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CHARLES REZK

1. Introduction

This chapter is a very modest introduction to some of the ideas of spectral algebraic geometry,
following the approach due to Lurie. The goal is to introduce a few of the basic ideas and definitions,
with the goal of understanding Lurie’s characterization of highly structured elliptic cohomology
theories.

1.1. A motivating example: elliptic cohomology theories. Generalized cohomology theories
are functors which take values in some abelian category. Traditionally, we consider ones which take
values in abelian groups, but we can work more generally. For instance, take cohomology theories
which take values in sheaves of graded abelian groups (or rings) on some given topological space, or
in sheaves of graded OS-modules (or rings) on S, where S is a scheme, or possibly a more general
kind of geometric object, such as a Deligne-Mumford stack , and OS is its structure sheaf.

Given a scheme (or Deligne-Mumford stack) S, it is easy to construct an example of a cohomology
theory taking values in graded OS-algebras; for instance, using ordinary cohomology, we can form

F∗(X) :=
(
U 7→ H∗(X,OS(U))

)
,

which is a presheaf of graded OS-algebras on S, which in turn can be sheafified into a sheaf of
graded OS-modules on S.

A more interesting example is given by elliptic cohomology theories. These consist of

1. an elliptic curve π : C → S (which is in particular an algebraic group with an identity
section e : S → C),

2. a multiplicative generalized cohomology theory F∗ taking values in sheaves graded commu-
tative OS-algebras, which is even and weakly 2-periodic in the sense that Fodd(point) ≈ 0
while F0(point) ≈ OS and F2(point) is an invertible OS-module, together with

3. a choice of isomorphism

α : Spf F0(CP∞)
∼−→ C∧

e

of formal groups, where the right-hand side denotes the formal completion of the elliptic
curve π : C → S at the identity section.

This is easiest to think about when S is affine, i.e., S = SpecA for some ring A. Then the above data
corresponds exactly to what is known as an elliptic spectrum [1]: a weakly 2-periodic spectrum E
with π0E = A, together an isomorphism of formal groups Spf E0CP∞ ≈ C∧

e , where C is an elliptic
curve defined over the ring A. Many such elliptic spectra exist, including some which are structured
commutative ring spectra.

For a more general elliptic cohomology theory defined over some base scheme (or stack) S, one
may ask that it be “represented” by a sheaf of (commutative ring) spectra on S, which I’ll call

Otop
S . E.g., for an open subset U of the scheme S, and a finite CW-complex X, we would have

Fq(X)(U) ≈ π0MapSpectra(Σ
−qΣ∞X,Otop

S (U))

where Otop
S (U) ∈ Spectra are the sections of Otop

S (U) over U .
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Goerss, Hopkins, and Miller showed that such an object exists, where S =MEll is the moduli
stack of (smooth) elliptic curves, and C → S is the universal elliptic curve. This can be viewed
as giving a “universal” example of an elliptic cohomology theory. As a consequence you can take
global sections of Otop

S over the entire moduli stack S, obtaining a ring spectrum called TMF , the
topological modular forms. (There is also an extension of this theory to the “compactification”
ofMEll, the moduli stack of generalized elliptic curves; I will not discuss this version of the theory
here.)

From the point of view of spectral algebraic geometry, the pair (MEll,Otop) is an example of a
nonconnective spectral Deligne-Mumford stack, i.e., an object in spectral algebraic geometry .

Lurie proves a further result, which precisely characterizes the nonconnective spectral Deligne-
Mumford stack S = (MEll,Otop). Namely, it is the classifying object for a suitable type of “derived
elliptic curve”, called an oriented elliptic curve. More precisely, for each nonconnective spectral
Deligne-Mumford stack X there is an equivalence of ∞-groupoids

MapSpDMnc(X,S) ≈
{
oriented elliptic curves over X

}
,

natural in X; here SpDMnc denotes the ∞-category of nonconnective spectral Deligne-Mumford
stacks. In particular, there is a “universal” oriented elliptic curve C → S.

1.2. Organization of this chapter. We describe some of the basic concepts of spectral algebraic
geometry. This chapter is written for algebraic topologists, with the example of elliptic cohomology
as a prime motivation. This chapter will only give an overview of some of the ideas. I’ll give
precise definitions and complete proofs when I can (rarely); more often, I will try to give an idea
of a definition and/or proof, sometimes by appealing to an explicit example, or to a “classical”
analogue.

I will not try to describe applications to geometry or representation theory. The reader should
look at Lurie’s introduction to [12], as well as Toën’s survey [19], to get a better idea of motivations
from classical geometry.

We will follow Lurie’s approach. This was originally presented in the book Higher Topos Theory
[11], together with the sequence of “DAG” preprints [7]. Some of the DAG preprints have been
incorporated in/superseded by the book Higher Algebra [10], while others have been absorbed by
the book-in-progress Spectral Algebraic Geometry [12]. I try to use notation consistent with [12],
and give references to it when possible (references are to the February 2018 version). Note that [12]
is still under construction and its numbering and organization is likely to change. Lurie’s approach
to elliptic cohomology is sketched in [6], and described in detail in [8] and [9].

Derived algebraic geometry had its origins in problems in algebraic geometry, and was first
pursued by geometers. We note in particular the work of Toën and Vezzosi, which develops a
theory broadly similar to Lurie’s; the aforementioned survey [19] is a good introduction.

1.3. Notation and terminology. I’ll use the “naive” language of ∞-categories pretty freely.
When I say “category” I really mean “∞-category”, unless “1-category” or “ordinary category” is
explicitly indicated. An “isomorphism” in an ∞-category is the same thing as an “equivalence”; I
use the two terms interchangeably. Sometimes I will say that a construction is “essentially unique”,
which means it is defined up to contractible choice.

I write Cat∞ and Ĉat∞ for the∞-categories of small and locally small∞-categories respectively.
I write S for the ∞-category of small ∞-groupoids. “Sets” are implicitly identified with the full
subcategory of “0-truncated ∞-groupoids”: thus, Set ≈ τ≤0S ⊆ S. I write MapC(X,Y ) for the
space (= ∞-groupoid) of maps between two objects in an ∞-category C. I use the notations CX/
and C/X for the slice categories under and over an object X of C.

I will consistently notate adjoint pairs of functors in the following way. In

L : C ⇄ D :R or R : D ⇆ C :L,
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the arrow corresponding to the left adjoint is always above that for the right adjoint.
I use the notation C ↣ D for a fully faithful functor, and C ↠ D for a localization functor, i.e.,

the universal example of formally inverting a class of arrows in C. Note that any adjoint (left or
right) of a fully faithful functor is a localization, and any adjoint (left or right) of a localization
functor is fully faithful.

I’d like to thank those who suffered through some talks I gave based on an early version of this at
University of Illinois, and for the corrections which have been provided by various people, including
a careful and detailed list of errata from Ko Aoki.

2. The notion of an ∞-topos

A scheme is a particular kind of ringed space, i.e., a topological space equipped with a sheaf of
rings. Spectral algebraic geometry replaces “rings” with an ∞-categorical generalization, namely
commutative ring spectra, which (following Lurie) we will here call E∞-rings. Similarly, spectral
algebraic geometry replaces “topological space” with its ∞-categorical generalization, which is
called an ∞-topos.

The key observation motivating ∞-topoi is that a topological space X is determined1 by the
∞-category of sheaves of ∞-groupoids on X. I will try to justify this in the next few sections.

The notion of ∞-topos is itself a generalization of a more classical notion, that of a 1-topos
(or Grothendieck topos), which can be thought of as the 1-categorical generalization of topological
space. I will not have much to say about these, instead passing directly to the ∞-case (but see
(2.8) below). However, the theory of ∞-topoi does parallel the classical case in many respects; a
good introduction to 1-topoi is [13].

There is a great deal to say about ∞-topoi, so I’ll try to say as little as possible. Note that
to merely understand the basic definitions of spectral algebraic geometry, only a small part of the
theory is necessary: much as, to understand the definition of a scheme, you need enough topology
to understand the “Zariski spectrum” of a ring, without any need to inhale large quantities of
esoteric results in point-set topology.

We refer to a functor F : Cop → S as a presheaf of ∞-groupoids on C, and write

PSh(C) = Fun(Cop,S)

for the ∞-category of presheaves.
We first describe two examples of ∞-topoi arising from “classical” constructions.

2.1. The ∞-topos of a topological space. Let X be a topological space, with OpenX = its
poset of open subsets. A sheaf of ∞-groupoids on X is a functor F : OpenopX → S such that, for
every open cover {Ui → U}i∈I of an element U of OpenX , the evident map

(2.2) F (U)
∼−→ lim∆

[
[n] 7→

∏
i0,...,in∈I

F (Ui0 ∩ · · · ∩ Uin)
]

is an equivalence; the target is the limit of functor ∆ → S, i.e., of a cosimplicial space. We let
Shv(X) ⊆ PSh(OpenX) denote the full subcategory of sheaves. It turns out that this embedding
admits a left adjoint a : PSh(OpenX)→ Shv(X) which is left exact, i.e., a preserves finite limits.

2.3. The ∞-topos of sheaves on the étale site of a scheme. Let X be a scheme, and let
ÉtX = a full subcategory of the category of schemes over X spanned by a suitable collection of

étale morphisms U → X, (e.g., morphisms which factor as U
f−→ V ↣ X where f is a finitely

presented étale map to an open affine subset of X). An étale cover is a collection of étale maps

{Ui → U}i∈I in ÉtX which are jointly surjective on Zariski spectra. We get full subcategory

1This is not exactly true; see (6.9) below.
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Shv(X ét) ⊆ PSh(ÉtX) of étale sheaves on X, whose objects are functors F : Ét
op
X → S such that

the evident map

F (U)
∼−→ lim∆

[
[n] 7→

∏
i0,...,in∈I

F (Ui0 ×X · · · ×X Uin)

]
is an equivalence for every étale cover. (This makes sense because ÉtX is an essentially small

category which is closed under finite limits.) As in (2.1), the embedding Shv(X ét) ⊆ PSh(ÉtX)
admits a left exact left adjoint.

2.4. Definition of ∞-topos. An ∞-topos is an ∞-category X such that

1. there exists a small ∞-category C, and
2. an adjoint pair

i : X // // PSh(C) : aoooo

where the right adjoint i is fully faithful (whence a is a localization), and such that
3. i is accessible, i.e., there exists a regular cardinal λ such that i preserves all λ-filtered

colimits, and
4. a is left exact.

Remark 2.5 (Presentable ∞-categories). An X for which there exists data (1)–(3) is called a pre-
sentable ∞-category [11, 5.5]. This class includes many familiar examples such as: small ∞-
groupoids, chain complexes of modules, spectra, E∞-ring spectra, functors from a small∞-category
to a presentable ∞-category, etc. (Note: [11, 5.5.0.1] defines this a little differently, but it is equiv-
alent to what I just said by [11, 5.5.1.1].)

All presentable ∞-categories are complete and cocomplete. The “presentation” (C, i, a) of X
leads to an explicit recipe for computing limits and colimits in X : apply i to your diagram in X to
get a diagram in PSh(C), take limits or colimits there, and apply a to get the desired answer. (Since
i is a fully faithful right adjoint, the last step of applying a is not even needed when computing
limits.)

Remark 2.6 (Adjoint functors between presentable ∞-categories). It turns out that a very strong
form of an “adjoint functor theorem” applies to presentable ∞-categories [11, 5.5.2.9].

1. If A is presentable, then a functor F : A → B admits a right adjoint if and only if it preserves
small colimits.

2. If A and B are presentable, then a functor F : A → B admits a left adjoint if and only if it
preserves small limits and is accessible.

In particular, if A is presentable, then a functor Aop → S to ∞-groupoids is representable if and
only if it preserves limits, and A → S is corepresentable if and only if it preserves limits and is
accessible.

Remark 2.7. The presentation (C, i, a) is not part of the structure of an ∞-topos (or presentable
∞-category): it merely needs to exist, and it is not in any sense unique.

Any presheaf category PSh(C) is an ∞-topos, and in particular S is one.
Both the examples (2.1) and (2.3) given above are ∞-topoi. They are special cases of sheaves

on a Grothendieck topology on an ∞-category C; see (5.17) below and [11, 6.1, 6.2].

2.8. Relation to the classical notion of topos. Recall that an object U of any ∞-category X
is 0-truncated if MapX (−, U) takes values in τ≤0S ⊆ S, i.e., in “sets”. For an ∞-topos X , its
full subcategory X♡ ⊆ X of 0-truncated objects is called the underlying 1-topos of X . This X♡

is equivalent to a 1-category, and is a “classical” topos in the sense of Grothendieck; in fact all
Grothendieck topoi arise from ∞-topoi in this way.

For instance, if X is a topological space then Shv(X)♡ is the 1-category of sheaves of sets on X.
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Example 2.9. As we’ll see (4.1), the slice category S/X is an∞-topos for any X ∈ S, and it is easy

to verify that (S/X)♡ ≈ Fun(Π1X,Set). Thus (S/X)♡ only depends on the fundamental groupoid
of X, while S/X itself depends on the homotopy type of X. Thus, non-equivalent ∞-topoi can
share the same underlying 1-topos.

3. Sheaves on an ∞-topos

There is an obvious notion of sheaves on a topological space which take values in an arbitrary
complete ∞-category A. These are functors F : OpenopX → A which satisfy the “sheaf condition”,
i.e., that the map in (2.2) is an equivalence for every open cover. We can reformulate this definition
so that it depends only on the ∞-category X = Shv(X), rather than on the category of open sets
in X. This leads to a definition of A-valued sheaf which makes sense in an arbitrary ∞-topos.

3.1. Sheaves valued in an ∞-category. For a general ∞-topos, an A-valued sheaf on X
is a limit preserving functor F : X op → A. These objects form a full subcategory ShvA(X ) ⊆
Fun(X op,A).

Example 3.2 (A-valued sheaves on a presheaf ∞-topos). If X = PSh(C), then ShvA(X ) is equiv-
alent to the category Fun(Cop,A) of “A-valued presheaves” on C. This is because the Yoneda
embedding ρ : C → PSh(C) is the “free colimit completion” of C [11, 5.1.5]: for any cocomplete B,
restriction along ρ gives an equivalence

Fun(PSh(C),B) ⊇ Funcolim pres.(PSh(C),B) ∼−→ Fun(C,B)
between the full subcategory of colimit preserving functors PSh(C) → B and all functors C → B;
the inverse of this equivalence is defined by left Kan extension along ρ. Taking B = Aop we obtain
the equivalence

Fun(PSh(C)op,A) ⊇ Funlim pres.(PSh(C)op,A) ∼−→ Fun(Cop,A).

Example 3.3 (A-valued sheaves on a space, revisited). For X = Shv(X) the two definitions
coincide: limit preserving functors F ′ : X op → A correspond to functors F : OpenopX → A satisfying
the sheaf condition.

To see this, recall the adjoint pair i : Shv(X) // // PSh(OpenX) : a.
oooo

For each open cover U =

{Ui → U}i∈I in X, the functor a carries the evident map

sU : colim∆op

[
[n] 7→

∐
i0,...,in∈I

ρUi0
∩···∩Uin

]
→ ρU

in PSh(OpenX) to an isomorphism in Shv(X), where ρU := MapOpenX
(−, U) denotes the rep-

resentable functor. (Proof: applying MapPSh(OpenX)(−, F ) to this exactly recovers the map (2.2)

exhibiting the sheaf condition for a presheaf F , and if F ′ is a sheaf we have MapPSh(OpenX)(−, iF ′) =

MapShv(X)(a(−), F ′).)
More is true: the functor a is the initial example of a colimit preserving functor which takes

all such maps sU to isomorphisms. (In the terminology of [11, 5.5.4] Shv(X) is the localization of
PSh(OpenX) with respect to the strongly saturated class generated by {sU}, and universality is [11,
5.5.4.20].)

Thus, objects F ∈ ShvA(X ) coincide with limit preserving F ′ : PSh(OpenX)
op → A such that

F ′(sU ) is an equivalence for every open cover U , which coincide with functors F : OpenopX → A
satisfying the sheaf condition.

Example 3.4 (Sheaves of ∞-groupoids). Every limit preserving functor X op → S is representable

by an object of X (2.6). Therefore, the Yoneda embedding restricts to an equivalence X ∼−→
ShvS(X ) ⊆ Fun(X op,S): the underlying ∞-category of the ∞-topos X is also the category of
sheaves of ∞-groupoids on X .
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Example 3.5 (Sheaves of sets). We have that ShvSet(X ) ≈ X♡.

Remark 3.6 (Sheaves of ∞-groupoids as “generalized open sets”). The above displays the first
instance of a philosophy you encounter a lot of in this theory. For an ∞-topos X , objects U ∈ X
can be thought of either as “sheaves of ∞-groupoids” on X via X ≈ ShvS(X ), or as “generalized
open sets of X”, in the sense that it makes sense to evaluate any sheaf F ∈ ShvA(X ) at any object
U .

Given an A-valued sheaf F : X op → A on X , its global sections are defined to be

Γ(X , F ) := F (1X ).

4. Slices of ∞-topoi

We give a quick tour through some basic general constructions and properties involving∞-topoi.
First, we look at slices of ∞-topoi, which give more examples of ∞-topoi.

4.1. Slices of ∞-topoi are ∞-topos. Given an object U in an ∞-category X , we get a slice
∞-category X/U .

Proposition 4.2 ([11, 6.3.5.1]). Every slice X/U of an ∞-topos X is an ∞-topos.

Proof. Choose a presentation (C, i, a) of X with fully faithful i : X ↣ PSh(C), which induces a
fully faithful i′ : X/U ↣ PSh(C)/iU , which furthermore admits a left adjoint a′ induced by a (since
U → aiU is an equivalence). The functor a′ is seen to be accessible and left exact since a is.

