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Separability in homotopical algebra

Maxime Ramzi

Abstract

We study the notion of separable algebras in the context of symmetric monoidal
stable ∞-categories. In the first part of this paper, we compare this context to that of
tensor-triangulated categories and show that separable algebras and their modules in
a symmetric monoidal stable ∞-category are, in large parts, controlled by the (tensor-
triangulated) homotopy category. We also study a variant of this notion, which we
call ind-separability. Among other things, this provides a partially new proof of the
Goerss–Hopkins–Miller theorem about the uniqueness of E∞-structures on Morava E-
theory.

We later initiate a study of separable algebras à la Auslander-Goldman by relating
them to Azumaya algebras, and prove in some restrictive cases that centers of separable
algebras are separable. Finally, we study the Hochschild homology of separable algebras
and prove some descent results in topological Hochschild homology.
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Introduction

Overview

Separable algebras

In classical algebra, separable algebras, introduced by Auslander and Goldman in [AG60],
are a generalization to arbitrary commutative rings of the classical notion of separable field
extensions. They are R-algebras A for which the multiplication map A⊗R Aop → A admits
an (A, A)-bimodule section. Commutative separable algebras are closely related to étale
algebras, while separable algebras whose center is the base commutative ring are also known
as Azumaya algebras, introduced in the context of the Brauer group.

A typical trend in homotopical algebra is the attempt to mirror constructions and notions
from classical algebra to “derived” contexts, and see what parts of the theory carry over,
and what changes. For example, in [Bal11], Balmer initiated the study of separable algebras
in tensor-triangulated categories (henceforth, tt-categories). A surprising feature of these
algebras in this context is that they admit a good notion of module categories, even at the
unstructured level of triangulated categories. In many situations, these module categories
recover the “expected” result. For example, if A is an étale R-algebra, then modules over A
in the derived category of R recover the derived category of A, a surprising result which is
known to be wrong when A is a general R-algebra.

A natural source of tt-categories (to some extent, the only source of “natural” tt-
categories) is stably symmetric monoidal ∞-categories: given any such gadget C, its homo-
topy category ho(C) has a natural structure of a tt-category (and in fact, all the “enhance-
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ments” that appear in [Bal11, Section 5] - which, from this perspective, are trying to encode
as extra structure on ho(C) the homotopical data contained in C - arise in this way). From
this point of view, it makes sense to wonder what parts of the tensor-triangulated story
extend to the ∞-categorical case, and also, what parts of the tt-story are (at least morally)
explained by the ∞-story.

This project started out with a desire to answer these questions, and to clarify the
connection between separable algebras in C, and separable algebras in ho(C). The first
half of this paper is devoted to exactly this; there, we argue that separable algebras in C
and their modules are mostly controlled by the homotopy category ho(C), and even more
so in the commutative setting. In particular, we answer a folk question by proving that
the distinction between separable algebras and homotopy separable homotopy algebras is
mild in the associative case, and inexistent in the commutative case (Theorem 2.15 and
Theorem 3.24).

We further introduce a variant of separability that works in the commutative case in
more “infinitary” situations, which we call ind-separability, and prove similar results about
this variant; among other things leading to a somewhat new proof of the Goerss–Hopkins–
Miller theorem (Corollary 4.31 - see Remark 4.25 for a discussion of the sense of the word
“new”).

The higher algebra of separable algebras

Beyond their nice behaviour with respect to homotopy categories (or more generally, tt-
categories), separable algebras are interesting in their own right: as we mentioned before,
separability can be seen as an analogue of étale-ness. For example, Balmer proves in [Bal16]
that étale maps of schemes induce separable algebras, and Neeman proves in [Nee18] that
over a noetherian scheme, this is not far from an exhaustive list of commutative separable
algebras. See also the recent work of Naumann and Pol [NP23] for another comparison
of separable commutative algebras and another notion of “(finite) étale” due to Mathew
[Mat16].

Now, classically, separable algebras can be neatly organized in the following way: if A is
a separable algebra over R, its center C is separable over R and commutative, hence “étale”,
and A is separable over C and central, and hence Azumaya. Thus, separable algebras can
be studied by studying separately the commutative, slightly more geometric case, and the
central case, closely related to Brauer groups. In a later part of this paper, we try to
replicate this story, originally due to Auslander and Goldman [AG60] in the case of ring
spectra. Along the way, we correct a mistake in [BRS12], namely we prove that not all
Azumaya algebras are separable by giving a number of examples, and formulate a criterion
for when a given Azumaya algebra is separable.

The Hochschild homology of separable algebras

Separable algebras are defined in terms that have a clear connection to (topological) Hochschild
homology. This connection was already explored to some extent in [Rog08, Section 9] and
[BRS12, Section 1]. We close this paper by studying the absolute Hochschild homology of
separable extensions under a strengthening of the separability condition (see Definition 5.7),
which allows us to study some descent results in topological Hochschild homology, as many
Galois extensions satisfy this strengthening of separability.
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Main results

We now describe our main results in more detail.
As explained earlier, our first goal is to relate separable algebras in C and in ho(C).

In the associative case, we prove the following, which we state as a single theorem, but is
actually spread across Section 2:

Theorem A. [Theorem 2.15, Proposition 2.8, Theorem 2.5, and Theorem 2.13] Let C be
an additively symmetric monoidal ∞-category. Given any algebra A in ho(C), which is
separable as an algebra in ho(C), the moduli space Alg(C)≃ ×Alg(ho(C))≃ {A} is simply-

connected, and any algebra Ã lifting A is separable in C.
Furthermore, in this situation, the canonical functor ho(LModÃ(C))→ LModA(ho(C))

is an equivalence.
Finally, given another algebra R in C, the canonical map mapAlg(C)(Ã, R)→ homAlg(ho(C))(A, R)

is a π0-isomorphism.

Remark 0.1. The simple-connectedness of the moduli space of lifts cannot be improved
to a contractibility statement, cf. Example 2.30. Similarly, the final statement about π0

cannot be improved to a space-level statement, even if the source is commutative and the
target separable, cf. Example 3.35. See below for the case where the target is (homotopy)
commutative. ⊳

We further prove that in the commutative case, the obstructions to contractibility vanish,
namely:

Theorem B. [Proposition 3.13, Theorem 3.24, and Corollary 3.36] Let C be an additively
symmetric monoidal∞-category, and let A be an algebra in ho(C) which is separable therein,
and homotopy commutative. In this case, the moduli space of lifts to an associative algebra
in C is contractible.

More generally, for any d ≥ 1, the moduli space AlgEd
(C)≃ ×Alg(ho(C))≃ {A} is con-

tractible - including for d = ∞. In particular, A admits an essentially unique lift Ã to a
commutative algebra in C.

Furthermore, for any algebra R in C which is homotopy commutative, the canonical map
mapAlg(C)(Ã, R) → homAlg(ho(C))(A, R) is an equivalence - the source is discrete. If R is a
commutative algebra, then these two spaces are also equivalent (via the canonical map) to
mapCAlg(C)(Ã, R).

Although Morava E-theory is not separable in K(n)-local spectra, we prove that it is
close enough to being separable that some of our results still apply to it. In more detail,
we introduce the notion of an (homotopy) ind-separable algebra in Section 4, and prove an
analogue of Theorem B for ind-separable algebras. We further prove, using as only input a
computation of π∗(LK(n)(E ⊗ E)), that Morava E-theory is homotopy ind-separable, and
we thus recover the Goerss–Hopkins–Miller theorem (we prove a more precise version, also
for morphisms, cf. Corollary 4.31):

Corollary C. Let E = E(k, G) be a Morava E-theory, where k is a perfect field of character-
istic p and G a formal group over k. For any d ≥ 1, the moduli space AlgEd

(Sp)≃×Alg(ho(Sp))≃

{E} is contractible.

4



Remark 0.2. When d = 1, this is the Hopkins-Miller theorem, and when d = ∞, this is
its extension to the Goerss-Hopkins-Miller theorem. This result, for intermediary values of
d, is well-known to experts, but does not seem to have been recorded in the literature. ⊳

Remark 0.3. Our proof of this theorem is also based on obstruction theory - we refer to
Remark 4.25 for a discussion of the difference between our proof and previous proofs. ⊳

We then study Auslander-Goldman theory. In this direction, our results are only partial.
A special case of what we prove is:

Theorem D (Theorem 6.14 and Proposition 6.11). Let R be a commutative ring spectrum
satisfying the assumptions of Theorem 6.14. In this case, any dualizable central separable
algebra over R is Azumaya.

Conversely, in any additive presentably symmetric monoidal∞-category C, an Azumaya
algebra A is separable if and only if its unit 1C → A admits a retraction.

Remark 0.4. The assumptions of Theorem 6.14 cover all connective ring spectra, and
all ring spectra “coming from chromatic homotopy theory”, but they are nonetheless a bit
restrictive.

We also study the question of whether centers of separable algebras are separable, al-
though we only reach results in more restricted generality:

Theorem E (Theorem 6.44). Let R be a connective commutative ring spectrum and let A
be an almost perfect R-algebra. If A is separable, then so is its center.

The same holds for separable algebras in K(n)-local E-modules, where E is Morava
E-theory, and for separable algebras in K(n)-local spectra.

We finally study the Hochschild homology of separable algebras. Under a technical
assumption which strenghtens separability in a relative context, we obtain descent results
in Section 7. Special cases worth recording are:

Corollary F (Corollary 7.16). The C2-Galois extension KO→ KU and the (Z/p)×-Galois
extension Lp → KUp (the inclusion of the Adams-summand in p-completed K-theory) satisfy
descent in topological Hochschild homology (p-completed for the latter).

Outline

Let us describe the contents of this paper linearly.
In Section 1, we start by gathering generalities about separable algebras and their module

categories.
In Section 2, we study in more depth the relation between separable algebras in C and

in ho(C) in the associative case. This is where we prove Theorem A. Most of the proof is
relatively elementary, except for the description of the moduli space of lifts, where we use a
version of Goerss-Hopkins obstruction theory, following [PV22]. In Section 3, we move on
to the commutative case, where we prove Theorem B - in contrast to the previous section,
there is no obstruction theory in these proofs, and they are relatively elementary. In this
section, we also study the analogy between separable and étale algebras in the sense of Lurie.

In Section 4, we study a variant of separability, namely ind-separability, and use it to
recover the Goerss–Hopkins–Miller theorem.
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In Section 5, we gather a number of examples of separable algebras, to indicate the
wealth of examples despite how strong this condition is.

Section 6 is where we investigate Auslander-Goldman theory in homotopical algebra. We
raise a number of questions we were not able to answer in this direction.

Finally, in Section 7, we study the Hochschild homology of separable algebras and related
descent properties.

We have two short appendices: in Appendix A, we give a proof that the trace pairing of
a dualizable algebra is C2-equivariant in a coherent sense (this is used for a single result in
the paper, namely in Proposition 3.17); and in Appendix B we compare the condition that
a map of algebras be an epimorphism to a condition involving tensor products (this is not
used in the paper, but is related to Item 2 in Lemma 1.6).

Remark 0.5. We emphasize that Sections 1 to 3 are mostly elementary except for the
proof of Theorem 2.15, and furthermore, none of the other proofs of these sections depend
on this result. They can therefore be read independently of this result. In other words,
all of our “rigidification” results work completely elementarily, as long as one starts with
an E1-algebra. On the other hand, to understand the proof of this specific theorem, which
is the one that lifts homotopy algebras to algebras, one must go back to [PV22], and we
recommend the reader have a look at this paper if they want to go in depth in the proof of
Theorem 2.15.

Conventions

We freely use the language of ∞-categories as extensively developed by Lurie in [Lur09,
Lur12]. We view ordinary categories as ∞-categories via the nerve, and typically suppress
the nerve from the notation. When we want to stress that a∞-category is (the nerve of) an
ordinary category, we say “1-category”. Unless explicitly specified, all our categorical notions
such as co/limits, adjunctions, etc. are to be understood in the sense of ∞-categories.

1. S, Sp denote, respectively, the ∞-categories of spaces1 and of spectra.

2. Throughout this paper, C will denote a symmetric monoidal ∞-category, satisfying
various extra conditions. When we say that an∞-category is “(semi)additively” (resp.
“stably”, “presentably”) symmetric monoidal, we mean that it is a symmetric monoidal
∞-category whose underlying∞-category is (semi)additive (resp. stable, presentable),
and where the tensor product is compatible with this structure, that is, commutes with
coproducts in each variable (resp. finite colimits, all colimits).

3. If there is no specified ∞-operad, the word “algebra” (resp. the notation Alg) means
“associative or equivalently E1-algebra” (resp. denotes the ∞-category of associative
algebras).

4. We use ho(C) to denote the homotopy category of an ∞-category. When X is an
object of C (possibly with some extra structure), we write hX for the same object
viewed as an object of ho(C) (with the appropriate extra structure, in ho(C)). We
append the word “homotopy” to a type of structure to mean “that type of structure,
considered in ho(C)”. For example, a “homotopy algebra” is an algebra in ho(C).

1aka ∞-groupoids, homotopy types or anima.
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5. We say “geometric realization” for “(homotopy) colimit indexed by ∆op”.

6. We write map for mapping spaces, Map for mapping spectra in stable ∞-categories,
and hom for hom-sets in 1-categories. We also use hom when talking about internal
homs of closed symmetric monoidal ∞-categories.

7. A common trick consists in embedding a small ∞-category (possibly with some ex-
tra structure) in its presheaf ∞-category to reduce to proving statements about pre-
sentable ∞-categories, or simply ∞-categories with suitable colimits. This is usually
compatible with multiplicative structures, essentially by [Lur12, Section 4.8.1] (see,
e.g., [Lur12, Proposition 4.8.1.10]). We will usually simply say “up to adding enough
colimits” to mean “without loss of generality, assume C has these colimits”, i.e., to
refer to this trick.

8. Modules are usually left modules. For commutative algebras, we simply write Mod,
while for associative algebras we always specify and write LMod or RMod. For an
algebra A, we shorten “(A, A)-bimodule” to “A-bimodule” and write BiModA, while
for two algebras A and B we write ABiModB for (A, B)-bimodule (a left A-action
and a right B-action). If C is clear from context, we sometimes write LModA for
LModA(C).

9. By default, everything is derived. If we write ModR, for an ordinary ring R, we mean
the ∞-category modules in Sp, equivalently the derived ∞-category of R. We use
♥ to denote hearts of t-structures, so Mod♥

R denotes the abelian category of discrete

R-modules - we also use it for variants, such as CAlg♥
R, which means CAlg(Mod♥

R).
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1 Generalities

The goal of this section is to set the stage: we define separable algebras, and gather some
of their basic properties.

Notation 1.1. Throughout this section, C is a symmetric monoidal ∞-category, with unit
1 and tensor product denoted by ⊗. ⊳

Following [Bal11], we define:

Definition 1.2. An algebra A ∈ Alg(C) is said to be separable if the multiplication map,
A⊗Aop → A admits a section s, as a map of A-bimodules.

In this case, we call the composite 1 → A
s
−→ A ⊗ Aop, or sometimes the section s

itself, a separability idempotent. Equivalently, this is an A ⊗ Aop-linear idempotent map
A⊗Aop → A⊗Aop. ⊳

Variant 1.3. An algebra A ∈ Alg(C) is said to be homotopy separable if it is separable, as
an algebra in ho(C).

If we start with an algebra A ∈ Alg(ho(C)) directly, we will say that we have a homotopy
separable homotopy algebra.

Variant 1.4. Suppose C admits geometric realizations which are compatible with the tensor
product. In particular, C admits relative tensor products.

Let R ∈ CAlg(C) be a commutative algebra, and A ∈ Alg(ModR(C)) be an R-
algebra. We say A is separable over R if A is separable as an algebra in ModR(C). If
A ∈ CAlg(ModR(C)), we will say that it is a separable extension of R.

Remark 1.5. Recall that an algebra is said to be smooth if A is right or left dualizable
over A ⊗ Aop [Lur12, Definition 4.6.4.13.]. If C is idempotent-complete, dualizable objects
are closed under retracts, and so a separable algebra is smooth.

One can therefore think of separability as a strenghtening of smoothness. ⊳

1.1 Basic properties

Separable algebras enjoy a number of closure properties:

Lemma 1.6. Let A, B ∈ Alg(C) be algebras.

1. The unit of C, 1, is separable; more generally if A is an idempotent algebra [Lur12,
Definition 4.8.2.8.], then it is separable.

2. Suppose C admits geometric realizations, compatible with the tensor product, and sup-
pose that the map B ⊗A B → B is an equivalence. If A is separable, then so is B.

3. If A and B are separable, then so is A⊗B.
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4. Suppose C is semiadditively symmetric monoidal. The product A × B is separable if
and only if both A and B are.

5. If there is a retraction A→ B → A in Alg(C), and B is separable, then so is A.

6. If A is separable, then so is Aop.

7. If f : C→ D is a symmetric monoidal functor, and A is separable, then so is f(A).

Proof. 1. is clear, as the multiplication map A ⊗ Aop → A of an idempotent algebra is an
equivalence (on underlying objects, and hence as bimodules).

For 2., observe that basechange along f induces a functor BiModA → BiModB that
sends A⊗Aop to B ⊗Bop by design, and the bimodule A to the bimodule B ⊗A A⊗A B ≃
B ⊗A B ≃ B, where the last equivalence is by assumption. Further, the multiplication map
is sent to the multiplication map, and the existence of a section in the source guarantees the
existence of a section in the target.

3. follows from the existence of a functor BiModA ×BiModB → BiModA⊗B sending
(A ⊗ Aop, B ⊗ Bop) to (A ⊗ B) ⊗ (A ⊗ B)op and (A, B) to A ⊗ B. Similarly as above, the
multiplication map is sent to the multiplication map, and the existence of a section in the
source guarantees the existence of a section in the target.

For one direction of 4., we note that the multiplication map (A×B)⊗(A×B)op → A×B
factors as (A×B)⊗ (A× B)op → (A ⊗Aop)× (B ⊗Bop)→ A×B. If A, B are separable,
then the second map has a bimodule section, and so the claim follows from the fact that,
in the semiadditive case, with no assumption on A, B, the first map also has a bimodule
section.

Conversely, notice that in the semiadditive case, the projections A × B → A (resp. B)
are strong epimorphisms, so that by 2., if A×B is separable, then so are A and B.

For 5., let A
i
−→ B

r
−→ A denote a retraction diagram. We view B-bimodules as A-

bimodules via restriction along i. Then, A
i
−→ B

s
−→ B⊗Bop r⊗rop

−−−−→ A⊗Aop is an A-bimodule
map, where s is the separability idempotent of B. Furthermore, the composite

A
i
−→ B

s
−→ B ⊗Bop r⊗rop

−−−−→ A⊗Aop → A

is equivalent to

A
i
−→ B

s
−→ B ⊗Bop → B

r
−→ A

because r is an algebra map, and thus, because s is a separability idempotent, to A→ B → A
and thus, because we started with a retraction diagram, to idA, and so we are done.

6. and 7 are clear (in fact, 6. follows from 7. as the equivalence C ≃ Crev sends A to
Aop).

Remark 1.7. It follows from 1. and 3. that if A is separable, then so is A⊗Aop. ⊳

Remark 1.8. Item 7 really requires a symmetric monoidal functor, and not just a lax
symmetric monoidal one. ⊳

Remark 1.9. We will see in Proposition 6.48, that Item 7 has a form of converse in the
commutative case, if we assume that f is more than conservative, rather part of a limit
decomposition of C. ⊳
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Remark 1.10. The condition in Item 2 implies that A→ B is an epimorphism in Alg(C).
We do not know whether being an epimorphism is sufficient. Note that if C is furthermore
stable, then this condition is equivalent to being an epimorphism. ⊳

Lemma 1.11. Suppose C is semi-additively symmetric monoidal. Then an algebra A ∈
Alg(C) is separable if and only if A is projective as an A ⊗ Aop-module, i.e. if and only if
there exists some finite n and a retraction of (A⊗Aop)n onto A.

Proof. Clearly separability implies the projectivity condition, with n = 1.

For the converse, fix a retraction diagram A
i
−→ (A⊗Aop)n p

−→ A. Write p as (pi)i, where
each pi : A⊗Aop → A is p on the ith summand.

Observe that the unit map 1→ A lifts through A⊗Aop µ
−→ A, so that each pi : A⊗Aop →

A lifts as well, now as a bimodule map. Fix a lift p̃i to get p̃ : (A⊗Aop)n → A⊗Aop. Then
p̃ ◦ i is a section of µ.

Remark 1.12. A consequence of this characterization is that in the setting of classical
algebra, as projectivity is Morita invariant, separability also is.

This is wrong in the generality that we are in. The following counterexample was pointed
out to me by Robert Burklund: one can show that if X is a finite spectrum which generates
Spω as a thick subcategory, then End(X) is separable if and only if the unit map S →
End(X) splits (cf. Proposition 6.11), while End(X) is always Morita equivalent to the
sphere spectrum S, which is of course separable. Yet there are such spectra such that the
unit map does not split, such as X = S/η, the cone of η ∈ π1(S).

One can analyze this example and make it more general - in particular, one can make a
similar example in some category of representations of some group over Q, and so have such
examples in characteristic 0.

One could instead formulate a notion of “projective Morita equivalence”, and prove that
separability is projective-Morita invariant. ⊳

1.2 Modules over separable algebras

We now move on to discussing modules over separable algebras. The main observation in
this realm is the following:

Proposition 1.13. Let A be an algebra in C, and consider the free-forgetful adjunction
A⊗− : C ⇄ LModA(C) : U .

A is separable if and only if the co-unit A ⊗ U(−) → idLModA(C) admits a natural
C-linear section.

Proof. There is a functor FunC(LModA(C), LModA(C))→ BiModA(C) given informally
by evaluation at the object A ∈ LModA(C) [Lur12, Remark 4.6.2.9., Theorem 4.8.4.1.].2

This functor sends A⊗ U(−) to A⊗ Aop as an A-bimodule, and idModA(C) to A itself,
with its canonical A-bimodule structure. In particular, the existence of a natural section as
indicated implies the existence of a bimodule section.

2Under relatively mild hypotheses on C, this can be made into an equivalence by restricting the domain
a little: if C admits geometric realizations compatible with the tensor product, then C-linear endofunctors
of LModA(C) that commute with geometric realizations are exactly given by bimodules [Lur12, Theorem
4.8.4.1.]. For this part of the proof, we do not need an equivalence.
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Conversely, suppose that A is separable. Up to embedding C in a symmetric monoidal
∞-category admitting geometric realizations compatible with the tensor product, we may
assume that C has these properties. In that case, the above restriction functor induces
an equivalence Fun∆

C(LModA(C), LModA(C)) ≃ BiModA(C), and so we can reverse the
argument from above.

Concretely, the section is described as follows :

M
≃
←− A⊗A M

s⊗AM
−−−−→ (A⊗Aop)⊗A M ≃ A⊗M

Corollary 1.14. If A is a separable algebra in C, then any A-module M is a retract of the
free A-module A⊗M .

It will be convenient to have a generalization of this observation in the following direction:
if M is equipped with a coherent tensoring by C, i.e. M is a C-module, the notion of A-
module in M makes sense. We have:

Corollary 1.15. Let M be a C-module, A an algebra in C, and consider the free-forgetful
adjunction A⊗− : M ⇆ LModA(M) : U . If A is separable, then the co-unit A⊗ U(−)→
idLModA(M) admits a natural C-linear section.

In particular, any A-module in M, M , is a retract of the free A-module A⊗M .

Proof. As in the previous proof - by embedding C, M in categories that have geometric
realizations compatible with the tensor product (resp. the tensoring of C), we may assume
that they have these properties.

In this case, LModA(M) ≃ LModA(C)⊗C M, and the free-forgetful adjunction for M
is identified with −⊗C M applied to the free forgetful adjunction for C. The result follows.

We note that the section has the same concrete description as in the case of M = C.

Remark 1.16. We will have several results that hold for an arbitrary C-module M. While
this always implies the result for the special case M = C, we will typically state this special
case explicitly, to help with intuition. ⊳

Thus, separability allows us to deduce things about A-modules based on underlying
properties. For instance:

Corollary 1.17. Let M be a C-module and let A be a separable algebra in C. Consider a
map M → N of A-modules in M. If it has a retraction in M (resp. a section), then it does
so in ModA(M) as well.

Proof. The map M → N is a retract of the map A ⊗M → A ⊗ N , and the property of
having a section (resp. a retraction) is closed under retracts.

Similarly, we have:

Corollary 1.18. Let C be a pointed symmetric monoidal category in which ⊗ preserves
the zero object, and A ∈ Alg(C) a separable algebra. Let f : M → N be a morphism in
LModA(C), whose underlying map in C is nullhomotopic, i.e. factors through 0.

In this case, f is nullhomotopic in LModA(C).
The same holds for morphisms in LModA(M) whose underlying morphism in M is

nullhomotopic, for any C-module M.

11



Proof. The proof is the same: retracts of nullhomotopic maps are nullhomotopic.

Remark 1.19. Note that this fact is famously not true in general ∞-categories if we do
not assume separability. For example, let A = EndZ(Z/p), and view Z/p as an A-module.
Then p : Z/p→ Z/p is not zero as an A-module map, but its underlying map is 0. ⊳

Corollary 1.14, as well its extension to Corollary 1.15 will be crucial in the next section,
where we analyze the relation of separable algebras to homotopy categories, but we can
already make good use of it to analyze relative tensor products and internal homs.

We recall that, for a right (resp. left) A-module M (resp. N) in C, we can form a
simplicial object Bar(M, A, N)• : ∆op → C, compatibly with symmetric monoidal functors
C→ D, and that its colimit, if it exists, is the relative tensor product M ⊗A N , cf. [Lur12,
Section 4.4.2.]. Given a symmetric monoidal functor f : C → D, we have a canonical
equivalence f ◦ Bar(M, A, N)• ≃ Bar(f(M), f(A), f(N))•.

Definition 1.20. Let f : C→ D be a symmetric monoidal functor, A ∈ Alg(C) an algebra
in C, M (resp. N) a right (resp. left) A-module.

We say that f preserves the relative tensor product M ⊗A N if it exists in C, and f
preserves the colimit colim∆opBar(M, A, N)•. ⊳

We can then state:

Proposition 1.21. Assume C admits geometric realizations which are compatible with the
tensor product. Let A ∈ Alg(C) be a separable algebra, and M, N be a right A-module and
a left A-module respectively.

In this case, the relative tensor product M ⊗A N is a (natural, C-linearly on both sides)
retract of M ⊗N .

In particular, if we now remove the assumption that C admits geometric realizations and
replace it with C being idempotent complete, then C still admits relative tensor products of
A-modules; and they are preserved by any symmetric monoidal functor C→ E.

Proof. The second part can be deduced from the first as follows: freely add geometric
realizations to C to obtain a fully faithful symmetric monoidal functor C → D where D
satisfies the hypotheses of the first part. The image of A in D is still separable, and so the
tensor product M⊗AN , computed in D, lives in C, because M⊗N does and C is idempotent
complete (here, we use the first part). Therefore, this colimit of the bar construction is a
colimit in C as well.

For the first part, we note that N is a (natural, C-linear) retract of A ⊗ N , so that
M ⊗A N is a (natural, C-linearly on both sides) retract of M ⊗A (A⊗N) ≃M ⊗N , as was
claimed.

From the proof, it is clear that these relative tensor products are preserved by any
symmetric monoidal functor, because retractions are; this proves the final part.

Remark 1.22. One could instead phrase this, and the next proof, in terms of the canonical
resolution of the left A-module N , namely a simplicial object which looks like [n] 7→ A⊗n+1⊗
N . In those terms, the statement would be that the corresponding colimit diagram N ≃
colim∆opA⊗n+1 ⊗N is an absolute colimit diagram, as it is a retract of the corresponding
diagram for A ⊗ N , which is split augmented and hence an absolute colimit diagram. See
the proof of [NP23, Lemma 4.7] for an argument in this direction. ⊳
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We now move on to hom objects. Given two left A-modules M, N , the hom-object from
M to N , homA(M, N), is the object of C equipped with a map of left A-modules ev : M ⊗
homA(M, N) → N which, if it exists, satisfies the following universal property: restriction
along ev induces an equivalence mapC(c, homA(M, N)) ≃ mapLModA(C)(c⊗M, N).

If f : C → D is a symmetric monoidal functor, and if homA(M, N) exists, then we
obtain a map of left f(A)-modules f(M)⊗ f(homA(M, N))→ f(N).

Definition 1.23. Let f : C→ D be a symmetric monoidal functor, A ∈ Alg(C) an algebra
in C and M, N left A-modules. We say that f preserves the internal hom homA(M, N) if it
exists, and the induced map f(M)⊗ f(homA(M, N)) → f(N) exhibits f(homA(M, N)) as
a hom object from f(M) to f(N). ⊳

We begin with a well-known lemma:

Lemma 1.24. Let C be symmetric monoidal, and assume it admits totalizations of cosim-
plicial objects as well as internal homs.

In this case, for any algebra A ∈ Alg(C), the right-C-module LModA(C) admits hom-
objects in C.

Proof. We note that because C admits internal homs, its tensor product is compatible with
any colimit that exists in C.

Now, given Y ∈ LModA(C), we note the following two things: first, if C admits Iop-
shaped limits, then the property that homA(X, Y ) exist is closed under I-shaped colimits
in X , and second, for any X ∈ C, homA(A⊗X, Y ) exists.

For the first one, we note that indeed, the condition that homA(X, Y ) exists is by defi-
nition the condition that c 7→ mapA(X ⊗ c, Y ) be a representable functor Cop → S. Rep-
resentable functors are closed under Iop-shaped limits by assumption, and − ⊗ c preserves
any colimits that exist in C, so the claim follows at once.

For the second one, we note that mapA(A⊗X⊗c, Y ) ≃ map(X⊗c, Y ) ≃ map(c, hom(X, Y )),
so homA(A⊗X, Y ) exists and is equivalent to hom(X, Y ).

With these two things in hand, we can conclude: any A-module is the colimit of a ∆op-
shaped diagram, all of whose terms are of the form A⊗X for some X [Lur12, Proposition
4.7.3.14].

