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Abstract

In [11], we constructed and studied a functorial extension of the evaluation map S1×LX → X
to transfers along finite covers. In this paper, we show that this induces a natural evaluation
map on the full subcategory of the homotopy category of spectra consisting of p-completed
classifying spectra of finite groups. To do this, we leverage the close relationship between this
full subcategory and the Burnside category of fusion systems.
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1 Introduction

In [11], we produced a functorial extension of the evaluation map S1×LX → X to transfers along
finite covers and showed that this induces a natural evaluation map on the Burnside category of
finite groups. The homotopy category of classifying spectra of finite groups admits an algebraic
interpretation in terms of completions of Burnside modules of finite groups, but in [11] we showed
that the natural evaluation map does not extend to the homotopy category of classifying spectra
of finite groups. For a prime p, the homotopy category of p-completed classifying spectra of finite
groups admits an algebraic interpretation in terms of Burnside modules for fusion systems. Our
goal in this paper is to show that the natural evaluation map does extend to the Burnside category
of fusion systems and also to the homotopy category of p-completed classifying spectra of finite
groups.

The notion of a saturated fusion system is an axiomatization of the properties that can be
detected about a finite group G from a choice of Sylow p-subgroup S ≤ G equipped with conjugation
data. There are saturated fusion systems that do not come from a choice of finite group and Sylow
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p-subgroup. Every saturated fusion system has a classifying space that is a natural generalization
of the p-completion of the classifying space of a finite group.

The classifying spectrum of a saturated fusion system is built from the classifying space of the
saturated fusion system in a simple manner. There is a close relationship between the classifying
spectrum of a saturated fusion system and the p-completed classifying spectrum of the underlying
Sylow p-subgroup. There is an idempotent endomorphism of the classifying spectrum of the un-
derlying Sylow p-subgroup that splits off the classifying spectrum of the saturated fusion system.
This idempotent is known as the characteristic idempotent of the saturated fusion system. If the
saturated fusion system comes from a finite group G, this construction recovers the p-completion
of the classifying spectrum of G.

The set of homotopy classes of maps between two p-completed classifying spectra of finite p-
groups is isomorphic to the p-completion of the Burnside module of bisets between the two p-groups.
The p-complete Burnside category of p-groups (in which the Burnside modules have been completed
at p) is therefore equivalent to the homotopy category of p-completed classifying spectra of finite
p-groups. The characteristic idempotent for a saturated fusion system appears as an idempotent
in the p-completion of the double Burnside ring of the underlying Sylow p-subgroup. Similarly,
there is a p-complete Burnside category for all saturated fusion systems, and this is equivalent
to the homotopy category of all classifying spectra of fusion systems, which includes p-completed
classifying spectra of all finite groups.

We extend the natural evaluation map of [11] from the p-complete Burnside category of p-
groups to the p-complete Burnside category of saturated fusion systems by analyzing its effect on
the characteristic idempotent. For formal reasons, this provides us with an evaluation map whose
domain is a direct summand of the p-completed classifying spectrum of BZ/pk × LBS. However,
work needs to be done to relate this summand to the free loop space of the classifying space of the
saturated fusion system.

In more detail...

Let AG be the Burnside category of finite groups. The objects of AG are finite groups and the abelian
group of morphisms between two groups G and H is the Burnside module of H-free (G,H)-bisets.
We may formally extend this category to include formal coproducts of finite groups. In this case,
a map is given by a matrix of virtual bisets. The homotopy category of classifying spaces of finite
groups faithfully embeds in AG. For a finite group G, let LG =

∐
[g]CG(g), the formal coproduct

over conjugacy classes of elements in G of the centralizers. In [11, Section 3], we constructed

and studied a functor L†n : AG → AG with the property that L†n(G) = (Z/k)n × Ln(G) (for k

large enough) and a natural transformation L†n ⇒ IdAG that extends the evaluation map natural
transformation.

Fix a prime p and let AFp be the Burnside category of saturated fusion systems. The objects
of AFp are saturated fusion systems and, given two saturated fusion systems F on a p-group S
and G on a p-group T , the morphisms AFp(F ,G) is the submodule of AG(S, T )∧p consisting of
bistable elements. Just as in [11, Section 3], we may formally extend this category to include formal
coproducts of fusion systems, which we call fusoids.

The category AFp is a full subcategory of the homotopy category of p-complete spectra. Let

Σ̂∞+BS be the p-completion of the classifying spectrum Σ∞+BS. Given a saturated fusion system F
on a p-group S, there is a characteristic idempotent

ωF ∈ AG(S, S)∧p
∼= [Σ̂∞+BS, Σ̂

∞
+BS].
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We will denote the summand of Σ̂∞+BS split off by this idempotent by Σ̂∞+BF . There is a canonical
isomorphism

AFp(F ,G) ∼= [Σ̂∞+BF , Σ̂∞+BG].

Recall that if the fusion system F comes from a finite group G (with Sylow p-subgroup S), then
Σ̂∞+BF is equivalent to the p-completion of the classifying spectrum of G. Thus AFp contains the
homotopy category of p-completed classifying spectra of finite groups as a full subcategory.

Just as with groups, there is a notion of a centralizer fusion system of an element in the
underlying p-group of a fusion system and we define

LF =
∐
[g]

CF (g).

It is important to note that LF generally has fewer components than LS because F generally has
fewer conjugacy classes. Consequently LS is not the “Sylow p-subgroup” of LF even though S is
the Sylow subgroup of F . Other technical challenges that we address stem from the fact that the
notion of a centralizer fusion system only behaves well for certain choices of representatives for the
conjugacy classes in F .

For e large enough, the evaluation map is a map of fusion systems

Z/pe × (
∐
[g]

CF (g))→ F .

Taking p-completed classifying spectra, we get a map

Σ̂∞+ (BZ/pe × LBF)→ Σ̂∞+BF .

Here the free loop space LBF is modeled algebraically by LF as stated in Proposition 3.12, which
is a result essentially due to Broto–Levi–Oliver [2].

We show that the domain of the evaluation map above arises by two other constructions. First,
applying IdZ/pe ×L(−) to the characteristic idempotent gives an idempotent

Σ̂∞+ (BZ/pe × LBS)
IdZ/pe ×LωF−−−−−−−−→ Σ̂∞+ (BZ/pe × LBS).

Secondly, we may apply L†1 to the characteristic idempotent ωF to get an idempotent

Σ̂∞+ (BZ/pe × LBS)
L†1ωF−−−→ Σ̂∞+ (BZ/pe × LBS).

Neither of these idempotents are the characteristic idempotent for Z/pe × LF , but we prove that
both of these idempotents still split off the spectrum

Σ̂∞+ (BZ/pe × LBF).

Since each map between fusion systems arises as a map between classifying spectra of p-groups
that commutes with the characteristic idempotent, we get a natural transformation

L†1(−)⇒ IdAFp

of functors from AFp to AFp. Or, said another way, we have extended the functoriality of the
evaluation map to the homotopy category of classifying spectra of fusion systems and, in particular,
to the homotopy category of p-completed classifying spectra of finite groups.

From here, Theorem 1.1 is proved for fusion systems in a reasonably formal manner as Theorem
6.9. We also derive formulas for L†n and the evaluation map. These formulas are similar to those
described for finite groups in [11, Section 3].
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Theorem 1.1. We construct a family of endofunctors L†n : AFp → AFp for n ≥ 0 with the following
properties:

(∅) Let L†,AGn : AG → AG be the functor constructed in [11, Section 3]. When restricted to the
full subcategories of AG and AFp spanned by formal unions of finite p-groups, the functor

L†n : AFp → AFp is the Zp-linearization of L†,AGn .

(i) L†0 is the identity functor on AFp.

(ii) On objects, L†n takes a saturated fusoid F to the saturated fusoid

L†n(F) = (Z/pe)n × Ln(F) =
∐

a∈F [n]

(Z/pe)n × CF (a).

(iii) The group Σn acts on LnF =
∐
a∈F [n] CF (a) by permuting the coordinates of the n-tuples

a. Explicitly, if σ ∈ Σn and if σ̃(a) is the representative for the F-conjugacy class of σ(a),

then σ : LnF → LnF maps CF (a) = CF (σ(a)) to CF (σ̃(a)) via the isomorphism ζ
σ̃(a)
σ(a) ∈

AFp(CF (a), CF (σ̃(a))).

The functor L†n is equivariant with respect to the Σn-action on (Z/pe)n×Ln(−) that permutes
the coordinates of both (Z/pe)n and Ln(−), i.e. for every σ ∈ Σn the diagonal action of σ on

(Z/pe)n × Ln(−) induces a natural isomorphism σ : L†n
∼=⇒ L†n.

(iv) Let E and F be saturated fusion systems on R and S respectively. For forward maps, i.e. tran-

sitive bisets [R,ϕ]FE ∈ AFp(E ,F) with ϕ : R → S fusion preserving, the functor L†n coincides
with (Z/pe)n × Ln(−) so that

L†n([R,ϕ]FE ) = (Z/pe)n × Ln([R,ϕ]FE ).

In addition, Ln([R,ϕ]FE ) is the biset matrix that takes a component CE(a) of LnE to the
component CF (b) of LnF by the biset

[CR(a), ϕ]
CS(ϕ(a))
CE(a)

� ζbϕ(a) ∈ AFp(CE(a), CF (b)),

where b represents the F-conjugacy class of ϕ(a).

(v) For all n ≥ 0, the functor L†n commutes with evaluation maps, i.e. the evaluation maps

evF : (Z/pe)n × Ln(F)→ F form a natural transformation ev : L†n ⇒ IdAFp.

(vi) For all n ≥ 0, the partial evaluation maps ∂evF : Z/pe × Ln+1(F) → Ln(F) given as fusion
preserving maps ∂eva : Z/pe × CF (a)→ CF (a1, . . . , an) in terms of the formula

∂eva(t, z) = (an+1)
t · z ∈ CS(a1, . . . , an), for t ∈ Z/pe, z ∈ CS(a),

form natural transformations (Z/pe)n × ∂ev : L†n+1 ⇒ L†n.

(vii) For all n,m ≥ 0, and any saturated fusoid F on S, the formal union (Z/pe)n+m × Ln+mF
embeds into (Z/pe)m×Lm((Z/pe)n×LnF) as the components corresponding to the commuting
m-tuples in (Z/pe)n × LnF that are zero in the (Z/pe)n-coordinate, i.e. the embedding takes
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each component (Z/pe)n+m×CF (x, y) to the component (Z/pe)m×C(Z/pe)n×CF (x)(0× y), for

x ∈ F [n] and y ∈ F [m], via the fusion preserving map given by

((s, r), z) 7→ (r, (s, z)),

for s ∈ (Z/pe)n, r ∈ (Z/pe)m, and z ∈ CS(x, y).

These embeddings (Z/pe)n+m×Ln+mF → (Z/pe)m×Lm((Z/pe)n×LnF) then form a natural

transformation L†n+m(−)⇒ L†m(L†n(−)).

For any finite group G, if we work with the free loop space LG in the context of a fixed prime
p, we may want to restrict our view to only those components of LG that correspond to conjugacy
classes of p-power order elements in G. In general for n ≥ 0, we let LnpG consist of the components
in LnG corresponding to conjugacy classes of commuting n-tuples of p-power order elements in G.

The functors L†n : AG → AG from [11, Section 3] restrict naturally from (Z/`)n × LnG to

(Z/`)n × LnpG and give us functors L†n,p : AG→ AG for n ≥ 0.
Separately, consider the canonical functor AG→ Ho(Sp) taking finite groups to their classifying

spectra and post-compose this with the p-completion functor for spectra (−)∧p : Ho(Sp)→ Ho(Spp).
The resulting functor factors through AFp giving us a functor (−)∧p : AG → AFp corresponding to
the p-completion functor for classifying spectra. The (−)∧p takes a finite group to its associated
fusion system at the prime p, and explicit formulas for the functor (−)∧p were previously described
in [10].

Our final result describes the interplay between these functors. We prove the functor L†n : AFp →
AFp, when applied to a fusion system coming from a finite group, is in essence the p-completion of

the functor L†n,p : AG→ AG.

Theorem 1.2. We have (−)∧p ◦ L
†
n,p = L†n ◦ (−)∧p as functors AG→ AFp for all n ≥ 0.

Outline

Section 2 recalls notation and terminology for saturated fusion systems, their Burnside modules,
and characteristic idempotents. Section 3 introduces the technology needed for working with bisets
between free loop spaces of fusion systems. Section 4 proves that the mapping telescope of the
idempotent Ln(ωF ) is equivalent to the classifying spectrum for the free loop space of the fusion

system. Section 5 proves a similar result for the mapping telescope of L†n(ωF ). The proof reduces to

the results of Section 4 by showing that L†n(ωF ) and (Z/pe)n ×Ln(ωF ) induce equivalent mapping

telescopes. Section 5 provides explicit formulas for L†n applied to the Burnside category of saturated
fusion systems. Section 6 proves Theorem 1.1 as Theorem 6.9, and finally, Section 7 proves Theorem
1.2 as Theorem 7.5.
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2 Recollections about fusion systems

We first recall the basics of the definition of a saturated fusion system. For additional details see
[8, Section 2] or [1, Part I].

Definition 2.1. A fusion system on a finite p-group S is a category F with the subgroups of S as
objects and where the morphisms F(P,Q) for P,Q ≤ S satisfy

(i) Every morphism ϕ ∈ F(P,Q) is an injective group homomorphism ϕ : P → Q.

(ii) Every map ϕ : P → Q induced by conjugation in S is in F(P,Q).

(iii) Every map ϕ ∈ F(P,Q) factors as P
ϕ−→ ϕ(P )

incl−−→ Q in F and the inverse isomorphism
ϕ−1 : ϕ(P )→ P is also in F .

In addition, the underlying group S is considered part of the structure of the fusion system, so a
fusion system is really a pair (S,F) of a p-group equipped with a category as above.

We think of the morphisms in F as being conjugation maps induced by some, possibly non-
existent, ambient group. Consequently, we say that two subgroups P,Q ≤ S are conjugate in F if
there is an isomorphism between them in F .

A saturated fusion system satisfies some additional axioms that we will not go through as they
play almost no direct role in this paper (see e.g. [8, Definition 2.5] instead). The important aspect of
saturated fusion systems in this paper is that these are the fusion systems that have characteristic
idempotents and classifying spectra as described below.

Given fusion systems F1 and F2 on p-groups S1 and S2, respectively, a group homomorphism
φ : S1 → S2 is said to be fusion preserving if whenever ψ : P → Q is a map in F1, there is a
corresponding map ρ : φ(P ) → φ(Q) in F2 such that φ|Q ◦ ψ = ρ ◦ φ|P . Note that each such ρ is
unique if it exists.

Example 2.2. Let G be a finite group with Sylow p-subgroup S. This data determines a fusion
system FG on S. The maps in FG(P,Q) for subgroups P,Q ≤ S are precisely the homomorphisms
P → Q induced by conjugation in G, i.e. if g−1Pg ≤ Q for some g ∈ G, then cg(x) = g−1xg defines
a homomorphism cg ∈ FG(P,Q). Note that different group elements g and g′ can give rise to the
same homomorphism cg = cg′ in FG(P,Q). The fusion system FG associated to a finite group at a
prime p is always saturated.

Every saturated fusion system F has a classifying spectrum originally constructed by Broto-
Levi-Oliver in [2, Section 5]. The most direct way of constructing this spectrum, due to Ragnarsson
[7], is as the mapping telescope

Σ∞+BF = colim(Σ∞+BS
ωF−−→ Σ∞+BS

ωF−−→ · · · ),

where ωF ∈ AG(S, S)∧p is the characteristic idempotent of F (see the characterization below). By
construction, Σ∞+BF is a wedge summand of Σ∞+BS.
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As remarked in Section 5 of [2], the spectrum Σ∞+BF constructed this way is in fact the
suspension spectrum for the classifying space BF defined in [2, 4]. One way to see this is to note
that H∗(BF ,Fp) coincides with ωF ·H∗(BS,Fp) as the F-stable elements, and that the suspension
spectrum of BF is HFp-local.

Definition 2.3. Let F be a fusion system on S. A virtual biset X ∈ AG(S, S)∧p is said to be
F-characteristic if it satisfies the following properties:

• X is F-generated, meaning that X is a linear combination of transitive bisets [P,ϕ]SS with
ϕ ∈ F(P, S).

• X is left F-stable, meaning that for all P ≤ S and ϕ ∈ F(P, S) the restriction of X along ϕ
on the left,

XS
P,ϕ = [P,ϕ]SP �X ∈ AG(P, S)∧p ,

is isomorphic to the restriction XS
P = [P, id]SP �X ∈ AG(P, S)∧p along the inclusion.

• X is right F-stable, meaning the dual property to the one above:

X � [ϕP,ϕ−1]PS = X � [P, id]PS ,

for all P ≤ S and ϕ ∈ F(P, S).

• |X|/|S| is invertible in Zp.

Whenever F is the fusion system generated by a finite group G with Sylow p-subgroup S, we
can consider G itself as an (S, S)-biset GSS . The biset GSS is always F-characteristic and is the
motivating example for Definition 2.3.

According to [8], a fusion system is saturated if and only if it has a characteristic virtual biset, in
which case there is a unique idempotent ωF among all the characteristic virtual bisets. An explicit
description and construction of ωF , and a classification of all the characteristic virtual bisets, can
be found in [9].

Definition 2.4. Let F1 and F2 be saturated fusion systems over p-groups S1 and S2, respectively.
We then let AFp(F1,F2) denote the submodule of AG(S1, S2)

∧
p consisting of all virtual (S1, S2)-

bisets that are both left F1-stable and right F2-stable. Here F1- and F2-stability can be defined as
for the characteristic idempotents above. Alternatively, a virtual biset X ∈ AG(S1, S2)

∧
p is (F1,F2)-

stable if and only if
ωF1 �X � ωF2 = X.

As a special case, for the trivial fusion systems induced by S1, S2 on themselves, we have
AFp(S1, S2) = AG(S1, S2)

∧
p . Hence AFp(S1, S2) is the free Zp-module spanned by the transitive

bisets [P,ϕ]S2
S1

for P ≤ S1 and ϕ : P → S2 up to conjugation. Similarly, AFp(F1,F2) is the free
Zp-module on basis elements of the form

[P,ϕ]F2
F1

:= ωF1 � [P,ϕ]S2
S1
� ωF2 ,

where P ≤ S1 and ϕ : P → S2 are taken up to pre- and postcomposition with isomorphisms in F1

and F2 respectively (see [7, Proposition 5.2]).
Suppose we have a third saturated fusion system F3 on S3 and virtual bisets X ∈ AFp(F1,F2)

and Y ∈ AFp(F2,F3). The composition X � Y = X ×S2 Y ∈ AFp(S1, S3) is then always (F1,F3)-
stable, so composition gives a well-defined map

� : AFp(F1,F2)× AFp(F2,F3)→ AFp(F1,F3).

Here we use “right-composition” similar as for bisets of finite groups in [11, Definition 3.1].
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Remark 2.5. Given finite groups G and H with Sylow subgroups S and T and a (G,H)-biset X,
we may restrict the G-action to S and the H-action to T to get an (S, T )-biset XT

S . Let FG be
the fusion system associated to G on S and FH the fusion system associated to H on T . The
restricted biset XT

S is always a stable biset and so we may further consider it as an (FG,FH)-biset

XFH
FG
∈ AFp(FG,FH).