Note that PSh(C)/iU is itself equivalent to presheaves on C/iU := C ×PSh(C) PSh(C)/iU , which
is itself a equivalent to small ∞-category. We therefore obtain a presentation for X/U as a full
subcategory of PSh(C/iU). □

Example 4.3. Let X be a topological space. The Yoneda functor OpenX → Shv(X) factors
through the full subcategory Shv(X). Thus for any open set U of X, we have the representable
sheaf ρU ∈ Shv(X), which we simply denote U by abuse of notation. It is straightforward to show
that Shv(X)/U ≈ Shv(U): the slice category over the sheaf U is exactly sheaves on the topological
space U .

Remark 4.4 (Relativized notions). Any morphism f : V → U in an ∞-topos X is also an object
in an ∞-topos (namely X/U ). Thus any general concept defined for objects in an ∞-topos can be
“relativized” to a concept defined on morphisms (assuming the definition is preserved by equivalence
of ∞-topoi). Conversely, any concept defined for morphisms in an arbitrary ∞-topos can be
specialized to objects, by applying it to projection maps U → 1.

4.5. Colimits are universal in ∞-topoi. Given a morphism f : U → V in an∞-topos X , we get
an induced pullback functor f∗ : X/V → X/U , which on objects sends V ′ → V to V ′ ×V U → U .

Proposition 4.6. Colimits are “universal” in ∞-topoi; i.e., f∗ : X/V → X/U preserves small
colimits.

Proof. The statement of the proposition only involves colimits and finite limits in X . Thus via a
choice of presentation (C, i, a) for X we can reduce to the case of X = PSh(C). As colimits and
limits of presheaves are computed “objectwise”, we can reduce to the case of infinity groupoids
X = S. In this case the statement is “well-known” [11, 6.1.3.14]. □

4.7. ∞-topoi have internal homs. A consequence of universality of colimits is that U×(−) : X →
X is colimit preserving, and therefore (2.6) has a right adjoint which we may denote [U,−] : X → X .
This is an internal function object, so any ∞-topos is cartesian closed, and so is locally cartesian
closed (i.e., every slice is cartesian closed).
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4.8. ∞-topoi have descent. Given any ∞-category X , let Cart(X ) ⊆ Fun({0 → 1},X ) denote
the (non-full) subcategory of the arrow category of X , consisting of all the objects, and morphisms
f → g which are pullback squares in X . This is a subcategory because pullback squares paste
together.

We say that X has descent if Cart(X ) has small colimits, and if the inclusion functor Cart(X )→
Fun({0→ 1},X ) preserves small colimits.

Proposition 4.9 (Descent [11, 6.1.3]). Every ∞-topos has descent.

Let’s spell out the consequences of this. Suppose given a functor F : C → X from a small ∞-
category to an ∞-topos. We obtain a family of slice categories X/F (c), which is a contravariant

functor of C via the functors F (α)∗ : X/F (c′) → X/F (c) for α : c→ c′ in C. This functor Cop → Ĉat∞

extends to a cone (C▷)op → Ĉat∞, where the value at the cone point is the slice category X/F over

the colimit F = colimc∈C F (c) of F .
2

We can also form the limit limc∈Cop X/F (c) in Ĉat∞. An object of this limit amounts to: a functor
A : C → X and a natural transformation f : A→ F such that for each α : c→ c′ in C the square

A(c′)
A(α) //

��

A(c)

��
F (c′)

F (α)
// F (c)

is a pullback in X . Descent implies the following.

Proposition 4.10. The functor

X/F → limc∈Cop X/F (c)

sending A → F to
(
c 7→

(
A ×F F (c) → F (c)

))
is an equivalence. The inverse equivalence is a

functor which sends (A→ F ) ∈ limCop X/F (c) to the object of X/F represented by the evident map

colimC A→ colimC F.

Thus, descent in an ∞-topos has a very beautiful interpretation in terms of the definition of

“sheaves on X” as functors: the functor X op → Ĉat∞ which sends U 7→ X/U is limit preserving,
and so is a sheaf on X valued in locally small ∞-categories.

Example 4.11. Let X be a topological space. Recall that (after identifying an open set U with
its representable sheaf on X), we have that Shv(X)/U ≈ Shv(U). If U and V are open sets of X,
then U ∪V is the pushout of U ← U ∩V → V as sheaves. Given this, descent says that there is an
equivalence

Shv(U ∪ V )
∼−→ lim

[
Shv(U)→ Shv(U ∩ V )← Shv(V )

]
.

That is, the category of sheaves of ∞-groupoids on U ∪ V is equivalent to a category of “descent
data” involving sheaves on U , V , and U ∩ V .

This particular example works “the same way” in the classical topos Shv(X)♡ of sheaves of sets
on X: the category of sheaves of sets on U ∪V can be reconstructed from appropriate descent data,
i.e., as an ∞-categorical pullback of a diagram of categories of sheaves of sets on U , V , and U ∩ V .
However, 1-categorical descent in this form fails for general pushout diagrams in Shv(X)♡. This is
one way in which the theory of ∞-topoi shows advantages over the classical theory.

2This is not a complete description of a functor (C▷)op → Ĉat∞, as there is also “higher coherence” data to keep
track of. A correct description is implemented using the theory of Cartesian fibrations [11, 2.4]. I am not going to
try to be precise about such matters here.
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5. Truncation and connectivity in ∞-topoi

5.1. n-Truncation and n-connectivity in ∞-categories. An∞-groupoid X is n-truncated if

πk(X,x0) ≈ {∗} for all k > n and all x0 ∈ X.

In particular, 0-truncated∞-groupoids are equivalent to sets (discrete spaces), while (−1)-truncated
∞-groupoids are equivalent to either the empty set∅ or the terminal object. By fiat, (−2)-truncated
∞-groupoids are those which are equivalent to the terminal object.

An object X ∈ A in a general ∞-category is n-truncated if MapA(A,X) is an n-truncated
∞-groupoid for all objects A in A. We relativize to the notion of n-truncated morphism: i.e.,
an f : X → Y which is n-truncated as an object of the slice A/Y . I write τ≤nA ⊆ A for the full
subcategory of n-truncated objects.

In many ∞-categories (including all presentable ∞-categories and thus all ∞-topoi), there is
an n-truncation functor which associates to each object X the initial example X → τ≤nX of a
map to an n-truncated object. When this exists, the essential image of the n-truncation functor

τ≤n : A → A is τ≤nA, and we have an adjoint pair τ≤nA // // Aoooo
.

Relativized, we obtain for a morphism f : X → Y in A an n-truncation factorization

X
g−→ τ≤n(f)

h−→ Y,

so that h is the initial example of an n-truncated map over Y which factors f .
Following Lurie, we say that an object U in an ∞-category is n-connective if τ≤n−1U ≈ 1.

Likewise an n-connective morphism f : X → Y in A is one which is an n-connective object of
A/Y .

Remark 5.2. In S, an n-connective object is the same as what is usually called an (n−1)-connected
space (so 1-connective means connected). However, an n-connective map is the same as what is
classically called an “n-connected map” of spaces.

The n-truncation factorization is in fact a factorization into “(n + 1)-connective followed by
n-truncated”.

Proposition 5.3. If X
g−→ τ≤n(f)

h−→ Y is the n-truncation factorization of f : X → Y in A, then
g is an (n+ 1)-connective map in A. (Assuming all the relevant truncations exist in A.)

Proof. By replacing A with A/Y , we can assume Y ≈ 1. Thus we need to show that g : X → τ≤nX,
the “absolute” n-truncation of the object X, is also the “relative” n-truncation of the map g, i.e.,
that in the n-truncation factorization

X
g′−→ τ≤n(g)

g′′−→ τ≤nX

of the object g of A/τ≤nX , the map g′′ is an equivalence.

Both τ≤nX → 1 and g′′ are n-truncated maps of A, from which it is straightforward to show
that τ≤n(g) is an n-truncated object of A. Thus, the universal property for g : X → τ≤nX gives
s : τ≤nX → τ≤n(g) such that sg = g′ and g′′s = idτ≤nX . The universal property for g′ : X → τ≤n(g)

then implies that sg′′ = idτ≤n(g). □

Remark 5.4. n-truncation of objects in an ∞-topos preserves finite products, as can be seen by
choosing a presentation and reducing to the case of S [11, 6.5.1.2].

5.5. Čech nerves and effective epimorphisms. For ∞-topoi, the case of truncation when
n = −1 is especially important. An (−1)-truncated map in an ∞-category is the same thing as a
monomorphism, i.e., a map i : A→ B such that all the fibers of all induced maps Map(C,A)→
Map(C,B) are either empty or contractible. Equivalently, i is a monomorphism if and only if the
diagonal map A→ A×B A is an equivalence (if the pullback exists), if and only if either projection
A×B A→ A is an equivalence.
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In an∞-topos, an effective epimorphism is defined to be a 0-connective morphism. The (−1)-
truncation factorization in an ∞-topos (also called epi/mono factorization) can be computed
using Čech nerves.

Given a morphism f : U → V in an ∞-topos X , its Čech nerve is an augmented simplicial
object Č(f) : ∆op

+ → X of the form

· · ·
//
//
//
//
U ×V U ×V U

//
//
//
U ×V U

//
// U

f // V

Proposition 5.6. Given a map f : U → V in an ∞-topos, the factorization

U
p−→ colim∆op Č(f)

i−→ V

defined by taking the colimit of the underlying simplicial object of the Čech nerve is equivalent to
the factorization of f into an effective epimorphism p followed by a monomorphism i.

Proof. Without loss of generality assume V ≈ 1 (since the slice X/V is an ∞-topos). Write U =

colim∆op Č(F ) = colim
[
[n] 7→ Un+1

]
. Because colimits are universal in an ∞-topos (4.6), we have

that U × Uk+1 ≈ colim
[
[n] 7→ Un+1 × Uk+1

]
. For any k ≥ 0 the augmented simplicial object

[n] 7→ Un+1×Uk+1 admits a contracting homotopy, so U ×Uk+1 ∼−→ Uk+1. Universality of colimits

again gives U × U ∼−→ U , whence U → 1 is monomorphism, i.e., U is a (−1)-truncated object
To show that p : U → U is the universal (−1)-truncation is easy: for any f : U → Z to a

(−1)-truncated object, we have

MapXU/
(p, f) ≈ lim

∆

[
[n] 7→ MapXU/

(U → Un+1, f)
]
,

which is easy to evaluate since all the mapping spaces must be contractible if non-empty, since Z
is (−1)-truncated.

□

Warning 5.7. In an ∞-topos the class of effective epimorphisms contains, but is not equal to the
class of epimorphisms. This is very unlike the classical case: in a 1-topos the two classes coincide.

Remark 5.8 (Covers). A set {Ui} of objects in an ∞-topos X is called a cover of X if
∐
Ui → 1

is an effective epimorphism in X . We also speak of a cover of an object V in X , which is a set
{Ui → V } of maps in X such that

∐
Ui → V is an effective epi.

If X is a topological space, then a set {Ui} ⊆ OpenX of open sets of X is a open cover of X if
and only if the corresponding set {Ui} ⊆ Shv(X) of sheaves on X is a cover in the above sense.

Sometimes we see the following condition on a collection {Ui} of of objects in X : that it generates
X under small colimits. This condition implies that there exists a subset of {Ui} which covers X .

Example 5.9 (Effective epis in ∞-groupoids). A map in S is an effective epimorphism if and
only if it induces a surjection on sets of path components. The epi/mono factorization of a map
f : U → V in S is through U ⊆ V , the disjoint union of path components of V which are in the
image of f .

5.10. Homotopy groups. Given a pointed object (U, u0 : 1 → U) in an ∞-topos X , there is an
object (U, u0)

K in X for every pointed space K ∈ S∗, which represents the functor

MapS∗(K,MapX (−, U)) : X op → S
(which is clearly limit preserving, so by (2.6) defines a S-valued sheaf on X ). We let

πn(U, u0) := τ≤0((U, u0)
Sn

) ∈ X♡,

the nth homotopy sheaf of (U, u0). This is in general a sheaf of based sets on X , a sheaf of
groups for n ≥ 1, and a sheaf of abelian groups for n ≥ 2.
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Remark 5.11. An object U in an ∞-topos can easily fail to have “enough” global sections, or even
any global sections. Thus it is often necessary to use a more sophisticated formulation of homotopy
sheaves of U allowing for arbitrary “local” choices of basepoint. These are objects πnU ∈ (X/U )♡,
defined as the homotopy sheaves (as defined above) of (proj2 : U ×U → U, ∆: U → U ×U) in X/U ,
the projection map “pointed” by the diagonal map. See [11, 6.5.1].

For instance, with this more sophisticated definition, an object U is n-connective if and only if
πkU ≈ 1 for all k < n [11, 6.5.1.12].

Example 5.12 (Eilenberg-Mac Lane objects and sheaf cohomology). An Eilenberg-Mac Lane
object of dimension n is a pointed object (K, k0) in X such that K is both n-truncated and n-
connective. One can show [11, 7.2.2.12] that taking (K, k0) 7→ πn(K, k0) gives a correspondence
between Eilenberg-Mac Lane objects of dimension n and: abelian group objects in X♡ (if n ≥ 2),
group objects in X♡ (if n = 1), and pointed objects in X♡ (if n = 0).

Thus, given a sheaf A of (classical) abelian groups on X , we can define the cohomology group

Hn(X ;A) := π0MapX (1,K(A,n))

of the ∞-topos X .

5.13. ∞-connectedness and hypercompletion. An object or morphism is ∞-connected if it
is n-connective for all n. It turns out that the obvious analogue of the “Whitehead theorem” can
fail in an ∞-topos: ∞-connected maps need not be equivalences.

We say that an object U in X is hypercomplete if Map(V ′, U)→ Map(V,U) is an equivalence
for any ∞-connected map V → V ′.

Example 5.14. All n-truncated objects are hypercomplete, for any n. Any limit of hypercomplete
objects is hypercomplete.

We write X hyp ⊆ X for the full subcategory of hypercomplete objects of X . It turns out that the
inclusion is accessible, and admits a left adjoint which is itself left exact. So X hyp is an ∞-topos in
its own right [11, 6.5.2].

We say that X is itself hypercomplete if all∞-connected maps are equivalences, i.e., if X hyp =
X .

Example 5.15. Any presheaf ∞-category is hypercomplete, including S itself.

5.16. Truncation towers. Given an object U in X , we may consider the tower

U → · · · → τ≤nU → τ≤n−1U → · · · → τ≤−1U → ∗
of truncations of U . There is a limit U∞ := lim τ≤nU , together with a tautological map U → U∞.
It is generally not the case that U → U∞ is an equivalence. For instance, U∞ is necessarily
hypercomplete, whereas U may not be. Furthermore, even if U is hypercomplete, U → U∞ can fail
to be an equivalence.

There are various general conditions which ensure that U
∼−→ U∞ for all objects U in X (and in

fact ensure a stronger fact, called convergence of Postnikov towers). For instance, this is the case
when X is locally of homotopy dimension ≤ n for some n [11, 7.2.1.12]. (Say X is of homotopy
dimension ≤ n if every n-connective object U ∈ X admits a global section 1 → U . We say X
is locally of homotopy dimension ≤ n if there exists a set {Ui} of objects which generate X
under colimits and such that each X/Ui

is of homotopy dimension ≤ n.)

5.17. Constructing ∞-topoi. We defined an ∞-topos X to be an ∞-category which admits
a presentation (C, i, a). It is natural to ask: given a small ∞-category C, can we classify the
presentations of ∞-topoi which use it?

Given any left exact accessible localization X ⊆ PSh(C), let T denote the collection of morphisms
j in PSh(C) which
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1. are monomorphisms of the form S ↣ ρC for some object C of C, and
2. are such that a(j) is an isomorphism in X .

The class of maps T is an example of a Grothendieck topology on C. When C is a 1-category this
precisely recovers the classical notion of a Grothendieck topology on a 1-category.

It can be shown [11, 6.4.1.5] that if F ∈ PSh(C) is n-truncated for some n < ∞, then F ∈ X
if and only if F (j) is an isomorphism for all j ∈ T . That is, the n-truncated objects in left exact
accessible localizations of PSh(C) are entirely determined by T .

Conversely, given a Grothendieck topology T on C, the full subcategory Shv(C, T ) := {F | F (j) iso for all j ∈ T } ⊆
PSh(C) is an example of an ∞-topos. This includes the examples (2.1) and (2.3).

A general left exact localization of PSh(C) can be obtained by (i) choosing a Grothendieck
topology T on C, and then (ii) possibly localizing Shv(C, T ) further with respect to a suitable class
of ∞-connected maps [11, 6.5.2.20].

Remark 5.18 (1-localic reflection). Given any classical topos, i.e., a 1-topos X1, we can upgrade it
to an ∞-topos denoted ShvS(X1); this is called its 1-localic reflection. In general this can be
difficult to describe. In the case that X1 ≈ ShvSet(C, T ) is an identification of X1 as a category
of sheaves of sets on a 1-category C equipped with a Grothendieck topology T , and if C has finite
limits, then ShvS(X1) := Shv(C, T ) is the 1-localic reflection of X1 [11, 6.4.5, esp. 6.4.5.6].

For instance, we constructed Shv(X) and Shv(X ét), sheaves on a topological space or on the
étale site of a scheme, in exactly this way, so they are 1-localic.

As can be seen from (2.9), an ∞-topos X is not generally equivalent to the 1-localic reflection
of ShvS(X♡) of its underlying 1-topos X♡.

Warning: ShvS(X1) is not the same as the construction of (3.1): it is not equivalent to limit
preserving functors X op

1 → S.

Remark 5.19 (Simplicial presheaves). Given a small 1-category C with a Grothendieck topology T ,
Jardine [4] produced a model category structure on the category Fun(Cop, sSet) of presheaves of
simplicial sets. The ∞-category associated to that model category is equivalent to what we have
called Shv(C, T )hyp [11, 6.5.2].

