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Abstract

We construct and study a functorial extension of the evaluation map S1 × LX → X to
transfers along finite covers. For finite covers of classifying spaces of finite groups, we provide
algebraic formulas for this extension in terms of bisets. In the sequel [12], we show that this
induces a natural evaluation map on the full subcategory of the homotopy category of spectra
consisting of p-completed classifying spectra of finite groups.
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1 Introduction

The free loop space functor
X 7→ L(X)

on the category of topological spaces comes equipped with a natural evaluation map

S1 × L(X)→ X.

This natural map arises as the counit of the adjunction between the functors S1 × − and L(−)
on the category of topological spaces. There are good reasons stemming from chromatic homotopy
theory to wonder if this evaluation map can be naturally extended to (certain maps between)
suspension spectra. That is: Given a map of spectra f : Σ∞+X → Σ∞+ Y , is there a map of spectra
L†(f) : Σ∞+ (S1×LX)→ Σ∞+ (S1×LY ) that is compatible with f through the suspension spectrum
of the evaluation map?
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The maps between suspension spectra that are most accessible are maps induced by maps of
spaces and transfer maps along finite covers. Thus it is natural to consider the extension of the
category of topological spaces obtained by taking the category of spans of spaces, Cov, in which the
backward map is required to be a finite cover. In this case, category theory does not formally provide
natural evaluation maps: the category Cov does not admit many limits or colimits. However, in
this paper we show that the evaluation map does admit a natural extension to Cov.

The extension of the evaluation map natural transformation to objects and forward maps is
predetermined. The difficulty lies in constructing an appropriate extension of S1 × L(−) to finite
covers. Given a span f : X ←← Z → Y in Cov, we construct a span L†(f) : S1×LX ←← ?→ S1×LY
that is not necessarily given by a product of spans. In fact, if f is a span of the form X ←← Y

id−→ Y
(in which the forward map is the identity), then L†(f) is a span in which the forward map is
not necessarily the identity. We provide group-theoretic formulas for L†(−) when restricted to the
homotopy category of the full subcategory of Cov on coproducts of classifying spaces of finite
groups. Further, making use of naturality, in [12] we will extend our construction to the Burnside
category of fusion systems.

The main results of the paper can be stated as follows:

Theorem 1.1. We construct a family of endofunctors L†n : Cov→ Cov for n ≥ 0 with the following
list of properties:

(i) L†0 is the identity functor on Cov.

(ii) On objects, L†n takes a space X to

L†n(X) = (S1)n × Ln(X).

(iii) The symmetric group Σn acts on (S1)n × Ln(−) diagonally by permuting the coordinates of
both (S1)n and Ln(−). For every σ ∈ Σn the diagonal action of σ on (S1)n × Ln(−) induces

a natural isomorphism σ : L†n ⇒∼= L†n.

(iv) On forward maps, i.e. spans X
id←−← X

f−→ Y , the functor L†n coincides with the torus times

the usual free loop space functor in Top so that L†n(id, f) = (S1)n × Ln(f).

(v) For each n ≥ 0, the evaluation maps evX : (S1)n×Ln(X)→ X form a natural transformation

ev : L†n ⇒ IdCov.

(vi) For each n ≥ 0, the partial evaluation maps ∂evX : S1 × Ln+1(X)→ Ln(X) given by

∂ev(t, f) = (s 7→ f(s, t)), for t ∈ S1, s ∈ (S1)n,

form a natural transformation (S1)n × ∂ev : L†n+1 ⇒ L†n.

(vii) For all n,m ≥ 0, and any space X, the space (S1)n+m × Ln+mX embeds into (S1)m ×
Lm((S1)n × LnX) as the collection of those components corresponding to m-fold loops in
(S1)n × LnX that are constant in the (S1)n-coordinate.

These embeddings form a natural transformation L†n+m(−)⇒ L†m(L†n(−)).

In Section 3, we give explicit group-theoretic formulas for L†n on the homotopy category of the full
subcategory of Cov consisting of classifying spaces of finite groups. In [12], we use the preceding

results for p-groups to extend both L†n and the theorem to the Burnside category of saturated fusion
systems. In Sections 3 and [12], both the category Cov and the circle S1 are replaced by suitable
algebraic models, but otherwise the theorem still holds as stated.
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This theorem resulted from our (successful) attempt to apply the various flavors of character
theory that arise in chromatic homotopy theory to fusion systems. Generally speaking, character
maps are a composite of two maps: an evaluation map and a “change of coefficients.” To extend
character theory from finite groups to fusion systems, one must contend with the characteristic
idempotent, which is built from both transfer maps and group homomorphisms. Thus, from this
perspective, it is reasonable to attempt to extend the evaluation map to be natural with respect to
transfer maps. Character theory does not demand this level of generality because it applies a finite
height cohomology theory (such as K-theory or Morava E-theory) to the evaluation map – and
this is a destructive procedure. Yet we were surprised to discover that there is a global solution to
the problem of extending the evaluation map to transfers and that is what is presented here.

1.1 Evaluation maps and finite covers

Let Top be the category of topological spaces that are homotopy equivalent to a CW complex and
let Cov be the category of spans in Top, X ←← E → Y , in which the map X ←← E is a finite cover.
There is a canonical faithful functor Top ↪→ Cov.

For a space X, there is an evaluation map (S1)n × Ln(X) → X that is natural for X in Top.
The first goal is to extend this natural transformation to Cov. That is, we would like a functor
L†n : Cov → Cov and a natural transformation L†n ⇒ idCov compatible with the inclusion of Top
into Cov and the evaluation map on Top. Since Top is naturally a subcategory with the same
objects, the value of L†n on objects and forward maps is already determined: on these objects and
maps L†n(−) = (S1)n × Ln(−).

Since each span decomposes as

X
π←−← E

f−→ Y = (E
idE←−−← E

f−→ Y ) ◦ (X
π←−← E

idE−−→ E),

it suffices to describe the construction of L†n on a span of the form X
π←−← E

idE−−→ E (i.e. on a finite

cover). We will denote this span by X
π←−← E. Naively, one might guess that the value of L†n on

X
π←−← E should be the finite cover

(S1)n × Ln(X)
(S1)n×Ln(π)←−−−−−−−−← (S1)n × Ln(E).

Although this does produce a functor (S1)n × Ln(−) : Cov → Cov, it does not interact properly
with respect to the evaluation map: the diagram

(S1)n × Ln(E)

(S1)n×Ln(π)
����

// E

π
����

(S1)n × Ln(X) // X

does not necessarily commute in Cov. In order for the square to commute in Cov, (S1)n × Ln(E)
must be the pullback, but in most cases it is not. Although this naive attempt does not provide us
with a solution, it does indicate that the pullback must play a critical role in the definition of L†n.

Denote the pullback of the finite cover X
π←−← E along the evaluation map by PBn(π). We see

from the example above that L†n(X
π←−← E) must have the form

(S1)n × Ln(X)←← PBn(π)→ (S1)n × Ln(E).

Thus the goal is to construct a map of spaces PBn(π)→ (S1)n×Ln(E) and show that the resulting
construction interacts properly with evaluation.
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Assume n = 1 for simplicity. The space PB(π) = PB1(π) then consists of triples of the form
(s, l, e), where s is a point on the circle S1, l : S1 → X is a loop in X, and e ∈ E is a point in the
fiber over l(s). View S1 as R/Z and let [k] : S1 → S1 be multiplication by k. Given a loop l ∈ LX,

let k be the smallest positive natural number such that l[k] lifts along π to a map l̃[k] : S1 → E
going through e ∈ E in the fiber over l[k]( sk ). We define

wind(π) : PB(π)→ S1 × L(E)

by sending a triple (s, l, e) to (s, l̃[k](−+ ts)), where

ts =
s− ks
k

.

Note that [k](−+ ts) : S1 → S1 wraps the circle around itself k-times and at the same time sends
s ∈ S1 to itself. Hence l[k](− + ts) winds the loop l around itself k times while still mapping

s ∈ S1 to the point l(s). By construction, the loop l̃[k](− + ts) : S1 → E then has the following
two properties: if we evaluate the loop at s ∈ S1 we get the point e ∈ E in the fiber over l(s), and
if we postcompose the loop with π we recover the winded loop l[k](− + ts). Of course, the loop

l̃[k](−+ ts) ∈ L(E) is uniquely determined by these two properties.
This construction can be generalized to produce a map

windn(π) : PBn(π)→ (S1)n × Ln(E).

We show that windn(π) is continuous and we define L†n(X
π←−← E

f−→ Y ) to be the span

(S1)n × Ln(X)←← PBn(π)
((S1)n×Ln(f))◦windn(π)−−−−−−−−−−−−−−−−→ (S1)n × Ln(Y ).

We prove that L†n : Cov → Cov is a functor and that there is a natural transformation L†n ⇒
IdCov that extends the evaluation map natural transformation on Top. Further, we study the action
of Σn on L†n, the partial evaluation maps, and other naturally occurring relationships between the
different functors as n varies. All of these properties are collected in Theorem 1.1, which we prove
for Cov as Theorem 2.13.

1.2 Evaluation maps and the global Burnside category

There is an algebraically controlled subcategory of the homotopy category of Cov. Let G and H
be finite groups and let AG(G,H) be the Grothendieck group of isomorphism classes of finite H-
free (G,H)-bisets under disjoint union. Further, let AG+(G,H) denote the commutative monoid
of isomorphism classes of finite H-free (G,H)-bisets under disjoint union. There is a fully faithful
functor from AG+ to the homotopy category of Cov that on objects takes G to the classifying space
BG. The class of objects of the categories AG and AG+ can be extended to formal unions of finite
groups by linearity (i.e. letting the sets of morphisms consist of matrices).

The restrictions of Ln and L†n to AG+ both extend to AG by linearity. We describe these
functors when n = 1. Given a finite group G, we set

LG =
∐
[g]

CG(g),

where the formal coproduct is over conjugacy classes of elements in G and CG(g) denotes the
centralizer.
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Let X ∈ AG+(G,H) so that X is represented by a finite H-free (G,H)-biset. The naive functor
L(−) : Cov→ Cov gives rise to a matrix LX ∈ AG+(LG,LH). The entry in this matrix correspond-
ing to the pair of conjugacy classes [g] ⊆ G and [h] ⊆ H is represented by the (CG(g), CH(h))-biset

(LX)[g],[h] = {x ∈ X | gx = xh}.

As G is finite, let ` = |G|. The evaluation map in this setting ev : Z × LG → G is equivalent to a
map

ev :
∐
[g]

Z/`× CG(g)→ G.

The component corresponding to the conjugacy class [g] is the group homomorphism evg : Z/` ×
CG(g)→ G sending (t, z) to gtz.

The free abelian group AG(G,H) has a canonical basis consisting of the isomorphism classes of
transitive H-free (G,H)-bisets. These are determined by a pair [K,φ], where K ⊆ G is a subgroup
taken up to conjugacy and φ : K → H is a homomorphism that is also taken up to conjugacy.

Now we describe L†1 in this setting. Let X|Z/`×CG(g) ∈ AG+(Z/`×CG(g), H) be the restriction
of X along the evaluation map evg : Z/` × CG(g) → G. In terms of the canonical basis, this biset
has a decomposition of the form

X|Z/`×CG(g) =
∑

R≤CG(g)
ϕ : R→H

cR,ϕ · [ev−1g (R), ϕ ◦ evg],

where each cR,ϕ is a non-negative integer. Furthermore, the decomposition informs us that the
pullback PB(π) of Section 1.1 is equivalent to cR,ϕ copies of B(ev−1g (R)), for each pair (R,ϕ).
Similarly, the map wind(π) of Section 1.1, when restricted to B(ev−1g (R)), corresponds to the map

wind(R, g) : ev−1g (R)
∼=−→ Z/`×R

given by
wind(R, g)(t, z) = (t, gt−ktz),

where k is the smallest positive natural number such that gk lies in the subgroup R.
We restrict attention to a basis element of the form [ev−1g (R), ϕ◦ evg]. To understand the group

theoretic description of L†(X), we would like to factor

[ev−1g (R), ϕ ◦ evg] : Z/`× CG(g) −→ H

through Z/`× L(H). The factorization is given by

Z/`× CG(g)
tr−→ ev−1g (R)

wind(R,g)−−−−−−→∼=
Z/`×R Z/`×ϕ−−−−→ Z/`× CH(ϕ(gk)) ⊆ Z/`× LH,

where gk is the smallest power of g lying in R ≤ CG(g).

By additivity, these constructions extend to the category AG. The resulting functors L†n : AG→
AG satisfy the corresponding version of Theorem 1.1, which we state and prove as Theorem 3.33.
Curiously, we discovered this group theoretic description of L†n prior to understanding its relation
to Cov.

Let Σ∞+BG be the classifying spectrum of the finite group G. The Segal conjecture, proved by
Carlsson, asserts that

[Σ∞+BG,Σ
∞
+BH] ∼= AG(G,H)∧I ,
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where I ⊂ A(G) is the augmentation ideal of the Burnside ring. Thus the full subcategory of the
homotopy category of spectra consisting of (finite coproducts of) suspension spectra of finite groups
is purely algebraic.

However, we prove that L†n cannot be extended from the Burnside category AG to the full
subcategory of the category of spectra consisting of classifying spectra of finite groups. In fact, we
show that no functorial extension of the evaluation map natural transformation on Top to Cov can
be extended further to classifying spectra of finite groups (see Example 3.38 and Remark 3.39).
Any functorial extension of the evaluation map natural transformation fails to be continuous with
respect to the I-adic topology. However, in [12] we show that this obstruction disappears after p-

completion. This allows us to extend L†n to the Burnside category of fusion systems, which contains
the homotopy category of p-completed classifying spectra of finite groups as a full subcategory.
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2 Covering maps and free loop spaces

Consider the evaluation map
(S1)n × Ln(−)

ev−→ Id

as a natural transformation of endofunctors on the category of spaces. The category of spaces
embeds in the category of spans of spaces in which the backward maps are finite covers. In this
section we construct an extension of the evaluation map to the category of spans. After producing
this extension, we establish various identities satisfied by the extension

Let Top be the category of topological spaces homotopy equivalent to a CW complex. This
category is enriched in topological spaces by putting the compact open topology on the set of
continuous maps between two spaces. We will make use of a few properties of this category. First, a
finite cover of a space homotopy equivalent to a CW complex is also homotopy equivalent to a CW
complex. This follows from the fact that a finite cover of a CW complex naturally has the structure
of a CW complex. Secondly, the free loop space of a space homotopy equivalent to a CW complex
is homotopy equivalent to a CW complex by [9]. Finally, the free loop space of a finite sheeted
covering map in Top is a finite sheeted covering map between the mapping spaces. We prove this
result in Proposition A.4 of Appendix A.

It is possible to carry out the constructions and prove the results in this section using other
categories of spaces. For instance, one may use the category of topological spaces or the category of
compactly generated weak Hausdorff spaces. In Appendix A, we describe the relationship between
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the free loop space functor and finite sheeted covering maps in these categories. We have chosen to
work with the category Top because it contains all classifying spaces of finite groups and because
it allows us to give a simple proof of Proposition 2.3.

The category Span(Top) of spans of spaces has objects spaces in Top and morphisms given
by isomorphism classes of spans. As usual in these situations, composition is given by taking the
(isomorphism class of the) pullback. We define the subcategory Cov of Span(Top) to be the category
with objects spaces and morphisms spans for which the backward map is a finite cover and the
forward map is a map of spaces.

We will always take “finite cover” to mean a continuous map p : E → B that is locally trivial-
izable with p−1(U) = V1 t · · · t Vn, where each Vi maps homeomorphically to the neighborhood U .
In particular, we do not require all fibers to have the same size (they necessarily have constant size
over each component of B), and we allow empty fibers as well.

Since the pullback of a finite cover is a finite cover, composition makes sense in Cov. Note that
there is a faithful embedding of Top into Cov given by sending a map f : X → Y to the span

X
id←−← X

f−→ Y .
There is also a homotopy category associated to Cov. A map in the homotopy category Ho(Cov)

between spaces X and Y is a finite cover of X and a homotopy class of maps from the finite cover
to Y . Note that the homotopy category of spaces faithfully embeds in Ho(Cov).

Given a finite cover Y →→ X and a torus (S1)n, the induced map (S1)n × Y →→ (S1)n × X is
also a finite cover. It follows that (S1)n × (−) is an endofunctor of Cov. In Appendix A, we prove
that Ln(Y ) →→ Ln(X) is a finite cover, where Ln(−) is the n-fold free loop space functor. The
functor Ln(−) preserves pullbacks and hence composition of spans in Cov. It follows that Ln(−) is
an endofunctor of Cov.

Now one may wonder if the evaluation map (S1)n × Ln(−)
ev−→ Id is a natural transformation

of endofunctors of Cov. There is no reason to expect this to be the case. In Example 2.12, we shall
see that (S1)n ×Ln(−)

ev−→ Id is not natural with respect to the backward maps in Cov. The main

purpose of this section is to replace (S1)n×Ln(−) by a functor L†n(−) that is equal to (S1)n×Ln(−)
on objects and forward maps in Cov, differs from (S1)n × Ln(−) on finite sheeted coverings, and

comes equipped with a natural transformation L†n(−)
ev−→ Id.

2.1 The construction of L†n

Since the evaluation map is natural on Top ⊂ Cov, we will begin by studying the case of covering
maps. Let π : Y →→ X be a finite cover. Consider the pullback

PBn(π)
ẽv //

ev∗ π
����

Y

π
����

(S1)n × Ln(X)
ev // X.

Since Y →→ X is a finite cover, the homotopy pullback and the pullback have the same homotopy
type. A point in PBn(π) is given by a point y ∈ Y and a pair (s, f) ∈ (S1)n × Ln(X) such that
π(y) = f(s) (i.e. the point y ∈ Y lies in the fiber over f(s)). Generally speaking, PBn(π) consists
of a number of connected components.

Assume s = (s1, . . . , sn) with si ∈ S1, and let qi : I → S1 for 1 ≤ i ≤ n be the quotient map
sending 0 and 1 to si. By path-lifting we can lift each map

f(s1, . . . , si−1, qi(−), si+1, . . . , sn) : I → X
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to a path in Y starting at y and ending at a (possibly different) point in the fiber over f(s).

Definition 2.1. We define a map k : PBn(π)→ (Z>0)
n as follows. Given a triple (y, s, f) ∈ PBn(π)

the homotopy class [f(s1, . . . , si−1,−, si+1, . . . , sn)] ∈ π1(X, f(s)) in the fundamental group acts
on the fiber over f(s). The positive integer k(y, s, f)i is defined to be the size of the orbit of
y ∈ π−1(f(s)) under the action of [f(s1, . . . , si−1,−, si+1, . . . , sn)].

Remark 2.2. Equivalently, k(y, s, f)i is the smallest positive integer ki such that loop

f(s1, . . . , si−1,−, si+1, . . . , sn),

viewed as a loop with base point f(s), composed with itself ki times lifts to a loop in Y when we
start lifting the loop at y ∈ π−1(f(s)).

Yet another interpretation of k(y, s, f)i is that this is the smallest positive integer k such that
the kth power of [f(s1, . . . , si−1,−, si+1, . . . , sn)] ∈ π1(X, f(s)) lies in the image of the injective
group homomorphism π1(Y, y) ↪→ π1(X, f(s)).

Proposition 2.3. The map k : PBn(π)→ (Z>0)
n defined above is continuous.

