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tmf-BASED MAHOWALD INVARIANTS

J.D. QUIGLEY

ABSTRACT. The 2-primary homotopy SB-family, defined as the collection of Mahowald invariants
of Mahowald invariants of 2%, ¢ > 1, is an infinite collection of periodic elements in the stable
homotopy groups of spheres. In this paper, we calculate tmf-based approximations to this family.
Our calculations combine an analysis of the Atiyah-Hirzebruch spectral sequence for the Tate
construction of tmf with trivial C-action and Behrens’ filtered Mahowald invariant machinery.
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1. INTRODUCTION

1.1. Greek letter families. Greek letter elements form infinite, periodic families in the stable
homotopy groups of spheres. These families were constructed at low chromatic heights by Adams
1], Smith [35], and Toda [37], and their work led to the Greek letter construction which builds
analogous families at higher chromatic heights. This general procedure is effective in many cases,
but it requires the existence of certain generalized Moore spectra. These do not always exist, so the
number of Greek letter families which can be produced via the Greek letter construction is limited.

Miller, Ravenel, and Wilson [24] defined algebraic Greek letter elements in the Fs-term of the
Adams-Novikov spectral sequence for the sphere. They then defined Greek letter elements as the
classes in homotopy which the algebraic Greek letter elements detect. This definition works at all
chromatic heights and all primes, but since algebraic Greek letter elements do not always survive in
the Adams-Novikov spectral sequence, some of the resulting Greek letter elements are zero.

In [23], Mahowald and Ravenel defined homotopy Greek letter elements. These elements are
defined at all chromatic heights and all primes, and moreover, they are always nonzero. Furthermore,
calculations at low heights suggest that homotopy Greek letter elements coincide with the Greek
letter elements as defined above (whenever they are nonzero). Homotopy Greek letter elements
have been completely calculated at chromatic height one, and they have been studied extensively at
chromatic height two in the odd-primary setting. They have also been calculated in low dimensions
at the prime two. This paper is a first step towards completely calculating the 2-primary homotopy
Greek letter family at chromatic height two.

1.2. The Mahowald invariant and homotopy Greek letter families. Homotopy Greek letter
elements are defined using the Mahowald invariant. Although our interest in the Mahowald invariant
is limited to chromatic homotopy theory in this paper, we note that the Mahowald invariant has
a wide array of applications, including unstable homotopy theory [20, 23], geometry [3T], 36l [17],
equivariant homotopy theory [§], and motivic homotopy theory [20] 27, 28].
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2 J.D. QUIGLEY

The Mahowald invariant of a class a € ’ﬂ't(SO)(p) in the p-local stable stems is a nontrivial coset
M (ar) C 7y n—1(SY)(p) contained in a higher p-local stable stem. Let a € m(S?)(2). The Mahowald
invariant of o, denoted M (a), is the coset of completions of the diagram

» ! 1

50 = ¥PX —— NP,

where N > 0 is the minimal integer such that the left-hand composite from S* to P> is nontrivial.
The spectrum P>, is the Thom spectrum of the (—N)-fold Whitney sum of the tautological bundle
over RP*°, and P° is the inverse limit of these as IV tends to infinity. In particular, the minimality
of N ensures that the coset M(«) is nontrivial. The map S° — LP>_ is a 2-adic equivalence by
Lin’s Theorem [T9].

In [22, Conj. 12], Mahowald and Ravenel conjectured that the Mahowald invariant carries v,,-
periodic classes to v,-torsion classes (with some exceptions). This conjecture has been verified by
explicit computation in many cases:

(1) When n = 0 and p = 2, Mahowald and Ravenel computed M (2¢) for all i > 1 and showed
all the elements in it are v;-periodic [23].

(2) When n = 0 and p > 3, Mahowald and Ravenel and Sadofsky showed «; € M(p?) for all
i > 1 [23,30].

(3) When n = 1 and p > 5, Mahowald and Ravenel and Sadofsky proved 8; € M(«;) for all
i > 1 [23,30].

(4) When n = 1 and p > 5, Sadofsky further proved that 3,/ € M(a,/2) [30].

(5) When n = 1 and p = 3, Behrens calculated that (—1)**!3; € M(«;) for i = 0,1,5 mod 9
[4].

(6) When n = 1 and p = 2, Behrens determined M (z) for € 7<12(S%)(2). In particular, his
calculations imply that M (M (2%)) is ve-periodic for i < 7 [5].

In all of these calculations, (iterated) Mahowald invariants contain Greek letter elements whenever
they exist and are nonzero [23]. This observation led Mahowald and Ravenel to make the following
definition.

Definition 1.1. [23) Def. 3.6] The p-primary i-th homotopy Greek letter element is defined by
alt .= M(pt), B := M(M(p')), and so on.

The computations of Mahowald, Ravenel, Sadofsky, and Behrens may therefore be viewed as
computations of af at all primes, 8 at all primes p > 5, 8 for i = 0,1,5 mod 9 at the prime
p =3, and AP for i < 7 at the prime p = 2.

1.3. The F-based Mahowald invariant. The Mahowald invariant is difficult to calculate directly:
one must understand a range of the stable homotopy groups of P>, for various N > 0, and this is
roughly as difficult as understanding the stable homotopy groups of spheres (cf. [T}, [14]). Therefore
most Mahowald invariant calculations, including all of those listed above, rely on certain approx-
imations to the Mahowald invariant which use simpler homology theories than stable homotopy
groups.

Let E be a spectrum equipped with a trivial Co-action. By [I6, Thm. 16.1], there is an equivalence

E'© ~ lim(Z P> A E),
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where E'C2 is the Cy-Tate construction. Let a € m(E*“2). The E-based Mahowald invariant of «,
Mg (), is the coset of completions of the diagram

EtC2 =, lim(EASP®) — EASPY,
—

where N > 0 is minimal such that the left-hand composite from S* to E A S P>, is nontrivial.

Mahowald and Ravenel [23] and Sadofsky [30] used the BP-based Mahowald invariant to compute
M(p%), p > 3, and M(M(p')), p > 5. However, BP cannot be used to calculate M (2?) using the
same techniques because BP does not detect the relevant elements in the 2-primary stable stems.
Instead, Mahowald and Ravenel calculated M (2?) using the bo-based Mahowald invariant. In more
detail, Davis and Mahowald [I3] showed that there is an equivalence after 2-completion

bo'C? ~ \/ SYHZ,,
i€z
so in particular 2 € Zy = mo(V, ey HZ2) = mo(bo'“?) for all i > 1. Thus My, (2%) is a well-defined
coset in 7, (bo). Mahowald and Ravenel computed this for all ¢ > 1, then lifted their results along
the Hurewicz map S° — bo to determine ot = M (2) for all i > 1.

With this example in mind, the calculation of M (M (2%)) should use the height two analog of bo,
connective topological modular forms ¢mf. Bailey and Ricka [2] showed that there is an equivalence
after 2-completion

tmftCZ ~ \/ ¥¥po,
i€z
80 Mymg () is well-defined for any o € 7,(bo). Thus Mys (Mo (2%)) is a well-defined coset in 7. (tmf).
Mahowald and Ravenel’s calculations at chromatic height one suggest that at height two, M (M (2%))
may be determined by calculating M,y (Myo(2%)) for all 4 > 1 and then lifting these calculations
along the Hurewicz map S° — tmf.

1.4. Statement of main result. In this paper, we carry out the first step in the program outlined
above by computing My, (Mp,(2%)) for alli > 1. In Theorem the class 7 generates w1 (bo) = Z/2,
the class o generates m4(bo) = Zs, and the class § is the Bott element which generates 7g(bo) = Zs.
The elements My, (Myo(z)) € m.(tmf) are named as in [I5]. The bo-based Mahowald invariants
My, (2%) were calculated by Mahowald and Ravenel in [23].