Proposition 1.25. Assume C admits totalizations of cosimplicial objects, and internal
homs. Let A ∈ Alg(C) be a separable algebra, and M, N ∈ LModA(C). In this case,
homA(M, N) ∈ C exists, and is a retract of hom(M, N). Furthermore, any symmet-
ric monoidal functor C → E which is also closed, or more generally, which preserves
hom(M, N), preserves homA(M, N).

If we remove the assumption that C admits totalizations, while keeping the existence of
hom(M, N) and we assume that C is idempotent complete, then we get the same conclusion
about homA(M, N).

Proof. We begin under the assumption that C admits totalizations and internal homs.
In this case, by Lemma 1.24, homA(M, N) exists and is a retract of of homA(A⊗M, N) ≃

hom(M, N). It is clear that this is preserved by any symmetric monoidal functor which
preserves hom(M, N).

Now, we go back to a general idempotent-complete C. There is a symmetric monoidal
embedding C → E where E admits totalizations, and which preserves all homs that exist
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in C : in fact, the Yoneda embedding into the Day convolution monoidal structure on
presheaves has this property. In particular, homA(M, N) in E is a retract of hom(M, N) in
C, and thus is in C by idempotent-completeness. The conclusion about preservation follows
similarly.

An internal hom of specific interest is the center of A:

Corollary 1.26. Let C be an idempotent complete symmetric monoidal ∞-category, and
A ∈ Alg(C) a separable algebra. In this case, Z(A) = homA⊗Aop(A, A) exists and is a
retract of A.

Furthermore, it is preserved by any symmetric monoidal functor C→ E.

Notation 1.27. We introduce here the notation Z(A) = homA⊗Aop(A, A) - this is the
E1-center of A, which is an E2-algebra [Lur12, Section 5.3.]. ⊳

Remark 1.28. Note that the retraction A→ Z(A) is given by precomposition by s : A→
A⊗Aop:

A ≃ homA⊗Aop(A⊗Aop, A)→ homA⊗Aop (A, A) = Z(A)

In particular, it has a canonical left Z(A)-linear structure. ⊳

We conclude this section with the following classical fact:

Proposition 1.29. Assume C is idempotent-complete, and let R ∈ CAlg(C) be separable.
In this case, relative tensor products over R exist and so ModR(C) is symmetric monoidal.

Let A ∈ Alg(ModR(C)). If A is separable over R, then it is separable.

Proof. Suppose A is separable over R. We then have an A⊗R Aop-linear, and hence A⊗Aop-
linear section A→ A⊗R Aop. But now, because R is separable, the latter is A⊗Aop-linearly
a retract of A⊗Aop. Composing the two retraction gives the claim.

We prove the converse in the case of an additive ∞-category in Proposition 2.11.

2 Separable algebras and homotopy categories

In this section, we explain how separable algebras in C are controlled by the homotopy
category ho(C). This suggests that a big chunk of the study of separable algebras can be
performed in the homotopy category, and thus explains morally why separable algebras work
so well in tt-categories. This also allows to lift many results about separable algebras in the
tt-setting to the stable ∞-setting.

2.1 Modules, separability and algebras

The key property that will drive our analysis is Corollary 1.14, which, recall, states that
over a separable algebra, any module is a retract of a free module of the form A ⊗M . We
will use it together with the following general fact:
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Lemma 2.1. Let A ∈ Alg(C) be any algebra, and let X ∈ LModA be a retract of a module
of the form A⊗M .

For any N ∈ LModA, the functor ho(LModA(C)) → LModhA(ho(C)) induces an
isomorphim

π0 mapLModA(C)(X, N)
∼=
−→ homLModhA(ho(C))(hX, hN)

More generally, if M is a C-module, and X ∈ LModA(M) is a retract of some mod-
ule of the form A ⊗M , then for any N ∈ LModA(M), the functor ho(LModA(M)) →
LModhA(ho(M)) induces an isomorphism

π0 mapLModA(M)(X, N)
∼=−→ homLModhA(ho(M))(hX, hN)

Proof. The collection of X ’s for which this map is an isomorphism is clearly closed under
retract, so we may assume that X is free on some M . But then hX is free on the same hM ,
with the same unit map, from which the claim follows.

Corollary 2.2. Let A ∈ Alg(C) be a separable algebra. The functor ho(LModA(C)) →
LModhA(ho(C)) is fully faithful.

More generally, if M is a C-module, then ho(LModA(M))→ LModhA(ho(M)) is fully
faithful.

Proof. This follows from the previous lemma together with Corollary 1.14 (resp. Corol-
lary 1.15).

Convention 2.3. In the rest of this paper, C will be assumed to be additive. We will
however repeat it in the statements of results for self-containedness.

It is not clear to the author whether this condition is necessary, and where, but we use
it in some key instances, so it is certainly necessary for our proofs, if not the results. Note
that additivity is a place where both ∞-categories and their homotopy categories can live,
so it is a suitable inbetween between∞-categories and 1-categories. We use this assumption
together with the following lemma:

Lemma 2.4. Let C be an additive category and e : X → X an idempotent in ho(C). There
exists a coherent idempotent Idem→ C which lifts e (cf. [Lur09, Section 4.4.5.]).

In particular, if C is idempotent-complete, then so is ho(C).

Proof. This is [Lur12, Lemma 1.2.4.6., Remark 1.2.4.9.] - note that as stated, the assumption
is that C is stable, but the proof works just as well if C is additive. Alternatively, one can
deduce the additive case from the stable case by embedding any additive category in a stable
one.

With all of this, we can show:

Theorem 2.5. Suppose C is additively symmetric monoidal, and let A ∈ Alg(C) be a sepa-
rable algebra. The forgetful functor ho(LModA(C))→ LModhA(ho(C)) is an equivalence.

More generally, if M is a C-module, then the forgetful functor ho(LModA(M)) →
LModhA(ho(M)) is an equivalence.
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Proof. We have already shown it is fully faithful, so we are left with proving that it is essen-
tially surjective. Note that we can assume without loss of generality that M is idempotent-
complete: indeed, assume for a second the claim holds for idempotent complete categories,
and let M→M′ be the idempotent-completion of M, which is in particular a fully faithful
functor.

Let M ∈ LModhA(ho(M)) ⊂ LModhA(ho(M′)). By the idempotent complete case,
this can be lifted to an A-module in M′. But the underlying object of M is in ho(M), and
therefore the underlying object of this lift is in M, which proves the claim.

So we now assume M is idempotent complete. It follows that LModA(M) is also
idempotent-complete, cf. [Lur12, Corollary 4.2.3.3.] and [Lur09, Remark 4.4.5.13.]. It
is also additive and therefore by Lemma 2.4, ho(LModA(M)) is also idempotent complete.
So to prove that a fully faithful functor ho(LModA(M)) → D is essentially surjective, it
suffices to show that any object in D is a retract of some object in the image; but here any
object of LModhA(ho(M)) is a retract of some hA⊗N , by separability, and hA⊗N is the
image of A⊗N , so we are done.

This is the first instance of how separable algebras behave nicely with respect to homo-
topy categories.

Remark 2.6. By Proposition 1.21 and Proposition 1.25 applied to the symmetric monoidal
functor C → ho(C), the functor LModA(C) → LModhA(ho(C)) is compatible with rela-
tive tensor products over A and internal homs over A that is, the tensor product M ⊗A N
is the coequalizer in ho(C) over the two maps M ⊗A⊗N ⇒ M ⊗N , and the internal hom
homA(M, N) is the equalizer in ho(C) of hom(M, N) ⇒ hom(A⊗M, N).

This is therefore compatible with Balmer’s construction in the triangulated setting
[Bal14, Section 1].

Because the functor ho(LModA(C)) → LModhA(ho(C)) is also an equivalence, this
gives an explanation, at least in the case of tensor triangulated categories which are homo-
topy categories of symmetric monoidal stable ∞-categories, of the fact that module cate-
gories over separable algebras are still triangulated, and why their tensor product behaves
nicely.

We note that this is also discussed in the recent work of Naumann and Pol, see [NP23,
Lemma 4.7, Remark 4.9]. ⊳

Remark 2.7. The previous remark, as well as the equivalence ho(LModA(C)) ≃ LModhA(ho(C))
applied to A⊗Bop, for separable algebras A and B, shows that for separable algebras, there
is a reasonable notion of Morita equivalence at the level of the homotopy category, that
can be phrased in terms of bimodules in the “naive” way. See also Theorem 2.13 for an
application of this idea to morphisms between separable algebras. ⊳

We next show that the picture is even more rigid: separability is detected at the level of
the homotopy category, more precisely:

Proposition 2.8. Suppose C is additively symmetric monoidal and let A ∈ Alg(C) be a
homotopy separable algebra. In this case, A is separable.

For this, we use the following categorical facts:

Lemma 2.9 ([Lur22, Example 1.4.7.10. (Tag 00JC)]). Let ∆1/∂∆1 → BN be the canonical
map. It is a categorical equivalence.
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Lemma 2.10. [Lur09, 4.4.5.15.] The canonical map N≥ → Idem is cofinal.

Moreover, note that this canonical map is given by the following composite : N≥ →
BN→ Idem so that we have the following commutative diagram for any category D:

Fun(∆1/∂∆1, D) Fun(BN, D) Fun(N≥, D)

Fun(Idem, D)

≃

With this in hand, we can prove the claim:

Proof of Proposition 2.8. Without loss of generality, we assume C is idempotent complete.
Consider the idempotent s : hA⊗hAop → hA→ hA⊗hAop in the category of homotopy

A-bimodules. Note that its source and target are free A ⊗ Aop-bimodules, and the func-
tor ho(LModA⊗Aop(C)) → LModh(A⊗Aop)(ho(C)) is fully faithful on the full subcategory
spanned by A ⊗ Aop, which proves that this idempotent lifts to a coherent idempotent in
LModA⊗Aop(C), by Lemma 2.4. That is, we have a functor s̃ : Idem → LModA⊗Aop(C)
that classifies s.

In the diagram

Fun(∆1/∂∆1, LModA⊗Aop (C)) Fun(BN, LModA⊗Aop (C))
≃oo // Fun(N≥, LModA⊗Aop (C))

Fun(Idem, LModA⊗Aop (C))

OO 33
❤❤

❤
❤❤

❤❤
❤❤

❤❤
❤❤

❤
❤❤

❤❤
❤

if we follow s̃ up and then left, we simply get A⊗Aop s
−→ A⊗Aop. Now, in Fun(∆1/∂∆1, C),

we have an arrow that corresponds to the following commutative square in LModA⊗Aop(C):

A⊗Aop A⊗Aop

A A

s

idA

µ µ

Note that there exists such a commutative square in LModA⊗Aop(C), because there is one
in LModh(A⊗Aop)(ho(C)), and the source is a free module (cf. Lemma 2.1).

In particular, if we now go from Fun(∆1/∂∆1, LModA⊗Aop (C)) to Fun(N≥, LModA⊗Aop (C)),

we get a map from A⊗ Aop s
−→ A ⊗ Aop s

−→ . . . to A
idA−−→ A

idA−−→ . . . . By commutativity of
the diagram, the source is simply the restriction of s̃ along the map N≥ → Idem.

In particular, the source has a colimit given by the splitting of that idempotent, and
we get a map from this colimit to A in LModA⊗Aop(C). But splitting of idempotents are
absolute colimits [Lur09, Corollary 4.4.5.12.], so they are preserved by the forgetful functor
LModA⊗Aop(C) → LModh(A⊗Aop)(ho(C)). If we redo this story in the latter category, A
is the splitting of the idempotent in question, and so the canonical map from this colimit to
A is an equivalence.

It is therefore an equivalence in ho(C), and therefore in C, and therefore in LModA⊗Aop(C).
This proves that A is the splitting of some idempotent on A⊗Aop in LModA⊗Aop (C), along

A⊗Aop µ
−→ A, which is exactly saying that A is separable, and so we are done.
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We can now prove the converse of Proposition 1.29, namely:

Proposition 2.11. Assume C is additively symmetric monoidal and idempotent-complete,
and let R ∈ CAlg(C) be separable. In this case, relative tensor products over R exist and so
ModR(C) is symmetric monoidal.

Let A ∈ Alg(ModR(C)). In this case, A is separable if and only if it is separable over
R.

Warning 2.12. Classically, if A is separable, then it is so over R, with no separability
assumption on R. This is wrong in homotopical algebra and if one tries to run the classical
proof, one will encounter the issue that A⊗Aop → A⊗R Aop is not an epimorphism.

A counterexample is given by the Q-algebras R = Q[x] and A = any nonzero separable
commutative Q-algebra, all of this in the ∞-category of Q-module spectra. ⊳

Proof. We have proved in Proposition 1.29 that if A was separable over R, it was separable.
Now, assume A is separable.

We observe that by Proposition 2.8, it suffices to show that A is separable in ho(ModR(C)).
But because R is separable, ho(ModR(C)) ≃ModhR(ho(C)), symmetric monoidally as the
relative tensor products are preserved. In other words, we may assume that C is a 1-category.

But now A ⊗ Aop → A ⊗R Aop is a split epimorphism because R is separable, and in
a 1-category, split morphisms are epimorphisms. It follows that an A ⊗ Aop-linear map
between A⊗R Aop-modules is automatically A⊗R Aop-linear.

The following composite A
s
−→ A ⊗ Aop → A ⊗R Aop, where s is a witness that A is

separable, is therefore an A ⊗R Aop-linear section of the multiplication map, which proves
the claim.

We now exploit what we did so far to analyze morphisms between separable algebras.
Our main result in the noncommutative world is:

Theorem 2.13. Assume C is additively symmetric monoidal, and let A, R ∈ Alg(C). If A
is separable, the canonical map

π0 mapAlg(C)(A, R)→ homAlg(ho(C))(hA, hR)

is an isomorphism.

Warning 2.14. In general, mapAlg(C)(A, R) is not discrete, even if R is also separable, see
Proposition 2.28 and Example 2.30. ⊳

The situation is better in the commutative world, as we will see in Proposition 3.13 and
Theorem 3.24.

Proof. Up to embedding C symmetric monoidally and additively in a presentably additively
symmetric monoidal ∞-category, we may assume C is presentably additively symmetric
monoidal.

There is then a fully faithful functor Alg(C) → (ModC)C/, A 7→ (LModA(C), A)
[Lur12, Theorem 4.8.5.11] (see also [Lur12, Remark 4.8.3.25]), so that mapAlg(C)(A, R) can
be described as the fiber of

mapModC
(LModA(C), LModR(C))→ mapModC

(C, LModR(C))

18



at the map C→ LModR(C) classifying the R-module R.
By [Lur12, Theorem 4.8.4.1],3 this map can be rewritten as the forgetful map

RBiModA(C)≃ → LModR(C)≃

For simplicity of notation, we simply write LModR(C) = LModR, and then by [Lur12,
Theorem 4.3.2.7], this can again be rewritten as

RModA(LModR)≃ → LMod≃
R

In more concrete terms: an algebra map A → R is the same data as a right A-module
structure on the left R-module R. It is easy to check that the same holds for 1-categories,
with no presentability assumption.4

Consider now the diagram:

RModA(LModR) RModhA(ho(LModR)) RModhA(LModhR)

LModR ho(LModR) LModhR

When restricted to the full subcategory of LModR (resp. ho(LModR), resp. LModhR(ho(C)))
spanned by R, R⊗A⊗n, the horizontal maps are fully faithful on homotopy categories: for
the left square, this follows from Corollary 2.2 applied to the C-module M = LModR, and
for the right square, this follows from Lemma 2.1.

Passing to groupoid cores and restricting to these components, we see that the horizontal
maps are therefore 1-equivalences, and so the induced maps on fibers are 0-equivalences -
the fiber of the leftmost map is, by the previous argument, mapAlg(C)(A, R), while the fiber
of the rightmost map is homAlg(ho(C))(hA, hR), so that this proves the claim.

2.2 From homotopy algebras to algebras

The final goal of this section is to prove that not only is separability detected in the homotopy
category, but that separability of a homotopy algeba is strong enough to guarantee that it
can be lifted to an E1-algebra in C. In other words, we now aim to prove:

Theorem 2.15. Let C be an additive symmetric monoidal category, and A ∈ Alg(ho(C))
a homotopy separable homotopy algebra.

There exists an algebra Ã ∈ Alg(C), necessarily separable, which lifts A. In fact, the
moduli space of such lifts is simply-connected.

Warning 2.16. The moduli space of lifts is not contractible in general, cf. Example 2.30.
We will later see however that it is contractible in the case of a homotopy commutative
separable algebra, see Proposition 3.13. ⊳

Let us first specify explicitly what we mean by “the moduli space of lifts”.

3See also [Lur12, Theorem 4.3.2.7]
4In fact, we can deduce that it also holds in general with no presentability assumption from the presentable

case.
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Definition 2.17. Let A ∈ Alg(ho(C)) be a homotopy algebra. We define the moduli
space of lifts of A to Alg(C) to be the space Alg(C)≃ ×Alg(ho(C))≃ {A}, i.e. the fiber of
Alg(C)→ Alg(ho(C)) at A. ⊳

Observation 2.18. A lies in its connected component in Alg(ho(C)), which is equivalent to

BAutAlg(ho(C))(A). If Ã is a lift of A, then the connected component of this lift in the moduli

space is a connected component of the fiber of the map BAutAlg(C)(Ã)→ BAutAlg(ho(C)(A).
In particular, if we already know that the moduli space is connected, then the loop space

of this moduli space at Ã is the fiber of AutAlg(C)(Ã)→ AutAlg(ho(C))(A) at idA. ⊳

The proof is somewhat complicated, as it involves the abstract Goerss-Hopkins obstruc-
tion theory as developed in [PV22], and the remainder of this section is devoted to it.

We start by reducing ourselves to the setting of [PV22], specifically the multiplicative
obstruction theory of section 5 therein. The key reduction is the following easy observation:

Observation 2.19. Let C → D be a symmetric monoidal fully faithful embedding. If
Theorem 2.15 holds for D, then it holds for C. ⊳

Reduction 2.20. By restricting to the smallest additive symmetric monoidal full subcate-
gory of C containing A, we may assume C is small.

Further, by embedding C → Fun×(Cop, Sp≥0) along the symmetric monoidal Yoneda
embedding5 (where the target has the Day convolution monoidal structure), and then fol-
lowing up with the inclusion Sp≥0 → Sp, we see that we may assume C is stable. Doing
the first reduction again, replacing “additive” with “stable”, we see that we may assume C
is stable and small.

Construction 2.21. Suppose C is a small stably symmetric monoidal category. We can
make SynC := Fun×(Cop, Sp≥0) into a graded Grothendieck prestable symmetric monoidal
category, which is complete and separated, cf. [PV22, Section 2], where the gading is given
by F [1] := F (Ω−), where Ω : C→ C is the loop functor (equivalently the suspension functor
on Cop).

We have the additive, symmetric monoidal Yoneda embedding C → SynC given by
M : c 7→ Map(−, c)≥0, which comes with a natural assembly map ΣM →M [1]. Here, for a
spectrum X we let X≥0 denote its connective cover.

This map ΣM → M [1] is C-linear, so viewing every c ∈ C as a module over 1, we can
view this as M(c)⊗ (ΣM(1)→M(1)[1]).

Reordering things, we obtain τ : Σ1[−1] → 1, where we abuse notation and also call 1
the unit in SynC.

It is easy to see that 1 with this τ is a shift commutative algebra in the sense of [PV22,
Definition 2.13]. We will only consider this specific shift algebra, and so “periodic module”
is always to be understood with reference to this specific shift structure. ⊳

Remark 2.22. The point of going to SynC is the following: given a homotopy algebra
A, we now have a Postnikov tower describing Map(−, A)≥0, and each of the maps in this
Postnikov tower is a want-to-be square-zero extension. Furthermore, the bottom term is

5We implicitly use here that any additive ∞-category has a fully faithful Yoneda embedding into its
presheaves of connective spectra. This follows from the fact that Sp≥0 ≃ GrpE∞

by the recognition
principle.
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π0 Map(−, A), the set of homotopy classes of maps into A, and is thus an algebra in a
highly structured sense. In particular, we can break the problem of making A into a highly
structured algebra into smaller pieces by simply trying to really make these “want-to-be
square zero extensions” into actual square zero extensions. Thus, our obstruction theory
problem becomes a deformation theory problem, which is thus controlled by computable
objects, such as the (E1-)cotangent complex. ⊳

We recall the following definition from [PV22]:

Definition 2.23 ([PV22, Definition 2.17]). An object M ∈ SynC is a periodic module over
1 if the canonical map induces an isomorphism π0(M)⊗π0(1) π∗(1)→ π∗(M); equivalently
if τ : ΣM [−1]→M is a 1-connective cover.6 ⊳

Lemma 2.24. For any c ∈ C, M(c) is a periodic module over 1.

Proof. We use the second characterization for this: τ : ΣM(c)[−1] → M(c) identifies with
the map Σ(Map(Σ−, c))≥0 → Map(−, c)≥0.

Furthermore, Map(Σ−, c) ≃ Ω Map(−, c). Now, for any spectrum X , the canonical map
Σ(ΩX)≥0 → X≥0 is a 1-connective cover, so we are done.

Lemma 2.25. Let M, N ∈ SynC be periodic modules over 1. If f : M → N is a morphism
which induces an isomorphism on π0, then f is an equivalence.

Proof. It follows from the first definition of periodic modules that f induces an isomorphism
on all homotopy groups. Given the definition of SynC and of the homotopy groups, it is
clear that this implies that it is an equivalence.

Lemma 2.26. Let M ∈ SynC be a periodic module over 1. Suppose π0M , viewed as a
functor Cop → Ab, and therefore as a functor ho(C)op → Ab, is representable. Then M
viewed as a functor Cop → Sp≥0 is representable, by the same object.

Proof. Suppose π0M ∼= homho(C)(−, c). By the Yoneda lemma, the element idc ∈ π0M(c)
corresponds to a natural transformation MapC(−, c)≥0 →M which induces an isomorphism
on π0. Both sides are periodic modules over 1 by assumption for M , and by Lemma 2.24
for MapC(−, c)≥0, so we are done by Lemma 2.25.

Corollary 2.27. Suppose A is a homotopy algebra in C, and let π0M(A) be the correspond-
ing algebra in Syn♥

C ⊂ SynC.
Algebra structures on A extending its homotopy algebra structures are the same as peri-

odic algebras Ã with an isomorphism of algebras π0Ã ∼= π0M(A).

Proof. As π0 : SynC → Syn♥
C is symmetric monoidal, π0M(A) acquires the structure of a

homotopy algebra, and therefore, as Syn♥
C is a 1-category, it acquires the structure of an

algebra.
Now, by the previous lemma, any periodic algebra Ã with π0Ã ∼= π0M(A) is repre-

sentable, by A.
More precisely, the inclusion C → SynC followed by π0 induces a fully faithful functor

ho(C)→ Syn♥
C, so that we have a fully faithful inclusion

Alg(C)×Alg(ho(C)) {A} → Alg(SynC)×Alg(Syn♥
C

) {π0M(A)}

6The equivalence between these two conditions is proved as [PV22, Proposition 2.16]
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and by Lemma 2.26 and Lemma 2.24, the essential image consists exactly of the periodic
algebras.

The point of these lemmas is that we are therefore reduced to the obstruction theory
problem from [PV22, Section 5]: we have a discrete algebra over π01, and are looking for
its periodic lifts.

Proof of Theorem 2.15. By the previous discussion, we may work in the context of [PV22,
Section 5], and look at the periodic lifts of π0M(A).

By [PV22, Corollary 5.5], the obstructions to the existence of such a lift live in some
Ext-group of (cohomological) degree n + 2, n ≥ 1, in π0M(A)-bimodules in Modπ01(SynC);
where the source is LE1

π0M(A)/π01
, the E1-cotangent complex of π0M(a) over π01.

By [Lur12, Theorem 7.3.5.1.], this cotangent complex is the fiber of the multiplication
map π0M(A) ⊗π01 π0M(A)op → π0M(A), as a π0M(A)-bimodule. Note that π0M(−) is
strong symmetric monoidal, when viewed as a functor C → Modπ01(SynC): indeed, by
Lemma 2.24, together with [PV22, Proposition 2.16], we see that π0M(−) ≃ π0(1)⊗M(−).
It follows that π0M(A) is separable in Modπ01(SynC) (cf. Lemma 1.6, item 7.).

Therefore, the map π0M(A) ⊗π01 π0M(A)op → π0M(A) is actually split as a π0M(A)-
linear map, so that its fiber is a summand of π0M(A) ⊗π01 π0M(A)op, and is therefore
projective and in degree 0.

All these Ext-groups therefore vanish. By [PV22, Corollary 5.5] there exists a periodic
lift, hence, again, by the above discussion, an E1-structure on A.

To prove the connectedness of the moduli space of these lifts, we use [PV22, Proposition
5.7, Remarks 5.8, 5.9 & 5.10], and the fact that the obstructions to liftings of the identity
map (which are obstructions to the existence of an equivalence whose underlying morphism
is the identity) live in Ext-groups of cohomological degree n + 1, n ≥ 1, which therefore still
vanish. In fact, the fiber of the map that classifies liftings at each stage is connected, as it
has π0 given by an Ext-group of cohomological degree n, n ≥ 1.

Therefore, given any two lifts A0 and A1, the tower

mapAlg(A0, A1)→ · · · → mapAlg(τ≤n+11)(τ≤n+11⊗A0, τ≤n+11⊗A1)→ mapAlg(τ≤n1)(τ≤n1⊗A0, τ≤n1⊗A1)→ . . .

is a convergent tower of π0-surjective maps with connected fibers, so that picking the identity
in the base mapAlg(π01)(π01⊗A0, π01⊗A1), the fiber of mapAlg(A0, A1)→ mapAlg(π01)(π01⊗
A0, π01⊗A1) over the identity is a limit of a tower of connected spaces with connected fibers.

This fiber is therefore itself connected. By Observation 2.18, this fiber is exactly the
loop space of the moduli space, and it therefore follows that the moduli space is simply
connected.

We now analyze the moduli space of lifts a bit further to show that it is not typically
contractible. Theorem 2.15 shows that the moduli space is simply-connected, and we now
explain how to describe its 2-fold loopspace. This description is unsurprising from seeing the
Ext-groups of the previous proof, and we could in fact deduce it from similar considerations,
but we provide here a non-obstruction theoretic proof:

Proposition 2.28. Let A ∈ Alg(C), and hA the corresponding algebra in ho(C). Let M
be the moduli space of lifts of hA to Alg(C), and LA the E1-cotangent complex of A.

The double-loop space of M at A is equivalent to the following spaces:
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1. Ω(mapAlg(C)(A, A), idA);

2. the fiber over idA of mapA⊗Aop(A, A)→ mapA(A, A), or equivalently if C is additive,
its fiber over 0;

3. mapA⊗Aop(ΣLA, A) if C is stable.

Proof. Without loss of generality, we assume C is presentably symmetric monoidal.
Recall thatM = Alg(C)×Alg(ho(C)) {hA} by definition. An equivalent description is the

fiber sequence M→ Alg(C)≃ → Alg(ho(C))≃ at the point hA ∈ Alg(ho(C))≃.
Looping once at A, we find the fiber sequence ΩM→ Ω(Alg(C)≃, A)→ Ω(Alg(ho(C))≃, hA),

and thus
ΩM→ AutAlg(C)(A)→ AutAlg(ho(C))(hA)

As an endomorphism of A which is the identity in ho(C) must be an equivalence, this also
yields a fiber sequence ΩM → mapAlg(C)(A, A) → homAlg(ho(C))(hA, hA) at idhA. As the
latter is discrete, we deduce point 1.

Next, we use the fully faithful embedding Alg(C)→ (ModC(PrL))C/, A 7→ (ModA, A),
cf. [Lur12, Theorem 4.8.5.11] to describe mapAlg(C)(A, A) as the fiber of mapModC

(ModA, ModA)→
mapModC

(C, ModA) over the canonical functor C→ModA classified by A ∈ModA. Us-
ing [Lur12, Theorem 4.8.4.1], we rewrite this map as the functor BiMod≃

A →Mod≃
A that

forgets the right A-module structure. Taking loops at the identity of A ∈ Alg(C) yields the
fiber sequence

Ω(mapAlg(C)(A, A), idA)→ Ω(BiMod≃
A, A)→ Ω(Mod≃

A, A)

We rewrite the latter two terms as AutA⊗Aop(A) → AutA(A) and use again the fact that
any A⊗Aop-linear endomorphism of A which is an underlying equivalence is an equivalence
to rewrite the fiber of this map as the fiber of mapA⊗Aop (A, A) → mapA(A, A) over the
identity. This proves the first half of 2., and using the additivity of C and the fact that this
is a map of grouplike E∞-monoids which has both idA and 0 in its image, we deduce that
the fiber is the same over 0, which is the second half of 2.

Finally, 3. follows from the second half of 2.: we rewrite mapA(A, A) as mapA⊗Aop (A⊗
Aop, A) and then the restriction map

mapA⊗Aop (A, A)→ mapA(A, A) ≃ mapA⊗Aop (A⊗Aop, A)

is identified with precomposition by the multiplication map µ : A ⊗ Aop → A (indeed, the
multiplication is just the co-unit of the adjunction that forgets the right A-module structure),
so that by 2., our double-loop space is identified with mapA⊗Aop(cofib(µ), A). To conclude,
we use that cofib(µ) ≃ ΣLA [Lur12, Theorem 7.3.5.1.].

