣP−5−9 〉(c4 + ε) = ν(c4 + ε).

Inspection of the AHSS shows that there are no classes in higher Adams filtration which can
detect α, so we conclude that Mtmf (α) = (c4 + ε)[−4].

(2) We begin with Malg
tmf (βα) = M

[7]
tmf (βα) = ∆c[−20]. The class ∆c detects q. Inspection of

the AHSS shows that there are no classes in higher Adams filtration which can detect βα,
so we conclude that Mtmf (βα) = q[−20].

(3) We begin with Malg
tmf (β2α) = M

[11]
tmf (β2α) = ∆2a[−40]. There is an Adams differential

d2(∆2a) = ν∆2(c4 + ε) + x59 from which we conclude Mtmf (β2α) 6= ∆2a[−40]. Inspection
of the AHSS shows that the only classes in higher Adams filtration which could detect β2α
are ∆2(c4 + ε), ∆2(c4 + ε)η, ∆2c4η

2, and ∆22c6. Note that Mtmf (24β2α) = c24∆2[−44], so
the elements β2α, 2β2α, 22β2α, and 23β2α must be detected by the above elements. By
comparing dimensions, we conclude that Mtmf (β2α) = ∆2(c4 + ε)[−36].

(4) We begin with Malg
tmf (β3α) = M

[15]
tmf (β3α) = ∆3c[−52]. Inspection of the AHSS shows that

there are no classes in higher Adams filtration which can detect β3α, so we conclude that
Mtmf (β3α) = ∆3c4[−52].

(5) We begin with Malg
tmf (β4α) = M

[19]
tmf (β4α) = ∆4a[−72]. There is an Adams differential

d2(∆4a) = ∆4ν(c4 + ε) from which we conclude M
[21]
tmf (β4α) = ∆4(c4 + ε)[−68]. Indeed, we

have
〈ΣP−69−73 〉∆4(c4 + ε) = ν∆4(c4 + ε).

Inspection of the AHSS shows that there are no classes in higher Adams filtration which can
detect β4α, so we conclude that Mtmf (β4α) = ∆4(c4 + ε)[−68].
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(6) We begin withMalg
tmf (β5α) = M

[23]
tmf (β5α) = ∆5c[−84]. The class ∆5c detects ∆4q. Inspection

of the AHSS shows that there are no classes in higher Adams filtration which can detect
β5α, so we conclude that Mtmf (β5α) = ∆4q[−84].

(7) We begin with Malg
tmf (β6α) = M

[27]
tmf (β6α) = ∆6a[−104]. There is an Adams differential

d2(∆6a) = ν∆6(c4 + ε) + x165 from which we conclude that M
[29]
tmf (β6α) 6= ∆6a[−104]. The

argument for computing Mtmf (β2a) carries over by multiplying everything in sight by ∆4

to show that Mtmf (β6α) = ∆6(c4 + ε)[−100].

(8) We begin with Malg
tmf (β7α) = M

[31]
tmf (β7α) = ∆7c[−116]. Inspection of the AHSS shows that

there are no classes in higher Adams filtration which can detect β7α, so we conclude that
Mtmf (v301 ) = ∆7c4[−116]. We note that there are classes in higher Adams filtration, but
they are already the tmf -based Mahowald invariants of classes above.

�
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Appendix A. The E8-page of the AHSS for tmf tC2

In this appendix, we present part the E8-page of the AHSS converging to π∗(tmf tC2). This
E8-page is (8, 8)-periodic by the periodicity of the differentials in the AHSS. We show the spectral
sequence in the range 0 ≤ t ≤ 7 and −142 ≤ s ≤ 0. The s-range of each piece is listed below it,
with the lower s-value closer to the bottom of the page. A more complete chart may be viewed at
https://e.math.cornell.edu/people/jdq27/tmfAHSSE8.pdf.