Theorem 1.2. The following tables consist of the classes 2 € mw,(HZy), their bo-based Mahowald
invariants My,(2%) € m.(bo), and the tmf-based Mahowald invariants of their bo-based Mahowald
invariants Mymg(Mpo(2')). The remaining tmf-based Mahowald invariants are determined by the

rule thf(Mb0(232 -x)) = thf(ﬁssc) = ASthf(x).

x| Myo(x) | Mymg(Mpo(2)) || & | Myo(2) | Mimns(Mpo(2)) || @ | Myo(x) | Mims(Myo())
0 1 1[0] 2T B R[—12] B B2 AR[—29]

2t v[—2] 22| pBn nA[-16] 201 B n?A%[-33]

22 n? v?[—4] 26 | Bn? Re[—18] 2101 322 vA%n?[—35]

23 a (cq + €)[—4] 27| Ba q[—20] 2111 B2a0 | (cq + €)A2[—36]
T | Myo(x) | Mims(Myo(x)) || & | Myo(x) | Mumg(Mio(x)) || @ | Myo(x) | Migms(Mpo(2))
o1z [ 3 nAR[—41] |[218 [ Bt PATRZ[-58] ([ 20| B0 2ATR[—76]
213 63,'7 7’]2A2R[—45] 217 64,'7 VA4[_66] 221 B577 T]2A5[—81]
214 ﬁ37l2 ,'73A3[_49] 218 ﬂ47}2 A4V2[—68] 222 ﬁ5772 77A/7*i5[—83}
215 | Ba A3cy[—52)] 2191 Bra | At(ey +€)[-68] || 222 | Boa A*q[—84]
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x| Myo(z) Mg (Mio(2)) T | Myo(x) | Mg (Mpo())

92T | o ARI=90] 9% [ 37 | vASk[—105]
225 | g5y 2 APK[—93] 2291 8™y | vASkn[—105)
226 | pSp? A3 [—97] 2301 8™ | vASky[—107)

2271 BSa | (cq+€)AS[-100] || 231 | BT« ATcy[—116]

Remark 1.3. In low dimensions, our calculations suggest that Myyr(Mpo(2")) is a close approi-
mation to M (M (2%)). In particular, we see that Myns(Myo(2%)) is in the Hurewicz image of tmf for
i €{1,2,6} and it agrees with M (M (2%)) as calculated in [5].

Theorem is proven in Section 4l We will say more about the proof in the next section.

1.5. Techniques: The Atiyah-Hirzebruch spectral sequence and filtered Mahowald in-
variant. The F-based Mahowald invariant is typically computed by analyzing the Atiyah-Hirzebruch
spectral sequence (AHSS) converging to m.(E*“2). For E = bo, this is a fairly simple computation
since the AHSS collapses at E4. The computation is not straightforward when E = tmf, and we do
not know precisely when the AHSS collapses. We analyze the AHSS up to the Fg-page in Section
but this partial analysis does not suffice to calculate My,,s (Myo(2%)) for all i > 1. The necessary
additional machinery is described below.

Lin’s Theorem provides an interesting filtration of the stable stems by attaching to each class
a € m,(S°%) the dimension of the cell of SRP>_ where it is detected. In practice, calculating the
filtration of « is essentially equivalent to computing the Mahowald invariant of a. If E is a ring
spectrum, then the E-Adams filtration gives an alternative method for attaching a number to «;
namely, the stage of the E-Adams resolution of the sphere where « is detected [29, Ch. 2]. In [4],
Behrens combined these two filtrations of 7, (S°) to obtain a bifiltration which he used to define
E-filtered Mahowald invariants, & M*] (a), k > 0. These formalize the idea of computing “Mahowald
invariants up to E-Adams filtration k.” In particular, one has M(a) = ZM[>l(a) if the E-based
Adams spectral sequence (ASS) converges, and if the spectral sequence has a vanishing line of finite

slope, then one has M(a) = EM™(a) for all k >> 0.

Behrens provides a procedure for lifting filtered Mahowald invariants into higher Adams filtration
[4, Procedure 9.1]. Roughly speaking, given an E-filtered Mahowald invariant £ M (K] (a), an algo-
rithmic analysis of the E-based Adams spectral sequence (ASS) and the attaching maps in X P

allow one to compute M [e1] («). This procedure was used to great effect in [4] and [5] to com-
pute Mahowald invariants of vy-periodic classes at the primes p = 2,3. We note that to start the
procedure, one must also identify the first nontrivial filtered Mahowald invariant; this can usually
be done by consulting existing Ext-calculations such as [10].

To compute Myys(Mpo(2°)) for all i > 1, we adapt Behrens’ filtered Mahowald invariant machinery
to the category of tmf-modules. In particular, we define the E-filtered tmf-based Mahowald invariant
by combining the E-Adams filtration of ¢mf with the filtration of tmf 102 li<£n(tmf AX P2 ) induced

by the cellular filtration of ¥ P> . We provide a pseudo-algorithm for lifting E-filtered ¢mf-based
Mahowald invariants into higher Adams filtration in Section As in Behrens’ calculations, we
consult existing Ext-calculations due to Davis and Mahowald [12] to determine the first nontrivial
HF,-filtered ¢tmf-based Mahowald invariants. We summarize their computations in Section [3]

1.6. Ongoing and future work. We conclude by mentioning some ongoing and future work related
to the calculations in this paper.

1.6.1. Finite complexzes and Greek letter families. In [B, Def. 3.1], Behrens proposed a different
definition of the homotopy Greek letter elements:

Definition 1.4 (Behrens). Suppose that X is a type n p-local finite complex for which BP; (X)is

a free module over BP, /I, for I = (p®, vil, ...,u" ). Suppose that X has vf-multiplication. Then

" Ym—1
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., to be the element of m,(S°) which

we define the homotopy Greek letter element (a/(™)h Jimri

detects vF € 7, (X) in the Ej-term of the AHSS.

This definition may depend on the choice of X and choice of detecting elements in the AHSS in
[5, Rem. 3.2]. However, if one takes X = S°/(2,7) to be a finite type 1 complex with a v{-self-map,
then the resulting elements oz? 1, © > 1, coincide with the family elements al == M(2Y, i > 1,
defined using the Mahowald invariant. This suggests that if one takes X to be a type n complex
with a vl-self-map, then the finite complex definition of the homotopy Greek letter elements may
produce the same elements as the Mahowald invariant definition.

In [7], Bhattacharya and Egger define a class of finite spectra which admit a v3-self-map. In work
in progress with Bhattacharya, we are calculating ¢mf-based approximations to the finite complex
definition of % for all i > 1. We plan to compare our finite complex calculations to the Mahowald
invariant calculations in Theorem [[.2]

1.6.2. The 2-primary homotopy B-family. As noted above, the tmf-based Mahowald invariants we
calculated are approximations to the homotopy S-family at the prime two. In future work, we plan to
lift the computations in Theorem (and their finite complex analogs calculated with Bhattacharya)
along the Hurewicz map S° — tmf using the tmf-resolution.

1.7. Outline. In Section [2| we analyze the AHSS for tmf'“2. The resulting Es-page is depicted in
Appendix [A]

In Section we introduce the algebraic E-based Mahowald invariant and review Davis and
Mahowald’s algebraic tmf-based Mahowald invariant calculations from [12]. These algebraic com-
putations serve as the starting point for our calculations of ¢mf-based Mahowald invariants.

In Section [ we adapt Behrens’ filtered Mahowald invariant machinery to the category of tmf-
modules. We apply this to compute My (Mpo(2°)) for all 4 > 1. The result is summarized in
Theorem [L.2l

1.8. Conventions. Unless otherwise stated, everything outside of the Introduction is implicitly 2-
complete. We will write ‘AHSS’ for “Atiyah-Hirzebruch spectral sequence” and “Atiyah-Hirzebruch
spectral sequence converging to ﬂ*(tmftcz)” and ‘ASS’ for “Adams spectral sequence.”

The Mahowald invariant and E-based Mahowald invariant is a coset of elements, but we will write
“B = Myns(c)” instead of “B is contained in Mg (a)” for conciseness.

1.9. Acknowledgements. The author thanks Mark Behrens for his guidance throughout this
project, as well as Prasit Bhattacharya and a referee for helpful comments. The author also thanks
André Henriques for allowing the use and modification of the picture of 7, (¢tmf) from [15] in an ear-
lier version. Finally, the author thanks Tilman Bauer and Hood Chatham, whose spectral sequence
programs were used to produce various figures. The author was partially supported by NSF grant
DMS-1547292.