Proof. Since PBn(π) is homotopy equivalent to a CW complex, the path components map PBn(π)→
π0(PB

n(π)) is continuous. We will show that k factors through this map.
Let f : I → PBn(π) be a path. It suffices to show that k gives the same value on the endpoints

of this path. We have an induced map γ : I → X. Let x0 and x1 be the endpoints of γ and let y0
and y1 be the chosen lifts in Y . The path γ identifies π1(X,x0) and π1(X,x1) and the different
lifts of γ to paths in Y identifies the fibers π−1(x0) and π−1(x1) as π1(X,x0) and π1(X,x1)-sets,
respectively, by a bijection sending y0 to y1. The positive integers k(f(0))i and k(f(1))i are, by
definition, the size of the orbit of y0 and y1 under the action of elements in the fundamental groups
that are identified. Thus these numbers are identical.

Definition 2.4. We define the subspace PBn
lift(π) ⊆ PBn(π) to consist of all the triples (y, s, f) ∈

PBn(π) such that k(y, s, f)i = 1 for all 1 ≤ i ≤ n, i.e. the preimage of the tuple (1, . . . , 1) ∈ Zn
under the map k. Note that PBn

lift(π) is then a collection of connected components in PBn(π).
Let PBn

broken(π) ⊆ PBn(π) be the collection of the remaining components of PBn(π).

Remark 2.5. In view of Remark 2.2, a triple (y, s, f) ∈ PBn(π) lies in PBn
lift(π) if and only if the

map f : (S1)n → X lifts to a map (S1)n → Y when we lift by pathlifting starting at s ∈ (S1)n and
from the point y in the fiber of f(s).

When working with the group structure on S1, we will work additively (ie. we will view S1 as
R/Z).

Proposition 2.6. The space PBn
lift(π) is homeomorphic to (S1)n × Ln(Y ) via the map that takes

a triple (y, s, f) ∈ PBn
lift(π) to the pair (s, g) ∈ (S1)n ×Ln(Y ) with g the unique lift of f to Y with

g(s) = y.

Proof. Define a map α : (S1)n×LnY → PBn
lift(π) by taking a pair (s, g) ∈ (S1)n×LnY to the triple

(g(s), s, π ◦g) ∈ PBn
lift(π). The map α is a continuous bijection since each triple (y, s, f) ∈ PBn

lift(π)
satisfies that f ∈ LnX lifts to a unique g ∈ LnY starting at the point y in the fiber of f(s).
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Let β1 : PBn
lift(π) → (S1)n be the projection (y, s, f) 7→ s which is clearly continuous. Next

consider the following homotopy lifting problem:

PBn
lift(π) Y

PBn
lift(π)× In X.

(y, s, f) 7→ y

(y, s, f) 7→ (y, s, f, 0) π

(y, s, f, t) 7→ f(s+ t)

∃β̂2

The diagram commutes, so the homotopy lifting property of the covering map π gives us a con-
tinuous map β̂2 : PBn

lift(π) × In → Y . By adjunction we get a continuous map β2 : PBn
lift(π) →

Map(In, Y ) that takes a triple (y, s, f) to the unique path g in Y satisfying π(g(t)) = f(s+ t) and
with g(0) = y. Since (y, s, f) ∈ PBn

lift(π), f lifts to an n-fold loop in Y starting at y. Thus the map
β2 : PBn

lift(π)→ Map(In, Y ) lands in LnY .
The torus (S1)n acts continuously on LnY by the map µ : (S1)n × LnY → LnY given by

µ(s, g) = (t 7→ g(t− s)).

The composite µ ◦ (β1, β2) : PBn
lift(π) → (S1)n × LnY is continuous and takes a triple (y, s, f) ∈

PBn
lift(π) to the pair (s, g) ∈ (S1)n × LnY where g ∈ LnY is the unique n-fold loop with g(s) = y

and π ◦g = f . Hence µ◦ (β1, β2) is the inverse homeomorphism to α from the start of the proof.

Given any point s ∈ R/Z and an integer `, the map t 7→ `(t − s) + s wraps S1 ∼= R/Z around
itself ` times with s as a fixed point.

Definition 2.7. We construct a map wind(π) : PBn(π) → PBn
lift(π) ∼= (S1)n × Ln(Y ) as follows.

Given a triple (y, s, f) ∈ PBn(π), let k(y, s, f) = (k1, . . . , kn) ∈ (Z>0)
n be the associated n-tuple

of positive integers and define f̂ : (S1)n → X to be the continuous map

f̂(t1, . . . , tn) = f(k1(t1 − s1) + s1, . . . , kn(tn − sn) + sn).

Then f̂(s) = f(s) so (y, s, f̂) is a point of PBn(π). Furthermore, each loop
f̂(s1, . . . , si−1,−, si+1, . . . , sn) in X is the corresponding loop for f composed with itself ki times.
Hence k(y, s, f̂)i = 1 for all 1 ≤ i ≤ n, and (y, s, f̂) ∈ PBn

lift(π).

We define wind(π)(y, s, f) = (y, s, f̂). Since k(y, s, f) depends continuously on (y, s, f) ∈ PBn(π),
so does f̂ , and thus wind(π) : PBn(π)→ PBn

lift(π) ∼= (S1)n × Ln(Y ) is continuous.

Remark 2.8. The map wind(π) : PBn(π)→ (S1)n×Ln(Y ) commutes with the projection ẽvX : PBn(π)→
Y and evaluation evY : (S1)n × Ln(Y )→ Y .

Given a span X
π←−← Y

f−→ Z in Cov we can use wind(π) to define a new span L†n(π, f) =
(ev∗(π), ((S1)n × Ln(f)) ◦ wind(π)) by the composite

(S1)n × Ln(X)
ev∗(π)←−−−−← PBn(π)

wind(π)−−−−−→ (S1)n × Ln(Y )
(S1)n×Ln(f)−−−−−−−−→ (S1)n × Ln(Z).

It turns out that this construction gives an endofunctor on the category Cov.
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Proposition 2.9. The construction above is an endofunctor L†n : Cov→ Cov.

Proof. Because every morphism in Cov factors as a covering map X
π←−← Y

id−→ Y followed by a map

in Top (ie. maps of the form X
id←−← X

f−→ Y ), it is sufficient to show that L†n respects composition
for the four different ways of combining these generators. The first two cases are easy, the last two
cases require some work.

Covering map followed by forward map: The composition in Cov of a covering (π, id) : X
π←−←

Y
id−→ Y followed by a forward map (id, f) : Y

id←−← Y
f−→ Z is simply the span (π, f) : X

π←−← Y
f−→ Z.

The construction L†n respects this composition essentially by construction:

L†n(id, f) ◦ L†n(π, id) =

?

PBn(π) (S1)n × Ln(Y )

(S1)n × Ln(X) (S1)n × Ln(Y ) (S1)n × Ln(Z)

ev∗ π

wind(π)

id

(S1)n × Ln(f)

=

PBn(π)

(S1)n × Ln(X) (S1)n × Ln(Z)

ev∗ π

((S1)n × Ln(f)) ◦ wind(π)

= L†n(π, f).

Composition of forward maps: Given two forward maps (id, f) : X
id←−← X

f−→ Y and (id, g) : Y
id←−←

Y
g−→ Z, we just have

L†n(id, g) ◦ L†n(id, f) =
( (S1)n × Ln(X)

(S1)n × Ln(X) (S1)n × Ln(Z)

id

(S1)n × Ln(g ◦ f) )
= L†n(id, g ◦ f).

Composition of covering maps: Given two spans of the form X
π←−← Y

id−→ Y and Y
ρ←−← Z

id−→ Z
in Cov, we consider the composition of spans L†n(ρ, id) ◦ L†n(π, id):

?

PBn(π) PBn(ρ)

(S1)n × Ln(X) (S1)n × Ln(Y ) (S1)n × Ln(Z).

ev∗X π

wind(π)

ev∗Y ρ

wind(ρ)

We claim that the pullback in the middle gives us the space PBn(πρ). To confirm this, we study
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the following diagram:

? PBn(ρ) Z

PBn(π) (S1)n × Ln(Y ) Y

(S1)n × Ln(X) X.

ev∗X π

wind(π)

ev∗Y ρ

ẽvY

ρ

evY

evX

π

According to Remark 2.8, the composite evY ◦wind(π) : PBn(π) → Y is just the usual projection
ẽvX : PBn(π)→ Y . Both the bottom square and the top square of the diagram above are therefore
pullback squares. Hence the big outer square has to be a pullback, so the top-left corner must be
PBn(πρ) as claimed.

Furthermore, the map PBn(πρ) →→ PBn(π) takes a triple (z, s, f) ∈ PBn(πρ) to the triple
(ρ(z), s, f) ∈ PBn(π), and the composite PBn(πρ)→→ PBn(π)→→ (S1)n ×Ln(X) is just ev∗X(πρ).

Similarly, we can describe the map PBn(πρ)→ PBn(ρ) if we recall Definition 2.7, the definition
of wind(π). Given a triple (z, s, f) ∈ PBn(πρ) we first have (ρ(z), s, f) ∈ PBn(π). Let f ′ ∈ Ln(Y )
be the (unique) loop such that f ′(s) = ρ(z) and

π(f ′(t)) = f(k(ρ(z), s, f)1 · (t1 − s1) + s1, . . . , k(ρ(z), s, f)n · (tn − sn) + sn).

Then wind(π)(ρ(z), s, f) = (s, f ′) ∈ (S1)n×Ln(Y ), and the map PBn(πρ)→ PBn(ρ) takes (z, s, f)
to (z, s, f ′).

The composite L†n(ρ, id) ◦ L†n(π, id) is therefore given by the span

(S1)n × Ln(X)
ev∗X(πρ)
←−−−−−← PBn(πρ)

(z,s,f)7→(z,s,f ′)−−−−−−−−−−→ PBn(ρ)
wind(ρ)−−−−−→ (S1)n × Ln(Z).

It remains to check that the composite map PBn(πρ)→ PBn(ρ)→ (S1)n ×Ln(Z) coincides with
wind(πρ). For this recall that wind(ρ) takes the triple (z, s, f ′) ∈ PBn(ρ) to the pair (s, f ′′) ∈
(S1)n × Ln(Z), where f ′′ satisfies f ′′(s) = z and

ρ(f ′′(t)) = f ′(k(z, s, f ′)1 · (t1 − s1) + s1, . . . , k(z, s, f ′)n · (tn − sn) + sn),

or equivalently

πρ(f ′′(t)) = π
(
f ′(k(z, s, f ′)1 · (t1 − s1) + s1, . . . , k(z, s, f ′)n · (tn − sn) + sn)

)
= f(k(ρ(z), s, f)1 · k(z, s, f ′)1 · (t1 − s1) + s1, . . . ,

k(ρ(z), s, f)n · k(z, s, f ′)n · (tn − sn) + sn).

The positive integer k(ρ(z), s, f)i is the smallest exponent such that the corresponding power of
[f(s1, . . . , si−1,−, si+1, . . . , sn)] ∈ π1(X,πρ(z)) lies in the subgroup π1(Y, ρ(z)) ↪→ π1(X,πρ(z)),
and the resulting power is then the class

[f ′(s1, . . . , si−1,−, si+1, . . . , sn)] ∈ π1(Y, ρ(z)).

Similarly, k(z, s, f ′)i is the smallest exponent such that the corresponding power of the class
[f ′(s1, . . . , si−1,−, si+1, . . . , sn)] in turn lies in the even smaller subgroup π1(Z, z) ↪→ π1(Y, ρ(z)) ↪→
π1(X,πρ(z)).
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Hence the product k(ρ(z), s, f)i · k(z, s, f ′)i is the smallest exponent such that the power of
[f(s1, . . . , si−1,−, si+1, . . . , sn)] ∈ π1(X,πρ(z)) lies in the subgroup π1(Z, z) ↪→ π1(X,πρ(z)), i.e.

k(ρ(z), s, f)i · k(z, s, f ′)i = k(z, s, f)i

for each 1 ≤ i ≤ n. Consequently,

πρ(f ′′(t)) = f(k(z, s, f)1 · (t1 − s1) + s1, . . . , k(z, s, f)n · (tn − sn) + sn)

so the map (z, s, f) 7→ (s, f ′′) from PBn(πρ)→ (S1)n × LnZ equals wind(πρ) as claimed.

Forward map followed by covering map: Consider the spans X
id←−← X

f−→ Y and Y
π←−← Z

id−→ Z.
The composite of these is given by the pullback

W

X Z

X Y Z.

f∗π

f̃

id

f

π
id

Hence L†n((π, id) ◦ (id, f)) = L†n(f∗π, f̃) is the span

(S1)n × LnX
ev∗X f∗π
←−−−−−← PBn(f∗π)

((S1)n×Ln(f̃))◦wind(f∗π)−−−−−−−−−−−−−−−−→ (S1)n × LnZ. (2.1)

On the other hand, the composite L†n(π, id) ◦ L†n(id, f) is given by

?

(S1)n × LnX PBn(π)

(S1)n × LnX (S1)n × LnY (S1)n × LnZ.

((S1)n × Ln(f))∗ ev∗Y π ˜(S1)n × Ln(f)

id

(S1)n × Ln(f)

ev∗Y π

wind(π)

The forward map f commutes with the evaluations evX and evY , i.e. the square

(S1)n × LnX X

(S1)n × LnY Y

evX

(S1)n × Ln(f) f

evY

commutes. It follows that the different ways of pulling back the cover π over Y agree to give the same
cover over (S1)n×LnX, i.e. ((S1)n×Ln(f))∗ ev∗Y π = ev∗X f

∗π, so the composite L†n(π, id)◦L†n(id, f)
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can instead be written as

PBn(f∗π)

(S1)n × LnX PBn(π)

(S1)n × LnX (S1)n × LnY (S1)n × LnZ.

ev∗X f∗π ˜(S1)n × Ln(f)

id

(S1)n × Ln(f)

ev∗Y π

wind(π)

This matches the span L†n(f∗π, f̃) in equation (2.1) assuming that we can show that the following
diagram of forward maps commutes:

PBn(f∗π) (S1)n × LnW

PBn(π) (S1)n × LnZ.

wind(f∗π)

˜(S1)n × Ln(f) (S1)n × Ln(f̃)
wind(π)

The space W consists of those pairs (x, z) ∈ X ×Z such that f(x) = π(z). Similarly the n-fold free
loop space LnW consists of pairs of loops (γ, ζ) ∈ LnX × LnZ such that f ◦ γ = π ◦ ζ.

Now PBn(f∗π) consists of quadruples (x, z, s, γ) with (x, z) ∈ W , s ∈ (S1)n, and γ ∈ LnX
satisfying

γ(s) = (f∗π)(x, z) = x.

Hence x equals γ(s) ∈ X.

The map ˜(S1)n × Ln(f) : PBn(f∗π) → PBn(f) takes a quadruple (x, z, s, γ) ∈ PBn(f∗π) to
the triple (z, s, f ◦ γ) ∈ PBn(π).

A loop γ ∈ LnX lifts to a pair (γ, ζ) ∈ LnW precisely whenever the loop f ◦ γ ∈ LnY lifts to a
loop ζ ∈ LnZ. Consequently, the k exponent maps agree

k(x, z, s, γ)i = k(z, s, f ◦ γ)i

for all 1 ≤ i ≤ n.
The map wind(f∗π) winds γ by the exponents k(x, z, s, γ)i to get γ̂ ∈ Ln(X) of Definition 2.7

such that (x, z, s, γ̂) ∈ PBn
lift(f

∗π) and f ◦ γ̂ lifts to ζ ∈ LnZ. Subsequently the map (S1)n×Ln(f̃)
maps the triple (s, γ̂, ζ) ∈ (S1)n × LnW to the pair (s, ζ) ∈ (S1)n × LnZ.

At the same time, wind(π) uses the same exponents k(z, s, f ◦ γ)i as before to wind f ◦ γ and

get f̂ ◦ γ ∈ Ln(Y ) with (z, s, f̂ ◦ γ) ∈ PBn
lift(π). Since wind(π) and wind(f∗π) twist by the same

exponents, we have f̂ ◦ γ = f ◦ γ̂ and therefore we get the same lift to ζ ∈ LnZ. We conclude that

(wind(π) ◦ ( ˜(S1)n × Ln(f)))(x, z, s, γ)

= wind(π)(z, s, f ◦ γ)

= (s, ζ)

= ((S1)n × Ln(f̃))(s, γ̂, ζ)

= (((S1)n × Ln(f̃)) ◦ wind(f∗π))(x, z, s, γ)
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as required.
This completes the fourth and final case in checking that L†n preserves composition of spans in

Cov.

There is a natural alternative to L†n that one might consider. Consider a span X
π←−← Y

f−→ Z in
Cov. Instead of massaging PBn(π) onto the subspace PBn

lift(π) by using wind(π), we can instead
just throw away all the components in PBn

broken(π) from PBn(π). Concretely this means that we

restrict the span L†n(π, f), which goes through PBn(π), to get a span through PBn
lift(π):

PBnlift(π)

PBn(π)

(S1)n × LnX (S1)n × LnZ.

(ev∗ π)|PBn
lift

(π) ((S1)n × Lnf) ◦ wind(π)|PBn
lift

(π)

ev∗ π
((S1)n × Lnf) ◦ wind(π)

The restriction of ev∗ π to PBn
lift(π) is still a covering map – the fiber over an n-fold loop f ∈ LnX

is just empty if f has no lift to an n-fold loop in Y . By construction, wind(π)|PBnlift(π) = idPBnlift(π)
so that the forward map is just (S1)n × Lnf .

Definition 2.10. Given a span X
π←−← Y

f−→ Z in Cov, define L†n|lift(π, f) to be the span

(S1)n × Ln(X)
(ev∗(π))|PBn

lift
(π)

←−−−−−−−−−−−← PBn
lift(π) ∼= (S1)n × Ln(Y )

(S1)n×Ln(f)−−−−−−−−→ (S1)n × Ln(Z).

Remark 2.11. The construction L†n|lift takes covering maps to covering maps and forward maps to

forward maps. The covering map (S1)n ×Ln(Y ) ∼= PBn
lift(π)

ev∗(π)−−−−→→ (S1)n ×Ln(X) coincides with

the covering map (S1)n × Ln(π), so the construction L†n|lift turns out to just recover the functor

(S1)n ×Ln(−) on Cov. While ev : (S1)n ×Ln(X)→ X is not a natural transformation from L†n|lift
to Id (see Example 2.12 below), the functor L†n|lift does play a role in character theory.

Example 2.12. We explain why the functor (S1)n×Ln(−) : Cov→ Cov does not commute with the
evaluation map.

Let π : Y → X be a non-trivial finite-sheeted covering map (ie. not just the projection of a
product Y ∼= X × F →→ X, where F is a finite set). Since the cover is non-trivial there exists some
loop γ ∈ L1X and some point y in the fiber of x := f(0) such that γ does not lift to a loop in
Y starting at y. Therefore the covering map L1(π) : L1Y →→ L1X has smaller fiber over γ ∈ L1X
than the fiber of π over x because L1(π)−1(γ) has no point corresponding to y ∈ π−1(x). Note that
(y, 0, γ) ∈ PB1(π), and since γ does not lift to a loop starting at y, we have (y, 0, γ) 6∈ PB1

lift(π).
We conclude that PB1

lift(π) is a proper subspace of PB1(π), and as such the square

PB1
lift(π)

S1 × L1X Y

X

(ev∗X π)|PB1
lift(π)

ẽvX |PB1
lift(π)

evX π
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is not a pullback, and hence not commutative in Cov when π and ev∗X π are considered to be
backward maps. By Proposition 2.6, PB1

lift(π) is homeomorphic to S1 × L1Y as coverings over
S1×L1X, and compatibly with the evaluation maps. The square above can thus also be written as

S1 × L1Y

S1 × L1X Y

X

idS1 ×L1(π) evY

evX π

and is still not a pullback, so does not commute in Cov.

2.2 Properties of L†n

In this section we state and prove Theorem 1.1.

Theorem 2.13. For n ≥ 0, the endofunctors L†n : Cov→ Cov of Proposition 2.9 have the following
properties:

(i) L†0 is the identity functor on Cov.