Remark 2.29. mapA⊗Aop (X, A) can also be described as map(1, homA⊗Aop(X, A)). So un-
less map(1, Z(A))→ map(1, A) is an inclusion of components, Ω2(M, A) is not contractible,
and therefore M isn’t either. Here, Z(A) is the E1-center of A, from Notation 1.27. ⊳

Example 2.30. Consider the commutative differential graded Q-algebra R = Q[t], where
t is in degree 2 as a commutative ring spectrum and let C = ModR. For any n ≥ 1,
the matrix ring Mn(R) = EndR(Rn) is separable, and its center is R itself. Therefore
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mapA⊗Aop (A, A) → mapA(A, A) is the map Ω∞(Q[t] → Mn(Q[t])) and this is clearly not
an inclusion of components as long as n ≥ 2 (it is not surjective in any π2k, k ≥ 1). By
Remark 2.29, the moduli space of lifts of Mn(Q[t]) is not contractible. ⊳

Remark 2.31. In [KT17], the authors also study a certain moduli space of algebra struc-
tures. Note, however, that this is a different moduli space in that it is the moduli space of
algebra structures on an object of C, while ours is the moduli space of algebra structures
extending a homotopy algebra. The answers we get for the double loop space are thus
different, even if there is some similarity in that both involve some version of Hochschild
cohomology. ⊳

We apply these results in the case of ring spectra. For a commutative ring spectrum R, let
ProjSep(R) denote the full subgroupoid of Alg(ModR(Sp)) spanned by separable algebras
whose underlying R-module is finitely generated projective. This is clearly functorial along
basechange.

The following is our version of [BRS12, Theorem 6.1] (cf. also [GL21, Proposition 3.12,
Theorem 3.15]):

Proposition 2.32. Let R be a commutative ring spectrum. In the span

ProjSep(R)← ProjSep(R≥0)→ ProjSep(π0(R))

the left leg is an equivalence, and the right leg is essentially surjective, with simply-connected
fibers.

In particular, any separable algebra over π0(R) can be (weakly uniquely) realized as π0

of a separable algebra over R.

Proof. For any commutative ring spectrum R, ProjSep(R) can equivalently be described as
the space of separable algebras in Proj(R), the additive category of projective R-modules.
In particular, this only depends on this additive category, and it is a classical fact that
Proj(R≥0)→ Proj(R) is an equivalence. This proves the statement about the left leg.

For the right leg, we observe that π0 : Proj(R≥0) → Proj(π0(R)) witnesses the latter
as the homotopy category of the former, and thus, passing to algebras, Alg(Proj(R≥0)) →
Alg(Proj(π0(R)) is equivalently Alg(Proj(R≥0)) → Alg(ho(Proj(R)). The statement thus
follows from Theorem 2.15.

Remark 2.33. Note that if R is a discrete commutative ring, any central separable algebra
over R is necessarily finitely generated projective [AG60, Theorem 2.1]. In particular, this
allows us to lift all central separable algebras. ⊳

Remark 2.34. In [BRS12, Theorem 6.1], the lift along the right leg is said to be “unique”.
Remark 2.29 and Example 2.30 show that this unicity is to be taken with a grain of salt. ⊳

The results of this section suggest the slogan that “Separable algebras and their modules
are controlled by the homotopy category”. From the perspective of homotopy theory, this
justifies to some extent the study of separable algebras and their modules in tensor trian-
gulated categories, but also suggests that many results in the unstructured setting can be
lifted for free to a more structured or coherent setting. Because of the non-unicity pointed
out in Remark 2.29, we see that not everything can be lifted for free.

In the next section we will see that the situation in the commutative world is much
better. The moduli spaces become contractible (even the E1 ones!), and the mapping spaces
become discrete.
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3 Commutative separable algebras

In this section, we study commutative separable algebras. Unsurprisingly, this situation is
much better behaved than in the associative case. In the commutative case, we will see that
the obstructions to contractibility from Section 2 vanish - in fact, even in the homotopy
commutative case. The key difference with the general case is that now, the multiplication
map µ : A⊗A→ A is an (homotopy) algebra map.

We begin this section with a study of certain moduli spaces, and of mapping spaces from
commutative separable algebras, and we then apply Lurie’s deformation theory from [Lur12,
Section 7.4] to compare étale algebras and separable commutative algebras.

Definition 3.1. A commutative separable algebra is a commutative algebra whose under-
lying algebra is separable. ⊳

We begin with a general proposition:

Proposition 3.2. Suppose C is additively symmetric monoidal and idempotent-complete.
Let A, B ∈ CAlg(C) be commutative algebras in C, and f : A → B a morphism of

commutative algebras. If f admits an A-module splitting, then B is the localization of A at
an idempotent e.

In particular ModA splits, symmetric monoidally, as a product ModA ≃ ModB ×
Mod⊥

B.

This follows from a more general, monoidal version, which we needed in some earlier
versions of the proofs of this section. We end up only needing the symmetric monoidal
version, but we digress for a moment for the convenience of the reader, and to record this
simple fact, which is simply a variant of the discussion of idempotent algebras in [Lur12,
Section 4.8.2.] in the setting of non-symmetric monoidal categories. Parts of it work exactly
the same as in the monoidal setting, but some of it does not, so we simply record it here.

First, recall the definition:

Definition 3.3. Let M be an Ek-monoidal∞-category with unit 1 and k ≥ 1. An E0-object
e therein, that is, an object in M1/, is called idempotent, if both e⊗(1→ e) and (1→ e)⊗e
are equivalences.

For 0 ≤ d ≤ k, an Ed-algebra A in M is called idempotent if its underlying E0-algebra
is. ⊳

Remark 3.4. In the case of an Ek-monoidal ∞-category, k ≥ 2, these two maps are
homotopic and so it suffices to require one of them to be an equivalence. ⊳

The main result is:

Proposition 3.5. Let M be an Ek-monoidal∞-category with 1 ≤ k ≤ ∞, and let 0 ≤ d ≤ k.
The forgetful functor from Ed-algebras to E0-algebras restricts to an equivalence between the
respective full subcategories of idempotent algebras:

AlgEd
(M)Idem ≃

−→ AlgE0
(M)Idem

We begin with an easy lemma:
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Lemma 3.6. Let M be an Ek-monoidal ∞-category, and e ∈ M1/ an idempotent E0-
object. The full subcategory Me of M spanned by those m’s for which both m ⊗ (1 → e)
and (1 → e)⊗m are equivalences determines a full sub-Ek-operad of M, which is itself an
Ek-monoidal ∞-category.

Warning 3.7. For k ≥ 2, the inclusion Me → M actually admits an Ek-monoidal left
adjoint, given by tensoring with e. For k = 1, this left adjoint is only oplax monoidal, as
the canonical map e⊗ x⊗ y⊗ e→ e⊗ x⊗ e⊗ y⊗ e need not be an equivalence. This is the
key difference between k = 1 and higher k’s. ⊳

Proof sketch. Firstly, Me is stable under the formation non-empty tensor products, so we
only need to prove that it admits a unit, which we claim is e.

In other words, we need to show that for m ∈ Me, the restriction map map(e, m) →
map(1, m) is an equivalence. The inverse is given by map(1, m) → map(e, e ⊗ m) →
map(e, m) - it is a diagram chase to check that this is indeed an inverse.

Proof of Proposition 3.5. Forgetting down to its underlying Ed-monoidal category, we may
assume without loss of generality that d = k.

We first prove essential surjectivity: fix an idempotent E0-algebra e. By Lemma 3.6,
there is a lax Ek-monoidal inclusion Me → M, which therefore sends Ek-algebras to Ek-
algebras, and e is the unit in the source, so it has an Ek-algebra structure in the target as
well, which proves essential surjectivity.

For fully faithfulness, fix two idempotent Ek-algebras e, e′. We aim to prove that in both
∞-categories, the mapping space from e to e′ is empty or contractible, in the same case.
Clearly if the mapping space in E0-algebras is empty, the same holds in Ek-algebras, so we
may assume it’s non-empty, and in this case, we need to prove that both are contractible.

So suppose there exists a factorization 1 → e → e′. We claim that in this case, e′ is in
Me. By fully faithfulness of the inclusion M⊗

e → M⊗, this will then prove the claim, as e
is the unit in Me.

But now, note that the map e′ → e ⊗ e′ can be composed with e ⊗ e′ → e′ ⊗ e′ ≃ e′,
so that e′ is a retract of e ⊗ e′, which is an object m for which the map e → e ⊗m is an
equivalence. It follows that e′ is also such an object. Similarly for the map e′ → e′ ⊗ e.

We can now state the desired result:

Lemma 3.8. Let D be a semiadditively Ek-monoidal category with unit 1, where 1 ≤ k ≤ ∞.
Suppose 1 splits as a⊕ b.

Then there are essentially unique Ek-algebra structures on a, b in D for which the unit
maps 1→ a, b are the projections coming from this decomposition. In particular, 1→ a× b
is an equivalence of algebras.

More precisely, a, b are idempotent algebras in D in the sense of Definition 3.3, and
therefore have unique algebra structures extending their unit map by Proposition 3.5.

Proof. We show that the projections witness a, b as idempotent E0-algebras.
For this, observe that a⊗ a⊕ a⊗ b⊕ b⊗ a⊕ b⊗ b ≃ (a⊕ b)⊗ (a⊕ b) ≃ 1⊗1 ≃ 1 ≃ a⊕ b.
Second, observe that the morphism a⊗ b→ 1⊗ 1 ≃ 1 factors as a⊗ b→ a⊗1 ≃ a→ 1,

but also as a⊗ b→ 1⊗ b ≃ b→ 1. In particular, a⊗ b→ 1 factors through 0, but it has a
retraction, so a⊗ b must be 0.

26



Similarly, b ⊗ a ≃ 0. It is then just a matter of diagram chasing to see that a, b are
idempotents. (Note that this diagram chases can be made in Ho(D), as D → Ho(D) is
conservative, monoidal, and biproduct preserving).

Proof of Proposition 3.2. We start by assuming C has geometric realizations that commute
with the tensor product in each variable. Thus we can make ModA(C) into a symmetric
monoidal ∞-category with the relative tensor product.

We can now apply Lemma 3.8 to the category ModA(C): A is the unit, and it splits as
B ⊕C for some C, as C is additive and idempotent-complete, where the projection A→ B
is chosen to be f . Lemma 3.8 in the case k = ∞ tells us exactly that C admits a unique
commutative algebra structure in ModA(C) extending its unit A→ C, and then A ≃ B×C
as algebras, which is exactly saying that B is the localization of A at an idempotent.

As C is additive compatibly with the tensor product, it follows that ModA(C) →
ModB(C) ×ModC(C) is an equivalence, and under this identification we clearly have
{0} ×ModC(C) = ModB(C)⊥, where for a subcategory E, E⊥ := {f ∈ModA(C) | ∀e ∈
E, map(e, f) ≃ pt ≃ map(f, e)}.

To deduce the statement for general C, we note that if C→ D is an additive, symmetric
monoidal embedding where D has geometric realizations compatible with the tensor product,
then because C was assumed idempotent complete, the decomposition M ≃ B⊗A M⊕C⊗A

M for any M ∈ModA(C) ⊂ModA(D) shows that B ⊗A M (resp. C ⊗A M) is in fact in
ModB(C) ⊂ModB(D) (resp. ModC(C) ⊂ModC(D)), which concludes the proof.

The following is the key consequence we were aiming for - at the triangulated level, it is
already present in the work of Balmer [Bal14, Theorem 2.1] and is integral to his theory of
degrees of separable algebras; see also [NP23, Corollary 5.2] for a treatment at the level of
stable ∞-categories.

Corollary 3.9. Suppose C is additively symmetric monoidal. If A is a separable commuta-
tive algebra in C, its multiplication map µ : A ⊗A → A is a localization at an idempotent,
and this is the case more generally for the the iterated multiplication maps µn : A⊗n → A;
in particular for every n, there is a unique commutative algebra Cn under A⊗n with an

equivalence A⊗n (µn,p)
−−−−→ A× Cn.

Remark 3.10. Specializing to n = 2 we see that in this case, µ∗ : ModA → ModA⊗A

is fully faithful, with essential image the “diagonal” bimodules. Separability implies in
particular that “being a diagonal bimodule” really is a property of the bimodule M , and
not the extra structure of an equivalence M ≃ µ∗N . ⊳

Corollary 3.11. Suppose C is additively symmetric monoidal. Let A ∈ CAlg(C) be a
commutative separable algebra, and let LA denote its E1-cotangent complex. In this case,
the mapping space mapA⊗Aop(LA, A) is trivial, in fact even the corresponding hom-object in
C is 0.

Proof. We assume without loss of generality that C admits geometric realizations compatible
with the tensor product, in particular it admits basechange along algebra maps.

As A is commutative, we may consider µ : A⊗A→ A as a commutative algebra map, and
under the identification Aop ≃ A, this corresponds to the A-bimodule multiplication map
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A ⊗Aop → A. Let L′
A denote the A ⊗A-module fiber of µ. Under the same identification,

this corresponds to LA.
In particular, as an A⊗A-module, A can be described as µ∗A, so that homA⊗A(L′

A, µ∗A) ≃
homA(µ!LA, A).

By Proposition 3.2, µ : A ⊗A→ A is a localization at an idempotent, so that µ! of the
fiber is trivial, and the claim follows.

Remark 3.12. This corollary is the crucial difference between the commutative and the as-
sociative case. In Remark 2.29, we saw that it was precisely the nontriviality of mapA⊗Aop (LA, A)
that makes the moduli space of E1-algebra structures non-trivial. ⊳

As a corollary, we find that in the presence of homotopy commutativity, the obstruction
theory for E1-structures simplifies greatly. We have:

Proposition 3.13. Suppose C is additively symmetric monoidal. Let A ∈ CAlg(ho(C)) be
a homotopy commutative, homotopy separable homotopy algebra. The moduli space of lifts
of A to an E1-algebra in C is contractible.

Proof. We assume without loss of generality that C admits internal hom’s.
Theorem 2.15 proves that this moduli space is simply-connected, so it suffices to prove

that its double loopspace at any given point is contractible. So we fix an E1-algebra Ã
extending A ∈ Alg(ho(C)).

By point 3. in Proposition 2.28, it suffices to prove that mapÃ⊗Ãop(ΣLÃ, Ã) is con-

tractible, or better, it suffices to prove that the hom object homÃ⊗Ãop (ΣLÃ, Ã) is zero. The

algebra Ã ⊗ Ãop is separable, so by Proposition 1.25, this hom object can be computed in
ho(C).

It now follows from Corollary 3.11 that it is 0 - note that as Ã ⊗ Ãop → Ã is split, its
fiber can be computed in C or in ho(C) equivalently.

We now explore other consequences of this orthogonality, namely the uniqueness of the
separability idempotent of a commutative separable algebra, and we deduce from it nice
descent properties of separable algebras. This uniqueness is well-known classically, and
Naumann and Pol have also isolated it, as well as the resulting descent properties, in their
recent work, cf. [NP23, Lemma 6.2, Proposition 6.3].

Corollary 3.14. Assume C is additively symmetric monoidal. Let A ∈ CAlg(C) be a
commutative separable algebra. The space of separability idempotents for A is contractible.
More precisely, we define this space is the fiber of mapA⊗Aop (A, A⊗Aop)→ mapA⊗Aop (A, A)
over idA.

Proof. This is a map of grouplike E∞-monoids, and idA is in the image by separability, so
the fiber is the same as the fiber over 0, so it is equivalent to mapA⊗Aop (A, LA).

This is contractible for the same reasons as before, cf. Proposition 3.2 and Corollary 3.9.

We observe that this uniqueness allows us to recover results of Sanders [San22, Corollary
2.12], and specifically, to make it homotopy coherent. To state it, we give the following
definition:
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Definition 3.15. A separable algebra A in C is said to be strongly separable if it admits a
separability idempotent s : 1→ A⊗A such that τ ◦ s ≃ s in C, where τ : A⊗ A→ A⊗A
is the swap map.

It is said to be coherently strongly separable if s can be made C2-equivariant with respect
to the swap C2-action on A⊗A, and the trivial action on 1. ⊳

Corollary 3.16. Assume C is additively symmetric monoidal. Let A be a commutative
separable algebra. In this case, A is coherently strongly separable.

Proof. Without loss of generality, we assume C admits geometric realizations compatible
with the tensor product.

The multiplication map µ : A ⊗ A → A is C2-equivariant, hence so is the adjunc-
tion µ! ⊣ µ∗ between ModA⊗A(C) and ModA(C), so that map mapA⊗A(A, A ⊗ A) →
mapA⊗A(A, A) can be made C2-equivariant - it is given by a co-unit. Similarly, the identity
idA ∈ mapA⊗A(A, A) is a C2-fixed point.

It follows that the fiber of the first map over {idA} can be given a compatible C2-action.
But it is contractible, by the previous corollary, and hence admits a C2-fixed point. It follows
that mapA⊗A(A, A ⊗ A) does too, and hence, by forgetting to map(A, A ⊗ A), we see that
it also has a C2-fixed point whose underlying point is a separability idempotent. We can
precompose the C2-fixed point A→ A⊗A by 1→ A to get a separability idempotent as in
the above definition.

We also note that in many cases, strongly separable implies coherently strongly separable:

Proposition 3.17. Let A be a separable algebra in C whose underlying object in C is
dualizable.7 If A is strongly separable, then it is coherently strongly separable.

Proof. By [San22, Proposition 2.30], if A is dualizable and strongly separable, then a sepa-

rability idempotent is given by the dual of the trace pairing A⊗A→ A
t
−→ 1.

Dualizing preserves C2-equivariance, so it suffices to observe that the trace pairing A⊗
A→ 1 is C2-equivariant. This is the case by Proposition A.1.

Question 3.18. In general, is a strongly separable algebra necessarily coherently strongly
separable ?

Another corollary of uniqueness of separability idempotents is the fact that for commu-
tative algebras, separability can be checked locally. We first make the following definition:

Definition 3.19. We let CSep(C) ⊂ CAlg(C)≃ denote the subspace spanned by separable
algebras. ⊳

The statement of locality can then be phrased as follows:

Corollary 3.20. The functor C 7→ CSep(C), defined on additively symmetric monoidal
∞-categories, is limit-preserving.

Remark 3.21. The corresponding statement for separable E1-algebras is wrong. We will
give a counterexample involving Azumaya algebras and based on [GL21] in Example 6.12.⊳

7This specific proposition does not require C to be additive, as is clear from the proof.
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Proof. The proof is similar to the corresponding claim for dualizable objects, cf. [Lur12,
Proposition 4.6.11.].

Consider the space of “commutative algebras equipped with a separability idempotent”,
namely the space of tuples (A, s : A → A ⊗ Aop, h) where s is a map of bimodules A →
A⊗Aop, and h a homotopy witnessing that µ ◦ s ≃ idA in A-bimodules.

The functor that assigns this space to C is clearly limit preserving in C (it can be
written as a limit of spaces that are limit-preserving functors of C), and the projection
down to CAlg(C)≃, which is natural in C, establishes, by Corollary 3.14, an equivalence
with CSep(C). The claim thus follows.

Remark 3.22. If one thinks of “descent”-type statements as statements about recovering
a (symmetric monoidal) category as a limit of other (symmetric monoidal) categories, this
result can be interpreted as saying that commutative separable algebras satisfy descent.

For instance, if 1→ A is a universal descent morphism in the sense of [Lur18b, Definition
D.3.1.1] (e.g. an étale cover in CAlg(Sp)), one sees that an algebra R ∈ CAlg(C) is separable
if and only if A⊗R ∈ CAlg(ModA) is separable: one can check separability (of commutative
algebras) after passing to a (universal descent) cover. ⊳

In the above proof, we have used implicitly the following lemma, which we record explic-
itly:

Lemma 3.23. The functor CAlg : CAlg(Cat) → Cat preserves limits. This is more
generally true for the functor AlgO, for any ∞-operad O.

Furthermore, given a limit diagram C• : I⊳ → CAlg(Cat), and an algebra object A ∈
Alg(C∞),8 the canonical map LModA(C∞)→ limI LModAi

(Ci) is an equivalence, where
Ai is the image of A under the induced functor Alg(C∞)→ Alg(Ci).

Proof. The first part follows from the existence of envelopes, see [Lur12, Proposition 2.4.9].
In more detail, for any ∞-operad O, there is a symmetric monoidal ∞-category Env(O)
with an O-algebra UO ∈ AlgO(Env(O)) such that evaluation at UO induces an equivalence

Fun⊗(Env(O), C)→ AlgO(C),

natural in C. Since the source of this equivalence clearly preserves limits in C, the claim
follows.

The second part is a corollary of the first: let LM denote the∞-operad that classifies left
modules [Lur12, Section 4.2.1], and Ass the associative operard, with its canonical inclusion
Ass→ LM which induces the canonical forgetful functor AlgLM → Alg.

We can then write LModA(C) = AlgLM(C) ×Alg(C) {A}. By the first part of the
statement, it follows that (C, A) 7→ LModA(C) is a pullback of limit-preserving functors of
the pair (C, A), and is thus itself a limit-preserving functor.

We now move on to the first main theorem of this section, which concerns highly coherent
commutative structures on separable algebras.

Theorem 3.24. Let C be an additively symmetric monoidal ∞-category, and A ∈ Alg(C)
a separable algebra.

8We use “∞” to denote the cone point in I⊳.
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If A is homotopy commutative, then it has an essentially unique E∞-structure extending
its given E1-structure.

More generally, for any n ≥ 1, A has an essentially unique En-structure extending its
given E1-structure.

Remark 3.25. We note that this is an obvious commutative analogue of Theorem 2.15,
but that, as with Proposition 3.13, the situation is better in the commutative world. ⊳

We also note the important corollary that all the previous work in the section, about
commutative separable algebras therefore also applies in the case of homotopy commutative
separable algebras. Combined with Proposition 3.13, this yields:

Corollary 3.26. Let C be an additively symmetric monoidal∞-category, and A ∈ Alg(ho(C))
a homotopy separable homotopy commutative homotopy algebra.

It has an essentially unique E∞-structure extending its given homotopy algebra structure.

Remark 3.27. This theorem is consistent with the experience that all commutative sep-
arable algebras in tensor triangulated categories coming from stably symmetric monoidal
∞-categories admit highly coherent structures. ⊳

Remark 3.28. This corollary should be reminiscent of the Goerss–Hopkins–Miller theorem
[GH05]. However, Morava E-theory is not separable. In Section 4.3, we introduce the notion
of an ind-separable algebra to make up for this defect, and observe that Morava E-theories
are examples of such things. We deduce extensions of the Goerss–Hopkins–Miller theorem
to other ∞-operads than E1 and E∞ (cf. Theorem 3.32 below and Corollary 4.31) - these
are well-known to experts but do not seem to be recorded in the literature. ⊳

In fact, we deduce Theorem 3.24 from a more general statement. To state it, we introduce
a certain class of ∞-operads which contains the En, 1 ≤ n ≤ ∞.

Notation 3.29. Let O be an ∞-operad, with a single color x, i.e. O⊗
〈1〉 has a single object

up to equivalence. By definition of an∞-operad, it follows that O⊗
〈n〉 has a unique object up

to equivalence too, denoted x⊕ ...⊕x (see [Lur12, Remark 2.1.1.15] for the notation). In this
case, we let O(n) denote the space of n-ary operations. In more detail, letting µn : 〈n〉 → 〈1〉
denote the unique active morphism in Fin∗, we put:

O(n) := mapO⊗(x⊕ ...⊕ x, x) ×homFin∗ (〈n〉,〈1〉) {µn}

. ⊳

Definition 3.30. Let O be an ∞-operad. We say it is weakly reduced if:

• It has a single color, i.e. its underlying ∞-categoryhas a unique object x up to equiv-
alence.

• Both O(0) and O(1) are connected.
⊳

Example 3.31. The En-operads, 1 ≤ n ≤ ∞ are weakly reduced ∞-operads. ⊳

Our more general statement can thus be stated as:
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Theorem 3.32. Let C be an additively symmetric monoidal ∞-category, and A ∈ Alg(C)
a separable algebra.

For any weakly reduced ∞-operad O, the space of O ⊗ E1-structures on A extending the
given E1-structures is contractible. Here, ⊗ denotes the Boardman-Vogt tensor product of
∞-operads following [Lur12, section 2.2.5].

Let us briefly describe the strategy of proof of Theorem 3.32, so that we can also ex-
plain the hypotheses on O. We will expand on Theorem 2.13, by proving that under the
homotopy commutativity assumption, mapAlg(C)(A, R) has lots of discrete components,

in fact, enough to guarantee that each mapAlg(C)(A
⊗n, A) is discrete and equivalent to

homAlg(ho(C))(hA⊗n, hA).
From this, it follows at once that O-algebra structures on A in AlgE1

(C), i.e. O ⊗ E1-
algebra structures on A extending the given algebra structure, are equivalent to O-algebra
structures on hA in Alg(ho(C)). As hA is commutative and Alg(ho(C)) is a 1-category, the
assumptions on O will then guarantee that there is a unique such structure.

We thus begin with:

Proposition 3.33. Assume C is additively symmetric monoidal. Let A ∈ Alg(C) be sepa-
rable and homotopy commutative, and let R ∈ Alg(C) arbitrary. Let f : A→ R be a map in
Alg(C), and suppose that it is homotopy-central, i.e. the following two maps are equivalent

in C: A⊗R
f⊗id
−−−→ R⊗R→ R and A⊗R ≃ R⊗A

id⊗f
−−−→ R⊗R→ R.

In this situation, Ω(mapAlg(C)(A, R), f) is contractible, i.e. the component of f in
mapAlg(C)(A, R) is contractible.

Proof. Recall from [Lur12, Theorems 4.8.4.1 and 4.8.5.11] that mapAlg(C)(A, R) is equivalent

to the fiber over R of the forgetful map RBiMod≃
A → LMod≃

R.
It follows that Ω(mapAlg(C)(A, R), f) is equivalent to the fiber of AutR⊗Aop (R, R) →

AutR(R, R) over idR, where R has the R ⊗ Aop-module structure induced by f . As the
forgetful functor RBiModA → LModR is conservative, this is equivalently the fiber of the
corresponding mapping spaces, again at idR. Because idR is in the image and this map is a
map of grouplike E∞-spaces, the fiber over idR is equivalent to the fiber over 0.

In other words, it suffices to prove that for every n, πn(mapR⊗Aop (R, R), 0)→ πn(mapR(R, R), 0)
is an isomorphism, or equivalently, that π0(mapR⊗Aop (R, ΩnR)) → π0(mapR(R, ΩnR)) is
an isomorphism.

By adjunction, this forgetful map is equivalent to the map given by precomposition with
R ⊗ A → R: π0(mapR⊗Aop (R, ΩnR)) → π0(mapR⊗Aop (R ⊗ A, ΩnR)), and because A is
separable, R⊗A→ R is split, so that this map is always injective. It thus suffices to prove
that it is surjective.

Note that this is a map between hom sets in ho(RBiModA(C)), and by Corollary 2.2,
it is thus equivalent to a map between hom sets in RModhA(ho(LModR)). Furthermore,
the source in both cases is free as an R-module, so by Lemma 2.1 it is equivalent to a map
between hom sets in hRBiModhA(ho(C)). In other words, we are trying to prove that
every map R → ΩnR of left hR-modules is right hA-linear. We note that R, ΩnR are R-
bimodules, and the right A-module structure is induced from the right R-module structure
by restricting along f : A → R. In other words, for both R and ΩnR, the right A-module
structure is given by M ⊗A→M ⊗R→M .
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It thus suffices to prove that the right A-action on ΩnR agrees with the following map:
ΩnR⊗A ≃ A⊗ΩnR→ R⊗ΩnR→ ΩnR. Indeed, this is the case for R by assumption, and
it will thus follow immediately that any left hR-linear map R→ ΩnR is also right hA-linear.

Now, by assumption, we already know that this is the case for the A-action on R,
so it suffices to show that the action map of A on ΩnR is given (up to homotopy) by
ΩnR ⊗ A ≃ Ωn(R ⊗ A) → ΩnR, where the second map is Ωnρ, ρ being the right action of
A on R. But this is clear, as the left A-action on ΩnR is obtained via restiction of scalars
from the left R-action, which is given this way.

Remark 3.34. Note that the end of this proof really identifies maps in ho(C), and there
is no coherence claim. This is what the results from Section 2 buy us. ⊳

In the proof, we really use the homotopy centrality of f : A → R. The result is not
true in general if we drop this hypothesis, as the following example shows (in fact, in this
example, R is also separable):

Example 3.35. We start by a computation in a homotopy category, namely, consider D
the symmetric monoidal 1-category of Z/2d-graded Q-vector spaces, where d is some odd
integer different from 1. Let H be some group with a nontrivial automorphism α of order
d, and consider the corresponding semi-direct product G := H ⋊ Z/d, with projection map
p : G→ Z/d and section i : Z/d→ G.

We let A = Q[u] where |u| = 2, and ud = 1, and R =
⊕

g∈G Q[2p(g)], where the algebra
structure is the natural one, namely, given by Q[2p(g)]⊗Q[2p(g′)]→ Q[2p(gg′)] (note that
A is given by the same construction, replacing G by Z/d). Both A and R are separable
in D. Let f : A → R be given by the section i, i.e. u maps to the generator of the i(σ)
summand in R - this is easily checked to be an algebra map.

Given h ∈ H such that α(h) 6= h, let g0 = (h, 1), and consider the corresponding
element r0, corresponding to 1 ∈ Q[2p(g0)] = Q[2] which corresponds to a left R-linear map
R → R[−2]. We claim that this left R-linear map is not right A-linear. Indeed, it is given
by r 7→ rr0, and right A-linearity would be the claim that rar0 = rr0a which, when r = 1,
is the claim that ar0 = r0a, which can be checked to be wrong, essentially because i does
not land in the center of G. More precisely, when a = u, r0a, ar0 live in different summands
of

⊕
g∈G Q[2p(g)], one of them in the summand corresponding to (h, σ), and the other in

the summand corresponding to (α(h), σ).
We claim that this is now enough to give a counterexample to the previous proposition

when f is not homotopy central. Indeed, consider S = Q[t±1] as a commutative algebra in
ModQ, where t has degree 2d. The homotopy category of ModS is symmetric monoidally
equivalent to D, and the suspension on ModS corresponds to shifting in D. Further, because
A, R are separable in D, they can be lifted to algebras in ModS in a weakly unique way
by Theorem 2.15, similarly for the map f : Ã → R̃,9 and because A is commutative in D,
Theorem 3.24 implies that Ã is commutative in a unique way. We are now left with proving
that Ω(mapAlgS

(Ã, R̃), f) is not discrete. By the analysis in the previous proof, it suffices

to prove that homR⊗A(R, Ω2R)→ homR(R, R) is not surjective. We have just done this! ⊳

As an immediate corollary, we find:

9In this case, the algebras in question are just Thom spectra so one can actually give a relatively easy
construction both of the algebras and the map, as well as a proof that they are separable. This is expanded
upon in Example 5.22.
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Corollary 3.36. Assume C is additively symmetric monoidal, and let A ∈ Alg(C) be
separable and homotopy commutative, and R ∈ Alg(C) be homotopy commutative.