2. THE ATIYAH-HIRZEBRUCH SPECTRAL SEQUENCE FOR tmf'C?

We begin by analyzing the AHSS which arises from the cellular filtration of ¥ P> and converges
to W*(tmftCQ). Differentials in this spectral sequence are induced by the attaching maps in P,
which are detected by ¢mf. It is generally hard to determine such attaching maps unless they are
detected by primary squaring operations, so we cannot completely determine the differentials in
this spectral sequence. Instead, we run just enough differentials to make our ¢mf-based Mahowald
invariant calculations in Section [l
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2.1. The Atiyah-Hirzebruch spectral sequence. The homotopy groups of ¢tmf were computed
at p = 2 by Bauer in [3], and the homotopy groups of the Tate construction of ¢mf equipped with
a trivial Cy-action were computed by Bailey and Ricka:

Theorem 2.1. [2| Theorem 1.1] There is an equivalence of spectra
tmftc2 ~ H »¥po.
i€

By [16, Thm. 16.1], the Tate construction of a spectrum X equipped with a trivial Cs-action
may be described as a homotopy limit

Xt ~ lim(X A $P%).

The AHSS for tmf tC2 arises from the cellular filtration of Y P> by applying tmf,(—). The filtration
quotients of the cellular filtration F;/F;,; ~ S® are just spheres, so the Ej-page of the AHSS
converging to W*(tmftCQ) is given by
By’ = tmf(S°) = tmf,_(5%) = m(tmf'?).

In other words, the Fj-page consists of a copy of m,(tmf) in each filtration s. A picture of these
homotopy groups can be found in [I5, “The homotopy groups of tmf and of its localizations”]. For
readability, we have recreated this image (minus some multiplicative extensions) in Figure

For any integer r > 0, we write v,(r) for its 2-adic valuation. We only need to compute finitely
many differentials on each page in view of the following lemma (which is a consequence of James
periodicity):

Lemma 2.2. The d,.-differentials in the AHSS are periodic with period (2”2(’”)7 2"2(T)).

The d;-differentials are given by

dy(z[s]) =2z[s —1], s=1 mod 2,
where our notation is that «[i] is the copy of the class a occurring in Atiyah-Hirzebruch filtration i.
We obtain the Es-page depicted in Figures In Figures squares and bullets both represent
& We next determine the E3-page. The do-differentials are given by
do(z[s]) =nx[s —2], s=1,2 mod 4.

We obtain the Fs-page depicted in Figures

To compute the E4-page, we have ds-differentials

ds(z[s]) = (z,2,m)[s — 3], s=3 mod 4,

ds(z[s]) = (z,n,2)[s— 3], s=1 mod 4.
To compute these differentials we will use the Massey products from [I8, Table 16] and Toda brackets
from [I8, Table 19]. The unit map
59 — tmf
is a map of E,-ring spectra and therefore the induced map in homotopy groups preserves all higher

structure. In particular, we can use Isaksen’s computations to compute Toda brackets of classes in
tmf, as long as those classes are in the Hurewicz image for tmf.

Lemma 2.3. [I8, Table 19] The following Toda brackets hold in . (S%):
7’ €(2,m,2), wen2mn), e 2mn).
The following Toda brackets hold in tmf, forv > 1:

i 2c6 € (¢hn?,2,m).
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Lemma 2.4. For s =3 mod 4, there are nontrivial ds-differentials
ds(V%[s]) = e[s — 3], d3(An[s]) = A2v[s — 3], dz(vAZ*[s]) = vAZ%e[s — 3],
d3(vA*Y[s]) = eAt[s — 3], d3(kA'A[s]) = kKA*2UA[s — 3],  d3(vA°V?[s]) = vASe[s — 3].
For s =1 mod 4, there are nontrivial ds-differentials
ds(2R%[s]) = n*&*[s — 3], d3(vA®2[s]) = vA®p?[s — 3.
Proof. These follow from inspection of [I5, Pages 190-191]. O

The F4-page is depicted in Figures 3] Before proceeding to the Fs-page, we note that a large
portion of the elements in the E4-page survive to the F..-page.

Lemma 2.5. Nontrivial elements in the E4-page of the AHSS of the form cin? A¥[—N] or 2ceci AF[—N]
withi>1,1<3j<3,k>0, and N > 0 survive to nontrivial elements in the E -page of the AHSS.

Proof. There are no multiplicative or higher multiplicative relations in ¢mf, involving these classes
which could produce a d,-differential killing them in the AHSS for r > 4. ([l
Next we compute the F5-page. The d4-differentials are given by
dy(z[s]) =va[s—4], s=1,2,3,4 mod 8.
The Es-page is depicted in Figures
There are no possible ds-differentials, since these would either correspond to attaching maps in
74(S%) = 0 or a Toda bracket (z,v,2) which is not defined since 2v # 0, or a Toda bracket (z,7,2,7)

which is zero for all z € tmf,. Therefore we have E5 = Ej.
We now calculate the E;-page. Since 75(SY) = 0, the dg-differentials are given by

dg(z[s]) = (x,n,v)[s— 6], s=5,6 mod 8,
dg(z[s]) = (z,v,m)[s — 6], s=1,2 mod 8.
To compute these differentials, we will use the Massey products from [3, Table 1] and [I8, Table 19].
Lemma 2.6. [3, Table 1][I8, Table 19] The following Toda brackets hold in tmf ,:
vie (num), ecvmnv), €€ 2uum), 2&Ec (knn,v).
Lemma 2.7. We have the following dg-differentials. For s =6 mod 8, we have
de(kAn[s]) = 2A%R[s — 6].
For s =1 mod 8, we have
de(kn[s]) = kv?[s — 6], dg(vA220[s]) = vAZ%€e[s — 6], dg(rA'n[s]) = kA2
As the Er-page is fairly similar to the Es-page, we leave the construction of its charts as an
exercise for the reader.
We conclude with the Eg-page. The possible d7-differentials are given by
dr7(z[s]) = (x,2,m,V)[s=T7], s=T mod 8,
d7(z[s]) = (z,v,m,2)[s— 7], s=1 mod 8.
These follow from the Toda bracket % € (k,2,n,v) in tmf, [3, Table 1].
We then have the following list of dr-differentials.
Lemma 2.8. For s =7 mod 8, there are nontrivial d7-differentials
d7(k[s]) = R[s—T], dr(nAk[s]) = nAR[s—T7], dr(kA*n[s]) = nA*R[s—T], dr(kA*k[s]) = KA*R[s—T].
The Eg-page is depicted in a range in Appendix [A]
Remark 2.9. We have only listed differentials on elements in m<191tmf. The remaining differentials

are determined by the rule d,.(A8z) = A83d,.(z) which follow from the fact that A® € miga(tmf) is
nonzero.
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3. ALGEBRAIC E-BASED MAHOWALD INVARIANTS VIA THE KOSZUL SPECTRAL SEQUENCE

In this section, we recall Davis and Mahowald’s computation of the algebraic tmf-based Mahowald

invariants which will serve as our starting point for calculating tmf-based Mahowald invariants in
on 2n—1

Section |4l Let M be an A(n)-module. Define R,, := P®(£2" &2 ... €2 &,41) to be the tensor-
algebra on the above generators, and let R7 denote the submodule consisting of monomials of length
n. The Koszul spectral sequence |21, Theorem 2.8] has the form

EY™ = Baty 7 (R) ® M) = Bzt (M).

This spectral sequence was used by Davis and Mahowald [12] to compute Ext o) (H*(RPg’)) for
all N € Z and by Mahowald and Shick [2I] to define the chromatic filtration of the Es-page of the
ASS. Tt also appears as the “Davis-Mahowald spectral sequence” in recent work of Shick [33].

3.1. The Koszul spectral sequence for Ext’y(,,(H*(XPF’)). In this subsection, we demonstrate
the Koszul spectral sequence in a simple case. We include many details to give the reader an idea of
how to understand the computations in [12], which we will cite but not reprove in the sequel. The
first Koszul spectral sequence we consider has the form

B = Eaty G (P2(E,6)7) = Bat'il (Fa).

We begin by calculating the Ej-page. Let RS = P(£7,&)7.

Lemma 3.1. When o is even, there is an isomorphism

Extly 5" (RY) = <@F221>@Z o]

=0

where the functor (=)[k] shifts elements in bidegree (s,t) into bidegree (s,t + k). When o is odd,
there is an isomorphism

Extly 5" (RY) EBIFQ [2d].