6. Morphisms of ∞-topoi

To justify the claim that ∞-topoi are the ∞-categorical generalization of topological spaces, we
need an appropriate notion of morphism between∞-topoi that generalizes the notion of continuous
map. This is called a geometric morphism. In fact, I won’t consider any other kind of morphism
between ∞-topoi here.

6.1. Geometric morphisms. A geometric morphism (or just morphism) of∞-topoi f : X →
Y is an adjoint pair of functors

f∗ : X ⇆ Y : f∗

such that the left adjoint f∗ is left exact (i.e., preserves finite limits). The functor f∗ is direct
image, and f∗ is pullback or preimage.

The collection of geometric morphisms from X to Y, together with natural transformations
between the left adjoints of the geometric morphisms, forms an ∞-category, sometimes denoted
Fun∗(Y,X ). We note that this ∞-category is not in general equivalent to a small ∞-category,
although it is in some cases; it is always an accessible ∞-category [11, 6.3.1.13]. We will mostly be
concerned with the maximal∞-groupoid inside this∞-category, which we denote Map∞Top(X ,Y),
and regard as mapping spaces of ∞Top, the ∞-category of ∞-topoi.

Remark 6.2. Since ∞-topoi are presentable ∞-categories, to construct a geometric morphism
f : X → Y it suffices to produce a functor f∗ : Y → X which preserves colimits and finite limits;
presentability then implies (2.6) that a right adjoint f∗ exists. Typically, having a “presentation” for
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Y gives an explicit recipe for describing colimit preserving f∗, so constructing morphisms amounts
to finding such functors which also preserve finite limits.

Example 6.3 (The terminal ∞-topos). The ∞-category S of infinity groupoids is the terminal
∞-topos, i.e., there is an essentially unique geometric morphism X → S from any ∞-topos. To see
this, note that a colimit preserving π∗ : S → X is precisely determined by its value on the terminal
object 1S of S, while to preserve finite limits it is necessary that π∗ take 1S to the terminal object of
X . This is also sufficient, by the fact the colimits are universal in X (4.6). Thus Map∞Top(X ,S) ≈ ∗
for any X .

Example 6.4. Every presentation of an∞-topos X ⊆ PSh(C) as in (2.4) corresponds to a geometric
morphism X → PSh(C).

Example 6.5. Hypercompletion (5.13) gives a geometric morphism X hyp → X .

6.6. Continuous maps vs. geometric morphisms. Let X = Shv(X) for some topological space
X, and let Y be any ∞-topos. We can describe Fun∗(Shv(X),Y) as follows. It is equivalent to the
full subcategory of

Funcolim pres.(PSh(OpenX),Y)
∼−→ Fun(OpenX ,Y),

spanned by those ϕ : OpenX → Y such that

1. For each open cover {Ui → U}, the map
∐
i ϕ(Ui)→ ϕ(U) is an effective epi in Y,

2. ϕ(X) ≈ ∗, and
3. ϕ(U ∩ V ) ≈ ϕ(U)×ϕ(X) ϕ(V ).

Condition (1) ensures that PSh(OpenX)→ Y factors through the localization

a : PSh(OpenX) ↠ Shv(X),

while conditions (2) and (3) ensure that the resulting functor f∗ : Shv(X) → Y preserves finite
limits. (This is a special case of [11, 6.1.5.2].)

Note that since U ∩U ≈ U , (2) and (3) imply that each ϕ(U)→ ϕ(X) ≈ ∗, is a monomorphism,
i.e., that each ϕ(U) is a (−1)-truncated object of Y.

For instance, if Y = Shv(Y ) for some topological space Y , then τ≤−1Y ≈ OpenY . Under this
identification, morphisms of topoi Y → X correspond to functors OpenX → OpenY which (1) take
covers to covers, (2) take X to Y , and (3) preserve finite intersections.

Example 6.7. If X is a scheme, we have both Shv(XZar) (sheaves on the underlying Zariski space
of X) and Shv(X ét) (sheaves in the étale topology (2.3)). There is an evident geometric morphism
Shv(X ét)→ Shv(XZar) induced by OpenXZar → Shv(X ét) sending an open set to the étale sheaf it
represents.

A space X is sober if every irreducible closed subset is the closure of a unique point (e.g.,
Hausdorff spaces, or the Zariski space of a scheme). One can show that if X is sober, then

Map∞Top(Shv(Y ), Shv(X)) ≈ (set of continuous maps Y → X).

This justifies the assertion that “∞-topos” is a generalization of the notion of a topological space.

Remark 6.8. The sobriety condition is necessary. For instance, if Y = {∗}, then the ϕ : OpenX →
OpenY ≈ {0→ 1} satisfying (1)–(3) are in bijective correspondence with irreducible closed C ⊆ X:
we have (

ϕ↔ C
)
⇐⇒

(
C =

⋂
ϕ(U)=0(X ∖ U)

)
⇐⇒

(
ϕ(U) = 0 iff U ∩ C = ∅

)
.

That is, the underlying point set of X can be recovered from OpenX only if X is sober.



SPECTRAL ALGEBRAIC GEOMETRY 13

6.9. Locales. We see that it is not quite correct to say that∞-topoi generalize topological spaces;
rather, they generalize locales.

A locale is a poset O equipped with all the formal algebraic properties of the poset of open
sets of a space: i.e., it is a complete lattice such that finite meets distribute over infinite joins. A
map f : O′ → O of locales is a function f∗ : O → O′ which preserves all joins and all finite meets.
Any locale O has an ∞-category of sheaves Shv(O) (defined exactly as sheaves on a space), and
Map∞Top(Shv(O),Shv(O′)) ≈ {locale maps O → O′}.

Every topological space determines a locale, though not every locale comes from a space. From
the point of view of sheaf theory, a space is indistinguishable from its locale. For spaces we care
about (i.e., sober spaces), we can recover their point sets from their locale, and this is good enough
for us.

Remark 6.10. From the point of view that “objects in an ∞-topos are generalized open sets”
(3.6), the preimage functor f∗ : Y → X of a geometric morphism is the operation of “preimage of
generalized open sets”.

Remark 6.11. Every ∞-topos X has an associated locale, whose lattice of “open sets” OpenX
consists precisely of the (−1)-truncated objects of X .

6.12. Limits and colimits of ∞-topoi. The ∞-category of ∞-topoi itself (remarkably) has all
small limits and colimits.

Colimits are easy to describe (modulo the technical issues involved in making precise statements;

see [11, 6.3.2]): given F : C → ∞Top, consider the functor F ∗ : Cop → Ĉat∞ which sends an arrow
α : C → C ′ to the left adjoint F (α)∗ : F (C ′) → F (C) of the geometric morphism. Then the
underlying ∞-category of the colimit of F in ∞-topoi is just the limit of the diagram F ∗ of ∞-
categories.

Limits are more difficult. As we have seen, the terminal object in ∞Top is S. Filtered limits are
computed by a pointwise construction much like colimits [11, 6.3.3]. To get general limits we also
need pullbacks; see [11, 6.3.4] for details.

Remark 6.13. The product of two ∞-topoi X and Y has a nice description. It is equivalent to

Funlim pres./lim pres.(X op × Yop,S) ⊆ Fun(X op × Yop,S),

the full subcategory consisting of functors F which preserve limits separately in each variable, i.e.,
such that F (colimi Ui, V )

∼−→ limi F (Ui, V ) and F (U, colimj Vj)
∼−→ limj F (U, Vj). This ∞-category

is also equivalent to both of

Funlim pres.(X op,Y) ≈ Funlim pres.(Yop,X ),

by the adjoint functor theorem for presentable ∞-categories (2.6). That is,

X ×∞Top Y ≈ ShvY(X ) ≈ ShvX (Y)

[10, 4.8.1.18]. This construction is a special case of the “tensor product” of presentable ∞-
categories; see [10, 4.8].

Remark 6.14. Recall that in scheme theory, the underlying topological space of the pullback of
schemes is not usually equivalent to the pullback of the underlying spaces of the schemes, as is
already easily seen in the case of affine schemes. The analogous fact applies in the setting of
derived geometry. Thus, we won’t actually need need to worry about general limits of ∞-topoi.

6.15. Sheaves and geometric morphisms. We are going to be interested in sheaves on∞-topoi
with values in things like spectra or E∞-ring spectra. Thus we need to know how these behave
under geometric morphisms.
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For any complete ∞-category A, any geometric morphism f : X → Y induces a direct image
functor f∗ : ShvA(X )→ ShvA(Y), which is defined by precomposition with f∗. That is, it sends a
limit preserving F : X op → A to the composite functor

Yop (f∗)op−−−−→ X op F−→ A,
which is limit preserving because f∗ is colimit preserving. The construction F 7→ f∗F is itself limit
preserving, and thus, if A is presentable, admits a left adjoint f∗.

The left adjoint f∗ is in general difficult to describe explicitly. However, in many of the cases we
are interested in (e.g., spectra, E∞-rings, topological abelian groups) A is a compactly generated
∞-category (see [11, 5.5.7]). This means3 that there exists a small and finite cocomplete A0, and
a left exact functor A0 → A inducing an equivalence

A 7→ MapA(−, A) : A
∼−→ Funlex((A0)

op,S) ⊆ Fun((A0)
op,S),

where “lex” indicates the full subcategory of left exact (= finite limit preserving) functors.

Example 6.16. For instance, if A = Sp is the ∞-category of spectra, we can take A0 to be the
full subcategory of “finite” spectra, i.e., those built from finitely many cells.

For such A, we then have equivalences

ShvA(X ) = Funlim. pres(X op,A) ≈ Funlim. pres(Aop,X ) ≈ Funlex((A0)
op,X ),

(where the middle equivalence sends a limit preserving functor X op → A to the right adjoint of
its opposite, using (2.6)). It turns out that in this case a geometric morphism f : X → Y induces
direct image and pullback functors ShvA(X ) ⇆ ShvA(Y) by postcomposition with f∗ : X → Y and
f∗ : Y → X respectively (defined because both of these are left exact). (See [7, V 1.1.8].)

Remark 6.17 (Descent for sheaves). An immediate consequence of this is descent for sheaves with
values in compactly generated ∞-categories A: if X ≈ colimiXi in ∞Top, then ShvA(X ) ≈
limi ShvA(Xi), where the limit is taken over pullback functors. In particular, if U ≈ colimi Ui
in X , then ShvA(X/U ) ≈ limi ShvA(X/Ui

).

7. Étale morphisms

Any morphism f : U → V in X gives rise to a geometric morphism, denoted f : X/U → X/V ,
where the left exact left adjoint f∗ is defined by pullback along f . (We already met this functor in
(4.5).) In particular, for any U ∈ X there is a geometric morphism π : X/U → X .

7.1. Maps to slices of ∞-topoi.

Proposition 7.2. Given U ∈ X and a geometric morphism f : Y → X , there is an equivalence
X/U

π��
Y

f
//

s 99

X

 ∼−→
{
1 // f∗U

}
between the ∞-category of “sections” of π over Y, and the ∞-groupoid of global sections of f∗U
on Y. It is defined by sending s to s∗(t), where t : 1 → π∗U is the map in X/U represented by the
diagonal map ∆: U → U × U . (See [11, 6.3.5.5] for a more precise statement and proof.)

As a consequence, we see that U 7→ X/U describes a fully faithful functor X ↣∞Top/X . Thus,
objects of X , which as we have seen (3.6) can be thought of as “generalized open sets” of X , can
also be identified with particular kinds of geometric morphisms to X , and we lose no information
by doing so.

3To see this combine [11, 5.3.5.10] and [11, 5.5.1.9].
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Example 7.3 (Espace étalé). Given a sheaf of sets F on a topological space X, the espace étalé
of F is a topological space XF equipped with a map π : XF → X, defined so that OpenXF

=∐
U∈OpenX

F (U). It is not hard to show that Shv(XF ) ≈ Shv(X)/F , and that there is a bijec-

tion between maps F → F ′ in ShvSet(X), and maps XF → XF ′ of topological spaces which are
compatible with the projection to X.

Any local homeomorphism f : Y → X of spaces is equivalent to the espace étalé of a sheaf of
sets. Local homeomorphisms are also called étale maps of spaces, which motivates the terminology
of the next section.

7.4. Étale morphisms of ∞-topoi. A geometric morphism is étale if it is equivalent to a mor-
phism of the form π : X/U → X for some ∞-topos X and object U ∈ X . This class includes the
geometric morphism X/U → X/V induced by a map f : U → V in X , as f also represents object of
the ∞-topos X/V .
Remark 7.5 (Pullbacks of étale morphisms). Pullbacks of étale morphisms of ∞-topoi are étale:
(7.2) implies a pullback diagram

Y/f∗U //

��

X/U
��

Y
f
// X

in ∞Top.
Remark 7.6 (Characterization of étale morphisms). For any étale morphism f : Y → X , the pullback
functor f∗ admits a left adjoint f! : Y → X . In the case of the projection π : X/U → X , this is the
evident functor which on objects sends V → U to V .

The left adjoint f! associated to an étale morphism f : Y → X is conservative, and has the
property that the evident map f!(f

∗U ×f∗V Z)
∼−→ U ×V f!Z is an equivalence for all Z ∈ Y and

all U → V and f!Z → V in X . Furthermore, étale morphisms f are characterized by the existence
of an f! with these properties [11, 6.3.5.11].

Remark 7.7 (“Restriction” of sheaves along étale maps). For an étale morphism f : Y → X and any
∞-category A, the induced functor f∗ : ShvA(X ) → ShvA(Y) on A-valued sheaves admits a very
simple description using f!: it sends F : X op → A to F (f!)

op : Yop → A. When f is the projection
X/U → X this amounts to saying that (f∗F )(V → U) ≈ F (V ). It is easy to think of this as a
“restriction” functor, so sometimes we will use the notation “F |U” for f∗F in this case.

7.8. Colimits along étale maps of ∞-topoi. Let ∞Topét ⊆ ∞Top denote the (non-full) sub-
category consisting of étale morphisms between arbitrary ∞-topoi.

Proposition 7.9 ([11, 6.3.5.13]). The ∞-category ∞Topét has all small colimits, and the inclusion
∞Topét →∞Top preserves small colimits.

For instance, given an∞-topos X , the descent property (4.9), together with the fact that colimits

in ∞Top are computed as limits in Ĉat∞ (6.12), implies that the functor

U 7→ X/U : X →∞Top
is itself colimit preserving. This functor clearly factors through the subcategory ∞Topét. In fact,
every colimit in ∞Topét is equivalent to one of this form.

Example 7.10. Any equivalence of ∞-topoi is étale. Thus, if X : G → ∞Top is a functor from a
small ∞-groupoid G, it factors through ∞Topét → ∞Top, so its colimit is a “quotient ∞-topos”
X//G, with the property that X (c)→ X//G is étale for all objects c ∈ G.

For instance, let X = Shv(X) be the ∞-topos of sheaves on a topological space X, and let G be
a discrete group acting on X. Then X//G is equivalent to an∞-category of “G-equivariant sheaves
on X”, and the projection map π : X → X//G is étale.
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Remark 7.11. The proof of (7.9) is pretty technical, but ultimately it is a generalization of the
following observation: given open immersions U ←W → V of topological spaces, the pushout X in
spaces can be constructed so that a basis of open sets is described by the category colim[OpenU ←
OpenW → OpenV ].

8. Spectra and commutative ring spectra

Now that we have∞-categorical versions of spaces, we can put sheaves of spectra or commutative
ring spectra on them. In this section I collect some notation and observations about these; some
familiarity with spectra and structured ring spectra on the part of the reader is assumed.

8.1. Spectra. We write Sp for the ∞-category of spectra. It is an example of a stable ∞-category
[10, 1.1.1.9], and so is pointed, has suspension and loop functors which are inverse to each other,
has fiber sequences and cofiber sequences which coincide, and so forth.

The ∞-category Sp has a symmetric monoidal structure with respect to “smash product”, here
denoted “⊗”, with unit object being the sphere spectrum S. The monoidal structure is closed, so
there are internal hom objects.

We write Ω∞−n : Sp → S for the usual “forgetful” functors, and define homotopy groups of
spectra by πnX = πn+kΩ

∞−kX for n ∈ Z, and any k ≥ −n. We say that a spectrum X is
n-truncated if Ω∞−kX ≈ 1, or equivalently if πkX ≈ 0 for k < n. We say a spectrum is n-
connective if πkX ≈ 0 for k < n, and connective if 0-connective.

We write Sp≤n and Sp≥n respectively for the full subcategories in Sp of n-truncated and n-
connective objects. The intersection

Sp♡ = Sp≥0 ∩ Sp≤0

is equivalent to the ordinary category of abelian groups: every abelian group A corresponds to an
Eilenberg-MacLane spectrum in Sp♡, which we also denote A by abuse of notation.

Warning 8.2. The notion of n-truncated spectrum described above is not the same as the general
notion of n-truncation in an ∞-category that we described earlier (5.1): since every spectrum is a
suspension of one, every n-truncated object in Sp (in the earlier sense) is equivalent to 0. The pair
(Sp≤0,Sp≥0) is instead an example of a t-structure on Sp [10, 1.2.1].

8.3. Commutative ring spectra. By an E∞-ring, we mean a commutative ring object with
respect to the symmetric monoidal structure on the ∞-category of spectra. The ∞-category of
commutative rings is denoted CAlg. (We are following the notation and terminology of [12] here.
This notion of E∞-ring is an ∞-categorical manifestation of the notion of structured commutative
ring spectrum/commutative S-algebra as defined in, e.g., [3].)

Given A ∈ CAlg we write CAlgA = CAlgA/ for the category of E∞-rings under A, also called
commutative A-algebras. The initial E∞-algebra is the sphere spectrum S, so CAlg = CAlgS.