In this case, mapAlg(C)(A, R) is discrete and equivalent (via the canonical map) to
homAlg(ho(C))(hA, hR).

Proof. This follows from Proposition 3.33 as any map f : A → R is homotopy central, by
homotopy commutativity of R.

Corollary 3.37. Assume C is additively symmetric monoidal, and let A ∈ Alg(C) be
separable and homotopy commutative.

In this case, for any n ≥ 0, mapAlg(C)(A
⊗n, A) is discrete and equivalent to homAlg(ho(C)(hA⊗n, hA).

We can now prove Theorem 3.32:

Proof of Theorem 3.32. By Corollary 3.37, the (symmetric monoidal) forgetful functor Alg(C)→
Alg(ho(C)) restricts to a (symmetric monoidal) equivalence between the full subcategories
spanned by A⊗n, n ≥ 0 and hA⊗n, n ≥ 0 respectively.

It therefore induces an equivalence between the space of O-algebra structures on A,
and the space of O-algebra structres on hA, for any single-colored operad O. Now, hA is
commutative, so that we O-algebra structures on hA in Alg(ho(C)) are the same thing as
O-algebra structures in CAlg(ho(C)), which is cocartesian symmetric monoidal.

Therefore, by [Lur12, Proposition 2.4.3.9], the assumption that O is weakly reduced
guarantees that the space of such structures is contractible.10

Proof of Theorem 3.24. The operad E∞ is clearly weakly reduced, and by [Lur12, Corollary
5.1.1.5, Theorem 5.1.2.2], E∞ ⊗ E1 ≃ E∞.

Similarly, by Example 3.31, the operads En are weakly reduced for 1 ≤ n ≤ ∞, and
again by [Lur12, Theorem 5.1.2.2], En+1 ≃ En ⊗ E1.

In fact, we could have guessed ahead of time that A could be made at least E2 in a
canonical way, via the following elementary observation:

Observation 3.38. Assume C is additively symmetric monoidal. Let A ∈ Alg(C) be a sepa-
rable algebra, which is homotopy commutative. The forgetful map Z(A) = homA⊗Aop(A, A)→
A (cf. Notation 1.27) is an equivalence of algebras, and in particular A admits an E2-algebra
structure, as Z(A) always does. ⊳

Indeed, by Proposition 1.25, this internal hom is preserved by passage to the homotopy
category, so it suffices to prove the claim there. But now, hA is literally a commutative
algebra in a 1-category, so the claim is obvious.

Remark 3.39. We can rephrase Theorem 3.32 as saying that for any weakly reduced operad
O, the forgetful map AlgO⊗E1

(C)≃ → Alg(C)≃ has trivial fibers over separable, homotopy
commutative algebras, and in particular is an equivalence when restricted to the appropriate
components. ⊳

10In this case, CAlg(ho(C)) is a 1-category, so we do not really need anything as sophisticated as [Lur12,
Proposition 2.4.3.9]
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A special case of the previous remark is that CAlg(C)≃ → Alg(C)≃ is an equivalence
when restricted to the components of algebras that are homotopy commutative and separable
in the target. We note a corollary of this:

Corollary 3.40. Let hCSep(C) denote the full subspace of Alg(C)≃ spanned by the sepa-
rable, homotopy commutative algebras. The functor C 7→ hCSep(C), defined on additively
symmetric monoidal ∞-categories, is limit-preserving.

Proof. This follows from Corollary 3.20 and Remark 3.39 in the case O = Comm: the
natural map CSep(C)→ hCSep(C) is an equivalence.

We also note the following corollary of Corollary 3.36:

Corollary 3.41. Assume C is additively symmetric monoidal. Let A, R ∈ CAlg(C). If A
is separable, then the forgetful maps

mapCAlg(C)(A, R)→ mapAlg(C)(A, R)→ homAlg(ho(C))(hA, hR)

are equivalences.
More generally, if O is any ∞-operad and R ∈ AlgO⊗E1

(C) is an algebra whose under-
lying E1-algebra is homotopy commutative, then, viewing A as an O ⊗ E1-algebra using the
unique map of ∞-operads O ⊗ E1 → E∞, we find that the canonical map

mapAlgO⊗E1
(C)(A, R)→ homAlgO⊗E1

(ho(C))(hA, hR)

is an equivalence.

Remark 3.42. The condition on R in the second part of the statement is automatic if O
is weakly reduced and has at least one operation in arity 2, e.g. for O = En, 1 ≤ n ≤ ∞. ⊳

To see that this really is a corollary, we first record the following classical lemma:

Lemma 3.43. Let f : C → D be a symmetric monoidal functor, and A, B ⊂ C two full
subcategories. Assume A is closed under tensor products in C, and furthermore assume that
for every a ∈ A, b ∈ B, the canonical map mapC(a, b)→ mapD(f(a), f(b)) is an equivalence.

In this case, for any ∞-operad O and any R ∈ AlgO(A), viewed as an O-algebra in C,
and any S ∈ AlgO(C) whose underlying objects are in B, the canonical map mapAlgO(C)(R, S)→
mapAlgO(D)(f(R), f(S)) is an equivalence.

This is in turn a special case of:

Lemma 3.44. Let f : C → D be a functor between two ∞-categories, and let A, B ⊂ C
be full subcategories such that for each a ∈ A, b ∈ B, the canonical map mapC(a, b) →
mapD(f(a), f(b)) is an equivalence.

Let X, Y : I → C be two functors such that for each i ∈ I, Xi ∈ A, Yi ∈ B. In this case,
the canonical map

mapFun(I,C)(X, Y )→ mapFun(I,D)(f ◦X, f ◦ Y )

is an equivalence.
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Proof. This follows directly from the description of mapping spaces in Fun(I, C) as ends, cf.
[GHN15, Proposition 5.1], but for the sake of completeness, we give here a more elementary
proof.

Let CA,B ⊂ C∆1

be the full subcategory spanned by arrows a → b where a ∈ A, b ∈ B.
We note that our assumption guarantees that the following is a pullback square:

CA,B D∆1

A×B D ×D

In particular, it remains so after taking Fun(I,−). We now note that Fun(I, CA,B) ≃

Fun(I, C)Fun(I,A),Fun(I,B) and Fun(I, D∆1

) ≃ Fun(I, D)∆1

compatibly.

Now for X, Y as in the statement, map(X, Y ) is the fiber of Fun(I, C)∆1

→ Fun(I, C)×
Fun(I, C) over (X, Y ), so that by fullness of A, B ⊂ C, it is also the fiber of Fun(I, C)Fun(I,A),Fun(I,B) →
Fun(I, A) × Fun(I, B) over (X, Y ) and thus, because the above square is a pullback, the

fiber of Fun(I, D)∆1

→ Fun(I, D)×Fun(I, D) over (f ◦X, f ◦ Y ), i.e. map(f ◦X, f ◦ Y ), as
claimed.

Proof of Lemma 3.43. AlgO(C) (resp. AlgO(D)) is a full subcategory of Fun(Fin∗, C⊗)×Fun(Fin∗,Fin∗)

{id} (resp. Fun(Fin∗, D⊗)×Fun(Fin∗,Fin∗) {id}).
We can thus apply Lemma 3.44 here, by taking A⊗ to be the full suboperad of C⊗

spanned by objects of A, and taking B⊗ to be the full suboperad of C⊗ spanned by objects
of B.

We simply need to check the assumptions on f⊗ : C⊗ → D⊗, i.e. we need to prove that
for any tuples A1, ..., An ∈ A, B1, ..., Bm ∈ B with corresponding objects A ∈ C⊗

〈n〉, B ∈

C⊗
〈m〉, the canonical map

mapC⊗(A, B)→ mapD⊗ (f⊗A, f⊗B)

is an equivalence.
This map is a map of spaces over homFin∗

(〈n〉, 〈m〉) and so we can take fibers over a
given morphism α : 〈n〉 → 〈m〉, and because f⊗ is symmetric monoidal, it is compatible
with the equivalences mapC⊗(A, B) ≃

∏
i∈〈m〉o (

⊗
j∈α−1(i) Aj , Bi); and so the claim follows

from the assumption on A, B, and the fact that A is closed under tensor products.

Proof of Corollary 3.41. This follows again from Corollary 3.36, using the (definitional)
equivalence AlgO⊗E1

(C) ≃ AlgO(AlgE1
(C)), and Lemma 3.43 - we apply the latter to

the symmetric monoidal functor Alg(C) → Alg(ho(C)), with the full subcategories A, B
spanned on the one hand by the commutative separable algebras, and on the other hand by
the homotopy commutative algebras.

We also record the following special case explicitly:

Corollary 3.45. Assume C is additively symmetric monoidal. Let A ∈ CAlg(C) be a
commutative separable algebra, and R ∈ CAlg(C) an arbitrary commutative algebra. In this
case, mapCAlg(C)(A, R) is 0-truncated, i.e. discrete.
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It is of course a special case of the above, but to make this consequence more concrete,
we give an alternative, more elementary proof that could be useful in different contexts.

Alternative proof of Corollary 3.45. It suffices to argue that the diagonal map mapCAlg(C)(A, R)→
mapCAlg(C)(A, R)×mapCAlg(C)(A, R) is an inclusion of components, i.e. a monomorphism.

Since CAlg(C) admits coproducts given by tensor products, this amounts to the claim
that the multiplication map A ⊗ A → A is an epimorphism in CAlg(C). But this follows
immediately from it being a localization at an idempotent, cf. Corollary 3.9.

3.1 Deformation theory and étale algebras

In the specific case where C = ModR, for some connective ring spectrum, we can try, as
in the étale case, to relate connective commutative separable algebras to their π0, rather
than to their corresponding homotopy algebra ho(C). In that regard, the usual techniques
of deformation theory work just as well as in the étale case, cf. [Lur12, Section 7.5]. We
explain how this works in our situation. In fact, a big chunk of the deformation theory work
for general 0-cotruncated commutative algebras. For a little while, we will therefore be in
the setting of spectra and no longer a general C (although many of these results could be
phrased more genreally in the presence of a t-structure).

Proposition 3.46. Let S be a connective commutative ring spectrum, R a connective com-
mutative S-algebra, and A a 0-cotruncated connective commutative S-algebra.

In this case, the canonical maps

mapCAlgS
(A, R)→ mapCAlgπ0(S)

(A⊗S π0(S), π0(R))→ mapCAlg♥
π0(S)

(π0(A), π0(R))

are equivalences.

Proof. Note that, for both maps, by adjunction it suffices to prove that the map mapCAlgS
(A, R)→

mapCAlgS
(A, π0(R)) is an equivalence.

As R ≃ limn R≤n, it suffices to prove that each R≤n+1 → R≤n induces an equivalence
mapCAlgS

(A, R≤n+1)→ mapCAlgS
(A, R≤n).

For this, we note that R≤n+1 → R≤n is a square zero extension [Lur12, Corollary
7.4.1.28], so it suffices to prove this claim for arbitrary square zero extensions of commutative
S-algebras by connective modules.

So let R̃→ R denote such a square zero extension, classified by a pullback square

R̃ R

R R⊕ ΣM

p

d0

dη

p

where M is connective. As this is a pullback square, it remains so after applying mapCAlgS
(A,−),

and so, to prove that the left vertical map becomes an equivalence, it suffices to prove that
this is so for the right vertical map. But the right vertical map has a left inverse, namely,
the projection R⊕ΣM → R, so it suffices to prove that this one gets sent to an equivalence.

However, this projection map R⊕ΣM → R is a trivial square zero extension, so it suffices
to prove the claim for these ones, i.e., extensions where the corresponding pullback square
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has dη ≃ d0. This is where we use 0-cotruncatedness: applying mapCAlgS
(A,−) yields a

pullback square of sets of the form:

mapCAlgS
(A, R̃) mapCAlgS

(A, R)

mapCAlgS
(A, R) mapCAlgS

(A, R ⊕ ΣM)

p

d0

d0

p

Where the two d0’s really are the same map, and further are (split) injections. The pullback
of sets along injections is given by the intersection of the images. But if the maps are equal,
then their images are equal too, so that the intersection is the whole thing. This implies
that the left vertical map is an equivalence, as was to be proved.

Proposition 3.47. Let C 7→ Q(C) be a limit-preserving subfunctor of the functor C 7→
CAlg(C) defined on the category of symmetric monoidal ∞-categories.

Let Qcn denote the restriction of Q to the category CAlgcn of commutative connective
ring spectra along R 7→Modcn

R . Suppose that the image of Qcn(R)→ CAlg(Modcn
R ) consists

of 0-cotruncated algebras.
In this case, for any commutative connective ring spectrum R, the canonical map R →

π0(R) induces an equivalence Qcn(R)→ Qcn(π0(R)).

Proof. The argument is essentially the same as before. We use the fact that Modcn
• preserves

the inverse limits involved in Postnikov towers, namely the limit diagrams of the form
R ≃ limn R≤n [Lur18b, 19.2.1.5], and pullback squares defining square zero extensions by
connective modules [Lur18b, Theorem 16.2.0.2.].

As Q preserves all limits, Qcn preserves these specific limits, so that, to prove that
Qcn(R) → Qcn(π0(R)) is an equivalence, it suffices to prove that Qcn(R̃) → Qcn(R) is an
equivalence for all square zero extensions by connective modules and hence, as before, it
suffices to prove it for trivial square zero extensions by connective modules.

For these ones, we note that the same argument as before using pullbacks of sets along
equal injections implies, by looking at mapping spaces, that Qcn(R ⊕ ΣM) → Qcn(R) is
fully faithful. In more detail, we can fit this map in a pullback square:

Qcn(R⊕ ΣM) Qcn(R)

Qcn(R) Qcn(R ⊕ Σ2M)

where the two maps Qcn(R)→ Qcn(R ⊕ Σ2M) are equivalent, and so, looking at mapping
spaces, we find pullback squares of sets of the form:

X Y

Y Z

where the two maps Y → Z are equal and (split) injective. It follows that the map X → Y
is an isomorphism as before, and hence, that Qcn(R ⊕ ΣM)→ Qcn(R) is fully faithful.
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Because it also has a right inverse (namely Qcn(R)→ Qcn(R ⊕ ΣM)), it follows that it
is also essentially surjective, hence an equivalence.

Corollary 3.48. Let R be a connective commutative ring spectrum. Basechange along
R→ π0(R) induces an equivalence CSepcn(R)→ CSepcn(π0(R)).

Proof. Combine Corollary 3.45 and Proposition 3.47.

In the case of étale extensions, however, one can go further: flatness (which is part of
the definition of étale) forces étale extensions of π0(R) to also be discrete. We do not know
if this is so for arbitrary commutative separable extensions, however, in the noetherian case,
Neeman proved the following:

Theorem 3.49 ([Nee18, Lemma 2.1., Remark 2.2.]). Let R be a discrete commutative
noetherian ring. Any commutative separable algebra in ModR is coconnective.11 In partic-
ular, any connective commutative separable algebra is discrete.

A discrete separable commutative algebra is also flat.

Remark 3.50. In that last sentence, we are considering separable algebras in ModR, which
are discrete; and not separable algebras in Mod♥

R. The latter can be non-flat: for example,

any quotient R→ R/I is separable in Mod♥
R, as R/I ⊗R R/I ∼= R/I. ⊳

Remark 3.51. Neeman proves more than Theorem 3.49, he completely classifies commu-
tative separable algebras over noetherian schemes. ⊳

We can thus deduce the following:

Corollary 3.52. Let R be a connective commutative ring spectrum with noetherian π0. The
functor π0 : Modcn

R → Mod♥
R ≃ Mod♥

π0(R) ⊂ Modπ0(R) preserves separable commutative
algebras.

Furthermore, any separable commutative algebra over R is flat.
The functor π0(−), or equivalently π0(R)⊗R − induces an equivalence

CAlgsep(R)cn → CAlgsep(π0(R))♥,♭

We have used the following notation:

Notation 3.53. We use the superscript ♭ to indicate flatness - we can use this for ModR,
where R is a ring spectrum [Lur12, Definition 7.2.2.10.], and by extension for ∞-categories
that admit natural forgetful functors to it, such as CAlg(R). ⊳

To prove this, we use the following standard lemma:

Lemma 3.54. Let R be a connective ring spectrum and M a right R-module. Suppose
M ⊗R π0(R) is a flat (in particular discrete) π0(R)-module. In this case, M is a flat R-
module.

Proof. For any discrete left R-module N , M ⊗R N ≃ M ⊗R π0(R) ⊗π0(R) N is discrete by
assumption. This is enough by [Lur12, Theorem 7.2.2.15.(5)].

11In [Nee18], Neeman says “connective”, but he is working with cohomological conventions.
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Proof of Corollary 3.52. Let A be a connective separable algebra over R. Basechange along
R→ π0(R) is symmetric monoidal, so that A⊗R π0(R) is separable and hence, by Neeman’s
theorem (Theorem 3.49), coconnective. As it is also connective, it is therefore discrete.

It follows that it is isomorphic to its π0, which is also π0(A), and hence, π0(A) is separable,
as an algebra in Modπ0(R).

12

Furthermore, A ⊗R π0(R) is flat, again by Theorem 3.49, and hence A is flat, by the
previous lemma.

Now, as commutative separable algebras are 0-truncated, by Corollary 3.45, this implies
that the two functors (which we just explained are equivalent) π0(−) and π0(R) ⊗R − are
fully faithful as functors CAlgsep(R)cn → CAlgsep(π0(R))♥,♭. We are left with proving that
they are essentially surjective.

But the inclusion Mod♥,♭
π0(R) →Modπ0(R) is strong symmetric monoidal, and hence pre-

serves separable algebras. Thus, any object in CAlgsep(π0(R))♥,♭ lifts to CAlgsep(π0(R))cn,
and by Corollary 3.48, anything there can be lifted to CAlgsep(R)cn.

In other words, under this noetherian-ness assumption, connective commutative separa-
ble algebras in Modπ0(R) are exactly the flat ordinary commutative separable algebras. Note
that given a flat ordinary commutative separable algebra A0, the corresponding commutative
separable algebra over R is flat, and hence has homotopy groups π∗(A) ∼= A0 ⊗π0(R) π∗(R).

This allows us to compare separability with étale-ness in the sense of Lurie in the noethe-
rian case. Namely, we have:

Proposition 3.55. Let R be a commutative ring spectrum and A a commutative R-algebra.
If A is étale in the sense of [Lur12, Definition 7.5.0.4.], then A is separable.

Conversely, if R is connective and π0(R) is noetherian, then if A is separable, connective
and π0(A) is finitely presented over π0(R) then A is étale in the same sense.

Remark 3.56. It is not clear to the author what the optimal statement is. Clearly, one
cannot drop all connectivity assumptions: for instance, Galois extensions are separable (see
Proposition 5.3), but many of them, such as KO→ KU are not étale.

It is reasonable to expect that one can drop the noetherian assumption, and possibly the
connectivity assumption on A. ⊳

Proof. Assume A is étale. By definition, π0(A) is étale over π0(R). In particular, π0(A) is flat
over π0(R), and separable in the classical sense. So let e ∈ π0(A)⊗π0(R) π0(A) ∼= π0(A⊗R A)
be a separability idempotent. This is in turn an idempotent in A ⊗R A which gets sent to
1 ∈ π0(A) under the multiplication map.

In particular, it induces a map (A⊗R A)[e−1]→ A. Because homotopy groups commute
with localizations, and because A is flat, this map can be identified, on homotopy groups,
with (π0(A) ⊗π0(R) π0(A)⊗π0(R) π∗(R))[e−1]→ π0(A)⊗π0(R) ⊗π∗(R).

Because (π0(A) ⊗π0(R) π0(A))[e−1] → π0(A) is an isomorphism, this map is also an
isomorphism, which proves that (A ⊗R A)[e−1] ≃ A. As e is idempotent, it follows that
A⊗R A→ A has an A⊗R A-linear splitting, thus proving that it is separable.

For the converse, we already know π0(A) is separable, flat and finitely presented, which
means that it is étale over π0(R) in the classical sense. Furthermore, we also know that

12It is obviously separable in Mod♥
π0(R)

, because π0 : Modcn
R

→ Mod♥
π0(R)

is strong symmetric monoidal.
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A is flat over R, which altogether means that A is étale in the sense of [Lur12, Definition
7.5.0.4.].

Question 3.57. Do these results (Theorem 3.49, Corollary 3.52 and Proposition 3.55)
continue to hold without a noetherian-ness assumption ?

In their recent work [NP23], Naumann and Pol partially answer this question by removing
the noetherian assumption and adding the assumption that the algebra A is perfect as an
R-module. One easily sees that their proof only uses the assumption that A is almost perfect
[Lur12, Definition 7.2.4.10]. In fact, as it turns out, it follows that in this case, almost perfect
implies perfect. We record it here for the convenience of the reader, but the proof is the
same as that of [NP23, Proposition 10.5]:

Proposition 3.58. The answer to Question 3.57 is yes, when restricted to almost perfect
separable algebras. More precisely, fix a connective commutative ring spectrum R. Let A be
a commutative separable R-algebra, whose underlying R-module is almost perfect.

In this case, A is flat, and hence connective; π0(A) is separable as a π0(R)-algebra in
Modπ0(R) (and not only in Mod♥

π0(R)). In particular, A is étale in the sense of Lurie over
R.

In particular, A is perfect, and even finitely generated projective as an R-module. In
other words, almost perfect commutative separable algebras are always perfect/finitely gen-
erated projective, and they correspond exactly to finite étale extensions. The functor π0(−),
or equivalently π0(R) ⊗R −, induces an equivalence between these and finite étale π0(R)-
algebras.

Proof. By Lemma 3.54, to prove that A is flat, it suffices to prove that A ⊗R π0(R) is flat,
and in particular discrete, over π0(R).

We reduce to the case of a field using [Sta23, Tag 068V]. In more detail, we note that
the word “pseudo-coherent” used in [Sta23] is equivalent to “almost perfect” in the case
of discrete rings, so that this lemma does apply to our situation. Then, we note that
basechange preserves almost perfect modules, so that A ⊗R π0(R) is almost perfect over
π0(R), i.e. pseudo-coherent. Finally, we note that being flat is equivalent to being of Tor-
amplitude in [0, 0], so that by [Sta23, Tag 068V] it suffices to prove that A⊗R π0(R)⊗π0(R) k
is concentrated in degree 0 for any field k and morphism π0(R)→ k.

But now A⊗R k is the basechange of A along the commutative ring map R→ π0(R)→ k,
so it is a separable commutative algebra over the field k, and by [Nee18, Proposition 1.6],
these are all discrete, as was to be shown.

Now, we have proved that A is flat (and in particular connective), so that π0(R)⊗R A ≃
π0(A) - the former is obviously separable, and therefore, so is the latter.

To prove that A is étale, as in the proof of Proposition 3.55, because we already know
that it is flat, it suffices to prove that π0(A) is étale over π0(R). We know that it is separable
and flat, so it suffices to prove that it is finitely presented, but it is finitely presented as a
module over π0(R), which immediately implies that it is finitely presented as an algebra as
well, and hence étale.

Furthermore, π0(A) is a finitely presented flat π0(R)-module, hence it is finitely generated
projective, and thus, by flatness of A, A is a finitely generated projective R-module, and in
particular perfect.
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By Corollary 3.48, the functor CAlgsep(R)aperf ⊂ CAlgsep(R)cn → CAlgsep(π0(R))cn is
fully faithful, and it lands in the full subcategory CAlgsep(π0(R))♥,♭. To conclude the proof,
it thus suffices to prove that its essential image is exactly the finite étale extensions. But if
A0 is a finite étale extension of π0(R), it is in particular finitely generated projective, and so
its unique lift to a flat π0(R)-module is also finitely generated projective, and hence almost
perfect.

Question 3.57 remains however open in full generality.
We finally discuss Morita equivalence in the commutative setting. Recall that for ordi-

nary rings, Morita equivalence implies isomorphism.

Proposition 3.59. Suppose C is presentably symmetric monoidal. Let A, B be commuta-
tive algebras, and suppose they are Morita equivalent, i.e. there is a C-linear equivalence
ModA(C) ≃ModB(C).

If A is separable, then A ≃ B as algebras in C. If C is additively symmetric monoidal,
then they are equivalent as commutative algebras.

Proof. Note that the center Z(R) of a ring is Morita invariant.
Furthermore, we know that Z(A) ≃ A, as A is commutative separable, and as B is

commutative we have a retraction B → Z(B)→ B. By Morita invariance, and the previous
fact, we thus have a retraction B → A → B, proving that B is separable, and thus (by
commutativity) B ≃ Z(B).

It follows that A ≃ B as algebras. If we now assume C is additively symmetric monoidal,
then Theorem 3.24 implies that A ≃ B as commutative algebras.

Question 3.60. Is this result valid if A is not assumed separable and when C = Sp ?

Remark 3.61. If A is not assumed to be separable, and we are allowed to work in a local
setting, then the result is false. A counterexample is given by taking C = SpT (n), the ∞-

category of T (n)-local spectra13 with n ≥ 1 and at an implicit prime p, and R a T (n)-local
commutative algebra. Then, by [BCSY22, Theorem B.(1)], for any finite abelian p-group
A, R[A] is Morita equivalent over C to RBA. Yet, they are typically not equivalent when
n ≥ 2. ⊳

Remark 3.62. Note that if Z(A) is separable, we can make most of the argument work
without assuming that A is commutative: the argument proves that in this case, B is
separable. More precisely, if A ∈ Alg(C), B ∈ CAlg(C), if Z(A) is separable, and finally if
A is Morita equivalent to B, then B is also separable (and it is the center of A). It is not
clear to the author to what extent “Z(A) is separable” is really an extra assumption, cf.
Question 6.1 and the discussion in Section 6.2. ⊳

4 A variant: ind-separability

The goal of this section is to study a variant of the notion of separability, which we call
“ind-separability”, and which is better suited in some “infinitary” situations. We will see

13K(n)-local spectra would work just as well.
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that they share many of the properties of separable algebras, in particular concerning highly
structured multiplicative structures.

We will see that, in the ∞-category of K(n)-local spectra, Morava E-theory is ind-
separable - the proof of this will require as its only input the computation of the ring of
cooperations of Morava E-theory, by Hopkins–Ravenel, Baker, and revisited by Hovey in
[Hov04]. As a corollary, we will obtain a relatively simple proof of the Goerss–Hopkins–Miller
theorem, or in some sense a reorganization of the classical proof; as well as an extension to
the folklore claim that E-theory admits a unique Ed-structure for any 1 ≤ d ≤ ∞.14

Because of the infinitary nature of the notion of ind-separability, and because separable
algebras only have strong enough rigidity properties in the commutative case, the variant we
introduce here only really works in the (homotopy) commutative case. For similar reasons,
this variant is best suited in the compactly generated case, and we will mostly stick to this
assumption.

4.1 Ind-separability

Recall that, if A is a commutative separable algebra, the multiplication map A ⊗ A → A
witnesses the target as the localization of the source at an idempotent. The key observation
of this section is that many of our results only really need it to be a localization at some
elements. We thus define:

Definition 4.1. Let C be a presentably, stably symmetric monoidal ∞-category, and A ∈
CAlg(C) a commutative algebra in C. We say that A is ind-separable if there is a set
S ⊂ π0 map(1, A ⊗ A) such that the multiplication map witnesses A as the localization
(A⊗A)[S−1] in the ∞-category of A⊗A-modules. ⊳

Remark 4.2. Note that a priori, an ind-separable algebras has no particular reason to be
a filtered colimit of separable algebras, i.e. and ind-(separable algebra). This will, however,
be our main source of examples, cf. the subsequent sections. ⊳

This notion is relatively well-suited if we want to study the moduli space of commutative
structures extending the underlying E1-algebra structure of A, at least when C is com-
pactly generated. For instance, one can already prove relatively elementarily (i.e. without
obstruction theory) that ind-separability implies the uniqueness of Ed-structures extending
the algebra structure, for 1 ≤ d ≤ ∞.

However, if we also want to get off the ground and go from a homotopy algebra structure
to an actual algebra structure, we need to phrase this in “up-to-homotopy” terms. Because
in a stably symmetric monoidal∞-category with filtered colimits, localizing a commutative
algebra at a set of elements is a relatively well understood procedure, namely it is given by
a telescope (see e.g. [BNT18, Appendix C]), we can in fact give the following definition in
the compactly generated case:

Definition 4.3. Let C be a compactly generated presentably, stably symmetric monoidal
∞-category, and A ∈ CAlg(ho(C)) a homotopy commutative homotopy algebra in C. We

14The d = 1 case is known as the Hopkins–Miller theorem, and the d = ∞ case as the Goerss–Hopkins–
Miller theorem.
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say that A is homotopy ind-separable if there exists a set S ⊂ π0 map(1, A ⊗ A) such that
the multiplication map induces, for each compact object c ∈ Cω, an isomorphism

π∗(map(c, A⊗A))[S−1]→ π∗ map(c, A)

⊳

In this definition, the localization is taken outside of π∗, and by it we simply mean the
usual telescope construction in abelian groups.

Remark 4.4. Because filtered colimits are exact in Ab, the condition that the above map
be an isomorphism at c is closed under co/fiber sequences in Cω, and thus it suffices to
check it on generators, e.g. on R if C = ModR(Sp) for some commutative ring spectrum
R. ⊳

Again because localizations of commutative algebras in stable ∞-categories are com-
puted as telescopes [BNT18, Appendix A], the following is an immediate consequence of the
definition:

Lemma 4.5. Let C be a compactly generated presentably, stably symmetric monoidal ∞-
category, and A ∈ CAlg(C) a commutative algebra in C. If A is ind-separable, then its
underlying homotopy algebra is homotopy ind-separable.