Proof. The A(0)-module Ri consists of classes [¢?] and [¢2]. The A(0).-coaction on &, is restricted
from the A,-coaction, so we have

(&) =L ®E +10 &,
from which we conclude Sq'(&;) = €2. Therefore

R} = ¥2A(0) = H*(2?V(0)),

and Ext 4(0)(R1) is just a shifted copy of Fs.
The A(0)-module R? consists of classes [7 ® £7], [€2 ® &), and [£; ® &]. By the same argument
as above, we see that S¢*([7 ® &]) = [£] ® 7], and Sq'[&2 ® &) = 0. Therefore we conclude

R? = 31 A(0) @ XF, = H*(S1V(0) A S°),

and ExtA(o)(Rf) is a shifted copy of Fo and a shifted copy of Z.

More generally, the elements of R{ are in bijective correspondence with monotone increasing
strings (1,1,...,2,2) of length o. Elements with 2i entries of ‘2’ are related by Sq' to elements with
2i + 1 entries of ‘2’. The result then follows easily by induction on o. (]

We now calculate differentials. The d;-differentials in the Koszul spectral sequence are obtained
by dualizing the differential in the Koszul resolution (see e.g. [21l Sec. 2]). Using this fact, or by
comparing to other calculations of Eill'tz*(l)(]Fg), we obtain the pattern of differentials depicted in

Figure [20]
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FIGURE 20. The Koszul spectral sequence for Ext}y, (F2). A [ represents Z and
a e represents Fo.

We can use the Koszul spectral sequence to compute Exta1)(H*(XPy)) for all N € Z. In this
case, it takes the form

E7® t— Bttt

oy (BY @ HY(SPY)) = Eaty ) (H*(SPY)).

Recall that as an A(0)-module, H*(EPgP) is 2-periodic with respect to N. In particular, we have
isomorphisms of A(0)-modules

H*(SPs5, ) = P = H*(V(
i>N

H*(2Psy) = 22N H* (pt) & €D 22 H*(V(0)).
i>N
The first splitting shows that in order to understand the Koszul spectral sequence for H*(XPsy_;),
it suffices to analyze the Koszul spectral sequence for V(0). The second splitting shows that it
suffices to understand the spectral sequence for H*(V(0)) and H*(SY).
For H*(S?), the Koszul spectral sequence was already analyzed. For H*(V(0)), we recall that

~

H*(V(0)) = A(0) so we may apply change-of-rings to see that
Eaxt’o) (R ®r, H*(V(0))) = Eati, (RY).

The differentials can again be calculated from the definition or from comparison with existing cal-
culations of EmtA(l)(H*(V( ))); we leave the details to the reader.

Altogether, this gives us sufficient information to calculate Ext A(l)(H *(EPgR)) for all N € Z.
We include a picture of Ext’(,)(H*(XP2)) in Figure 21| as an example.

3.2. Algebraic E-based Mahowald invariants. Let a € Extf&én)(H*(EPf"oo)) Applying Extyy, (H*(—))
to Diagram [I] produces a diagram

Bty (F2) -0y BtV ()
Bty (H* (SPX)) —= Baty, (H*(PXy)).

where N > 0 is minimal such that the left-hand composite is nontrivial (compare with [4, Def. 3.3]).
If E is a spectrum with cohomology A // A(n), then the coset of lifts v € E:rtsf )N Y(Fy) of the
element vy o f(«) is the algebraic E-based Mahowald invariant of . Recall that H*(bo) = A/ A(1)
and H*(tmf) = AJ/A(2), so we may define the algebraic bo-based and algebraic tmf-based Mahowald

invariants.
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FIGURE 21. The Ec-page of the Koszul spectral sequence for Extyy, (H*(3P25)).
A e represents Fs.

Let n = 1,2. Elementary calculations with the Steenrod algebra and the A-module structure of
H*(XP>_) show that as an A(n)-module, H*(X P> ) splits as

“(EP2) = PP An) JA(n - 1).

S/
By change-of-rings, we then have

Eaxt’l (H*(2P%,)) = D 22" Batgm-1)(F2)
=
SO Malg( @) is defined for any o € Extyy, ;) (F2).

The analysis in the previous section determined the bottom left term in the diagram for all N € Z
when n = 1. We can therefore compute the algebraic bo-based Mahowald invariants by inspection
of the relevant Ext-groups and analysis of the order of 2-torsion in Exti{fl)(H *(P%%,,_1))- Since
these calculations are similar to the calculations of the homotopical bo-based Mahowald invariants
of 2! which were computed by Mahowald and Ravenel in [23], we leave the details to the reader.

The result is given in the following theorem, where hy is the generator of El‘tz(zl)(]Fg) >~ Fy, a is the

generator of Ext?;{(71)(F2) =~ Ty, and S is the generator of Exti’(lf) (Fy) & TFy.

Theorem 3.2. The algebraic bo-based Mahowald invariant is determined by the relation Malg(h4 )=
BM(x) and the table

al
T Mbog(:zz)
1 1
ho h1
2| w2
h3 o

Remark 3.3. These algebraic bo-based Mahowald invariants agree with the (non-algebraic) bo-based
Mahowald invariants My, (2°) after replacing x € Ext a1y by the element which it detects in the ASS
for bo,. The bo-based Mahowald invariants can be lifted to spherical Mahowald invariants using the
bo-filtered Mahowald invariant [4, Section 7).

3.3. Algebraic tmf-based Mahowald invariants. We now summarize David and Mahowald’s
analysis of the Koszul spectral sequence for Exty, (F2) and Ext’, (H*(Py’)). The first of these
has the form

E7*" = Ext gy (P(£1,65,£3)7) = Ext o) (Fa).
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In [12} Proposition 5.4], they compute the E;-term of this spectral sequence by computing Ext 4(1)(R9)
using the same ideas as in our proof of Lemma They then show that d; is he- and v§-linear,
and arrive at a closed formula for the di-differential [I2, Theorem 5.6]. Finally, they show that
E5 = E. The chart is depicted in [I2], Theorem 2.6]. One may compare their calculations to those
of Iwai-Shimada [34] or the machine calculations depicted in [6, Figure 6.1].

After understanding Fsy, they turn to H*(XPg’). Recall that as an A(1)-module, H*(XPg’)
decomposed into infinitely many suspensions of A(1)// A(0), and as an A(2)-module, H*(XPg’)
decomposed into infinitely many suspensions of A(2)/A(1). In fact, H*(XPg’) may be decomposed
as an A(2)-module in several different ways.

Example 3.4. Bailey and Ricka define Ly to be the spectrum (S* Uy €? U, e* U, €®)4, and they
construct a cofiber sequence of tmf-modules

Y8 tmf A P — tmf A P _g — X% tmf A L.

This cofiber sequence plays a fundamental role in their proof of the spectral splitting of tmftc? [2
Theorem 1.1].

2

Davis and Mahowald use a different splitting than Baily and Ricka which we outline now. They
begin by defining M; (for i = 0,1,3,4,7) to be the smallest A(2)-module in which Sq’gy # 0, where
go is a class in degree zero. For example, H*(Lg) = Y M7 ® Fy. They then use the Koszul spectral
sequence to compute Ext(9)(M;). These Ext-groups are presented in [12, Theorems 2.6-2.9] and
can also be computed using Ext-calculators of Bruner [9] or Perry [25].

Given these Ext-groups, one can then compute Ext 4y (H*(Pg°)) for N odd using exact sequences
relating PR° to A(2)-modules whose cohomology is known. For example, the exact sequence

0= H(PP) - Q=X M, % 'Fy - 0

is used to compute Ext () (H*(P°)). Here, @ is the quotient of H*(P>) by the A(2)-module gen-
erated by classes in degree less than —9. We note that @ appears in the calculation of Ext 42y (H* (PR’))
for all N odd. Once one has these calculations for N odd, one can compute Ext 4(9)(H*(Py’)) for
N even using the exact sequences

0— H*(PY¥) — H*(PY_,) > ¥V 'Fy - 0 and 0— H*(PR.,) — H(PY) — ZVF, — 0.

By the above discussion, we have

Extg2)(Q) = @ Ext 51y (5% 'Fs).

i>—1

Let f: Extyq)(Fo) — Exta(2)(Q) denote the obvious inclusion. In computing Ext 40y (H*(Py)),
one completely determines the image of Ext,q)(F2) inside of Exta)(H*(PF)), including the
minimal N < 0 where the image of a class o € Exta(1)(F2) is first nontrivial under f.. This leads
to the following theorem.