There is a forgetful functor CAlg → Sp which is conservative. The homotopy groups of an
E∞-algebra are those of its underlying spectrum, and likewise we may speak of an E∞-ring being
n-truncated or n-connective by reference to its underlying spectrum. In particular we distinguish
the full subcategory CAlgcn of connective E∞-rings, i.e., those A ∈ CAlg such that πkA ≈ 0 for
k < 0.

We further consider the full subcategory CAlg♡ of E∞-algebras which are both 0-connective and
0-truncated. This is equivalent to the ordinary category of commutative rings, so we will identify
an ordinary commutative ring with its corresponding Eilenberg-Mac Lane spectrum in CAlg♡.

We have adjoint pairs

CAlg♡ // // CAlgcnoooo // // CAlgoooo
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of fully faithful and localization functors relating these subcategories; the localization functors of
these pairs are denoted τ≥0 : CAlg → CAlgcn and τ≤0 : CAlg

cn → CAlg♡. Note that S ∈ CAlgcn

and that S→ τ≤0S ≈ Z.

Remark 8.4 (General truncation of E∞-rings). The ∞-category CAlg of E∞-rings, being a pre-
sentable ∞-category, has n-truncation functors τ≤n : CAlg → CAlg for n ≥ −1 (5.1). However,
these are not generally compatible with the n-truncation functors on spectra defined in (8.1). For
example, the periodic complex K-theory spectrum KU admits the structure of an E∞-ring, but its
nth truncation as an E∞-ring is equivalent to 0 for all n ≥ −1.

However, the n-truncation functors on CAlg restrict to functors on connective E∞-rings τ≤n : CAlg
cn →

CAlgcn, which are in fact the n-truncation functors for CAlgcn, and which are in fact compatible
with n-truncation of the underlying spectra.

8.5. Modules. To each E∞-ring A there is an associated∞-category of (left) modules ModA, which
is itself closed symmetric monoidal: we write M ⊗AN for the monoidal product and HomA(M,N)
for the internal hom. We have that ModS ≈ Sp, an equivalence of symmetric monoidal∞-categories.

Example 8.6. If A ∈ CAlg♡ is an ordinary ring, then ModA is equivalent to the ∞-category
obtained from chain complexes of A-modules and quasi-isomorphisms [17]. Thus, the homotopy
category of ModA is the derived category of the ring A. The tensor product on ModA corresponds
to the derived tensor product of complexes.

Remark 8.7 (Z-modules are abelian groups). We will write ModcnZ ⊆ ModZ for the full subcategory
of (−1)-connected Z-modules. The ∞-category ModcnZ is equivalent to those obtained from each of
the following examples by inverting the evident weak equivalences: (−1)-connected chain complexes
of abelian groups, simplicial abelian groups, topological abelian groups.

An object X in an ∞-category A is called an abelian group object if it represents a functor
Aop → ModcnZ .

Every commutative A-algebra has an underlying A-module. The coproduct of A-algebras coin-
cides with tensor product of A-modules. For this reason, we typically denote coproduct in CAlgA
by B ⊗A C.

The homotopy groups π∗M of an A-module are automatically a graded π∗A-module. To get a
feel for how these things behave, it is useful to be aware of two spectral sequences:

E2 = Torπ∗A∗ (π∗M,π∗N) =⇒ π∗(M ⊗A N),

E2 = Ext∗π∗A(π∗M,π∗N) =⇒ π∗HomA(M,N).

The Tor spectral sequence satisfies complete convergence, while the Ext spectral sequence satisfies
conditional convergence [3, Ch. IV].

8.8. Flat modules and E∞-rings. An A-module M is said to be flat if

1. π0M is flat as a π0A-module, and
2. the evident maps π0M ⊗π0A πnA→ πnM are isomorphisms for all n.

Likewise, a map A→ B of E∞-rings is flat if B is flat as an A-module, In view of the tor spectral
sequence, we see that if A→ B is flat then π∗(B ⊗A N) ≈ π0B ⊗π0A π∗N for N ∈ ModA.

Remark 8.9 (Flatness and connective covers). Let’s pause to note the following. Consider the
map τ≥0A → A from the connective cover to an E∞-ring A. The base change functor A ⊗τ≥0A

− : Modτ≥0A → ModA restricts to an equivalence

Mod♭τ≥0A
∼−→ Mod♭A
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of full subcategories of flat modules; the inverse equivalence sends an A-module N to its connective
cover τ≥0N viewed as a τ≥0A-module. Similarly, we obtain an equivalence

CAlg♭τ≥0A
∼−→ CAlg♭A

of full subcategories of algebras which are flat over the ground ring. Thus, any flat morphism of
E∞-rings is a base change of one between connective E∞-rings. This phenomenon turns out to
extend to nonconnective spectral Deligne-Mumford stacks (13.10).

8.10. Examples of E∞-rings.

Example 8.11 (Polynomial rings). Given any space K, we obtain a spectrum S[K] = the suspen-
sion spectrum of K+. If K is equipped with the structure of an E∞-space (i.e., space with an action
by an E∞-operad), then S[K] is equipped with a corresponding structure of E∞-ring. A particular
example of this is when K is a discrete commutative monoid.

For instance, we can form polynomial rings: S[x] := S[Z≥0], and more generallyA[x1, . . . , xn] :=
A⊗ S[(Z≥0)

n] ≈ A⊗ S[Z≥0]
⊗n. We have

π∗
(
A[x1, . . . , xn]

)
≈ (π∗A)[x1, . . . , xn].

Thus, A[x1, . . . , xn] is a flat A-algebra. In particular, if A is an ordinary ring, then A[x1, . . . , xn] is
also an ordinary ring.

Example 8.12 (Free rings). Let S{x} denote the free E∞-ring on one generator, which is
characterized by the existence of isomorphisms

MapCAlg(S{x}, R)
∼−→ Ω∞(R)

natural in R ∈ CAlg. We have that S{x} ≈ S[
∐
k BΣk].

We may similarly define A{x1, . . . , xn} := A ⊗ S{x}⊗n, the free commutative A-algebra on n
generators.

There is a canonical map A{x1, . . . , xn} → A[x1, . . . , xn] from the free ring to the polynomial
ring. It is generally not an equivalence, but is an equivalence if Q ⊆ π0A. When A is connective
so is A{x1, . . . , xn}, and then π0

(
A{x1, . . . , xn}

)
≈ π0A[x1, . . . , xn]; however, no such isomorphism

on π0 holds for general non-connective E∞-rings.

8.13. E∞-rings of finite characteristic. We note the following curious fact, conjectured by May
and proved by Hopkins; see [14]. It is a generalization of the Nishida nilpotence theorem, which is
the special case R = S.

Theorem 8.13.1. For any R ∈ CAlg, all elements in the kernel of the evident map π∗R →
π∗(R⊗ Z) are nilpotent. In particular, R⊗ Z ≈ 0 implies R ≈ 0.

Many spectra which arise in chromatic homotopy theory have the property that R⊗Z ∼−→ R⊗Q;

e.g., if R ≈ LfnR for some n at some prime p. Therefore, if R ∈ CAlg is such that R(p) ≈ L
f
nR(p) ̸≈ 0

for some prime p and some n < ∞, then 1 ∈ π0R has infinite order. So there are no non-trivial
E∞-rings of finite characteristic in chromatic homotopy.

A related result of Hopkins-Mahowald is: any R ∈ CAlg such that p = 0 ∈ π0R admits the
structure of a Z/p-module [14, Theorem 4.18]. In particular, the underlying spectrum of an E∞-
ring of positive characteristic p is always a product of Eilenberg-MacLane spectra.

8.14. Other kinds of commutative rings. We note several other flavors of commutative ring
which can be used in derived versions of algebraic geometry.

1. Given an ordinary ring R, there is a notion of chain-level E∞-R-algebra, consisting of an
unbounded chain complex of abelian groups equipped with the action of a chain-level E∞-
operad. The resulting ∞-category of chain level E∞-R-algebras is equivalent to CAlgR
[15].



SPECTRAL ALGEBRAIC GEOMETRY 19

2. Over any ordinary ring R we may consider the category of differential graded commutative
R-algebras. In general it is not possible to extract a useful ∞-category from this notion.
However, it is possible when R ⊇ Q, in which case the resulting ∞-category is equivalent
to CAlgR.

3. The category of simplicial commutative rings gives rise to an ∞-category CAlg∆. This
∞-category is related to CAlgZ but is quite distinct from it. In fact, there is a conservative
“forgetful” functor

CAlg∆ → CAlgcnZ

which is both limit and colimit preserving. This implies that simplicial commutative rings
are intrinsically connective objects, and that pushouts in CAlg∆ are computed as tensor
products on underlying Z-modules.

However, the above functor is far from being an equivalence. For instance, the “free
simplicial commutative ring on one generator” maps to Z[x] ∈ CAlgcnZ , rather than to Z{x}.
See [12, 25.1].

8.15. Spectrally ringed ∞-topoi. The categories Sp and CAlg are presentable ∞-categories
(and in fact are compactly generated), so it is straightforward to consider sheaves on an ∞-topos
valued in each of these. For any such sheaf O on X we have homotopy sheaves πkO on X♡.

A spectrally ringed ∞-topos is a pair X = (X ,OX) consisting of an ∞-topos X and a
sheaf OX ∈ ShvCAlg(X ) of E∞-rings. These are objects of an ∞-category ∞TopCAlg, in which
morphisms X → Y are pairs consisting of a geometric morphism f : X → Y together with a map
ϕ : OY → f∗OX of sheaves of E∞-rings on Y (see [12, 1.4.1.3]).

9. The étale site of a commutative ring

Our objects of study will be spectrally ringed ∞-topoi which are “locally affine”. There are two
such notions of affine we can use here, corresponding in the classical case to the Zariski and étale
topologies of a ring. We are going to focus on the étale case (which is in some sense strictly more
general). Thus, in this section we describe the spectrally ringed ∞-topos SpétA associated to an
E∞-ring A. It is an “étale topology version” of an analogous construction of a spectrally ringed
∞-topos SpecA, which generalizes the classical construction of affine schemes.

Warning: this notion of “étale” map of rings is not to be confused with that of étale maps of
∞-topoi (7.4), though the notions will be linked later on (13.1).

9.1. Étale maps of E∞-rings. A map R→ S of ordinary commutative rings is étale if:

1. S is finitely presented over R,
2. R→ S is flat, and
3. the fold map S⊗RS → S is projection onto a factor (or equivalently, there exists idempotent

e ∈ S ⊗R S inducing (S ⊗R S)[e−1]
∼−→ S).

Example 9.2. If K is a field, then K → R is étale if and only if R ≈
∏d
i=1 Fi, where each K → Fi

is a finite separable field extension.

We say that a map A→ B of E∞-rings is étale if

1. the underlying map π0A→ π0B of ordinary commutative rings is étale, and
2. πnA ⊗π0A π0B → πnB is an isomorphism for all n (so that A → B is flat in the sense of

(8.8)).

Remark 9.3. If A ∈ CAlg♡ is an ordinary commutative ring, then the two notions of étale coincide.

Theorem 9.3.1 (Goerss-Hopkins-Miller). Let A ∈ CAlg.
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1. For every étale map ψ : π0A → B0 of ordinary rings, there exists an étale map ϕ : A → B
of E∞-rings and an isomorphism π0B ≈ B0 with respect to which π0ϕ : π0A → π0B is
identified with ψ.

2. Let ϕ : A→ B be an étale map of E∞-rings. Then for every C ∈ CAlgA, the evident map

MapCAlgA
(B,C)→ MapCAlg♡π0A

(π0B, π0C)

is an equivalence.

See [10, 7.5.4] for a proof of a generalized formulation of this.

Remark 9.4. A consequence of this theorem is that MapCAlgA
(B,C) is a set (i.e., 0-truncated)

whenever ϕ : A→ B is étale. This consequence can be proved directly from the definition of étale
morphism. In fact, when ϕ is étale, then the evident map B⊗(B⊗AB)B → B must be an equivalence
(using that both A→ B and B⊗AB → B are flat). Writing X = MapCAlgA

(B,C), this equivalence
implies that X → X ×(X×X) X is an equivalence, which says exactly that X is 0-truncated.

Remark 9.5. Given an étale morphism π0A→ B0 of ordinary rings, it is not hard to show that the
functor CAlgA → Set ⊆ S defined by MapCAlg♡π0A

(B0, π0(−)) preserves limits4 and is accessible,

so is corepresentable by a B ∈ CAlgA. The hard part of (9.3.1) is to show that B0 → π0B is an
isomorphism.

Remark 9.6. Statement (2) of the theorem is equivalent to: for every étale map A → B and
R ∈ CAlg, the square

MapCAlg(B,R) //

��

MapCAlg(π0B, π0R)

��
MapCAlg(A,R) // MapCAlg(π0A, π0R)

is a pullback of ∞-groupoids.

Let CAlgétA ⊆ CAlgA be the full subcategory of A-algebras whose objects are maps A→ B which
are étale. As we have seen, it is equivalent to a 1-category.

Remark 9.7. If A
f−→ B

g−→ C are maps of E∞-rings such that f and gf are étale, then g is also étale
[10, 7.5.1.7]. Thus every morphism in CAlgétA is itself étale.

Corollary 9.8. For any A ∈ CAlg, the functor CAlgétA → CAlgétπ0A defined by taking π0 is an
equivalence of ∞-categories.

Example 9.9 (Localization of E∞-rings). Let A ∈ CAlg, and suppose f ∈ π0A. Then π0A →
(π0A)[f

−1] is an étale morphism of commutative rings. By (9.3.1), (i) there exists a map A →
A[f−1] of E∞-rings such that (i) π∗(A[f

−1]) ≈ (π∗A)[f
−1], and (ii) for any C ∈ CAlg, MapCAlg(A[f

−1], C)→
MapCAlg(A,C) is the inclusion of those path components consisting of ϕ : A→ C which take f to
a unit in π0C.

This special case predates the proof of the Goerss-Hopkins-Miller theorem for E∞-rings. In fact,
one can in a similar way invert any multiplicative subset S ⊆ π∗A of the graded homotopy ring to
obtain AS with π∗(AS) ≈ (π∗A)S .

Example 9.10 (Adjoining primitive roots of unity). Here is a hands-on construction of an étale
morphism, due to [16]. Given any E∞-ring A, prime p, and k ≥ 1, consider the group ring

4Using the fact that étale maps of rings are also “formally étale”.
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B′ := A[Z/pk] (8.11), with π0B′ ≈ (π0A)[t]/(t
pk − 1). Let f =

∑p−1
j=0(1− tjp

k−1
) in π0B

′, and note

that f2 = pf . Formally inverting f we obtain

B := B′[f−1], with π∗B ≈ (π∗A)[
1
p , t]/(1 + tp

k−1
+ · · ·+ t(p−1)pk−1

).

It turns out that A → B is an étale morphism, and π0B is obtained from π0A by (i) inverting p
and (ii) adjoining a primitive pkth root of unity.

Remark 9.11. In general, you can always construct étale maps of E∞-rings using “generators and
relations” (using free rings (8.12)), which in fact leads to an alternate proof of (9.3.1); see [12,
B.1]. In particular, this shows that every étale map in CAlg is a base change of one between
compact objects in CAlg ([12, B.1.3.3] with R = S). (An object A in an ∞-category is compact
if MapA(A,−) : A → S preserves filtered colimits.)

9.12. The étale site of an E∞-ring. Given A ∈ CAlg, consider the category CAlgétA of étale

morphisms under A. A finite set {A → Ai}di=1 of maps in CAlgétA is an étale cover if π0A →∏d
i=1 π0Ai is faithfully flat.

We define ShvétA ⊆ Fun(CAlgétA ,S) to be the full subcategory of functors F such that

F (A)→ lim∆

[
[n] 7→

∏
i0,...,in

F (Ai0 ⊗A · · · ⊗A Ain)
]

is an equivalence for every étale cover {A→ Ai}i in CAlgétR . This Shv
ét
A is an ∞-topos; in fact, it is

equivalent to the ∞-topos Shvétπ0A of étale sheaves on the ordinary commutative ring π0A. I’ll call
its objects of sheaves on the étale site of A.

9.13. The étale spectrum of an E∞-ring. Let O : CAlgétA → CAlg denote the forgetful functor.

Proposition 9.14. The functor O is a sheaf of E∞-rings on the étale site of A.

We thus define the étale spectrum of A ∈ CAlg to be the spectrally ringed ∞-topos SpétA =
(ShvétA ,O).

Proof of (9.14). We must show that for every finite étale cover {A→ Ai}di=1 the evident map

A→ lim∆

[
[n] 7→

∏
i0,...,in

Ai0 ⊗A · · · ⊗A Ain
]

is an equivalence of E∞-rings. This is a special case of a much more general statement, called flat
descent for E∞-rings; see [12, D.5] for the general theory.

In this case, the proof amounts to computing the spectral sequence computing the homotopy
groups of the inverse limit, whose E1-term takes the form

Es,t1 = πt
(
Ai0 ⊗A · · · ⊗A Ais

)
≈ πtA⊗π0A

(
π0Ai0 ⊗π0A · · · ⊗π0A π0Ais

)
because étale morphisms are flat. The classical version of flat descent for ordinary rings implies
that

Es,t2 ≈ H
s
[
πtA⊗π0A

(
π0Ai0 ⊗π0A · · · ⊗π0A π0Ais

)]
≈

{
πtA if s = 0,

0 if s > 0,

so the spectral sequence collapses to a single line at E2. The claim follows because the inverse limit
spectral sequence has conditional convergence. □

Remark 9.15. We actually have that O is a hypercomplete sheaf of spectra ShvétA . In fact, the
argument of the proof of (9.14) shows that for each n ≥ 0 the presheaf τ≤nO : A 7→ τ≤nA of spectra
obtained by truncation is a sheaf on the étale site, whence O ≈ limn τ≤nO; this relies on the fact

that CAlgétτ≤nA
≈ CAlgétπ0A for all n ≥ 0, so all these rings have the same étale site.
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9.16. The Zariski site and spectrum of an E∞-ring. In the above we can replace CAlgétA with
the full subcategory CAlgZarA spanned by objects equivalent to localizations A → A[f−1]. Then

{A → A[f−1
i ]}di=1 is a Zariski cover if π0A →

∏d
i=1 π0A[f

−1
i ] is faithfully flat; equivalently, if

(f1, . . . , fd)π0A = π0A. We obtain an ∞-topos ShvZarA ⊆ Fun(CAlgZarA ,S) of Zariski sheaves. We
have ShvZarA ≈ ShvZarπ0A, and these are equivalent to the ∞-categories of sheaves on a topological
space, namely the prime ideal spectrum of π0A equipped with the Zariski topology.