Convention 2.6. As with [11, Convention 3.2] for groups, we allow flexibility when decomposing
virtual bisets into basis elements for fusion systems.

Let F and G be saturated fusion systems over p-groups S and T respectively. Given X ∈
AFp(F ,G), we can write X as a Zp-linear combination of basis elements:∑

(R,ϕ)

cR,ϕ · [R,ϕ]GF .

The summation runs over all R ≤ S and ϕ : R → T (not taken up to conjugacy). The coefficient
function c(−) is a choice of function from the set of all pairs (R,ϕ) to Zp such that the sum of
coefficients cR′,ϕ′ over the pairs (F ,G)-conjugate to (R,ϕ) is the number of copies of the basis
element [R,ϕ]GF in X.

As with [11, Convention 3.2], the linear combination is not unique as several conjugate pairs
(R,ϕ) can contribute to the sum at the same time. If we require c(−) to be concentrated on chosen
representatives for the conjugacy classes of pairs, then the linear combination is unique.

Remark 2.7. An advantage of the flexibility in the linear combinations above is that we can use
the same coefficients for [11, Convention 3.2] and Convention 2.6 at the same time: Given X ∈
AFp(F ,G), we first consider the (S, T )-biset SXT and write this as a linear combination according
to [11, Convention 3.2],

SXT =
∑
(R,ϕ)

cR,ϕ · [R,ϕ]TS .

Recalling that X is taken to be (F ,G)-stable, we can compose with the characteristic idempotents
from each side without changing X:

X = ωF � SXT � ωG =
∑
(R,ϕ)

cR,ϕ · (ωF � [R,ϕ]TS � ωG) =
∑
(R,ϕ)

cR,ϕ · [R,ϕ]GF .

Hence the coefficients cR,ϕ chosen when decomposing SXT as an (S, T )-biset also work when de-
composing X as an (F ,G)-biset.

Suppose E and F are saturated fusion systems on R and S respectively. Because we construct
Σ̂∞+BF for a saturated fusion system F on S as the colimit

Σ̂∞+BF = colim(Σ̂∞+BS
ωF−−→ Σ̂∞+BS

ωF−−→ · · · )

with respect to the idempotent ωF ∈ AFp(S, S), the stable maps from Σ̂∞+BE to Σ̂∞+BF are given
by

[Σ̂∞+BE , Σ̂∞+BF ] ∼= ωE � AFp(R,S)� ωF = AFp(E ,F).

3 Free loop spaces for saturated fusion systems

In order to have a framework in which to work with free loop spaces for fusion systems, we introduce
formal unions of fusion systems:
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Definition 3.1. Suppose we have a formal union of finite p-groups S = S1 t · · · t Sk. We define
a fusoid F on S to be a collection of fusion systems Fi on Si for 1 ≤ i ≤ k, and we write
F = F1 t · · · t Fk.

Given another fusoid E with underlying union R of p-groups, we define a fusion preserving map
E → F to be a collection of homomorphisms that take each component Ri of R to some component
Sj of S and where the homomorphism Ri → Sj is fusion preserving from Ei to Fj .

A fusoid F is saturated if each component of F is saturated. Furthermore each saturated fusoid
has as classifying space BF the disjoint union of the classifying spaces of the components, and F
has a classifying spectrum Σ̂∞+BF = colim(Σ̂∞+BS

ωF−−→ Σ̂∞+BS
ωF−−→ · · · ), where ωF ∈ AG(S, S)∧p is

the diagonal matrix with entries ωFi ∈ AG(Si, Si)
∧
p .

The classifying spectrum Σ̂∞+BF is also the sum under S∧p of the classifying spectra Σ̂∞+BFi for

the components of F where the copy of S∧p in each Σ̂∞+BFi coming from the disjoint basepoints are
identified with each other.

Definition 3.2. For saturated fusoids E and F over unions R and S of p-groups, we define
AFp(E ,F) similarly as for unions of groups, so that each X ∈ AFp(E ,F) is a matrix of virtual
bisets with entries Xi,j ∈ AFp(Ei,Fj) for the corresponding components of E and F . The Zp-
module AFp(E ,F) is a Zp-submodule of the module AFp(R,S) of matrices for the underlying
unions of p-groups.

Again we define composition � in terms of matrix multiplication, and we let the biset category
of fusoids AFp be the category with objects the saturated fusoids at the prime p and morphism set
from E to F given by AFp(E ,F).

The identity map idF ∈ AFp(F ,F) for a saturated fusoid is just the diagonal matrix ωF with
entry ωFi for each component Fi of F .

There is a functor AFp → Ho(Spp) that takes a fusoid F to the p-completed classifying spectrum

Σ̂∞+BF ' S∧p ∨Σ∞BF , and on morphisms it is the Segal map for fusoids, which is an isomorphism:

[Σ̂∞+BE , Σ̂∞+BF ] ∼= AFp(E ,F).

As such, AFp → Ho(Spp) is fully faithful.
A word of caution: While the restriction of actions GXH 7→ FG

XFH
defines a map AG(G,H)→

AFp(FG,FH) for any finite groups G and H, this does not define a functor AG → AFp. See
[10, Theorem 1.1] for a description of the functor AG → AFp that corresponds to p-completion of
spectra.

We wish to give an algebraic model for the n-fold free loop space Ln(BF), when F is a saturated
fusion system or fusoid. In order to do this, we first need to specify what we mean by commuting
n-tuples in F , their conjugacy classes, and their centralizer fusion systems.

Definition 3.3. Let F be a saturated fusoid or fusion system on a union S of finite p-groups.
For each n ≥ 1, we consider n-tuples a = (a1, . . . , an) of commuting elements in S. Note that the
elements of a tuple a are required to lie in the same component of the formal union S. We say that
two n-tuples a and b are F-conjugate if they lie in the same component of S and there is a map in
F sending a to b, i.e. a map

ϕ : 〈a〉 = 〈a1, . . . , an〉 → 〈b〉 = 〈b1, . . . , bn〉 in F

such that ϕ(ai) = bi.
We let F [n] denote the collection of equivalence classes of commuting n-tuples in S up to F-

conjugation, for n > 0. For n = 0, we consider F [0] to consist of a single empty/trivial 0-tuple.
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For a finite group G and n ≥ 0, let G[n],p denote the classes of commuting n-tuples of elements
with p-power order in G up to G-conjugation.

Definition 3.4. Let F be a saturated fusion system or fusoid over S. We say that an n-tuple a
in S is fully F-centralized if |CS(a)| ≥ |CS(a′)| for all n-tuples a′ conjugate to a in F , which is
the case if and only if the subgroup 〈a1, . . . , an〉 is fully F-centralized in the normal terminology of
fusion systems.

When F is a saturated fusion system, and a is fully centralized in F , we define the centralizer
fusion system CF (a) to be the fusion system over the p-group CS(a) with maps

HomCF (a)(Q,P ) = {ϕ ∈ F(Q,P ) | ϕ extends to a map ϕ̃ ∈ F defined on

Q and each ai, 1 ≤ i ≤ n, such that ϕ̃|Q = ϕ and ϕ̃(ai) = ai}

for subgroups Q,P ≤ CS(a). The fusion system CF (a) coincides with the usual notion of the
centralizer fusion system for the subgroup 〈a1, . . . , an〉 ≤ S.

When F is a fusoid, and a is fully F-centralized, we define the centralizer fusion system CF (a)
to be the centralizer inside the component of F containing a. As such, the centralizer CF (a) is
always a fusion system and not a fusoid.

Lemma 3.5. Suppose a is a fully F-centralized n-tuple, then the centralizer fusion system CF (a)
is saturated.

Proof. This is just [2, Proposition A.6] applied to the subgroup 〈a1, . . . , an〉 and the centralizer
system CF (〈a1, . . . , an〉).

Remark 3.6. The following fact, which we will need for the next lemma, is a special case of the
second saturation axiom [8, Definition 2.5(II)].

If a commuting n-tuple a is fully F-centralized in a saturated fusion system F , and if ϕ in
F takes any other n-tuple b to a, then the map ϕ : 〈b1, . . . , bn〉 → 〈a1, . . . , an〉 extends to a map
between centralizers ϕ̃ : CS(b)→ CS(a) with ϕ̃(bi) = ai.

Lemma 3.7. Let F be a saturated fusion system on S, and let a ∈ S be a commuting (n+1)-tuple.
Write a = (a1, . . . , an+1). Suppose ∂a = (a1, . . . , an) is fully centralized in F , and suppose further
that an+1 ∈ CS(∂a) is fully centralized in CF (∂a), then a is fully centralized in F .

Furthermore, each commuting (n+ 1)-tuple b in S is F-conjugate to a fully centralized tuple of
the form above.

Proof. First of all, for any (n + 1)-tuple a the element an+1 commutes with ∂a if and only if
an+1 ∈ CS(∂a), and in that case

CS(a) = CCS(∂a)(an+1).

Suppose a is a commuting (n + 1)-tuple with ∂a fully F-centralized and an+1 fully CF (∂a)-
centralized. Consider any other (n+1)-tuple b that is F-conjugate to a, and suppose ϕ ∈ F sends b
to a. Let ∂b = (b1, . . . , bn) and let ϕ∂ be the restriction of ϕ to the subgroup generated by ∂b, so that
ϕ∂(∂b) = ∂a. Since ∂a is fully F-centralized, Remark 3.6 implies that ϕ∂ extends to the centralizers
as a map ψ : CS(∂b) → CS(∂a). In particular ψ(bn+1) ∈ CS(∂a). All elements of CS(b) ≤ CS(∂b)
centralize bn+1, so after applying ψ we get

ψ(CS(b)) ≤ CCS(∂a)(ψ(bn+1)).
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We proceed to look at the composite

ϕ ◦ ψ−1 : 〈a1, . . . , an, ψ(bn+1)〉 → 〈b1, . . . , bn+1〉 → 〈a1, . . . , an+1〉.

Note that ϕ ◦ ψ−1 maps ψ(bn+1) to an+1 and at the same time maps ∂a identically to itself. The
composite ϕ◦ψ−1 therefore defines a map in CF (∂a) from ψ(bn+1) to an+1. Hence an+1 and ψ(bn+1)
are conjugate in CF (∂a), wherein an+1 was assumed to be fully centralized, so we conclude that

|CS(a)| = |CCS(∂a)(an+1)| ≥ |CCS(∂a)(ψ(bn+1))| ≥ |ψ(CS(b))| = |CS(b)|.

This completes the proof that a is in fact fully centralized in F .
For the second part of the lemma, let b be any commuting (n + 1)-tuple in S. Consider the

truncated n-tuple ∂b = (b1, . . . , bn), and choose any preferred fully F-centralized conjugate a of
∂b. Let ϕ be a map in F from ∂b to a, then by Remark 3.6 as above we get an extension of ϕ to
ϕ̃ : CS(∂b) → CS(a). We have bn+1 ∈ CS(∂b) and ϕ(bn+1) ∈ CS(a). Choose any z ∈ CS(a) that is
fully CF (a)-centralized and conjugate to ϕ(bn+1) inside CF (a). Any ψ ∈ CF (a) that takes ϕ(bn+1) to
z then ψ extends trivially onto a, hence ψ◦ϕ takes the entire tuple b to (a1, . . . , an, z). Furthermore
(a1, . . . , an, z) has the requested form – and hence is fully F-centralized by the lemma.

We wish to take the formal union of centralizer fusion systems CF (a) with [a] ∈ F [n] as an
algebraic model for the n-fold free loop space of BF . To show that the centralizers do not depend
on the choice of representatives, we give the following analogue of [11, Lemma 3.12].

Lemma 3.8. Let a be an n-tuple of commuting elements in S, and suppose that a is fully F-
centralized and F-conjugate to a. Any map ϕ in F that takes a to a, then induces a fusion preserving
injective map CF (a) ↪→ CF (a). In AFp, all such inclusions give rise to the same virtual bifree biset

ζaa ∈ AFp(CS(a), CF (a))

that is left CF (a)-stable in addition to being right CF (a)-stable.
If a′ is another fully F-centralized tuple that is conjugate to a (and therefore to a), then

ζ
a′
a ∈ AFp(CF (a), CF (a′)),

and the chosen bisets are compatible with composition

ζa
′
a = ζaa � ζ

a′
a .

Proof. The F-conjugation from a to a is given by a unique map ϕ : 〈a〉 → 〈a〉 in F . By Remark 3.6
the map ϕ extends to a map

ϕ̃ : CS(a)→ CS(a)

such that ϕ̃|〈a〉 = ϕ. We define

ζaa := [CS(a), ϕ̃]
CS(a)
CS(a)

� ωCF (a) = [CS(a), ϕ̃]
CF (a)
CS(a)

.

Given any other choice of extension ψ : CS(a)→ CS(a) that maps a to a, the composite ψ ◦ (ϕ̃)−1

defines a map in F from ϕ̃(CS(a)) to ψ(CS(a)). The composite ψ ◦ (ϕ̃)−1 maps the fully centralized
tuple a to itself by the identity, so ρ = ψ◦(ϕ̃)−1 defines a map in CF (a) from the subgroup ϕ̃(CS(a))
to ψ(CS(a)). Since ψ = ρ ◦ ϕ̃ and ρ ∈ CF (a), the two maps ψ and ϕ̃ give rise to the same virtual
biset

[CS(a), ψ]
CF (a)
CS(a)

= [CS(a), ρ ◦ ϕ̃]
CF (a)
CS(a)

= [CS(a), ϕ̃]
CF (a)
CS(a)

.
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The virtual biset ζ
a
a is therefore independent of the choice of extension ϕ̃ of the map ϕ.

We now claim that ϕ̃ : CS(a)→ CS(a) is in fact fusion preserving from CF (a) to CF (a). Given
ζ ∈ CF (a)(Q,P ), it extends to ζ̃ : 〈a〉Q → 〈a〉P sending the elements of a to themselves. The
composite ϕ̃ ◦ ζ ◦ (ϕ̃)−1 : ϕ̃(Q) → ϕ̃(P ) is a map in F that sends a to itself, hence this composite
lies in CF (a) as required, so ϕ̃ is fusion preserving. Because ϕ̃ is fusion preserving, it follows from
[10, Lemma 4.6] that

ζaa = [CS(a), ϕ̃]
CS(a)
CS(a)

� ωCF (a)

is left CF (a)-stable.
Given a further map θ in F from a to a′, we have

ζaa � ζ
a′
a = [CS(a), ϕ̃]

CF (a)
CS(a)

� [CS(a), θ̃]
CF (a′)
CF (a)

= [CS(a), θ̃ ◦ ϕ̃]
CF (a′)
CS(a)

,

by Proposition A.4, since θ̃ is fusion preserving. The composite

θ̃ ◦ ϕ̃ : CS(a)→ CS(a′)

sends a to a′ and is therefore a valid choice of extension θ̃ ◦ ϕ := θ̃ ◦ ϕ̃. Using this choice for θ̃ ◦ ϕ,
we then get

ζa
′
a = [CS(a), θ̃ ◦ ϕ̃]

CF (a′)
CS(a)

= ζaa � ζ
a′
a .

Lemma 3.9. Suppose a1, . . . , ar and b1, . . . , br are two choices of fully centralized representatives
for F [n], and suppose the labelling is such that ai is F-conjugate to bi for 1 ≤ i ≤ r. There is then

a canonical isomorphism of formal unions
∐
i

CF (ai)
∼=−→
∐
i

CF (bi) in AFp via the diagonal matrix

whose ith entry is ζ
bi
ai ∈ AFp(CF (ai), CF (bi)).

Given further choices of representatives, the isomorphisms are compatible with respect to com-
position.

Proof. Let isoba be the diagonal matrix with entries ζ
bi
ai . Given a third set of fully centralized

representatives c1, . . . , cr for F [n], the fact that the isomorphisms are compatible,

isoca = isoba� isocb,

is immediate from the composition of diagonal entries ζ
ci
ai = ζ

bi
ai � ζ

ci
bi

, which follows from Lemma
3.8.

The inverse matrix to isoba is just the diagonal matrix isoab with diagonal entries ζ
ai
bi

. The fact

that that isoba and isoab are inverses follows from the equality ζ
bi
ai � ζ

ai
bi

= ζ
ai
ai . Here ζ

ai
ai is the

identity element in A(CF (ai), CF (ai)) since ζ
ai
ai is induced by the identity map on CS(ai) in F . The

analogous statement is true for the b’s.

Convention 3.10. As with [11, Convention 3.14], we will now suppose that a choice of preferred
representatives for F [n] has been made for all n ≥ 0. We require that each representative n-tuple
a is fully F-centralized. Lemma 3.7 furthermore enables us to chose representatives such that
each chosen representative n-tuple a = (a1, . . . , an) satisfies that ∂a = (a1, . . . , an−1) is one of the
previously chosen representative (n− 1)-tuples (and an is fully CF (∂a)-centralized).
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Since BF , as constructed by [2] and [4], is the p-completion of a finite category, the usual n-fold
free loop space Map(B(Zn), BF) is equivalent to the colimit over cyclic p-groups:

LnBF ' colim
e→∞

Map(B(Z/pe)n, BF)

for any union F of saturated fusion systems. In the following we shall replace S1 with the classifying
space B(Z/pe) for sufficiently large e. We will follow [11, Convention 3.21] and suppose e is large
enough to work for all the finitely many fusion systems in each calculation.

As in [11, Definition 3.11] we introduce an algebraic model for the n-fold free loop space of BF
as a union of centralizer fusion systems:

Definition 3.11. Let F be a saturated fusion system on S. We define LnF to be the saturated
fusoid

LnF :=
∐

[a]∈F [n]

CF (a),

where the chosen representatives are fully centralized (according to Convention 3.10).

By Lemma 3.9, different choices of representatives for the conjugacy classes result in isomorphic
fusoids LnF .

Mapping spaces into BF are described in detail by Broto-Levi-Oliver in their paper [2], and
applying their results when mapping out of B(Z/pe)n essentially gives a proof that LnF models
the n-fold free loop space of BF .

Proposition 3.12 ([2]). Let F be a saturated fusoid or fusion system. The fusoid LnF is an alge-
braic model for the free loop space LnBF ' colim

e→∞
Map(B(Z/pe)n, BF), that is we have homotopy

equivalences

LnBF ' B(LnF) =
∐

[a]∈F [n]

BCF (a),

where the chosen representatives a are fully centralized.

Before we go through the proof, we make the following observation based on the construction
preceding Theorem 6.3 of [2].

Remark 3.13. Suppose F is a saturated fusion system. The homotopy equivalence in Proposition
3.12 is given in terms of maps

fa : B(Z/pe)n ×BCF (a)→ BF ,

for each representing n-tuple a. Each map fa, when restricted to the underlying p-groups, is B(eva),
where eva is the evaluation map of [11, Lemma 3.20]

eva : (Z/pe)n × CS(a)→ S

given by eva(t1, . . . , tn, z) := (a1)
t1 · · · (an)tnz. Because eva is a homomorphism of p-groups, when

we pass to the Burnside category AFp, the map fa is just

[(Z/pe)n × CS(a), eva]
F
(Z/pe)n×CF (a).

We will see below in Lemma 3.14 that each eva is in fact fusion preserving.
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Proof of Proposition 3.12. It is enough to consider the case when F is a saturated fusion system
over a finite p-group S. Let e � 0, in fact pe ≥ |S| is enough. Corollary 4.5 of [2] tells us that
[B(Z/pe)n, BF ] is in bijection with the classes of commuting n-tuples F [n]. For each class in F [n]

choose a fully centralized representative a. Then Theorem 6.3 of [2] states that the connected
component of Map(B(Z/pe)n, BF) corresponding to a is homotopy equivalent to BCF (a). In total
this shows that

Map(B(Z/pe)n, BF) '
∐

[a]∈F [n]

BCF (a)

for sufficiently large e.