(ii) On objects, L†n takes a space X to

L†n(X) = (S1)n × Ln(X).

(iii) L†n is equivariant with respect to the Σn-action on (S1)n×Ln(−) that permutes the coordinates
of both (S1)n and Ln(−), i.e. for every σ ∈ Σn the diagonal action of σ on (S1)n × Ln(−)

induces a natural isomorphism σ : L†n
∼=⇒ L†n.

(iv) On forward maps, i.e. spans X
id←−← X

f−→ Y , the functor L†n coincides with the torus times

the usual free loop space functor in Top so that L†n(id, f) = (S1)n × Ln(f).

(v) For all n ≥ 0, the functor L†n commutes with evaluation maps, i.e. the evaluation maps

evX : (S1)n × Ln(X)→ X form a natural transformation ev : L†n ⇒ IdCov.

(vi) For all n ≥ 0, the partial evaluation maps ∂evX : S1 × Ln+1(X)→ Ln(X) given by

∂ev(t, f) = (s 7→ f(s, t)), for t ∈ S1, s ∈ (S1)n,

give natural transformations (S1)n × ∂ev : L†n+1 ⇒ L†n.

(vii) For all n,m ≥ 0, and any space X, the space (S1)n+m × Ln+m(X) embeds into (S1)m ×
Lm((S1)n × LnX) as those m-fold loops in (S1)n × Ln(X) that are constant in the (S1)n-
coordinate, i.e. the embedding is given by

((s, r), f) 7→
(
r, r′ 7→

(
s, s′ 7→ f(s′, r′)

))
for s, s′ ∈ (S1)n, r, r′ ∈ (S1)m and f ∈ Ln+mX.

These embeddings then form a natural transformation L†n+m(−)⇒ L†m(L†n(−)).
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Proof. (i)-(ii): True by inspection of the definition of L†n leading up to Proposition 2.9.

(iii): Let X
π←−← Y

h−→ Z be a span in Cov, and let σ ∈ Σn be any permutation. Permuting the
coordinates of (S1)n×Ln(X) by Σn also permutes the loops f(s1, . . . , si−1,−, si+1, . . . , sn) : S1 → X
and thus permutes the exponents k(y, s, f)i. It follows that wind(π) respects the action of σ, and
the following diagram commutes as required:

(S1)n × LnX PBn(π) (S1)n × LnY (S1)n × LnZ

(S1)n × LnX PBn(π) (S1)n × LnY (S1)n × LnZ.

σ∼=

ev∗X π

σ∼=

wind(π) (S1)n × Ln(h)

σ∼= σ∼=

ev∗X π wind(π) (S1)n × Ln(h)

(iv): For a span X
id←−← X

f−→ Y where the covering map is just id : X →→ X, we have PBn(id) =

PBn
lift(id) = (S1)n × LnX and wind(id) = id(S1)n×LnX . Hence L†n(id, f) is just the forward map

(S1)n × Ln(f).

(v): Given a span X
π←−← Y

f−→ X, consider the following diagram:

PBn
lift(π) (S1)n × LnY (S1)n × LnZ

PBn(π) Y Z

(S1)n × Ln(X) X.

∼=

ẽvX

(S1)n × Ln(f)

evY evZwind(π)

ẽvX
ev∗X π

f

π

evX

The diagram commutes in Top by straightforward calculation of the maps involved. The lower
square is a pullback and thus commutes in Cov, hence the entire diagram commutes in Cov when
read as a diagram of backward and forward maps from (S1)n × Ln(X) to Z. The outer span

from (S1)n × LnX to (S1)n × LnZ is simply the span L†n(π, f). Hence the diagram shows that

evY ◦L†n(π, f) = (π, f) ◦ evX in the category Cov.
(vii): We postpone the proof of (vi) for the moment and instead proceed with (vii). Let

ι′′3 : (S1)n+m × Ln+m(X)× (S1)m × (S1)n → X be the continuous map given by

ι′′3((s, r), f, r′, s′) = f(s′, r′).

The adjoint map ι′3 : (S1)n+m × Ln+m(X) × (S1)m → Ln(X) is then also continuous, hence so is
the map ι′2 : (S1)n+m × Ln+m(X)× (S1)m → (S1)n × Ln(X) given by

ι′2((s, r), f, r
′) =

(
s, s′ 7→ f(s′, r′)

)
.

Taking adjoints again we have the continuous map ι2 : (S1)n+m×Ln+m(X)→ Lm((S1)n×Ln(X)).
We can then conclude that ιX : (S1)n+m × Ln+m(X)→ (S1)m × Lm((S1)n × Ln(X)) given by

((s, r), f) 7→
(
r, r′ 7→

(
s, s′ 7→ f(s′, r′)

))
(2.2)
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is continuous. To see that ιX is an embedding, choose any basepoint ∗ ∈ (S1)m, and let pr1 : (S1)n×
Ln(X)→ (S1)n and pr2 : (S1)n ×Ln(X)→ Ln(X) be the projections. As above, we can then give
a continuous map ρX : (S1)m × Lm((S1)n × Ln(X))→ (S1)n+m × Ln+m(X) by the expression

ρX(r, g) =
((

pr1(g(∗)), r
)
,
(
(s′, r′) 7→ pr2(g(r′))(s′)

))
.

By inspection one can check that ρX ◦ ιX is the identity on (S1)n+m×Ln+m(X), so ρX is a retract
of ιX , hence ιX is an embedding.

Next we need to show that ι : L†n+m(−) ⇒ L†m(L†n(−)) is a natural transformation. Suppose

therefore that X
π←−← Y

h−→ Z is an arbitrary span in Cov. The span L†m(L†n(π, h)) then takes the
form

PBm(ev∗X π)

(S1)m × Lm((S1)n × Ln(X)) (S1)m × Lm(PBn(π))

(S1)m × Lm((S1)n × Ln(Y ))

(S1)m × Lm((S1)n × Ln(Z)).

ev∗
(S1)n×Ln(X)

ev∗X π wind(ev∗X π)

(S1)m × Lm(wind(π))

(S1)m × Lm((S1)n × Ln(h))

We shall prove that the following diagram commutes in Cov. The span at the top of the diagram
is L†n+m(π, h), and the span at the bottom is L†m(L†n(π, h)).

PBn+m(π)

(S1)n+m × Ln+m(X) PBm((evnX)∗π) (S1)n+m × Ln+m(Z)

(S1)m × Lm((S1)n × Ln(X)) (S1)m × Lm((S1)n × Ln(Z))

(evn+mX )∗π (S1)n+m × Ln+m(h) ◦ windn+m(π)

ιX ιZ

(2.3)

We shall prove that the diagram commutes in three steps. First, the left hand square of (2.3)

PBn+m(π)

(S1)n+m × Ln+m(X) PBm((evnX)∗π)

(S1)m × Lm((S1)n × Ln(X))

(evn+mX )∗π

ιX (evm
(S1)n×Ln(X)

)∗(evnX)∗π

(2.4)
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commutes in Cov if and only if it is a pullback square. The right hand square of (2.3) decomposes
into two parts, and commutativity of these will be step two and three:

PBn+m(π)

PBm((evnX)∗π) (S1)n+m × Ln+m(Y )

(S1)m × Lm(PBn(π)) (S1)n+m × Ln+m(Z)

(S1)m × Lm((S1)n × Ln(Y ))

(S1)m × Lm((S1)n × Ln(Z))

windn+m(π)

ιY

(S1)n+m × Ln+m(h)

ιZ

windm((evnX)∗π)

(S1)m × Lm(windn(π))

(S1)m × Lm((S1)n × Ln(h))

(2.5)

As mentioned the leftmost square (2.4) commutes in Cov if and only if is a pullback square. Note
that the embedding ιX : (S1)n+m × Ln+m(X) → (S1)m × Lm((S1)n × Ln(X)) described in (2.2)
commutes with the evaluation maps of Ln+m, Ln, and Lm since we have equalities

(evnX ◦ evm(S1)n×Ln(X) ◦ιX)((s, r), f)

= (evnX ◦ evm(S1)n×Ln(X))(r, r
′ 7→ (s, s′ 7→ f(s′, r′)))

= evnX(s, s′ 7→ f(s′, r))

= f(s, r)

= evn+mX ((s, r), f).

Hence if we pull the covering map (evm(S1)n×Ln(X))
∗(evnX)∗π back along ιX , then we get the covering

map (evn+mX )∗π, and thus (2.4) is a pullback. Consequently, ιX followed by the backward map
(evm(S1)n×Ln(X))

∗(evnX)∗π equals the span

PBn+m(π)

(S1)n+m × Ln+m(X) PBm((evnX)∗π)

(evn+mX )∗π

in Cov.
Let us next focus on the first square of (2.5), and let (y, (s, r), f) ∈ PBn+m(π). Recall that

((s, r), f) ∈ (S1)n+m×Ln+m(X) and y ∈ Y are required to satisfy y ∈ π−1(f(s, r)). The exponents
k(y, (s, r), f)i, 1 ≤ i ≤ n + m, which are used to define windn+m(π), are determined by ability to
lift (powers of) the loops

γi =

{
f((s1, . . . , si−1,−, si+1, . . . , sn), r) for 1 ≤ i ≤ n,

f(s, (r1, . . . , ri−n−1,−, ri−n+1, . . . , rm)) for n+ 1 ≤ i ≤ m
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from X to Y starting at y ∈ π−1(f(s, r)).
The map between pullbacks PBn+m(π) → PBm((evnX)∗π) takes an element (y, (s, r), f) ∈

PBn+m(π) to the element ((y, s, s′ 7→ f(s′, r)), ιX((s, r), f)) ∈ PBm((evnX)∗π), where (y, s, s′ 7→
f(s′, r)) ∈ PBn(π) and ιX((s, r), f) ∈ (S1)m × Lm((S1)n × Ln(X)) satisfy

((evnX)∗π)(y, s, s′ 7→ f(s′, r)) = (s, s′ 7→ f(s′, r)) = evmX(ιX((s, r), f)).

To determine the value of the map windm((evnX)∗π), we need the exponents

k((y, s, s′ 7→ f(s′, r)), ιX((s, r), f))i

for 1 ≤ i ≤ m, hence we have to take some power of the following loop S1 → (S1)n × Ln(X)

(s, s′ 7→ f(s′, (r1, . . . , ri−1,−, ri+1, . . . , rm)))

and lift it along the covering map (evnX)∗π to get a loop S1 → PBn(π) starting at (y, s, s′ 7→
f(s′, r)) ∈ PBn(π). Lifting a loop along (evnX)∗π is equivalent to lifting the loop composed with
evnX along the covering map π. Hence we are asking to lift some power of the loop

evnX(s, s′ 7→ f(s′, (r1, . . . , ri−1,−, ri+1, . . . , rm)))

= f(s, (r1, . . . , ri−1,−, ri+1, . . . , rm)) = γn+i

along the covering map π starting at y. Consequently we have

k((y, s, s′ 7→ f(s′, r)), ιX((s, r), f))i = k(y, (s, r), f)n+i

for each 1 ≤ i ≤ m.
Let u : (S1)m → Y be the unique lift of the m-fold loop

r′ 7→ f(s, (k(y, (s, r), f)n+1 · (r′1 − r1) + r1, . . . , k(y, (s, r), f)n+m · (r′m − rm) + rm))

from X to Y and starting at u(r) = y. Then windm((evnX)∗π) takes the point

((y, s, s′ 7→ f(s′, r)), ιX((s, r), f)) ∈ PBm((evnX)∗π)

to the following point of (S1)m × Lm(PBn(π)):

(r, r′ 7→ (u(r′), s, s′ 7→
f(s′, (k(y, (s, r), f)n+1 · (r′1 − r1) + r1, . . . , k(y, (s, r), f)n+m · (r′m − rm) + rm)))). (2.6)

Next we need to apply (S1)m × Lm(windn(π)) to the element above. This means we have to
postcompose the m-fold loop (S1)m → PBn(π) with the map windn(π) : PBn(π) → PBn

lift(π) ∼=
(S1)n×Ln(Y ). The m-fold loop (S1)m → PBn(π) lives in a single component of PBn(π), and thus
the value of k : PBn(π)→ (Z>0)

n is constant along the m-fold loop. To find the exponents needed
to calculate windn(π) along the m-fold loop, it is therefore enough to determine the exponents at
any single point, say for instance at the point r ∈ (S1)m. The m-fold loop (S1)m → PBn(π) in
(2.6) is

r′ 7→ (u(r′), s, s′ 7→ f(s′, (k(y, (s, r), f)n+1 · (r′1 − r1) + r1, . . . , k(y, (s, r), f)n+m · (r′m − rm) + rm)))

which evaluated at r simply gives us the following point of PBn(π):

(y, s, s′ 7→ f(s′, r)).
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The exponent k(y, s, s′ 7→ f(s′, r))i for 1 ≤ i ≤ n is determined by lifting a power of the loop

f((s1, . . . , si−1,−, si+1, . . . , sn), r) = γi

from X to Y starting at y ∈ π−1(f(s, r)). We therefore conclude that

k(y, s, s′ 7→ f(s′, r))i = k(y, (s, r), f)i

for each 1 ≤ i ≤ n. If we apply (S1)m×Lm(windn(π)) to our element of (S1)m×Lm(PBn(π)) from
(2.6), we then arrive at the following element of (S1)m × Lm(PBn

lift(π)):

(r, r′ 7→ (u(r′), s, s′ 7→ f((k(y, (s, r), f)1 · (s′1 − s1) + s1, . . . , k(y, (s, r), f)n · (s′n − sn) + sn),

(k(y, (s, r), f)n+1 · (r′1 − r1) + r1, . . . , k(y, (s, r), f)n+m · (r′m − rm) + rm)))). (2.7)

Let g : (S1)n+m → Y be the unique lift of

(s′, r′) 7→ f((k(y, (s, r), f)1 · (s′1 − s1) + s1, . . . , k(y, (s, r), f)n · (s′n − sn) + sn),

(k(y, (s, r), f)n+1 · (r′1 − r1) + r1, . . . , k(y, (s, r), f)n+m · (r′m − rm) + rm))

from X to Y starting at y, hence in particular g(s, r′) = u(r′). Then the element of (2.7) in
(S1)m × Lm(PBn

lift(π)) is equivalent to the following point of (S1)m × Lm((S1)n × Ln(Y )):

(r, r′ 7→ (s, s′ 7→ g(s′, r′))) = ιY ((s, r), g) = (ιY ◦ windn+m(π))((s, r), f).

Since ((s, r), f) ∈ PBn+m(π) was arbitrary, we conclude that the first square of (2.5) commutes.
Commutativity of the second square in (2.5) is basically stating that ι : (S1)n+m×Ln+m(−) ↪→

(S1)m × Lm((S1)n × Ln(−)) is natural in Top, and as such is significantly easier to confirm. Let
((s, r), f) ∈ (S1)n+m × Ln+m(Y ). We then do the straighforward calculation

((S1)m × Lm((S1)n × Ln(h)))(ιY ((s, r), f))

= ((S1)m × Lm((S1)n × Ln(h)))(r, r′ 7→ (s, s′ 7→ f(s′, r′)))

= (r, r′ 7→ (s, s′ 7→ (h ◦ f)(s′, r′)))

= ιZ((s, r), h ◦ f)

= ιZ(((S1)n+m × Ln+m(h))((s, r), f)).

The second square of (2.5) commutes, and since the entire diagram (2.3) thus commutes in Cov, we

conclude that ι : L†n+m(−)⇒ L†m(L†n(−)) is a natural transformation of endofunctors Cov→ Cov.
(vi): If we combine (vii) with (v), we get a natural transformation

L†n+1(−)
ι

=⇒ L†1(L
†
n(−))

ev
=⇒ L†n(−)

where the second transformation evaluates S1 × L1(L†n(−)) → L†n(−). Given any space X, the
combined map (S1)n+1 × Ln+1(X)→ (S1)n × Ln(X) takes a pair ((s, r), f) ∈ (S1)n+1 × Ln+1(X)
to

ev1
(S1)n×Ln(X)(ιX((s, r), f))

= ev1
(S1)n×Ln(X)(r, r

′ 7→ (s, s′ 7→ f(s′, r′)))

= (s, s′ 7→ f(s, r)).

This is precisely the identity map on (S1)n times the partial evaluation map S1×Ln+1(X)→ Ln(X).
Hence (S1)n × ∂ev coincides with the natural transformation

L†n+1(−)
ι

=⇒ L†1(L
†
n(−))

ev
=⇒ L†n(−).
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Remark 2.14. The constructions and results of this section pass to the homotopy category of Cov.
A homotopy class of maps X → Z in Cov is given by a choice of finite cover Y of X (up to
isomorphism) and a homotopy class of maps from Y to Z. The claim then follows from the fact

that L†n(−) is equal to (S1)n×Ln(−) on forward maps and (S1)n×Ln(−) passes to the homotopy
category of spaces.

3 Bisets and free loop spaces for finite groups

The goal of this section is to apply the results of the previous section to give explicit formulas
for L†n on the full subcategory of Ho(Cov) consisting of spaces equivalent to a finite coproduct of
classifying spaces of finite groups. This is possible because of the close relationship between this
full subcategory of Ho(Cov) and the Burnside category of finite groups [8]. In fact, these formulas

for L†n extend to give an endofunctor of the Burnside category of (formal unions of) finite groups.
If G is a finite group then every connected covering space over the usual model for BG is

homeomorphic to EG×GG/R→→ BG for some subgroup R ≤ G determined up to G-conjugation.
The total space of this cover is homotopy equivalent to BR. Given a third finite group H, any map
BR→ BH is homotopic to B(ϕ) for some group homomorphism ϕ : R→ H determined up to R-
and H-conjugation. Thus any span in Cov from BG to BH is homotopic to a union of connected
spans of the form BG←← EG/R ' BR→ BH. Such spans can be modeled algebraically by H-free
(G,H)-bisets (see Proposition 3.8). Since we wish to model free loop spaces LnBG, we shall also
consider disjoint unions of classifying spaces and model these by formal unions of finite groups.

3.1 Burnside modules for finite groups and formal unions of finite groups

Definition 3.1. Let G and H be finite groups. We let AG+(G,H) denote the commutative monoid
of isomorphism classes of finite (G,H)-bisets with free H-action and disjoint union as addition.
Furthermore, let AG(G,H) denote the Grothendieck group of the commutative monoid AG+(G,H).
We will refer to the elements in AG(G,H) as virtual bisets and to AG(G,H) as the Burnside module
from G to H.

Given a third group K, we have a composition map

◦ : AG(H,K)× AG(G,H) → AG(G,K),

Y , X 7→ X ×H Y,

both on the level of commutative monoids and the Grothendieck groups.
The composition map is bilinear. The composition map necessarily switches the order of X and

Y so that the acting groups match up. In an attempt to lessen the confusion when we compose
many bisets at once, we shall instead exclusively use “right-composition” for bisets:

� : AG(G,H)× AG(H,K) → AG(G,K),

X , Y 7→ X ×H Y.

If we think of AG(G,H) as denoting morphisms from G to H (in the biset category AG defined
below), “right-composition” is the commuting diagram

G H

K.

X

X � Y
Y
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The commutative monoid AG+(G,H) is free with generators given by the isomorphism classes
of transitive H-free (G,H)-bisets – these also form a canonical basis of AG(G,H) as a Z-module.
The transitive H-free (G,H)-bisets are of the form

G×ϕR H = (G×H)
/

(gr, h) ∼ (g, ϕ(r)h),

where R ≤ G is a subgroup of G (taken up to conjugacy in G) and ϕ : R → H is a group
homomorphism (taken up to conjugacy in G and H). We will denote these (G,H)-bisets by [R,ϕ]HG
or just [R,ϕ] when G and H are clear from context. It is also common to denote a virtual biset
X ∈ AG(G,H) as XH

G when G and H are not clear from context.