We can likewise define the Zariski spectrum to be the spectrally ringed ∞-topos SpecA =
(ShvZarA ,O), as the forgetful functor O : CAlgZarA → CAlg is sheaf of E∞-rings on the Zariski site.

Example 9.17 (Points in étale site vs. the Zariski site). To get a sense of the difference between

the Zariski and étale sites, let’s compare Map∞Top(S,ShvZarA ) with Map∞Top(S, ShvétA). (A map of
∞-topoi of the form S → X is called a point of X .)

First, suppose K ∈ CAlg♡ is an ordinary field. Then CAlgZarK ≈ 1, so ShvZarK ≈ S, so there is a
unique map S → ShvZarK of ∞-topoi. On the other hand, any separable closure K → Ksep induces

a geometric morphism f : S → ShvétK , characterized by the property that f∗U ≈ MapCAlg(R,K
sep)

when U ∈ ShvétK is the sheaf represented by a map K → R ∈ CAlgétK . Therefore,

Map∞Top(S, ShvZarK ) ≈ BGal(K),

the classifying space of the absolute Galois group of K viewed as an ∞-groupoid.
For general A ∈ CAlg, the ∞-groupoid Map∞Top(S,ShvZarA ) is equivalent to the set |SpecA|

of prime ideals in π0A (i.e., the prime ideal spectrum as a discrete set), while Map∞Top(S,ShvétA)
is equivalent to a 1-groupoid whose objects are pairs (p, π0A/p → F ) consisting of a prime ideal
p ⊂ π0A and a separable closure F of the residue field π0A/p.

10. Spectral Deligne-Mumford stacks

We can now define the main notion, that of a spectral Deligne-Mumford stack.
First note that given a spectrally ringed ∞-topos X = (X ,OX) and an object U ∈ X , we obtain

a new spectrally ringed ∞-topos
XU := (X/U ,OX |U )

where OX |U := π∗OX is the preimage of OX along the projection π : X/U → X . Furthermore, this
comes with an evident map XU → X of spectrally ringed ∞-topoi.

Example 10.1. If X = SpétA = (ShvétA ,O) and U ∈ ShvétA ⊆ PSh((CAlgétA)
op) is the sheaf

represented by an étale map (A → B) ∈ CAlgétA , then XU ≈ ((ShvétA)/U ,O|U ) ≈ (ShvétB ,O) =
SpétB.

10.2. The definition of spectral Deligne-Mumford stacks. We say that a spectrally ringed
∞-topos X = (X ,OX) is affine if it is isomorphic to SpétA for some A ∈ CAlg. Likewise, we say
that an object U ∈ X is affine if XU (as defined above) is affine.

A nonconnective spectral Deligne-Mumford (DM) stack is a spectrally ringed ∞-topos
X = (X ,OX) for which there exists a set of objects {Ui} in X such that

1. the set {Ui} covers X (i.e.,
∐
Ui → 1 is effective epi in X ), and

2. each Ui is affine.

stack”

Remark 10.3. The structure sheaf of a nonconnective spectral DM stack is necessarily hypercom-
plete, as a consequence of the fact that this is so in the affine case (9.15).

A spectral Deligne-Mumford (DM) stack is a nonconnective DM stack (X ,OX) such that
the sheaf OX is connective; i.e., such that the homotopy sheaves πkOX ∈ X♡ satisfy πkOX ≈ 0 for
k < 0.
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Remark 10.4. SpétA is always a nonconnective spectral DM stack, and is a spectral DM stack if
and only if A is connective.

Remark 10.5. If X = (X ,OX) is a nonconnective spectral DM stack and U ∈ X , then XU is also
a nonconnective spectral DM stack. Furthermore, if X is a spectral DM stack, so is XU .

This is a consequence of the following claim: for a nonconnective spectral DM stack X, the
collection A = {Vj} of all affine objects in X generates X under colimits [12, 1.4.7.9]. In particular,
this implies that for any U we can find a set of maps of the form Vj → U with all Vj ∈ A which is
a cover of X/U (5.8).

Here’s a proof that affines generate X under colimits. First note that if X ≈ SpétA is itself affine,
then X ≈ ShvétA which is manifestly generated by affines (i.e., by the image of (CAlgétA)

op ↣ ShvétA
(10.1)). In the general case, if {Ui} is an affine cover of X , choose for each i a set {Vi,j → Ui}
of affine objects of X/Ui

which generate X/Ui
under colimits. Then the collection {Vi,j} in X is a

collection of affines which generate X under colimits (since (XUi)Vi,j ≈ XVi,j ).

10.6. Spectral schemes. We can carry out an analogous definition using the Zariski topology. A
special case of this is a nonconnective spectral scheme, which is a spectrally ringed ∞-topos
X = (X ,OX) such that

1. X ≈ Shv(Xtop) for some topological space Xtop, and
2. there exists an open cover {Ui} of Xtop such that XUi ≈ SpecAi for some Ai ∈ CAlg.

It is a spectral scheme if also πkOX ≈ 0 for k < 0. (This is not the definition given as [12,
1.1.2.8], but is equivalent to it by [12, 1.1.6.3, 1.1.6.4].)

11. Morphisms of spectral DM stacks

We need to work rather harder to get the correct notion of morphism of spectral DM stacks. Our
goal is produce a category SpDMnc of nonconnective spectral DM stacks which includes SpétR for
any R ∈ CAlg, with the property that

MapSpDMnc(SpétS, SpétR) ≈ MapCAlg(R,S).

More generally, we would like to have

MapSpDMnc(X,SpétR) ≈ MapCAlg(R,Γ(X ,OX)),
for any object X ∈ SpDMnc, where Γ(X ,OX) ∈ CAlg is the global sections of the structure sheaf
OX .

Let’s make this more precise. Given a map (f, ψ) : X → SpétR of spectrally ringed ∞-topoi, we

obtain a map R→ Γ(X ,OX) of E∞-rings, by evaluating the composite of O → f∗f
∗O f∗(ψ)−−−→ f∗OX

at global sections over ShvétR . Thus we get a map of ∞-groupoids

(11.1) Map∞TopCAlg
(X,SpétR)→ MapCAlg(R,Γ(X ,OX)).

This map is rarely an equivalence, even when X is affine. It turns out that we obtain an equivalence
when we requireX to be strictly Henselian, and restrict to a full subgroupoid Map∞TopsHen

CAlg
(X,SpétR) ⊆

Map∞TopCAlg
(X,SpétR), consisting of local maps.

11.2. Solution sheaves. To carry out this definition, we need to think locally. Given a spec-
trally ringed ∞-topos X = (X ,OX) and an E∞-ring R, define the solution sheaf SolR(OX) ∈
Funlim. pres.(X op,S) ≈ X by

SolR(OX)(U) := MapCAlg(R,OX(U)).

Note that R 7→ SolR(OX) is itself a functor CAlgop → X , and is limit preserving.
We obtain a map of sheaves of ∞-groupoids on X ,[

U 7→ Map∞TopCAlg
(XU , SpétR)

]
→ SolR(OX),
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which can be thought of as a “local” version of the map (11.1), since evaluating the above map at
the terminal object U = 1X of X recovers the map (11.1).

11.3. Strictly Henselian sheaves. A sheaf O of E∞-rings is strictly Henselian if for every
étale cover {R→ Ri} in CAlgét, the induced map

(11.4)
∐

SolRi(O)→ SolR(O)

is an effective epi in X . (This is not the definition of [12, 1.4.2.1], but is equivalent to it by [12,
1.4.3.9].)

Remark 11.5. The strictly Henselian condition on O gives rise to a map

MapCAlg(R,Γ(X ,O))→ Map∞Top(X , ShvétR),

i.e., from an E∞-ring map α : R→ Γ(X ,O) we can get a map X → ShvétR of ∞-topoi.
To see how this works, note that in the diagram

(CAlgétR)
op Sol•(O)=(R′ 7→SolR′ (O))

//
��

��

X/SolR(O)

PSh((CAlgétR)
op)

a ����

τ

33

ShvétR

t∗

66

there is an essentially unique colimit preserving functor τ extending Sol•(O). The strictly Henselian
condition on O implies that τ factors through an essentially unique colimit preserving functor t∗.
Because Sol•(O) preserves limits, t∗ preserves finite limits. That is, t∗ is the preimage of a geometric

morphism t : ShvétR → XSolR(O).
An E∞-ring map α : R → Γ(X ,O) corresponds to a section 1X → SolR(O), which induces an

étale geometric morphism α : X → X/ SolR(O). The composite t ◦ α is the desired map of ∞-topoi.

Remark 11.6. It can be shown [12, 1.4.3.8] that the map in (11.4) is a pullback of
∐

Solπ0Ri(π0O)→
Solπ0R(π0O), so O is strictly Henselian (or local) if and only if π0O is so; this recovers the definition
in [12, 1.4.2.1]. (The proof rather subtle: you need to use the fact that every étale map is a base
change of an étale map between compact objects in CAlg (9.11), in order to reduce to the case
of the pullback square (9.6) of mapping spaces. The issue here is that it is not the case that
f∗ SolR(O)→ SolR(f

∗O) is an isomorphism in general, unless R is a compact object of CAlg.)

There is an analogous definition of local sheaf, in which étale covers are replaced with Zariski
covers in the definition given above.

Example 11.7 (Local and strictly Henselian sheaves on a point). Let X = S, so ShvCAlg(S) ≈
CAlg, and for O ∈ CAlg we have SolR(O) ≈ Map(R,O) ∈ S.

From the definitions and the universal property of localization maps R → R[f−1] in CAlg, we
see that O is local if and only if, for every pair (R, {f1, . . . , fd} ⊆ π0R) consisting of R ∈ CAlg
such that (f1, . . . , fd)π0R = π0R, every map α : R→ O in CAlg is such that α(fk) is an invertible
element of π0O for some k ∈ {1, . . . , d}.

It follows that O must be a local sheaf whenever π0O is a local ring in the usual sense. The
converse also holds: if O is a local sheaf, apply the condition with (R = 0, ∅ ⊆ π0R) to see that
π0O ̸≈ 0, and with (R = S{x, y}[(x + y)−1], {x, y} ⊆ π0R) to see that m := π0O ∖ (π0O)× is an
ideal.

A similar argument shows that O ∈ ShvCAlg(S) is strictly Henselian if and only if π0O is a
strictly Henselian ring in the classical sense, i.e., as defined in [18, Tag 04GE].
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11.8. Spectral DM stacks are strictly Henselian. For an affine objectX = SpétA = (ShvétA ,O),
we see that SolR(O)(U) ≈ MapCAlg(R,B) when U ∈ ShvétA is the object represented by the étale
A-algebra A→ B. Using this it is straightforward to show that O is strictly Henselian.

Remark 11.9 (Spectral DM stacks are strictly Henselian). Observe that π∗ SolR(O) ≈ SolR(π
∗O)

when π : X/U → X is the etale map of ∞-topoi associated to an object U ∈ X . (Use (7.7).) Given
this it is straightforward to prove that any nonconnective DM stack is strictly Henselian.

11.10. The category of strictly Henselian spectrally ringed ∞-topoi. We let ∞TopsHen
CAlg

denote the (non-full) subcategory of ∞TopCAlg whose objects are X = (X ,OX) such that OX is
strictly Henselian, and whose morphisms f : (X ,OX)→ (Y,OY ) are such that

f∗ SolR′(OY ) //

��

SolR′(OX)

��
f∗ SolR(OY ) // SolR(OX)

is a pullback in X for every étale map R→ R′ in CAlg. Such morphisms are called local.

Remark 11.11. This is different than the definition given as [12, 1.4.2.1], but is equivalent by [12,
1.4.3.9].

Remark 11.12. If X = (X ,OX) is a nonconnective spectral DM stack and U ∈ X , then the evident
map XU → X of spectrally ringed ∞-topoi is local.

We can now state our goal.

Theorem 11.12.1. For any strictly Henselian spectrally ringed ∞-topos X = (X ,OX) and E∞-
ring R, the evident map

Map∞TopsHen
CAlg

(X,SpétR)
∼−→ MapCAlg(R,Γ(X ,OX))

is an equivalence.

Sketch proof. This is [12, 1.4.2.4]. Here is a brief sketch.

Geometric morphisms f : ShvétR → X correspond (by restriction to representable sheaves) ex-

actly to left-exact functors χ : (CAlgétR)
op → X which send étale covers to effective epis. Given

such an f , maps ϕ : O → f∗OX of sheaves of E∞-rings on ShvétR correspond to natural transforma-
tions ϕ′ : χ→ Sol•(O) of functors; to see this, use the evident equivalence MapX (χ(R

′),SolR′(O)) ≈
MapCAlg(R

′,OX(χ(R′))) forR′ ∈ CAlgétR , and that f∗OX |(CAlgétR)op ≈ OX◦χ as functors (CAlgétR)
op →

CAlg.
One shows that if ϕ is local, then ϕ′ is Cartesian, i.e., ϕ′ takes morphisms in (CAlgétR)

op to pullback

squares of sheaves. But since (CAlgétR) has R as a terminal object, we discover that pairs (χ, ϕ′)
with ϕ′ Cartesian correspond exactly to maps 1X = χ(R)→ SolR(OX ), i.e., to maps R→ Γ(X ,OX)
of E∞-rings. In particular, we learn that Map∞TopsHen

CAlg
(X,SpétR) → MapCAlg(R,Γ(X ,OX)) is a

monomorphism.
Finally, given a map α : R→ Γ(X ,OX), there is an explicit procedure to construct a morphism

X → SpétR in ∞TopsHen
CAlg which projects to α; the underlying map X → ShvétR of ∞-topoi is

produced by the procedure of (11.5). □

11.13. The category of locally spectrally ringed ∞-topoi. We can play the same game with
“local” replacing “strictly Henselian” as the condition on objects, resulting in a full subcategory
∞ToplocCAlg of ∞TopsHen

CAlg and a version of (11.12.1) with Spét replaced with Spec [12, 1.1.5].
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12. The category of spectral DM stacks

We have achieved our goal. We have full subcategories

SpDM ⊆ SpDMnc ⊆ ∞TopsHen
CAlg

of spectral DM stacks and nonconnective DM stacks respectively, inside the ∞-category of strictly
Henselian spectrally ringed ∞-topoi and local maps, which is itself a non-full subcategory of the
category ∞TopCAlg of spectrally ringed ∞-topoi. By (11.12.1) we see that there are adjoint pairs

Spét : CAlgop // // SpDMnc : Γ
oooo

and Spét : (CAlgcn)op // // SpDM :Γ.
oooo

Remark 12.1. There are analogous full subcategories of spectral schemes and nonconnective spectral
schemes in ∞ToplocCAlg.

12.2. Finite limits of DM stacks. The categories SpDM and SpDMnc have finite limits, and
finite limits are preserved by the functors Spét : (CAlgcn)op → SpDM and Spét : CAlgop → SpDMnc.
In particular, for a diagram B ← A→ B′ of rings, we have

Spét(B ⊗A B′) ≈ SpétB ×SpétA SpétB′,

as an immediate consequence of (11.12.1). (See [12, 1.4.11.1], [7, V 2.3.21].)

12.3. Connective covers and truncation of DM stacks. The adjoint pairs

CAlg♡ // // CAlg
cnoooo // //

CAlgoooo

relating classical, connective, and arbitrary E∞-rings are paralleled by adjoint pairs

SpDM≤0 // //
SpDMoooo // // SpDMncoooo

where SpDM≤0 is the ∞-category of 0-truncated spectral DM stacks, consisting of X =
(X ,OX) such that πqOX ≈ 0 for q ̸= 0. The localization functors are obtained respectively by
0-truncating or taking connective cover of the structure sheaf [12, 1.4.5–6].

12.4. Classical objects as spectral DM stacks. We would like to connect this spectral geometry
to some more “classical” (i.e., 1-categorical) kind of algebraic geometry.

Note that objects of SpDM≤0 are ∞-topoi X equipped with structure sheaves OX of classical
rings. However, the∞-topos X is not necessarily a “classical” one, i.e., is not necessarily equivalent
to the 1-localic ∞-topos ShvS(X♡) (5.18). So 0-truncated spectral DM stacks are not necessarily
classical objects.

The classical analogue of spectral Deligne-Mumford stack is a Deligne-Mumford stack, which
is a pair X0 = (X ,OX0) consisting of a 1-topos X with a sheaf OX0 of ordinary commutative rings
on it, which is “locally” affine, i.e., there exists a set {Ui} of objects in X such that (i)

∐
Ui → 1

is effective epi in X and (ii) (X/Ui
,O|Ui) ≈ ((ShvétAi

)♡,O) for some ordinary ring Ai.

Given a nonconnective spectral DM stack X = (X ,OX), we can form XDM := (X♡, π0OX),
which is in fact a classical Deligne-Mumford stack, called the underlying DM stack of X.