Lemma 3.14. Let F be a saturated fusion system, and let a be a representative n-tuple. The
homomorphism eva : (Z/pe)n × CS(a)→ S given by

eva(t1, . . . , tn, z) := (a1)
t1 · · · (an)tnz

is a fusion preserving with respect to the fusion systems (Z/pe)n × CF (a) and F .

Proof. Any morphism in the product fusion system (Z/pe)n × CF (a) has the form id×ϕ : D → E
for subgroups D,E ≤ (Z/pe)n×CS(a) and where ϕ is a morphism in the centralizer fusion system
CF (a). Denote the projections of D by D1 ≤ (Z/pe)n and D2 ≤ CS(a) respectively, so D ≤ D1×D2,
and similarly E ≤ E1 × E2. Then ϕ ∈ HomCF (a)(D2, E2) by definition of a product fusion system.

By definition of the centralizer fusion system, ϕ extends to ϕ̃ : 〈a,D2〉 → 〈a,E2〉 with ϕ̃(a) = a
and ϕ̃ ∈ F . Now the diagram

D D1 ×D2 〈a,D2〉

E E1 × E2 〈a,E2〉

≤

≤

id×ϕ id×ϕ

eva

ϕ̃

eva

commutes, so ϕ̃ satisfies eva ◦(id×ϕ) = ϕ̃ ◦ eva as homomorphisms D → eva(E). Hence eva is
fusion preserving.

Remark 3.15. As homotopy classes of stable maps the isomorphism of Lemma 3.9 commutes with
the equivalence

LnBF '−→
∐
i

BCF (ai).

This can be seen the following way since we know from Lemma 3.14 that the evaluation maps are
fusion preserving:

As mentioned in Remark 3.13, the equivalence LnBF '
∐
iBCF (ai) is adjoint to the maps

fi : B(Z/pe)n ×BCF (ai)→ BFi, where Fi is the component of F containing ai. The stable homo-
topy class of fi is represented by the element

[(Z/pe)n × CS(ai), evai ]
Fi

(Z/pe)n×CF (ai)

in AFp. By construction isoba has entries

ζ
bi
ai = [CS(ai), ϕ̃]

CF (bi)
CF (ai)

,
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where ϕ̃ is an F-isomorphism CS(ai)
∼=−→ CS(bi) that sends ai to bi.

As group homomorphisms we have evbi ◦(id×ϕ̃) = ϕ̃◦evai since both composites send (t1, . . . , tn, z) ∈
(Z/pe)n × CS(ai) to the same element

((bi)1)
t1 · · · ((bi)n)tn · ϕ̃(z) = ϕ̃

(
((ai)1)

t1 · · · ((ai)n)tn · z
)
.

If we compose ζ
bi
ai with the evaluation map for bi, we can use that evbi is fusion preserving and

apply the special case of Proposition A.4. This gives us

((Z/pe)n × ζbiai)� [(Z/pe)n × CS(bi), evbi ]
Fi

(Z/pe)n×CF (bi)

= [(Z/pe)n × CS(ai), evbi ◦(id×ϕ̃)]Fi

(Z/pe)n×CF (ai)

= [(Z/pe)n × CS(ai), ϕ̃ ◦ evai ]
Fi

(Z/pe)n×CF (ai)

= [(Z/pe)n × CS(ai), evai ]
Fi

(Z/pe)n×CF (ai)
since ϕ̃ ∈ Fi.

Taking adjoints it follows that ζ
bi
ai commutes with the maps from BCF (ai) and BCF (bi) to LnBF

as homotopy classes of stable maps.

4 The functor Ln for the category of fusion systems

Given a saturated fusoid F over a formal union of p-groups S, we can apply Ln to the characteristic
idempotent ωF ∈ AFp(S, S). The result is an idempotent endomorphism Ln(ωF ) from LnS to itself.

Definition 4.1. Let telLn(ωF ) denote the mapping telescope

telLn(ωF ) = colim(Σ̂∞+BLnS
Ln(ωF )−−−−−→ Σ̂∞+BLnS

Ln(ωF )−−−−−→ · · · ).

Then telLn(ωF ) is the retract of BLnS with respect to the idempotent Ln(ωF ) ∈ AFp(S, S).

Given any (E ,F)-stable virtual biset X ∈ AFp(E ,F), if we apply Ln to the relation X =
ωE �X � ωF , we get

Ln(X) = Ln(ωE)� Ln(X)� Ln(ωF ).

This implies that Ln(X) descends to a map Ln(X) : telLn(ωE) → telLn(ωF ).
The next step for us is to compare telLn(ωF ) with the algebraic model for LnF in Definition

3.11.

Definition 4.2. Let F be a saturated fusoid with underlying union of p-groups S. We define a
matrix IF ∈ AFp(LnS,LnF) as follows:

(IF )a,b =

{
0 if a is not F-conjugate to b,

ζ
b
a if b is the representative for the F-conjugacy class of a,

where (IF )a,b is an element of AFp(CS(a), CF (b)).
Next we define a matrix TF ∈ AFp(LnF ,LnS) by the formula

(TF )a,b = a(ωF )b ∈ AFp(CF (a), CS(b)).

It follows that (TF )a,b is zero unless b is in the F-conjugacy class represented by a. Furthermore,
(TF )a,b = Ln((ωF )SS)a,b by [11, Proposition 3.15], so we can obtain TF from Ln((ωF )SS) by deleting
all rows not belonging to the chosen representatives a for the F-conjugacy classes of commuting
n-tuples in S.
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Remark 4.3. In order for TF to be well-defined, we need a(ωF )b to be left CF (a)-stable. This is a
consequence of the fact that ωF is F-stable and can be seen as follows:

Suppose P ≤ CS(a) and ϕ ∈ CF (a)(P,CS(a)). Let 〈a〉P be the subgroup of S generated by a
and P . By definition of the centralizer fusion system, we have an extension of ϕ, ϕ̃ : 〈a〉P → CS(a),
inside CF (a) with the property that ϕ̃(a) = a. If we restrict a(ωF )b along ϕ, we find that

[P,ϕ]
CS(a)
P � a(ωF )b = [P, incl]

〈a〉P
P � [〈a〉P, ϕ̃]

CS(a)
〈a〉P �

a(ωF )b

= [P, incl]
〈a〉P
P � a([〈a〉P, ϕ̃]S〈a〉P � ωF )b

= [P, incl]
〈a〉P
P � a([〈a〉P, incl]S〈a〉P � ωF )b

= [P, incl]
〈a〉P
P � [〈a〉P, incl]

CS(a)
〈a〉P �

a(ωF )b

= [P, incl]
CS(a)
P � a(ωF )b.

We conclude that a(ωF )b is left CF (a)-stable and an element of AFp(CF (a), CS(b)) as required.

We claim that IF and TF express LnF as a retract of LnS and that IF � TF = Ln((ωF )SS).
The first claim is proved as Proposition 4.6 below. The second claim is an easy consequence of
F-stability for ωF , hence we shall prove the second claim first.

Lemma 4.4. The matrices IF and TF satisfy

IF � TF = Ln((ωF )SS) ∈ AFp(LnS,LnS).

Proof. Recall from [11, Proposition 3.15] that Ln((ωF )SS)a,b = a(ωF )b. Since ωF is F-generated
(Definition 2.3), we have Ln((ωF )SS)a,b = 0 unless a and b are F-conjugate.

By construction, we also have (IF � TF )a,b = 0 unless a and b are F-conjugate, in which case

(IF � TF )a,b = (IF )a,c � (TF )c,b = ζca � c(ωF )b,

where c is the chosen representative for the F-conjugacy class of a and b. By Lemma 3.8, ζ
c
a =

[CS(a), ϕ]
CF (c)
CS(a)

, for any ϕ : CS(a)→ CS(c) in F such that ϕ(a) = c. Precomposing with [CS(a), ϕ]
is the same as the restriction Resϕ along ϕ. It follows that

ζca � c(ωF )b = a(Resϕ ωF )b = a(ResSCS(a)
ωF )b = a(ωF )b,

since the restrictions Resϕ ωF and ResSCS(a)
ωF are equal in AFp(CS(a), S) by left F-stability of ωF .

We conclude that (IF � TF )a,b = Ln((ωF )SS)a,b for all commuting n-tuples a and b.

Proposition 4.5. Let E and F be saturated fusoids with underlying unions of p-groups R and S
respectively. Suppose X ∈ AFp(E ,F), we can apply Ln to XS

R ∈ AFp(R,S) and get a matrix of
virtual bisets Ln(XS

R) ∈ AFp(LnR,LnS). Precomposing with TE and postcomposing with IF then
gives us a matrix in AFp(LnE ,LnF) with entries

(TE � Ln(XS
R)� IF )a,b =

∑
[b′]∈S[n]

b′∼F b

(Ln(XS
R))a,b′ � ζ

b
b′

=
∑

[b′]∈S[n]

b′∼F b

aXb′ � ζb
b′
.
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Proof. We first calculate the entries of TE � Ln(XS
R). Suppose a represents an F-conjugacy class

and c represents an S-conjugacy class of n-tuples in S. We have

(TE � Ln(XS
R))a,c =

∑
[d]∈S[n]

(TE)a,d � Ln(XS
R)d,c.

By Definition 4.2, (TE)a,d = Ln((ωE)
R
R)a,d. We plug this in above to get

(TE � Ln(XS
R))a,c =

∑
[d]∈S[n]

Ln((ωE)
R
R)a,d � Ln(XS

R)d,c

= Ln((ωE �X)SR)a,c = (Ln(XS
R))a,c,

making use of the fact that X is left E-stable. From here we can easily calculate (TE � Ln(XS
R) �

IF )a,b, if we recall that (Ln(XS
R))a,c = aXc by [11, Proposition 3.15]. We have

(TE � Ln(XS
R)� IF )a,b =

∑
[d]∈S[n]

(Ln(XS
R))a,c � (IF )c,b

=
∑

[b′]∈S[n]

b′∼F b

(Ln(XS
R))a,b′ � ζ

b
b′

=
∑

[b′]∈S[n]

b′∼F b

aXb′ � ζb
b′
.

Proposition 4.6. Let F be a saturated fusoid. Then TF � IF is the identity in AFp(LnF ,LnF),
i.e. the diagonal matrix with diagonal entries ωCF (a) for [a] ∈ F [n].

Proof. First note that
TF = TF � Ln((ωF )SS).

As in the proof of Proposition 4.5, this is an easy consequence of Definition 4.2:(
TF � Ln((ωF )SS)

)
a,b

=
∑

[c]∈S[n]

Ln((ωF )SS)a,c � Ln((ωF )SS)c,b

= Ln((ωF � ωF )SS)a,b = Ln((ωF )SS)a,b = (TF )a,b.

We now apply Proposition 4.5 with X = ωF ∈ AFp(S, S):

(TF � IF )a,b = (TF � Ln((ωF )SS)� IF )a,b =
∑

[b′]∈S[n]

b′∼F b

a(ωF )b
′
� ζb

b′
.

Since ωF is F-generated, a(ωF )b
′

= 0 unless a is F-conjugate to b′. Hence a is F-conjugate to b,
and since both a and b are representatives for their F-conjugacy class, we conclude a = b unless
a(ωF )b

′
= 0.

Thus TF � IF ∈ AFp(LnF ,LnF) is a diagonal matrix. It remains to show that each diagonal
entry (TF � IF )a,a is the characteristic idempotent for CF (a). We will prove that (TF � IF )a,a has
all of the properties of Definition 2.3 and is idempotent.

A direct application of Lemma 4.4 gives

TF � IF � TF � IF = TF � Ln((ωF )SS)� IF = TF � IF

so (TF � IF )a,a is idempotent.
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To see that (TF � IF )a,a is CF (a)-generated consider the orbit decomposition of a(ωF )a
′

as a
virtual (CS(a), CS(a′))-biset for each [a′] ∈ S[n] with a′ ∼F a. For an orbit [P,ϕ], with P ≤ CS(a)
and ϕ : P → CS(a′), to be summand of a(ωF )a

′
, we must have a ∈ P and ϕ(a) = a′. Suppose

ζ
a
a′ = [CS(a′), ρ]

CS(a)
CS(a′)

� ωCF (a), where ρ : CS(a′)→ CS(a) is such that ρ(a′) = a. Then we have

[P,ϕ]
CS(a

′)
CS(a)

� ζaa′ =
(

[P,ϕ]
CS(a

′)
CS(a)

� [CS(a′), ρ]
CS(a)
CS(a′)

)
� ωCF (a) = [P, ρ ◦ ϕ]

CS(a)
CS(a)

� ωCF (a).

Now ρ(ϕ(a)) = a, so ρ◦ϕ is a morphism in CF (a). Hence [P, ρ◦ϕ] is CF (a)-generated, and ωCF (a) is
CF (a)-generated by definition of being the characteristic idempotent. Consequently the composite
[P, ρ ◦ ϕ] � ωCF (a) is CF (a)-generated as well. The diagonal entry (TF � IF )a,a is thus a linear
combination of CF (a)-generated elements and therefore CF (a)-generated.

Next, (TF � IF )a,a is right CF (a)-stable because each ζ
a
a′ ∈ AFp(CS(a′), CF (a)) is right CF (a)-

stable. Similarly, (TF � IF )a,a is left CF (a)-stable because each a(ωF )a
′

is left CF (a)-stable by
Remark 4.3.

Finally, we need to show that |(TF � IF )a,a|/|CS(a)| is invertible in Zp, i.e. is not divisible by
p. According to [9, Theorem B], we have

|a(ωF )a
′ | = |S|

|F(〈a〉, S)|
∈ Zp,

and |F(〈a〉, S)| is simply the total number of n-tuples that are F-conjugate to a.
Since ωCF (a) is idempotent, |ωCF (a)|/|CS(a)| = 1 (alternatively just apply [9, Theorem B] to the

fixed points for ωCF (a) with respect to the trivial subgroup of CS(a)). Hence we see that

|ζaa′ |
|CS(a)|

=
|[CS(a′), ρ]

CS(a)
CS(a′)

|
|CS(a)|

·
|ωCF (a)|
|CS(a)|

= 1 · 1 = 1.

Putting the pieces together, we find that

|(TF � IF )a,a|
|CS(a)|

=
∑

[a′]∈S[n]

a′∼Fa

|a(ωF )a
′ |

|CS(a′)|
·
|ζaa′ |
|CS(a)|

=
∑

[a′]∈S[n]

a′∼Fa

|S|
|CS(a′)| · |F(〈a〉, S)|

· 1

=
1

|F(〈a〉, S)|
∑

[a′]∈S[n]

a′∼Fa

|S|
|CS(a′)|

=
1

|F(〈a〉, S)|
∑

[a′]∈S[n]

a′∼Fa

|[a′]|

=
1

|F(〈a〉, S)|
· |{n-tuples a′ ∈ S | a′ ∼F a}|

= 1.

This completes the proof that (TF � IF )a,a is in fact CF (a)-characteristic, hence by uniqueness of
characteristic idempotents (TF � IF )a,a = ωCF (a) as required.
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Corollary 4.7. Let F be a saturated fusoid over a union of p-groups S. Then IF and TF induce
inverse equivalences

telLn((ωF )SS)
' Σ̂∞+BLnF

in Ho(Spp).

Proof. By Lemma 4.4 and Proposition 4.6 the matrices IF and TF induce maps between the towers

LnS Ln(ωF )−−−−−→ LnS Ln(ωF )−−−−−→ · · ·

and
LnF id−→ LnF id−→ · · · .

The composite TF � IF is simply the identity on the constant tower LnF . The composite IF � TF
applies Ln(ωF ) levelwise to the tower LnS Ln(ωF )−−−−−→ LnS Ln(ωF )−−−−−→ · · · which is homotopic to the
identity on the colimit telLn((ωF )SS)

.

Proposition 4.8. The functor Ln on unions of p-groups extends to a functor Ln : AFp → AFp
given on objects by F 7→ LnF and on morphisms X ∈ AFp(E ,F) by the matrix with entries

Ln(XFE )a,b =
∑

[b′]∈S[n]

b′∼F b

(Ln(XS
R))a,b′ � ζ

b
b′

=
∑

[b′]∈S[n]

b′∼F b

aXb′ � ζb
b′

∈ AFp(CE(a), CF (b)),

where R and S are the underlying unions of p-groups for E and F respectively.

Remark 4.9. By Proposition 4.5, we then have Ln(XFE ) = TE�Ln(XS
R)�IF . In particular, we have

IF = Ln((ωF )FS ) and TF = Ln((ωF )SF ) for any saturated fusoid F over S.

Proof. Proposition 4.6 states that Ln takes the identity ωF on F to the identity on LnF .
Let E , F , and G be saturated fusoids over R, S, and T , respectively. Suppose X ∈ AFp(E ,F)

and Y ∈ AFp(F ,G). As in the Remark 4.9, we have

Ln(XFE ) = TE � Ln(XS
R)� IF .

It follows that

Ln(XFE )� Ln(Y GF ) = TE � Ln(XS
R)� IF � TF � Ln(Y T

S )� IG
= TE � Ln(XS

R)� Ln((ωF )SS)� Ln(Y T
S )� IG

= TE � Ln(XS
R � (ωF )SS � Y T

S )� IG
= TE � Ln((X � Y )TS )� IG
= Ln((X � Y )GE ).

The characteristic idempotent ωF disappears from the middle because both X and Y are F-stable
(in fact either of these would be enough). Thus Ln preserves composition of virtual bisets between
fusoids.

Similarly to [11, Corollary 3.18], there is also a formula for Ln(XFE )a,b in terms of the restriction
of X ∈ AFp(E ,F) to the centralizer CE(a). We state the formula for fusion systems and the formula
can easily be applied component-wise in the general case.
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Corollary 4.10. Let E and F be saturated fusion systems over p-groups R and S respectively, and
suppose X ∈ AFp(E ,F) is a virtual biset. Furthermore, let a in E and b in F be chosen represen-
tatives for conjugacy classes of commuting n-tuples (according to Convention 3.10). Consider the
restriction of X to the centralizer fusion system CE(a), and write MFCE(a) as a linear combination

of basis elements (recalling Convention 2.6):

XFCE(a) =
∑
(P,ϕ)

cP,ϕ · [P,ϕ]FCE(a),

where P ≤ CR(a) and ϕ : P → S.
The matrix entry Ln(X)a,b then satisfies the formula

Ln(X)a,b =
∑

(P,ϕ) s.t. a ∈ P and
ϕ(a) is F-conjugate to b

cP,ϕ · [P,ϕ]
CS(ϕ(a))
CE(a)

� ζbϕ(a),

with P , ϕ, and cP,ϕ as in the linear combination above.

Proof. Instead of writing XFCE(a) as a linear combination of basis elements in AFp(CE(a),F), con-

sider X as an element of AFp(CR(a), S):

XS
CR(a) =

∑
(P,ϕ)

uP,ϕ · [P,ϕ]SCR(a),

with a (possibly) different collection of coefficients uP,ϕ. If we precompose with ωCE(a) and post-
compose with ωF , the linear combination above becomes

XFCE(a) = ωCE(a) �X
S
CR(a) � ωF =

∑
(P,ϕ)

uP,ϕ · [P,ϕ]FCE(a).