Convention 3.2. Given X ∈ AG(G,H), we can write X as a linear combination of transitive
bisets: ∑

(R,ϕ)

cR,ϕ · [R,ϕ]HG .

The summation runs over all R ≤ G and ϕ : R → H (not taken up to conjugacy). The coefficient
function c(−) is a choice of function from the set of all pairs (R,ϕ) to Z such that the sum of
coefficients cR′,ϕ′ over the pairs (G,H)-conjugate to (R,ϕ) is the number of copies of the orbit
[R,ϕ]HG in X.

In particular the linear combination above is not unique and we allow isomorphic biset orbits
to be part of the sum for several different but conjugate pairs (R,ϕ). If we require c(−) to be con-
centrated on chosen representatives for the conjugacy classes of pairs, then the linear combination
is unique.

We will now extend the notion of Burnside module to a formal union of finite groups. A formal
union of finite groups is an ordered finite tuple of finite groups (repetition is permitted).

Definition 3.3. Let G and H be formal unions of finite groups. Suppose G = G1 t · · · t Gn and
H = H1 t · · · tHm are the decompositions into groups – the components of G and H.

We define AG(G,H) to be the set of matrices of virtual bisets between the components, where
the rows correspond to the components of G and the columns correspond to the components of H.
Hence X ∈ AG(G,H) is an (n×m)-matrix with entries

Xi,j ∈ AG(Gi, Hj) for 1 ≤ i ≤ n, 1 ≤ j ≤ m.

The composition X � Y for X ∈ AG(G,H) and Y ∈ AG(H,K) is just the usual composition of
matrices:

(X � Y )i,k =
m∑
j=1

Xi,j � Yj,k.

Similarly, we let AG+(G,H) ⊆ AG(G,H) denote the subset of matrices X in which every matrix
entry is a biset Xi,j ∈ AG+(Gi, Hj).

It follows from the definition above that changing the order in a formal union of finite groups
results in a canonically isomorphic finite union of finite groups.

Definition 3.4. We let AG denote the category in which the objects are formal unions of finite
groups and, for any pair of objects G,H, the set of morphisms from G to H is the Burnside module
AG(G,H) of virtual biset matrices.

Similarly, the category AG+ has morphism sets AG+(G,H).
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Remark 3.5. The category Grp of finite groups and homomorphisms maps to AG+ (and AG) by
sending a group homomorphism ϕ : G → H to the transitive (G,H)-biset [G,ϕ]HG ∈ AG+(G,H),
which is isomorphic to the biset HH

G,ϕ, where G acts on H from the left through ϕ.

The category of finite groupoids has a well-behaved notion of a finite covering map [8, Definition
1.6]. The classifying space functor takes a finite cover of finite groupoids to a finite cover of spaces. It
is convenient to use the homotopy category of the category of spans of finite groupoids in which the
wrong way map is a finite covering map as an intermediate category between AG+ and Ho(Cov).
Any finite groupoid is equivalent to a coproduct of finite groups, where we view a group as being
a groupoid with a single object.

Given a finite group G and a G-action on a set X, we will write X//G for the associated action
groupoid. We will use B to denote the realization of a groupoid as well as the map AG+ → Ho(Cov)
defined below.

Definition 3.6. We define a functor B : AG+ → Ho(Cov) as follow. For a formal union of groups
G = G1 t · · · t Gn, we let BG = BG1 t · · · t BGn, which is the realization of the groupoid
(∗//G1) t · · · t (∗//Gn).

Suppose G and H are finite groups and X ∈ AG+(G,H) is a biset. The group G ×H acts on
X from the right by x(g, h) = g−1xh. Because X is H-free, we have an equivalence of groupoids
X//(G×H) ' (X/H)//G. The equivalence depends on a choice of representatives for the H-orbits
of X, but different choices result in naturally isomorphic equivalences. Hence we have a canonical
well-defined equivalence B(X//(G×H)) ' B((X/H)//G) in Ho(Top).

The functor B : AG+ → Ho(Cov) takes the biset X ∈ AG+(G,H) to the realization of the span
of groupoids

(X/H)//G X //(G×H)

∗//G ∗//H.

'

The map of groupoids (X/H) //G →→ ∗ //G realizes to a finite sheeted covering map, so we get a
well-defined span from BG to BH in Ho(Cov).

For formal unions of groups G = G1 t · · · t Gn and H = H1 t · · · t Hm and a matrix X ∈
AG+(G,H) of bisets, all the spans

∗//Gi ←← (Xi,j/Hj)//Gj ' Xi,j //(Gi ×Hj)→ ∗//Hj

combine to give a span from BG to BH.
This construction is closely related to the functor defined in [8, Section 5].

Definition 3.7. The functor B : AG+ → Ho(Cov) takes a transitive (G,H)-biset [R,ϕ]HG and gives
the span Bϕ ◦ trGR : BG→ BH, i.e. the span

EG/R BG

BG BH

'
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in Ho(Cov). Since there is a canonical isomorphism in Ho(Cov) between EG/R and BG, we will

abuse notation and write trGR for either the span BG←← EG/R
'−→ BR or for the wrong-way map

BG←← EG/R by itself.

Proposition 3.8. The functor B : AG+ → Ho(Cov) is fully faithful and embeds AG+ as the
full subcategory of Ho(Cov) spanned by disjoint unions of classifying spaces for finite groups. The
addition of bisets in AG+(G,H) correspond to the disjoint union of spans between BG and BH.

Proof. This is the homotopy category version of [8, Theorem 5.2].

3.2 Free loop spaces for classifying spaces of finite groups

Since S1 ' BZ, the n-fold free loop space LnBG is equivalent to Map(BZn, BG) for any formal
union of finite groups G. Every homomorphism Zn → G factors through (Z/`)n for large enough `,
so we have

LnBG ' colim
`∈(Z>0,divisibility)

Map(B(Z/`)n, BG)

for any finite group G. From now on we replace S1 with the classifying space B(Z/`) for any `
sufficiently large (e.g. ` divisible by the order of G).

A homomorphism (Z/`)n → G picks out a commuting n-tuple in G, in the case of a formal
union of groups, each commuting n-tuple lies in a single component of G. The free loop space
LnBG is modeled algebraically by the mapping groupoid Map(∗ // (Z/`)n, ∗ //G) of functors and
natural transformations. This mapping groupoid is isomorphic as groupoids to the coproduct of
action groupoids ⊔

i

(commuting n-tuples in Gi)//Gi,

where each component Gi of G acts on the commuting n-tuples in Gi by conjugation.

Definition 3.9. For a finite group G, let G(n) denote the set of commuting n-tuples of elements in
G and let G[n] denote the collection of G-conjugacy classes of commuting n-tuples in G, where we
consider G(0) to consist of the unique empty/trivial 0-tuple. For a formal union G = G1 t · · · tGn,

we will write G(n) for the disjoint union of the finite sets G
(n)
i and G[n] for the disjoint union of the

finite sets G
[n]
i .

Abusing notation, we will occasionally write a ∈ G when a is a tuple of elements in G.

Definition 3.10. For an n-tuple a in a finite group G, the centralizer CG(a) is defined as

CG(a) := {g ∈ G | g−1aig = ai for 1 ≤ i ≤ n}

=

n⋂
i=1

CG(ai) = CG(〈a1, . . . , an〉).

When G is a formal union, and a is an n-tuple in G, we define the centralizer CG(a) to be the
centralizer inside the component of G containing a. As such, the centralizer CG(a) is always a finite
group and not a formal union.

The component of LnBG corresponding to a particular commuting n-tuple a is homotopy
equivalent to BCG(a).
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Definition 3.11. For ease of notation, we will write LnG for the formal union

LnG :=
∐

[a]∈G[n]

CG(a),

for some choice of representatives for the conjugacy classes of commuting n-tuples in G.
Note that if G is a formal union, G = G1 t · · · t Gm, then LnG decomposes componentwise

LnG = Ln(G1) t · · · t Ln(Gm).

For a finite group G, if we view the centralizers CG(a) as categories with single objects, then
the formal union LnG is equivalent as groupoids to

G(n) //G.

Hence the formal union LnG models the n-fold free loop space of BG up to homotopy:

B(LnG) =
∐

[a]∈G[n]

BCG(a) ' Ln(BG).

There is a possible ambiguity in how the algebraic model LnG depends on the choice of represen-
tatives for the conjugacy classes of commuting n-tuples. However, in AG (and Ho(Top)) there are
canonical equivalences between any two choices of representatives:

Lemma 3.12. Let a be an n-tuple of commuting elements in G, and suppose that a is another
n-tuple conjugate to a. Any element g ∈ G that conjugates a to a also induces cg : CG(a)→ CG(a),
and any such conjugation gives rise to a biset

ζaa ∈ AG(CG(a), CG(a)),

which is independent of the choice of conjugating element.
If a
′ is a third n-tuple conjugate to a (and therefore a), then the chosen bisets are compatible

with composition:

ζa
′
a = ζaa � ζ

a
′

a
.

Proof. Given any two elements g, h ∈ G with g−1ag = h−1ah = a, we have g−1h ∈ CG(a). Hence
the two conjugation maps cg, ch : CG(a) → CG(a) are themselves conjugate as maps into CG(a),
and as such they give rise to the same biset

ζaa = [CG(a), cg]
CG(a)
CG(a)

= [CG(a), ch]
CG(a)
CG(a)

.

Suppose g′ ∈ G satisfies (g′)−1ag′ = a
′. Then gg′ conjugates a to a

′ and we have

ζaa � ζ
a
′

a
= [CG(a), cg]

CG(a)
CG(a)

� [CG(a), cg′ ]
CG(a

′)
CG(a)

= [CG(a), cgg′ ]
CG(a

′)
CG(a)

= ζa
′
a

as required.

In view of Lemma 3.12, given two G-conjugate n-tuples a, a of commuting elements in a finite
group G the diagram of groupoids

(commuting n-tuples in G)//G

CG(a)

CG(a)

cg
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commutes in Ho(Cov) and Ho(Top). Hence we have a well-defined equivalence

Lemma 3.13. For every formal union of groups G, and n ≥ 0, there is a canonical equivalence

B(LnG) =
∐

[a]∈G[n]

BCG(a)
'−→ Ln(BG)

in Ho(Cov) and Ho(Top).

Convention 3.14. While Lemma 3.12 states that different choices of representatives for the conju-
gacy classes of tuples are equivalent, it will be necessary later on to fix the choice of representatives
once and for all and to explicitly include the isomorphisms of Lemma 3.12 in formulas. When nec-
essary, we will therefore assume that a choice of representatives has been made for all G-conjugacy
classes of commuting n-tuples for all n ≥ 0.

We will furthermore assume that each representative (n+ 1)-tuple (a1, . . . , an+1) is chosen such
that the first n elements (a1, . . . , an) form one of the previously chosen representative n-tuples.

The convention will be particularly relevant when we apply homomorphisms to n-tuples: if we
apply ϕ : G→ H to a representative a, we cannot assume that ϕ(a) will always be a representative
in the codomain as well. Similarly, if we consider the action of Σn on G[n] permuting the coordinates
of the tuple, we cannot ensure that all permutations of a representative a are also representatives
– e.g. a and a permutation σ(a) might be conjugate in G but different, so we cannot choose both
to be representatives of the conjugacy class.

Next, the endofunctor Ln : Cov→ Cov has a simple description in the realm of classifying spaces
and bisets as follows. The functor Ln applied to a union of classifying spaces is again a union of
classifying spaces up to homotopy. The equivalence of AG+ with the full subcategory of Ho(Cov)
spanned by disjoint unions of classifying spaces therefore makes Ln an endofunctor on AG+ as well
since Ln is an endofunctor on Ho(Cov) by Remark 2.14. The endofunctor Ln on Cov preserves the
monoid structure on Cov(X,Y ), i.e. disjoint union of spans. Hence Ln : AG+ → AG+ extends to
an endofunctor Ln : AG→ AG by linearity on virtual bisets.

Suppose G and H are formal unions of finite groups and suppose M ∈ AG+(G,H) is a matrix
of bisets. By the embedding of categories in Proposition 3.8, M induces a span BM ∈ [BG,BH]
in Ho(Cov). Applying Ln : Cov→ Cov produces a span between n-fold free loop spaces Ln(BM) ∈
[LnBG,LnBH]. By Lemma 3.13 and Proposition 3.8, we have canonical isomorphisms of morphism
sets

Ln(BM) ∈ [LnBG,LnBH] ∼= [B(LnG), B(LnH)] ∼= AG+(LnG,LnH).

The resulting matrix in AG+(LnG,LnH) is the one we denote by LnM .
Given two formal unions of groups G and H, the functor Ln : AG → AG acts componentwise

on G and H. For every biset matrix M ∈ AG(G,H) the resulting matrix Ln(M) ∈ AG(LnG,LnH)
is therefore a block matrix with a block corresponding to each pair Ln(Gi) and Ln(Hj) and the
block equals Ln(Mi,j) ∈ AG(Ln(Gi),Ln(Hj)). To describe Ln : AG → AG it is therefore sufficient
to consider groups (rather than formal unions of groups).

Proposition 3.15. Let G and H be finite groups and suppose M ∈ AG+(G,H) is a (G,H)-biset.
The matrix Ln(M) ∈ AG(LnG,LnH) has entries parametrised by our chosen representatives of
conjugacy classes of commuting n-tuples a in G and commuting n-tuples b in H, and the entry
Ln(M)a,b ∈ AG(CG(a), CH(b)) has the form

Ln(M)a,b = aM b = {m ∈M | aim = mbi for all 1 ≤ i ≤ n}.

The centralizer CG(a) acts on the left of the fixed point set aM b and the centralizer CH(b) acts on
the right. The formula for Ln(M) extends linearly to all virtual bisets in AG(G,H).
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Remark 3.16. In the terminology of [4], we have aM b = NM (a, b). That is, we can think of aM b as
consisting of the elements m ∈M “conjugating” m−1am = b. The inverse m−1 doesn’t make sense,
so we require am = mb instead.

Proof. By Definition 3.6 the span BM from BG to BH in Ho(Cov) takes the following form on
the level of groupoids:

∗//G←← (M/H)//G 'M//(G×H)→ ∗//H.

Applying Ln : Ho(Cov) → Ho(Cov) corresponds to applying Map(∗ // (Z/`)n,−) on the level of
groupoids to give us

Map(∗//(Z/`)n, ∗//G)←← Map(∗//(Z/`)n, (M/H)//G)

' Map(∗//(Z/`)n,M //(G×H))→ Map(∗//(Z/`)n, ∗//H).

Each functor from ∗ // (Z/`)n into one of the other groupoids picks out an object and an n-tuple
of commuting automorphisms of that object. A natural transformation between functors can then
be described as acting on the objects by any group element, and conjugating the n-tuple by the
same element. The mapping groupoids in the span above are therefore isomorphic to the action
groupoids below:

(commuting n-tuples in G)//G

←←
(

pairs of a comm. n-tuple a in G
and an x ∈M/H fixed by a

)//
G

'

 comm. n-tuple a in G,
comm. n-tuple b in H,

and x ∈ aM b

//(G×H)

→ (commuting n-tuples in H)//H.

Let L ∈ AG+(LnG,LnH) be the matrix of bisets with entries

La,b = aM b ∈ AG+(CG(a), CH(b)),

where a and b run through our chosen representatives of conjugacy classes of commuting n-tuples in
G and H. The span BL from BLnG to BLnH then has the following form on the level of groupoids:∐

[a]∈G[n]

∗//CG(a)←←
∐

[a]∈G[n]

( ∐
[b]∈H[n]

aM b/CH(b)
)//

CG(a)

'
∐

[a]∈G[n]

[b]∈H[n]

aM b //(CG(a)× CH(b))→
∐

[a]∈G[n]

∗//CH(b).

The map of CG(a)-sets
∐

[b]∈H[n]
aM b/CH(b) → aM/H is a bijection because, for each coset xH ∈

aM/H being fixed by a, there is a unique tuple b with ax = xb, and changing the representative of
the coset xH changes b up to H-conjugation.
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We now have a commutative diagram of groupoids where each row is an equivalence:

∐
[a]∈G[n]

∗//CG(a) (comm. n-tuples in G)//G

∐
[a]∈G[n]

( ∐
[b]∈H[n]

aM b/CH(b)
)//

CG(a)

(
comm. n-tuple a in G,

and x ∈M/H fixed by a

)//
G

∐
[a]∈G[n]

[b]∈H[n]

aM b //(CG(a)× CH(b))

 comm. n-tuple a in G,
comm. n-tuple b in H,

and x ∈ aM b

//(G×H)

∐
[a]∈G[n]

∗//CH(b) (comm. n-tuples in H)//H.

'

'

'

'

'

'

The level-wise equivalences of groupoids show that the span BL (the left column) from BLnG
to BLnH corresponds to the span LnBM (the right column) from LnBG to LnBH under the
bijection of morphism sets

[BLnG,BLnH] ∼= [LnBG,LnBH]

coming from the equivalence in Lemma 3.13. Finally, the span BL (and hence LnBM) corresponds
to the matrix of bisets L ∈ AG+(LnG,LnH) as required.

Remark 3.17. We note two special cases of the description of Ln(M) above: First consider the case
in which M comes from an actual group homomorphism ϕ : G→ H, i.e. M = [G,ϕ]HG = ϕH id. The

set of fixed points aM b is empty unless b is H-conjugate to ϕ(a). In this case, choose some h0 ∈ H
that conjugates ϕ(a) to b. We then have ζ

b
ϕ(a) = [CH(ϕ(a)), ch0 ] ∈ AG(CH(ϕ(a)), CH(b)) by the

isomorphism of Lemma 3.12, and we get

aM b = aMϕ(a) � ζbϕ(a) = a(ϕH id)ϕ(a) � ζbϕ(a) = {h ∈ H | ϕ(ai)h = hϕ(ai)} � ζbϕ(a)
= ϕ

(
CH(ϕ(a))

)
id
� ζbϕ(a) = [CG(a), ϕ]

CH(ϕ(a))
CG(a)

� ζbϕ(a) = [CG(a), ch0 ◦ ϕ]
CH(b)
CG(a)

.

Thus we simply get the biset version of the homomorphism ϕ : CG(a)→ CH(ϕ(a)) restricted from
ϕ : G→ H, followed by mapping ϕ(a) to the representative, b, of its conjugacy class.

Next consider the case of a transfer map trGH from G to a subgroup H; this is the case M =
[H, id]HG = GGH . The fixed point set a(GGH)b is the collection of g ∈ G that conjugate a to b, i.e.
g−1aig = bi for 1 ≤ i ≤ n. Any two g’s that conjugate a to b differ by an element in the centralizer
CG(a), so a(GGH)b is a transitive (CG(a), CH(b))-biset. Choosing a representative g0 ∈ a(GGH)b,
we have

a(GGH)b = [CG(a) ∩ g0Hg−10 , cg0 ]
CH(b)
CG(a)

.

This is the transfer from CG(a) to CG(a) ∩ g0Hg−10 = Cg0Hg−1
0

(a) followed by conjugation onto

CH(b).
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Both of the examples in Remark 3.17 are special cases of the following corollary that expresses
the orbit decomposition of Ln(M)a,b in general.

Corollary 3.18. Let G and H be finite groups and suppose M ∈ AG(G,H) is a virtual (G,H)-
biset. Furthermore, let a in G and b in H be chosen representatives for conjugacy classes of com-
muting n-tuples. Consider the restriction of M to the centralizer of a, and write MH

CG(a)
as a linear

combination of basis elements (recalling Convention 3.2):

MH
CG(a)

=
∑
(R,ϕ)

cR,ϕ · [R,ϕ]HCG(a),

where R ≤ CG(a) and ϕ : R→ H.
The matrix entry Ln(M)a,b then satisfies the formula

Ln(M)a,b =
∑

(R,ϕ) s.t. a ∈ R and
ϕ(a) is H-conjugate to b

cR,ϕ · [R,ϕ]
CH(ϕ(a))
CG(a)

� ζbϕ(a),

with R, ϕ, and cR,ϕ as in the linear combination above.