Conversely, given a classical DM stack X0 = (X ,O), we can upgrade it to a 0-truncated spectral
DM stack

XSpDM = (ShvS(X ),O′)

where ShvS(X ) is the 1-localic reflection of X (5.18), and O′ is the sheaf of connective E∞-rings

represented by the composite functor ShvS(X )op
(τ≤0)

op

−−−−→ X op O−→ CAlg♡ ↣ CAlgcn. It turns out
that this construction describes a fully faithful embedding

(classical DM stacks) ↣ SpDM≤0.

See [12, 1.4.8] for more on the relation between DM stacks and spectral DM stacks.
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Example 12.5. Here is a simple example which exhibits some of these phenomena. Let K ∈
CAlg♡ be an ordinary separably closed field, so that ShvétK ≈ S. Then SpétK ≈ (S,K), where
K ∈ CAlg ≈ ShvCAlg(S), is an example of a 0-truncated spectral DM stack, whose ∞-topos is
equivalent to sheaves on the 1-point space. It corresponds to the classical DM stack associated to
K.

For any ∞-groupoid U ∈ S we can form (SpétK)U = (S/U , π∗K), i.e., ∞-groupoids over U
equipped with the constant sheaf associated to K. Then (SpétK)U is also a 0-truncated spectral
DM stack. If U is not a 1-truncated space, then S/U is not 1-localic, and (SpétK)U does not arise
as a classical DM stack in this case.

In short, spectral DM stacks expand DM stacks in two ways: spectral DM stacks are allowed to
have underlying∞-topoi which are not classical, i.e., not 1-localic, and spectral DM stacks are also
allowed to have structure sheaves which are not classical, i.e., not merely sheaves of ordinary rings.

12.6. Relation to schemes and spectral schemes. There are analogous statements for spec-
tral schemes [12, 1.1]. Thus, a morphism of nonconnective spectral schemes is just a morphism
(X,OX)→ (Y,OY ) of spectrally ringed ∞-topoi which is local; we get full subcategories SpSch ⊆
SpSchnc ⊆ ∞ToplocCAlg; we have fully faithful Spec : (CAlgcn)op → SpSch and Spec: CAlgop →
SpSchnc; and we have fully faithful embeddings

Sch
∼−→ SpSch≤0 ↣ SpSch,

where Sch≤0 is the full subcategory of 0-truncated spectral schemes. In this case we have an
equivalence Sch ≈ SpSch≤0, since underlying topos of a spectral scheme is already assumed to be
a space.

What is the relation between spectral schemes and spectral DM stacks? Note that although
both spectral schemes and spectral DM stacks are both types of spectrally ringed∞-topoi, there is
very little overlap between the two classes. What is true [12, 1.6.6] is that there exist fully faithful
functors

SpSch ↣ SpDM and SpSchnc ↣ SpDMnc

which promote spectral schemes to spectral DM stacks. Objects in the essentially image of these
functors are called schematic, and this property is easy to characterize: X = (X ,OX) is schematic
if and only if if there exists a set {Ui} of (−1)-truncated objects of X which are affine and which
cover X [12, 1.6.7.3].

13. Étale and flat morphisms of spectral DM stacks

13.1. Étale morphisms in spectral geometry. A map (X ,OX)→ (Y,OY ) of spectrally ringed
∞-topoi is called étale if

1. the underlying map f : X → Y of ∞-topoi is étale (7.4), and
2. the map f∗OY → OX is an isomorphism in ShvCAlg(X ).

For instance, for any X = (X ,OX) and U ∈ X , the projection map XU → X is étale in this sense,
where XU = (X/U ,OX |U ). In fact, any etale morphism of spectrally ringed ∞-topoi is equivalent
to one of this form.

If f : X → Y is an étale map of spectrally ringed ∞-topoi and Y ∈ SpDMnc, then also X ∈
SpDMnc (10.5), and in fact f is a morphism of SpDMnc (11.12).

This terminology turns out to be compatible with that of “étale map of E∞-rings”.

Proposition 13.2 ([12, 1.4.10.2]). A map A → B of E∞-rings is étale if and only if the corre-
sponding map SpétB → SpétA is étale.

We have the following for “lifting” maps over étale morphisms.
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Proposition 13.3. Given nonconnective spectral DM stacks X = (X ,OX) and Y = (Y,OY ), a
map f : Y → X of nonconnective spectral DM stacks, and an object U ∈ X , there is an equivalence

XU

π��
Y

f
//

s 99

X

 ∼−→
{
1 // f∗U

}
between the∞-groupoid of “sections” of π over Y in SpDMnc, and the∞-groupoid of global sections
of f∗U on Y.

Proof sketch. A map s : Y → XU consists of a geometric morphism s : Y → X/U together with
a local map s̃ : s∗OXU

→ OY of sheaves of E∞-rings. We already know (7.2) that geometric
morphisms s which lift f correspond exactly to global sections of f∗U . We then have that s∗OXU

=
s∗π∗OX ≈ f∗OX , so there is an evident map s∗OXU

→ OY , namely the one equivalent to the map

f̃ : f∗OX → OY which is part of the description of f : Y → X. This is in fact the unique map
making the diagram commute in SpDMnc. (See [12, 21.4.6].) □

Corollary 13.4. For any f : Y → X in SpDMnc and U ∈ X the square

Yf∗U //

��

XU

��
Y

f
// X

is a pullback in SpDMnc. It is a pullback in SpDM if X,Y ∈ SpDM.

13.5. Colimits along étale maps of spectral DM stacks. It turns out that we can “glue”
spectral DM stacks along étale maps, much as one can construct new schemes by gluing together
ones along open immersions.

Let SpDMét ⊆ SpDM and SpDMnc
ét ⊆ SpDMnc be the (non-full) subcategories containing just

the étale maps.

Proposition 13.6. The categories SpDMét and SpDMnc
ét have all small colimits, and the inclusions

SpDMét → SpDM and SpDMnc
ét → SpDMnc preserves colimits.

Proof. Here is a brief sketch; I’ll describe the nonconnective case. (See [12, 21.4.4] or [7, V 2.3.5]
for more details.)

Suppose
(
c 7→ Xc = (Xc,OXc)

)
: C → SpDMnc

ét is a functor from a small ∞-category. We know

(7.9) that we can form the colimit X := colim∞Top
c∈C Xc of ∞-topoi, and that each Xc → X is étale.

In fact, there exists a functor U : C → X so that (c 7→ Xc) is equivalent to (c 7→ X/Uc
) as functors

C → ∞Top/X .
We also know (6.17) that we have descent for sheaves of E∞-rings. That is, ShvCAlg(X ) ≈

limc∈C ShvCAlg(Xc), so there exists OX ∈ ShvCAlg(X ) together with a compatible family of equiva-

lences π∗cOX
∼−→ OXc . In particular, we obtain a cone C▷ →∞TopCAlg, which in fact lands in the

non-full subcategory consisting of étale maps. This cone is a colimit cone, presenting X = (X ,OX)
as the colimit of the diagram in spectrally ringed ∞-topoi.

To show that X is a nonconnective spectral DM stack, we need a set {Vj} of objects in X such
that each XVj is affine, and

∐
Vj → 1 is an effective epi in X . This is straightforward: there are

sets {Vc,i → Uc} of maps for each object c ∈ C such that each XVc,i is affine and
∐
i Vc,i → Uc is

effective epi in X/Uc
, so just take the union

⋃
c{Vc,i}.

Finally, show that the maps XUi → X of the cone are local, so that the cone factors through
C▷ → SpDMnc; this amounts to the fact that being “local” is itself a local condition in the domain.

□
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13.7. Spectral DM stacks are colimits of affine objects. We obtain the following interesting
consequence: every nonconnective spectral DM stack X = (X ,OX) is a colimit of a small diagram
of affines. That is,

X ≈ colimSpDMnc

c∈C XUc

where c 7→ Uc : C → X is a functor such that colimc∈C Uc ≈ 1 and each Uc is affine (which exists
by (10.5)), and so each XUc ≈ SpétAc for some E∞-ring Ac. Analogous remarks apply to spectral
DM stacks, which have the form

X ≈ colimSpDM
c∈C XUc

with each XUc ≈ SpétAc for some connective E∞-ring Ac.

13.8. Flat morphisms in spectral geometry. A map f : Y → X of nonconnective spectral DM
stacks is flat if for every commutative square

SpétB //

g

��

Y

f

��
SpétA // X

in SpDMnc such that the horizontal maps are étale, the map g is induced by a flat morphism A→ B
of E∞-rings [12, 2.8.2].

It is immediate that the base change of any flat morphism is flat. Also, if Y → X is flat and X
is a spectral DM stack, then Y is a spectral DM stack.

Remark 13.9. A map SpétB → SpétA of nonconnective spectral DM stacks is flat in the above
sense if and only if A→ B is a flat morphism of E∞-rings.

Given A ∈ CAlg, let SpDMnc
A = (SpDMnc)/SpétA, and let SpDM♭

A ⊆ SpDMnc
A denote the full

subcategory spanned by objects which are flat morphisms X → SpétA. It turns out that although
the functor SpDMnc

τ≥0A
→ SpDMnc

A induced by base change is not an equivalence, it induces an

equivalence on full subcategories of flat objects flat objects.

Proposition 13.10. Base change induces an equivalence of ∞-categories

SpDM♭
τ≥0A

∼−→ SpDM♭
A.

Proof. See [12, 2.8.2]. The inverse equivalence sends X → SpétA to τ≥0X → Spét(τ≥0A); compare
(8.9). □

14. Affine space and projective space

Let’s think about two basic examples: affine n-space and projective n-space. It turns out that
these come in two distinct versions, depending on whether we use polynomial rings (8.11) or free
rings (8.12).

14.1. Affine spaces. Given a connective E∞-ring R ∈ CAlgcn, define affine n-space over R to be
the affine spectral DM stack

An
R := SpétR[x1, . . . , xn]

on a polynomial ring (8.11) over R. When R ∈ CAlg♡ is an ordinary ring, this is the “usual” affine
n-space. In general, An

R ≈ An
S ×Spét S SpétR.

What are the “points” of An
S? If B is an ordinary ring, then

An
S(B) = MapSpDM/ SpétR

(SpétB,An
S) ≈ MapCAlg(S[x1, . . . , xn], B) ≈ Bn.

However, if B is not an ordinary ring, then things can be very different. For instance, the image of
the evident map

An
S(S)→ An

S(Z) ≈ Zn
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consists exactly of the ordered n-tuples (a1, . . . , an) ∈ Zn such that each ai ∈ {0, 1}.5
From this, we see that An

S is not a group object with respect to addition; i.e., there is no map
S[x]→ S[x]⊗S S[x] of E∞-rings which on π0 sends x 7→ x⊗ 1 + 1⊗ x.

It is however true that A1
S is a monoid object under multiplication (the coproduct on S[x] is

obtained by applying suspension spectrum to the diagonal map on Z≥0). Likewise,

Gm := SpétS[x, x−1]

is an abelian group object in spectral DM stacks.
There is another affine n-space, which I’ll call the smooth affine space, namely

An
sm := SpétS{x1, . . . , xn},

defined using a free ring (8.12) instead of a polynomial ring. The points of this are easier to explain:

An
sm(B) = MapSpDM(SpétB,An

sm) ≈ MapCAlg(S{x1, . . . , xn}, B) ≈ (Ω∞B)n.

The evident map An
S → An

sm, though not an equivalence, becomes an equivalence after base-change
to any R ∈ CAlgQ.

14.2. Projective spaces. Given R ∈ CAlgcnR we define projective n-space as follows [12, 5.4.1].
Let [n] = {0, 1, . . . , n}, and let P ◦([n]) denote the poset of non-empty subsets. For each I ∈ P ◦([n])
let

MI := { (m0, . . . ,mn) ∈ Zn+1 | m0 + · · ·+mn = 0, mi ≥ 0 if i ∈ I }.

We obtain a functor P ◦([n])op → SpDMét by

I 7→ Spét(R[MI ]).

Define Pn
R := colimI∈P 0([n])op Spét(R[MI ]), which exists by (13.6).

Example 14.3. P1
R is the colimit of

Spét(R[x])← Spét(R[x, x−1])→ Spét(R[x−1]).

This construction is compatible with base change, and for ordinary rings R recovers the “usual”
projective n-space. You can use the same idea to construct spectral versions of toric varieties.

As for affine n-space, it is difficult to understand the functor that Pn
R represents when R is not

an ordinary ring. On the other hand, one can import some of the classical apparatus associated to
projective spaces. For instance, there are quasicoherent sheaves O(m) over Pn

R for any R ∈ CAlgcn,
constructed exactly as their classical counterparts, and Γ(Pn

R,O(m)) has the expected value [12,
5.4.2.6].

There is another projective n-space, the smooth projective space Pn
sm, defined to be the

spectral DM stack representing a functor R 7→ {“lines in Rn+1”}; see [12, 19.2.6].

5Here’s a quick proof. We need to understand the image of MapCAlg(S[x], S) → MapCAlg♡(S[x],Z) ≈ Z induced
by evaluation at x ∈ π0S[x]. It is straightforward to construct maps realizing 0 or 1. To show these are the only
possibilities, argue as follows. Given f : S[x] → S, tensor with complex K-theory KU and take p-completions. The
π0 of p-complete commutative KU -algebras carries a natural “Adams operation” ψp, which is a ring endomorphism
such that ψp(a) ≡ ap mod p, and on π0(KU [x])∧p acts via ψp(f(x)) = f(xp). Using this we can show that a ∈ Z is
in the image if and only if ap = a for all primes p.

The same kind of argument shows that if R = S[ 1
n
, ζn] where ζn is a primitive nth root of unity as in (9.10), then

the image of MapCAlg(S[x], R) → π0R = Z[ 1
n
, ζn] is {0} ∪ { ζkn | 0 ≤ k < n }.
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15. Functor of points

We have defined an∞-category SpDMnc of nonconnective spectral DM stacks. However, we have
not yet shown that it is a locally small ∞-category: the definition of morphism involves morphisms
of underlying ∞-topoi, and ∞Top is not locally small. However, it is true that SpDMnc is locally
small.

Proposition 15.1. For any X,Y ∈ SpDMnc, the space MapSpDMnc(Y,X) is essentially small, i.e.,
equivalent to a small ∞-groupoid.

Note that when X is affine, (11.12.1) already implies that MapSpDMnc(Y,X) is essentially small:
MapSpDMnc(Y,SpétB) ≈ MapCAlg(B,Γ(Y,OY )).

Given this proposition, we can define the functor of points of a nonconnective spectral DM
stack:

hncX : CAlg→ S by hncX (A) := MapSpDMnc(SpétA,X).

For a spectral DM stack, we consider the restriction of hncX to connective E∞-rings:

hX : CAlgcn → S by hX(A) := MapSpDM(SpétA,X).

Note that if B ∈ CAlg, then hncSpétB ≈ MapCAlg(B,−) by the Yoneda lemma, and similarly in the
connective case.

Proposition 15.2 ([12, 1.6.4.3]). The functors

X 7→ hncX : SpDMnc ↣ Fun(CAlg,S) and X 7→ hX : SpDM ↣ Fun(CAlgcn,S)
are fully faithful.

I’ll sketch proofs of these below (giving arguments only in the nonconnective case).

15.3. Sheaves of maps into a spectral DM stack. To prove (15.1) that MapSpDMnc(Y,X) is
essentially small, we can immediately reduce to the case that Y is affine, since every nonconnective
spectral DM stack is a colimit of a small diagram of affines (13.7). So assume Y = SpétA for some
A ∈ CAlg.

Given a nonconnective spectral DM stack X, consider the functor

HA
X : CAlgétA → Ŝ defined by HA

X(A
′) := MapSpDMnc(SpétA′, X).

This functor is in fact an object of the full subcategory

ŜhvétA ⊆ Fun(CAlgétA , Ŝ)

of sheaves on the étale site of A taking values in the category Ŝ of “large” ∞-groupoids; this is
because for an étale cover {R→ Ri} in CAlgétA , the evident map

colimSpDMnc

∆op

(
[n] 7→

∐
SpétRi0 ×SpétR · · · ×SpétR SpétRin

)
∼−→ SpétR

is an equivalence by (13.6), which exactly provides the sheaf condition for HA
X .

Note: the ∞-category ŜhvétA , although not locally small, behaves in many respects like an ∞-
topos. For instance, it has descent for small diagrams, and in particular small colimits are universal

in ŜhvétA . Furthermore, the inclusion ShvétA ⊆ ŜhvétA preserves small colimits.
The key fact we need is the following.

Proposition 15.4. The functor

X 7→ HA
X : SpDMnc

ét → ŜhvétA

preserves small colimits.
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Recall (13.7) that X ≈ colimc∈C Vc for some functor V : C → SpDMnc
ét from a small ∞-category.

Writing Vc = SpétBc, the proposition gives us the “formula”

MapSpDMnc(SpétA,X) ≈ (aF )(A),

where aF is the sheafification of the presheaf F : CAlgétA → Ŝ defined by

F (A′) = colimcH
A
Vc(A

′) ≈ colimcMapSpDMnc(SpétA′, Vc) ≈ colimcMapCAlg(Bc, A
′),

where the colimit is taken in Ŝ. Since C and each MapCAlg(Bc, A
′) are small, we see that the value

F (A) is a small ∞-groupoid, as desired.

Sketch proof of (15.4). Let X = colim
SpDMnc

ét
c∈C Vc with V : C → SpDMnc

ét . If X is the underlying
∞-topos of X, then we can factor this functor through a functor U : C → X , so that Vc = XUc and
colimX

c∈C Uc ≈ 1.
To show that

colim
ŜhvétA
c∈C HA

XUc

∼−→ HA
X ,

it suffices to show that for any small sheaf V ∈ ShvétA and any map f : V → HA
X in ŜhvétA , the map

colim
ŜhvétA
c∈C

(
HA
XUc
×HA

X
V
)
→ V

induced by base change along f is an equivalence. (This is using descent in ŜhvétA , and the fact that
any small sheaf is a small colimit of representables MapCAlgétA

(B,−), which are themselves small

sheaves.)