Thus the coefficients uP,ϕ and cP,ϕ provide different choices for the decomposition in AFp(CE(a),F),
but only uP,ϕ provides a decomposition in AFp(CR(a), S). We shall start by proving that the formula
for Ln(X)a,b in the statement of the corollary is independent of the choice of linear combination
for XFCE(a).

Two basis elements [P,ϕ]FCE(a) and [Q,ψ]FCE(a) are equal if and only if Q is CE(a)-isomorphic to

P and ψ arises from ϕ by precomposing with a map in CE(a) and postcomposing with a map in
F . The total coefficient in front of a particular basis element [P,ϕ]FCE(a) in the linear combinations

for XFCE(a) is therefore given by the two sums∑
(P ′, ϕ′), (CE(a),F)-conj. to (P, ϕ)

cP ′,ϕ′ and
∑

(P ′, ϕ′), (CE(a),F)-conj. to (P, ϕ)

uP ′,ϕ′ .

Hence these two coefficient sums must be equal.
Suppose (P ′, ϕ′) is (CE(a),F)-conjugate to a particular (P,ϕ), and suppose further that a ∈ P

and ϕ(a) is F-conjugate to b. Since P ′ is isomorphic to P in CE(a), we also have a ∈ P ′. Let
ϕ′ = γ ◦ ϕ ◦ α with α ∈ CE(a) and γ ∈ F , then α(a) = a and ϕ′(a) = γ(ϕ(a)) is F-conjugate to
ϕ(a) and hence to b.

Let ζ
b
ϕ′(a) = [CS(ϕ′(a)), ρ]

CF (b)
CS(a)

, then ρ◦γ : ϕ(CR(a))→ CS(b) extends to a morphism ρ̃ ◦ γ : CS(ϕ(a))→

CS(b) and [CS(ϕ(a)), ρ̃ ◦ γ]
CF (b)
CS(a)

= ζ
b
ϕ(a). We next have
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[P,ϕ′]
CS(ϕ

′(a)
CE(a)

� ζbϕ′(a) = [P, γ ◦ ϕ ◦ α]
CS(ϕ

′(a)
CE(a)

� ζbϕ′(a)
= [P,ϕ]

CS(ϕ
′(a)

CE(a)
� [CS(ϕ(a)), ρ̃ ◦ γ]

CF (b)
CS(a)

= [P,ϕ]
CS(ϕ

′(a)
CE(a)

� ζbϕ(a).

The pairs (P ′, ϕ′) and (P,ϕ) therefore give the same contribution to the formula in the statement
of the corollary whenever the pairs are (CE(a),F)-conjugate. We conclude that∑

(P,ϕ) s.t. a ∈ P and
ϕ(a) is F-conjugate to b

cP,ϕ · [P,ϕ]
CS(ϕ(a))
CE(a)

� ζbϕ(a)

=
∑

(P,ϕ) s.t. a ∈ P and
ϕ(a) is F-conjugate to b

uP,ϕ · [P,ϕ]
CS(ϕ(a))
CE(a)

� ζbϕ(a). (4.1)

Hence it is sufficient to prove the corollary with the coefficients uP,ϕ.
By Proposition 4.8, we can write Ln(XFE )a,b as

Ln(XFE )a,b =
∑

[b′]∈S[n]

b′∼F b

Ln(XS
R)a,b′ � ζ

b
b′
.

We can then apply [11, Corollary 3.18] with the linear combination for XS
CR(a) given by the coeffi-

cients uP,ϕ:

Ln(XFE )a,b =
∑

[b′]∈S[n]

b′∼F b

Ln(XS
R)a,b′ � ζ

b
b′

=
∑

[b′]∈S[n]

b′∼F b

∑
(P,ϕ) s.t. a ∈ P and

ϕ(a) is S-conjugate to b′

uP,ϕ · [P,ϕ]
CS(ϕ(a))
CR(a) � ζb

′

ϕ(a) � ζ
b
b′

=
∑

(P,ϕ) s.t. a ∈ P and
ϕ(a) is F-conjugate to b

uP,ϕ · [P,ϕ]
CS(ϕ(a))
CR(a) � ζbϕ(a).

Finally, note that Ln(XFE )a,b ∈ AFp(CE(a), CF (b)) is left CE(a)-stable and as such does not change
if we precompose with ωCE(a):

Ln(XFE )a,b = ωCE(a) � L
n(XFE )a,b

=
∑

(P,ϕ) s.t. a ∈ P and
ϕ(a) is F-conjugate to b

uP,ϕ · ωCE(a) � [P,ϕ]
CS(ϕ(a))
CR(a) � ζbϕ(a)

=
∑

(P,ϕ) s.t. a ∈ P and
ϕ(a) is F-conjugate to b

uP,ϕ · [P,ϕ]
CS(ϕ(a))
CE(a)

� ζbϕ(a).

Finally, by (4.1) we can replace the coefficients uP,ϕ with the coefficients cP,ϕ to get the formula in
the corollary:

Ln(XFE )a,b =
∑

(P,ϕ) s.t. a ∈ P and
ϕ(a) is F-conjugate to b

cP,ϕ · [P,ϕ]
CS(ϕ(a))
CE(a)

� ζbϕ(a).
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5 Evaluation maps and L†n for fusion systems

Given a saturated fusoid F over a union of p-groups S, we can apply L†n to the characteristic
idempotent ωF ∈ AFp(S, S) to get an idempotent endomorphism of (Z/pe)n × LnS in AFp. As in
Section 4, we let tel

L†n(ωF )
denote the mapping telescope

tel
L†n(ωF )

= colim(Σ̂∞+B((Z/pe)n × LnS)
L†n(ωF )−−−−−→ Σ̂∞+B((Z/pe)n × LnS)

L†n(ωF )−−−−−→ · · · ).

This is a retract of Σ̂∞+B((Z/pe)n × LnS).

Our next step is to prove that tel
L†n(ωF )

is equivalent to Σ̂∞+B((Z/pe)n) ∧ telLn(ωF ) and hence

to Σ̂∞+B((Z/pe)n × LnF) via Corollary 4.7. In order to produce this equivalence, we first need a
technical lemma about the characteristic idempotent ωF , followed by a proposition relating the
idempotents L†n(ωF ) and Ln(ωF ).

Lemma 5.1. Let F be a saturated fusion system over S, and let a be a commuting n-tuple in S.
Write the characteristic idempotent ωF , restricted to CS(a), as a linear combination according to
[11, Convention 3.2]:

(ωF )SCS(a)
=

∑
R≤CS(a)
ϕ∈F(R,S)

cR,ϕ · [R,ϕ]SCS(a)
.

Then the coefficients cR,ϕ satisfy the following relation for each subgroup R ≤ CS(a)

∑
R′∼CS(a)R

ϕ∈F(R′,S)

cR′,ϕ =

{
1 if R = CS(a),

0 otherwise.

Proof. The restriction (ωF )SCS(a)
equals [CS(a), incl]SCS(a)

�ωF . According to [9, Corollary 5.13] the

map π : AFp(CS(a), S)→ AFp(CS(a),F) given by X 7→ X�ωF coincides with the map of Burnside
rings π′ : A(CS(a)× S)∧p → A(CS(a)×F)∧p given in [9, Theorem A] for the product fusion system
CS(a)×F . We are particularly interested in

(ωF )SCS(a)
= [CS(a), incl]SCS(a)

� ωF = π([CS(a), incl]SCS(a)
).

The result is now a consequence of [9, Remark 4.7], which describes how the coefficients of an
element X ∈ A(CS(a)× S)∧p relates to the coefficients of π′(X) ∈ A(CS(a)×F)∧p . Since π′ for the
product fusion system CS(a) × F coincides with π for bisets, we have the same relation between
coefficients of X ∈ AFp(CS(a), S) and π(X) ∈ AFp(CS(a),F).

Let cR′,ϕ(X) denote the coefficient of the orbit [R′, ϕ]SCS(a)
in the decomposition of a general

element X ∈ AFp(CS(a), S). [9, Remark 4.7] states that, since (ωF )SCS(a)
= π([CS(a), incl]SCS(a)

) is
the image of a transitive biset, we have∑

R′∼CS(a)R

ϕ∈F(R′,S)

cR′,ϕ(π([CS(a), incl]SCS(a)
))

=
∑

R′∼CS(a)R

ϕ∈F(R′,S)

cR′,ϕ([CS(a), incl]SCS(a)
) =

{
1 if R = CS(a),

0 otherwise.
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Proposition 5.2. Let F be a saturated fusion system over S, and let n ≥ 0. The characteristic
idempotent gives us two idempotent endomorphisms of (Z/pe)n × LnS coming from the functors

(Z/pe)n × Ln(−) and L†n(−). The two resulting idempotents satisfy the following relations when
composed with each other:

(i)
(
(Z/pe)n × Ln(ωF )

)
� L†n(ωF ) = L†n(ωF )

(ii) L†n(ωF )�
(
(Z/pe)n × Ln(ωF )

)
= (Z/pe)n × Ln(ωF ).

Both of these composites are taken in AFp((Z/pe)n × LnS, (Z/pe)n × LnS).

Proof. Let a and b be representatives for the conjugacy classes of commuting n-tuples in S. Restrict
ωF to CS(a) on the left and write

(ωF )SCS(a)
=

∑
R≤CS(a)
ϕ∈F(R,S)

cR,ϕ · [R,ϕ]SCS(a)

as in Lemma 5.1.
Let us first consider part (i) of the proposition. According to [11, Corollary 3.18] the matrix

Ln(ωF ) ∈ AFp(LnS,LnS) has entries

Ln(M)a,c =
∑

R≤CS(a)
ϕ∈F(R,S)

s.t. a ∈ R and
ϕ(a) is S-conjugate to c

cR,ϕ · [R,ϕ]
CS(ϕ(a))
CS(a)

� ζcϕ(a)

for any representative n-tuple c. Let ψϕ(a) : CS(ϕ(a))→ CS(c) be any conjugation map in S taking
ϕ(a) to the representative of its conjugacy class. By the description of ζ

c
ϕ(a) in [11, Lemma 3.12],

we then have
Ln(M)a,c =

∑
R≤CS(a)
ϕ∈F(R,S)

s.t. a ∈ R and
ϕ(a) is S-conjugate to c

cR,ϕ · [R,ψϕ(a) ◦ ϕ]
CS(c)
CS(a)

.

When we compose (Z/pe)n × Ln(ωF ) with L†n(ωF ), we take a sum over all conjugacy classes of
commuting n-tuples:((

(Z/pe)n × Ln(ωF )
)
� L†n(ωF )

)
a,b

=
∑

[c]∈S[n]

(
(Z/pe)n × Ln(ωF )a,c

)
� L†n(ωF )c,b

=
∑

[c]∈S[n]

∑
R≤CS(a)
ϕ∈F(R,S)

s.t. a ∈ R and
ϕ(a) is S-conjugate to c

cR,ϕ ·
(
(Z/pe)n × [R,ψϕ(a) ◦ ϕ]

CS(c)
CS(a)

)
� L†n(ωF )c,b

=
∑

R≤CS(a)
ϕ∈F(R,S)
s.t. a ∈ R

cR,ϕ ·
(
(Z/pe)n × [R,ψϕ(a) ◦ ϕ]

CS(ψϕ(a)(ϕ(a)))

CS(a)

)
� L†n(ωF )ψϕ(a)(ϕ(a)),b

23



=
∑

R≤CS(a)
ϕ∈F(R,S)
s.t. a ∈ R

cR,ϕ ·
(
(Z/pe)n × [R, id]RCS(a)

)

�
(
(Z/pe)n × [R,ψϕ(a) ◦ ϕ]

CS(ψϕ(a)(ϕ(a)))

R

)
� L†n(ωF )ψϕ(a)(ϕ(a)),b.

In the last line we have split [R,ψϕ(a) ◦ ϕ]
CS(ψϕ(a)(ϕ(a)))

CS(a)
into its transfer and homomorphism parts.

This enables us to now apply [11, Theorem 3.33.(iv)] to note that

(Z/pe)n × [R,ψϕ(a) ◦ ϕ]
CS(ψϕ(a)(ϕ(a)))

R

= (Z/pe)n × Ln([R,ψϕ(a) ◦ ϕ]SR)a,ψϕ(a)(ϕ(a)) = L†n([R,ψϕ(a) ◦ ϕ]SR)a,ψϕ(a)(ϕ(a)).

Functoriality of L†n then gives us((
(Z/pe)n × Ln(ωF )

)
� L†n(ωF )

)
a,b

=
∑

R≤CS(a)
ϕ∈F(R,S)
s.t. a ∈ R

cR,ϕ ·
(
(Z/pe)n × [R, id]RCS(a)

)

� L†n([R,ψϕ(a) ◦ ϕ]SR)a,ψϕ(a)(ϕ(a)) � L
†
n(ωF )ψϕ(a)(ϕ(a)),b

=
∑

R≤CS(a)
ϕ∈F(R,S)
s.t. a ∈ R

cR,ϕ ·
(
(Z/pe)n × [R, id]RCS(a)

)
� L†n([R,ψϕ(a) ◦ ϕ]SR � ωF )a,b.

The characteristic idempotent ωF ∈ AFp(S, S) is F-stable, so restricting ωF along the homomor-
phism (ψϕ(a) ◦ϕ) ∈ F(R,S) on the left is equivalent to restricting along the inclusion incl : R→ S.

This means that [R,ψϕ(a)◦ϕ]SR�ωF = [R, incl]SR�ωF and we can run our intermediary calculations
in reverse:((

(Z/pe)n × Ln(ωF )
)
� L†n(ωF )

)
a,b

=
∑

R≤CS(a)
ϕ∈F(R,S)
s.t. a ∈ R

cR,ϕ ·
(
(Z/pe)n × [R, id]RCS(a)

)
� L†n([R, incl]SR � ωF )a,b

=
∑

R≤CS(a)
ϕ∈F(R,S)
s.t. a ∈ R

cR,ϕ ·
(
(Z/pe)n × [R, id]RCS(a)

)
� L†n([R, incl]SR)a,a � L†n(ωF )a,b

=
∑

R≤CS(a)
ϕ∈F(R,S)
s.t. a ∈ R

cR,ϕ ·
(
(Z/pe)n × [R, incl]

CS(a)
CS(a)

)
� L†n(ωF )a,b

=
∑

R≤CS(a) up to CS(a)-conj.
s.t. a ∈ R

( ∑
R′∼CS(a)R

ϕ∈F(R′,S)

cR′,ϕ

)
·
(
(Z/pe)n × [R, incl]

CS(a)
CS(a)

)
� L†n(ωF )a,b.

24



Lemma 5.1 implies that the sum of coefficients is 0, when R < CS(a), and the sum of coefficients
equals 1, when R = CS(a). We complete our calculation with((

(Z/pe)n × Ln(ωF )
)
� L†n(ωF )

)
a,b

=
∑

R≤CS(a) up to CS(a)-conj.
s.t. a ∈ R

( ∑
R′∼CS(a)R

ϕ∈F(R′,S)

cR′,ϕ

)
·
(
(Z/pe)n × [R, incl]

CS(a)
CS(a)

)
� L†n(ωF )a,b

=
(
(Z/pe)n × [CS(a), id]

CS(a)
CS(a)

)
� L†n(ωF )a,b

= L†n(ωF )a,b.

This completes the proof of part (i) of the proposition.

The proof of part (ii) makes use of the exact same tricks as the proof of part (i). By [11,

Proposition 3.31], the matrix L†n(ωF ) ∈ AFp((Z/pe)n × LnS, (Z/pe)n × LnS) has entries

L†n(ωF )a,c

=
∑

R≤CS(a)
ϕ∈F(R,S)

s.t. ϕ(ak(a,R))
is S-conj. to c

cR,ϕ ·
(

[ev−1a (R), (id(Z/pe)n ×ϕ) ◦ wind(a,R)]
(Z/pe)n×CS(ϕ(a

k(a,R)))
(Z/pe)n×CS(a)

� ((Z/pe)n × ζc
ϕ(ak(a,R))

)
)

=
∑

R≤CS(a)
ϕ∈F(R,S)

s.t. ϕ(ak(a,R))
is S-conj. to c

cR,ϕ · [ev−1a (R), (id(Z/pe)n ×(ψϕ(ak(a,R)) ◦ ϕ) ◦ wind(a,R)]
(Z/pe)n×CS(c)
(Z/pe)n×CS(a)

,

where ψϕ(ak(a,R)) : CS(ϕ(ak(a,R))) → CS(c) is an S-conjugation map taking ϕ(ak(a,R)) to the rep-
resentative of its conjugacy class in S. We will name this representative z to ease the notation in
the following calculations. Note that z = ψϕ(ak(a,R))(ϕ(ak(a,R))) represents the conjugacy class of

ϕ(ak(a,R)) and as such depends on R, ϕ, and a.
We decompose [ev−1a (R), (id(Z/pe)n ×(ψϕ(ak(a,R)) ◦ ϕ) ◦ wind(a,R)] into

[ev−1a (R),wind(a,R)]
(Z/pe)n×R
(Z/pe)n×CS(a)

�
(

(Z/pe)n × [R,ψϕ(ak(a,R)) ◦ ϕ]
CS(z)
R

)
.

Using the functoriality of Ln and the F-stability of ωF , we then proceed as in part (i) to replace
ψϕ(ak(a,R)) ◦ ϕ with the inclusion incl : R→ S. The main steps are the following:(

L†n(ωF )�
(
(Z/pe)n × Ln(ωF )

))
a,b

=
∑

R≤CS(a)
ϕ∈F(R,S)

cR,ϕ · [ev−1a (R),wind(a,R)]
(Z/pe)n×R
(Z/pe)n×CS(a)

�
(

(Z/pe)n × [R,ψϕ(ak(a,R)) ◦ ϕ]
CS(z)
R

)
�
(
(Z/pe)n × Ln(ωF )z,b

)
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=
∑

R≤CS(a)
ϕ∈F(R,S)

cR,ϕ · [ev−1a (R),wind(a,R)]
(Z/pe)n×R
(Z/pe)n×CS(a)

�
(
(Z/pe)n × Ln([R,ψϕ(ak(a,R)) ◦ ϕ]SR � ωF )ak(a,R),b

)
=

∑
R≤CS(a)
ϕ∈F(R,S)

cR,ϕ · [ev−1a (R),wind(a,R)]
(Z/pe)n×R
(Z/pe)n×CS(a)

�
(
(Z/pe)n × Ln([R, incl]SR � ωF )ak(a,R),b

)
=

∑
R≤CS(a)
ϕ∈F(R,S)

cR,ϕ · [ev−1a (R), (id(Z/pe)n ×ψak(a,R)) ◦ wind(a,R)]
(Z/pe)n×CS(ψak(a,R) (a

k(a,R)))

(Z/pe)n×CS(a)

�
(
(Z/pe)n × Ln(ωF )ψ

ak(a,R) (a
k(a,R)),b

)
=

∑
R≤CS(a)

up to CS(a)-conj.

( ∑
R′∼CS(a)R

ϕ∈F(R′,S)

cR′,ϕ

)
·

[ev−1a (R), (id(Z/pe)n ×ψak(a,R)) ◦ wind(a,R)]
(Z/pe)n×CS(ψak(a,R) (a

k(a,R)))

(Z/pe)n×CS(a)

�
(
(Z/pe)n × Ln(ωF )ψ

ak(a,R) (a
k(a,R)),b

)
.