In some cases of interest though, the compacts of C are complicated to calculate, and
so it can be useful to formulate a criterion at the level of C. It can be hard to phrase in
this generality, because the diagram that defines the telescope has no reason to lift to C in
general. However, if S is particularly nice, the diagram can be lifted to C even if A is only
a homotopy algebra.

To explain this in more detail, we begin with a construction.

Construction 4.6. Let C be a symmetric monoidal additive∞-category admitting sequen-
tial colimits. Let B ∈ CAlg(ho(C)) be a homotopy commutative homotopy algebra, and let
s : 1 → B be an “element” of B. This induces a (homotopy-)B-module map B → B given
by multiplication by s, and thus, an N-shaped diagram B → B → B → . . . in C.

We call its colimit the telescope of B at s, Tels(B).
Suppose instead given an N-indexed family s = (si) of elements of B. We can then form

its telescope as the colimit of the diagram B
s1−→ B

s1s2−−−→ B
s1s2s3−−−−→ B . . . , and we still denote

it by Tels(B). ⊳

Remark 4.7. In this construction, the diagram B → B → B → . . . can really be con-
structed in C and not only in ho(C), because N is free as an ∞-category (cf., e.g., [Lur09,
Proof of Proposition 4.4.2.6]). ⊳

Definition 4.8. Let C be a symmetric monoidal additive ∞-category admitting sequential
colimits. Let B ∈ CAlg(ho(C)) be a homotopy commutative homotopy algebra and let M
be a (homotopy-)B-module with a (homotopy-)B-module map f : B → M . Let s be an
N-indexed family of elements of B.

We say that f witnesses M as a telescope of B at s if there exist homotopies f ◦(s1...sn) ≃
f for all n that induce an equivalence Tels(B) ≃M . ⊳
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Remark 4.9. Note that in the latter definition, because N is free as an ∞-category, the
collection of homotopies f ◦ (s1...sn) ≃ f is sufficient to induce a map from the colimit to
M . ⊳

Definition 4.10. Let C be a stably symmetric monoidal ∞-category with sequential col-
imits compatible with the tensor product, and let A ∈ CAlg(ho(C)) be a homotopy commu-
tative homotopy algebra. We say that A is homotopy ω-separable if the multiplication map
A ⊗ Aop → A witnesses A as a telescope of A⊗ Aop at some sequence s = (si) of elements
si : 1→ A⊗Aop. ⊳

The following is again an easy consequence of the definition:

Lemma 4.11. Let C be a compactly generated presentably, stably symmetric monoidal ∞-
category, and A ∈ CAlg(ho(C)) a homotopy commutative homotopy algebra in C. If A is
homotopy ω-separable, then it is homotopy ind-separable.

The way things will go is that we will prove things about (homotopy) ind-separable
(homotopy) algebras, and our main example of a homotopy ind-separable homotopy algebra
(Morava E-theory) will be proved to be so by proving that is a homotopy ω-separable
algebra.

4.2 Obstruction theory, again

Having defined (homotopy) ind-separability, our first goal is to argue that most of our
results about commutative separable algebras extend to the case of (homotopy) ind-separable
algebras, at least when C is compactly generated. We note that we need obstruction theory
for more of our results than in the separable case, where we only really needed it in one
place.

The obstruction theory we will use here is essentially the same as in the separable case of
Section 2, except that we now start with a compactly generated stably symmetric monoidal
C.

Assumption 4.12. C is a compactly generated stably symmetric monoidal∞-category, in
which tensor products commute with colimits in each variable. Further, we assume that the
compact objects of C are closed under non-empty tensor products15

As in Section 2, we will rely heavily on [PV22], and so our first goal is to get ourselves
in the setting of the obstruction theory from this paper.

The following construction is very similar to the construction in [HL17, Section 4.4], so
we only briefly go over the details.

Construction 4.13. Let C be as in Assumption 4.12.
Let SynC ⊂ Fun×((Cω)op, Sp≥0). Similarly to [HL17, Section 4.4], the assumption that

Cω is closed under non-empty tensor products makes SynC into a non-unital symmetric
monoidal ∞-category for which the Yoneda embedding Cω → SynC is canonically non-
unitally symmetric monoidal.

Again, similarly to [HL17, Section 4.4], we obtain an essentially unique non-unitally
symmetric monoidal colimit-preserving preserving functor f : SynC → C whose restriction

15We do not assume that the unit is compact.
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to Cω is (non-unitally symmetric monoidally) equivalent to the inclusion. The right adjoint
of f , given by the restricted Yoneda embedding M : c 7→ Map(−, c)≥0 thus acquires a
canonical (non-unital) lax symmetric monoidal structure.

The structure maps Map(−, c)≥0 ⊗ Map(−, d)≥0 → Map(−, c ⊗ d)≥0 are equivalences
whenever c, d ∈ Cω, so because C is compactly generated and M preserves filtered colimits,
we find that these structure maps are also equivalences for all c, d ∈ C.

In particular, Map(−, 1)≥0 ⊗ M(c) ≃ M(c) for all c ∈ Cω and thus, because of the
universal property of SynC, M(1)⊗ − ≃ id as functors SynC → SynC (see [HL17, Lemma
4.4.9]).

It follows that SynC is in fact a unital symmetric monoidal ∞-category, and that
M : C → SynC is fully faithful and symmetric monoidal. Furthermore, SynC is clearly
Grothendieck prestable, complete and separated. We abuse notation and write 1 also for
the unit of SynC, i.e. for M(1).

The gading given by F [1] := F (Ω−), where Ω : C→ C is the loop functor (equivalently
the suspension functor on Cop) makes it into a graded Grothendieck prestable category in the
sense of [PV22], and the assembly map induces a shift structure on the unit τ : Σ1[−1]→ 1,
again in the sense of [PV22]. As in Section 2, this is the only shift algebra we will consider
in this section, so that “periodic module” should always be understood with respect to this
shift algebra. ⊳

Warning 4.14. When specialized to the case of C = ModE(SpK(n)) where E is Morava
E-theory at height n, our definition of SynC is related to the SynE appearing in [HL17],
but they are not the same: SynE is also defined as an ∞-category of product-preserving
presheaves, but on something smaller than Cω.

It is easy to check that the proofs of Lemma 2.24, Lemma 2.25, Lemma 2.26 and Corol-
lary 2.27 go through in this setting as well, and so we will take them for granted here.

Corollary 4.15. Let C be as in Assumption 4.12, and let A ∈ CAlg(ho(C)) be a homotopy-
ind-separable homotopy commutative homotopy algebra.

In this case, π0M(A) ∈Modπ0(1)(SynC) is an ind-separable commutative algebra.
The same is true if A ∈ Alg(C) is homotopy commutative and ind-separable.

Proof. We first observe that the canonical map π0M(A) ⊗π0(1) π0M(A) → π0M(A⊗ A) is
an equivalence. Granted this observation, the claim simply follows from the definition of
(homotopy) ind-separable and the fact that π0 : SynC → SynC preserves filtered colimits
(and again, the fact that localizations of commutative algebras are given by telescopes).

The observation is proved similarly to how it was proved in the proof of Theorem 2.15,
namely Lemma 2.24 and [PV22, Proposition 2.16] imply that π0M(−) ≃ M(−) ⊗1 π0(1),
from which the claim follows as M(−) is symmetric monoidal, and so is basechange along
1→ π0(1) in SynC.

Lemma 4.16. Let D be a stably symmetric monoidal ∞-category admitting filtered colim-
its that are compatible with the tensor product, and let A ∈ CAlg(D) be an ind-separable
commutative algebra.

Let LA be the fiber of the multiplication map A⊗A→ A, viewed as an A-bimodule. For
any A-module M , viewed as an A-bimodule via restriction along the multiplication map, we
have that the mapping spectrum mapA⊗A(LA, M) vanishes.
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Proof. Basechange along the multiplication map is left adjoint to restriction, so it suffices
to prove that the basechange of LA is zero, and for this it suffices to prove that the co-unit
A⊗A⊗A A→ A is an equivalence. This follows immediately from ind-separability.

Theorem 4.17. Let C be as in Assumption 4.12, i.e. C is a compactly generated stably
symmetric monoidal ∞-category, in which tensor products commute with colimits in each
variable. Further, we assume that the compact objects of C are closed under non-empty
tensor products.

Let A ∈ CAlg(ho(C)) a homotopy ind-separable homotopy commutative homotopy alge-
bra. In this case,

1. The moduli space Alg(C)≃×Alg(ho(C))≃ {A} is contractible, i.e. A admits a unique lift
to an algebra in C;

2. Letting Ã denote the unique lift of A to Alg(C), for any homotopy commutative al-
gebra R ∈ Alg(C), the mapping space mapAlg(C)(Ã, R) is discrete and equivalent to
homAlg(ho(C))(A, hR).

The proof is essentially the same as that of Theorem 2.15, so some of the details are
omitted.

Proof. As in the proof of Theorem 2.15, for both statements we can replace C (resp. ho(C))
by SynC (resp. Syn♥

C), and so we can use the obstruction theory from [PV22], more precisely,
[PV22, Theorem 5.4] for the existence part of first statement and [PV22, Proposition 5.7
and Corollary 5.11] for the uniqueness part of the first statement and the for the second
statement.

In more detail, first consider the existence question, namely the question of whether there
exists a periodic algebra in SynC whose π0 is π0M(A), as an algebra. By [PV22, Theorem
5.4], the obstructions to this live in Extn+2(LE1

π0M(A)/π0(1), π0M(A)[−n]), so it suffices to

prove that these groups vanish. By [Lur12, Theorem 7.3.5.1], LE1

π0M(A)/π0(1) is what we

have called Lπ0M(A), computed in Modπ0(1)(SynC). As the π0M(A)-bimodule structure on
π0M(A)[−n] is obtained by shifting the bimodule structure on π0M(A), and in particular by
restriction along the multiplication map, Lemma 4.16 implies that these Ext-groups vanish
(using that π0M(A) is ind-separable by Corollary 4.15).

For the uniqueness question, and part 2. of the theorem, we observe similarly that in
[PV22, Proposition 5.7 and Corollary 5.11], the obstruction groups that appear are similar,
except that they have π0M(R), possibly shifted, that appears in the target, where R is our
homotopy commutative algebra in C (either another lift of A to Alg(C) for the unique-
ness question, or simply an arbitrary homotopy commutative algebra, for point 2. in the
theorem). It thus again suffices to prove that all the Ext-groups involved vanish.

As R is homotopy commutative and the homotopy A-bimodule structure on it comes
from restriction from its homotopy R-bimodule structure, we find that π0M(R) (and its
shifts), as a π0M(A)-bimodule is obtained by restriction of scalars along the multiplication
π0M(A)⊗π0(1) π0M(A)→ π0M(A).

By Lemma 4.16 with D = Modπ0(1)(SynC), using again that π0M(A) is ind-separable
by Corollary 4.15, we obtain that all these Ext-groups vanish, thus proving that all the
obstruction groups vanish, as was to be shown.
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We could also run an obstruction-theory argument to get to highly structured commuta-
tive structures on homotopy ind-separable homotopy commutative homotopy algebras, but
as in Section 3, we can also deduce it by more elementary means.

Corollary 4.18. Let C be as in Assumption 4.12, and let A ∈ Alg(C) be an ind-separable
homotopy commutative algebra. Let O be an arbitrary on-colored ∞-operad. In this case,
the canonical forgetful map

AlgO⊗E1
(C)≃ ×Alg(C)≃ {A} → AlgO⊗E1

(ho(C))≃ ×Alg(ho(C))≃ {hA}

is an equivalence. In particular, if O is weakly reduced, AlgO⊗E1
(C)≃ ×Alg(C)≃ {A} is

contractible. This is the case e.g. if O = Ed, d ≥ 1.

More generally, again as a corollary of Lemma 3.43, we obtain:

Corollary 4.19. Let C be as in Assumption 4.12, and let A, R ∈ CAlg(C). If A is ind-
separable, then the forgetful maps

mapCAlg(C)(A, R)→ mapAlg(C)(A, R)→ homAlg(ho(C))(hA, hR)

are equivalences.
More generally, if O is any ∞-operad and R ∈ AlgO⊗E1

(C) is an algebra whose under-
lying E1-algebra is homotopy commutative, then, viewing A as an O ⊗ E1-algebra using the
unique map of ∞-operads O ⊗ E1 → E∞, we find that the canonical map

mapAlgO⊗E1
(C)(A, R)→ homAlgO⊗E1

(ho(C))(hA, hR)

is an equivalence.

Remark 4.20. As in the separable case, a consequence of this corollary is the discreteness
of mapCAlg(C)(A, R), and, just as in that case, we could give a more elementary proof of
this specific fact, cf. Corollary 3.45 and its alternative proof.

Corollary 4.21. Let C be as in Assumption 4.12, and let A ∈ CAlg(ho(C)) be a homotopy
commutative, homotopy ind-separable homotopy algebra in C. For any 1 ≤ d ≤ ∞, the
moduli space AlgEd

(C)≃ ×Alg(ho(C))≃ {A} is contractible.

The upshot of this discussion is that, at least in the compactly-generated case, and
using slightly less elementary methods, we are able to recover most of the results from the
commutative separable case in the commutative (homotopy) ind-separable case.

4.3 Examples

We now discuss examples of ind-separable algebras.

Ind-(separable algebras)

The first natural source of examples is filtered colimits of (commutative) separable algebras.
Of course, separable algebras are ind-separable (one can pick the set S to consist of the
single separability idempotent).
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Lemma 4.22. Let C be as in Assumption 4.12, and let A• : I → CAlg(C) be a filtered
diagram of commutative separable algebras. In this case, colimIAi is ind-separable.

If I is countable, one can choose S in the definition of ind-separable to be countable.

Proof. For every i ∈ I, let si : 1→ Ai⊗Ai → A⊗A be the image in A⊗A of the separability
idempotent of Ai, and let S be the set of the si’s. It is easy to verify that this does the
job.

Example 4.23. Let X be a profinite set. The algebra C(X ;Z) of continuous functions
on X is ind-separable, as the filtered colimit of i 7→ C(Xi;Z) for any presentation of X as
limi Xi, where each Xi is finite. However, if X is not finite, it is not separable. ⊳

Example 4.24. More generally, Rognes’ pro-Galois extension [Rog08, Definition 8.1.1] are
ind-separable, by the above lemma together with Proposition 5.3. In particular, taking the
Goerss–Hopkins–Miller theorem for granted, Devinatz and Hopkins prove in [DH04] that
Morava E-theory is a pro-Galois extension of the K(n)-local sphere SK(n) in the∞-category
of K(n)-local spectra. As we wish to give a non-circular proof of the Goerss–Hopkins–Miller
theorem, we will give a different proof that Morava E-theory is ind-separable below. ⊳

Morava E-theory

In this section, we study Morava E-theory. Example 4.24 together with its description
as a profinite Galois extension [Rog08] show that it is ind-separable in the ∞-category
of K(n)-local spectra. However, the proof that it is a pro-Galois extension relies on its
highly commutative multiplicative structure, cf. [DH04], i.e. on the Goerss–Hopkins–Miller
theorem.

We offer here a proof of the latter based on our earlier work on ind-separable algebras.
The key (and in fact, only) input that we need about Morava E-theory is the computation
of π∗(LK(n)(E⊗E)), as done by Hopkins–Ravenel, Baker, and revisited by Hovey in [Hov04]
(we refer to loc. cit. for a brief history of this computation).

Remark 4.25. Our results on ind-separable algebras rely on the obstruction theory from
[PV22], an obstruction theory which was designed and used to give a proof of the Goerss–
Hopkins–Miller theorem, so one might wonder to what extent our proof is actually different.
It is not completely clear to the author - it however seems that it is at the very least a re-
organization of that proof. Indeed, we first prove a single result about E-theory, namely its
ind-separability, and then let the obstruction theory machine take its course, with no further
input needed, unlike in [PV22, Section 7], where calculations about Morava E-theory show
up alongside the obstruction theory (among other things, Ext-group computations in E∗E-
comodules).

Furthermore, as is clear from our proofs, we only really need the obstruction theory to
get an E1-structure and describe E1-maps to other algebras - our proof clarifies the formal
aspect of going from there to higher Ed’s (including d = ∞). In particular, we obtain
a proof of the folklore fact that Morava E-theory admits a unique Ed-structure also for
1 < d < ∞ that does not require computing the corresponding Ed-cotangent complexes -
while this computation is not complicated (they all vanish, for d > 1), it does not allow for
generalizations to more general operads of the form O ⊗ E1.
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Finally, while we use the same obstruction theory as in [PV22, Section 7], we apply it
to a much simpler ∞-category: our SynC has no completion/localization coming into its
definition.

In other words, it is not clear to what extent our proof is really new, but it is a re-
packaging of the classical proof which has several advantages. ⊳

Fix a (from now on, implicit) prime p and a height n. For a perfect field k of characteristic
p, and a formal group G of height n over k, we have a spectrum E(k, G), called Morava E-
theory (or Lubin-Tate theory), usually denoted E or En. It can for instance be constructed
using the Landweber exact functor theorem, and has a homotopy associative, homotopy
commutative ring structure. It is also K(n)-local, so we can consider it as an object in
CAlg(ho(SpK(n))). We refer to [Rez98, Part 1] for an introduction to these homotopy ring
spectra.

As we mentioned, the only input we need is a computation of π∗(LK(n)(E ⊗E)). In the
statement, we write ⊗̂ for the K(n)-local tensor product, and C(X, R) for the graded ring
of continuous functions from a topological space X to a graded topological ring R.

Theorem 4.26 ([Hov04, Theorem 4.11]). There is an isomorphism

π∗(E⊗̂E) ∼= C(Γ, E∗)

for which the multiplication map π∗(E⊗̂E) → E∗ is identified with evaluation at the neu-
tral element e ∈ Γ, C(Γ, E∗) → E∗. Here, Γ is the (profinite) Morava stabilizer group,
equivalently, the group of automorphisms of E in Alg(ho(SpK(n))).

Let X be a profinite space with a point x ∈ X . Write X = limi Xi where the Xi’s are
finite sets, with projection maps pi : X → Xi, and let δi : X → Xi → {0, 1} denote the
indicator function of (pi)

−1(pi(x)).

Lemma 4.27. Composing the δi’s with the inclusion {0, 1} → Z, form the subset S of
C(X,Z) consisting of the δi’s.

Then evaluation at x, as a ring map e : C(X,Z) → Z, witnesses the target as the
localization of the source at S.

Proof. As Z is discrete, C(X,Z) is the colimit of the C(Xi,Z) along restriction maps. Now,
the localization of C(Xi,Z) at the indicator function of pi(x) is clearly Z, and the result
follows easily.

We also recall the following lemma from [Hov04]:

Lemma 4.28 ([Hov04, Proposition 2.5]). Suppose G is a profinite group and R is a graded
commutative ring that is complete in the a-adic topology for some homogeneous ideal a. Then
there is a natural isomorphism R⊗̂C(G,Z)→ C(G, R), where ⊗̂ is the a-adically completed
tensor product.

Corollary 4.29. The homotopy algebra E ∈ CAlg(ho(SpK(n)) is homotopy ind-separable.

Proof. We prove that it is in fact homotopy ω-separable.
Let Γ ∼= limk Γ/Uk be a description of the Morava stabilizer group as a countable inverse

limit of its finite quotients (we implicitly use here that Γ is first countable, cf. [Hov04,
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Theoem 1.4], and let δk denote the indicator function of Uk (this corresponds to δi in
Lemma 4.27 with x = the neutral element of Γ).

Let S ⊂ π0(E⊗̂E) ∼= C(Γ, E0) correspond to the set of the δk’s. We claim that the
multiplication map E⊗̂E → E witnesses the latter as a telescope of E⊗̂E at S in SpK(n).
Indeed, this telescope is the K(n)-localization of the same telescope in Sp, and we can
compute that the homotopy groups of the latter are simply π∗(E⊗̂E)[S−1] ∼= C(Γ, E∗)[S−1].
In particular, they are concentrated in even degrees and the sequence (p, u1, ..., un−1) is a
regular sequence on them. To express this precisely, we can e.g. observe that E⊗̂E can be
viewed as an MU-module, and so we can make sense of (p, u1, ..., un−1) on it, and they agree
with the ones coming from E∗. The same can be said for E⊗̂E[S−1].

Now, for an MU-module M on which un acts invertibly, the K(n)-localization is given
by limk M ⊗MU MU/(pk, ...uk

n−1), and so, if M is concentrated in even degrees and the
sequence (p, u1, ..., un−1) is regular on M , then the homotopy groups of LK(n)M are simply
the m = (p, u1, ..., un−1)-adic completion of the homotopy groups of M .

In particular, π∗(LK(n)((E⊗̂E)[S−1]) is the m-adic completion of C(Γ, E∗)[S−1], i.e., by
Lemma 4.28 the m-adic completion of E∗ ⊗ C(Γ,Z)[S−1], and so, by Lemma 4.27, just E∗.
This is only a verification on homotopy groups, but it is not hard to see that it implies the
desired statement.

Remark 4.30. Note that SpK(n) is compactly generated, and since its compacts are also
dualizable, they are closed under non-empty tensor products. However, the unit is not
compact. ⊳

We immediately obtain the Goerss–Hopkins–Miller theorem, and its variants for other
operads, namely:

Corollary 4.31. Fix a perfect algebraic extension k of Fp, and a formal group G of height
n over k, and let E = E(k, G) be the corresponding Morava E-theory, considered as a
(homotopy commutative) homotopy algebra. We have:

1. For any weakly reduced ∞-operad O (e.g. Ed, 1 ≤ d ≤ ∞), the moduli space

AlgO⊗E1
(Sp)≃ ×Alg(ho(Sp))≃ {E}

is contractible.

2. For any∞-operad O and any R ∈ AlgO⊗E1
(SpK(n)) whose underying algebra is homo-

topy commutative, viewing E as an O⊗E1-algebra using the unique map of ∞-operads
O ⊗ E1 → E∞, the canonical map

mapAlgO⊗E1
(SpK(n))(E, R)→ homAlgO⊗E1

(ho(SpK(n)))(hE, hR)

is an equivalence.

In particular, if we consider the underlying spectrum of E, its space of Ed-structures, for
any 1 ≤ d ≤ ∞, is equivalent to BAut(Γ).

Proof. The only thing we need to comment on is why we could write Sp in place of SpK(n)

in item 1. The point is that E is K(n)-local, and SpK(n) is a symmetric monoidal Bousfield
localization of Sp, so that the space of O-algebra structures on E in Sp is equivalent to the
one in SpK(n). There, E is ind-separable and so the results from the previous subsection
apply.
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The right hand side of these equivalences, i.e. homotopy algebra maps from hE to hR
can also be computed, at least under favourable circumstances, e.g. if R is also a Morava
E-theory, or more generally if it is even 2-periodic, cf. e.g. [Rez98].

Remark 4.32. At some point, the Goerss–Hopkins–Miller theorem was the only known
way to construct a commutative ring structure on Morava E-theory. Lurie proposed an
alternative construction in [Lur18a] where he directly gives a construction of E-theory with
its commutative ring structure. ⊳

5 Examples

We take a bit of time away from theory to look at some examples of separable algebras. All
the examples we mention here are fairly standard. We begin with Galois extensions, and
then move on to certain “cochain algebras” which appear among other places in equivariant
stable homotopy theory, and can be organized through ∞-categories of spans. We later go
to the setting of group rings under certain assumptions on the “cardinality” of the group -
these appear among other places in ambidexterity theory, and can also be organized through
∞-categories of spans. We later mention examples related to algebraic geometry, namely
we recall that étale maps of schemes induce separable algebras, and that (certain) Azumaya
algebras are separable. Finally, we conclude with a non-example, by pointing out that
separability is really a “linear” story, namely that there are no interesting examples in
cartesian cases.

Warning 5.1. In the cases of∞-categories of spans, it is convenient to use (∞, 2)-categorical
technology to organize the proofs that the relevant algebras are separable, by going through
that (∞, 2)-category of correspondences. However, some of this technology has not been
developed yet, and is only really known in the case of 2-categoies. The reader can thus view
these examples as either sketches (“a complete proof is left to the reader”), conjectures, or
as proving less than what we claim, in the following sense : our proofs will still be valid
at the homotopy category level, because there we only need the 2-categorical version of the
aforementioned technology. We note that because of the results of the previous sections, for
most purposes, this is not a real restriction: as long as one maps those span categories to
an additive symmetric monoidal ∞-category, homotopy separability guarantees full-fledged
separability.

We will indicate with a (*) the statements that are subject to this warning. ⊳

5.1 Galois theory

In this section, we review one of the main examples of separability, namely Galois extensions.
Originally introduced in field theory, they were later studied in the more general context
of commutative rings [AG60], and later, by work of Rognes [Rog08], to the setting of com-
mutative ring spectra. His definition extends verbatim to more general stable homotopy
theories. We recall the definition for the convenience of the reader:

Definition 5.2. Let C be a cocompletely, stably symmetric monoidal ∞-category, and let
A ∈ CAlg(C). For an E1-group G, an object B ∈ CAlg(ModA)BG is called a G-Galois
extension of A if:
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• The induced map A→ BhG is an equivalence (of commutative algebras);

• the natural map B ⊗A B → F (G+, B), adjoint to the action map A[G]⊗A B ⊗A B →
B⊗A B → B, is an equivalence (informally, this map is given by x⊗y 7→ (g 7→ g(x)y)).

⊳

When G is a discrete group, F (G+, B) ≃
∏

G B and the multiplication map B⊗A B → B
becomes identified with evaluation at e ∈ G,

∏
G B → B. In particular, this clearly has a

section as
∏

G B-modules, and we obtain:

Proposition 5.3 ([Rog08, Lemma 9.1.2.]). Let G be a discrete finite group, and A→ B a
G-Galois extension in CAlg(C). In this case, B is a separable A-algebra.

Remark 5.4. In the case of a Galois extension, a proof of Theorem 3.24 was already
sketched by Mathew in [Mat16, Theorem 6.25]. ⊳

Example 5.5. Any Galois extension of fields K → L is Gal(L/K)-Galois. More generally,
Galois extensions of commutative rings are Galois, this follows from [Rog08, Proposition
2.3.4.(c)]. ⊳

Example 5.6. Profinite Galois extension in the sense of [Rog08, Definition 8.1.1] are in
general only ind-separable, cf. Section 4. ⊳

We conclude this subsection with examples of Galois extensions which are absolutely
separable in the following sense:

Definition 5.7. Suppose C admits geometric realizations compatible with the tensor prod-
uct. Let A ∈ CAlg(C), and let B ∈ Alg(ModA) be an A-algebra. We say B is absolutely
separable if it is separable over A, and furthermore if it has a separability idempotent which
factors as 1→ B ⊗Bop → B ⊗A Bop. ⊳

Remark 5.8. We do not require the lift 1→ B ⊗Bop to be an idempotent. ⊳

This condition implies that the results of Section 7 apply: we will see specifically that it
implies descent in topological Hochschild homology (Corollary 7.15).

Example 5.9. If A → B is a G-Galois extension between connective ring spectra, then
B ⊗B → B ⊗A B is surjective on π0, and so A→ B is absolutely separable. ⊳

Example 5.10. Let L∧
p be the Adams summand of KU∧

p . The canonical map L∧
p → KU∧

p

is an F×
p -Galois extension in the ∞-category of p-complete spectra [Rog08, 5.5.2], and the

idempotent comes from a splitting of KU(p) [Rog08, 5.5.4] so it already lives in KU∧
p ⊗KU∧

p .⊳

Example 5.11. The C2-Galois extension KO → KU [Rog08, Proposition 5.3.1] also wit-
nesses KU as an absolutely separable extension of KO. Indeed, consider the fiber sequence
of KO-modules KO→ KU→ Σ2KO. If we smash it with KU over KO we get the following
commutative diagram [Rog08, Diagram (5.3.3)]:

KU //

=

��

KU⊗KO KU //

��

Σ2KU

β

��
KU // ∏

C2
KU // KU
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If we smash it with KU over the sphere, we get the following, still commutative compar-
ison diagram :

KU⊗KO //

��

KU⊗KU //

��

KU⊗ Σ2KO

��
KU //

=

��

KU⊗KO KU //

��

Σ2KU

β

��
KU // ∏

C2
KU // KU

We wish to know if the composite KU⊗KU→
∏

C2
KU hits (1, 0) on π0. For this, note

that KU⊗KO→ KU has a splitting given by the unit of KO, and so does KU⊗ Σ2KO→
Σ2KU.

Furthermore, note that KU ≃ KO⊗Σ−2CP 2 and we can write the top rightmost vertical
morphism as KO⊗(KU⊗Σ−2CP 2 → KU⊗Σ−2S4). Furthermore, although CP 2 → S4 does
not have a splitting, KU⊗CP 2 → KU⊗S4 does (indeed, the cofiber is KU⊗S4 → KU⊗S3,
and this is a KU-module map which must therefore be 0 for degree reasons).

It follows that there is a map Σ2KU→ KU⊗KU making the following diagram commute:

Σ2KU

��ww♦♦♦
♦
♦
♦
♦
♦
♦
♦
♦
♦

KU⊗KU // KU⊗ Σ2KO

Now, in π0(KU ⊗KU), consider the image of β−1 by this map. If you go down-down-right
in the big diagram, it’s the same as right-down-down, which gives you 1 ∈ π0(KU). So the
image in

∏
C2

KU must have been of the form (n + 1, n) = (1, 0) + (n, n).
Consider now the image of n under KU→ KU⊗KO→ KU⊗ KU on π0. Going down-

down gives you exactly (n, n), and so (1, 0) is in the image of π0, this is what we wanted to
prove. ⊳

5.2 Spans and equivariant stable homotopy theory

In this subsection and the next, we will deal with span categories. For an account, see
[Bar17, BGS19].16 For the proofs, it will also be convenient to use the (∞, 2)-categories of
correspondences that extend them [Ste20],[Mac22].

One reason to be interested in span categories is their relation to equivariant stable
homotopy theory: the category of genuine G-spectra, SpG, can be described as the category
of spectral Mackey functors, i.e. direct sum preserving functors Span(FinG)op → Sp.