Note that for small sheaves V ∈ ShvétA there is a natural equivalence

HomSpDMnc((SpétA)V , X)
∼−→ Hom

ŜhvétA
(V,HA

X),

This is because V 7→ (SpétA)v is colimit preserving (13.6) and the map is certainly an equivalence
when V is representable. So let g : (SpétA)V → X be the map corresponding to f : V → HA

X , and
use (13.4) to obtain for any U ∈ X a pullback square

(SpétA)g∗U //

��

XU

��
(SpétA)V g

// X

in SpDMnc, which on applying the functor Y 7→ HA
Y gives a pullback square

g∗U //

��

HA
XU

��
V

f
// HA

X

in ŜhvétA . Because g∗ : X → (ShvétA)/V is colimit preserving, we see that we get an equivalence

colim
(ShvétA )/V
c∈C g∗(Uc)

∼−→ 1(ShvétA )/V
, and the claim follows. □

Example 15.5 (Geometric points). Let K be a (classical) separable field, so that ShvétK ≈ S. If
X = colimc∈C SpétBc is a colimit of affines along étale morphisms, then our “formula” reduces to

MapSpDMnc(SpétK,X) ≈ colimc∈C MapCAlg(Bc,K).
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15.6. Functor of points. Here is an idea of a proof of (15.2) (in the nonconnective case; the
connective case is similar); see [7, V 2.4] which proves a more general statement in the framework
of “geometries”, or [12, 8.1.5] which proves a generalization to formal geometry. We want to show
that

MapSpDMnc(Y,X)→ MapFun(CAlg,S)(h
nc
Y , h

nc
X )

is an equivalence for all X,Y ∈ SpDMnc. Since nonconnective spectral DM stacks are colimits
of small diagrams of affines along étale maps (13.6), we reduce to the case of affine Y = SpétB.
Furthermore, if X = SpétA is also affine, then MapSpDMnc(Y,X) ≈ MapCAlg(A,B) by (11.12.1),
and since hncY ≈ MapCAlg(B,−) we see that the map is an equivalence by Yoneda.

Note that the composite functor CAlgétA → CAlg
hncX−−→ S is precisely the functor HA

X of the
previous section. Thus hncX lives in the full subcategory

Shvét ⊆ Fun(CAlg,S)

spanned by F such that F |CAlgétA
is an étale sheaf for all A ∈ CAlg.

It turns out that Shvét is equivalent to the ∞-category of sections of a Cartesian fibration
D → CAlg, whose fiber over A ∈ CAlg is equivalent to ShvétA . Thus, by a standard argument, we
see that (15.4) implies that

X 7→ hncX : SpDMnc
ét → Shvét

preserves colimits. The result then follows using X is also a colimit of a small diagram of affines
along étale maps.

16. Formal spectral geometry

Let’s briefly describe the generalization of these ideas to the spectral analogue of formal geometry.

16.1. Adic E∞-rings. An adic E∞-ring is a connective E∞-ring A equipped with a topology on
π0A which is equal to the I-adic topology for some finitely generated ideal I ⊆ π0A. A map of
adic E∞-rings is a map f : A→ B of E∞-rings which induces a continuous map on π0. Any finitely
generated ideal I generating the topology of π0A is called an ideal of definition for the topology;
note that the ideal of definition is not itself part of the data of an adic E∞-ring, only the topology
it generates.

Remark 16.2. The vanishing locus of an adic E∞-ring A is the set XA ⊆ |SpecA| of prime ideals
which are open neighborhoods of 0 in π0A; equivalently, primes which contain some (hence any)
ideal of definition I ⊆ π0A. A map ϕ : A → B of E∞-rings is an adic map if and only if it sends
XB into XA; equivalently, if ϕ(I

n) ⊆ J for some n where I and J are ideals of definition for A and
B respectively [12, 8.1.1.3–4].

In particular, the topology on π0A of an adic E∞-ring A is entirely determined by the vanishing
locus.

16.3. Completion at finitely generated ideals. Let A ∈ CAlg be an E∞-ring (not necessarily
connective). For every finitely generated ideal I ⊆ π0A there is a notion of I-complete A-module.
An A-algebra is called I-complete if its underlying module is so. There are adjoint pairs

M 7→M∧
I : ModA

// //
Mod

Cpt(I)
Aoooo , B 7→ B∧

I : CAlgA
// //
CAlg

Cpt(I)
Aoooo

whose right adjoint is the fully faithful inclusion of the category of I-complete objects, and whose
left adjoint, called I-completion, is left exact. Furthermore, the notion of I-completeness and its
associated completion functors depend only on the radical of I; hence, all ideals of definition of an
adic E∞-ring provide equivalent completion functors. See [12, 7.3] for more details.
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Remark 16.4. Here is an explicit formula for I-completion on the level of modules. Given a ∈ π0A
let Σ−1(A/a∞) ∈ ModA denote the homotopy fiber of the evident map A→ A[a−1]. Then

M∧
I ≈ HomA(Σ

−1(A/a∞1 )⊗A · · · ⊗A Σ−1(A/a∞r ), M)

where (a1, . . . , ar) is any finite sequence which generates the ideal I. The unit M → M∧
I of the

adjunction is induced by restriction along the evident map Σ−1(A/a∞1 ) ⊗A · · · ⊗A Σ−1(A/a∞r ) →
A⊗A · · · ⊗A A ≈ A.

Example 16.5. If the vanishing ideal is 0 ⊆ π0A, so that π0A is equipped with the discrete
topology, then every A-module is I-complete.

Example 16.6. If the vanishing ideal is I = π0A, so that π0A is equipped with the trivial topology,
then only the trivial A-module is I-complete.

Example 16.7. For a prime p ∈ Z = π0S, an S-module is (p)-complete in the above sense if and
only if it is a p-complete spectrum in the conventional sense, and (p)-completion coincides with the
usual p-completion of spectra.

Example 16.8 (Completion and K(n)-localization). Suppose A is an E∞-ring which p-local for
some prime p, and is weakly 2-periodic and complex orientable (see (17.6) below). The complex
orientation gives rise to a sequence of ideals In = (p, u1, . . . , un−1) ⊆ π0A; the ideal In is called the
nth Landweber ideal. It turns out that the underlying spectrum of A is K(n)-local if and only if (i)
A is In-complete and (ii) In+1(π0A) = π0A [9, 4.5.2].

16.9. The formal spectrum of an adic E∞-ring. Recall the ∞-topos ShvétA of sheaves on the

étale site of an E∞-ring A. Given an adic E∞-ring A, say that F ∈ ShvétA is an adic sheaf if
F (A → B) ≈ ∗ for étale morphisms A → B such that the image of |Specπ0B| → |Specπ0A| is
disjoint from the vanishing locus XA; i.e., if I(π0B) = π0B for some (hence any) ideal of definition

I ⊆ π0B. We thus obtain a full subcategory ShvadA ⊆ ShvétA of adic sheaves, which in fact is an

∞-topos, and this inclusion is the right-adjoint of a geometric morphism ShvadA → ShvétA .

Remark 16.10. That ShvadA is an ∞-topos follows from the observation that ShvadA ≈ Shvétπ0A/I ,

where I is an ideal of definition for A. See [12, 3.1.4].

We can now define the formal spectrum of an adic E∞-ring A to be the spectrally ringed ∞-

topos Spf A := (ShvadA ,OSpf A), where OSpf A is the composite functor CAlgétA ↣ CAlg
(−)∧I−−−→ CAlg.

Note that OSpf A is an adic sheaf because B∧
I ≈ 0 if I(π0B) = π0B and because I-completion is limit

preserving. It can be shown that Spf A is strictly Henselian and its structure sheaf is connective
[12, 8.1.1.13].

16.11. Formal spectral DM stacks. A formal spectral Deligne-Mumford stack is a spec-
trally ringed ∞-topos X = (X ,OX) which admits a cover {Ui} ⊆ X such that each XUi =
(X/Ui

,OX |Ui) is equivalent to Spf Ai for some adic E∞-ring Ai. There is a full subcategory

fSpDM ⊆ ∞TopsHen
CAlg

of formal spectral Deligne-Mumford stacks and local maps between them.

Example 16.12 (Spectral DM stacks are formal spectral DM stacks). If A ∈ CAlgad is an adic
E∞-ring equipped with the discrete topology, then Spf A ≈ SpétA. In particular, any spectral DM
stack is automatically a formal spectral DM stack, and SpDM ↣ fSpDM.

Example 16.13 (Formal functor of points). There is a fully faithful embedding fSpDM ↣ Fun(CAlgcn,S)
defined by sending X to its functor of points hX(R) = MapfSpDM(SpétR,X) on affine (not adic)
spectral DM stacks [12, 8.1.5].
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Furthermore, there is an explicit description of the functor of points of Spf A:

hSpf A(R) = MapfSpDM(SpétR,Spf A) ≈ MapCAlgad(A,R) ⊆ MapCAlg(A,R).

Here R is regarded as an adic E∞-ring equipped with the discrete topology, so that ϕ : A→ R is a
map of adic E∞-rings if and only if ϕ(In) = 0 for some n and ideal of definition I ⊆ π0A [12, 8.1.5].

Remark 16.14. The formal spectrum functor Spf : (CAlgad)op → fSpDM is not fully faithful, or

even conservative. However, we have the following. Say that B ∈ CAlgad is complete if B
∼−→ B∧

I
for some (and hence any) ideal of definition I ⊆ π0B. For complete adic E∞-rings B the evident

map MapCAlgad(B,R)
∼−→ MapfSpDM(Spf R,Spf B) is always an equivalence [12, 8.1.5.4]. From this

and the formal functor of points we see that the full subcategory of formal spectral DM stacks
which are equivalent to Spf A for some adic ring A is equivalent to opposite of the full subcategory
of complete objects in CAlgad.

16.15. Formal completion. Given a spectral DM stackX, one may form the formal completion
X∧
K of X with respect to a “cocompact closed subset K ⊆ |X|”, which is a formal spectral DM

stack equipped with a map X∧
K → X. We refer to [12, 8.1.6] for details, but note that in the case

X = SpétA for A ∈ CAlgcn we have that |X| is precisely the prime ideal spectrum | SpecA|, while
X∧
K = Spf A, where A is given the evident adic structure.

17. Formal groups in spectral geometry

Fix a connective E∞-ring R. An n-dimensional formal group over R is, roughly speaking, a

formal spectral DM stack Ĝ over SpétR which (i) is an abelian group object in formal spectral DM
stacks, and (ii) as a formal spectral DM stack is equivalent to Spf(A) where A is an adic E∞-ring
which “looks like a ring of power series in n variables over R”.

17.1. Smooth coalgebras. To make this precise, we need the notion of a smooth commutative
coalgebra. Any symmetric monoidal ∞-category admits a notion of commutative coalgebra
objects [8, 3.1]. If C is a commutative coalgebra object in ModR, then its R-linear dual C∨ :=
HomR(C,R) comes with the structure of a adic commutative R-algebra [9, 1.3.2].

We say that a commutative R-coalgebra C is smooth if (i) C is flat as an R-module and if (ii)
there is an isomorphism of π0R-coalgebras

π0C ≈
⊕
k≥0

Γkπ0R(M),

where the right-hand side is the divided polynomial coalgebra on some finitely generated projective
π0R-module M ; the rank of M (if defined) is also called the dimension of C [9, 1.2]. There is an
associated ∞-category cCAlgsmR of smooth commutative R-coalgebras.

Remark 17.2. The R-linear dual C∨ of C as above satisfies

π0C
∨ ≈

∏
k≥0

Symk
π0R(M

∨), M∨ = HomR(M,R).

In particular, if M is free of rank n then π∗C
∨ ≈ π∗R[[t1, . . . , tn]] [9, 1.3.8].

For a connective E∞-ring R, a functor CAlgcnR → S represented by Spf(C∨) for some smooth
commutative R-coalgebra is called a formal hyperplane over R [9, 1.5.3]. It is said to be n-
dimensional if C is n-dimensional in the sense above. (The “hyperplane” terminology arises because
our Spf(C∨) does not come equipped with a “base-point”, i.e., there is no distinguished R-algebra
map C∨ → R, despite the fact that π0C

∨ is equipped with an adic topology.)
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17.3. Formal groups. An n-dimensional formal group over a connective E∞-ringR is a functor

Ĝ : CAlgcnR → ModcnZ such that the composite

CAlgcnR
Ĝ−→ ModcnZ

Ω∞
−−→ S

is represented by Spf(C∨) for some smooth commutative R-coalgebra C of dimension n.

Remark 17.4. The definition of formal group I have given here is different than, but equivalent to,
the one given in [9, 1.6]; see [9, 1.6.7]. In particular, the basic definitions given there are expressed
more directly in terms of commutative coalgebras.

In particular, the functor CAlgcnR → S represented by Spf(C∨), where C is a commutative
R-coalgebra, is equivalent to the cospectrum of C. The cospectrum is a functor sending an
R′ ∈ CAlgcnR to a suitable space of “grouplike elements” in R′ ⊗R C [9, 1.51].

Remark 17.5. What about the nonconnective case? Although smooth commutative coalgebras
may be defined over any E∞-ring, formal hyperplanes and formal groups have only been defined
(following Lurie) over connective E∞-rings.

This is awkward but it’s okay! For instance, because smooth commutative R-coalgebras are flat
over R, taking 0-connective covers gives an equivalence

τ≥0 : cCAlg
sm
R

∼−→ cCAlgsmτ≥0R

between the ∞-categories of smooth commutative coalgebras over R and over its connective cover
τ≥0R [9, 1.2.8]; compare (13.10).

So you can extend the notions of formal hyperplane and formal group to nonconnective ground
rings, so that a formal hyperplane or formal group over R is defined to be one over τ≥0R. In
particular, for any E∞-ring R you get an ∞-category FGroup(R) of formal groups over R, which
by definition satisfies FGroup(R) = FGroup(τ≥0R).

17.6. The Quillen formal group in spectral geometry. A complex oriented cohomology the-
ory R gives rise to a 1-dimensional formal group over π∗R, whose function ring is R∗CP∞. When
the theory is represented by an E∞-ring which is suitably periodic, then we can upgrade this formal
group to an object in spectral geometry.

Given R ∈ CAlg and X ∈ S, write C∗(X;R) := R ⊗S Σ∞
+X ∈ ModR for the “R-module of

R-chains on X”. This object is in fact a commutative R-coalgebra, via the diagonal map on X [10,
2.4.3.10].

An E∞-ring R is weakly 2-periodic if π2R⊗π0R πnR→ πn+2R is an isomorphism for all n ∈ Z.
If R is both weakly 2-periodic and complex orientable, then one can show that C∗(CP∞;R) is a
smooth commutative R-coalgebra. Furthermore, it is a commutative group object in cCAlgR (via

the abelian group structure on CP∞), and hence it gives rise to a 1-dimensional formal group ĜQ
R ,

called the Quillen formal group of R [9, 4.1.3].

Remark 17.7. In view of what I said about connectivity in relation to formal groups (17.5), the
formal spectral DM stack associated to the Quillen formal group of R is Spf((τ≥0C∗(CP∞;R))∨).
Note that τ≥0C∗(CP∞;R) is not at all the same as C∗(CP∞; τ≥0R), and that the latter does not
give rise to a formal group in the sense defined above.

Remark 17.8. Let R be an E∞-ring which is weakly 2-periodic and complex orientable, with Quillen

formal group ĜQ
R . Then every commutativeR-algebraR→ R′ is also weakly 2-periodic and complex

orientable, and so also has a Quillen formal group, and in fact ĜQ
R′ ≈ ĜQ

R ×Spét τ≥0R Spét τ≥0R
′.

17.9. Preorientations and orientations. Let R be an E∞-ring, not necessarily assumed to be

connective, and Ĝ ∈ FGroup(R) a 1-dimensional formal group over it. We ask the question: What

additional data do we need to identify Ĝ with the Quillen formal group over R? Note that I don’t
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want to presuppose that the Quillen formal group actually exists in this case, i.e., I don’t assume
that R is weakly 2-periodic or complex orientable.

A preorientation of a 1-dimensional formal group Ĝ over a (possibly nonconnective) E∞-ring
R is a map

e : S2 → Ĝ(τ≥0R)

of based spaces, where the base point goes to the identity of the group structure. We write

Pre(Ĝ) = MapS∗(S
2, Ĝ(τ≥0R)) for the space of preorientations.

Proposition 17.10. Suppose R is weakly 2-periodic and complex orientable. Then there is an
equivalence

Pre(Ĝ) ≈ MapFGroup(R)(Ĝ
Q
R , Ĝ)

between the space of preorientations and the space of maps from the Quillen formal group.

Proof. See [9, 4.3]. This is basically a formal consequence of the observation that the free abelian
group on the based space S2 is equivalent to CP∞. □

Note that Pre(Ĝ) is defined even when R does not admit a Quillen formal group. We will now

describe a condition on a preorientation e ∈ Pre(Ĝ) which implies simultaneously (i) that R is

weakly 2-periodic and complex orientable, and (ii) that the map ĜQ
R → Ĝ induced by e is an

isomorphism in FGroup(R).

Given Ĝ ∈ FGroup(R), let O
Ĝ
denote its ring of functions, so that Ĝ ≈ Spf(O

Ĝ
). Note that by

our definitions (17.5) the ring O
Ĝ
is a connective τ≥0R-algebra, even if R is not connective.