https://e.math.cornell.edu/people/jdq27/tmfAHSSE8.pdf
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Figure 22. The E8-page of the AHSS for tmf tC2 , 0 ≤ t ≤ 7, −7 ≤ s ≤ 0. One
can read off Mtmf (α) for α ∈ {2, 22, 23, η, η2} from this calculation. Although the
E8-page suggests that one could have Mtmf (η3) = ε, we claim that one can calculate
Mtmf (η3) = ν3. Indeed, dim(Mtmf (η3)) ≥ dim(M(η3)) by [23, Thm. 2.15], and
M(η3) = ν3.
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Figure 23. The E8-page of the AHSS for tmf tC2 , 0 ≤ t ≤ 7, −15 ≤ s ≤ −8. The
classes ci4x along the column t = 0 detect v4i1 x̄ in tmf ∗. The class wη2 detects κ̄η2

in tmf ∗. More generally, the class wix detects κ̄ix̄ in tmf ∗.
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Figure 24. The E8-page of the AHSS for tmf tC2 , 0 ≤ t ≤ 7, −23 ≤ s ≤ −16.
Classes of the form ∆ix detect v4i2 x̄ in tmf ∗. The class x25 detects {η∆} in tmf 25.
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Figure 25. The E8-page of the AHSS for tmf tC2 , 0 ≤ t ≤ 7, −31 ≤ s ≤ −24.
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Figure 26. The E8-page of the AHSS for tmf tC2 , 0 ≤ t ≤ 7, −39 ≤ s ≤ −32.
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Figure 27. The E8-page of the AHSS for tmf tC2 , 0 ≤ t ≤ 7, −47 ≤ s ≤ −40. The
class x51 detects {ν∆2} in tmf 51.
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Figure 28. The E8-page of the AHSS for tmf tC2 , 0 ≤ t ≤ 7, −55 ≤ s ≤ −48.
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Figure 29. The E8-page of the AHSS for tmf tC2 , 0 ≤ t ≤ 7, −61 ≤ s ≤ −56.
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Figure 30. The E8-page of the AHSS for tmf tC2 , 0 ≤ t ≤ 7, −69 ≤ s ≤ −64.
From now on, we suppress terms containing ci4 for i ≥ 8 or cj42c6 for j ≥ 7 for
readability.
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Figure 31. The E8-page of the AHSS for tmf tC2 , 0 ≤ t ≤ 7, −79 ≤ s ≤ −72.
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Figure 32. The E8-page of the AHSS for tmf tC2 , 0 ≤ t ≤ 7, −87 ≤ s ≤ −80.
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Figure 33. The E8-page of the AHSS for tmf tC2 , 0 ≤ t ≤ 7, −95 ≤ s ≤ −88.
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Figure 34. The E8-page of the AHSS for tmf tC2 , 0 ≤ t ≤ 7, −103 ≤ s ≤ −96.
From now on, we suppress most v1-periodic classes. These continue to accumulate
as in the previous charts, but we can ignore them in Section 4.4 in view of Section
4.3.
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Figure 35. The E8-page of the AHSS for tmf tC2 , 0 ≤ t ≤ 7, −111 ≤ s ≤ −104.
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Figure 36. The E8-page of the AHSS for tmf tC2 , 0 ≤ t ≤ 7, −119 ≤ s ≤ −112.
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Figure 37. The E8-page of the AHSS for tmf tC2 , 0 ≤ t ≤ 7, −127 ≤ s ≤ −120.
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Figure 38. The E8-page of the AHSS for tmf tC2 , 0 ≤ t ≤ 7, −135 ≤ s ≤ −128.
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Figure 39. The E8-page of the AHSS for tmf tC2 , 0 ≤ t ≤ 7, −143 ≤ s ≤ −136.
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Figure 40. The E8-page of the AHSS for tmf tC2 , 0 ≤ t ≤ 7, −151 ≤ s ≤ −144.
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Figure 41. The E8-page of the AHSS for tmf tC2 , 0 ≤ t ≤ 7, −159 ≤ s ≤ −152.
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Figure 42. The E8-page of the AHSS for tmf tC2 , 0 ≤ t ≤ 7, −164 ≤ s ≤ −160.
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