We again apply Lemma 5.1 to remove all summands except R = CS(a). For R = CS(a), we have
ak(a,R) = a and wind(a,CS(a)) = id(Z/pe)n×CS(a). We finish the calculation with(

L†n(ωF )�
(
(Z/pe)n × Ln(ωF )

))
a,b

= [ev−1a (CS(a)), (id(Z/pe)n ×ψa) ◦ wind(a,CS(a))]
(Z/pe)n×CS(ψa(a))

(Z/pe)n×CS(a)

�
(
(Z/pe)n × Ln(ωF )a,b

)
= [(Z/pe)n × CS(a), id]

(Z/pe)n×CS(a)
(Z/pe)n×CS(a)

�
(
(Z/pe)n × Ln(ωF )a,b

)
= (Z/pe)n × Ln(ωF )a,b.

This completes the proof of part (ii).

Corollary 5.3. The idempotents L†n((ωF )SS) and (Z/pe)n×Ln((ωF )SS) induce inverse equivalences

tel
L†n(ωF )

Σ̂∞+B((Z/pe)n) ∧ telLn(ωF ) .

(Z/pe)n × Ln((ωF )SS)

L†n((ωF )SS)

Proof. By Proposition 5.2, we can apply (Z/pe)n×Ln((ωF )SS) and L†n((ωF )SS) level-wise to get maps
back and forth between the two towers

Σ̂∞+B((Z/pe)n × LnS)
(Z/pe)n×Ln(ωF )−−−−−−−−−−−→ Σ̂∞+B((Z/pe)n × LnS)

(Z/pe)n×Ln(ωF )−−−−−−−−−−−→ · · ·
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and

Σ̂∞+B((Z/pe)n × LnS)
L†n(ωF )−−−−−→ Σ̂∞+B((Z/pe)n × LnS)

L†n(ωF )−−−−−→ · · · .

Again by Proposition 5.2, the composite L†n((ωF )SS)�((Z/pe)n×Ln((ωF )SS)) = (Z/pe)n×Ln((ωF )SS)

is the identity on the telescope Σ̂∞+B((Z/pe)n) ∧ telLn(ωF ) of the first tower, and the composite

((Z/pe)n × Ln((ωF )SS)) � L†n((ωF )SS) = L†n((ωF )SS) is the identity on the telescope tel
L†n(ωF )

of the

second tower.

Corollary 5.4. Combining Corollaries 4.7 and 5.3, we have inverse equivalences

tel
L†n(ωF )

Σ̂∞+B((Z/pe)n × LnF),

(Z/pe)n × IF

T †F

with matrices (Z/pe)n × IF ∈ AFp((Z/pe) × LnS, (Z/pe)n × LnF) and

T †F ∈ AFp((Z/pe)× LnF , (Z/pe)n × LnS). These matrices have the following entries:

((Z/pe)n × IF )a,b =

{
0 if a is not F-conjugate to b,

(Z/pe)n × ζba if b is the representative for the F-conjugacy class of a,

with ((Z/pe)n × IF )a,b ∈ AFp((Z/pe)n × CS(a), (Z/pe)n × CF (b)), and

(T †F )a,b = L†n((ωF )SS)a,b,

with (T †F )a,b ∈ AFp((Z/pe)n × CF (a), (Z/pe)n × CS(b)).

Proof. We compose the maps of Corollaries 4.7 and 5.3. In one direction we have the composite

tel
L†n(ωF )

(Z/pe)n×Ln((ωF )SS)−−−−−−−−−−−−−→ Σ̂∞+B(Z/pe)n ∧ telLn(ωF )
(Z/pe)n×IF−−−−−−−→ Σ̂∞+B((Z/pe)n × LnF).

Due to Lemma 4.4, we have

Ln((ωF )SS)� IF = IF � TF � IF = IF .

Hence the composed equivalence above is simply

tel
L†n(ωF )

(Z/pe)n×IF−−−−−−−→ Σ̂∞+B((Z/pe)n × LnF)

induced by (Z/pe)n× IF ∈ AFp((Z/pe)n×LnS, (Z/pe)n×LnF), which is invariant with respect to

composition with L†n((ωF )SS) on the left.
In the other direction, we have the composite

Σ̂∞+B((Z/pe)n × LnF)
(Z/pe)n×TF−−−−−−−−→ Σ̂∞+B(Z/pe)n ∧ telLn(ωF )

L†n((ωF )
S
S)−−−−−−−→ tel

L†n(ωF )
.
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By Definition 4.2, the matrix TF ∈ AFp(LnF ,LnS) has entries (TF )a,b = Ln((ωF )SS)a,b, whenever
a represents the class [a] ∈ F [n] and b represents [b] ∈ S[n]. Applying Proposition 5.2(i), we then
calculate the entries of the composite equivalence:(

((Z/pe)n × TF )� L†n((ωF )SS)
)
a,b

=
∑

[c]∈S[n]

((Z/pe)n × TF )a,c � L†n((ωF )SS)c,b

=
∑

[c]∈S[n]

((Z/pe)n × Ln((ωF )SS)a,c � L†n((ωF )SS)c,b

=
(
((Z/pe)n × Ln((ωF )SS))� L†n((ωF )SS)

)
a,b

= L†n((ωF )SS)a,b.

This is the matrix T †F ∈ AFp((Z/pe)n × LnF , (Z/pe)n × LnS) described in the statement of the

corollary. Furthermore T †F is invariant with respect to L†n((ωF )SS) on the right.

We define the functor L†n for saturated fusoids similarly to Proposition 4.8:

Proposition 5.5. The functor L†n on unions of p-groups extends to a functor L†n : AFp → AFp
given on objects by F 7→ (Z/pe)n × LnF and on morphisms X ∈ AFp(E ,F) by the matrix with
entries

L†n(XFE )a,b =
∑

[b′]∈S[n]

b′∼F b

(L†n(XS
R))a,b′ � ((Z/pe)n × ζbb′),

with L†n(XFE )a,b ∈ AFp((Z/pe)n × CE(a), (Z/pe)n × CF (b)), and where R and S are the underlying
unions of p-groups for E and F respectively.

Remark 5.6. In the proof we shall see that L†n can alternatively be given as the composite L†n(XFE ) =

T †E � L
†
n(XS

R)� ((Z/pe)n × IF ).

Proof. We first note that L†n(XFE ) = T †E � L
†
n(XS

R)� ((Z/pe)n × IF ). We check this by calculating
the entries of the right hand side:(

T †E � L
†
n(XS

R)� ((Z/pe)n × IF )
)
a,b

=
∑

[c]∈R[n]

(T †E )a,c �
(
L†n(XS

R)� ((Z/pe)n × IF )
)
c,b

=
∑

[c]∈R[n]

(L†n((ωE)
R
R))a,c �

(
L†n(XS

R)� ((Z/pe)n × IF )
)
c,b

=
(
L†n((ωE)

R
R)� L†n(XS

R)� ((Z/pe)n × IF )
)
a,b

=
(
L†n((ωE)

R
R �XS

R)� ((Z/pe)n × IF )
)
a,b

=
(
L†n(XS

R)� ((Z/pe)n × IF )
)
a,b

=
∑

[d]∈S[n]

L†n(XS
R)a,d � ((Z/pe)n × IF )d,b

=
∑

[b′]∈S[n]

b′∼F b

(L†n(XS
R))a,b′ � ((Z/pe)n × ζbb′)
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= L†n(XFE )a,b.

It is now straightforward to check that L†n is a functor. First note that L†n takes identity maps
to identity maps since

L†n((ωF )FF ) = T †F � L
†
n((ωF )SS)� ((Z/pe)n × IF )

= T †F � ((Z/pe)n × IF ) = id(Z/pe)n×LnF .

We have used the fact that T †F is the inverse to ((Z/pe)n × IF ) by Corollary 5.4.
Let E , F , and G be saturated fusoids over R, S, and T respectively. Suppose X ∈ AFp(E ,F)

and Y ∈ AFp(F ,G). We check that L†n preserves composition:

L†n(XFE )� L†n(Y GF ) = T †E � L
†
n(XS

R)� ((Z/pe)n × IF )� T †F � L
†
n(Y T

S )� ((Z/pe)n × IG)

= T †E � L
†
n(XS

R)� L†n((ωF )SS)� L†n(Y T
S )� ((Z/pe)n × IG)

= T †E � L
†
n(XS

R � (ωF )SS � Y T
S )� ((Z/pe)n × IG)

= T †E � L
†
n((X � Y )TS )� ((Z/pe)n × IG)

= L†n((X � Y )GE ).

The characteristic idempotent ωF disappears from the middle because X and Y are F-stable.

We next give a formula for L†n in terms of the decomposition of X ∈ AFp(E ,F) into basis
elements. The formula is analogous to [11, Proposition 3.31] and the proof follows the same lines
as the proof of Corollary 4.10.

Proposition 5.7. Let E and F be saturated fusion systems over p-groups R and S respectively, and
suppose X ∈ AFp(E ,F) is a virtual biset. Furthermore, let a in E and b in F be chosen represen-
tatives for conjugacy classes of commuting n-tuples (according to Convention 3.10). Consider the
restriction of X to the centralizer fusion system CE(a), and write MFCE(a) as a linear combination

of basis elements (recalling Convention 2.6):

XFCE(a) =
∑
(P,ϕ)

cP,ϕ · [P,ϕ]FCE(a),

where P ≤ CR(a) and ϕ : P → S.

The matrix entry L†n(X)a,b then satisfies the formula

L†n(X)a,b =
∑

(P,ϕ) s.t. ϕ(ak(a,P ))
is F-conj. to b

cP,ϕ ·
(

[ev−1a (P ), (id(Z/pe)n ×ϕ) ◦ wind(a, P )]
(Z/pe)n×CS(ϕ(a

k(a,P )))
(Z/pe)n×CE(a)

� ((Z/pe)n × ζb
ϕ(ak(a,P ))

)
)
,

with P , ϕ, and cP,ϕ as in the linear combination above, and with k(a, P ) and wind(a, P ) as given
in [11, Definition 3.25] and [11, Lemma 3.29], respectively.

Proof. As in the proof of Corollary 4.10, we first wish to replace the coefficients cP,ϕ with an
alternative set of coefficients that play nicely with the underlying p-groups. View X as an element
of AFp(CR(a), S) and write XS

CR(a) as a linear combination:

XS
CR(a) =

∑
(P,ϕ)

uP,ϕ · [P,ϕ]SCR(a),
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with a (possibly) different collection of coefficients uP,ϕ. If we precompose with ωCE(a) and post-
compose with ωF , the linear combination above becomes

XFCE(a) = ωCE(a) �X
S
CR(a) � ωF =

∑
(P,ϕ)

uP,ϕ · [P,ϕ]FCE(a).

We shall then prove that the formula for Ln(X)a,b in the statement of the proposition is independent
of the choice of linear combination for XFCE(a), so that we can use the coefficients uP,ϕ instead of
cP,ϕ.

As in the proof of Corollary 4.10, it suffices to prove that whenever two basis elements [P,ϕ]FCE(a)
and [P ′, ϕ′]FCE(a) are equal, then the composite

[ev−1a (P ), (id(Z/pe)n ×ϕ) ◦ wind(a, P )]
(Z/pe)n×CS(ϕ(a

k(a,P )))
(Z/pe)n×CE(a) � ((Z/pe)n × ζb

ϕ(ak(a,P ))
)

and the same composite for the pair (P ′, ϕ′) are also equal.
Suppose [P,ϕ]FCE(a) = [P ′, ϕ′]FCE(a) so that (P ′, ϕ′) is (CE(a),F)-conjugate to (P,ϕ). Suppose

further that ϕ(ak(a,P )) is F-conjugate to b. Let ϕ′ = γ ◦ϕ◦α with α ∈ CE(a) and γ ∈ F , and where

α : 〈a〉P ′
∼=−→ 〈a〉P satisfies α(a) = a.

Via the isomorphism α, it is clear that powers of elements in a lie in P if and only if they lie in
P ′. Hence k(a, P ) = k(a, P ′), and

wind(a, P ) ◦ (id(Z/pe)n ×α) = (id(Z/pe)n ×α) ◦ wind(a, P ′)

as maps ev−1a (P ′)
∼=−→ (Z/pe)n × P . In S we have ϕ(ak(a,P

′)) = γ(ϕ′(ak(a,P
′))), and since γ ∈ F , we

conclude that ϕ′(ak(a,P
′)) is also F-conjugate to b. Furthermore, we have

[(Z/pe)n × P, id×γ]� ((Z/pe)n × ζb
ϕ′(ak(a,P ′))

) = (Z/pe)n × ζb
ϕ(ak(a,P ))

.

Combining these observations, we get

[ev−1a (P ′), (id(Z/pe)n ×ϕ′) ◦ wind(a, P ′)]
(Z/pe)n×CS(ϕ

′(ak(a,P
′)))

(Z/pe)n×CE(a) � ((Z/pe)n × ζb
ϕ′(ak(a,P ′))

)

= [ev−1a (P ′), (id(Z/pe)n ×(γ ◦ ϕ ◦ α)) ◦ wind(a, P ′)]
(Z/pe)n×CS(ϕ

′(ak(a,P
′)))

(Z/pe)n×CE(a) � ((Z/pe)n × ζb
ϕ′(ak(a,P ′))

)

= [ev−1a (P ′), (id(Z/pe)n ×ϕ) ◦ wind(a, P ) ◦ (id(Z/pe)n ×α)]
(Z/pe)n×CS(ϕ(a

k(a,P )))
(Z/pe)n×CE(a) � ((Z/pe)n × ζb

ϕ(ak(a,P ))
)

= [ev−1a (P ), (id(Z/pe)n ×ϕ) ◦ wind(a, P )]
(Z/pe)n×CS(ϕ(a

k(a,P )))
(Z/pe)n×CE(a) � ((Z/pe)n × ζb

ϕ(ak(a,P ))
),

where the last equality follows from the fact that α ∈ CE(a).
As in the proof of Corollary 4.10, the equality∑

(P,ϕ)

cP,ϕ · [P,ϕ]FCE(a) = XFCE(a) =
∑
(P,ϕ)

uP,ϕ · [P,ϕ]FCE(a)

implies that we can replace cP,ϕ with uP,ϕ in the formula

∑
(P,ϕ) s.t. ϕ(ak(a,P ))

is F-conj. to b

cP,ϕ ·
(

[ev−1a (P ), (id(Z/pe)n ×ϕ) ◦ wind(a, P )]
(Z/pe)n×CS(ϕ(a

k(a,P )))
(Z/pe)n×CE(a)
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� ((Z/pe)n × ζb
ϕ(ak(a,P ))

)
)

and get the same sum.
By Proposition 5.5, we can write L†n(XFE )a,b as

L†n(XFE )a,b =
∑

[b′]∈S[n]

b′∼F b

L†n(XS
R)a,b′ � ((Z/pe)n × ζb

b′
).

We then apply Proposition 5.7 with the linear combination for XS
CR(a) given by the coefficients

uP,ϕ:

L†n(XFE )a,b

=
∑

[b′]∈S[n]

b′∼F b

L†n(XS
R)a,b′ � ((Z/pe)n × ζb

b′
)

=
∑

[b′]∈S[n]

b′∼F b

∑
(P,ϕ) s.t. ϕ(ak(a,P ))

is S-conj. to b′

uP,ϕ ·
(

[ev−1a (P ), (id(Z/pe)n ×ϕ) ◦ wind(a, P )]
(Z/pe)n×CS(ϕ(a

k(a,P )))
(Z/pe)n×CR(a)

� ((Z/pe)n × ζb
′

ϕ(ak(a,P ))
)
)
� ((Z/pe)n × ζb

b′
)

=
∑

(P,ϕ) s.t. ϕ(ak(a,P ))
is F-conj. to b

uP,ϕ ·
(

[ev−1a (P ), (id(Z/pe)n ×ϕ) ◦ wind(a, P )]
(Z/pe)n×CS(ϕ(a

k(a,P )))
(Z/pe)n×CR(a)

� ((Z/pe)n × ζb
ϕ(ak(a,P ))

)
)
.

Finally, note that L†n(XFE )a,b ∈ AFp((Z/pe)n × CE(a), (Z/pe)n × CF (b)) is left
((Z/pe)n × CE(a))-stable and as such does not change if we precompose with the idempotent
(Z/pe)n × ωCE(a):

L†n(XFE )a,b

= ((Z/pe)n × ωCE(a))� L
†
n(XFE )a,b

=
∑

(P,ϕ) s.t. ϕ(ak(a,P ))
is F-conj. to b

uP,ϕ · ωCE(a)

�
(

[ev−1a (P ), (id(Z/pe)n ×ϕ) ◦ wind(a, P )]
(Z/pe)n×CS(ϕ(a

k(a,P )))
(Z/pe)n×CR(a) � ((Z/pe)n × ζb

ϕ(ak(a,P ))
)
)

=
∑

(P,ϕ) s.t. ϕ(ak(a,P ))
is F-conj. to b

uP,ϕ ·
(

[ev−1a (P ), (id(Z/pe)n ×ϕ) ◦ wind(a, P )]
(Z/pe)n×CS(ϕ(a

k(a,P )))
(Z/pe)n×CE(a)

� ((Z/pe)n × ζb
ϕ(ak(a,P ))

)
)

=
∑

(P,ϕ) s.t. ϕ(ak(a,P ))
is F-conj. to b

cP,ϕ ·
(

[ev−1a (P ), (id(Z/pe)n ×ϕ) ◦ wind(a, P )]
(Z/pe)n×CS(ϕ(a

k(a,P )))
(Z/pe)n×CE(a)

� ((Z/pe)n × ζb
ϕ(ak(a,P ))

)
)
.
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Remark 5.8. As in [11, Remark 3.32], we can form a functor L†n|lift by taking the formula in Proposi-
tion 5.7 and leaving out all summands indexed by (P,ϕ), where P does not contain a. By [11, Lemma
3.27], the summands for which a ∈ P are precisely those summands where ev−1a (P ) = (Z/pe)n×P ,
and these are also the summands for which k(a, P )i = 1, for all 1 ≤ i ≤ n .

For saturated fusion systems E and F over p-groups R and S, and for X ∈ AFp(E ,F), we thus

define L†n|lift(X) ∈ AFp((Z/pe)n × E , (Z/pe)n × F) to be the matrix with entries as in Proposition
5.7 except leaving out all summands where a is not in P :

L†n|lift(X)a,b =
∑

(P,ϕ) s.t. a∈P and

ϕ(ak(a,P )) is F-conj. to b

cP,ϕ ·
(

[ev−1a (P ), (id(Z/pe)n ×ϕ) ◦ wind(a, P )]
(Z/pe)n×CS(ϕ(a

k(a,P )))
(Z/pe)n×CE(a)

� ((Z/pe)n × ζb
ϕ(ak(a,P ))

)
)

=
∑

(P,ϕ) s.t. a∈P and
ϕ(a) is F-conj. to b

cP,ϕ ·
(

[(Z/pe)n × P, (id(Z/pe)n ×ϕ)]
(Z/pe)n×CS(ϕ(a))
(Z/pe)n×CE(a)

� ((Z/pe)n × ζbϕ(a))
)
.

Comparing with Corollary 4.10, we see that L†n|lift(X) coincides with (Z/pe)n × Ln(X). As men-
tioned, we observed this for groups in [11, Remark 3.32] and for the category Cov in [11, Remark
2.11].