Theorem 3.5. [12, Theorem 3.5] The algebraic tmf-based Mahowald invariant is determined by the

relations M%‘} (hiz) = v‘forfgc(x) and M%‘} (B%z) = USM;},ZC(Z‘) and

al al al al
x| MpS(z) || x| Mpi(x) || = | M{%(x) x| M5 (z)

1 1 ht h3 8 g BhT | v3h3
ho h1 o a Bho ghy Ba vic
h3 h? ahg d Bh3 a? afho dg

h3 h3 ah dhy Bh3 ad afh3 ad
hy ha ahd ehd Bhi vihy aBhd | vivihi
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4. tmf-BASED MAHOWALD INVARIANTS

We now apply our partial computation of the AHSS for 7, (tmf'“?) to compute the tmf-based
Mahowald invariants in Theorem In Section 4.1} we recall the definition of the F-based Ma-
howald invariant and the filtered Mahowald invariant. We then define the H-filtered tmf-based
Mahowald invariant and record several results needed for our calculations. To help the reader navi-
gate our calculations, we provide a pseudo-algorithm for calculating tmf-based Mahowald invariants
in Section[4.2] In Section[4.3] we calculate several vq-periodic tmf-based Mahowald invariants which
allow us to eliminate many classes in high Adams filtration from consideration in our wve-periodic
calculations. In Section we calculate the tmf-based Mahowald invariants My, (M, (27)) for all
3 > 1. These results are assembled in Theorem (1.2

4.1. Preliminaries. We start by recalling the E-based Mahowald invariant and the filtered Ma-
howald invariant. We then combine these to define the filtered tmf-based Mahowald invariant.

4.1.1. E-based Mahowald invariants. We begin with E-based Mahowald invariants.

Definition 4.1. Let o € 7;(E*“?). The E-based Mahowald invariant of « is the coset of completions
of the diagram

E'C — =, limX P ANE — NP AE
—

where N > 0 is minimal so that the left-hand composite from S* to Y Py A E is nontrivial.

Remark 4.2. The S°-based Mahowald invariant is the ordinary Mahowald invariant defined in the
Introduction. We will sometimes refer to this as the spherical Mahowald invariant in the sequel.

Remark 4.3. We can enlarge the diagram above to define Mims(Mpo()) as the coset of dashed

arrows:
M (Mpo () IV
botCe gt ZTMATT =N MA42 ¢,

J/ J{Mbo(oz)

SP%, +——— NN+l

|

_ C _
YNt BNF2Ppoe A tmf

As we were unable to completely calculate the AHSS for tmftcz, we cannot compute tmf-based

Mahowald invariants immediately from the definition since we cannot determine the minimal N for

which any element « € 7, (tmf tc?) is detected. Instead, we will compute the tmf-based Mahowald

invariant using the filtered Mahowald invariant machinery set up by Behrens in [4].

4.1.2. Filtered Mahowald invariants. The filtered Mahowald invariant is a sequence of approxima-
tions which arise from combining the Adams filtration of 7. (S°) and the Atiyah-Hirzebruch filtration
of XRP>_. We will not give a full review of this machinery here; we refer the reader to [5, Sec. 5]
for an introduction and rigorous definition.

Definition 4.4. Let E be a spectrum for which the E-based ASS for SY converges and let @ € 7;(S°).
Then the k-th E-filtered Mahowald invariant of « is defined in [5, Def. 5.1] and is denoted by

M¥(a) € By (S°),

where the right-hand side is the Ei-page of the E-based ASS for S°. We will suppress E from the
notation since we will always take £ = HF5 in this paper.
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Example 4.5. When k£ =1 and E = HF,, this recovers the algebraic Mahowald invariant studied
by Mahowald and Shick in [2I] and Shick in [32]. The algebraic Mahowald invariants of many
low-dimensional classes were computed by Bruner in [I0] and serve as a starting point for many of
Behrens’ computations.

Remark 4.6. There is some indeterminacy in the definition of the filtered Mahowald invariant since
one can vary the amount of the Atiyah-Hirzebruch filtration considered at each Adams filtration; the
situation is depicted graphically in [, Fig. 2]. This indeterminacy will be relevant in some of the
calculations below.

The filtered Mahowald invariant was originally defined to compute spherical Mahowald invariants,
so we must modify it to compute tmf-based Mahowald invariants.

Definition 4.7. Let E be a spectrum for which the E-based ASS for tmf converges and let a €
m¢(bo). Then the k-th E-filtered ¢mf-based Mahowald invariant of « is defined by replacing 7. (—)
by tmf,.(—) in [5, Def. 5.1]. We will denote it by

M () € BY (tmf)

where the right-hand side is the FEj-page of the E-based ASS for tmf. Again, we will suppress F
from the notation since we will always take ' = HIF5.

In order to compute Mt[:;;” (o) from Mt[gf(a), we will need the following specializations of [5]

Thm. 6.4] and [5, Thm. 6.5]. We refer the reader to [4, Sec. 4] for the definition of the K-Toda
bracket (K)(3) (where K is a finite complex and 3 € 7,(S°)).

Lemma 4.8. (1) There is a (possibly trivial) HFy-Adams differential (in the ASS for tmf,)
3 —N,i ki
A (Mg (@) = (P (M (@),

(2) There is an equality of (possibly trivial) elements in tmf,

(P ) (Mg (@) = (P =) (M ().
Here, @ € tmf, denotes an element which o detects in the HFy-based ASS.

These provide a method for lifting our calculations into higher Adams filtration. To get started,
we will be aided by the following tmf-based analog of [5, Theorem 6.6].

Lemma 4.9. The algebraic tmf-based Mahowald invariant agrees with the first nontrivial HF,-
filtered tmf -based Mahowald invariant.

4.1.3. A simplification using the ASS for tmf. In [5], Behrens uses Bruner’s computations [I0] of
the algebraic Mahowald invariant of various classes in Ext’(F3) as a starting point for computing
the H-filtered (spherical) Mahowald invariant. The algebraic tmf-based Mahowald invariants we
will need in order to start computing the ¢mf-based Mahowald invariants of the bo-based Mahowald
invariants of 2¢ were given in Theorem To lift these into higher Adams filtration, we need the
following facts about the differentials in the ASS for tmf.

Lemma 4.10. The differentials in the ASS converging to tmf, are v3>- and vi-linear.

Proof. Multiplication by the permanent cycle A® detects v32 in the ASS, so the differentials are v32-

linear. Similarly, multiplication by the permanent cycle w; detects v{ in the ASS, so the differentials
are vi-linear. ]

In view of the v§-periodicity of the algebraic tmf-based Mahowald invariants and the v32- and v{-
periodicity of the differentials in the ASS, it suffices to compute the ¢tmf-based Mahowald invariants
Mg (Mpo(2)), 0 <4 < 31, in order to determine My, (Mpo(2°)) for all ¢ > 1.
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4.2. Psuedo-algorithm for computation. Before we begin computing, we give a schematic for
calculating Myms(a). Our standard approach is as follows:

(1) Determine the algebraic approximation Mgflgf (a) to the tmf-based Mahowald invariant by
consulting Theorem [3.5]

(2) If this approximation survives in the ASS for ¢tmf and there are no elements of higher Adams
filtration which survive in the AHSS for tmf'“? which can detect o, then this is My ().
Otherwise, continue to Step (3).

(3) Check if there is an obvious way of applying Lemma [4.8]to lift this approximation into higher
Adams filtration.

(a) If yes, lift the element and return to the beginning of Step (2).

(b) If no, and if o does not survive in the ASS for ¢mf, check the AHSS to see which
elements lie in higher Adams filtration which can detect a.

(i) If there is only one element, that element is My (a).
(ii) If there is more than one element, show that all but one of these are ¢tmf-based
Mahowald invariants of other elements. The remaining element is M;,s(c).

(¢) If no, and if o does survive in the ASS for ¢tmf, and if there are elements of higher
Adams filtration which survive in the AHSS for tmftc2 which can detect «, then try
another element. In this case, the elements in higher Adams filtration (or the current
approximation) must be ruled out from being Myys(a) by showing that they are the
tmf-based Mahowald invariant of different elements o/, a”, - - - # «.

Remark 4.11. This will not always work, and we may employ other ad hoc arguments below. For
example, we can read several low-dimensional tmf-based Mahowald invariants off of the Eg-page of
the AHSS, so we do not need to employ more elaborate machinery.