Proof. By Proposition 3.15 we have Ln(M)a,b = aM b, and since a ∈ CG(a), the restriction MH
CG(a)

has the same set of fixed points aM b = a(MH
CG(a)

)b.

We then study the fixed points for each of the basis elements [R,ϕ]HCG(a) in the decomposition

of MH
CG(a)

. An element of a([R,ϕ]HCG(a))
b is represented by a pair (g, h) ∈ CG(a) × H such that

g−1ag ∈ R and h−1ϕ(g−1ag)h = b. The element g centralizes the n-tuple a, so we just require
a ∈ R and h−1ϕ(a)h = b. We can change g to be any element of CG(a), and h can vary by any
element in CH(ϕ(a)) on the left (or by any element of CH(b) on the right) and the requirements
will still be satisfied.

Consequently, the set of fixed points a([R,ϕ]HCG(a))
b is empty unless a ∈ R and ϕ(a) is H-

conjugate to b, in which case we get a single (CG(a), CH(b))-orbit of the form

[R, ch ◦ ϕ]
CH(b)
CG(a)

= [R,ϕ]
CH(ϕ(a))
CG(a)

◦ ζbϕ(a).

Summing over all the pairs (R,ϕ) gives the formula as claimed.

Remark 3.19. The formula of Proposition 3.15 relates to class functions for groups as follows. Let
H ≤ G finite groups. Consider the free abelian group Z[π0LnBG] = H0(LnBG). The ring of abelian
group homomorphisms Hom(Z[π0LnBG],C) is isomorphic to the ring of C-valued generalized class
functions for G (in the sense of [5]). The transfer trGH for Z[π0Ln(−)] from the component CG(a)
to CG(a)∩ gHg−1 is just multiplication with the index |CG(a)/CG(a)∩ gHg−1|. The induced map
(trGH)∗ : Z[π0LnBG]→ Z[π0LnBH] therefore takes the form

(trGH)∗([a]G) =
∑

[b]H s.t.
∃g:g−1ag=b

|CG(a)/CG(a) ∩ gHg−1| · [b]H

=
∑

[b]H s.t.
∃g:g−1ag=b

∑
z∈CG(a)/CG(a)∩gHg−1

[(zg)−1a(zg)]H

=
∑

g∈G/H s.t.
g−1ag∈H

[g−1ag]H .
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Characters for complex G-representations are in particular C-valued class functions for G. Since
the components of L1BG correspond to conjugacy classes of elements in G, we can think of C-
valued characters as giving class functions in Hom(Z[π0L1BG],C). The biset structure on the
functors L1(−) and Z[π0L1B(−)] induce a biset structure on class functions for finite groups. The
calculations above and in Remark 3.17 show that the restriction and transfer maps considered here
coincide with the usual formulas for restriction and induction of characters. In the case of Ln(−)
and Z[π0LnB(−)], these formulas are closely related to those that appear in [5, Theorem D].

3.3 Evaluation maps and L†n for finite groups

In this subsection we will give explicit formulas for the evaluation map (S1)n × Ln(BG) → BG

and for L†nX, when X is a (G,H)-biset. After this, we reformulate the results of Theorem 2.13 in
terms of these formulas for bisets.

The evaluation map (S1)n × LnBG ev−→ BG, or for ` large enough, the map

B(Z/`)n ×Map(B(Z/`)n, BG)
ev−→ BG,

is modeled by groupoids as the functor

(∗//(Z/`)n)×Map(∗//(Z/`)n, ∗//G)→ ∗//G.

A morphism on the left is a pair consisting of a morphism t = (t1, . . . , tn) in ∗ // (Z/`)n and a
natural transformation g : a ⇒ b between commuting n-tuples in G. The evaluation functor sends
such a pair (t, g) to the group element/morphism at11 · · · atnn g = gbt11 · · · btnn in ∗//G. Note that this
is the evaluation map in the 2-category of groupoids.

Via the equivalence LnBG ' BLnG of Lemma 3.13, we get the following algebraic model
ev : (Z/`)n ×LnG→ G for the evaluation map. For an n-tuple a of group elements and an n-tuple
t of integers, we let at denote the pointwise exponentiation (at11 , . . . , a

tn
n ).

Lemma 3.20. The evaluation map ev : (Z/`)n × LnG→ G, restricted to the component (Z/`)n ×
CG(a) of (Z/`)n × LnG corresponding to a commuting n-tuple a, is given by the group homomor-
phism eva : (Z/`)n × CG(a)→ CG(a) ≤ G with

eva(t, z) = at11 · · · a
tn
n · z = (

n∏
i=1

atii ) · z

for all t ∈ (Z/`)n and z ∈ CG(a).

In order to replace LnBG with Map(B(Z/`)n, BG) we need ` to be large enough, e.g. a multiple
of |G|. However the same ` does not work for all finite groups at the same time, and so the algebraic
evaluation map ev : (Z/`)n × LnG→ G only makes sense on a subclass of the objects in AG.

If AG` is the full subcategory of AG spanned by the unions of finite groups where all elements
have order dividing `, then we have a well defined functor (Z/`)n ×Ln(−) : AG` → AG` that does
model S1 × Ln(B(−)). When ` divides m we have a fully faithful inclusion AG` ⊆ AGm as well
as a natural map (Z/m)n × LnG→ (Z/`)n × LnG in AGm that is compatible with the evaluation
map, for G ∈ AG`.

Convention 3.21. Given any finite collection of objects in AG it is possible to find some ` such
that all of the objects are contained in AG`. As the value of ` does not play a critical role in what
follows, we shall ignore this ambiguity from now on and suppose that we have chosen ` large enough
for all the groups involved in the discussions.
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To construct the functors L†n : Cov→ Cov in Section 2, we took the pullback along ev : (S1)n×
LnX → X of a finite sheeted covering map X ←← Y to form the square

PBn(π)

(S1)n × LnX Y

X.

ev∗X π ẽvX

evX π

For finite groups, the covering maps have the form BG
trGR←−−← EG/R ' BR for subgroups R ≤ G.

By the equivalence of categories AG+ ' Ho(Cov) of Proposition 3.8, the backward map trGR is
represented by the (G,R)-biset [R, id]RG = GRG. Determining the pullback PBn(trGR) is equivalent
to asking how the composite [(Z/`)n × LnG, ev] � [R, id]RG decomposes into transitive bisets in
AG+((Z/`)n × LnG,R).

Consider a commuting n-tuple a in G and the corresponding component (Z/`)n × CG(a) of
(Z/`)n×LnG. If we decompose [(Z/`)n×CG(a), eva]� [R, id]RG into orbits as a linear combination

[(Z/`)n × CG(a), eva]� [R, id]RG =
∑

D≤(Z/`)n×CG(a)
ϕ : D→R

cD,ϕ · [D,ϕ]R(Z/`)n×CG(a)

with coefficients cD,ϕ ∈ Z≥0, then the part of PBn(trGR) that sits over the component B(Z/`)n ×
BCG(a) is homotopy equivalent to the collection of cD,ϕ copies of the classifying space BD for each
pair (D,ϕ), with the maps Bϕ : BD → BR forming the components of PBn(trGR) → BR in the
pullback.

The same approach works for a general (G,H)-biset M . The composite [(Z/`)n×LnG, ev]�M ∈
AG+((Z/`)n × LnG,H) models the composed span

PBn(π)

(S1)n ×BLnG |(M/H)//G|

BG |M//G×H|

BH.

ev∗ π

ev π
'

(3.1)

Hence if we decompose [(Z/`)n × CG(a), eva]�M into orbits

[(Z/`)n × CG(a), eva]�M =
∑

D≤(Z/`)n×CG(a)
ϕ : D→H

cD,ϕ · [D,ϕ]H(Z/`)n×CG(a),

then the part of PBn(π) that lies over the component (S1)n×BCG(a) is homotopy equivalent to cD,ϕ
copies of B(D), and the maps Bϕ : BD → BH, put together, make up the map PBn(π)→ BH.
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The following lemma gives us some control on the subgroups D ≤ (Z/`)n × CG(a) that appear
in such pullbacks.

Lemma 3.22. Let G and H be finite groups and let M ∈ AG(G,H) be a virtual biset. Suppose a
is an n-tuple of commuting elements in G.

Consider the restriction of M to the centralizer of a:

MH
CG(a)

= [CG(a), incl]GCG(a) �M ∈ AG(CG(a), H).

Recalling Convention 3.2, write MH
CG(a)

as a linear combination of basis elements

MH
CG(a)

=
∑
(R,ϕ)

cR,ϕ · [R,ϕ]HCG(a), (3.2)

where R ≤ CG(a) and ϕ : R→ H.
The composite ev�M ∈ AG((Z/`)n×LnG,H) on the component (Z/`)n×CG(a) then satisfies

the formula

(ev�M)a = eva�M =
∑
(R,ϕ)

cR,ϕ · [ev−1a (R), ϕ ◦ eva]
H
(Z/`)n×CG(a),

with the same pairs of R ≤ CG(a) and ϕ : R→ H as in Equation (3.2).

Remark 3.23. Following Convention 3.2, the decomposition

MH
CG(a)

=
∑
(R,ϕ)

cR,ϕ · [R,ϕ]HCG(a)

has the sum run over all pairs (R,ϕ), with R ≤ CG(a) and ϕ : R → H, and not just (CG(a), H)-
conjugacy classes of pairs.

Part of the statement of the lemma is the claim that choosing a different linear expression for
MH
CG(a)

, with different coefficients cR,ϕ that are possibly non-zero for several pairs in the same

(CG(a), H)-conjugacy class, will result in equal sums∑
(R,ϕ)

cR,ϕ · [ev−1a (R), ϕ ◦ eva]
H
(Z/`)n×CG(a).

Proof of Lemma 3.22. The evaluation map eva : (Z/`)n×CG(a)→ CG(a) ≤ G has image CG(a) on
the component (Z/`)n×CG(a) of (Z/`)n×LnG. We can then proceed by the following calculation
with bisets:

[(Z/`)n × CG(a), eva]
G
(Z/`)n×CG(a) �M

H
G

= [(Z/`)n × CG(a), eva]
CG(a)
(Z/`)n×CG(a) � [CG(a), incl]GCG(a) �M

H
G

= [(Z/`)n × CG(a), eva]
CG(a)
(Z/`)n×CG(a) �M

H
CG(a)

= [(Z/`)n × CG(a), eva]
CG(a)
(Z/`)n×CG(a) �

(∑
(R,ϕ)

cR,ϕ · [R,ϕ]HCG(a)

)
=
∑
(R,ϕ)

cR,ϕ ·
(
[(Z/`)n × CG(a), eva]

CG(a)
(Z/`)n×CG(a) � [R,ϕ]HCG(a)

)
=
∑
(R,ϕ)

cR,ϕ · [ev−1a (R), ϕ ◦ eva]
H
(Z/`)n×CG(a).

The last equality follows from the double coset formula for bisets [2, Lemma 2.3.24] in the special
case [R,ϕ]BA � [T, ψ]CB = [ϕ−1(T ), ψ ◦ ϕ]CA when ϕ : R→ B is surjective.

32



For c ∈ Z≥0 and X ∈ Top let c · X denote c disjoint copies of the space X. Suppose M ∈
AG+(G,H) is a biset with the associated covering map π : (M/H)//G→→ ∗//G. The components
of PBn(π) that lie over the component (Z/`)n × CG(a) of (Z/`)n × LnG are then, according to
Lemma 3.22, homotopy equivalent to the disjoint union∐

(R,ϕ)

cR,ϕ ·B(ev−1a R),

where the coefficients cR,ϕ come from the decomposition of MH
CG(a)

.

The classifying space of the action groupoid (M/H)//CG(a) is equivalent to
∐

(R,ϕ) cR,ϕ · BR
according to the decomposition of the biset MH

CG(a)
∈ AG+(CG(a), H). These decompositions into

orbits fit into the following diagram of groupoids:

∐
(R,ϕ)

cR,ϕ · ev−1a R
∐

(R,ϕ) cR,ϕ ·R

(M/H)//((Z/`)n × CG(a)) (M/H)//CG(a) (M/H)//G

(Z/`)n × CG(a) CG(a) G.

'

eva

'

ev∗a π

(M/H)//eva

incl∗ π

(M/H)// incl

π
eva incl

The two lower squares are pullbacks, and the coefficients cR,ϕ are as in Lemma 3.22. We use the
coproduct in the top left as an algebraic model for PBn(π).

Definition 3.24. For a biset M ∈ AG+(G,H), we let PBn(M) denote the following algebraic
model for PBn(π), with π : (M/H)//G→→ BG:

PBn(M) =
∐

[a]∈G[n]

PBn(M)a,

where
PBn(M)a =

∐
(R,ϕ)

cR,ϕ · ev−1a (R).

Here, the coefficients cR,ϕ come from the decomposition of MH
CG(a)

in Lemma 3.22 and a ∈ [a] is our

chosen representative of the conjugacy class [a] ∈ G[n]. Note that PBn(M)a is the part of PBn(M)
lying over the component (Z/`)n × CG(a) of (Z/`)n × LnG.

The diagram (3.1) involving PBn(π) in Cov has the following algebraic model involving PBn(M)a
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when we restrict to the component (Z/`)n × CG(a):

PBn(M)a

(Z/`)n × CG(a)
∐

(R,ϕ)

cR,ϕ ·R

CG(a) (M/H)//G

G H.

eva

evG

inclGCG(a)
π

ϕ

Here the backward maps are inclusions of subgroups (corresponding to finite covering maps).
Next we shall give an algebraic version of the map k : PBn(π) → (Z>0)

n from Definition 2.1.
Fix a component ev−1a (R) of PBn(M) lying over (Z/`)n × CG(a). The corresponding component

E((Z/`)n × CG(a))/ ev−1a R of PBn(π) sits over the component of (S1)n × LnG indexed by a.

Thus the corresponding n-fold loop (S1)n → BG is just picking out the commuting n-tuple a in
π1(BG) ∼= G. By Remark 2.2 the exponent ki for each 1 ≤ i ≤ n is the smallest positive integer such
that akii ∈ π1(BCG(a)) ≤ π1(BG) lies in the further subgroup π1(BR) ∼= R. Also, the exponent ki
is constant on the entire component E((Z/`)n×CG(a))/ ev−1a R of PBn(π). Therefore, we have the
following algebraic analogue of the map k : PBn(π)→ (Z>0):

Definition 3.25. Recall that G[n] denotes the set of G-conjugacy classes of commuting n-tuples
of G. For a group H, let SubGrp(H) be the set of subgroups of H. We define

k :
∐

[a]∈G[n]

SubGrp(CG(a))→ (Z>0)
n

by
k([a] ∈ G[n], R ≤ CG(a))i = (the smallest ki > 0 such that akii ∈ R)

for each 1 ≤ i ≤ n.

Remark 3.26. The k-exponents of Definitions 2.1 and 3.25 agree: Given a component E((Z/`)n ×
CG(a))/ ev−1a R of PBn(π) the map k : PBn(π)→ (Z>0)

n takes the constant value k(a,R) ∈ (Z>0)
n

on this component.

In Cov, PBn
lift(π) consists of those components in PBn(π) where the n-fold loop lifts to an

n-fold loop through π, or equivalently those components where ki : PB
n(π) → Z>0 equals 1 for

all 1 ≤ i ≤ n. The following lemma characterizes when a component of PBn(M) is the algebraic
model for a component of PBn

lift(π):

Lemma 3.27. Let a be a commuting n-tuple in G, and let R ≤ CG(a) be a subgroup. The following
four statements about the preimage ev−1a (R) in (Z/`)n × CG(a) are equivalent:

(i) k(a,R)i = 1 for all 1 ≤ i ≤ n.

(ii) All elements of a lie in the subgroup R.

34



(iii) ev−1a (R) is a product of subgroups A×B with A ≤ (Z/`)n and B ≤ CG(a).

(iv) ev−1a (R) = (Z/`)n ×R.

Proof. Note first that a ∈ CG(a) since the elements of the n-tuple commute.
(i) ⇔ (ii): Immediate by the definition of k(a,R) ∈ (Z>0)

n.
(ii) ⇒ (iv): If all elements of a lie in the subgroup R ≤ CG(a), then so do their powers, and

ev−1a (R) = (Z/`)n ×R is immediate.
(iv) ⇒ (iii): Property (iii) is just a weakening of (iv).

(iii)⇒ (ii): If (t, z) ∈ ev−1a (R), and if t′ ∈ (Z/`)n is any tuple, then the pair (t−t′, (
∏n
i=1 a

t′i
i ) ·z)

is also in the preimage ev−1a (R) ≤ (Z/`)n × CG(a). Hence if ev−1a (R) = A × B, we must have

A = (Z/`)n, and in particular we have (Z/`)n × 1 ≤ ev−1a (R). The elements of a, being the images
under eva of the generators from (Z/`)n, therefore lie in R.

Definition 3.28. Given a biset M ∈ AG+(G,H) and a commuting n-tuple a in G, we let
PBn

lift(M)a denote the collection of components of PBn(M)a satisfying the properties of Lemma
3.27, so that

PBn
lift(M)a =

∐
a∈R≤CG(a)
ϕ : R→H

cR,ϕ · ev−1a (R) =
∐

a∈R≤CG(a)
ϕ : R→H

cR,ϕ · ((Z/`)n ×R),

where the coefficients cR,ϕ come from the decomposition of MH
CG(a)

in Lemma 3.22.

We also let PBn
lift(M) denote the union

∐
[a]∈G[n] PBn

lift(M)a over all our chosen representatives
a of conjugacy classes of commuting n-tuples.

The final piece needed to describe the functors L†n : AG→ AG is the winding map wind(π) : PBn(π)→
PBn

lift(π). The map wind(π) winds an n-fold loop (S1)n → BG around itself ki times in the
ith coordinate direction. Given a tuple a, we cannot assume that the coordinate-wise power

ak(a,R) = (a
k(a,R)1
1 , . . . , a

k(a,R)n
n ) is always the representative of its conjugacy class in G. We therefore

suppose that a choice of representatives has been made in advance as in Convention 3.14.
The algebraic model wind(M) : PBn(M) → PBn

lift(M) for wind(π) then takes a component
ev−1a (R) of PBn(M)a and sends it to PBn

lift(M)b, where b is the chosen representative of the G-

conjugacy class of the tuple ak(a,R) = (a
k(a,R)1
1 , . . . , a

k(a,R)n
n ).

Choose some g ∈ G with cg(a
k(a,R)) = b as in Lemma 3.12. The part PBn

lift(M)b for the tuple b
has the form

PBn
lift(M)b =

∐
b∈R′≤CG(b)
ϕ′ : R′→H

c′R′,ϕ′ · ev−1b (R′),

where the coefficients c′R′,ϕ′ come from a decomposition of MH
CG(b)

instead of MH
CG(a)

. In particular,

since CG(a) ≤ CG(ak(a,R))
∼=−→
cg

CG(b), each orbit of MH
CG(a)

is contained in a unique orbit of

MH
CG(ak(a,R))

though several orbits of MH
CG(a)

might combine to give a single orbit of MH
CG(ak(a,R))

∼=
c∗g(M

H
CG(b)

).