6 Properties of L†n

Before we state the fusion system version of [11, Theorems 2.13 and 3.33], we need to discuss the
auxiliary maps describing evaluation and partial evaluation for LnF , the action of Σn on LnF , and
the embedding of (Z/pe)n+m × Ln+mF into (Z/pe)n × Ln((Z/pe)m × LmF).

We shall handle all four auxiliary maps at once according to the following common framework:
First the auxiliary map on p-groups gives rise to a map between towers corresponding to suitable
idempotents. The map of towers induces a map between the mapping telescopes in spectra, and
the telescopes are each equivalent to classifying spectra of fusoids. We calculate the induced map
between the classifying spectra of fusoids and confirm that this map takes the form that we would
expect for the auxiliary map in question.

Constructing the auxiliary maps in terms of maps between towers of idempotents instead of
just defining the auxiliary maps for fusion systems directly has one significant advantage: It allows
us to formally, using standard methods, turn natural transformations for p-groups into natural
transformations for fusion systems (see Proposition 6.4). This allows us to use [11, Theorem 3.33]
for p-groups to prove a significant part of Theorem 6.9 for fusion systems.

Lemma 6.1. Let F : AFp → AFp be a functor, and let F be a saturated fusoid with underlying
union of p-groups S. Consider the idempotent endomorphism F ((ωF )SS) ∈ AFp(F (S), F (S)) and
the associated mapping telescope

telF (ωF ) = colim(Σ̂∞+BF (S)
F ((ωF )

S
S)−−−−−−→ Σ̂∞+BF (S)

F ((ωF )
S
S)−−−−−−→ · · · ).
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We then have a pair of inverse equivalences

telF (ωF ) Σ̂∞+BF (F).

F ((ωF )FS )

F ((ωF )SF )

Proof. Consider the two towers

S
(ωF )

S
S−−−−→ S

(ωF )
S
S−−−−→ · · ·

as well as
F idF−−→ F idF−−→ · · · .

We can apply (ωF )SF and (ωF )FS level-wise to get maps back and forth between the towers, where
we recall that idF is simply (ωF )FF ∈ AFp(F ,F). The induced maps between telescopes telωF and

Σ̂∞+BF are equivalences (or even the identity if we used telωF as the construction of Σ̂∞+BF).
If we apply the functor F : AFp → AFp to the elements (ωF )SF and (ωF )FS , we can apply the

resulting maps F ((ωF )SF ) and F ((ωF )FS ) level-wise to the towers

F (S)
F ((ωF )

S
S)−−−−−−→ F (S)

F (ωF )
S
S)−−−−−→ · · ·

and

F (F)
idF (F)−−−−→ F (F)

idF (F)−−−−→ · · · .

The composites F ((ωF )FS ) � F ((ωF )SF ) = F ((ωF )SS) and F ((ωF )SF ) � F ((ωF )FS ) = F ((ωF )FF ) =
idF (F) recover the idempotents of the towers, so the induced maps on telescopes

telF (ωF ) Σ̂∞+BF (F)

F ((ωF )FS )

F ((ωF )SF )

are inverse to each other in Ho(Spp).

Remark 6.2. If we apply Lemma 6.1 to the functors Ln and L†n, we recover Corollaries 4.7 and 5.4
with the same equivalences. However, we need those corollaries in order to construct Ln and L†n as
functors AFp → AFp in the first place.

Definition 6.3. Suppose F,G : AFp → AFp are functors defined on all saturated fusoids, and
suppose we have a natural transformation η : F |p-groups ⇒ G|p-groups defined only on formal unions
of p-groups. For each saturated fusoid F over S, we then define a map ηF : F (F) → G(F) as the
composite

ηF : F (F)
F ((ωF )

S
F )−−−−−−→ F (S)

ηS−→ G(S)
G((ωF )

F
S )

−−−−−−→ G(F).

When F is the trivial fusion system on S, this just recovers ηS , so there is no ambiguity of notation.
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Since η is a natural transformation on p-groups, ηS fits in a diagram of towers:

F (F) F (F) · · ·

F (S) F (S) · · ·

G(S) G(S) · · ·

G(F) G(F) · · · .

idF (F)

F ((ωF )SF )

idF (F)

F ((ωF )SF )

F ((ωF )SS)

ηS

F ((ωF )SS)

ηS

G((ωF )SS)

G((ωF )FS )

G((ωF )SS)

G((ωF )FS )

idG(F) idG(F)

The map ηS induces a map between the telescopes ηS : telF (ωF ) → telG(ωF ), and as such ηF is
simply the composite

ηF : Σ̂∞+BF (F)
F ((ωF )

S
F )−−−−−−→

'
telF (ωF )

ηS−→ telG(ωF )
G((ωF )

F
S )

−−−−−−→
'

Σ̂∞+BG(F)

in Ho(Spp). It is now easy to prove that the extension of η to fusoids defines a natural transformation
F ⇒ G on all of AFp.

Proposition 6.4. Suppose F,G : AFp → AFp are functors defined on all saturated fusoids, and
suppose we have a natural transformation η : F |p-groups ⇒ G|p-groups defined only on formal unions
of p-groups. If we extend η to all saturated fusoids by Definition 6.3, then the extension defines a
natural transformation η : F ⇒ G on all of AFp.

Proof. Let E and F be saturated fusoids over R and S respectively, and let X ∈ AFp(E ,F) be any
matrix of virtual bisets. We have to prove that F (XFE )�ηF = ηE�G(XFE ) in AFp(F (E), G(F)). Since

AFp → Ho(Spp) is fully faithful, it suffices to prove this as homotopy classes of maps Σ̂∞+BF (E)→
Σ̂∞+BG(F).

By the naturality of η on p-groups as well as the definitions of ηE and ηF , we have the following

34



commutative diagram in Ho(Spp):

Σ̂∞+BF (E) Σ̂∞+BG(E)

telF (ωE) telG(ωE)

telF (ωF ) telG(ωF )

Σ̂∞+BF (F) Σ̂∞+BG(F).

ηE

F ((ωE)
R
E )

'

F (XFE )

ηR

F (XS
R)

G((ωE)
E
R)

'

G(XS
R) G(XFE )

F ((ωF )SF

'

ηF

ηS

G((ωF )FS )

'

Since all the smaller squares commute, the outer square commutes as well.

As the first of the four auxiliary maps needed for Theorem 6.9, let us describe the evalua-
tion map from (Z/pe)n × LnF to F . Consider the two endofunctors L†n, IdAFp : AFp → AFp. By
Theorem [11, Theorem 3.33.(v)], the evaluation maps for unions of p-groups define a natural trans-

formation ev : L†n|p-groups ⇒ IdAFp |p-groups. We can thus extend ev by Proposition 6.4 to a natural

transformation ev : L†n ⇒ IdAFp on all of AFp. Let us determine a formula for the evaluation map
evF : (Z/pe)n × LnF → F in this extension.

By Definition 6.3, the biset matrix evF is given as the composite

evF = L†n((ωF )SF )� evS �(ωF )FS

inside AFp((Z/pe)n×LnF ,F). In order to calculate the matrix entries of evF , recall that L†n((ωF )SF ) =

T †F by Remark 5.6, and, by Corollary 5.3, we have (T †F )a,b = L†n((ωF )SS)a,b, whenever a represents
a conjugacy class of tuples in F and b represents a class in S.

Calculating the entries of evF ∈ AFp((Z/pe)n × LnF ,F), we then get

(evF )a =
∑

[b]∈S[n]

L†n((ωF )SF )a,b � [(Z/pe)n × CS(b), evb]
S
(Z/pe)n×CS(b)

� (ωF )FS

=
∑

[b]∈S[n]

L†n((ωF )SS)a,b � [(Z/pe)n × CS(b), evb]
S
(Z/pe)n×CS(b)

� (ωF )FS

= (L†n((ωF )SS)� evS �(ωF )FS )a

= (evS �(ωF )SS � (ωF )FS )a

= (evS �(ωF )FS )a

= [(Z/pe)n × CS(a), eva]
S
(Z/pe)n×CS(a)

� (ωF )FS
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= [(Z/pe)n × CS(a), eva]
F
(Z/pe)n×CS(a)

as an element of AFp((Z/pe)n × CF (a),F).
By Lemma 3.14, the homomorphism eva is fusion preserving from (Z/pe)n×CF (a) to F . Lemma

A.1 now implies that we can also write

(evF )a = [(Z/pe)n × CS(a), eva]
F
(Z/pe)n×CF (a).

Thus, the evaluation map evF simply applies the fusion preserving map eva : (Z/pe)n×CF (a)→
F to each component of (Z/pe)n × LnF . Let us record this fact for future reference:

Lemma 6.5. Let F be a saturated fusion system (or fusoid) over a finite p-group S (or formal union
of such). The evaluation map evF : (Z/pe)n ×LnF → F takes each component (Z/pe)n ×CF (a) to
F via the fusion preserving map eva. As such, the entries of evF are given by

(evF )a = [(Z/pe)n × CS(a), eva]
F
(Z/pe)n×CF (a).

Furthermore, the maps evF assemble into a natural transformation ev : L†n ⇒ IdAFp between endo-
functors on AFp.

We could have easily defined evF directly for fusion systems in terms of the fusion preserving
maps (Z/pe)n ×CF (a)→ F . However, by constructing evF via Proposition 6.4, we know that evF
gives rise to a natural transformation which will greatly simplify the proof of Theorem 6.9.

The next auxiliary map we shall work on is the partial evaluation map ∂evF : Z/pe×Ln+1F →
LnF . Note that for p-groups the partial evaluation map ∂evS : Z/pe×Ln+1S → LnS of [11, Theorem
3.33.(vi)], given by

∂evS(t, z) = (an+1)
t · z ∈ CS(a1, . . . , an), for t ∈ Z/pe, z ∈

∐
a∈S[n+1]

CS(a),

coincides with the 1-fold evaluation map for LnS, i.e. we have ∂evS = evLnS : Z/pe × L1(LnS) →
LnS. As such, ∂evS provides a natural transformation ∂ev : L†1(Ln(−)) ⇒ Ln(−) on p-groups. By
Lemma 6.5, the maps ∂evF = evLnF : Z/pe × Ln+1F → LnF provide a natural transformation

∂ev : L†1(Ln(−)) ⇒ Ln(−) on all of AFp. The entries of the biset matrix, (∂evF )a,b ∈ AFp(Z/pe ×
CF (a), CF (b)) have the following form for each representative (n+ 1)-tuple a = (a1, . . . , an, an+1):

(∂evF )a,b =

{
[Z/pe × CS(a), ∂eva]

CF (a1,...,an)
Z/pe×CF (a) if b = (a1, . . . , an),

0 otherwise.

Note that (a1, . . . , an) is itself a chosen representative n-tuple for F by Convention 3.10.
According to [11, Theorem 3.33.(vi)], the partial evaluation maps give a natural transformation

(Z/pe)n×∂ev : L†n+1 ⇒ L†n for all unions of p-groups. By Proposition 6.4, we can extend this natural

transformation to all saturated fusoids to get η : L†n+1 ⇒ L†n on AFp with ηF given by

ηF = L†n+1((ωF )SF )� ((Z/pe)n × ∂evS)� L†n((ωF )FS ).

We claim that ηF simply recovers (Z/pe)n× ∂evF for fusoids as well. The calculation is completely
analogous to the calculation preceding Lemma 6.5.
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We note that L†n+1((ωF )SF )a,b = L†n+1((ωF )SS)a,b for all (n+1)-tuple representatives a for F and

b for S. Additionally, Remark 5.6 implies that L†n((ωF )FS ) = (Z/pe)n × IF has entries

L†n((ωF )FS )a,b =

{
(Z/pe)n × ζba if a is F-conj. to b,

0 otherwise.

The calculation of ηF the proceeds accordingly:

(ηF )a,b

=
(
L†n+1((ωF )SF )� ((Z/pe)n × ∂evS)� L†n((ωF )FS )

)
a,b

=
(
L†n+1((ωF )SS)� ((Z/pe)n × ∂evS)� L†n((ωF )FS )

)
a,b

=
(

((Z/pe)n × ∂evS)� L†n((ωF )SS)� L†n((ωF )FS )
)
a,b

=
(

((Z/pe)n × ∂evS)� L†n((ωF )FS )
)
a,b

=


[(Z/pe)n+1 × CS(a), (Z/pe)n × ∂eva]

(Z/pe)n×CS(a1,...,an)
(Z/pe)n+1×CS(a)

� ((Z/pe)n × ζb(a1,...,an))
if (a1, . . . , an) ∼F b,

0 otherwise.

However if (a1, . . . , an) is F-conjugate to b, then the two n-tuples are equal as they both represent

the same F-conjugacy class, hence ζ
b
(a1,...,an)

is the inclusion CS(a1, . . . , an)→ CF (a1, . . . , an).
In total we have

(ηF )a,b =

{
[(Z/pe)n+1 × CS(a), (Z/pe)n × ∂eva]

(Z/pe)n×CF (a1,...,an)
(Z/pe)n+1×CS(a)

if b = (a1, . . . , an),

0 otherwise.

By Lemma 3.14, ∂eva : Z/pe × CF (a)→ CF (a1, . . . , an) is fusion preserving, so

[(Z/pe)n+1 × CS(a), (Z/pe)n × ∂eva]
(Z/pe)n×CF (a1,...,an)
(Z/pe)n+1×CS(a)

= [(Z/pe)n+1 × CS(a), (Z/pe)n × ∂eva]
(Z/pe)n×CF (a1,...,an)
(Z/pe)n+1×CF (a)

and ηF recovers (Z/pe)n × ∂evF as claimed. Again we record this as a lemma:

Lemma 6.6. Let F be a saturated fusion system (or fusoid) over a finite p-group S (or formal
union of such). The partial evaluation map ∂evF : Z/pe × Ln+1F → LnF takes each component
Z/pe × CF (a) to CF (a1, . . . , an) via the fusion preserving map ∂eva given by

∂eva(t, z) = (an+1)
t · z.

The maps (Z/pe)n × ∂evF define a natural transformation (Z/pe)n × ∂ev : L†n+1 ⇒ L†n between
endofunctors on AFp.

Next we establish the action of Σn on LnF in a similar fashion. Given a permutation σ ∈ Σn, the
action of σ on LnS permutes the components (as described in [11, Theorem 3.33.(iii)]) by sending

CS(a) = CS(σ(a)) to CS(σ̃(a)) via the isomorphism ζ
σ̃(a)
σ(a) , where σ̃(a) is the chosen representative

for the S-conjugacy class of σ(a).
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The action of σ defines a natural transformation σ : Ln ⇒ Ln for all unions of p-groups (note
that [11, Proposition 3.15] is invariant with respect to permuting the n-tuples by σ). Proposition
6.4 then provides an extension σ : Ln ⇒ Ln to all of AFp.

As for the (partial) evaluation maps, we calculate that the induced map σF = Ln((ωSF ))�σS �
Ln((ωFS )) is a matrix in which the only non-zero entries are

(σF )
a,σ̃(a)

= ζ
σ̃(a)
σ(a) ∈ AFp(CF (a), CF (σ̃(a)),

and where σ̃(a) is the chosen representative for the F-conjugacy class of σ(a).
Similarly, by [11, Theorem 3.33.(iii)] the diagonal action of σ on (Z/pe)n×LnS provides a natural

transformation σ : L†n ⇒ L†n for unions of p-groups. Again we extend this natural transformation
to a natural transformation η : L†n ⇒ L†n on all of AFp, and we proceed to calculate that ηF =

L†n((ωSF )) � σS � L†n((ωFS )) is simply the diagonal action of σ on (Z/pe)n × LnF . We record this
fact:

Lemma 6.7. Let F be a saturated fusion system (or fusoid) over a finite p-group S (or formal
union of such). The symmetric group Σn acts on LnF by permuting the coordinates of the n-tuples.

If σ ∈ Σn, then the action of σ on LnF sends each component CF (a) = CF (σ(a)) to CF (σ̃(a)) via

the isomorphism ζ
σ̃(a)
σ(a) , where σ̃(a) is the chosen representative for the F-conjugacy class of σ(a).

The diagonal action of σ on (Z/pe)n×LnF gives a natural transformation σ : L†n ⇒ L†n between
endofunctors on AFp.

The final auxiliary map needed for Theorem 6.9 is the embedding of (Z/pe)n+m ×Ln+mF into
(Z/pe)m×Lm((Z/pe)n×LnF). [11, Theorem 3.33.(vii)] states that we have a natural transformation

ι : L†n+m(−)⇒ L†m(L†n(−)) for all unions of p-groups, where ιS : (Z/pe)n+m×Ln+mS → (Z/pe)m×
Lm((Z/pe)n × LnS) takes each component (Z/pe)n+m × CS(x, y) to the component (Z/pe)m ×
C(Z/pe)n×CS(x)(0× y) via the map(

(s, r), z
)
∈ (Z/pe)n+m × CS((x, y)) 7→

(
r, (s, z)

)
∈ (Z/pe)m × C(Z/pe)n×CS(x)(0 × y),

for s ∈ (Z/pe)n, r ∈ (Z/pe)m, x ∈ S[n], y ∈ CS(x)[m], and z ∈ CS(x, y).
Suppose (x, y) is a chosen representative (n + m)-tuple in S. Then by Convention 3.10 the

commuting n-tuple x is a chosen representative in S as well, and the commuting m-tuple y is a
chosen representative in CS(x) ⊆ LnS – note that y is not necessarily a chosen representative in S.

The entries of the biset matrix ιS ∈ AFp((Z/pe)n+m ×Ln+mS, (Z/pe)m ×Lm((Z/pe)n ×LnS))
are given by

(ιS)
(x,y)∈S[n+m],(t×w)∈((Z/pe)n×LnS)[m]

=

{
[(Z/pe)n+m × CS(x, y), ((s, r), z) 7→ (r, (s, z))]

if (t× w) = (0× y)
in the component (Z/pe)n × CS(x),

0 otherwise.

We extend ι to a natural transformation L†n+m(−)⇒ L†m(L†n(−)) on all of AFp by Proposition 6.4,
and as such we have

ιF = L†n+m((ωF )SF )� ιS � L†m(L†n((ωF )FS )).

As for the previous auxiliary maps, we first note that for any representative (n+m)-tuple (x, y) in
F and m-tuple (t× w) in (Z/pe)n × LnF we have

(ιF )(x,y),(t×w) = (L†n+m((ωF )SF )� ιS � L†m(L†n((ωF )FS )))(x,y),(t×w)
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= (ιS � L†m(L†n((ωF )FS )))(x,y),(t×w)

=
∑

t′×w′∈((Z/pe)n×LnS)[m]

(ιS)(x,y),(t′×w′) � L†m(L†n((ωF )FS ))(t′×w′),(t×w).

Now the matrix entries of ιS are zero except when t′ × w′ = 0 × y as m-tuples in the component
(Z/pe)n × CS(x) of (Z/pe)n × LnS. Hence the above equation becomes

(ιF )(x,y),(t×w)

= (ιS)(x,y),(0×y) � L†m(L†n((ωF )FS ))(0×y),(t×w)

= [(Z/pe)n+m × CS(x, y), ((s, r), z) 7→ (r, (s, z))]
(Z/pe)m×C(Z/pe)n×CS(x)(0×y)
(Z/pe)n+m×CS(x,y)

� L†m(L†n((ωF )FS ))(0×y),(t×w).

If we apply Proposition 5.7 twice to the basis element (ωF )FS = [S, id]FS ∈ AFp(S,F), we see that

L†m(L†n([S, id]FS ))(0×y),(t×w)

=

{
(Z/pe)m × ζ(t×w)(0×y) if (t× w) represents the (Z/pe)n × CF (x)-conjugacy class of (0× y),

0 otherwise.