4.3. v1-periodic tmf-based Mahowald invariants. With the schematic from Section[£.2)in mind,
our first goal is to show that classes in high Adams filtration are tmf-based Mahowald invariants
of vo-periodic classes. In particular, we will show that My, (247 8¥) contains ¢in/ AF for i > 1,
0<j7<2 and k > 0, and when j = 3, it contains ZCGCZ_lAk.

Convention 4.12. We will include the cell of X P>, where an element in ﬂ*(tmftcz) 1s detected in

square brackets after its tmf -based Mahowald invariant. For example, the expression Myys(1) = 1[0]
means that 1 € mo(tmf'?) is detected by 1 € mo(tmf) on the O-cell of SP>,.

The proof of the following theorem occupies the remainder of this subsection.

Theorem 4.13. Fori > 1, j > 0, and k € {0,1}, the following tmf-based Mahowald invariants
hold, possibly up to the addition of elements in higher Adams filtration.

(1) My (24390%) = ATci[~16] — 8i — 4],

(2) My (24F18I0F) = Adcin[—1 — 165 — 8i — 4k],

(3) My (24287 aF) = Adcin?[—2 — 165 — 8i — 4k],

(4) My (24387 ak) = Al 2c6[—4 — 165 — 8i — 4k].

We begin with the cases where j = k = 0.
Lemma 4.14. For i > 1, we have the following tmf -based Mahowald invariants.
(2) Moy (24°1) = ciy[~1 — 81,
(3) My (21+2) = cia?[—2 — 81,
(4) (2443) = i~ 2¢6[—4 — 8i].

Proof. Observe that M;fgc(Q‘“) = Mt[if}(?“) = ¢j[-8i] for all i > 1. In the ASS for tmf, c}
is a permanent cycle. Moreover, examination of the AHSS along with Lemma [2.5 shows that
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¢’ [—8i] survives to the Eg-page. There are no classes in higher Adams filtration and higher Atiyah-
Hirzebruch filtration which could detect ci[—8i], so by the tmf-analog of [5, Cor. 6.2], we see that
¢4 [—8i] is the tmf-based Mahowald invariant of 24.

The remaining cases follow from dimensions considerations and examination of the AHSS. More
precisely, we have

| Mimng (24)] < [ Mg (28] < [ Mg (272)] < [ Mg (2772)] < [ Moy (2479

for all i > 1. Tn the AHSS, this implies that the collection of elements { My, (24%7)}3_, is situated
between My, (247) and My,,p(24F4) for all 4 > 1. Since 24+ = 27 . 247 the Adams filtration of
Mips (2477) must be at least the Adams filtration of My, £(24%). The result then follows by checking
that cin[—1—8i], ¢in?[—2 —8i], and ¢; '2cg[—4 — 8i] are the only elements which could satisfy these
conditions on stem, Adams filtration, and Atiyah-Hirzebruch filtration. O

The cases where 7 = 0 and k& = 1 require a slight modification:

Lemma 4.15. For i > 1, we have the following tmf-based Mahowald invariants.

(1) My (2¥a) = ¢i[—4 — 8i],

(2) thf(24i+1a) = 63177[_5 - 8Z]>

(3) My (2420) = cfimz[ffi — 8i],

(4) My (243a) = i 2c6[—8 — 8i].
Proof. We begin with Mféfj[(24ia) = Mgi;g]@“a) = cta[—8 — 8i] for all i > 1. There is an Adams
differential da(cia) = cyhy for all i > 0, from which we conclude that Mgi,f;rf)] (2%a) = ci[—4 — 8i].
Indeed, we have o _

(SPZJ750)ch = hach.

The class ¢} is a permanent cycle in the ASS for tmf and ci[—4 — 8i] survives to the E..-page of

the AHSS. It follows that ci[—4 — 8i] is the tmf-based Mahowald invariant of 2%a.
The remaining cases follow from dimension reasons and examination of the AHSS (compare with

the proof of Lemma, [4.14)). O

We now move to the general case. We include a proof for & = 0; the case k = 1 is identical up to
filtration shifts. To start, we calculate My, (24+347) with j even.
Lemma 4.16. For all j > 0 even, we have

My (2°87) = A3 — 164]
up to the addition of elements in higher Adams filtration. For all j > 0 even and i > 1, we have
My (24357) = Al ¢ 2c6[—4 — 16 — 84

up to the addition of elements in higher Adams filtration.
Proof. For all j even, we have M;izc(QBBj) = M}frf}+3](23ﬂj) = AJh3[—-3 —16j]. This is a permanent
cycle and it survives in the AHSS by Lemma so by the tmf-based analog of [B, Thm. 6.1], we
conclude that My,s(2367) = Ain3[—3—165] up to the addition of elements in higher Adams filtration.

By the same argument, for all i > 1 and j even, we have My, (24+347) = AJci 1 2c6[—4 — 165 — 8i]
up to the addition of elements in higher Adams filtration. a

Keeping j even but varying the power of 2, we have the following.
Lemma 4.17. Theorem[[.13 holds for i >1 and j > 0 even.

Proof. The argument is similar to the proof of Lemma [£.14 We obtain dimension bounds on
My (24+39), € # 3, by comparing to the dimension of My, (24+337) calculated in Lemma
These bounds determine analogous bounds on the Atiyah-Hirzebruch filtration of My, (247°47).
Examination of the AHSS reveals that the only elements with sufficiently high Adams filtration, i.e.
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the only elements which could detect My, (24¢37), are in {AJcin’[—¢ — 165 — 8i]}2_,. Indeed,
every other element satisfying these restrictions on Atiyah-Hirzebruch filtration and Adams filtration
is already a tmf-based Mahowald invariant. The lemma then follows by matching the ¢ in 241+¢3J
to the £ in AJcin’[—¢ — 165 — 8. O

Lemma 4.18. Theorem holds fori>1 and j > 0 (including j odd).

Proof. We argue using dimension and filtration restrictions as above. First observe that My, (24+m g2¢+1)
must lie between My,s (244" 32%) and My, (247™3242) in the Atiyah-Hirzebruch spectral se-
quence, and further, its Adams filtration is restricted by the Adams filtration of these elements.
Examination of the AHSS reveals that the only elements in these restricted Atiyah-Hirzebruch and
Adams filtrations which are not already tmf-based Mahowald invariants are the elements claimed
in Theorem The result follows by matching 247+ 52+ to the (4i + m)-th element in this list
of elements. O

4.4. tmf-based Mahowald invariants approximating 3. We now compute the tmf-based Ma-
howald invariants of classes of the form M;,(2%), i > 1. We begin with the classes of the form

5 = My (24).
Proposition 4.19. We have the following tmf-based Mahowald invariants:

(1) My (1) = 1[0],

(2) Mg (B) = K[—12],

(3) Muns(5%) = nAR[—29]
(4) Mg (8%) = nAR?[—41],
(5) My (B*Y) = n? A%R?[—58]
(6) Mims(B°) = 2A%R[-T76],
(7) Mg (8%) = A*K3[—90],
(8) Miyms(B7) = vA®K[-105]

Proof. (1) This is clear from the definition.
(2) We begin with Mfrfgp(ﬁ) = Mt[fr]bf (8) = k[—12]. Recall that % is detected by g in the ASS.
Inspection of the AHSS shows that there are no classes in higher Adams filtration which can

detect 3, so we conclude that M,;(8) = k[—12].
(3) We begin with M (B%) = Mt[fif(ﬁQ) A?[—32]. There is an Adams differential do(A?) =

tmf
h3,v1x35 from which we conclude Mt[;?f(BQ) = w35h3,[—29]. Indeed, we have

(NP3 )wssh3, = viassh3,.

The class x35h3; detects nA&. Inspection of the AHSS shows that there are no classes in

higher Adams filtration which can detect 52, so we conclude that My, (8%) = nAk[—29].
(4) We begin with M;qu} (B3) = t}f} (8%) = A2R[—44]. There is an Adams differential da(A%R) =
v1x35hS, from which we conclude M4 (63) = x35h$;[—41]. Indeed, we have

—42 6 6
<2P_45 >$35h21 = 1}1$35h21.

The class x35h$; detects nA&2. Inspection of the AHSS shows that there are no classes in
higher Adams filtration which can detect 63 so we conclude that My, (5%) = nARr?*[—41].