Given a component ev−1a R of PBn(M)a, this component corresponds to the orbit of a point

x ∈ MH
CG(a)

with orbit of the form [R,ϕ]HCG(a). The winding map wind(π) in Cov only changes
the n-fold loop and keeps the same point in the fiber of π. This means that the algebraic version
of wind(π), wind(M), has to send ev−1a R to PBn

lift(M)b but hit the orbit of the same point x ∈
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MH
CG(ak(a,R))

∼= c∗g(M
H
CG(b)

). Under the isomorphism cg : MH
CG(ak(a,R))

∼=−→ MH
CG(b)

the orbit of x in

MH
CG(ak(a,R))

corresponds to the orbit of gx in MH
CG(b)

. Note that a different choice of g conjugating

ak(a,R) to b still gives the same orbit of gx in MH
CG(b)

, since different g’s only differ by elements of

CG(b).
The corresponding orbit of MH

CG(b)
has the form [R′, ϕ′]HCG(b), where cg(R) ≤ R′ and (ϕ′◦cg)|R =

ϕ, and wind(M) takes the component ev−1a R of PBn(M)a to the component ev−1b R′ of PBn
lift(M)b.

By Lemma 3.27 it follows that ev−1b R′ = (Z/`)n ×R′ since b = cg(a
k(a,R)) ∈ cg(R) ≤ R′.

In order to work out a formula for the map ev−1a R→ (Z/`)n×R′, recall that wind(M) commutes
with evaluation maps (Remark 2.8) so that we must have a commutative diagram

PBn(M)a ≥ ev−1a R (Z/`)n × gR′g−1 (Z/`)n ×R′ ≤ PBn
lift(M)b

G.

?

eva

wind(M)

∼=
(Z/`)n × cg

evak(a,R)

evb

In Cov, the map wind(π) leaves the (S1)n-coordinate unchanged and only uses it to shift the n-
fold loop. Consequently, wind(M) must take a pair (t, z) ∈ ev−1a R to a pair of the form (t, z′) ∈
(Z/`)n × gR′g−1 satisfying

(
n∏
i=1

atii ) · z = eva(t, z) = evak(a,R)(t, z′) = (
n∏
i=1

a
k(a,R)i·ti
i ) · z′.

It follows that z′ is uniquely determined with

z′ = (

n∏
i=1

a
ti−k(a,R)i·ti
i ) · z.

Thus the definition of wind(π) has determined the following definition of the map wind(a,R) : ev−1a R→
(Z/`)n ×R, which we will use to give a formula for wind(M) and L†n(M).

Lemma 3.29. Consider a commuting n-tuple a in G and a subgroup R ≤ CG(a). Recall that the
tuple of exponents k(a,R) ∈ (Z>0)

n are minimal such that the tuple ak(a,R) lies in the subgroup R.

We then have an isomorphism wind(a,R) : ev−1a (R)
∼=−→ ev−1

ak(a,R) R = (Z/`)n ×R given by

wind(a,R)(t, z) = (t, a
t1−k(a,R)1t1
1 · · · atn−k(a,R)ntn

n · z),

for pairs (t, z) ∈ ev−1a (R). Furthermore, wind(a,R) commutes with evaluation maps:

evak(a,R) ◦wind(a,R) = eva |ev−1
a (R).
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Proof. A pair (t, z) ∈ (Z/`)n×CG(a) lies in the preimage ev−1a (R) if and only if (
∏n
i=1 a

ti
i ) · z ∈ R.

At the same time we also have a
k(a,R)i
i ∈ R, for every 1 ≤ i ≤ n. It follows that, for each pair

(t, z) ∈ ev−1a (R), we have (
∏n
i=1(a

k(a,R)i
i )−ti · atii ) · z ∈ R. Thus wind(a,R) lands in the product

(Z/`)n×R. Since z along with all powers of each ai commute, wind(a,R) is a group homomorphism.
The inverse homomorphism wind(a,R)−1 has the straightforward expression

wind(a,R)−1(t, z) = (t, (

n∏
i=1

a
k(a,R)iti−ti
i ) · z),

and for all (t, z) ∈ (Z/`)n ×R we have (t, (
∏n
i=1a

k(a,R)iti−ti
i ) · z) ∈ ev−1a (R) since z and a

k(a,R)iti
i lie

in R already.
Finally, wind(a,R) commutes with evaluation maps when we use evak(a,R) for the codomain of

wind(a,R):

evak(a,R)(wind(a,R)(t, z)) = evak(a,R)(t, (

n∏
i=1

a
ti−k(a,R)iti
i ) · z) =

(

n∏
i=1

(a
k(a,R)i
i )ti · ati−k(a,R)iti

i ) · z = (

n∏
i=1

atii ) · z = eva(t, z)

for all (t, z) ∈ ev−1a (R).

The discussion over the last few pages gives us the following expression for the map

wind(M) : PBn(M)→ PBn
lift(M)

in terms of the maps wind(a,R) above:

Lemma 3.30. Let M ∈ AG+(G,H) be a biset for finite groups G and H. Given a component
ev−1a R of PBn(M)a, let b be the chosen representative in the G-conjugacy class of ak(a,R), and let

g ∈ G be an element conjugating ak(a,R) to b.
If the component ev−1a R of PBn(M)a corresponds to the orbit of a point x ∈ MH

CG(a)
, then

the map wind(M) : PBn(M) → PBn
lift(M) takes ev−1a R to the component ev−1b R′ = (Z/`)n ×

R′ of PBn
lift(M)b corresponding to the orbit of the point gx ∈ MH

CG(b)
. Furthermore, the map

wind(M)|ev−1
a R : ev−1a R→ ev−1b R′ equals the composite

ev−1a R
wind(a,R)−−−−−−→ (Z/`)n ×R (Z/`)n×cg−−−−−−→ (Z/`)n × g−1Rg ≤ (Z/`)n ×R′.

We now have all the ingredients needed to express the endofunctor L†n : AG+ → AG+ as well as
the linear extension L†n : AG → AG. Recall that L†n : AG+ → AG+ is induced by L†n : Cov → Cov
via the fully faithful inclusion AG+ ↪→ Ho(Cov).

Proposition 3.31. The functor L†n : AG+ → AG+ (or L†n : AG→ AG) sends a (G,H)-biset M to

a biset matrix L†n(M) ∈ AG+((Z/`)n×LnG, (Z/`)n×LnH), with entries indexed by representatives
a and b for the conjugacy classes of commuting n-tuples in G and H respectively. The matrix entries
satisfy the formula

L†n(M)a,b
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=
∑

(R,ϕ) s.t. ϕ(ak(a,R))
is H-conj. to b

cR,ϕ ·
(

[ev−1a (R), (id(Z/`)n ×ϕ) ◦ wind(a,R)]
(Z/`)n×CH(ϕ(ak(a,R)))
(Z/`)n×CG(a)

� ((Z/`)n × ζb
ϕ(ak(a,R))

)
)
.

Here the sum runs over those R ≤ CG(a) and ϕ : R→ H such that ϕ(ak(a,R)) is H-conjugate to b.
The coefficients cR,ϕ arise from the decomposition

MH
CG(a)

=
∑

R≤CG(a)
ϕ : R→H

cR,ϕ · [R,ϕ]HCG(a)

as in Lemma 3.22.

Proof. Given a biset M ∈ AG+(G,H) the corresponding span in Cov is given by the span of

groupoids G
π←−← (M/H)//G

f−→ H according to Definition 3.6. The span L†n(π, f) in Cov is then

PBn(π)

(S1)n × LnBG PBnlift(π)

(S1)n × Ln(|(M/H)//G|)

(S1)n × LnBH.

ev∗G π wind(π)

'

(S1)n × Ln(f)

With the algebraic models for PBn(π), PBn
lift(π) and wind(π) given in Definitions 3.24, 3.28, and

Lemma 3.30, we have the following span of unions of groups modeling L†n(π, f):

∐
a∈G[n]

∐
R≤CG(a)
ϕ : R→H

cR,ϕ · ev−1
a R

∐
a∈G[n]

(Z/`)n × CG(a)
∐

a′∈G[n]

∐
a′∈R′≤CG(a′)
ϕ′ : R′→H

cR′,ϕ′ · (Z/`)n ×R′

(∗//(Z/`)n)×Map(∗//(Z/`)n, (M/H)//G)

∐
b∈H[n]

(Z/`)n × CH(b).

incl wind(M)

'

id(Z/`)n ×(ζ
b
ϕ′(a′) ◦ ϕ

′)

The last isomorphism ζ
b
ϕ′(a′) : CH(ϕ′(a′))

∼=−→ CH(b) is needed because the chosen representative b

for the H-conjugacy class of ϕ′(a′) might be different from ϕ′(a′). This is similar to how the formula
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for wind(M) involves a conjugation cg : CG(ak(a,R))
∼=−→ CG(a′), so that wind(M) on the component

ev−1a R corresponding to the orbit of x ∈MH
CG(a)

takes the form

ev−1a R
wind(a,R)−−−−−−→∼=

(Z/`)n ×R
id(Z/`)n ×cg−−−−−−−→∼=

(Z/`)n × g−1Rg ≤ (Z/`)n ×R′

for the component ev−1a′ R
′ = (Z/`)n × R′ corresponding to the (possibly larger) orbit of the same

point x ∈MH
CG(a′)

, with a′ representing the G-conjugacy class of ak(a,R).

Because the orbit of x ∈ MH
CG(a)

has the form [R,ϕ]HCG(a) and the orbit of x ∈ MH
CG(ak(a,R))

has the form [gR′g−1, ϕ′ ◦ cg]HCG(ak(a,R))
, we have R ≤ gR′g−1 and (ϕ′ ◦ cg)|R = ϕ. Consequently

ϕ′(a′) = ϕ(ak(a,R)), and the composite

(Z/`)n ×R
id(Z/`)n ×cg−−−−−−−→∼=

(Z/`)n × g−1Rg ≤ (Z/`)n ×R′
id(Z/`)n ×ϕ′−−−−−−−→ (Z/`)n × CH(ϕ′(a′))

is just id(Z/`)n ×ϕ : (Z/`)n ×R→ (Z/`)n × CH(ϕ(ak(a,R))). The span above simplifies to

∐
a∈G[n]

∐
R≤CG(a)
ϕ : R→H

cR,ϕ · ev−1
a R

∐
a∈G[n]

(Z/`)n × CG(a)
∐

b∈H[n]

(Z/`)n × CH(b).

incl
id(Z/`)n ×(ζ

b

ϕ(ak(a,R))
◦ ϕ) ◦ wind(a,R)

Finally the matrix entry L†n(M)a,b picks out the part of the span above that lies over the components
(Z/`)n×CG(a) and (Z/`)n×CH(b), and thus only those ev−1a where b represents the H-conjugacy

class of ϕ(ak(a,R)). Those components form the span of groups corresponding to the biset∑
(R,ϕ) s.t. ϕ(ak(a,R))

is H-conj. to b

cR,ϕ ·
(

[ev−1a (R), (id(Z/`)n ×ϕ) ◦ wind(a,R)]
(Z/`)n×CH(ϕ(ak(a,R)))
(Z/`)n×CG(a)

� ((Z/`)n × ζb
ϕ(ak(a,R))

)
)

as claimed. Because the formulas in Proposition 3.31 are linear in the biset M ∈ AG+(G,H), the

formulas hold for the endofunctor L†n : AG→ AG as well.

Remark 3.32. Instead of applying wind(a,R) to turn ev−1a (R) into (Z/`)n×R, we can alternatively

take only those summands of Proposition 3.31 for which ev−1a (R) is already equal to (Z/`)n×R. By
Lemma 3.27, this happens if and only if the subgroup R ≤ CS(a) contains a. Taking the sum over
pairs (R,ϕ) with a ∈ R corresponds to Definition 2.10, where we restrict to PBn

lift(π) ⊆ PBn(π),
which corresponds to those components of the free loop space for which the loops in the base
space lift to actual loops in the total space. For finite groups G and H, and a virtual biset matrix
M ∈ AG(G,H), we define L†n|lift(M) ∈ AG((Z/`)n ×G, (Z/`)n ×H) to be the matrix with entries
as in Proposition 3.31 except leaving out all summands where a is not in R, that is

L†n|lift(M)a,b =
∑

(R,ϕ) s.t. a∈R and

ϕ(ak(a,R)) is H-conj. to b

cR,ϕ ·
(

[ev−1a (R), (id(Z/`)n ×ϕ) ◦ wind(a,R)]
(Z/`)n×CH(ϕ(ak(a,R)))
(Z/`)n×CG(a)
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� ((Z/`)n × ζb
ϕ(ak(a,R))

)
)

=
∑

(R,ϕ) s.t. a∈R and
ϕ(a) is H-conj. to b

cR,ϕ ·
(

[(Z/`)n ×R, (id(Z/`)n ×ϕ)]
(Z/`)n×CH(ϕ(a))
(Z/`)n×CG(a)

� ((Z/`)n × ζbϕ(a))
)
.

Comparing with Corollary 3.18, we see that L†n|lift(M) coincides with (Z/`)n×Ln(M). We observed
this for the category Cov in Remark 2.11.

We proceed to state Theorem 2.13 in terms of the category AG, recalling Convention 3.21, with
only minor alterations:

Theorem 3.33. The endofunctors L†n : AG→ AG for n ≥ 0 of Proposition 3.31 have the following
properties:

(∅) Let L†,Cov
n : Cov → Cov be the functor constructed in Section 2. The functor L†n : AG → AG

is the linearization of the restriction of Ho(L†,Cov
n ) to the full subcategory of Ho(Cov) spanned

by finite unions of classifying spaces of finite groups.

(i) L†0 is the identity functor on AG.

(ii) On objects, L†n takes a formal union of groups G to the formal union of groups

L†n(G) = (Z/`)n × Ln(G) =
∐

a∈G[n]

(Z/`)n × CG(a).

(iii) The group Σn acts on LnG =
∐
a∈G[n] CG(a) by permuting the coordinates of the n-tuples

a. Explicitly, if σ ∈ Σn and if σ̃(a) is the representative for the G-conjugacy class of σ(a),

then σ : LnG → LnG maps CG(a) = CG(σ(a)) to CG(σ̃(a)) via the isomorphism ζ
σ̃(a)
σ(a) ∈

AG(CG(a), CG(σ̃(a))).

The functor L†n is equivariant with respect to the Σn-action on (Z/`)n×Ln(−) that permutes
the coordinates of both (Z/`)n and Ln(−), i.e. for every σ ∈ Σn the diagonal action of σ on

(Z/`)n × Ln(−) induces a natural isomorphism σ : L†n ⇒∼= L†n.

(iv) On forward maps, i.e. transitive bisets [G,ϕ]HG ∈ AG(G,H) with ϕ : G → H, the functor L†n
coincides with (Z/`)n × Ln(−) so that

L†n([G,ϕ]HG ) = (Z/`)n × Ln([G,ϕ]HG ) = (Z/`)n × Ln(ϕ).

In particular, Ln([G,ϕ]HG ) is the biset matrix that takes a component CG(a) of LnG to the
component CH(b) by the map ch ◦ϕ : CG(a)→ CH(ϕ(a)), where b represents the H-conjugacy
class of ϕ(a) and h ∈ H conjugates ϕ(a) to b.

(v) For all n ≥ 0, the functor L†n commutes with evaluation maps, i.e. the evaluation maps

evG : (Z/`)n × Ln(G)→ G form a natural transformation ev : L†n ⇒ IdAG.

40



(vi) For all n ≥ 0, the partial evaluation maps ∂evG : Z/`× Ln+1(G)→ Ln(G) given by

∂ev(t, z) = (an+1)
t · z ∈ CG(a1, . . . , an), for t ∈ Z/`, z ∈

∐
a∈G[n+1]

CG(a),

form natural transformations (Z/`)n × ∂ev : L†n+1 ⇒ L†n.

(vii) For all n,m ≥ 0, and any formal union of groups G, the formal union (Z/`)n+m × Ln+mG
embeds into (Z/`)m ×Lm((Z/`)n ×LnG) as the components corresponding to the commuting
m-tuples in (Z/`)n × LnG that are zero in the (Z/`)n-coordinate, i.e. the embedding is given
by(

(s, r), z
)
∈ (Z/`)n+m × CG((x, y))

7→
(
r, (s, z)

)
∈ (Z/`)m × C(Z/`)n×CG(x)(0× y)

for s ∈ (Z/`)n, r ∈ (Z/`)m, x ∈ G[n], y ∈ G[m], and z ∈ CG(x, y), and where C(Z/`)n×CG(x)(0×
y) is a component of

Lm((Z/`)n × CG(x)) ⊆ Lm((Z/`)n × LnG).

These embeddings (Z/`)n+m × Ln+mG → (Z/`)m × Lm((Z/`)n × LnG) then form a natural

transformation L†n+m(−)⇒ L†m(L†n(−)).

Proof. (i)-(ii): Immediate from Theorem 2.13(i)-(ii) and our choice of modelling S1 × LnBG by
the formal union of groups (Z/`)n × LnG as in Lemma 3.13.

(iii): Given a permutation σ ∈ Σn and the representative a of some G-conjugacy class of
commuting n-tuples, we need to be careful that the permuted tuple σ(a) might not be the chosen
representative of its conjugacy class. Permuting the coordinates of LnBG just corresponds to the
identity map between centralizers CG(a) = CG(σ(a)), but then we need to exchange σ(a) with

its representative σ̃(a), hence the need for the isomorphism ζ
σ̃(a)
σ(a) between CG(a) = CG(σ(a)) and

CG(σ̃(a)) in AG.

Now that we have established the action of Σn on LnG as above, the invariance of L†n(−) follows
from Theorem 2.13(iii).

(iv): The transitive biset [G,ϕ]HG ∈ AG(G,H) corresponds to the span BG
id←−← BG

Bϕ−−→ BH so
Theorem 2.13(iv) implies that

L†n([G,ϕ]HG ) = (Z/`)n × Ln([G,ϕ]HG ).

(v): Follows from Theorem 2.13(v).
(vi): The partial evaluation map ∂evX : S1 ×Ln+1X → LnX in Theorem 2.13(vi) evaluates an

(n+1)-fold loop at its last coordinate. Comparing with the algebraic evaluation map evG : (Z/`)n×
LnG → G of Lemma 3.20, the partial evaluation map ∂evG : Z/` × Ln+1G → LnG must take
the component Z/` × CG(a) corresponding to an (n + 1)-tuple a and send it to the component
CG(a1, . . . , an) of LnG by taking the product with the tth power of the last coordinate of a for
t ∈ Z/`:

∂eva(t, z) = (an+1)
t · z ∈ CG(a1, . . . , an)

for t ∈ Z/` and z ∈ CG(a). That we get a natural transformation this way is due to Theorem
2.13(vi).

41



(vii): This follows from Theorem 2.13(vii) once we translate the embedding (S1)n+m×Ln+m(BG)→
(S1)m×Lm((S1)n×Ln(BG)) to the algebraic setting. The topological embedding has the formula

((s, r), f) ∈ (S1)n+m × Ln+m(BG)

7→
(
r, r′ 7→

(
s, s′ 7→ f(s′, r′)

))
∈ (S1)m × Lm((S1)n × Ln(BG)),

for s, s′ ∈ (S1)n, r, r′ ∈ (S1)m and f ∈ Ln+mX.
Consider a component (Z/`)n+m×CG(x, y) in (Z/`)n+m×Ln+mG. The embedding has to land in

the component corresponding to some m-tuple w of (Z/`)n×LnG that models the topological map
(S1)m → (S1)n × Ln(BG). The m-tuple corresponds to an m-fold loop of (S1)n × Ln(BG) that is
constant in the (S1)n-coordinate, thus the (Z/`)n-coordinate of w is just the zero-tuple 0 ∈ (Z/`)n.
The Ln(G)-coordinate of the m-tuple w corresponds to the topological map (S1)m → Ln(BG)
given by

r′ 7→ (s′ 7→ f(s′, r′)).