Because (x, y) was assumed to be a representative (n + m)-tuple in F , the m-tuple y is a repre-
sentative in CF (x). At the same time, if the m-tuple t in (Z/pe)n is conjugate to 0, then t = 0.
Consequently (0× y) is the chosen representative for its (Z/pe)n × CF (x)-conjugacy class.

We conclude that (ιF )(x,y),(t×w) is zero unless t×w = 0× y in the component (Z/pe)n×CF (x)

of (Z/pe)n × LnS. Furthermore,

(ιF )(x,y),(0×y)

= [(Z/pe)n+m × CS(x, y), ((s, r), z) 7→ (r, (s, z))]
(Z/pe)m×C(Z/pe)n×CS(x)(0×y)
(Z/pe)n+m×CS(x,y)

� (Z/pe)m × ζ(0×y)(0×y)

= [(Z/pe)n+m × CS(x, y), ((s, r), z) 7→ (r, (s, z))]
(Z/pe)m×C(Z/pe)n×CS(x)(0×y)
(Z/pe)n+m×CS(x,y)

� (Z/pe)m × [C(Z/pe)n×CS(x)(0× y), id]
C(Z/pe)n×CF (x)(0×y)
C(Z/pe)n×CS(x)(0×y)

= [(Z/pe)n+m × CS(x, y), ((s, r), z) 7→ (r, (s, z))]
(Z/pe)m×C(Z/pe)n×CF (x)(0×y)
(Z/pe)n+m×CS(x,y)

.

As in Lemma 3.14, it follows that the map ((s, r), z) 7→ (r, (s, z)) is fusion preserving from
(Z/pe)n+m × CF (x, y) to (Z/pe)m × C(Z/pe)n×CF (x)(0× y) and additionally we can write

(ιF )(x,y),(0×y) = [(Z/pe)n+m × CS(x, y), ((s, r), z) 7→ (r, (s, z))]
(Z/pe)m×C(Z/pe)n×CF (x)(0×y)
(Z/pe)n+m×CF (x,y)

if we prefer. We record our final preliminary result about the auxiliary maps of the main theorem.

Lemma 6.8. Let F be a saturated fusion system (or fusoid) over a finite p-group S (or formal
union of such). The embedding ιF : (Z/pe)n+m × Ln+mF → (Z/pe)m × Lm((Z/pe)n × LnF) takes
each component (Z/pe)n+m × CF (x, y) to the component (Z/pe)m × C(Z/pe)n×CF (x)(0 × y) via the
fusion preserving map given by

((s, r), z) 7→ (r, (s, z)).
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The maps ιF define a natural transformation L†n+m(−) ⇒ L†m(L†n(−)) between endofunctors on
AFp.

Now we are finally ready to prove that our extension of L†n to fusion systems satisfies the same
properties as for finite groups and finite sheeted covering maps. Recalling [11, Convention 3.21], we
state and prove the following variant of [11, Theorems 2.13 and 3.33]:

Theorem 6.9. The endofunctors L†n : AFp → AFp for n ≥ 0 of Proposition 5.5 have the following
properties:

(∅) Let L†,AGn : AG → AG be the functor constructed in [11, Section 3]. When restricted to the
full subcategories of AG and AFp spanned by formal unions of finite p-groups, the functor

L†n : AFp → AFp is the Zp-linearization of L†,AGn .

(i) L†0 is the identity functor on AFp.

(ii) On objects, L†n takes a saturated fusoid F to the saturated fusoid

L†n(F) = (Z/pe)n × Ln(F) =
∐

a∈F [n]

(Z/pe)n × CF (a).

(iii) The group Σn acts on LnF =
∐
a∈F [n] CF (a) by permuting the coordinates of the n-tuples

a. Explicitly, if σ ∈ Σn and if σ̃(a) is the representative for the F-conjugacy class of σ(a),

then σ : LnF → LnF maps CF (a) = CF (σ(a)) to CF (σ̃(a)) via the isomorphism ζ
σ̃(a)
σ(a) ∈

AFp(CF (a), CF (σ̃(a))).

The functor L†n is equivariant with respect to the Σn-action on (Z/pe)n×Ln(−) that permutes
the coordinates of both (Z/pe)n and Ln(−), i.e. for every σ ∈ Σn the diagonal action of σ on

(Z/pe)n × Ln(−) induces a natural isomorphism σ : L†n
∼=⇒ L†n.

(iv) Let E and F be saturated fusion systems on R and S respectively. For forward maps, i.e. tran-

sitive bisets [R,ϕ]FE ∈ AFp(E ,F) with ϕ : R → S fusion preserving, the functor L†n coincides
with (Z/pe)n × Ln(−) so that

L†n([R,ϕ]FE ) = (Z/pe)n × Ln([R,ϕ]FE ).

In addition, Ln([R,ϕ]FE ) is the biset matrix that takes a component CE(a) of LnE to the
component CF (b) of LnF by the biset

[CR(a), ϕ]
CS(ϕ(a))
CE(a)

� ζbϕ(a) ∈ AFp(CE(a), CF (b)),

where b represents the F-conjugacy class of ϕ(a).

(v) For all n ≥ 0, the functor L†n commutes with evaluation maps, i.e. the evaluation maps

evF : (Z/pe)n × Ln(F)→ F form a natural transformation ev : L†n ⇒ IdAFp.

(vi) For all n ≥ 0, the partial evaluation maps ∂evF : Z/pe × Ln+1(F) → Ln(F) given as fusion
preserving maps ∂eva : Z/pe × CF (a)→ CF (a1, . . . , an) in terms of the formula

∂eva(t, z) = (an+1)
t · z ∈ CS(a1, . . . , an), for t ∈ Z/pe, z ∈ CS(a),

form natural transformations (Z/pe)n × ∂ev : L†n+1 ⇒ L†n.
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(vii) For all n,m ≥ 0, and any saturated fusoid F on S, the formal union (Z/pe)n+m × Ln+mF
embeds into (Z/pe)m×Lm((Z/pe)n×LnF) as the components corresponding to the commuting
m-tuples in (Z/pe)n × LnF that are zero in the (Z/pe)n-coordinate, i.e. the embedding takes
each component (Z/pe)n+m×CF (x, y) to the component (Z/pe)m×C(Z/pe)n×CF (x)(0× y), for

x ∈ F [n] and y ∈ F [m], via the fusion preserving map given by

((s, r), z) 7→ (r, (s, z)),

for s ∈ (Z/pe)n, r ∈ (Z/pe)m, and z ∈ CS(x, y).

These embeddings (Z/pe)n+m×Ln+mF → (Z/pe)m×Lm((Z/pe)n×LnF) then form a natural

transformation L†n+m(−)⇒ L†m(L†n(−)).

Proof. (i),(ii): Both follow immediately from the definition of L†n in Proposition 5.5. In particular
for n = 0 and X ∈ AFp(E ,F) there is only a single 0-tuple () in each component and

L†0(X
F
E ) = L†0(X

S
R) = X

in Proposition 5.5.
(v),(vi),(iii),(vii): These are Lemmas 6.5-6.8 respectively.
(iv): With ϕ : R→ S a fusion preserving map from E to F , it follows from Lemma A.1 that

X := [R,ϕ]FE = [R,ϕ]FR .

Let a be a representative commuting n-tuple in E , then restricting to CR(a) we have

XFCE(a) = XFCR(a) = [CR(a), ϕ|CR(a)]
F
CR(a) = [CR(a), ϕ|CR(a)]

F
CE(a)

,

where we note that the restriction ϕ|CR(a) is fusion preserving from CE(a) to F .
Now Proposition 5.7 and Corollary 4.10 together state that

L†n(X)a,b

=

{
(Z/pe)n × ([CR(a), ϕ]

CS(ϕ(a))
CE(a)

� ζbϕ(a)) if b is F-conjugate to ϕ(a)

0 otherwise

}
= (Z/pe)n × Ln(X)a,b.

This completes the proof of (iv) and the theorem.

7 L†n commutes with p-completion for bisets of finite groups

In this final section we compare the functor L†n : AFp → AFp with the functor L†n,p : AG→ AG for
finite groups, where we restrict to centralizers of commuting n-tuples of p-power order elements (see
[11, Proposition 3.35]). We shall see that these two functors are closely related via the p-completion
functor (−)∧p : AG→ AFp described in [10], such that we have

(−)∧p ◦ L†n,p = L†n ◦ (−)∧p

as functors AG→ AFp.
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Suppose S and T are Sylow p-subgroups of G and H respectively. Let FG = FS(G) and FH =
FT (H) be the associated fusion systems at the prime p. The p-completed classifying spectrum
Σ̂∞+BFG is equivalent to the p-completion of Σ∞+BG via the composite

Σ̂∞+BFG
ωFG−−−→ Σ̂∞+BS

(B inclGS )∧p−−−−−−→ Σ̂∞+BG.

Here we first include the summand Σ̂∞+BFG into Σ̂∞+BS, and then include S into G. The fact
that this map is an equivalence is essentially due to [3, XII.10.1] and [2, Proposition 5.5] (see
[10, Proposition 3.3] for additional details).

Via the Segal conjectures for finite groups and fusion systems, we can interpret the p-completion
functor (−)∧p as a functor (−)∧p : AG → AFp, where we use the particular equivalence Σ̂∞+BG '
Σ̂∞+BFG described above:

Definition 7.1. The functor (−)∧p : AG→ AFp is defined on morphisms by

(−)∧p : AG(G,H)→ [Σ∞+BG,Σ
∞BH]

(−)∧p−−−→ [Σ̂∞+BFG, Σ̂∞+BFH ] ∼= AFp(FG,FH).

The first map is the Segal map for finite groups, and the last isomorphism is the Segal conjecture
for saturated fusion systems.

If we restrict the (H,H)-biset H to a (T, T )-biset HT
T the resulting biset is stable with respect

to FH , hence HFH
FH
∈ AFp(FH ,FH). The element HFH

FH
is always invertible in AFp(FH ,FH) by

[10, Lemma 3.6], and using the inverse, we get the following algebraic formula for the p-completion
functor (−)∧p : AG→ AFp:

Proposition 7.2 ([10, Theorem 1.1]). The p-completion functor (−)∧p : AG → AFp satisfies the

following formula for any virtual biset XH
G ∈ AG(G,H):

(XH
G )∧p = XFH

FG
� (HFH

FH
)−1 ∈ AFp(FG,FH).

The free loop space LnG has components corresponding to all G-conjugacy classes of com-
muting n-tuples in G, while LnFG only has components corresponding to G-conjugacy classes of
commuting n-tuples in S, i.e. tuples of p-power order elements. Hence we cannot hope for some
sort of equivalence between LnG and LnFG on the nose.

However, recall from [11, Proposition 3.35] that we define LnpG to consist of the components in
LnG corresponding to commuting tuples of p-power order elements up to G-conjugation. In this
case, we do have a correspondence between the component of LnpG and the components of LnFG.

Convention 7.3. We use the same chosen representative n-tuples a in FG to represent both the
components CFG

(a) in LnFG and the components CG(a) in LnpG.

Each component CFG
(a) in LnFG is the fusion system induced by CG(a) on the Sylow p-

subgroup CS(a), and CG(a) is the corresponding component of Lnp (G). Consequently the p-completion
functor (−)∧p : AG→ AFp takes the group CG(a) to CFG

(a), and thus takes all of Lnp (G) to LnFG.
On morphisms, according to Proposition 7.2, (−)∧p : AG((Z/pe)n × LnpG, (Z/pe)n × LnpH) →

AFp((Z/pe)n×LnFG, (Z/pe)n×LnFH) is given on a biset matrix X ∈ AG((Z/pe)n×LnpG, (Z/pe)n×
LnpH) by

((X)∧p )a,b = (Xa,b)
(Z/pe)n×CFH (b)

(Z/pe)n×CFG (a) �
(

((Z/pe)n × CH(b))
(Z/pe)n×CFH (b)

(Z/pe)n×CFH (b)

)−1
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for representative commuting n-tuples a in FG and b in FH .
Now suppose we start with a virtual (G,H)-biset X ∈ AG(G,H). If we first apply L†n,p and

then apply (−)∧p , we get a matrix in AFp((Z/pe)n × LnFG, (Z/pe)n × LnFH) consisting of virtual
bisets

((L†n,p(X))∧p )a,b =
(
L†n,p(X)a,b

)(Z/pe)n×CFH (b)

(Z/pe)n×CFG (a)
�
(

((Z/pe)n × CH(b))
(Z/pe)n×CFH (b)

(Z/pe)n×CFH (b)

)−1
. (7.1)

If, on the other hand, we first apply (−)∧p and then apply L†n : AFp → AFp, we can use the fact

that L†n is a functor to get a matrix in AFp((Z/pe)n×LnFG, (Z/pe)n×LnFH) consisting of virtual
bisets

L†n((X)∧p )a,b =
(
L†n(XFH

FG
� (HFH

FH
)−1)

)
a,b

=
(
L†n(XFH

FG
)� L†n(HFH

FH
)−1
)
a,b
.

(7.2)

We claim that these two matrices are always equal (Theorem 7.5 below), and in order to prove this
we will make use of the following lemma:

Lemma 7.4. Suppose H is a finite group with Sylow p-subgroup T and let S be a p-group. The
restriction map AG(H,S)∧p → AG(T, S)∧p is injective on the subgroup of bifree virtual (H,S)-bisets.

Proof. Suppose we have a bifree virtual biset Y ∈ AG(H,S)∧p , then Y must be a Zp-linear combina-

tion of basis elements of the form [P,ϕ]SH , where P ≤ H is a p-subgroup and ϕ : P → S is injective.
Such a linear combination is uniquely determined by its number of fixed points |Y (Q,ψ)| ∈ Zp, for
all pairs (Q,ψ) of a subgroup Q ≤ H and an injective group homomorphism ψ : Q→ S. Thus the
virtual biset Y is uniquely determined by |Y (Q,ψ)| ∈ Zp, where we only consider pairs (Q,ψ) with
Q ≤ H a p-subgroup.

Furthermore, since every p-subgroup of H is H-conjugate to a subgroup of T , Y is uniquely
determined by the number of fixed points |Y (Q,ψ)| ∈ Zp for Q ≤ T and ψ : Q→ S injective. These
fixed points happen to be preserved under restriction of the left action from H to T , so it follows that
any bifree Y ∈ AG(H,S)∧p is uniquely determined by its restriction [T, id]HT � Y ∈ AG(T, S)∧p .

We now prove Theorem 1.2 from the introduction.

Theorem 7.5. We have (−)∧p ◦ L
†
n,p = L†n ◦ (−)∧p as functors AG→ AFp.

Proof. We aim to prove that the matrices described in (7.1) and (7.2) are equal.

Let us for a moment consider the matrix L†n(XFH
FG

). Since restricting the action of G to FG is

given by precomposition with ωFG
◦ [S, id]GS , functoriality of L†n gives us

L†n(XFH
FG

) = L†n((ωFG
)SFG

)� L†n(XT
S )� L†n((ωFH

)FH
T ).

Since every element in a p-group has p-power order, the functor L†n,p coincides with L†n when

restricted to p-groups. Using functoriality of L†n,p, we can further decompose L†n(XFH
FG

) as

L†n(XFH
FG

) = L†n((ωFG
)SFG

)� L†n,p([S, id]GS )� L†n,p(XH
G )� L†n,p([T, id]TH)� L†n((ωFH

)FH
T ).

By Proposition 5.5, the entries of L†n((ωFG
)SFG

) satisfy

L†n((ωFG
)SFG

)a,s = L†n((ωFG
)SS)a,s,
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whenever a is a representative n-tuple in FG, and s in S. For an n-tuple of p-power order elements g

in G and a representative n-tuple a in FG, the entries of the composite L†n((ωFG
)SFG

)�L†n,p([S, id]GS )
satisfy

(L†n((ωFG
)SFG

)� L†n,p([S, id]GS ))a,g

= (L†n((ωFG
)SS)� L†n,p([S, id]GS ))a,g

= (L†n,p((ωFG
)SS)� L†n,p([S, id]GS ))a,g

= (L†n,p((ωFG
)SS � [S, id]GS ))a,g

= (L†n,p([S, id]GS ))a,g since [S, id]GS is left FG-stable.

The biset [S, id]GS represents the forward map inclGS : S → G, hence by [11, Theorems 3.33.(iv)] the

entries (L†n,p([S, id]GS ))a,g are given by

(L†n,p([S, id]GS ))a,g = [(Z/pe)n × CS(a), id]
(Z/pe)n×CG(g)

(Z/pe)n×CS(a)
,

if g = a (following Convention 7.3), and 0 otherwise.

To sum up, the composite L†n((ωFG
)SFG

)� L†n,p([S, id]GS ) is a diagonal matrix with entries

(L†n((ωFG
)SFG

)� L†n,p([S, id]GS ))a,a = [(Z/pe)n × CS(a), id]
(Z/pe)n×CG(a)
(Z/pe)n×CS(a)

, (7.3)

which are left ((Z/pe)n × CFG
(a))-stable. This will be the first main ingredient in the proof of the

theorem.

For the second ingredient, consider the matrix entry(
L†n,p([T, id]TH)� L†n((ωFH

)FH
T )� L†n(HFH

FH
)−1
)
h,b

inside the right ((Z/pe)n×CFH
(b))-stable elements of AG((Z/pe)n×CH(h), (Z/pe)n×CT (b))∧p . We

claim that this entry is 0 unless h = b, in which case it equals the composite

[(Z/pe)n × CT (b), id]
(Z/pe)n×CT (b)
(Z/pe)n×CH(b) �

(
((Z/pe)n × CH(b))

(Z/pe)n×CFH (b)

(Z/pe)n×CFH (b)

)−1
.

Each of the virtual bisets L†n,p([T, id]TH), L†n((ωFH
)FH
T ) and L†n(HFH

FH
)−1 are composites of bifree

bisets and so are bifree as well – note that L†n preserves bifree actions, since the wind-maps involved
in the construction are all injective group homomorphisms. We shall apply Lemma 7.4 to the bifree
matrix entry (

L†n,p([T, id]TH)� L†n((ωFH
)FH
T )� L†n(HFH

FH
)−1
)
h,b

in AG((Z/pe)n × CH(h), (Z/pe)n × CT (b))∧p .
Recall (7.3) from the first part of the proof, and replace G, S, and a, with H, T , and h,

respectively. We then know that L†n((ωFH
)TFH

)� L†n,p([T, id]HT ) is a diagonal matrix with entries

(L†n((ωFH
)TFH

)� L†n,p([T, id]HT ))h,h = [(Z/pe)n × CT (h), id]
(Z/pe)n×CH(h)
(Z/pe)n×CT (h) .

From this it follows that restricting the virtual biset(
L†n,p([T, id]TH)� L†n((ωFH

)FH
T )� L†n(HFH

FH
)−1
)
h,b
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on the left from (Z/pe)n × CH(h) to (Z/pe)n × CT (h) can be achieved by precomposing the entire

matrix with the diagonal matrix L†n((ωFH
)TFH

)� L†n,p([T, id]HT ):

[(Z/pe)n × CT (h), id]
(Z/pe)n×CH(h)
(Z/pe)n×CT (h) �

(
L†n,p([T, id]TH)� L†n((ωFH

)FH
T )� L†n(HFH

FH
)−1
)
h,b

=
(
L†n((ωFH

)TFH
)� L†n,p([T, id]HT )� L†n,p([T, id]TH)� L†n((ωFH

)FH
T )� L†n(HFH

FH
)−1
)
h,b

=
(
L†n(HFH

FH
)� L†n(HFH

FH
)−1
)
h,b

=
(
L†n((ωFH

)FH
FH

)
)
h,b
,

which is the identity on (Z/pe)n × CFH
(b) when h = b and 0 otherwise.