(5) We begin with Mgfgc (BY) = t:ff](ﬁ‘l) A*[—64]. There is an Adams differential d3(A*) =
z35h37 from which we conclude M, * [19] (54) = x35hi1[—58]. Indeed, we have

(BP- 6559>~T35h21 = x35h21.

The class z35hii detects n2A%E2. Inspection of the AHSS shows that there are no classes in
higher Adams ﬁltratmn which can detect 3%, so we conclude that My, (8*) = n? A%x%[—58].
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(6) We begin with M;ilgf (B°) = tfrg! (8°) = A*R[—76]. There is an Adams differential d3(A*k) =
r35h3¢ from which we would like to conclude Mt[fj}(ﬁ) = w35h37[—70]. Indeed, we have

(XpP- 7771>='535h21 = $35h21

However, the class z35h37 detects A2k = A%p?k3 which does not survive in the AHSS.

In order to calculate Myy,s(3°), we must vary the bifiltration of £P>_. Note that 2- A%k
is nonzero in tmf, and that 2A*&[—76] survives in the AHSS. Varylng the bifiltration of
YPX_ so that Adams filtration 23 occurs before Atiyah-Hirzebruch filtration —76 gives
Mt[fngf] (8%) = 2A*k[—76]. There are no classes in higher Adams filtration which can detect
3%, so we conclude that My, (3°) = 2A4_[ 76].

(7) We begin with M9 (86) = M4 (85) = A6[—96]. There is an Adams differential da(AS) =

tmf tmf
A*h3,v1235 from which we conclude nggl(ﬁ(i) = A*hZ,235[—93]. Indeed, we have

<EP:§?>A4$35}1§1 = A4h311)1$35.

There is a differential d3(A*x35h3,) = x35h3} from which we conclude that Mtfrzf](ﬁﬁ) #
A*h3,235[—93]. Inspection of the AHSS shows that the only class in Adams filtration greater
than 26 which can detect 8¢ is A'k3, so we must have My,f(8%) = A*k3[—90].

(8) We begin with Mt‘;lz,( 28) = M[28 (ﬂ7) 6%[—108]. This class does not survive in the ASS,
and inspection of the AHSS bhOWb that the only classes in higher Adams filtration which
can detect 37 are vASk, vASkn, and vASy. We will see below that My, (vi®n) = vASkn
and My,s (B"n?) = vASkv, so we conclude that My, (v3®) = vASK[—105].

O

We now compute the tmf-based Mahowald invariants of classes of the form Bin = My, (24+1).

Proposition 4.20. We have the following tmf-based Mahowald invariants:

(1) Mg (n) = v[-2],

(2) thf(Bn) nA[-16],

(3) Muyys(8%n) = 772A2[—33],
(4) Mg (B3n) = n> A%R[—45],
(5) My (B*n) = vA*[—66],
(6) Muyns(8°n) = n*A°[-81],
(7) Mg (8°n) = n> APR[—93],
(8) Mymys(B™n) = vASkn[—105].

Proof. (1) This follows from inspection of the AHSS.
(2) We begin with Mfrfff(ﬂn) = Mt[f,]lf(ﬂn) = nA[—16]. Inspection of the AHSS shows that
there are no classes in higher Adams filtration which can detect 87, so we conclude that
Mimg (Bn) = nA[-16].
(3) We begin with M, +(B8%n) = Mt[g]bf (8%n) = A?v[—34]. This class does not survive in the cor-
rect Atiyah—lezebruch filtration to detect 3% in the AHSS, so we know that My,,r(8%n) #
A%y[-34]. The next two classes which could detect 5%n in the AHSS are nAk and n2AZ.

We have shown above that nA#& detects 32, so it cannot detect 3%n. Therefore we conclude
that n?A2?[—33] detects 3%7.

(4) We begin with anlgc(ﬂ3n) Mt[}ff(ﬁg’ ) = A3p[—48]. There is an Adams differential
do(A3n) = vyz35h%; from which we conclude Mgf}(ﬂ n) = w35h3,[—45]. Indeed, we have

—46 7T _ 7
<EP749 >$35h21 = U1$35h21.

The class z35h%; detects n?A%k. Inspection of the AHSS shows that there are no classes in
higher Adams filtration which can detect 321, so we conclude that My, (3%n) = n? A2k[—45].
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(5) We begin with M%f}(ﬁ‘ln) = Mt[}n? (8*n) = Aty[—66]. This class survives in the AHSS and
ASS. Inspection of the AHSS shows that there are no classes in higher Adams filtration

which can detect 37, so we conclude that My, (3n) = vA1[—66].

(6) We begin with M;fgc(ﬁf’n) = Mt[fnl}(ﬁf’n) = ASp[—80]. This class supports an Adams dif-
ferential d3(ASn) = wsshd]. Since |Myms(8°n)| > | Mg (8%)] = [2A%| = 116, we see that
the only classes in higher Adams filtration and high enough stem which could detect 5°7 in
the AHSS are nA*&[—76] and n?A5[—81]. Since n?A’% = nAS® - 5, we find that varying the
bifiltration of ¥ P> so that Adams filtration 24 occurs before Atiyah-Hirzebruch filtration
—81 gives Mt[ii‘] (8°n) = n?A5[—81]. There are no classes in higher Adams filtration which
can detect 357, so we conclude that My, (8°n) = n>A5[—81].

e begin wit n) = n) = v|—98|. 1s class does not survive in the
7) We begin with M (8%7) = Miap(8°7) = Av[-98]. This class d ive in th
AHSS. The only class in higher Adams filtration which can detect 8% is n2A%K, so we

conclude that My, (8%n) = n*A°K[—93].

(8) We begin with Mfyfgc(ﬁw) = M}i?}(ﬁ%) = A"p[-112]. This class does not survive in the
ASS. The only classes in higher Adams filtration which can detect 37n are vASxn and
vASky. We will see below that My, (871n?) = vASky, so we conclude that My, (87n) =
vASkn[—105)].

]

We now compute the tmf-based Mahowald invariants of classes of the form 5in? = My, (24112).

Proposition 4.21. We have the following tmf-based Mahowald invariants:

(1) Mg (n?) = v?[—4],

(2) My (Bn?) = Re[—18],

(3) Mg (B*n*) = vA*n?[=35],
(4) Muyys(8°0%) = 1> A3[—49],
(5) Mimg(B0?) = Aw?(—68],
(6) Myms(B°n*) = nARS[—83],
(7) Mg (8°0%) = ASpP[—97]
(8) Myms(B™1?) = vA®kp[—107]

Proof. (1) This follows from inspection of the AHSS.

(2) We begin with Mf:fzc(ﬂﬁ) = Mt[g]lf(ﬁUQ) = Av?[—20]. There is an Adams differential
d3(Av?) = (c4 + €)&n from which we conclude M©®(8n?) = (c4 + €)&[—18]. Indeed, we
have

(SP3)(eq + )R = n(cy + €)F.
The class (¢4 + €)R detects Re. Inspection of the AHSS shows that there are no classes in
higher Adams filtration which can detect 8n?, so we conclude My (8n?) = ke[—18].

(3) We begin with M;ifjc(ﬁzn% = Mt[iff} (8%n*) = A%%[—36]. This class does not survive in the
correct column to detect 32n? in the AHSS, so My (8%n?) # A%v2. The only other classes

which can detect 32n? are n?A? and vA?n%. The class 72A? already detected 327, so we
conclude that vA%n?[—35] detects 32n?.

(4) We begin with M;ﬁ%(ﬁ?’nz) = Mt[}é](ﬂ?’n% = A312[-52]. There is an Adams differential
da(A3V?) = vyw35hs; from which we conclude Mg}f}(ﬂ%% = w35h$; +n3A3. Indeed, we
have

(EPZ33) (w3sh3y + n°A%) = vi(wash5y +1°A%).
The class x35h5; + n3A3 detects n>A3. Inspection of the AHSS shows that there are no
classes in higher Adams filtration which can detect 3n?, so we conclude that My, (3°n?) =
3A3
n? A3[—49].
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(5) We begin with Mfrfgc(ﬁ‘lng) = M&f}(ﬁ‘an) = A*?[—68]. Inspection of the AHSS shows
that there are no classes in higher Adams filtration which can detect 5n2, so we conclude
that Myns(vi%n?) = A*v?[—68].

(6) We begin with Mfrzgf(BSng) = Mt[iic](ﬁsn2) = A°y?[-84]. This class does not survive in
the AHSS. The only class in higher Adams filtration which can detect 5°n? is nAR®, so we
conclude that My, (8°n?) = nARP[—83].