This is an m-fold loop in the component of s′ 7→ f(s′, 0), so lies in the component of Ln(BG)
corresponding to the first n coordinates of f ∈ Ln+m(BG). Consequently, the Ln(G)-coordinate of
w lies in the component of Ln(G) corresponding to x, i.e. the centralizer CG(x). Now the Ln(G)-
coordinate of w is a commuting m-tuple in CG(x), and considering how (S1)m → Ln(BG) moves

the basepoint Ln(BG)
γ 7→γ(0)−−−−−→ BG as an m-fold loop in BG matching the last m-coordinates of

f ∈ Ln+m(BG), the Ln(G)-coordinate of w must be y as an m-tuple in CG(x).
In total w = 0×y as a commuting m-tuple in (Z/`)n×CG(x). The embedding therefore takes the

component (Z/`)n+m×CG(x, y) in (Z/`)n+m×Ln+mG to the component (Z/`)m×C(Z/`)n×CG(x)(0×
y).

The map (Z/`)n+m × CG(x, y) → (Z/`)m is just the projection ((s, r), z) 7→ r. Furthermore,
evaluating the basepoint of Lm(−) topologically as for Ln(−) above, we can see that (Z/`)n+m ×
CG(x, y)→ C(Z/`)n×CG(x)(0× y) is the map ((s, r), z) 7→ (s, z) ∈ C(Z/`)n×CG(x)(0× y).

In total, (Z/`)n+m × CG(x, y) is mapped to (Z/`)m × C(Z/`)n×CG(x)(0 × y) by the formula
((s, r), z) 7→ (r, (s, z)).

Remark 3.34. The above proof depends on Theorem 2.13. Of course, it is possible to give a purely
algebraic proof of Theorem 3.33 instead.

Suppose C is a subclass of all abelian groups such that C is closed under isomorphism, subgroups,
and quotients. We then denote by LnC(G) the union of those components CG(a) in Ln(G) where the
commuting n-tuple a generates a subgroup 〈a〉 in C.

The constructions in this chapter always map a tuple a to tuples b where we take powers of
elements in a and map them by homomorphisms. Consequently, whenever 〈a〉 ∈ C and 〈b〉 6∈ C,
then Ln(X)a,b = 0 and L†n(X)a,b = 0 for all virtual bisets X. This implies the following:

Proposition 3.35. Suppose C is a subclass of all abelian groups, such that C is closed under
isomorphism, subgroups, and quotients. Furthermore suppose ` is big enough that every a ∈ G(n)

with 〈a〉 ∈ C has all element orders dividing `.

We then have functors LnC : AG → AG and L†n,C : AG → AG analogous to Ln and L†n, respec-
tively. On objects we have

L†n,C(G) = (Z/`)n × LnC(G),

and L†n,C satisfies a list of properties analogous to Theorem 3.33.
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Remark 3.36. We do not need (Z/`)n to be a member of the class C as long as it projects onto
all 〈a〉 for tuples a ∈ G(n) with 〈a〉 ∈ C. The functor LnC(G) simply restricts attention to those
homomorphisms (Z/`)n → G that factor through quotients of (Z/`)n lying in C.

Proof. We prove this in two steps.

First assume that ` is large enough that any map Z → G factors through Z/`. We define L̃†n,C
by restricting L†n to the subset of components (Z/`)n × LnC(G) ⊆ (Z/`)n × LnG. On morphisms

M ∈ AG(G,H), the matrix L̃†n,C(M) ∈ AG((Z/`)n × LnC(G), (Z/`)n × LnC(H)) is well-defined since

L†n(M)a,b = 0 whenever 〈a〉 ∈ C and 〈b〉 6∈ C.
Now let `′ be a divisor of ` satisfying that every map Zn → A ⊆ G with A ∈ C factors through

(Z/`′)n. The evaluation map (Z/`)n × LnC(G)→ G factors via the projection Z/`→ Z/`′ as

(Z/`)n × LnC(G)→ (Z/`′)n × LnC(G)
ev−→ G.

Given M ∈ AG(G,H) we will fill in the diagram

(Z/`)n × LnC(G) (Z/`′)n × LnC(G) G

(Z/`)n × LnC(H) (Z/`′)n × LnC(H) H.

L̃†n,C(M) L†n,C(M)

ev

M

ev

Being a restriction of L†n(M), the matrix L̃†n,C(M) satisfies the formula of Proposition 3.31. We can

simply define L†n,C(M) according to the same formula, replacing each occurrence of ` with `′. The
formula for wind(a,R) does not involve ` or `′ at all, and so the diagram commutes.

The surjective group homomorphism (Z/`)n × LnC(G) → (Z/`′)n × LnC(G) is an epimorphism

in AG, and so L†n,C(M) is the unique map making the diagram commute. From this uniqueness it

follows that L†n,C is functorial and satisfies the properties of Theorem 3.33.

Given a prime p, a particularly relevant collection C is the collection of all finite abelian p-
groups. If G is a finite group, then we write Lnp (G) = LnC(G) for the free loops with respect to
the collection of finite abelian p-groups. This consists of all components of Ln(G) corresponding
to commuting n-tuples of p-power order elements. When dealing exclusively with p-power order
elements we only consider maps Z/` → G with images of p-power order, hence we may suppose
that ` equals a sufficiently high power p. As such, for e large enough, we have

L†n,p(G) = (Z/pe)n × Lnp (G)

on objects in AG.

3.4 L†n does not extend to all classifying spectra

Let Sp be the category of spectra. Since the homotopy classes of maps between two spectra
form an abelian group, composing the suspension spectrum functor Σ∞+ : Ho(Cov) → Ho(Sp) and
B : AG+ → Ho(Cov), provides us with a functor AG→ Ho(Sp). A finite group G in AG is sent to
the classifying spectrum Σ∞+BG.
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The Burnside ring A(G) of finite G-sets acts on AG(G,H) by cartesian products, or equivalently
G/R ∈ A(G) acts on AG(G,H) by precomposing with inclGR ◦ trGR = [R, id]GG ∈ AG(G,G). A variant
of the Segal conjecture [6] states that on morphism sets the functor AG → Ho(Sp) completes
AG(G,H) at the augmentation ideal of the Burnside ring A(G).

Theorem 3.37 ([1, 3, 6]). Let G and H be finite groups. The map AG(G,H)→ [Σ∞+BG,Σ
∞
+BH]

taking [R,ϕ]HG to Σ∞+Bϕ ◦ trGR induces an equivalence

[Σ∞+BG,Σ
∞
+BH] ∼= AG(G,H)∧I(G),

where I(G) = ker(A(G)
|−|−−→ Z) is the augmentation ideal of A(G).

We conclude Section 3 with a concrete calculation of L†1 applied to a particular biset for the

group C2. This example will demonstrate why it is impossible to extend L†1 : AG→ AG to a functor
on the homotopy category of the category of classifying spectra of finite groups. The sequel [12]
will remedy this by completing at a prime p and using the theory of fusion systems.

Example 3.38. Let C2 denote the cyclic group of order two consisting of the neutral element ι and
the involution τ . We will denote the trivial subgroup of C2 by 1 so that 1 = {ι}.

Throughout this example we shall consider the (C2, C2)-biset

X = [1, id]C2
C2
− 2[C2, id]C2

C2
= C2 ×1 C2 − 2(C2) ∈ AG(C2, C2).

Recall that the Burnside ring A(C2) acts on AG(C2, C2) via the ring homomorphism A(C2) →
AG(C2, C2) taking a left C2-set Y ∈ A(C2) to Y ×C2 ∈ AG(C2, C2), where C2 acts on Y ×C2 diag-
onally on the left. The biset X is the image of Y = C2− 2(C2/C2) under this ring homomorphism.

The virtual biset Y = C2 − 2(C2/C2) has augmentation 0, hence Y lies in the augmentation
ideal IC2 ≤ A(C2) and X ∈ IC2 · AG(C2, C2).

Let n = 1 and consider L†1(X) ∈ AG(Z/2e × L1(C2),Z/2e × L1(C2)). To distinguish the two
components of L1(C2) we shall denote them Cι = CC2(ι) the centralizer of the neutral element,
and Cτ = CC2(τ) the centralizer of the involution.

The biset [C2, id]C2
C2

is the identity morphism in AG(C2, C2). Since L†1 is a functor, it follows

that L†1([C2, id]C2
C2

) is the identity matrix

L†1([C2, id]C2
C2

) =

( ι τ

ι [Z/2e × Cι, id] 0
τ 0 [Z/2e × Cτ , id]

)
.

The biset [1, id]C2
C2

decomposes as the transfer [1, id]1C2
followed by the inclusion [1, id]C2

1 , hence by

functoriality L†1([1, id]C2
C2

) decomposes as well. If we apply L†1 to the inclusion [1, id]C2
1 , Theorem

3.33(iv) tells us that L†1([1, id]C2
1 ) simply maps C1(ι) = 1 into CC2(ι) = Cι. That is, we get the

matrix

L†1([1, id]C2
1 ) =

( ι τ

ι [Z/2e × 1, id]
Z/2e×Cι
Z/2e×1 0

)
.

Lastly, we cannot determine L†1([1, id]1C2
) from the properties in Theorem 3.33 alone. We instead

have to refer to Proposition 3.31, which simplifies since Cι = Cτ = C2:

L†1([1, id]1C2
) =

( ι

ι [ev−1ι (1),wind(ι, 1)]
Z/2e×1
Z/2e×Cι

τ [ev−1τ (1),wind(τ, 1)]
Z/2e×1
Z/2e×Cτ

)
=

( ι

ι [Z/2e × 1, id]
Z/2e×1
Z/2e×Cι

τ [ev−1τ (1),wind(τ, 1)]
Z/2e×1
Z/2e×Cτ

)
.
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Composing the two previous matrices, we get

L†1([1, id]C2
C2

) =

( ι τ

ι [Z/2e × 1, id]
Z/2e×Cι
Z/2e×Cι 0

τ [ev−1τ (1),wind(τ, 1)]
Z/2e×Cι
Z/2e×Cτ 0

)
.

Finally, we substract the identity matrix twice to calculate L†1(X):

L†1(X) = L†1([1, id]C2
C2
− 2[C2, id]C2

C2
)

=

( ι τ

ι [Z/2e × 1, id]− 2[Z/2e × Cι, id] 0

τ [ev−1τ (1),wind(τ, 1)] −2[Z/2e × Cι, id]

)
.

Our original biset X lies in the submodule IC2AG(C2, C2) and is the image of Y ∈ IC2 ⊂ A(C2),
so if we look at the powers of X, the sequence X,X2, X3, . . . converges to zero in the completion
AG(C2, C2)

∧
IC2

∼= [Σ∞+BC2,Σ
∞
+BC2]. Hence if we want L†1 : AG → AG to pass to a functor on

classifying spectra and homotopy classes of maps, we need the sequence L†1(X), L†1(X)2, L†1(X)3, . . .

to converge to 0 as well. If the entries of L†1(X) (or some power of L†1(X)) each lie in the respective
submodules generated by the augmentation ideals, this would be true.

We have augmentation homomorphisms ε : AG(G,H)→ Z preserving composition for any finite
groups given by ε(Z) = |Z|/|H|. The elements of the submodule IGAG(G,H) are mapped to 0 by

ε. Applying ε entrywise to L†1(X) we get the integer matrix

ε(L†1(X)) =

( ι τ

ι ε([Z/2e × 1, id])− 2ε([Z/2e × Cι, id]) 0

τ ε([ev−1τ (1),wind(τ, 1)]) −2ε([Z/2e × Cι, id])

)

=

( ι τ

ι 0 0

τ 2 −2

)
.

The powers of the matrix are

ε(L†1(X))m =

( ι τ

ι 0 0

τ −(−2)m (−2)m

)
.

From this calculation we conclude two things. First, the entries of the τ -row in L†1(X)m are never

going to be in the submodule generated by the augmentation ideal, so L†1(X)m cannot converge to

the 0-matrix in the I-adic completions, and consequently L†1 does not induce a functor on classifying

spectra of finite groups in general. Second, L†1(X)m does in fact converge to the 0-matrix in the

2-adic topologies! Hence if we follow L†1 by 2-completion, there is hope that the composite

AG
L†1−→ AG→ Ho(Sp)

(−)∧2−−−→ Ho(Sp2)

might pass to a functor from classifying spectra of finite groups to 2-complete classifying spectra.
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Remark 3.39. One might wonder if another definition of L†1 might pass to I-adic completions.
However, in Example 3.38 we mainly use property (iv) of Theorem 3.33 – except to calculate the

transfer L†1([1, id]1C2
).

Suppose L : AG→ AG is a functor satisfying properties (ii) and (iv), and let

L([1, id]1C2
) =

( ι

ι A ∈ AG(Z/2e × Cι,Z/2e × 1)
τ B ∈ AG(Z/2e × Cτ ,Z/2e × 1)

)
be unspecified. Then we can still calculate the augmentation

ε(L(X)) =

( ι τ

ι |A| − 2 0

τ |B| −2

)
.

Because of the second diagonal entry, the powers of L(X) still do not converge to the 0-matrix in
the I-adic topologies, so L cannot pass to a functor on classifying spectra and homotopy classes of
maps between them.

Fix a prime p. It is easy to extend the functor L†n from the full subcategory of finite p-groups
in AG to the homotopy category of p-completed classifying spectra of finite p-groups. For a space
X, we will write Σ̂∞+X = (Σ∞+X)∧p for the p-completion of the suspension spectrum of X+. From
[11, Lemma 2.4 and Proposition 2.18], it follows that if R and S are p-groups, then the Segal
conjecture implies that

[Σ̂∞+BR, Σ̂
∞
+BS] ∼= AG(R,S)∧p

∼= AG(R,S)⊗ Zp.

Thus we may restrict L†n to the full subcategory of finite p-groups and base change to Zp (as L†n is
additive) to extend to the homotopy category of p-completed classifying spectra of finite p-groups.
In the sequel [12], we will use the theory of fusion systems to extend this further to the homotopy
category of p-completed classifying spectra of finite groups.

A Mapping spaces for finite sheeted coverings

In this appendix we prove that the free loop space of a finite cover of topological spaces is again
a finite cover, with no assumptions about the spaces involved. Further, we show that this result
remains true in the category of compactly generated weakly Hausdorff topological spaces when we
replace the compact-open topology on the free loop space with its compactly generated refinement.

Given a finite sheeted covering map p : E → B and topological space X, we can ask whether
the induced map Map(X,E)→ Map(X,B) is again a finite sheeted covering map. In this appendix
we provide conditions on X that ensure that we always get a finite sheeted covering of mapping
spaces with no further assumptions on the covering map p : E → B or the spaces involved. As a
special case X = (S1)n satisfies the conditions in question so that the n-fold free loop space functor
Ln(−) takes covering maps to covering maps (Corollary A.5).

Definition A.1. We say that an open covering {Ui}i∈I of a space X is finite intersection connected
if every finite intersection

Ui1 ∩ · · · ∩ Uin
is connected (possibly empty). In particular, each Ui is itself connected.
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Definition A.2. We say that a locally connected space X is locally finite intersection connected if
every open covering of X has a finite intersection connected open refinement.

Examples of locally finite intersection connected spaces are the tori (S1)n for n ≥ 0. The circle
S1 ∼= R/Z has a basis consisting of open intervals of small length, and the intersection of any finite
number of open intervals is again an open interval or empty and thus connected. The same is true
for the product basis in (S1)n.

Lemma A.3. Let p : E → B be a finite sheeted covering map, and let X be a locally finite inter-
section connected, compact, Hausdorff space. Suppose f : X → B is a continuous map, then X has
a finite, finite intersection connected, open covering {Ui}i∈I such that each f(Ui) is contained in
an evenly covered open set of B.

Proof. First note that {f−1(V ) | V ⊆ B is open and evenly covered} provides an open cover of
X. Next, a compact Hausdorff space is regular, so each x ∈ f−1(V ) has a small neighborhood
x ∈ U ⊆ U ⊆ f−1(V ). This gives us a second covering {Ui}i∈I of X such that each f(Ui) is
contained in an evenly covered open set. We then replace {Ui}i∈I by a finite intersection connected
open refinement, and finally we take a finite subcover by the compactness of X.

We now prove that Map(X,E)→ Map(X,B) is a finite sheeted covering. The proof is based on
the ideas of [10, Theorem 3.8]. The difference is that [10] requires a covering of X by contractible
open sets and only proves that Map(X,E)→ Map(X,B) is a covering over each homotopy class of
maps in Map(X,B), i.e. over each path-component.

Proposition A.4. Let p : E → B be a finite sheeted covering map, and let X be a locally finite
intersection connected, compact, Hausdorff space. The induced map p∗ : Map(X,E)→ Map(X,B)
in the compact-open topology is then a finite sheeted covering map as well.

Proof. The compact-open topology on Map(X,B) has a subbasis consisting of the subsets

CB(K,V ) = {f ∈ Map(X,B) | f(K) ⊆ U},

where K ⊆ X is compact and V ⊆ B is open. Similarly, we have a subbasis for the topology on
Map(X,E) given by subsets CE(K,V ) with K ⊆ X compact and V ⊆ E open.

Let f ∈ Map(X,B) be given. We then have to produce an evenly covered neighborhood of f
in the compact-open topology. By Lemma A.3 there is a covering of X by finitely many open sets
U1, . . . , Un such that each f(Ui) is contained in an evenly covered neighborhood f(Ui) ⊆ Vi ⊆ B.
Since X is compact Hausdorff, each Ui is also compact. Hence f is contained in the open intersection

f ∈ CB(U1, V1) ∩ · · · ∩ CB(Un, Vn),

though this is not yet the evenly covered neighborhood we seek.
Each Vi is evenly covered by p, so we can choose a trivialization of p−1(Vi) ∼= Wi,1t· · ·tWi,r in

E such that p maps each Wi,k homeomorphically onto Vi. The trivialization might not be unique,
so suppose from now on that we have made a choice of trivialization for each Vi. Furthermore, note
that the number of sheets r might depend on which Vi we a considering, but whenever Vi and Vj
have non-empty intersection, they necessarily have the same number of sheets.

At the intersection of the open sets Vij := Vi ∩ Vj , with i 6= j, we might run into the problem
that the chosen sheets over Vi and Vj do not agree on the intersection so that some sheet Wi,k over
Vi intersects several sheets over Vj . This can happen whenever the intersection Vij is not connected.
To account for this problem, we will partition Vij into a disjoint union of open subsets as follows:
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For every point b ∈ Vij , each point in the fiber p−1(b) lies in a unique pair of sheets Wi,k over Vi
and Wj,l over Vj . Given b ∈ Vij we thus get an associated bijection σb ∈ Σr, where r is the size of
the fiber over b, such that each intersection Wi,k ∩Wj,σb(k) contains a point of the fiber. We now
say that two points b and b′ in Vij are equivalent if and only if they give rise to the same bijection
σb = σb′ , and let V σ

ij denote the subset of points giving rise to the bijection σ ∈ Σr.
The subset V σ

ij can be written as

V σ
ij = p(Wi,1 ∩Wj,σ(1)) ∩ p(Wi,2 ∩Wj,σ(2)) ∩ · · · ∩ p(W1,r ∩Wj,σ(r)),

which is a finite intersection of open sets and therefore open in B. The open sets V σ
ij for σ ∈ Σr

provides a partition of Vij into finitely many disjoint open sets, many of which might be empty.
Since Uij := Ui ∩Uj ⊆ X is assumed to be connected, and supposing Uij is non-empty, f maps

Uij to a unique set V
σij
ij in the partition of Vij . We now claim that the following neighborhood of

f in Map(X,B) is evenly covered:

D :=

n⋂
i=1

CB(Ui, Vi) ∩
⋂

1≤i<j≤n
Uij 6=∅

CB(Uij , V
σij
ij ).