Because
(
L†n,p([T, id]TH)�L†n((ωFH

)FH
T )�L†n(HFH

FH
)−1
)
h,b

is uniquely determined by its restric-

tion to (Z/pe)n × CT (h), we conclude that it is zero unless h = b.
At the same time, we can also consider the restriction of

[(Z/pe)n × CT (b), id]
(Z/pe)n×CT (b)
(Z/pe)n×CH(b) �

(
((Z/pe)n × CH(b))

(Z/pe)n×CFH (b)

(Z/pe)n×CFH (b)

)−1
from (Z/pe)n × CH(b) to (Z/pe)n × CT (b) on the left:

[(Z/pe)n × CT (b), id]
(Z/pe)n×CH(h)
(Z/pe)n×CT (b) � [(Z/pe)n × CT (b), id]

(Z/pe)n×CT (b)
(Z/pe)n×CH(b)

�
(

((Z/pe)n × CH(b))
(Z/pe)n×CFH (b)

(Z/pe)n×CFH (b)

)−1
= ((Z/pe)n × CH(b))

(Z/pe)n×CFH (b)

(Z/pe)n×CFH (b) �
(

((Z/pe)n × CH(b))
(Z/pe)n×CFH (b)

(Z/pe)n×CFH (b)

)−1
= id(Z/pe)n×CFH (b) .

We again get the identity on (Z/pe)n × CFH
(b), and again since the bifree bisets are uniquely

determined by their restrictions, we conclude that the matrix L†n,p([T, id]TH) � L†n((ωFH
)FH
T ) �

L†n(HFH
FH

)−1 is diagonal with entries(
L†n,p([T, id]TH)� L†n((ωFH

)FH
T )� L†n(HFH

FH
)−1
)
b,b

= [(Z/pe)n × CT (b), id]
(Z/pe)n×CT (b)
(Z/pe)n×CH(b) �

(
((Z/pe)n × CH(b))

(Z/pe)n×CFH (b)

(Z/pe)n×CFH (b)

)−1
. (7.4)

This is the second main ingredient in the proof of the Theorem.
The claim of the theorem that (7.2) equals (7.1) is now a straightforward check of matrix entries:

L†n((X)∧p )a,b
(7.2)
=
(
L†n(XFH

FG
)� L†n(HFH

FH
)−1
)
a,b

=
(
L†n((ωFG

)SFG
)� L†n,p([S, id]GS )� L†n,p(XH

G )� L†n,p([T, id]TH)� L†n((ωFH
)FH
T )� L†n(HFH

FH
)−1
)
a,b

(7.3)
= [(Z/pe)n × CS(a), id]

(Z/pe)n×CG(a)
(Z/pe)n×CS(a)

�
(
L†n,p(X

H
G )� L†n,p([T, id]TH)� L†n((ωFH

)FH
T )� L†n(HFH

FH
)−1
)
a,b

(7.4)
= [(Z/pe)n × CS(a), id]

(Z/pe)n×CG(a)
(Z/pe)n×CS(a)

�
(
L†n,p(X

H
G )
)
a,b
� [(Z/pe)n × CT (b), id]

(Z/pe)n×CT (b)
(Z/pe)n×CH(b)

�
(

((Z/pe)n × CH(b))
(Z/pe)n×CFH (b)

(Z/pe)n×CFH (b)

)−1
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=
(
L†n,p(X

H
G )a,b

)(Z/pe)n×CFH (b)

(Z/pe)n×CFG (a)
�
(

((Z/pe)n × CH(b))
(Z/pe)n×CFH (b)

(Z/pe)n×CFH (b)

)−1
(7.1)
= ((L†n,p(X))∧p )a,b.

Finally we conclude that the composite functors L†n ◦ (−)∧p and (−)∧p ◦ L
†
n,p agree as functors

AG→ AFp.

A Auxiliary results about characteristic idempotents

In this appendix we gather a few utility results about characteristic idempotents and “virtual double
cosets.” The results are mostly elementary. However, to our knowledge, they do not appear in the
literature.

First we observe a simple principle for recognizing fusion preserving maps in terms of charac-
teristic idempotents:

Lemma A.1. Let E and F be saturated fusion systems over p-groups R and S respectively. Then
the following statements are equivalent for any homomorphism f : R→ S.

(i) f is a fusion preserving map from E to F .

(ii) The equation ωE � [R, f ]SR � ωF = [R, f ]SR � ωF holds in AFp(R,S).

(iii) The virtual biset [R, f ]SR � ωF ∈ AFp(R,S) is left E-stable.

Proof. The properties (ii) and (iii) are immediately seen to be equivalent since an element X ∈
AFp(R,S) is left E-stable if and only if ωE �X = X.

We will show that (i) implies (iii). Suppose that f is fusion preserving. We will prove that
[R, f ]SR � ωF is left E-stable. Suppose that P ≤ R and ϕ ∈ E(P,R) is any morphism in the fusion
system E . Since f is fusion preserving, we have a corresponding map ϕ̃ ∈ F(f(P ), S) such that
f ◦ ϕ = ϕ̃ ◦ f as maps P → S. If we now restrict [R, f ]SR � ωF along ϕ on the left, we get

[P,ϕ]RP � [R, f ]SR � ωF = [P, f ◦ ϕ]SR � ωF
= [P, ϕ̃ ◦ f ]SR � ωF = [P, f ]

f(P )
P � [f(P ), ϕ̃]Sf(P ) � ωF .

Because ωF is left F-stable, restricting ωF along ϕ̃ is the same as restricting along the inclusion:

[P, f ]
f(P )
P � [f(P ), ϕ̃]Sf(P ) � ωF = [P, f ]

f(P )
P � [f(P ), incl]Sf(P ) � ωF

= [P, incl]RP � [R, f ]SR � ωF .

Consequently, [R, f ]SR � ωF is left E-stable as required.
Conversely, suppose that f satisfies the equation (ii). We will then prove that f is fusion

preserving. To that purpose, suppose P ≤ R and ϕ ∈ E(P,R); we shall prove that there is a
corresponding map f(P ) → S inside F . Consider the basis element of AFp(P,F) given by the
composite f ◦ ϕ:

[P, f ◦ ϕ]FP = [P,ϕ]RP � [R, f ]SR � ωF .

By (ii) we can add in ωE in the middle and we get

[P,ϕ]RP � [R, f ]SR � ωF = [P,ϕ]RP � ωE � [R, f ]SR � ωF = [P, incl]RP � ωE � [R, f ]SR � ωF
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= [P, incl]RP � [R, f ]SR � ωF = [P, f ]FP .

These calculations show that the two basis elements [P, f ◦ϕ]FP and [P, f ]FP in AFp(P,F) are equal.
Consequently, f ◦ ϕ arises from f by simultaneously precomposing with some conjugation cx in P
and postcomposing with some map ψ in F , i.e. we have:

f ◦ ϕ = ψ ◦ f ◦ cx

as maps P → S with x ∈ NR(P ) and ψ ∈ F(f(P ), S). We can now apply f to the element x as
well, resulting in

f ◦ ϕ = ψ ◦ f ◦ cx = ψ ◦ cf(x) ◦ f.

Hence ϕ̃ := ψ ◦cf(x) serves the purpose, proving that f is in fact fusion preserving from E to F .

Next we will work towards writing out a double coset formula for composing virtual bisets of
saturated fusion systems.

Lemma A.2. Let R, S, and T be finite p-groups, and consider transitive bisets [H,ϕ]SR and [K,ψ]TS .
Suppose X is a bifree (S, S)-biset. For each x ∈ X the stabilizer of x is given as a pair of a subgroup
Sx ≤ S and a homomorphism cx : Sx → S. That is, for all s ∈ Sx, we have sx = xcx(s). The
composition [H,ϕ]SR �X � [K,ψ]TS can then be calculated in terms of double cosets of X:

[H,ϕ]SR �X � [K,ψ]TS =
∑

x∈ϕH\X/K

[ϕ−1(Sx ∩ c−1x (K)), ψ ◦ cx ◦ ϕ]TR.

Proof. First write the composition [H,ϕ]SR �X � [K,ψ]TS as

[H,ϕ]ϕHR � [ϕH, id]SϕH �X � [K, id]KS � [K,ψ]TK .

The middle part, [ϕH, id]SϕH � X � [K, id]KS , is then simply the (S, S)-biset X restricted to the
subgroup ϕH on the left and K on the right.

Now the orbits of the restriction ϕHXK = [ϕH, id]SϕH �X � [K, id]KS are precisely the double
cosets ϕH\X/K. Given a representative x ∈ ϕH\X/K for any of the orbits, the stabilizer of
x ∈ ϕHXK is obtained by restricting the stabilizer of x inside the (S, S)-biset with the smaller
subgroups ϕH and K. Since the stabilizer of x inside SXS is given by Sx ≤ S and cx : Sx → S, the
restriction to (ϕH,K) becomes the subgroup ϕH ∩ Sx ∩ c−1x (K) ≤ ϕH and we may restrict cx to
the homomorphism cx : ϕH ∩ Sx ∩ c−1x (K)→ K.

When we take representatives for all the double cosets ϕH\X/K, we get the following expression
for the restriction ϕHXK :

ϕHXK =
∑

x∈ϕH\X/K

[ϕH ∩ Sx ∩ c−1x (K), cx]KϕH .

It remains to compose ϕHXK with [H,ϕ]ϕHR on the left and [K,ψ]TK on the right. This amounts to
composing with the isomorphisms ϕ : H → ϕH and ψ : K → ψK and then inducing the actions
from H and ψK up to R and T respectively. Since induction doesn’t change point stabilizers, we
get the final formula:

[H,ϕ]SR �X � [K,ψ]TS

= [H, id]HR � [H,ϕ]ϕHH �
( ∑
x∈ϕH\X/K

[ϕH ∩ Sx ∩ c−1x (K), cx]KϕH

)
� [K,ψ]ψKK � [ψK, id]TψK
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= [H, id]HR �
( ∑
x∈ϕH\X/K

[ϕ−1(Sx ∩ c−1x (K)), ψ ◦ cx ◦ ϕ]ψKH

)
� [ψK, id]TψK

=
∑

x∈ϕH\X/K

[ϕ−1(Sx ∩ c−1x (K)), ψ ◦ cx ◦ ϕ]TR.

Remark A.3. Lemma A.2 is linear in X with respect to addition/disjoint union of bifree (S, S)-biset.
We can therefore extend the lemma to cover all virtual bifree (S, S)-bisets X ∈ AG(S, S)∧p , as long
as we extend the notation ∑

x∈ϕH\X/K

· · ·

linearly to virtual bisets as well. The convention will be that each virtual point x ∈ X is assigned
a weight εx equal to the coefficient of the virtual orbit in X that contains x. Explicitly this means
that if we decompose X in terms of orbits

X =
∑
L≤S

ρ : L→S

εL,ρ · [L, ρ]SS ,

then each point of [L, ρ]SS is assigned the weight εL,ρ, and the formula of Lemma A.2 becomes

[H,ϕ]SR �X � [K,ψ]TS

=
∑

x∈ϕH\X/K

[ϕ−1(Sx ∩ c−1x (K)), ψ ◦ cx ◦ ϕ]TR

def
=

∑
L≤S

ρ : L→S

∑
x∈ϕH\[L,ρ]SS/K

εL,ρ · [ϕ−1(Sx ∩ c−1x (K)), ψ ◦ cx ◦ ϕ]TR.

This formula is then valid for every bifree virtual biset X ∈ AG(S, S)∧p .

Proposition A.4. Suppose that E, F , and G are saturated fusion systems on p-groups R, S, and
T , respectively, and consider virtual bisets [H,ϕ]FE and [K,ψ]GF , where H ≤ R, ϕ : H → S, K ≤ S,
and ψ : K → T . The composition of these bisets satisfies a double coset formula following the
conventions of Lemma A.2 and Remark A.3:

[H,ϕ]FE � [K,ψ]GF =
∑

x∈ϕH\ωF/K

[ϕ−1(Sx ∩ c−1x (K)), ψ ◦ cx ◦ ϕ]GE .

In the special case where K = S and ψ : S → T is a fusion preserving map from F to G, the
composition simplifies to

[H,ϕ]FE � [S, ψ]GF = [H,ψ ◦ ϕ]GE .

Proof. By definition of the basis elements [H,ϕ]FE and [K,ψ]GF (see the discussion following Defini-
tion 2.4) the expression [H,ϕ]FE � [K,ψ]GF is shorthand for

[H,ϕ]FE � [K,ψ]GF = ωE � [H,ϕ]SR � ωF � [K,ψ]TS � ωG .

We apply Lemma A.2 to the middle triple [H,ϕ]SR � ωF � [K,ψ]TS and get

[H,ϕ]FE � [K,ψ]GF
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= ωE �
( ∑
x∈ϕH\ωF/K

[ϕ−1(Sx ∩ c−1x (K)), ψ ◦ cx ◦ ϕ]TR

)
� ωG

=
∑

x∈ϕH\ωF/K

[ϕ−1(Sx ∩ c−1x (K)), ψ ◦ cx ◦ ϕ]GE .

This covers the general case of the proposition.
In the special case where K = S and ψ : S → T is fusion preserving from F to G, we refer to

[10, Lemma 4.6] which states that ωF � [S, ψ]TS � ωG = [S, ψ]TS � ωG when ψ is fusion preserving.
This in turn gives us the required formula:

[H,ϕ]FE � [S, ψ]GF

= ωE � [H,ϕ]SR � ωF � [S, ψ]TS � ωG
= ωE � [H,ϕ]SR � [S, ψ]TS � ωG
= ωE � [H,ψ ◦ ϕ]TR � ωG
= [H,ψ ◦ ϕ]GE .

Proposition A.5. Let F be a saturated fusion system on S and suppose a ∈ S is central in F ,
meaning that CF (a) = F . Then ωF only contains orbits of the form [P,ϕ], where a ∈ P (and
ϕ(a) = a since a is F-central).

Proof. Suppose a ∈ S is central in the saturated fusion system F , and let ωF be the characteristic
idempotent. In particular this means that if a ≤ P ≤ S and ϕ ∈ F(P, S), then ϕ(a) = a.

Furthermore, we let ω̄F be the a-centralizing part of ωF meaning that

ω̄F :=
∑

a∈P≤S
ϕ∈F(P,S)

up to (F ,F)-conj.

cP,ϕ · [P,ϕ]SS ,

where cP,ϕ ∈ Zp is the coefficient of [P,ϕ]SS in the orbit decomposition of ωF . We wish to prove that
ωF does not contain any additional orbits with a 6∈ P , so we can equivalently prove that ω̄F = ωF .

The algorithm for constructing ωF in [9] starts with the transitive biset [S, id]SS and then pro-
ceeds one (F ,F)-conjugacy class of pairs (P,ϕ) at a time (in decreasing order) and adds/subtracts
orbits in the conjugacy class of (P,ϕ) to make the biset stable at that conjugacy class and above.

The virtual biset ω̄F is then the intermediate result of this algorithm where we have stabilized
[S, id]SS only across all pairs (P,ϕ) with a ≤ P . If we can prove that ω̄F is in fact fully (F ,F)-stable
instead of just stable for pairs containing a, this would mean that no further stabilization is needed
and the algorithm stops with ωF = ω̄F .

For readers who don’t feel comfortable with the argument above, we will bring a more explicit
way of finishing the proof below – once we have proved that ω̄F is (F ,F)-stable.

ω̄F is (F ,F)-stable: This is essentially [5, Proposition 9.10], using that F is the centralizer
fusion system of a. The difference is that [5] deals with actual bisets, while ω̄F here is a virtual
biset. We adapt the proof used in [5].

One of the equivalent ways to state (F ,F)-stability for an (S, S)-biset X is the property that
the number of fixed points for a pair (Q,ψ) only depends on (Q,ψ) up to (F ,F)-conjugation:

|X(Q,ψ)| = |X(Q′,ψ′)|
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whenever (Q′, ψ′) is (F ,F)-conjugate to (Q,ψ). The fixed point set X(Q,ψ) is the set of x ∈ X
such that qx = xψ(q) for all q ∈ Q. Working with virtual fixed points, the same characterization
of (F ,F)-stability works for virtual bisets X ∈ AG(S, S)∧p .

If X ∈ AG(S, S)∧p is F-generated, such as ωF or ω̄F , then it is sufficient to check fixed points
for (Q,ψ) with ψ ∈ F(Q,S), where we ask that

|X(Q,ψ)| = |X(Q′,id)|

for any F-conjugate Q′ to Q.

If (Q,ψ) has a ∈ Q, then the fixed points |ω(Q,ψ)
F | only depends on the orbits with stabilizers

containing Q and hence a. We thus have

|ω̄(Q,ψ)
F | = |ω(Q,ψ)

F | = |ω(Q′,id)
F | = |ω̄(Q′,id)

F |,

whenever Q′ is F-conjugate to Q, Q contains a, and ψ ∈ F(Q,S).
Given any pair (Q,ψ) with ψ ∈ F(Q,S) and a 6∈ Q, the assumption that a is central in F means

that ψ extends (uniquely) to a homomorphism ψ̂ : Q〈a〉 → S such that ψ̂|Q = ψ and ψ̂(a) = a.

Because ω̄F only has orbits with stabilizers that contain a, and since the extension ψ̂ is unique,
we get

|ω̄(Q,ψ)
F | = |ω̄(Q〈a〉,ψ̂)

F |.

We already know that the fixed points are (F ,F)-conjugation invariant for (Q〈a〉, ψ̂), so the same
is true for (Q,ψ). Hence ω̄F is in fact (F ,F)-stable.

This completes the proof that the algorithm for constructing ωF stops once we have ω̄F . Alter-
natively, though it boils down to the same formulas, we can complete the proof of the lemma as
follows.

Alternative proof that ω̄F = ωF : Let cP,ϕ be the coefficient of [P,ϕ]SS in the orbit decompo-
sition of ω̄F . Hence cP,ϕ = 0 unless a ∈ P ≤ S and ϕ ∈ F(P, S).

Because ωF is obtained by stabilizing the transitive biset [S, id]SS . Remark 4.7 of [9] states that
the coefficients satisfy

∑
(P ′, ϕ′) up to (S, S)-conj.

s.t. (P ′, ϕ′) is (F ,F)-conj. to (P, id)

cP ′,ϕ′ =

{
1 if P = S

0 otherwise,

when a is in P and P ′. When a is not in the subgroups, all the coefficients are zero so the formula
still holds.

If we multiply ω̄F with ωF from both sides, the formula above gives us

ωF � ω̄F � ωF
=

∑
(P, ϕ) up to (S, S)-conj.

cP,ϕ · (ωF � [P,ϕ]SS � ωF )

=
∑

P ≤ S up to F-conj.
[P, id]FF ·

( ∑
ϕ′∈F(P ′,S)

up to (S, S)-conj.
s.t. P ′ is F-conj to P

cP ′,ϕ′
)

= [S, id]FF · 1
= ωF .
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At the same time, ω̄F is (F ,F)-stable as proven earlier, so

ωF � ω̄F � ωF = ω̄F .

This finishes the alternative proof that ωF = ω̄F .
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