In [BDS14], Balmer, Dell’Ambrogio and Sanders describe, for a subgroup H ≤ G, the
category SpH as the category of modules over some algebra AG

H ∈ CAlg(SpG) which they
prove is separable. In particular, all their work at the level of homotopy categories works at
the level of stable ∞-categories by Section 2.

16Where the ∞-category of spans is called the “effective Burnside category”
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Note that AG
H is the image under the symmetric monoidal Yoneda embedding Span(FinG)→

SpG of an algebra in Span(FinG). The object of this subsection is to prove that this alge-
bra is already separable there. Note that Span(FinG) is not additive, so we cannot apply
[BDS14, Theorm 1.1] directly and work in ho(Span(FinG)), where the result is simpler to
prove.

More generally, we prove

Theorem 5.12 (*). Let C be a small category with finite limits, and X ∈ C. We view X
as a commutative algebra in Cop, and thus, X∨ as a commutative algebra in Span(C) under
the canonical symmetric monoidal functor Cop → Span(C).

If the evaluation map from the cotensoring XS1

→ X is an equivalence, then X∨ is a
separable commutative algebra in Span(C).

Remark 5.13. This applies in particular if C is a 1-category such as FinG. ⊳

In the course of this proof, we use the following:

Conjecture 5.14. Let B be a symmetric monoidal (∞, 2)-category, A ∈ Alg(ι1B) an
algebra in (the underlying (∞, 1)-category of) B, M, N A-modules in B, and f : M → N
an A-module map. If f admits a right adjoint fR, and the square:

A⊗M A⊗N

M N
f

A⊗f

is horizontally right-adjointable, then fR is canonically A-linear; and more precisely f admits
a right adjoint in ModA(B).

We note that in the case where B is the (∞, 2)-category of∞-categories, this conjecture
is essentially proved in [Lur12, Remark 7.3.2.9].

Remark 5.15. This conjecture should also have a more general form, similarly to the
calculus of mates in [HHLN20]. Namely, in the above, if we only assume that f admits a
right adjoint fR, then this right adjoint should be canonically lax A-linear, that is, come
with suitably compatible and coherent maps “a⊗ fR(m)→ fR(a⊗m)”, and it should then
be a property (namely, adjointability) that these maps are equivalences. Conversely, the left
adjoint of a lax A-linear morphism should always be oplax A-linear, and this should be a
perfect correspondence between oplax A-linear left adjoints, and lax A-linear right adjoints.
In the case B = Cat, this can be deduced from [HHLN20], but below we need it for B being
an (∞, 2)-category of correspondences. ⊳

As explained in the introduction to this section, this conjecture is well-known (and
classical) in the case of 2-categories, so the arguments that we give apply unconditionally
to the homotopy category ho(Span(C)), and thus to any additive ∞-category C with a
symmetric monoidal map Span(C)→ C.

Proof. We use the (∞, 2)-category of correspondences, Corr(C), see [Ste20], [Mac22]. In
particular, its underlying ∞-category is Span(C).
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We note that the multiplication map of X is given by the span X × X
∆
←− X

=
−→ X .

We note that, as a morphism in Corr(C), it admits a left adjoint, cf. [Ste20]. Because the
multiplication map is X ×X-linear, it is a property that this left adjoint is actually X ×X-
linear, namely that the square from be left adjointable (by the dual of Conjecture 5.14).

Let us assume for now that we have checked this - the composite is then the composite
of spans

X
=
←− X

∆
−→ X ×X

∆
←− X

=
−→ X

which is easily seen to be given by the span X
ev
←− XS1 ev

−→ X . Our assumption guarantees
that this is an equivalence, hence an equivalence of X×X-modules, and so up to composing
by its inverse, we find that X is separable as an algebra.

Let us now check the property : we need to check that the oplax-X-linear structure maps
are strict, we do it for the left-X-linear one, and the right-X linear one follows by symmetry.
The left X-linearity of the multiplication map is given by the following commutative diagram
in Corr(C):

X ×X ×X X ×X

X ×X X
µ

µ×X µ

X×µ

In this diagram, all maps are in Cop, so this is just the image under Cop → Corr(C) of
the canonical coassociativity diagram for X , and this canonical coassociativity diagram is a
pullback square:

X ×X ×X X ×X

X ×X X∆

∆×X ∆

X×∆

In particular, it is adjointable in Corr(C) e.g. by [Ste20],[Mac22], so we are done.

5.3 Spans, ambidexterity and Thom spectra

In this subsection, we study a situation similar to the one of the previous subsection, except
that we start with a monoid G in C, and view it as a monoid in Span(C).

The result that we prove is:

Theorem 5.16 (*). Let f : Span(C) → C be a symmetric monoidal functor, and suppose
it sends the span pt← G→ pt to an equivalence. Then f(G) is a separable algebra in C.

Example 5.17. Consider the case where C = Fin, the category of finite sets. In this
case, Span(Fin) is the initial semiadditively symmetric monoidal∞-category. In particular,
for any semiadditively symmetric monoidal C, there is an essentially unique symmetric
monoidal, semiadditive functor Span(Fin)→ C. It sends a finite set X to

⊕
X 1.

In this case, a G as in the theorem is simply a finite group. The theorem is saying
that if its order |G| is invertible in C, then 1[G] is separable. This is typical from classical
algebra: the group algebra Q[G] is always separable, and more generally, for a field k, k[G]
is separable over k if and only if |G| ∈ k×. ⊳
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A generalization of the previous example, and our motivating example for this section,
comes from the theory of higher semi-additivity, cf. [Har20, CSY18]. This is a context where
one can sum not only over finite sets, but also over finite groupoids, or more generally,
m-finite spaces, i.e. spaces X with finitely many components, and with, at every point,
πk(X) = 0 for k > m (or possibly only the m-finite spaces, all of whose homotopy groups
are p-groups, for some fixed prime p). We refer to the above references for a more detailed

account of this theory. We let S
(p)
m denote the ∞-category of m-finite spaces all of whose

homotopy groups are p-groups.
In that case, when C is (p-typically) m-semiadditive [CSY21a, Definition 3.1.1], there

is a unique symmetric monoidal functor Span(S
(p)
m )→ C which preserves p-typical m-finite

colimits, which we denote by 1[−]. The span pt← G→ pt is sent to the cardinality |G|C of
G, as a morphism 1→ 1. The property that this be an equivalence is related to the so-called
semi-additive height of C. For example, “height 0” corresponds to the rational case, where
all these cardinalities are invertible. Higher heights are also related to chromatic height -
we refer to [CSY21a] for more details.

Proof. The proof again makes use of the higher categorical structure of Corr(C). Just as
before, we observe that µ : G × G → G has a right adjoint, and by conjecture 5.14, it is
simply a property for it to be G×Gop-linear, which we can check in the exact same way as
in the proof of Theorem 5.12. The key point is that the associativity diagram for G in C
(which is also the “left G-linearity” diagram) is a pullback diagram in C:

G×G×G G×G

G×G G

G×µ

µ×G

µ

µ

and hence, it is adjointable in Corr(C). This is exactly what we need for the adjoint of µ to
be G×Gop-linear.

Now, this gives us a G×Gop-linear morphism G→ G×Gop in Span(C). The composition

G→ G×Gop → G is given by the span G
µ
←− G×G

µ
−→ G, and as a morphism in Span(C),

this is equivalent to G
pr1
←−− G × G

pr1
−−→ G because of the shear map G × G → G ×G. We

can rewrite the latter span as (pt← G→ pt)×G. The claim now follows in the same way:
up to inverting the span pt← G→ pt, we have a separability idempotent.

Example 5.18. In [CSY21b, Definition 4.7], the authors introduce, for any stable ∞-
semiadditive presentably symmetric monoidal ∞-category C a height n prth-cyclotomic

extension 1[ω
(n)
pr ], which is a higher height analogue of the usual cyclotomic extensions.

This cyclotomic extension is defined as the splitting of an idempotent on 1[BnCpr ] and
the definition of “height n” guarantees that |BnCpr | is invertible in C, in other words, that

the previous theorem applies. So 1[BnCpr ] is separable, and hence so is 1[ω
(n)
pr ]. This shows

that, even if it is not always Galois (cf. [Yua22, Proposition 3.9]), it is separable, which is
a notion not too far from “étale” in the commutative setting. ⊳

For a group G, the group algebra 1[G] can be seen as the colimit of the constant diagram
with value 1, indexed by G. We saw in Example 5.17 that when |G| is invertible, this algebra
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is separable - we now describe a slight extension of this result, namely to Thom objects.
First, we recall the following construction:

Construction 5.19. Let X be a space, and f : X → Pic(C) a map, where Pic(C) ⊂ C≃ is
the maximal subgroupoid spanned by the invertible objects in C. One may take the colimit
of the composite X → Pic(C)→ C, if it exists.

If C is, say, cocomplete, this corresponds to the unique colimit-preserving functor S/Pic(C) →
C which restricts to the canonical inclusion along the Yoneda embedding Pic(C)→ S/Pic(C) →
C.As a consequence, this functor S/Pic(C) → C is symmetric monoidal, so it sends groups
G equipped with a group map G→ Pic(C) to an algebra object in C. ⊳

Proposition 5.20 (*). Assume C is m-semiadditive for some 0 ≤ m ≤ ∞. The above con-
struction extends uniquely to an m-semiadditive, symmetric monoidal functor Span((Sm)/Pic(C))→
C.

In particular, if f : G → Pic(C) is a group map from an m-finite group G, where |G|C
is invertible in C, then its Thom object colimGf is a separable algebra in C.

Proof. The “in particular” part follows from Theorem 5.16, together with the observation
that the span (pt, 1)← (G, 1)→ (pt, 1) is indeed sent to |G|C in C.

Now, for the first part, namely the existence of the map, we use [Har20, Theorem 5.28] in
the special case where C = Pic(C). We note that the canonical symmetric monoidal structure
on Span((Sm)/X), when X is a symmetric monoidal ∞-groupoid, is the one induced by the
universal property of [Har20, Theoem 5.28] because the natural map X → Span((Sm)/X) is
symmetric monoidal for this symmetric monoidal structure.

The cited theorem thus implies that a symmetric monoidal map X → C (here the in-
clusion Pic(C) ⊂ C) extends essentially uniquely to an m-semiadditive symmetric monoidal
functor Span((Sm)/X)→ C.

Example 5.21. In the case m = 0, an m-finite group is simply an ordinary finite group,
and if furthermore every point in G is sent to the unit 1 ∈ Pic(C), then the Thom object is
simply a twisted group ring 1α[G]. ⊳

Example 5.22. The algebra from Example 3.35 is an example of this construction. Indeed,
let D = ModQ[t±1] with t in degree 2d for some odd d 6= 1. We let G = H ⋊ Z/d as in
Example 3.35, and G → Pic(D) is the map G → Z/d → Pic(D), where the latter map
picks out Σ2Q[t±1]. Let us briefly explain why Z/d → Pic(D) can be made into a map
of commutative groups. This picard element is clearly classified by a map S → Pic(D),
and because it is d-torsion, by a map S/d → Pic(D). The homotopy groups of Pic(D) are
rational above π2, and the homotopy groups of S/d are finite, so this map canonically factors
through τ≤1(S/d), which is Z/d because d is odd.

Now colimits over G,Z/d are just coproducts, so it is easy to check that the algebra
structure in the homotopy category of D is the one we described in Example 3.35. Because
|G| and |Z/d| are invertible in D, we find that these algebras are indeed separable (note that
this does not depend on Conjecture 5.14 because D is additive). ⊳

Along the way, we record the following result we have sketched in the previous example
(cf. also [Law20, Example 2.30] and the surrounding discussion):
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Lemma 5.23. Let D be a symmetric monoidal ∞-category, and L ∈ Pic(D) be an invertible
element with L⊗d ≃ 1D. Assume that d is odd, and invertible in π∗ map(1D, 1D), ∗ ≥ 1.
The space of maps of commutative groups Z/d → Pic(D) classifying L is equivalent to the
space of equivalences L⊗d ≃ 1.

5.4 Scheme theory

In [Bal16], Balmer proves the following (compare Proposition 3.55):

Theorem 5.24 ([Bal16, Theorem 3.5]). Let f : V → X be a separated étale morphism
of quasicompact, quasiseparated schemes. In this case, f∗OV is a separable algebra in
QCoh(X).

As already mentioned, Neeman proved in [Nee18] that, at least in the noetherian case,
this is not far from exhausting all examples:

Theorem 5.25 ([Nee18, Theorem 7.10]). Let X be a noetherian scheme and A ∈ QCoh(X)
a commutative separable algebra. There exists an étale morphism g : U → X and a
specialization-closed subset V ⊂ U such that A ≃ g∗LVOU of commutative algebras.17

Here, LV is the Bousfield-localization of QCoh(U) associated to the specialization-closed
subset V .

In other words, up to idempotent algebras and under a noetherianity assumption, all
commutative separable algebras come from étale maps.

5.5 Azumaya algebras

In Section 6, we will see that there is a strong connection between Azumaya algebras and
separable algebras. We will prove that many Azumaya algebras are separable, specifically
(cf. Proposition 6.11):

Proposition 5.26. Assume C is presentably symmetric monoidal. Let A ∈ Alg(C) be an
algebra. If A is Azumaya and the unit η : 1→ A admits a retraction, then A is separable.

We will recall the definition of Azumaya algebras in higher algebra in Section 6. Doing
so, we will along the way correct a mistake in [BRS12, Proposition 1.4], which states this
result without the assumption that the unit splits - we will provide counterexamples to this
statement, cf. Example 6.9 and Example 6.10.

In classical algebra, the assumption on the unit is automatic, and we have:

Theorem 5.27 ([AG60, Theorem 2.1]). Let R be an ordinary commutative ring. An Azu-
maya algebra in Mod♥

R is separable.

5.6 Cartesian symmetric monoidal categories

We conclude this Examples section with a situation where there are no interesting examples.
The unit of a symmetric monoidal category is of course always separable, and we show:

17Neeman only proves that this is an equivalence of algebras in the homotopy category, but Theorem 3.24
tells us that this suffices.
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Proposition 5.28. Let C be cartesian symmetric monoidal. The only separable algebra in
C is the unit, i.e. the terminal object.

Proof. As C → ho(C) preserves products, and as the unit object has an essentially unique
algebra structure, we may assume C is a 1-category. Using the (classical) Yoneda embedding,
we may even assume C = Set.18

Let M be a monoid with multiplication map µ : M × M → M and neutral element
η : pt → M , which we assume to be separable, with section s : M → M ×M . We write s
as (s1, s2). Left M -linearity of s guarantees that s2 is constant. Indeed, for any x ∈M , we
have (s1(x), s2(x)) = s(x) = s(x · 1) = x · s(1) = x · (s1(1), s2(1)) = (x · s1(1), s2(1)); and
similarly right M -linearity guarantees that s1 is constant. This proves that s is constant
and hence µ ◦ s is, i.e. idM is constant, from which it follows that M = pt.

6 Auslander-Goldman theory

In [AG60], Auslander and Goldman lay the foundations of a systematic study of separable
algebras (in classical algebra). One of the key results that they prove is the following: for
a (discrete) commutative ring R, an R-algebra A is separable if and only if its center C is
separable over R, and A is Azumaya over its center. This allows one to reduce the study
of general separable algebras to two special cases : the commutative case, which is closely
related to étale algebras, and the central case, which is closely related to the theory of
Azumaya algebras and the Brauer group.

Our goal in this section is to raise two questions such that a positive answer to both, or
at least reasonable conditions under which they have positive answers, would allow one to
give a similar treatment of separable algebras in homotopical algebra.

We separate this key result in two parts: first, the center C of A is separable over R
(and commutative), and second, A is Azumaya over its center.

In homotopical algebra, the center Z(A) of A is in general an E2-algebra, but if it is
separable, it is therefore canonically E∞, i.e. commutative, by Theorem 3.24. This raises
the following question (cf. [AG60, Theorem 2.3]):

Question 6.1. Let A ∈ Alg(C) be a separable algebra. Is its center Z(A) separable too ?

The second key result is that A is Azumaya over its center Z(A). We start by offering
a few recollections about Azumaya algebras, along the way correcting an error in [BRS12]
about the relation between separable algebras and Azumaya algebras. Once this is done, we
can phrase the second main question of this section.

We then start this section by answering the Azumaya question (Question 6.13) in certain
cases; and we then attack Question 6.1, again answering it in certain cases. For both
questions, we fall short of answering it in the generality of ModR(Sp), where R is some
commutative ring spectrum - this is essentially because we lack “residue fields”, as will be
clear from our discussion.

6.1 Azumaya algebras

We start by recalling a possible definition of Azumaya algebras:

18These reductions are purely æsthetic, the proof goes through more or less unchanged in the general case.
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Definition 6.2. Let C be presentably symmetric monoidal. An algebra A ∈ Alg(C) is
Azumaya if LModA(C) is invertible in ModC(PrL). ⊳

We also recall several equivalent characterizations. For this, we need the following propo-
sition/definition:

Proposition 6.3 ([HL17, Proposition 2.1.3., Corollary 2.1.4.]). Let C be presentably sym-
metric monoidal. Let M be a dualizable object of C. The following are equivalent:

1. M generates C under C-colimits, that is, the smallest tensor ideal of C closed under
colimits and containing M is the whole of C;

2. The (C-linear) functor hom(M,−) : C→ RModEnd(M)(C) is an equivalence;

3. End(M) is (C-linearly) Morita equivalent to the unit 1;

4. M ⊗− is conservative.

If M satisfies one (and hence all) of these properties, it is called full. Furthermore, any
(and hence all) of these properties are stable under passing to the dual M∨.

Proof. We prove (1) =⇒ (4) =⇒ (2) =⇒ (3) =⇒ (1).
Assume (1), and let f : X → Y be a map such that M ⊗ f is an equivalence. The

collection of Z’s such that Z ⊗ f is an equivalence is certainly a tensor ideal of C, closed
under colimits, so that by (1), it contains 1. In particular, f is an equivalence, thus proving
(4).

Let us now assume (4). The functor G = hom(M,−) : C → RModEnd(M) preserves
limits and colimits hence has a left adjoint F = M ⊗End(M) −. The unit map at End(M),
End(M)→ hom(M, M ⊗End(M) End(M)) is easily seen to be an equivalence, and both the
source and the target of the unit id → GF are C-linear and colimit-preserving, hence the
unit is an equivalence at all End(M)-modules.

To prove that the counit is an equivalence, by the triangle identities, it thus suffices to
show that the right adjoint hom(M,−) is conservative, and because the forgetful functor
RModEnd(M) → C is conservative, it suffices to show that hom(M,−) : C → C is conser-
vative. By dualizability, this is equivalent to M∨⊗−. Now if M∨⊗f is an equivalence, so is
M⊗M∨⊗M⊗f ; and thus, so is M⊗f , as M is a retract of M⊗M∨⊗M . By conservativity
of M , it follows that f is an equivalence, and hence hom(M,−) is conservative. This proves
(2).

(2) clearly implies (3), by definition of Morita equivalence.
So let us now assume (3). The existence of a Morita equivalence yields a right End(M)-

module X and a left End(M)-module Y such that X ⊗End(M) Y ≃ 1. The smallest C-
linear subcategory of RModEnd(M) closed under colimits and containing End(M) contains
X , so that the smallest C-linear subcategory of C closed under colimits and containing
Y ≃ End(M) ⊗End(M) Y also contains 1. But now Y is a retract (in C) of End(M)⊗ Y ≃
M ⊗M∨ ⊗ Y so that (1) follows.

We also briefly need:
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Definition 6.4. Let C be presentably symmetric monoidal, and let M be a C-module in
PrL. An object x ∈M is called C-atomic if the canonical map c⊗hom(x, y)→ hom(x, c⊗y)
is an equivalence for all c ∈ C, y ∈ M, and hom(x,−) preserves all colimits. Here, hom
denotes the C-valued hom object of M. ⊳

Remark 6.5. This definition appears in [MS21, Definition 2.2] in the case where C is a
mode, so that it actually suffices to assume that hom(x,−) preserves colimits, cf. [MS21,
Remark 2.4]. ⊳

The following is immediate from the definitions:

Lemma 6.6. Let C be presentably symmetric monoidal.

• C-atomic objects in C are exactly dualizable objects.

• If f : M0 → M1 is an equivalence of C-modules in PrL, it carries C-atomic objects
to C-atomic objects.

We can now prove:

Proposition 6.7 ([HL17, Corollary 2.2.3.]). Let C be presentably symmetric monoidal, and
let A ∈ Alg(C) be an algebra. The following are equivalent:

1. A is Azumaya;

2. A is dualizable, full, and the canonical map A⊗Aop → End(A) is an equivalence;

3. A is dualizable, full, and there is an equivalence of algebras A⊗Aop ≃ End(A);

4. There is some full dualizable module M and an equivalence of algebras A ⊗ Aop ≃
End(M);

5. A⊗Aop is (C-linearly) Morita equivalent to the unit 1;

6. There exists an algebra B, a full dualizable object M , and an equivalence A ⊗ B ≃
End(M)

7. There exists an algebra B and a (C-linear) Morita equivalence between A⊗B and 1

Proof. We prove (1) =⇒ (2) =⇒ (3) =⇒ (4) =⇒ (5) =⇒ (7) =⇒ (1), and we prove
(6) ⇐⇒ (7).

Note that (2) =⇒ (3) =⇒ (4) are just each specializations of the previous one, so
these implications are obvious, same for (5) =⇒ (7).

For (4) =⇒ (5) (resp. (6) =⇒ (7)), we simply observe that for a full dualizable object
M , End(M) is Morita equivalent to 1 by the previous proposition/definition.

(7) =⇒ (1) follows from the observation that LModA ⊗C LModB ≃ LModA⊗B, and
hence (7) implies that LModA ⊗C LModB ≃ C, which is the definition of Azumaya.

We are left with (1) =⇒ (2) and (7) =⇒ (6). The proof of (7) =⇒ (6) poceeds by
observing that any algebra Morita equivalent to 1 is of the form End(M) for some full
dualizable M . Indeed, suppose A is such an algebra, and fix a Morita equivalence F :
LModA ≃ C. Note that A ∈ LModA is C-atomic, i.e. homA(A,−) : LModA → C is C-
linear and colimit-preserving - indeed, homA(A,−) is C-linearly equivalent to the forgetful
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functor. As F is a C-linear equivalence, F (A) ∈ C is also atomic by the previous lemma,
and it is therefore dualizable, also by the previous lemma. Furthermore, we have A ≃
EndA(A)op ≃ End(F (A))op ≃ End(F (A)∨).

It follows that F (A)∨ is a dualizable object with End(F (A)∨) Morita equivalent to the
unit, so by the previous proposition/definition, it is full, which proves the claim.

Finally, we need to prove that (1) implies (2). The observation here is that LModA

is always dualizable in ModC, so that invertibility is the property that the evaluation
and coevaluation maps, LModAop ⊗C LModA → C and C → LModA ⊗C LModAop

respectively, be equivalences.
For the second one, it implies in particular that A is proper, i.e. that A is dualizable as

an object of C.
Next, note that the map LModA⊗Aop ≃ LModA⊗C LModAop → C is given by tensor-

ing over A⊗Aop with the A⊗Aop-module A. It therefore sends A⊗Aop to A, and as it is an

equivalence, it induces an equivalence of algebras A⊗Aop ≃ EndA⊗Aop (A⊗Aop)
≃
−→ End(A).

It is easy to check that this is the canonical map.
To prove (2), we are left with checking that A is full. But it follows from what we

just said that LModEnd(A) was equivalent to C, and A is dualizable, so by the previous
proposition/definition, A is full, and so we are done.

A further key property of Azumaya algebras is their centrality.

Lemma 6.8. Let A ∈ Alg(C) be an Azumaya algebra. In this case, the center of A is
equivalent to the unit 1.

Proof. The center of A is equivalent to the endomorphism object of the C-module LModA(C).
Since the latter is invertible, the functor C→ FunL

C(LModA(C), LModA(C)) is a C-linear
equivalence, and it sends 1 to idLModA(C). It follows that Z(A) ≃ End(idLModA(C)) ≃
End(1) ≃ 1, as claimed.

In [BRS12, Proposition 1.4], it is claimed that an Azumaya algebra is necessarily sep-
arable, in analogy with [AG60, Theorem 2.1.]. Unfortunately, there is an error in their
argument: in their notation, the module F̃ (A) = A ∧R A is not the canonical bimodule
A ∧R Aop, but rather the bimodule obtained by tensoring the canonical bimodule A with
the object A. There are, in fact, counterexamples to this statement. We give two: a local
one, and a global one.

Example 6.9. There are some associative ring structures on Morava K-theory K(n) in the
category SpK(n) of K(n)-local spectra, which are Azumaya algebras, cf. [HL17]. However,
none of these are separable: a bimodule splitting as in Definition 1.2 would yield a retraction
of

En ≃ MapK(n)⊗K(n)op(K(n), K(n))→ K(n)

and there is clearly no such thing (the first equivalence follows from Lemma 6.8). ⊳

Example 6.10. The same example as in Remark 1.12 also provides a global example here,
that is, without needing to localize. Namely, if X is a type 0 spectrum, such as the cofiber
of η, End(X) is Morita equivalent to S and hence Azumaya, but we already argued that it
is not separable. ⊳
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We can now state the corrected version of [BRS12, Proposition 1.4]

Proposition 6.11. Let A ∈ Alg(C) be an algebra. If A is Azumaya, then A is separable if
and only if the unit η : 1→ A admits a retraction.

Proof. First note that the multiplication map A⊗Aop → A factors as A⊗Aop → End(A)→
A, where the second map is evaluation at the unit η : 1→ A, as a map of bimodules.

If A is Azumaya, it follows that this multiplication admits a bimodule section if and only
if evη : End(A) → A has an A-bimodule section. Now End(A) ≃ A ⊗ A∨ as A-bimodules,
where the latter has the structure of A-bimodule coming from A, so that this map is really

A⊗ (A∨ evη
−−→ 1).

Finally, A∨ → 1 is dual to η : 1→ A. So, if the unit has a retraction, then evη : A∨ → 1
has a section, and therefore so does A ⊗ (A∨ → 1), as a map of bimodules, and by the
previous discussion, so does A⊗Aop → A, so that A is separable.

Conversely, if A is separable, then the canonical map Z(A) → A admits a section (cf.
Corollary 1.26). As A is Azumaya, we can combine this with Lemma 6.8 to obtain that
1 ≃ Z(A)→ A admits a retraction.

We use this proposition to prove that, unlike in the commutative case, separability cannot
be checked locally:

Example 6.12. In [GL21, Proposition 7.17], Gepner and Lawson construct a twisted form
of M2(KU), that is, a KO-algebra Q, necessarily Azumaya, for which Q⊗KO KU ≃M2(KU)
as algebras. This algebra is not M2(KO), in fact π∗Q ∼= KU∗〈C2〉, a twisted group ring.

It follows that Q is not separable: it is Azumaya so by the above proposition, if it
were separable, its unit would split. But it has no π1, so such a splitting is impossible
as π1(KO) 6= 0. Therefore we have a non-separable algebra, Q, whose basechange along
a Galois-extension is separable - it follows that Algsep(ModhC2

KU ) → Algsep(ModKU)hC2

is not an equivalence: the former is equivalent to Algsep(ModKO), and the latter to the
full subgroupoid of Alg(ModKO) consisting of those algebras whose basechange to KU is
separable. ⊳

In the setting of classical rings, a stronger result holds: if A is dualizable, separable, and
central, i.e. its center Z(A) is the unit 1, then A is Azumaya. We do not know whether the
converse holds in our generality, and we therefore raise it as a question:

Question 6.13. Let A ∈ Alg(C) be a dualizable separable algebra which is central, i.e. the
unit map 1→ Z(A) is an equivalence. In particular, A is full, as it retracts onto Z(A) ≃ 1.

Is A necessarily Azumaya ?

We provide a positive answer in the following cases:

Theorem 6.14. If C is one of the following:

• QCoh(X) for some (connective) spectral Deligne-Mumford stack X [Lur18b, Defini-
tion 1.4.4.2];

• ModR(Sp), where R is some commutative ring spectrum for which R⊗Fp = 0 for all
primes p;
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• ModR(Sp), where R is a commutative ring spectrum which is even, 2-periodic and
whose π0 is regular noetherian, and in which 2 is invertible.

then Question 6.13 has a positive answer for C: if A ∈ Alg(C) is a dualizable separable
algebra which is central, i.e. the unit map 1→ Z(A) is an equivalence, then A is Azumaya.

Remark 6.15. The second situation of Theorem 6.14 is somewhat orthogonal to the first
one: such a commutative ring R, unless it is rational, must be non-connective, and of
“chromatic” flavour. For instance, Morava E-theories fall into this category.

The third situation allows for certain non-connective commutative Fp-algebras at odd

primes, such as FtS1

p , but not, e.g., F
tCp
p . ⊳

Proof. Combine Corollary 6.25, Corollary 6.37 and Proposition 6.28.

The strategy of proof in all cases of Theorem 6.14, which is also the one we will use in
Section 6.2 to adress Question 6.1, is to try to descend the question to simpler and simpler
C’s, until we reach a classical algebraic C, where the usual proofs just go through.

The “descent” statement in this case is the following:

Lemma 6.16. Let f : C → D be a conservative symmetric monoidal functor. For a
dualizable, full algebra A ∈ Alg(C), if f(A) is Azumaya, then so is A.

More generally, if fi : C → Di is a jointly conservative family of symmetric monoidal
functors, if each fi(A) is Azumaya, then so is A.

Proof. We deal with the case of a single functor, the other case being similar (or simply a
consequence, by taking f = (fi)i∈I : C→

∏
I Di).

A is already assumed to be dualizable and full, so by point 2. in Proposition 6.7, it
suffices to show that the canonical map A⊗Aop → End(A) is an equivalence.

The functor f is symmetric monoidal, and A is rigid, so that applying f to this map
yields the canonical map f(A)⊗ f(A)op → End(f(A)). By conservativity of f , if this is an
equivalence, then so was the canonical map.

The key example we try to reduce to is the category of modules over a graded field.