The key property of the subsets involved in defining D is that whenever a finite intersection of Ui’s
is non-empty, the corresponding open set in B is evenly-covered by a well-defined set of sheets:

• Vi is covered by the sheets Wi,1, . . . ,Wi,r.

• If Uij = Ui ∩ Uj is non-empty, it must be mapped to V
σij
ij ⊆ B, which is evenly covered by

the sheets
p−1(V

σij
ij ) ∩Wi,1 ∩Wj,σij(1) , . . . , p

−1(V
σij
ij ) ∩Wi,r ∩Wj,σij(r).

• Similar statements hold for non-empty intersections of three or more Ui’s, but we will not
need these in this proof.

Now suppose some g ∈ D ⊆ Map(X,B) lifts to a map g̃ : X → E with p ◦ g̃ = g. By assumption
each Ui (and thus also Ui) is connected, so g̃(Ui) lies in a unique sheet Wi,si of p−1(Vi) for some
1 ≤ si ≤ r, where r is the number of sheets over Vi. Taking the corresponding sheet Wi,si ⊆ E over
Vi for each Ui, we see that

g̃ ∈
n⋂
i=1

CE(Ui,Wi,si) ∩
⋂

1≤i<j≤n
Uij 6=∅

CE(Uij , p
−1(V

σij
ij )).

Furthermore, since g maps any non-empty Uij to V
σij
ij , we must have g̃(Uij) contained in one of the

sheets over V
σij
ij , and consequently sj = σij(si) whenever Uij = Ui ∩ Uj is non-empty.

We now define a “compatible choice of sheets” to be a choice of a sheet Wi,si over Vi, for each
1 ≤ i ≤ n, satisfying that whenever Ui ∩ Uj is non-empty, we must have sj = σij(si). Note that
once we choose a sheet over Vi for a single Ui in each connected component of X, there is at most
one compatible choice of sheets extending the choices made – the remaining sheets are forced upon
us by non-empty intersections.

By the argument above, any g̃ ∈ p−1∗ (D) which is a lift of some map g ∈ D, has to be contained
in

n⋂
i=1

CE(Ui,Wi,si) ∩
⋂

1≤i<j≤n
Uij 6=∅

CE(Uij , p
−1(V

σij
ij ))
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for some compatible choice of sheets W1,s1 , . . . ,Wn,sn . Conversely, given a compatible choice of
sheets, the subset

n⋂
i=1

CE(Ui,Wi,si) ∩
⋂

1≤i<j≤n
Uij 6=∅

CE(Uij , p
−1(V

σij
ij ))

is mapped to D by p∗ : Map(X,E)→ Map(X,B). It follows that p−1∗ (D) decomposes as a disjoint
union

p−1∗ (D) =
∐

compatible
choices of sheets

 n⋂
i=1

CE(Ui,Wi,si) ∩
⋂

1≤i<j≤n
Uij 6=∅

CE(Uij , p
−1(V

σij
ij ))

 .

It remains to prove that for each compatible choice of sheets, the open subset

D′ :=
n⋂
i=1

CE(Ui,Wi,si) ∩
⋂

1≤i<j≤n
Uij 6=∅

CE(Uij , p
−1(V

σij
ij ))

maps homeomorphically to D.

For each 1 ≤ i ≤ n, let ηi = p|Wi,si
: Wi,si

∼=−→ Vi be the homeomorphism between the sheet Wi,si

and Vi. We then provide a point-set inverse to the map p∗ : D′ → D as follows: Let g ∈ D, and let
us define a map g̃ : X → E by the formula

g̃(x) =


η−11 (g(x)) if x ∈ U1,

...

η−1n (g(x)) if x ∈ Un.

We have defined g̃ by a sequence of continuous maps on an open cover of X, so g̃ is continuous if
it is well-defined.

To see that g̃ is well-defined, consider a non-empty intersection Uij = Ui ∩ Uj . Because g ∈ D,
we know that g(Uij) ⊆ V

σij
ij . Furthermore, since the the choice of sheets Wi,si is assumed to be

compatible, we know that sj = σij(si) so that

p−1(V
σij
ij ) ∩Wi,si ∩Wj,sj

is one of the sheets over V
σij
ij . Consequently, η−1i and η−1j land in the same sheet when restricted to

g(Uij) ⊆ V
σij
ij , hence η−1i ◦g and η−1j ◦g agree on Uij and g̃ : X → E is well-defined. By construction,

we have g̃ ∈ D′. This construction provides a point-set inverse to p∗ : D′ → D. We conclude that
p∗ : D′ → D is a continuous bijection.

It remains to check that p∗ : D′ → D is a homeomorphism. Consider the following commutative
square:

D′
n⋂
i=1

CE(Ui,Wi,si)

n∏
i=1

Map(Ui,Wi,si)

D
n⋂
i=1

CB(Ui, Vi)
n∏
i=1

Map(Ui, Vi).

p∗ p∗ ∼=

⊆

⊆
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The horizontal maps are continuous embeddings: We only prove that the top map is an embedding,
the other proof is completely analogous. Injectivity of the map is clear as the open sets Ui cover
X. Given any subbasis element CE(K,O) with K ⊆ X compact and O ⊆ E open, the intersection

CE(K,O) ∩
n⋂
i=1

CE(Ui,Wi,si)

is simply the preimage of
n∏
i=1

CMap(Ui,Wi,si
)(K ∩ Ui, O ∩Wi,si),

where CMap(Ui,Wi,si
)(K ∩Ui, O∩Wi,si) denotes a subbasis element in the compact-open topology of

Map(Ui,Wi,si). Thus the topology on
⋂n
i=1CE(Ui,Wi,si) agrees with the subspace topology coming

from
∏n
i=1 Map(Ui,Wi,si), and this remains true when restricting to the further open subset D′.

Because the composite D′
p∗−→ D ↪→

∏n
i=1 Map(Ui, Vi) is an embedding, it follows that the initial

map p∗ : D′ → D is an embedding as well. Finally, an embedding p∗ : D′ → D which is bijective, is
in fact a homeomorphism. This concludes our proof that D is an evenly covered neighborhood of
f ∈ Map(X,D) (with finitely many sheets), and therefore p∗ : Map(X,E)→ Map(X,B) is a finite
sheeted covering map.

Corollary A.5. Let p : E → B be any finite sheeted covering map. Then the induced map Ln(p) : Ln(E)→
Ln(B) is also a finite sheeted covering map for all n ≥ 0, when Ln(−) is endowed with the compact-
open topology.

Proof. Apply Proposition A.4 with X = (S1)n, which is both locally finite intersection connected,
compact, and Hausdorff.

When working with the category of compactly generated weak Hausdorff spaces, we usually
want to replace the compact-open topology on Ln(−) = Map(S1,−) with the compactly generated
weak Hausdorff replacement. We may ask whether a finite sheeted covering Ln(E)→ Ln(B) from
Corollary A.5 is still a covering map after taking compactly generated weak Hausdorff replacements.
This is a consequence of the following general lemma concerning finite sheeted coverings and refined
topologies.

Lemma A.6. Let p : E → B be a finite sheeted covering map, and let F : Top → Top be functor
on all topological spaces such that:

• F (X) has the same underlying set as X, and the topology of F (X) contains the topology of
X.

• X F (f)−−−→ Y equals X
f−→ Y as maps of sets.

• F sends open embeddings U ↪→ X to open embeddings F (U) ↪→ F (X).

• F (−) preserves finite disjoint unions of topological spaces.

Then F (p) = p : F (E)→ F (B) is also a finite sheeted covering.

Proof. Any evenly covered open set U in B is still open in F (B) and evenly covered as a set by the

continuous map F (p)−1(U)
F (p)|−−−→ U . It is therefore sufficient to prove that F (p) = p : F (E)→ F (B)

is an open map, in which case F (p)−1(U)
F (p)|−−−→ U will be a homeomorphism on each sheet over U .

50



To prove that F (p) = p : F (E) → F (B) is an open map, suppose A ⊆ E is open in F (E). We
then aim to prove that p(A) is open in F (B). We cover p(A) by evenly covered open sets in B, so
that

p(A) =
⋃

U evenly covered in B

p(A) ∩ U.

It is now sufficient to prove that each p(A) ∩ U is open in F (B). Consider the following diagram
for an evenly covered U in B:

r∐
j=1

Vj E

U B

∐r
j=1 ιj

p∼= on sheets
p

If we apply F to this diagram, we get the following square, where the left map is still a homeomor-
phism on sheets by the assumption that F preserves coproducts:

r∐
j=1

F (Vi) F (E)

F (U) F (B).

∐r
j=1 ιj

p∼= on sheets
p

Now p(A) ∩ U = p(A ∩ p−1(U)) =
∐r
j=1 p(A ∩ Vj) as sets. Each A ∩ Vi is open in F (Vj) as

A ∩ Vj = ι−1j (A) and A is assumed to be open in F (E). By the homeomorphism F (Vi)
p−→ F (U),

we get that p(A ∩ Vj) is open in F (U). Hence p(A) ∩ U is open in F (U) and thus in F (E) since
F (U) is an open subspace of F (B).

Corollary A.7. Let p : E → B be a finite sheeted covering map between compactly generated
weak Hausdorff spaces, then the induced map Ln(p) : Ln(E)→ Ln(B) in the category of compactly
generated weak Hausdorff spaces is a finite sheeted covering map for all n ≥ 0.

Proof. Let Ln(p)0 : Ln(E)0 → Ln(B)0 be the induced map between the free loop spaces equipped
with the compact-open topologies, then Ln(p)0 is a covering map by Corollary A.5.

Next, let K : Top→ Top be the functor taking any topological space to its compactly-generated
refinement. If we apply K to either free loop space, Ln(E)0 or Ln(B)0, the space we get is not only
compactly generated, but also weak Hausdorff by [13, Proposition 2.24]. Hence Ln(E) = KLn(E)0
and Ln(B) = KLn(B)0.

The functor K : Top → Top satisfies the first two properties of Lemma A.6 by definition. The
third property is [13, Lemma 2.26]. The fourth property is [13, Proposition 2.2]. It follows by Lemma
A.6 that Ln(p) = KLn(p)0 is a finite sheeted covering map.
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Proposition A.8. Given a finite sheeted covering map π : Y → X, the map
k : PBn(π) → (Z>0)

n given in Definition 2.1 is continuous when Ln(−) is equipped with the
compact-open topology.

When X and Y are compactly generated weak Hausdorff, the conclusion also holds when Ln(−)
is equipped with the compactly generated refinement of the compact-open topology.

Proof. For a compactly generated weak Hausdorff space X the map KLn(−)0 → Ln(−)0 to the
compact-open topology from its compactly generated refinement is continuous. Hence it is sufficient
to prove that the map k is continuous on the compact-open topology for Ln(−), and any topological
spaces.

Let π : Y → X be a finite sheeted covering map, and consider any point (y, s, f) ∈ PBn(π).
Then f : (S1)n → X is an n-fold loop, s ∈ (S1)n a point in the torus, and y ∈ π−1(f(s)) a point
in the fiber over f(s) ∈ X. As in the proof of Proposition A.4, we apply Lemma A.3 to find a
finite intersection connected, open covering of the torus (S1)n consisting of finitely many open sets
U1, . . . , Um such that each f(Ui) is contained in an evenly covered open set Vi ⊆ X. Following the
notation of Proposition A.4, we choose trivializations

π−1(Vi) ∼= Wi,1 t · · · tWi,r,

where the number of sheets r might depend on the evenly covered set Vi.
We again let Uij denote Ui∩Uj , and for each Vij = Vi∩Vj 6= ∅, we partition Vij into open subsets

V σ
ij , where σ ∈ Σr, such that V σ

ij is evenly covered by the sheets Wi,1 ∩Wj,σ(1), . . . ,Wi,r ∩Wj,σ(r).
As in the proof of Proposition A.4, we next consider the open neighborhood f ∈ D ⊆ Ln(X),

where

D =
n⋂
i=1

CX(Ui, Vi) ∩
⋂

1≤i<j≤n
Uij 6=∅

CX(Uij , V
σij
ij ).

Since the Ui cover the torus, the tuple s is contained in some Ui0 . It follows that f(s) ∈ f(Ui0) ⊆ Vi0 ,
and so the point y ∈ π−1(f(s)) lies in a unique sheet Wi0,h0 . We claim that k : PBn(π) → (Z>0)

n

is constant when restricted to

D′ := PBn(π) ∩ (Wi0,h0 × Ui0 ×D) ⊆ Y × (S1)n × Ln(X),

which is an open neighborhood of (y, s, f) in PBn(π).
The union V∪ =

⋃m
i=1 Vi is an open subset of X, and so Ln(V∪) is an open subset of Ln(X) as

well. We can pull back the covering map π to V∪ and get the diagram of pullback squares, with
W∪ =

⋃
i,hWi,h:

PBn(π|V∪) W∪ Y

(S1)n × Ln(V∪) V∪ X.

π|V∪ π

Here PBn(π|V∪) is an open subset of PBn(π) and we have an inclusion (y, s, f) ∈ D′ ⊆ PBn(π|V∪).
We will now replace V∪ with a finite topological space V . The finite space V has a point vi

corresponding to each non-empty Vi, a point vσij corresponding to each non-empty V σ
ij , a point vσ1σ2ij`

corresponding to each nonempty intersection

V σ1σ2
ij` = V σ1

ij ∩ V
σ2
j` = V σ1

ij ∩ V
σ2
j` ∩ V

σ2 ◦σ1
i` ,
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and so on for further non-empty intersections V σ1σ2···
ij`··· . The points of V form a poset corresponding

to the inclusion of intersections, and the topology of V is the opposite Alexandrov topology in
which downward closed sets are open. This topology has a basis given by the downward intervals

{v | v ≤ vσ1σ2···ij`··· }

corresponding to all further intersections contained in V σ1σ2···
ij`··· .

We define a map ρ : V∪ → V by sending each point x ∈ V to the smallest vσ1σ2···ij`··· such that

V σ1σ2···
ij`··· contains x (i.e. the intersection of all V σ

ij ’s containing x), or send x to vi if Vi is the only

subset containing x. The map ρ is then continuous since the preimage of the interval {v | v ≤ vσ1σ2···ij`··· }
is simply the finite intersection V σ1σ2···

ij`··· as an open set in X.
The finite space V has a covering space W constructed in a similar way. The points of W ,

denoted by wσ1σ2···ij`··· ,h correspond to all the finite non-empty intersection of sheets

W σ1σ2···
ij`··· ,h = Wi,h ∩Wj,σ1(h) ∩W`,σ2(σ1(h)) ∩ · · · .

And W is again a poset by inclusion of intersections, and we equip it with the opposite Alexandrov
topology.

Each non-empty intersection V σ1σ2···
ij`··· is evenly covered by the sheets

W σ1σ2···
ij`··· ,1 ,W

σ1σ2···
ij`··· ,2 , . . . ,W

σ1σ2···
ij`··· ,r .

We can therefore define a finite sheeted covering map π′ : W → V , where the fiber over each point
vσ1σ2···ij`··· is given by

(π′)−1(vσ1σ2···ij`··· ) = {wσ1σ2···ij`··· ,1, w
σ1σ2···
ij`··· ,2, . . . , w

σ1σ2···
ij`··· ,r}.

The map π′ is a covering map because each downward interval in the basis for the topology of V
is evenly covered by the corresponding intervals in W .

The covering map π|V∪ over V∪ now arises in a new way as the pullback of the covering map π′

over V :

PBn(π|V∪) W∪ W

(S1)n × Ln(V∪) V∪ V.

π|V∪
ρ

π′

The preimage of each downward interval {v | v ≤ vσ1σ2···ij`··· } in V is the evenly covered open set

V σ1σ2···
ij`··· in V∪, and the sheets over V σ1σ2···

ij`··· are precisely the preimage in W∪ of the sheets over

{v | v ≤ vσ1σ2···ij`··· }.
The continuous map ρ : V∪ → V induces a continuous map ρ∗ : Ln(V∪)→ Ln(V ) and a further

map ρ∗ : PBn(π|V∪) → PBn(π′). Given a loop γ : S1 → V∪ and some s′ ∈ S1 the action of γ on
the fiber over γ(s) is isomorphic to the action of the composite ρ ◦ γ : S1 → V on the fiber over
ρ(γ(s)). Since the map k : PBn(π|V∪) → (Z>0)

n is defined in terms of such actions, we conclude
that k factors through the map ρ∗ : PBn(π|V∪)→ PBn(π′).

The triple (y, s, f) ∈ PBn(π|V∪) is mapped by ρ∗ to the triple (wσ1σ2···ij`··· ,h, s, ρ◦f) ∈ PBn(π′), where

y lies in the intersection of sheets W σ1σ2···
ij`··· ,h . Furthermore ρ∗(D

′) is a subset of the neighborhood

D′′ := PBn(π′) ∩ ({w ≤ wi0,h0} × Ui0 × ρ∗(D))) ⊆W × (S1)n × Ln(V ).
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It suffices to show that k : PBn(π′)→ (Z>0)
n is constant on D′′.

We claim that if we consider the n-fold loops f ′ ∈ D ⊆ Ln(V∪) and postcompose with ρ, then
the resulting n-fold loops ρ ◦ f ′ ∈ ρ∗(D) ⊆ Ln(V ) are all homotopic to each other in Ln(V ). The
consequence of this is that while D′′ might not be path connected, it is still contained in a single
path-component inside PBn(π′). We have used that Ui0 is a connected open set in (S1)n and thus
path connected. Because D′′ is contained in a single path-component of PBn(π′), we can apply the
proof of Proposition 2.3 to see that k takes the same value on all points of D′′.

It suffices to prove that all n-fold loops in ρ∗(D) are homotopic inside Ln(V ). Consider the
particular map f0 : (S1)n → V given by f0(s

′) = vσ1σ2···ij`··· , when s′ ∈ Uij`···, where Uij`··· is the
intersection of all Ui’s containing s′, and where

V σ1σ2···
ij`··· = V σ1

ij ∩ V
σ2
j` ∩ · · ·

is the intersection of the neighborhoods corresponding to Uij , Uj`, . . . in the definition of D. Firstly,
f0 is continuous since the preimage of the downward interval {v | v ≤ vσ1σ2···ij`··· } is Uij`... or empty.
Secondly, while f0 need not itself be an element of ρ∗(D), any n-fold loop f ′ ∈ D satisfies for
every s′ ∈ (S1)n that if s′ lies in some intersection Uij`···, then f ′(s′) lies in the corresponding
intersection V σ1σ2···

ij`··· (and possibly further V ’s not already in this intersection). Consequently we

have ρ(f ′(s′)) ≤ f0(s′) as elements in the poset V for all s′ ∈ (S1)n. It follows that ρ◦f ′ is homotopic
to f0, e.g. with the homotopy H : (S1)n × I → V given by

H(s′, t) =

{
ρ(f ′(s′)) if 0 ≤ t < 1,

f0(s
′) if t = 1.

To see that H is continuous, note that the preimage of a downward interval {v | v ≤ vσ1σ2···ij`··· } under
H is

H−1({v | v ≤ vσ1σ2···ij`··· }) =


(f ′)−1(V σ1σ2···

ij`··· )× [0, 1) ∪ Uij`··· × [0, 1]

if V σ1
ij , V

σ2
j` , . . . correspond

to Uij , Uj`, . . . in the definition of D,

(f ′)−1(V σ1σ2···
ij`··· )× [0, 1) otherwise.

Either of these is an open set in (S1)n × I. We conclude that H is a continuous homotopy from f ′

to f0 in Ln(V ). It follows that ρ∗(D) is contained in a single path-component of Ln(V ), hence D′′ is
contained in a single path-component of PBn(π′), hence k : PBn(π′)→ (Z>0)

n is constant on D′′,
hence k : PBn(π|V∪) → (Z>0)

n is constant on D′, and finally it follows that k : PBn(π) → (Z>0)
n

is continuous.
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