7) We begin with M29(8592) = M2 (5%92) = A612[—100]. This class does not survive in
tmf tmf
the AHSS. The only class in higher Adams filtration which can detect 572 is A%np3, so we
conclude that My, (85n?) = ASn3[-97].

(8) We begin with M;ﬁ}(ﬁ%f) = Mgigl(ﬁ%Q) = ATy2[-116]. This class does not survive in
the ASS. The only class in higher Adams filtration which can detect 87n? is vASkv, so we
conclude that My,s(87n?) = vASkv[—107].

O

We now compute the tmf-based Mahowald invariants of classes of the form i~ ta = My, (241+3).

Proposition 4.22. We have the following tmf-based Mahowald invariants:

Proof. (1) We begin with M (o) = M
]

(1) My () = (c4 + €)[—4],

(2) Mong(B) = ql-20],

(3) Myng (820) = (¢4 + )A%[~36],
(4) Myms(B3a) = A3cy[—52],

(5) Mg (B'a) = A%(cs + O]-68]
(6) Mong () = Alg[84]

(7) Mg (8%°) = A%(es + €)[-100],
(8) Mums(57a) = ATeq[116].

tmf tmy (@) = a[—8]. There is a differential da(a) = v(cs +¢)
5

from which we conclude M, .(a) = (ca + €)[—4]. Indeed, we have

<ZP__§5>(C4 +¢) =v(cy +e).
Inspection of the AHSS shows that there are no classes in higher Adams filtration which can
detect «, so we conclude that My, () = (cq + €)[—4].

(2) We begin with M;fgc(ﬁa) = Mt[;lf (Ba) = Ac[—20]. The class Ac detects ¢. Inspection of
the AHSS shows that there are no classes in higher Adams filtration which can detect Sa,
so we conclude that My, (Ba) = q[—20].

(3) We begin with M%’;(ﬂQa) = Mt[jnljl(ﬂ%z) = AZ2aq[-40]. There is an Adams differential
do(A%a) = vA%(cy + €) + 259 from which we conclude My,,r(8%a) # A2a[—40]. Inspection
of the AHSS shows that the only classes in higher Adams filtration which could detect 3%«
are A%(cy + €), A?(cq + €)n, A%cyn?, and A%2¢q. Note that M, (215%a) = ¢ A%[—44], so
the elements B%a, 26%a, 225%a, and 235%a must be detected by the above elements. By
comparing dimensions, we conclude that My, (3%a) = A%(cy + €)[—36)].

(4) We begin with M;fl‘j[(ﬁ?’a) = Mgfjl(ﬂ?’a) = A3¢[-52]. Inspection of the AHSS shows that
there are no classes in higher Adams filtration which can detect 53, so we conclude that
Mg (B3a) = A3cy[—52].

(5) We begin with M;fgp(ﬂ‘La) = Mt[jr?}([34a) = A%a[-72]. There is an Adams differential

da(A%*a) = A*v(cy + €) from which we conclude Mt[il}(ﬁ‘*a) = A%*(cq + €)[—68]. Indeed, we
have

(SP=SNAY ey +€) = vA* ey +€).
Inspection of the AHSS shows that there are no classes in higher Adams filtration which can
detect B*a, so we conclude that My, (B4a) = A%(cs + €)[—68].



i
(11]
(12]
(13]
(14]

(15]

(16]
(17]

(18]
(19]

20]
(21]

(22]
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(6) We begin with M9 H(Ba) = t[iff (B°a) = ASc[—84]. The class A®c detects Aq. Inspection

of the AHSS shows that there are no classes in higher Adams filtration which can detect
Ba, so we conclude that My, (8°a) = Atq[—84].

(7) We begin with M;ig[(ﬁf"a) t[fn?(ﬁﬁ ) = ASa[-104]. There is an Adams differential
do(A%a) = vAS(cy + €) + w165 from which we conclude that Mtf:}(ﬁ‘s ) # ASa[—104]. The

argument for computing Miy,s (8%a) carries over by multiplying everything in sight by A*
to show that My, (8%a) = A%(cs + €)[— 100]

(8) We begin with Mgff} (BTa) = tfnl} (B7a) = ATc[—116]. Inspection of the AHSS shows that
there are no classes in higher Adams ﬁltratlon which can detect 57, so we conclude that
Mg (v3%) = ATcy[—116]. We note that there are classes in higher Adams filtration, but

they are already the tmf-based Mahowald invariants of classes above.
O
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APPENDIX A. THE Eg-PAGE OF THE AHSS FOR tmftc2

In this appendix, we present part the Es-page of the AHSS converging to ,(tmf'?). This
Es-page is (8, 8)-periodic by the periodicity of the differentials in the AHSS. We show the spectral
sequence in the range 0 < t < 7 and —142 < s < 0. The s-range of each piece is listed below it,
with the lower s-value closer to the bottom of the page. A more complete chart may be viewed at
https://e.math.cornell.edu/people/jdq27/tmf AHSSES. pdf.


https://e.math.cornell.edu/people/jdq27/tmfAHSSE8.pdf
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FIGURE 22. The FEg-page of the AHSS for tmftcz7 0<t<7 -7<5<0. One
can read off My,s(a) for a € {2,2%,23,n,n?} from this calculation. Although the
Eg-page suggests that one could have M,s (n%) = €, we claim that one can calculate
Mips(n®) = v3. Indeed, dim(Myng(n®)) > dim(M(n?)) by [23, Thm. 2.15], and
M(n?) =v3.
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FIGURE 23. The Eg-page of the AHSS for L‘mftCQ7 0<t<7 —15<s<—-8. The
classes c{x along the column ¢ = 0 detect v1Z in tmf,. The class wn? detects &n?
in tmf,. More generally, the class w'z detects &'Z in tmf .
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FIGURE 24. The Eg-page of the AHSS for tmf'“?, 0 <t <7, —23 < s < —16.
Classes of the form Alz detect v3'z in tmf,. The class xo5 detects {nA} in tmf ;.
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F1GURE 25. The FEg-page of the AHSS for tmftc2, 0<t<7 -31<s< —24.
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FIGURE 26. The Fs-page of the AHSS for tmf!??, 0 <t <7, =39 < s < —32.
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FIGURE 27. The Eg-page of the AHSS for tmftc2, 0<t<7, —47 <5< —40. The
class x5, detects {vA?} in tmf ;.
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FIGURE 28. The Fg-page of the AHSS for tmf!??, 0 < ¢ <7, —=55 < s < —48.
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FIGURE 29. The Fg-page of the AHSS for tmf!??, 0 < ¢ <7, =61 < s < —56.
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FiGURE 30. The FEg-page of the AHSS for tmftcg7 0<t<7 -69<s< —64
From now on, we suppress terms containing ¢} for i > 8 or ¢}2cg for j > 7 for

readability.
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F1GURE 31. The Eg-page of the AHSS for tmftcz, 0<t<7, -79<s< -T2
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FIGURE 32. The Fg-page of the AHSS for tmf!??, 0 <t <7, =87 < s < —80.
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FIGURE 33. The Fs-page of the AHSS for tmf!??, 0 <t <7, =95 < s < —88.
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FIGURE 34. The Eg-page of the AHSS for tmftcz, 0<t<7 —103 < s < —96.
From now on, we suppress most vi-periodic classes. These continue to accumulate
as in the previous charts, but we can ignore them in Section in view of Section

23l
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FIGURE 35. The Eg-page of the AHSS for tmf!??, 0 <t <7, =111 < s < —104.
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FIGURE 36. The Eg-page of the AHSS for tmftcg7 0<t<7 —-119<s < —112.
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FiGURE 37. The Eg-page of the AHSS for tmftcg7 0<t<7, —127 < s < —120.
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F1cURrE 38. The FEg-page of the AHSS for tmftcz, 0<t<7 —-135 <s < —128.
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FIGURE 39. The Eg-page of the AHSS for tmf!?, 0 <t <7, —143 < s < —136.
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FIGURE 40. The Eg-page of the AHSS for tmftc?7 0<t<7, —151 <s<—144.
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FIGURE 41. The Eg-page of the AHSS for tmf!“?, 0 <t <7, =159 < s < —152.
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FIGURE 42. The Eg-page of the AHSS for tmftc?7 0<t<7, —164 < s < —160.
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