Notation 6.17. We consider the category of graded abelian groups as symmetric monoidal
using the Koszul convention: the symmetry isomorphism A ⊗ B ∼= B ⊗ A is a ⊗ b 7→
(−1)|a||b|b⊗ a for homogeneous elements a, b of respective degrees |a|, |b|. ⊳

Definition 6.18. A graded field is a commutative algebra k in graded abelian groups such
that every homogeneous element x ∈ k∗ is invertible.

A graded division algebra is similar, except we do not require commutativity. ⊳

Remark 6.19. Graded fields are easy to classify: they are either fields concentrated in
degree 0, or of the form k[t±1] for some t of positive degree - necessarily even if the charac-
teristic of k is not 2.

On the other hand, graded division algebras are more complicated to classify: even if
the degree 0 part is a field (i.e. commutative), the non-commutativity of the multiplication
in higher degrees allows for a wealth of examples. ⊳

Proposition 6.20. Let k be a graded field, and D the category of graded k-vector spaces.
Any central separable algebra in D is Azumaya.
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One way to go about this proof is to prove the following lemma, which is classical in the
ungraded case and most likely well-known in the graded case too. There is, however, an
easier proof given our assumption, so we will simply mention the lemma here and let the
reader fill in the details of this proof if they are interested.

Lemma 6.21. Let k be a graded field, and D, D′ central graded division algebras over k.
The algebra D ⊗k D′ is graded simple, i.e. it has no nontrivial homogeneous ideal.

We are in a simpler situation, as we assume separability:

Lemma 6.22. Let D be a symmetric monoidal abelian category which is semi-simple, and
let A ∈ Alg(C) be a separable algebra. Any (bilateral) ideal I in A splits: there is an
isomophism of algebras A ∼= I ×A/I.

In particular, if A is central, i.e. 1 ∼= Z(A), and EndD(1) has no nontrivial idempotents,
then any (bilateral) ideal is 0 or A.

Proof. As D is semi-simple, the inclusion I → A, which is a morphism of A⊗Aop-modules,
admits a section in D. Because A⊗ Aop is separable, Corollary 1.17 implies that it admits
a section of A-bimodules. The result follows by Lemma 3.8.

The “in particular” follows from the fact that Z(A×B) ∼= Z(A)× Z(B).

Lemma 6.23. Let C be idempotent-complete, and let A, B ∈ Alg(C) be separable. The
canonical map Z(A)⊗ Z(B)→ Z(A⊗B) is an equivalence.

Proof. Note that this a map of the form homR(M, N)⊗homS(P, Q)→ homR⊗S(M⊗P, N⊗
Q), and the latter is natual in M, N, P, Q. Furthermore, for M = N = R, P = Q = S, it
is clearly an equivalence. Hence it is so for any tuple (M, N, P, Q) which is a retract of
(R, R, S, S).

By separability of A, B, (A, A, B, B) is a retract of (A⊗Aop, A⊗Aop, B⊗Bop, B⊗Bop)
and so we are done.

Remark 6.24. In fact an easy modification of this proof shows that it suffices that A is
separable if we also assume that B is smooth, or that A is proper, see [Lur12, Section 4.6.4]
for definitions. ⊳

Proof of Proposition 6.20. As k is a graded field, the category D of graded k-vector spaces
is semi-simple, and EndD(1) = End(k) = k has no nontrivial idempotents.

In particular, by Lemma 6.22 if A is central and separable, then it is simple: it has no
nontrivial ideals.

We apply this to A⊗Aop instead: it is still separable (Lemma 1.6) and central (Lemma 6.23),
and therefore by the above it is simple.

It follows that the canonical map A ⊗ Aop → End(A), which is an algebra map, has
no kernel, i.e. it is injective. Comparing the dimensions of both sides implies that it is an
isomorphism.19 By Proposition 6.7, point 2., we are done.

The case of ordinary fields is enough to bootstrap to all connective Deligne-Mumford
stacks:

19We are in a graded setting, but over a graded field, so dimensions still make sense.
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Corollary 6.25. Let X be a (connective) Deligne-Mumford stack. Any dualizable central
separable algebra in QCoh(X) is Azumaya.

Proof. By [Lur18b, Proposition 6.2.4.1], QCoh(X) is a limit, in CAlg(PrL), of∞-categories
of the form ModR(Sp), where R is a connective commutative ring spectrum.

Since for any diagram f : I → Cat and any essentially surjective map from a set I0 → I,
the forgetful functor limI f →

∏
I0

f is conservative, we can apply Lemma 6.16 to reduce to
the case of ModR(Sp), where R is a connective commutative ring spectrum.

Since we assumed the algebra was dualizable, we can in fact reduce to Perf (R). Now, for
a connective ring spectrum R, the restriction of π0(R) ⊗R − to bounded below R-modules
is symmetric monoidal and conservative, so we can reduce to the case where R is discrete,
again by Lemma 6.16.

For a discrete commutative ring R, the basechange functors along all ring maps R→ k,
where k is a field are jointly conservative on perfect R-modules, so we can reduce to the case
of a field.

Now note that for any C, C → ho(C) is conservative and symmetric monoidal. For a
field k, ho(Modk) is symmetric monoidally equivalent to the 1-category of graded k-vector
spaces, and so Proposition 6.20 allows us to conclude.

To deal with the second case of Theorem 6.14, we first specialize to R = Morava E-theory
- the nilpotence theorem [HS98] and the chromatic Nullstellensatz [BSY22] will be our tools
to reduce to this key case.

The situation is simpler at odd primes than at the even prime, so we first deal with the
odd primes, even though the proof we will give for the prime 2 also works for odd primes.

Proposition 6.26. Let R = E = E(k, G) be a Morava E-theory20 over some field k of
odd characteristic, and at some height n > 0, and let A ∈ Alg(ModE) be a rigid separable
E-algebra. If A is furthermore central, then A is Azumaya.

Remark 6.27. In contrast to Example 6.9, these Azumaya algebras are not “atomic” in
the sense of [HL17], precisely because they are separable and therefore retract onto E. ⊳

Proof. Because we are working at an odd prime, there exist ring structures on Morava
K-theory K(n) that are homotopy commutative [Str99, Section 3]. In this case, K(n)∗ :
ModE → ModK(n)∗

(GrVectk) is a symmetric monoidal functor, and it is conservative
when restricted to K(n)-local E-modules, in particular when restricted to perfect, or equiv-
alently dualizable, E-modules.

As K(n)∗ is a graded field, Proposition 6.20 applies again, and we are done, again by
Lemma 6.16.

In fact, thanks to work of Mathew [Mat15], the same argument works more generally:

Proposition 6.28. Let R be a commutative ring spectrum which is even, 2-periodic, with
regular noetherian π0, and such that 2 ∈ π0(R)×. Let A ∈ Alg(ModR) be a dualizable
separable R-algebra. If A is furthermore central, then A is Azumaya.

20See [BSY22, Section 2.4] for a modern introduction
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Proof. The same proof as above works, where we replace K(n) by the K(p)’s, cf. [Mat15,
Definition 2.5]. Indeed, each K(p)∗ is a graded field by loc. cit., they are jointly conservative
on perfect R-modules [Mat15, Proposition 2.8] (in fact on all modules), and finally by [Str99,
Section 3], if 2 ∈ π0(R)×, they can be chosen to be homotopy commutative.

We now deal with the even prime. The point is that in this situation, Morava K-
theory cannot be chosen to be homotopy commutative, so that K(n)∗ is only monoidal,
but not symmetric monoidal, which means that it is possibly not compatible with the map
A⊗A→ End(A) ≃ A∨ ⊗A, and in particular we cannot check Azumaya-ness through this
functor.

There is a way out, using the notion of Milnor modules [HL17, Section 6]. The main
take-away of this notion for us is the following:

Theorem 6.29. Let E = E(k, G) be a Morava E-theory at height n at the prime p, possibly
even. There is a symmetric monoidal 1-category MilE of Milnor-modules together with a
(strong) symmetric monoidal homology theory h∗ : ModE → MilE.

For any choice of a Morava K-theory K ∈ Alg(ho(ModE)), the monoidal homology the-
ory K∗ : ModE → coModKE

∗ K(ModK∗((GrVectk)) factors through a monoidal21 equiv-
alence MilE ≃ coModKE

∗ K(ModK∗((GrVectk)).

Note that the notion of separable algebra, and of rigidity can be phrased completely in
monoidal terms (for duality, one needs to worry about left vs right duality, but these notions
still make sense). The only part of “rigid central separable algebra” that requires symmetry
is the centrality part.

In particular, if A ∈ Alg(ModE) is rigid and separable, K∗(A) is a rigid separable
algebra in K∗-modules in GrVectk. This will turn out to be enough for us.

We begin with a lemma:

Lemma 6.30. Let C be a symmetric monoidal 1-category, H a commutative Hopf algebra
in C, i.e. a group object in CAlg(C)op.

Let I be a non-unital algebra in coModH(C) such that the underlying non-unital al-
gebra I in C admits a unit [Lur12, Definition 5.4.3.1]. In this case, I admits a unit in
coModH(C).

Remark 6.31. We state and prove this lemma for 1-categories because in the proof, we
use a description of comodules as “algebraic representations” of an “algebraic group” (see
below). This description is elementary for 1-categories, while for ∞-categories, it is highly
expected to hold completely analogously, but we did not want to get into the intricacies of
its proof.

We later only use it for 1-categories, so this is not an issue, but it would be interesting
to prove the corresponding description for symmetric monoidal ∞-categories (the lemma,
for instance, would follow immediately in the same generality). ⊳

As mentioned in the remark, to prove this lemma, it is convenient to use the usual
description of coModH(C) as “algebraic representations of SpecC(H)”. Let us make this
a bit more precise. The corepresented functor M = SpecC(H) : CAlg(C) → S given by
map(H,−) is canonically a monoid whenever H is a comonoid in CAlg(C). The categoy of

21At the prime 2, there is no choice of Morava K-theory that makes this symmetric monoidal.
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transformations BM(R)→ModR(C), natural in R ∈ CAlg(C) can be viewed as a category
of “algebraic representations of M” - here, R 7→ModR(C) is functorial along base-change.22

It is an instructive exercise to prove that this category is symmetric monoidally equivalent
to the category of H-comodules, compatibly with the forgetful functor to C. We use this
fact without further comment.

Notation 6.32. Let M : CAlg(C)→ Mon be a functor from commutative algebras in C to
(discrete) monoids. We let RepM (C) denote the symmetric monoidal category of algebraic
representations of M , as described above.

Remark 6.33. We note that here, H needs to be a Hopf algebra - the lemma is not true
for general commutative bialgebras. For example, let H be the bialgebra in abelian groups
whose underlying algebra is Z × Z. The functor on CAlg(Ab) it corepresents is simply
Idem : R 7→ Idem(R), the functor mapping a ring to its set of idempotents, and we can
make it a commutative monoid under multiplication, thus making H into a bialgebra. In
this case, one can make Z into an algebraic representation of SpecC(H), i.e. an H-comodule,
via the canonical action of Idem(R) on R by multiplication. It is easy to check that this
makes it into a non-unital algebra whose underlying algebra is unital, but it is not unital.⊳

Proof. By [Lur12, Theorem 5.4.3.5], the unit of a non-unital algebra, if it exists, is unique.
More precisely, the foretful functor Alg(D)≃ → Algnu(D)≃ is fully faithful23

In particular, for any group G, if A ∈ Algnu(Fun(BG, D)) is a non-unital algebra such
that the underlying A ∈ Algnu(D) admits a unit, then A admits a unit too. More pre-
cisely, the canonical map Alg(Fun(BG, D)) → Algnu(Fun(BG, D)) ×Algnu(D) Alg(D) is an
equivalence.

It follows that the same holds for the category of representations of any functor G :
CAlg(C) → Grp, i.e. the canonical map Alg(RepG(C)) → Algnu(RepG(C)) ×Algnu(C)

Alg(C) is an equivalence for any such G.
The result now follows from the symmetric monoidal equivalence coModH(C) ≃ RepSpec

C
(H)(C),

compatible with the forgetful functor as discussed before the proof.

Proposition 6.34. Let R = E = E(k, G) be a Morava E-theory over some field k of
positive, possibly even characteristic, and at some height n > 0, and let A ∈ Alg(ModE) be
a dualizable separable E-algebra. If A is furthermore central, then A is Azumaya.

Proof. Fix an atomic E-algebra K [HL17, Definition 1.0.2], i.e. a Morava K-theory.
By Theorem 6.29, K∗ factors through h∗ : ModE → MilE , and K∗ is conservative on

perfect E-modules, hence by Lemma 6.16, it suffices to prove the result in MilE .
We prove the following intermediary result: let A be a central separable algebra in

MilE , then A is simple, i.e. any (bilateral) ideal I →֒ A is 0 or A. Notice that the functor
MilE → coModKE

∗ K(ModK∗((GrVectk))→ModK∗(GrVectk) is (strong) monoidal, and
conservative, so it sends ideals to ideals, and dualizable separable algebras to dualizable
separable algebras.

By Lemma 6.22, there is a central idempotent e in A such that I = eA. Furthermore,
we started with an ideal in coModKE

∗ K(ModK∗), and Lemma 6.30 will in fact imply that

22Because every such natural transformation has a value c at R = 1, the value at every other R is of the
form R ⊗ c, and so all the required basechanges exist, along arbitrary maps R → S, therefore, to make this
definition, we do not actually need C to have arbitrary relative tensor products.

23Note that this is not true if one removes the symbol ≃, it is only faithful.
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e is a morphism K∗ → A in comodules, and not only in ModK∗ (note that KE
∗ K is a

commutative Hopf algebra by [BP21, Lemma 2.6]- this is so even at the prime 2).
The algebra we apply Lemma 6.30 to is I, viewed as a non-unital algebra in comodules.

The existence of the central idempotent e in A such that I = eA guarantees that I is unital
in ModK∗ , and thus, the lemma guarantees that it is unital in comodules.

This means that its unit is a morphism of KE
∗ K-comodules K∗ → I, i.e., that the

idempotent e is a map of KE
∗ K-comodules K∗ → A.

This further implies that A splits as an algebra in coModKE
∗ K as I×A/I. This being a

statement only about the monoidal structure of coModKE
∗ K , it holds also in the monoidal

category of Milnor modules, i.e. MilE . But there, A is central by assumption, and so I = 0
or A, as was to be proved. We have thus proved that A was simple.

We now apply this to A ⊗ Aop, which is dualizable, central and separable as well, and
hence simple. It follows that the canonical map A ⊗ Aop → End(A) is injective. Now, the
two sides have the same (finite) dimension as K∗-modules, so it follows that this map is an
isomorphism, which is what was to be proved.

To prove the general case of a commutative ring spectrum for which R ⊗ Fp = 0 for all
p, we use the nilpotence theorem [HS98]. Let us recall an important consequence of it:

Proposition 6.35. Let R be a commutative ring spectrum and P a dualizable R-module.
Suppose that for all implicit primes p and and all 0 ≤ n ≤ ∞, LK(n)P = 0. In this case,
P = 0.

Here, K(0) = Q, K(∞) = Fp. In particular, if R ⊗ Fp = 0 for all primes p, then it
suffices to check that LK(n)P = 0 for all 0 ≤ n <∞.

Proof. By definition, LK(n)P = 0 if and only if K(n)⊗P = 0. As P is dualizable and K(n)
admits a ring structure, K(n)⊗ P = 0 if and only if K(n) ⊗ End(P ) = 0: one direction is
always true, as K(n) ⊗ P is a module over K(n) ⊗ End(P ). For the other direction, note
that End(P ) ≃ P ⊗R P ∨ ≃ colim∆opP ⊗R⊗n ⊗ P ∨.

Similarly, P = 0 if and only if End(P ) = 0.
Now, End(P ) is an E1-ring, so the result follows from [HS98, Theorem 3].
The “in particular” part follows from the fact that if R ⊗ Fp = 0, then P ⊗ Fp = 0

too.

We also recall an important consequence of the Chromatic Nulstellensatz [BSY22].

Proposition 6.36. Fix an implicit prime p. Let R be a K(n)-local commutative ring
spectrum, and P a nonzero dualizable R-module. There exists a field L as well as a map of
commutative ring spectra R→ E(L) such that E(L)⊗R P 6= 0.

To prove this from the results of [BSY22], we need a bit of work. Before doing so, let us
deduce the desired result from this.

Corollary 6.37. Let R be a commutative ring spectrum such that R ⊗ Fp = 0 for all p.
Question 6.13 has a positive answer in ModR(Sp), that is, every dualizable central separable
algebra is Azumaya.

Proof. Let A be a dualizable central separable algebra over R, and let P denote the cofiber
of A⊗ Aop → End(A). We aim to prove that P = 0. To reach a contradiction, we assume
P 6= 0.
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As A is dualizable, P is dualizable too. By Proposition 6.35, there exists a prime p
and an n such that LK(n)P 6= 0. By Proposition 6.36, there exists a field and a map of
commutative ring spectra LK(n)R→ E(L) such that E(L)⊗LK(n)R LK(n)P 6= 0. Note that
P is dualizable over R, so that LK(n)R⊗R P ≃ LK(n)P .

Therefore, E(L)⊗R P 6= 0. As E(L)⊗R− is symmetric monoidal, we find that E(L)⊗RA
is not Azumaya. This contradicts Proposition 6.34.

We now explain how to deduce Proposition 6.36 from [BSY22].
First, a definition [CSY18, Definition 4.4.1]:

Definition 6.38. A monoidal functor f : D→ E between stably monoidal ∞-categories is
said to be nil-conservative if for all R ∈ Alg(D), f(R) = 0 implies that R = 0. ⊳

Lemma 6.39 ([BSY22, Lemma 4.32]). Let C ∈ CAlg(PrL) be compactly generated, with
the property that every compact in C is dualizable, and let A→ B a morphism in CAlg(C).
If it detects nilpotence, then B ⊗A − : ModA(C)→ModB(C) is nil-conservative.

Lemma 6.40 ([CSY18, Proposition 4.4.4]). A nil-conservative monoidal exact functor be-
tween stably monoidal categories is conservative when restricted to dualizable objects.

Corollary 6.41. Let C ∈ CAlg(PrL) be compactly generated, with the property that every
compact in C is dualizable, and A → B a morphism in CAlg(C). If it detects nilpotence,
then B ⊗A − : ModA(C)→ModB(C) is conservatie when restricted to dualizable objects.

One of the main results of [BSY22] is:

Theorem 6.42 ([BSY22, Theorem 5.1]). Let R be a nonzero T (n)-local ring. There exists
a perfect Fp-algebra A of Krull dimension 0 and a nilpotence detecing map R → E(A) in
SpT (n).

If R is K(n)-local, then it is also T (n)-local. If P is furthermore dualizable over R, then
for any map of commutative algebras R→ S to a K(n)-local ring S, E(A)⊗R P is already
K(n)-local.

Corollary 6.43. In order to prove Proposition 6.36, it suffices to prove the special case
where R = E(A) for A a perfect Fp-algebra of Krull dimension 0.

Proof. Suppose Proposition 6.36 holds whenever R = E(A), A a perfect Fp-algebra of Krull
dimension 0, and let R be an arbitrary K(n)-local commutative ring spectrum, and P a
nonzero dualizable R-module.

By Theorem 6.42 ([BSY22, Theorem 5.1]), we can find a nilpotence detecting map R→
E(A) in SpT (n) for some perfect Fp-algeba of Krull dimension 0, A. By Corollary 6.41, the
T (n)-local tensor product with E(A) over R is conservative on dualizable objects, hence
E(A) ⊗R P is nonzero, since its T (n)-localization is nonzero (note that P is dualizable
over R, so it is already T (n)-local, and hence it is nonzero as a T (n)-local R-module), and
dualizable over E(A), thus Proposition 6.36 follows for R.

The proof of this special case is in fact implicit in the proof of [BSY22, Theorem 4.47] -
we reproduce the proof nonetheless, for the convenience of the reader, as it is not explicitly
spelled out:
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Proof of Proposition 6.36. By the previous corollary, we may assume R = E(A) for some
perfect Fp-algebra A of Krull dimension 0.

Let P be a dualizable E(A)-module. For any field k and any map A→ k, E(k)⊗E(A) P
is K(n)-local, and thus equivalent to its K(n)-localization.

Assume E(k) ⊗E(A) P = 0 for all such A → k, we wish to prove that P = 0. The
∞-category LK(n)ModE(A) is compactly generated so it suffices to show that [c, P ]E(A) = 0
for any compact c. As c is compact in a p-complete ∞-category, p acts nilpotently on it.
It follows that if [c, P ]E(A) ⊗W (A) A ∼= [c, P ]E(A) ⊗Z Fp is zero, then so is [c, P ]E(A). Here,
W (A) is the ring of Witt vectors of A.

Now, by [BSY22, Lemma 4.45], if [c, P ]E(A) ⊗W (A) A is nonzero, there is a perfect field
k and a map A→ k such that [c, P ]E(A) ⊗W (A) A⊗A k 6= 0. By [BSY22, Lemma 4.46], this
tensor product is [c⊗E(A) E(k), P ⊗E(A) E(k)]E(k), and this is 0 by assumption.

Here, we have used [BSY22, Lemma 4.46] with C = LK(n)ModE(Fp) so that, by [BSY22,
Lemma 2.37], WC(B) ≃ E(B) for any perfect Fp-algebra B (in particular B = Fp, A), and
so that this really is an application of [BSY22, Lemma 4.46].

This concludes the proof of Theorem 6.14. As is clear from the proof, if one wants to
answer Question 6.13 positively for ModR(Sp) for an arbitrary commutative ring spectrum
R, one may without loss of generality assume R is an Fp-algebra for some prime p. In this
case, residue fields are harder to come by, and are the subject of ongoing work.

A first issue is that, away from characteristic 2, one cannot hope for graded fields, cf.
[Mat17a, Example 3.9]. One could still try to find enough “residue fields” and analyze their
homotopy categories in enough detail to answer the question there. A good test-case would
be to start with R = ktCp , where k is a field of characteristic p and the Tate construction
is taken with respect to the trivial action. In this case, ModktCp ≃ StModkCp

, the stable
module ∞-category, and it seems possible to study the separable algebras therein an try to
prove that they are Azumaya - for instance, the commutative case was studied in [BC18]
(of course, the commutative case is orthogonal to our discussion, but Balmer and Carlson’s
result shows that such an analysis is not completely impossible).

We note that Question 6.13 (both its inputs and its answers, positive or negative) can be
phrased in the homotopy category ho(C), and so one can also try to approach it using the
homological residue fields of Balmer [Bal20]. Thus the question becomes completely about
(graded) abelian symmetric monoidal 1-categories, over Fp. It is not clear to the author
whether one can say anything in this generality.

6.2 Centers of separable algebras

In this subsection, we study Question 6.1. Just as in the previous subsection, our approach
is via descent. As the center of an algebra is E2, and in particular homotopy commutative,
Corollary 3.40 tells us that separability can be tested locally.

In the previous subsection however, we used a much weaker notion of “local”, namely, we
tested Azumaya-ness against conservative functors, of which there is a larger supply than
“descendable” functors. We were not able to phrase separability in terms of certain maps
being equivalences, and so we are not able to use this technique.

For this reason, our positive answer is in a more restricted generality. The goal of this
section is to prove:
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Theorem 6.44. Let A ∈ Alg(C) be a separable algebra. Question 6.1 has a positive answer,
i.e. the center Z(A) is separable, in the following cases:

1. If C = ModR(Sp) for some connective commutative ring spectrum R, and A is almost
perfect [Lur12, Definition 7.2.4.10]. More generally, this holds if C = QCoh(X) for
some (connective) Deligne-Mumford stack X and if A is locally almost perfect.

2. If C = ModE(SpK(n)) is the∞-category of K(n)-local E-modules, where E is Morava
E-theory at height n, for some height n and some odd implicit prime p. In particular,
the same is true if C = SpK(n).

Remark 6.45. If we have some a priori control over Z(A), one can get sometimes phrase
separability in terms of certain maps being equivalences, and then get a more general positive
answer. This is the case if, for instance, we assume that A is sufficiently finite over its
center. For instance, in the ordinary category of (discrete) R-modules for some (discrete)
commutative ring R, Auslander and Goldman prove in [AG60, Theorem 2.1] that a separable
algebra is always dualizable over its center. We do not know in what generality this can be
expected, and as we were not able to formulate general criteria for this to happen, we did
not include results along these lines here. ⊳

Remark 6.46. We note that if A is separable and almost perfect over a connective com-
mutative ring spectrum R, Z(A) is also almost perfect, and thus, by Proposition 3.58, it
is separable if and only if it is étale. Under these finiteness assumptions, étaleness can be
checked “conservative locally”, and this is how we will be able to actually prove Item 1.
In an earlier draft, the assumptions on R were more restrictive, and we are grateful to
Niko Naumann and Luca Pol for sharing a draft of their work which allowed us to prove
Proposition 3.58, and subsequently, this version of the above theorem.

Before moving on to the proof of Theorem 6.44, we note that under a positive answer to
Question 6.1, we can somewhat recreate the picture from [AG60]:

Lemma 6.47. Suppose A ∈ Alg(C) is separable, and that Z(A) is also separable.
In this case, the center of A as a Z(A)-algebra, C, is equivalent to Z(A), i.e. A is a

central Z(A)-algebra.

Proof. Note that Theorem 3.24 implies, together with the homotopy commutativity of
Z(A), that Z(A) has an essentially unique commutative algebra structure extending its
(E2-)algebra structure.

Furthermore, by Theorem 2.5 and Proposition 1.21, we have that ho(ModZ(A)(C)) ≃
ModhZ(A)(ho(C)) as symmetric monoidal categories, compatibly with the lax symmetric
monoidal functor to ho(C).

As A is separable over Z(A) by Proposition 2.11, its center in ModZ(A)(C) can be
computed in ho(ModZ(A)(C)) by Corollary 1.26, and thus we may assume that C is a
1-category.

In particular, A ⊗ Aop → A ⊗Z(A) Aop is then an epimorphism, as it is split, so that
homA⊗Z(A)Aop(A, A)→ homA⊗Aop(A, A) is a a monomorphism, compatible with the forget-
ful map to A.

But the first one receives a map from Z(A), as Z(A) is commutative, also compatible
with the forgetful map to A, and so, because all these maps to A are monomorphisms (as
they admit retractions and we are in a 1-category), this implies the claim.
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We now move on to Theorem 6.44. The descent method here is based on:

Proposition 6.48. Let A be a homotopy commutative algebra in C. Assume that there
is fully faithful symmetric monoidal functor C → limI Di, where i 7→ Di is a diagram of
additively symmetric monoidal ∞-categories, and where I has a weakly initial set of objects
I0.

In this case, if the projection pi0 (A) is separable in Di0 for all i0 ∈ I0, then A is separable
in C.

Here, a set of objects I0 in I is weakly initial if any object in I receives a map from some
object in I0.

Proof. As I0 is a weakly initial set of objects, the assumption on pi0 (A) implies that pi(A) is
separable in every object i, and so by Corollary 3.40, the image of A in limI Di is separable.
By fully faithfulness, it follows that A is also separable in C.

This explains the second half of Item 1 in Theorem 6.44: for any (connective) Deligne
Mumford stack X , QCoh(X) can be expressed as a limit of ∞-categories of the form
ModR(Sp), so if one can prove the result for those ones, it follows automatically for
QCoh(X). So we will prove Item 1 from Theorem 6.44 only in the affine case. We be-
gin with:

Lemma 6.49. Let A be a separable algebra in Modk(Sp), where k is a field. In this case,
the center of A is separable.

Proof. The homotopy groups functor induces a symmetric monoidal equivalence ho(Modk(Sp)) ≃
GrVectk with the category of graded k-vector spaces, so by Corollary 1.26 and Proposi-
tion 2.8, it suffices to prove the result in GrVectk, so let A be a separable algebra therein.

We note that by Remark 1.28, Z(A) is a Z(A)-linear retract of A. It follows that for
any ideal I in Z(A), we have IA ∩ Z(A) = I. But now, by Lemma 6.22, because GrVectk

is semisimple, IA must be principal, generated by a (graded) central idempotent e. In
particular, e ∈ IA ∩ Z(A), and so e ∈ I. Thus, Z(A) is semi-simple.

It follows that any module over Z(A) is projective, and in particular A is projective
over Z(A). Thus, as Z(A)-bimodules, we have that Z(A) is a retract of A, which is a
retract of A⊗k Aop, which is projective over Z(A) ⊗k Z(A). Hence Z(A) is projective over
Z(A)⊗k Z(A), which implies that it is separable.

Recall that by [Nee18, Proposition 1.6], this means in particular that Z(A) is discrete
and an étale algebra overr the field k, in the usual sense.

We then reduce the general case to the discrete case:

Proposition 6.50. To prove Item 1 from Theorem 6.44, it suffices to prove it in the case
where R is discrete.

Proof. Note that the canonical functor ModR → limn ModR≤n
is fully faithful when re-

stricted to bounded below objects by [Lur18b, 19.2.1.5], so it suffices to prove the result for
each R≤n, by Proposition 6.48.

In particular, as R≤n+1 → R≤n is a square zero extension by a connective spectrum, it
suffices to prove that the result is stable under such, namely, that the result for R≤n implies
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that for R≤n+1. This follows from [Lur18b, Theorem 16.2.0.2] and Proposition 6.48: the
∞-category of bounded below R≤n+1-modules can be expressed as a pullback where the two
corners are the ∞-category of bounded below R≤n-modules.

Remark 6.51. This proof in fact shows that to provide a positive answer to Question 6.1
for a connective R, and in the bounded below case, it suffices to provide one for π0(R). ⊳

Proof of Item 1 from Theorem 6.44. As explained above, we may assume R is a discrete
commutative ring. We fix an almost perfect separable algebra A over R. We first aim to
prove that its center Z(A) is a flat R-module.

By Corollary 1.26, Z(A) is a retract of A and thus is also almost perfect. By [Sta23,
Tag 068V], to prove that it is flat, we may therefore basechange to any field and check that
the result is in degree 0.

Using again Corollary 1.26, we find that for any map R → k to a field, Z(A) ⊗R k ≃
Z(A ⊗R k). Now A ⊗R k is a separable algebra over a field, so by the case of fields, i.e.
Lemma 6.49 , Z(A ⊗R k) is separable. By [Nee18, Proposition 1.6], it follows that it is
discrete. Thus, Z(A) is indeed flat over R, as claimed.

In particular, it is also discrete. Because it is almost perfect, it follows that it is also
finitely presented, as a module over R. It also follows that it is finitely presented as an
algebra over R, and thus [Sta23, Tag 02GM] implies that, to prove that it is étale over R,
we may check after basechange along any map R → k, k a field. But there Lemma 6.49
kicks in again: Z(A)⊗R k ≃ Z(A⊗R k) is separable and hence étale over k.

It follows that Z(A) is étale over R. By Proposition 3.55, Z(A) is separable.

We now move on to Item 2 from Theorem 6.44. The proof of this will rely, as in Section 6,
on Milnor modules. However, because the center of an algebra is a notion that really relies on
the symmetric monoidal structure of the ambient category, this time we were not able to use
a trick as in the proof of Proposition 6.34 to use the (not-necessarily-symmetric) monoidal
equivalence MilE ≃ coModKE

∗ K(ModK∗((GrVectk)), so we are only able to give a proof
at odd primes, where this equivalence can be made symmetric monoidal.

We will need a bit more about Milnor modules, so we recommend the reader have a
deeper look at [HL17, Section 6]. What we called MilE in Theorem 6.29 is denoted Syn♥

E

in [HL17], but there is also a larger ∞-category SynE
24 and a fully faithful (Proposition

4.2.5 in loc. cit.), symmetric monoidal (Variant 4.4.11 in loc. cit.) embedding Sy[−] :
ModE(SpK(n))→ SynE . We let 1 denote the unit of SynE , and 1≤n its truncations. The
following is implicit in [HL17]:

Lemma 6.52. Let X ∈ SynE. The canonical map X → limn 1≤n⊗X is an equivalence. In
particular, the canonical symmetric monoidal functor SynE → limn Mod1≤n(SynE) is fully
faithful.

Proof. The second part of the statement follows from the first, as the canonical map X →
limn 1≤n ⊗X is the unit of the adjunction SynE ⇄ limn Mod1≤n(SynE).

For the first part, we simply note that the canonical map X → 1≤n ⊗ X induces an
equivalence upon n-truncation, and therefore so do the morphisms 1≤m ⊗ X → 1≤n ⊗
X . Because limits and truncations in SynE = Fun×(Modmol

E , S) are pointwise, the claim
follows.

24cf. Warning 4.14
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The following will allow us to reduce to Syn♥
E :

Lemma 6.53 ([HL17, Proposition 7.3.6]). For every n ≥ 0, basechange along 1≤n+1 → 1≤n

fits in a pullback square of additively symmetric monoidal ∞-categories of the form:

Mod1≤n+1(SynE) //

��

Mod1≤n(SynE)

��
Mod1≤n(SynE) // C

Proof of Item 2 from Theorem 6.44. We begin by proving the case of C = ModE(SpK(n)).
Let A ∈ ModE(SpK(n)) be a separable algebra. By [HL17, Proposition 4.2.5, Variant

4.4.11] and Corollary 1.26, to prove that its center is separable, it suffices to prove that its
image Sy[A] ∈ SynE has the same property, and by Lemma 6.52 and Proposition 6.48, it
suffices to prove the same result for each 1≤n ⊗ Sy[A] ∈Mod1≤n(SynE).

By induction, Proposition 6.48 and by Lemma 6.53, it suffices to prove it for 1≤0⊗Sy[A] ∈
Mod1≤0(SynE). By [HL17, Lemma 7.1.1], the latter is equivalent to π0Sy[A],25,26 and the
same is true for Sy[A⊗̂A]. In other words, π0Sy[A] is a separable algebra in Syn♥

E , so we are

reduced to the case of separable algebras in Syn♥
E .

It is in this last analysis, i.e. that of separable algebras in Syn♥
E , that we really use that

we were working with ModE(SpK(n)) and the precise SynE from [HL17]. Namely, [HL17,
Proposition 6.9.1] states that, at an odd prime, there is a symmetric monoidal equivalence
between Syn♥

E and the category of graded modules over a (finite dimensional) cocommutative
Hopf algebra over K∗

∼= k[t±1], |t| = 2. The latter is equivalently described as a category of
algebraic representations of an algebraic group, and so, by Corollary 3.20, one can check that
an algebra is separable on underlying objects (this is similar to the proof of Lemma 6.30).

As the center is preserved by this forgetful functor, we are reduced to the case of the
category of graded modules over a graded field, where the proof is essentially the same as
that of Lemma 6.49.

This concludes the proof for C = ModE(SpK(n)). The case of C = SpK(n) follows from
this, together with Proposition 6.48 and Galois descent for the K(n)-local Galois extension
SK(n) → E (in more detail, see [Mat16, Proposition 10.10]).

As for Question 6.13 we note that all the parts involved in Question 6.1 (its inputs and its
answers, positive or negative) only depend on the homotopy category of C. In particular, if
one tries to answer the question in full generality, one can try to consider abelian categories,
e.g. via Balmer’s homological residue fields – this idea is very clearly apparent in the proof
of Item 2.

Ultimately, the questions in Section 6, in full generality, are questions about symmetric
monoidal abelian categories.

25Denoted Sy♥[A] in loc. cit..
26This result can be seen as a version of the statement “Sy[A] is flat”, see also [PV22, Proposition 2.16].

Thus in a sense the beginning of this proof is very similar to the proof of Item 1.
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7 Separable algebras and descent in Hochschild homol-

ogy

Separable algebras are defined in of the bimodule structure of A, which is also relevant to
the definition of the Hochschild homology of A. This connection was already explored in
[Rog08, Section 9] and [BRS12, Section 1].

In this section, we study one aspect of this connection. To explain it, fix some base
stably, presentably symmetric monoidal∞-category C, and a commutative algebra A in C.
Our goal is to explain in what way, when B is an A-algebra which is absolutely separable, the
Hochschild homology of B can be made to depend “linearly” on B. This linear dependence
will imply that in the absolutely separable case, one can prove strong descent results for
HHC(A) → HHC(B) from similar results for A → B, cf. Corollary 7.15 for a general
statement and Corollary 7.16 for a specific example of interest.

Construction 7.1. Let A be a commutative algebra in C. Recall from [Lur12, Corollary
4.2.3.7] that there is a presentable fibration BiModA(C) → AlgA(C) which classifies the
functor B 7→ BiModB(C).27

As A is initial in AlgA, we further get a natural transformation (A, M) → (B, M) on
BiModA(C). Here, we abuse notation and write M for the restriction of scalars to A of a
B-bimodule M . This induces a natural transformation HHC(A, M) → HHC(B, M), where
HHC is Hochschild homology relative to C, see [HR21, Section 1]. ⊳

Taking A = 1, we recover the usual map M → HHC(B, M). In terms of relative tensor
products, we have HHC(B, M) ≃ B ⊗B⊗Bop M , and this map is induced by the right-
B ⊗ Bop-module map given by µ : B ⊗ Bop → B. In particular, we have, as an immediate
consequence of the definition:

Proposition 7.2. Let C be presentably symmetric monoidal and B a separable algebra in
C. The natural map M → HHC(B, M) admits a natural section.

As a consequence of Corollary 3.9 and Remark 3.10, we also have (compare [Rog08,
Proposition 9.2.5]):

Proposition 7.3. Let C be additively presentably symmetric monoidal and B a separable
commutative algebra in B. The natural map M → HHC(B, M) admits a natural section,
and it is an equivalence if and only if M is a diagonal bimodule, i.e. of the form µ∗N for
some B-module N .

Our next goal is to give a similar condition for the map HHC(A, M) → HHC(B, M) to
be an equivalence. Specializing to M = B, we will find that in that situation, HHC(B) is
equivalent to HHC(A, B), the latter being “linear in B”.

The key to finding this condition is the following:

Theorem 7.4. Let C be presentably symmetric monoidal, A a commutative algebra in C,
and B an A-algebra. In this case, the functor M 7→ HHC(A, M), defined on B-bimodules,
admits a canonical lift to B-bimodules in ModA(C), or equivalently, to B⊗ABop-bimodules.

27Note that we take B-bimodules in C, even though we view B as an algebra in ModA(C).
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With this lift abusively denoted HHC(A,−), we have a natural equivalence

HHA(B, HHC(A,−)) ≃ HHC(B,−)

under which the canonical map HHC(A, M) → HHA(B, HHC(A, M)) is identified with the
canonical map HHC(A, M)→ HHC(B, M).

Proof. On A-bimodules, the functor HHC(A,−) can equivalently be described as basechange
along µ : A⊗Aop → A. Consider then the following commutative diagram of algebras in C:

A⊗A B ⊗Bop

A B ⊗A Bop

p

Upon applying the functor LMod•(C), it induces a commutative diagram (where we leave
C implicit in the notation):

LModA⊗A LModB⊗Bop

LModA LModB⊗ABop

The claim is that this square is horizontally right adjointable, i.e. that the canonical natural
transformation in the following square:

LModA⊗A LModB⊗Bop

LModA LModB⊗ABop

is an equivalence.
All functors involved, as well as this transformation, are canonically C-linear, and this

transformation is an equivalence at B ⊗ Bop. This suffices, as LModB⊗Bop is generated
under colimits and tensors with C by B ⊗Bop.

It follows that the basechange functor LModB⊗Bop → LModB⊗ABop is the desired lift:
forgetting down to LModA, we see that it sends M to HHC(A, M).

Furthermore, the diagonal B⊗Bop-module B can be viewed as p∗B, where p : B⊗Bop →
B ⊗A Bop is the canonical map and we abuse notation by denoting B also the diagonal
B ⊗A Bop-module.

It follows that HHC(B, M) ≃ p∗B ⊗B⊗Bop M ≃ B ⊗B⊗ABop p!M , where p! is the
basechange functor, so that this last term is HHA(B, HHC(A, M)) by definition.

The identification of the canonical maps comes from making this last equivalence explicit
using the projection formula - the details are left to the reader.

Remark 7.5. If we apply this to, e.g. C = Sp, A = Z and B any Z-algebra, then this says
in particular that HHZ(B; THH(Z; B)) ≃ THH(B). Using a Postnikov filtration, this yields
the HH to THH spectral sequence [PW92, Theorem 4.1]. We chose Z, but of course any
base ring would give a similar formula and spectral sequence. ⊳
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In particular, when B is separable as an A-algebra, HH(A; M) retracts onto HH(B; M).
Taking M = B, HH(A; B) retracts onto HH(B). To identify when this retraction is an
equivalence, we recall the following definition from Section 5.1:

Definition 7.6. Suppose C admits geometric realizations compatible with the tensor prod-
uct. Let A ∈ CAlg(C), and let B ∈ Alg(ModA(C)) be an A-algebra. We say B is absolutely
separable if it is separable over A, and furthermore it has a separability idempotent which
factors as 1→ B ⊗Bop → B ⊗A Bop. ⊳

Remark 7.7. We do not require the lift 1→ B ⊗Bop to be an idempotent. ⊳

The key point is that, in the commutative case, absolute separability is going to guarantee
that HHC(A, M) is a diagonal bimodule whenever M is a diagonal B-bimodule. In more
detail:

Proposition 7.8. Let Let C be additively presentably symmetric monoidal, A a commutative
algebra in C, and B a commutative A-algebra. Suppose B is an absolutely separable A-
algebra. Let µ : B ⊗ Bop → B be the multiplication map (which is canonically an algebra
map, as B is a commutative A-algebra).

In this case, the functor HHC(A,−) : ModB⊗Bop (C) → ModB⊗ABop (C) defined in
Theorem 7.4, precomposed with restriction of scalars µ∗ : ModB(C) → ModB⊗Bop (C),
factors through the full subcategory ModB(C) ⊂ModB⊗AB(C) of diagonal B-bimodules.

Proof. The full subcategory ModB(C) ⊂ModB⊗AB(C) is closed under colimits and tensors
with C, as the inclusion is given by restriction of scalars along the (relative) multiplication
map B ⊗A Bop → B.

As the composite ModB(C)
µ∗

−→ ModB⊗Bop (C)
HHC(A,−)
−−−−−−−→ ModB⊗ABop(C) is also

colimit-preserving and C-linear, it suffices to prove that it sends B to a diagonal bimodule.
It thus suffices to prove that µ∗B ⊗B⊗Bop (B ⊗A Bop)→ µ∗B ⊗B⊗Bop B is an equivalence

Following Corollary 3.9, write B⊗A Bop ≃ B×C for some B⊗A Bop-algebra C. It now
suffices to prove that µ∗B ⊗B⊗Bop C = 0.

Let e : 1→ B⊗Bop denote a lift of the separability idempotent (we say “the” because of
Corollary 3.14), which exists by assumption. Then, on B ⊗B⊗Bop C, e acts as the identity,
because it does so on B; and as 0 because it does so on C. It follows that B ⊗B⊗B C = 0,
so we are done.

Remark 7.9. e acts as the separability idempotent on B and C, B ⊗Bop-linearly because
the map B ⊗ Bop → B ⊗A Bop is a map of commutative algebras; if it were only a map of
associative algebras, it would not necessarily be true. ⊳

We thus obtain:

Corollary 7.10. Let C be additively presentably symmetric monoidal Let A, B ∈ CAlg(C),
and let f : A→ B be a map of commutative algebras. Assume B is absolutely separable over
A.

For any B-module M , viewed as a B-bimodule via restriction of scalars along B⊗Bop →
B, the canonical map HHC(A; M)→ HHC(B; M) is an equivalence.

In particular, the canonical map HHC(A; B)→ HHC(B) is an equivalence.
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Proof. By Theorem 7.4, the canonical map HHC(A, M)→ HHC(B, M) is equivalent to the
canonical map HHC(A, M)→ HHA(B, HHC(A, M)), it thus suffices to prove that the latter
is an equivalence. By Proposition 7.3, this is equivalent to HHC(A, M) being a diagonal
B⊗ABop-module, which follows from the assumption that B is absolutely separable together
with Proposition 7.8.

Example 7.11. Suppose A is a separable algebra in C. For any commutative algebra C,
C⊗A is a separable C-algebra, and it is in fact absolutely separable. Indeed, the separability
idempotent lifts as 1→ A⊗Aop → C ⊗A⊗ C ⊗Aop → (C ⊗A)⊗C (C ⊗Aop). ⊳

Example 7.12. Let C = ModR(Sp) for some commutative ring spectrum R, and assume
A→ B is a flat map of commutative R-algebras. We have a map, natural in the A-module
M , of the form π0(B)⊗π0(A) π∗(M)→ π∗(B ⊗A M). By flatness, both sides are homology
theories, and using flatness again, this map is an isomorphism when M = A, so it is an
isomorphism for all M .

In particular if M = B, we have an isomorphism π0(B) ⊗π0(A) π∗(B) ∼= π∗(B ⊗A B).
So if B is further separable over A, the separability idempotent lifts to B ⊗ B, i.e. B is
absolutely separable. ⊳

Example 7.13. Any separable extension of connective commutative ring spectra is abso-
lutely separable, because then B ⊗B → B ⊗A B is surjective on π0. ⊳

Example 7.14. We saw in Section 5.1 that the Galois extensions Lp → KUp and KO→ KU
were absolutely separable. ⊳

Corollary 7.15. Let C be stably presentably symmetric monoidal Let A, B ∈ CAlg(C), and
let f : A→ B be a map of commutative algebras. Assume B is absolutely separable over A.

If B is descendable over A in the sense of [Mat16, Definition 3.18], then HHC(B) is
descendable over HHC(A).

In particular, HHC(A) is the limit of the Amitsur complex lim∆ HHC(B)⊗HH(A)n, or
equivalently lim∆ HHC(B⊗An).

If B is furthermore faithful G-Galois for some discrete group G, we have HHC(A) ≃
HHC(B)hG.

Proof. For the first part, we note that the functor HHC(A,−) : ModA(C)
µ∗

−→ BiModA(C)
µ!−→

ModA(C) is exact and ModA(C)-linear. Furthermore, it sends A to HHC(A). In partic-
ular, if A is in the thick tensor ideal of ModA(C) generated by B, then HHC(A) is in the
thick tensor ideal of ModHHC(A)(C) generated by HHC(A, B) ≃ HHC(B) (Corollary 7.10).

The second part follows from the first part by [Mat16, Proposition 3.20], and the third
part by identifying the limit of the Amitsur complex with the homotopy fixed points, using
e.g. [MNN17, Proposition 6.28].28

Corollary 7.16. The Galois extensions Lp → KUp and KO → KU have descent in THH
(for the former, we mean p-complete THH).

Proof. This follows from Corollary 7.15 together with Example 5.10, Example 5.11.

28See the proof of [MNN17, Theorem 6.27] in the case where F is the family of free finite G-sets for the
use of [MNN17, Proposition 6.28].
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Remark 7.17. These descent results were already known, cf. [Mat17b, Example 4.6].
However, the techniques for this are more sophisticated: here we only use nilpotence tech-
niques, while in the cited [CMNN20], the authors use some chromatically localized variant
of nilpotence, called ǫ-nilpotence. ⊳

Remark 7.18. In the special case of Galois extensions, one could rephrase Corollary 7.15 in
terms of Mathew’s work in [Mat17b]. Indeed, in the absolutely separable case, one can prove
that the map HHC(A) ⊗A B → HHC(B) is an equivalence, which by [Mat17b, Proposition
4.3] is equivalent to Galois descent.

Note that Mathew’s criterion [Mat17b, Theorem 1.3] for Galois descent in THH is a
special case of Corollary 7.15: by Proposition 3.55 and Example 7.12, the assumptions
therein imply absolute separability. ⊳

A On the cyclic invariance of the trace

The goal of this appendix is to provide a short proof of:

Proposition A.1. Let C be a symmetric monoidal ∞-category, and A ∈ Alg(C) an algebra
whose underlying object is dualizable. Let t : A → 1 be the trace form of A, defined as
A→ A⊗A⊗A∨ → A⊗A∨ → 1, where the first map is the coevalution of A, the second is
the multiplication of A, and the final map is the evaluation of A.

The trace pairing of A, defined as the composite A ⊗ A → A → 1, has a canonical
C2-equivariant structure, where the source has the swap action and the target has the trivial
action.

Remark A.2. Informally, the trace pairing is given by a 7→ the trace on A of the endo-
morphism La given by left multiplication by a, i.e. a 7→ tr(La | A). The C2-invariance then
comes from the cyclic invariance of traces, namely tr(LaLb | A) ≃ tr(LbLa | A). In fact, this
will be apparent from the proof. ⊳

We start by simply giving a quick construction of this C2-equivariant structures, and we
conclude the appendix by sketching two other proofs which are slightly more conceptual but
also more involved. For this reason, we will not go into the details of these other proofs. We
are grateful to Jan Steinebrunner for suggesting the following simple proof:

Proof. We observe that the map A → A ⊗ A∨ ≃ End(A) is an algebra map, and that
therefore, the claim for A reduces to the same claim for End(A) instead, and thus, to the
more general case of A = End(x) for any dualizable object x ∈ C.

In this situation, we write the trace pairing of A as the composite:

End(x)⊗End(x) ≃ (x⊗x∨)⊗(x⊗x∨) ≃ (x⊗x)⊗(x∨⊗x∨) ≃ (x⊗x)⊗(x∨⊗x∨) ≃ End(x)⊗End(x)→ 1⊗1 ≃ 1

where: the first map is the equivalence End(x) ≃ x⊗ x∨; the second swaps the middle term
x∨ ⊗ x ≃ x⊗ x∨; the third, importantly, swaps the first term x ⊗ x ≃ x⊗ x but leaves the
second unchanged; the fourth reorders the terms as in the first two steps; and the fifth is
simply t⊗ t, where t : End(x)→ 1 is the evaluation x⊗ x∨ → 1.
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One easily verifies that this coincides with t ◦ µ, where µ is the multiplication map of
End(x) and t is as above. Indeed, this is a check at the level of homotopy categories. In
terms of string diagrams, the long composite described above is:

x

x∨

x

x∨

x

x

x∨

x∨

x

x

x∨

x∨

x

x∨

x

x∨

(1)

whereas the map t ◦ µ is:

x

x∨

x

x∨

(2)

And one can see how to deform the top one into the bottom one using elementary string
diagram operations.

The advantage of spelling the second, much simpler map in terms of the long composite
is that every step in the long composite is now C2-equivariant.

The first step is C2-equivariant because there is a functor y 7→ y ⊗ y from C to CBC2 .
The second step is C2-equivariant because this functor has a canonical symmetric monoidal
structure.

The third step is the more interesting one (again): we are claiming that the swap map
x⊗ x→ x⊗ x is C2-equivariant, where both sides have the “swap” C2-stucture. But this is
a general fact about objects with an A-action, for A an abelian group. More precisely, let A

be an E2-monoid, and consider the composite BA×BA×CBA µ×CBA

−−−−−→ BA×CBA ev
−→ C,

where µ : BA×BA→ BA is the mutliplication map remaining on BA from the E2-structure
on A. This map has a mate given by BA×CBA → CBA, and this further has a mate given
by BA→ Fun(CBA, CBA).

In particular, evaluation at a given a ∈ A induces an endomorphism of idCBA , in par-
ticular, for each y ∈ CBA, an A-equivariant endomorphism ρa : y → y, whose underlying
morphism is simply the action of a.

Plugging in A = C2, we find that the swap map on x⊗ x is C2-equivariant. The rest of
the steps is as elementary as the first two steps. It is worth pointing out that the equivalence
1⊗ 1 ≃ 1 is in fact C2-equivariant for the trivial action on the target.

We now give two incomplete sketches of other proofs. They are more involved, but they
give more information; in particular while one “can easily see” that the above generalizes to
Cn-equivariance of an n-fold trace pairing, for these other ones, it really is immediate.
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Using the cobordism hypothesis

The string diagrams 1 and 2 can be interpreted as barely symbolic tools to convey a proof,
or as one dimensional framed manifolds, i.e. as living in the one dimensional cobordism
∞-category. By the cobordism hypothesis,29 the positively framed 0-dimensional manifold
“point” is the universal dualizable object, and so to prove that the trace pairing End(x) ⊗
End(x)→ End(x)→ 1 can be made C2-equivariant for an arbitrary dualizable x, it suffices
to prove it in the cobordism category.

The string diagrams that we drew clearly show that, at the very least, this trace pairing
admits a homotopy from itself to itself precomposed with the swap End(x) ⊗ End(x) ≃
End(x)⊗ End(x), but the problem lies in the higher coherence of C2-equivariance. It turns
out, however, that in the universal case there are no such coherence problems.

Indeed, the group of orientation-preserving diffeomorphisms of [0, 1] rel {0, 1} is con-
tractible - it is a convex subspace of the space of all maps; and it follows that the group
of orientation-preserving diffeomorphisms of any compact 1-dimensional manifold with no
closed components, rel boundary is also contractible. In particular, the subspace of mapCobfr

1
(End(x)⊗

End(x), ∅) spanned by the cobordisms with no “floating circles” is contractible - but our trace
pairing lives in this subspace ! In particular, up-to-homotopy-C2-equivariance guarantees
actual C2-equivariance.

This proof has the advantage that it also proves that if we further require naturality
in (C, x), then the C2-equivariant structure is essentially unique. For the same reason,
Cn-equivariance, which is easy 1-categorically (in fact, follows from C2-equivariance !), also
follows from this proof, as the spaces are still contractible.

Using Hochschild homology

This proof will be even more sketchy than the previous one. It relies on folklore facts about
Hochschild homology that do not seem to have been completely referenced in the literature
yet.

First, without loss of generality, we assume C is presentably symmetric monoidal, so
that we can use C-linear Hochschild homology at our leisure.

In this case, for a dualizable algebra A, the forgetful map LModA(C)→ C is an internal
left adjoint in ModC(PrL) and thus induces a map HHC(A)→ HHC(1) ≃ 1, cf. [HSS17].

Now, HHC has a canonical S1-action constructed in [HSS17] using the cobordism hy-
pothesis, and in [NS18] using a construction of HHC as a cyclic bar construction. The latter,
however, has only been constructed functorially in morphisms of algebras, and so cannot
be used to construct/analyze the transfer HHC(A)→ HHC(1). It is however a folklore fact
that these two constructions agree, with their S1-actions, and if we use this, the rest of the
proof is relatively clear: for any C-atomic x ∈ LModA(C) (cf. Definition 6.4), we have a
map homA(x, x)→ HHC(A), and a commutative diagram in C:

homA(x, x) hom(x, x)

HHC(A) HHC(1)

29While a proof of the general cobordism hypothesis has only been sketched by Lurie in [Lur08], in
dimension 1, it has been completely proved, see [Har12].
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where the right vertical map is the trace map. In particular, for x = A itself, we get:

A End(A)

HHC(A) HHC(1)

so that our trace pairing can be written as A ⊗ A → A → HHC(A) → HHC(1) ≃ 1. The
map HHC(A) → 1 is S1-equivariant, and the map A ⊗A → A→ HHC(A) is equivalent to
the inclusion of the 1-simplices of the cyclic bar construction. As the cyclic bar construction
extends to a cyclic object, the inclusion of these 1-simplices is canonically C2-equivariant.

Thus the composite A⊗A→ HHC(A)→ 1 is C2-equivariant.
This proof also easily generalizes to the n-fold trace pairing and its Cn-equivariance.

Furthermore, from this perspective, the relation between the Cn-equivariances, as n-varies, is
extremely clear: we simply have a morphism of cyclic objects from the cyclic bar construction
of A to 1 (the latter as a constant cyclic objects). Thus the S1-equivariant structure on
HHC(A) → 1 corresponds exactly to a highly coherent Cn-equivariant structure on the
n-fold trace pairings of A, as n varies.

B On epimorphisms of algebras

An earlier version of Item 2 in Lemma 1.6 was stated in terms of epimorphisms of algebras,
under the assumption that C was presentably symmetric monoidal. We later realized,
however, that we needed a different condition, namely, instead of requiring that A→ B be
an epimorphism of algebras, we needed the canonical map B⊗AB → B to be an equivalence.

In the commutative case, these two conditions are equivalent because of the following
lemma, and because pushouts of commutative algebras are computed as relative tensor
products:

Lemma B.1. Assume D is an ∞-category with pushouts, and let f : x → y be a map in
D. It is an epimorphism if and only if the induced map y

∐
x y → y is an equivalence.

However, pushouts of algebras are more complicated. As a result, we do not know if
these two conditions are equivalent. The goal of this appendix is to compare these two
notions. We prove that the condition about tensor products always implies that the map
is an epimorphism, and conversely, that if C is stably symmetric monoidal, f being an
epimorphism implies the condition about tensor products. So for most purposes, as we
mainly care about stable ∞-categories in this paper, these two notions are equivalent. We
however take this oppotunity to raise this question:

Question B.2. Let C be a presentably symmetric monoidal∞-category, and let f : A→ B
be a morphism in Alg(C). Suppose f is an epimorphism - does it follow that the multipli-
cation map B ⊗A B → B is an equivalence ?

Lemma B.3. Let D be a ∞-category with pushouts, and d ∈ D. A morphism f : x→ y in
Dd/ is an epimorphism if and only if the underlying morphism in D is one.
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Proof. Let E be a ∞-categorywith pushouts. A mophism f : x → y is an epimorphism if
and only if the induced codiagonal y

∐
x y → y is an equivalence.

If D admits pushouts, then so does Dd/, and they are preserved and reflected by the
forgetful functor Dd/ → D. Applying the previous paragraph to E = Dd/ and D thus
implies the desired statement.

Lemma B.4. Let C be a presentably symmetric monoidal ∞-category, and f : D → E a
morphism in ModC(PrL). Suppose it is a monomorphism. Denoting its right adjoint by g,
the unit map idD → gf is then a (pointwise) monomophism.

In particular, if D is stable, it is a pointwise equivalence, and hence f is fully faithful.

Proof. Since it is a monomorphism, D → D ×E D is an equivalence. Looking at map-
ping spaces, it follows that mapD(x, y)→ mapD(x, y)×map

E
(f(x),f(y)) mapD(x, y) is also an

equivalence for all x, y ∈ D and hence, using the adjunction, that

mapD(x, y)→ mapD(x, y)×map
D

(x,gf(y)) mapD(x, y)

is an equivalence for all x, y ∈ D.
By the Yoneda lemma, it follows that for all y ∈ D, y → y ×gf(y) y is an equivalence for

all y, i.e. that y → gf(y) is a monomorphism, as was claimed.
The “in particular” follows from the fact that in a stable∞-category, any monomorphism

is an equivalence: indeed, if y → z is a monomorphism, the pullback square

y y

y z

is also a pushout square, thus proving the claim.

The following is the main result of this appendix:

Lemma B.5. Let C be a presentably symmetric monoidal ∞-category, and f : A → B
a morphism in Alg(C). The morphism f is an epimorphism in Alg(C) if and only if the
induced functor LModA(C)→ LModB(C) is an epimorphism in ModC(PrL). In partic-
ular, this is so if it is a localization, equivalently if B ⊗A B → B is an equivalence.

If C is stable, the converse is true.

Proof. By [Lur12, Theorem 4.8.5.11], the functor Alg(C)→ModC(PrL)C/, A 7→ (LModA(C), A)
is fully faithful and colimit-preserving. By Lemma B.3, f : A→ B is an epimorphism if and
only if the induced functor LModA(C)→ LModB(C) is an epimorphism in ModC(PrL).

Examining the co-unit of the extension-restriction adjunction

LModA(C) ⇄ LModB(C)

we see that it is a localization if and only if the map B ⊗A B → B is an equivalence.
Conversely, assume C is stable and f is an epimophism. It follows by the same ar-

gument that RModA(C) → RModB(C) is an epimorphism. Dualizing, and using that
FunL

C(RModA(C), C) ≃ LModA(C) [Lur12, Remak 4.8.4.8], it follows that LModB(C)→
LModA(C) is a monomorphism. As C is stable, we are in the stable situation of Lemma B.4,
and can thus conclude that it is fully faithful. It follows that LModA(C)→ LModB(C) is
a localization, and hence, that B ⊗A B → B is an equivalence, as claimed.
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