The dualizing line of a 1-dimensional formal group Ĝ is an R-module defined by

ω
Ĝ
:= R⊗O

Ĝ
O
Ĝ
(−η), where O

Ĝ
(−η) := fiber of (O

Ĝ

η−→ τ≥0R→ R),

where η ∈ Ĝ(τ≥0R) is the identity element of the group structure. The R-module ω
Ĝ

is in fact
an R-module which is locally free of rank 1, and its construction is functorial with respect to
isomorphisms of 1-dimensional formal groups [9, 4.1 and 4.2].

Example 17.11. Let R be weakly 2-periodic and complex orientable, and ĜQ
R its Quillen formal

group. Then there is a canonical equivalence of R-modules

ω
ĜQ

R
≈ Σ−2R.

This object is also canonically identified with C∗
red(CP

1;R), the function spectrum representing the

reduced R-cohomology of CP1 ≈ S2 as a C∗(S2;R)-module.

For a 1-dimensional formal group Ĝ over an E∞-ring R, any preorientation e ∈ Pre(Ĝ) determines
a map

βe : ωĜ → Σ−2R

of R-modules, called the Bott map associated to e. This map is constructed in [9, 4.2–3].

Remark 17.12. Here is one way to describe the construction of the Bott map [9, 4.2.10].
For any suspension X = ΣY of a based space, the object C∗

red(X;R) is equivalent as a C∗(X;R)-
module to the restriction of an R-module along the augmentation π : C∗(X;R)→ R corresponding
to the basepoint ofX. (“The cup product is trivial on a suspension.”) For instance ifX = S2 = ΣS1

we have C∗
red(X;R) ≈ π∗(Σ−2R).

A preorientation e : S2 → Ĝ(τ≥0R) corresponds exactly to a map of E∞-rings ẽ : O
Ĝ
→ C∗(S2; τ≥0R)

compatible with augmentations to τ≥0R, and in turn induces a map

O
Ĝ
(−η)→ C∗

red(S
2;R) ≈ π∗(Σ−2R)

of O
Ĝ
-modules, which by the previous paragraph is adjoint to a map ω

Ĝ
= R⊗O

Ĝ
O
Ĝ
(−η)→ Σ−2R

of R-modules, which is the Bott map of e.
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An orientation of Ĝ is a preorientation e whose Bott map βe : ωĜ → Σ−1R is an equivalence.

We write OrDat(Ĝ) ⊆ Pre(Ĝ) for the full subgroupoid consisting of orientations.
Now we can state the criterion for a preoriented 1-dimensional formal group to be isomorphic to

the Quillen formal group.

Proposition 17.13. A preorientation e ∈ Pre(Ĝ) of a formal group Ĝ over an E∞-ring R is
an orientation if and only if (i) R is weakly 2-periodic and complex orientable, and (ii) the map

ĜQ
R → Ĝ of formal groups corresponding to e is an isomorphism.

Proof. See [9, 4.3.23]. That R is weakly 2-periodic and complex orientable given the existence of
an orientation is immediate from the fact that ω

Ĝ
is locally free of rank 1, and also equivalent to

Σ−2R. □

18. Quasicoherent sheaves

Recall that we have defined a sheaf of E∞-rings O ∈ ShvCAlg(X ) on an ∞-topos to be a limit
preserving functor X op → CAlg (3.1). There is an alternate description: ShvCAlg(X ) is equiv-
alent to the ∞-category of commutative monoid objects in the symmetric monoidal ∞-category
(ShvSp(X ),⊗) of sheaves of spectra, using a symmetric monoidal structure inherited from the
usual one on spectra [7, VII 1.15].

This leads to notions of sheaves of O-modules on a spectrally ringed ∞-topos, and eventually to
quasicoherent sheaves on a nonconnective spectral DM stack.

18.1. Sheaves of modules. To each spectrally ringed∞-topos X = (X ,O), there is an associated
∞-category ModO of sheaves of O-modules on X , whose objects are sheaves of spectra which
are modules over O. (A precise description of this category requires the theory of ∞-operads; see
[10, 3.3].)

The ∞-category ModO is presentable (so is complete and cocomplete), stable, and symmetric
monoidal, and the monoidal structure ⊗O preserves colimits and finite limits in each variable [12,
2.1].

Example 18.2. Given an E∞-ring A, any A-module M ∈ ModA can be promoted to a sheaf
M∈ ModO of O-modules on SpétA = (ShvétA ,O), so that the underlying sheaf of spectra ofM is

(A→ B) 7→ B ⊗AM : CAlgétA → Sp.

The resulting tuple (ShvétA ,O,M) of ∞-topos, sheaf of rings, and sheaf of modules, is denoted
Spét(A,M); see [12, 2.2.1] for details.

18.3. Quasicoherent sheaves. Now let X = (X ,OX) be a nonconnective spectral DM stack. A
sheaf of OX -modules F ∈ ModOX

is quasicoherent if there exists a set {Ui} of objects in X
which cover it (i.e., such that

∐
i Ui → 1 is effective epi), and there exist pairs (Ai,Mi), Ai ∈ CAlg,

Mi ∈ ModAi , and equivalences

(X/Ui
,OX |Ui ,F|Ui) ≈ Spét(Ai,Mi)

of data consisting of (strictly Henselian spectrally ringed ∞-topos and sheaf of modules), where
Spét(Ai,Mi) is as in (18.2).

The ∞-category

QCoh(X) ⊆ ModOX

of quasicoherent sheaves on X is defined to be the full subcategory of modules spanned by quasi-
coherent objects. It is presentable, stable, and symmetric monoidal (see [12, 2.2.4]).

For affine X, quasicoherent modules are just modules over the evident E∞-ring.
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Proposition 18.4. If X ≈ SpétA for some A ∈ CAlg, then there is an equivalence

QCoh(X) ≈ ModA

of symmetric monoidal ∞-categories. The functor QCoh(X) → ModA sends a sheaf to its global
sections; the functor ModA → QCoh(X) is M 7→ Spét(A,M).

Remark 18.5. If A ∈ CAlg♡ is an ordinary ring, then

QCoh(SpétA) ≈ ModA ≈ Ch(Mod♡A)[(quasi-isos)
−1],

where Mod♡A ⊆ ModA is the ordinary 1-category of A-modules.

There are other characterizations of quasicoherence. For instance, F ∈ ModOX
is quasicoherent

if and only if the evident map

F(V )⊗OX(V ) OX(U)→ F(U)

is an isomorphism for all maps U → V between affine objects in X [12, 2.2.4.3].
There are pairs of adjoint functors

QCoh(X)
// //

ModOXoooo
forget

// ShvSp(X ).
OX⊗−oo

The left adjoints of these pairs are symmetric monoidal, and preserve finite limits but not arbitrary
limits in general.

18.6. Pullbacks and pushforwards of quasicoherent sheaves. Given a map f : X → Y of
nonconnective spectral DM stacks, we have pairs of adjoint functors

QCoh(X)
// //

f∗
��

ModOXoooo //

f∗
��

ShvSp(X )
oo

f∗
��

QCoh(Y )
// //

f∗

OO

ModOYoooo //

f∗

OO

ShvSp(Y)
oo

f∗

OO

so that each functor labelled f∗ is (strongly) symmetric monoidal, and such that the squares of
left adjoints commute up to natural isomorphism, and the squares of right adjoints commute up to
natural isomorphism. See [12, 2.5].

18.7. Descent for modules and quasicoherent sheaves. It turns out that the formation of
categories of either modules or quasicoherent sheaves satisfies a version of descent. Given a non-
connective spectral DM stack X = (X ,OX), we have a functor

U 7→ XU = (X/U ,OX |U ) : X → SpDM,

whose colimit exists and is equivalent to X (13.7). For each f : U → V in X we have induced
functors

f∗ : ModOXV
→ ModOXU

, f∗ : QCoh(XV )→ QCoh(XU ),

which fit together to give functors X op → Ĉat∞.

Proposition 18.8. The functors X op → Ĉat∞ defined by U 7→ ModOXU
and U 7→ QCoh(XU ) are

limit preserving.

Proof. See [12, 2.1.0.5] and [12, proof of 2.2.4.1]. □

Thus, we may regard these constructions as defining sheaves of (presentable, stable, symmetric
monoidal) ∞-categories on X .
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18.9. Quasicoherent sheaves on quasiaffine spectral DM stacks. We have seen that QCoh(X) ≈
ModA if X = SpétA. This generalizes to X which are quasiaffine.

A nonconnective spectral DM stack X = (X ,OX) is quasiaffine if

1. the ∞-topos X is quasicompact, i.e., for any set {Ui} of objects of X which is a cover,
there is a finite subset {Uik , k = 1, . . . , r} which is a cover, and

2. it admits an open immersion into an affine, i.e., if there exists A ∈ CAlg and a (−1)-
truncated object U ∈ ShvétA such that X ≈ (SpétA)U .

Theorem 18.9.1. If X is quasiaffine, then taking global sections defines an equivalence of cate-
gories QCoh(X)

∼−→ ModA where A = Γ(X ,OX).

Proof. See [12, 2.4]. □

Example 18.10. Here is an example which illustrates both the theorem and its proof. Let R =
S[x, y], and X = A2 = SpétR = (ShvétR ,O). Define U ∈ ShvétR ⊆ Fun(CAlgétR ,S) by

U(S[x, y]→ B) :=

{
∗ if (x, y)π0B = π0B,

∅ if (x, y)π0B ̸= π0B.

Let Y := XU = “A2 ∖ {0}”. Clearly Y is quasiaffine.

We can write U as a colimit in ShvétR of a diagram Ux ← Uxy → Uy, where Ux, Uy ⊆ U are the
subobjects which are “inhabited” exactly at those S[x, y]→ B such that x ∈ (π0B)× or y ∈ (π0B)×

respectively, and Uxy = Ux ×U Uy. There is an equivalence of commutative squares

XUxy
//

��

XUy

��
XUx

// XU

≈

SpétS[x±, y±] //

��

SpétS[x, y±]

��
SpétS[x±, y] // Y

which are pushout squares in SpDM by (13.7). Taking quasicoherent sheaves, we obtain a commu-
tative square of ∞-categories

ModS[x±,y±] ModS[x,y±]
oo

ModS[x±,y]

OO

QCoh(Y )

OO

oo

which is a pullback by descent.
On the other hand, consider the ring of global sections

Γ := Γ(X/U ,OX |U ) ≈ lim
(
S[x±, y]→ S[x±, y±]← S[x, y±]

)
.

We have a commutative diagram

ModS[x±,y±] ModS[x,y±]
oo

ModS[x±,y]

OO

ModΓoo

OO

which is also seen to be a pullback of ∞-categories. The equivalence

ModS[x±,y] ×ModS[x±,y±]
ModS[x,y±] → ModΓ

is realized by a functor which sends “descent data”(
Mx ∈ ModS[x±,y], My ∈ ModS[x,y±], ψ : Mx[y

−1]
∼−→My[x

−1] ∈ ModS[x±,y±]

)
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to the limit lim
(
Mx → Mx[y

−1]
∼−→ My[x

−1] ← My

)
in ModΓ, while the inverse equivalence sends

N ∈ ModΓ to
(
S[x±, y]⊗Γ N, S[x, y±]⊗Γ N, id

)
. The key observation for proving the equivalence

is that both these functors preserve arbitrary colimits and finite limits, and are easy to evaluate on
the “generating” objects Γ ∈ ModΓ and (S[x±, y], S[x, y±], id) in the limit.

19. Elliptic cohomology and topological modular forms

I return to our motivating example of elliptic cohomology.
First, let us consider the moduli stack of (smooth) elliptic curves. This is an example of a

“classical” Deligne-Mumford stack. However, according to (12.4) we can regard classical Deligne-
Mumford stacks as a particular type of 0-truncated spectral DM stack, and since that is the language
I have introduced in this paper, that is how I will generally talk about it.

19.1. The moduli stack of elliptic curves. The moduli stack of elliptic curves is a (classical)

DM stackMEll = (XEll,O) such that, for ordinary ring A ∈ CAlg♡, we have

(19.2) MapSpDM(SpétA,MEll) ≈
{
elliptic curves over SpétA}.

The right-hand side of (19.2) represents the 1-groupoid of elliptic curves over SpétA and iso-
morphisms between them. (Note that an isomorphism of elliptic curves is necessarily compatible
with the distinguished sections e; we usually omit e from the notation.)

Remark 19.3. Here “elliptic curve” means a classical smooth elliptic curve, i.e., a proper and
smooth morphism π : C → SpétA of schemes (i.e., of schematic DM stacks) whose geometric fibers
are curves of genus 1, and which is equipped (as part of the data), with a section e : SpétA → C
of π.

I will not review the theory of elliptic curves here. However, we should note that every elliptic
curve is an abelian group scheme; i.e., an elliptic curve C → SpétA is an abelian group object
in the category of schemes over A. Furthermore, as it is 1-dimensional and smooth, the formal
completion C∧

e at the identity section exists, and is an example of a 1-dimensional formal group
over A.

That there exists such an objectMEll is a theorem, which we will take as given.

Remark 19.4 (The étale site of MEll). As a DM stack, and hence as a spectral DM stack, MEll

is the colimit of a diagram whose objects are étale morphisms SpétA → MEll, and since MEll is
0-truncated the rings A which appear in this diagram will be ordinary rings. Thus, MEll can be
reconstructed from the “étale site” of MEll, i.e., the category U whose objects are elliptic curves
C → SpétA represented by an étale map SpétA→MEll, and whose morphisms are commutative
squares

C //

��

C ′

��
SpétA // SpétA′

such that C → C ′ ×SpétA′ SpétA is an isomorphism of elliptic curves over SpétA.
It remains to characterize the objects of U . Given elliptic curves C → S and C ′ → S′, consider

the functor

T 7→ IsoC/S,C′/S′(T ) :=
{
(f : T → S, f ′ : T → S′, α : f∗C

∼−→ f ′∗C ′)
}

which sends a scheme T to the set of tuples consisting of maps of schemes f and f ′, and a choice
of isomorphism α of elliptic curves over T . It turns out that this functor is itself representable by
a scheme IC/S,C′/S′ :

IsoC/S,C′/S′(T ) ≈ MapSch(SpecT, IC/S,C′/S′).
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An elliptic curve C → S is represented by an étale morphism S → MEll if and only if for every
elliptic curve C ′ → S′ the evident map IC/S,C′/S′ → S of schemes is étale.

See [5] for much more on the moduli stack of elliptic curves (although the word “stack” is rarely
used there).

19.5. The theorem of Goerss-Hopkins-Miller. Let U denote the étale site ofMEll as in (19.4).
We note the functor

O : Uop → CAlg♡.

defined by (C → SpétA) 7→ A. Also recall that for each object (C → SpétA) ∈ U we have
1-dimensional formal group law over A.

Question 19.6. Does there exist a functor Otop : Uop → CAlg sitting in a commutative diagram

CAlg

π0
��

Uop

O
//

Otop
;;

CAlg♡

such that

1. for each object C → SpétA, the corresponding ring R = Otop(C → SpétA) is weakly 2-
periodic and has homotopy concentrated in even degrees, and hence is complex orientable;
and

2. is equipped with natural isomorphisms Spét(R0(CP∞)) ≈ C∧
e of formal groups between the

formal groups of R = Otop(C → SpétA) and the formal completions C∧
e of elliptic curves

Remark 19.7. The formal groups C∧
e of elliptic curves C → SpétA in the étale site U satisfy the

Landweber condition (see [2, Ch. 4]), and thus for each such curve there we can certainly construct
a homotopy-commutative ring spectrum R satisfying conditions (1) and (2). The point of the
theorem is to rigidify this construction to an honest functor of ∞-categories, and while doing so
lift it to a functor to structured commutative rings.

Theorem 19.7.1 (Goerss-Hopkins-Miller). The answer to (19.6) is yes. Furthermore, the resulting
functor Otop defines a sheaf of E∞-rings on the étale site ofMEll.

The pair (XEll,Otop) is an example of a nonconnective spectral DM stack, whose 0-truncation is
the classical DM stackMEll. (That this is the case is because π0Otop ≈ O, the structure sheaf on
MEll.)

Given (19.7.1), we can now define

TMF := Γ(XEll,Otop) ≈ lim(C→SpétA)∈U Otop(C → SpétA),

the periodic E∞-ring of topological modular forms.

Remark 19.8. See [2] for more on (19.7.1), including details about the original proof, as well as
more information on TMF.

20. The classifying stack for oriented elliptic curves

It turns out that the nonconnective spectral Deligne-Mumford stack (XEll,Otop) admits a mod-
ular interpretation in spectral algebraic geometry: it is the classifying object for oriented elliptic
curves.
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20.1. Elliptic curves in spectral geometry. A variety over an E∞-ring R is a flat morphism
X → SpétR of nonconnective spectral DM stacks, such that the induced map τ≥0X → Spét τ≥0R
of spectral DM stacks is: proper, locally almost of finite presentation, geometrically reduced, and
geometrically connected [8, 1.1], [12, 19.4.5]

Remark 20.2. We have not and will not describe all the adjectives in the above definition. See [12,
5.1] for proper, [12, 4.2] for locally almost of finite presentation, [12, 8.6] for geometrically reduced
and geometrically connected.

An abelian variety over an E∞-ring R is a variety X over R which is a commutative monoid
object in SpDMnc

R . It is an elliptic curve if it is of dimension 1.

Remark 20.3. “Commutative monoid object” is here taken in the sense of [10, 2.4.2]. In this case,
it means that an abelian variety X over R represents a functor on SpDMnc

R which takes values in
E∞-spaces. In fact, one can show that every abelian variety in this sense is “grouplike”, i.e., it
actually represents a functor to grouplike E∞-spaces [8, 1.4.4].

A strict abelian variety or elliptic curve is one in which the commutative monoid structure is
equipped with a refinement to an abelian group structure; i.e., X represents a functor to ModcnZ
(8.7).

Remark 20.4. Over an ordinary ring R, either notion of abelian variety reduces to the classical
notion. In either case, the commutative monoid/abelian group structure coincides with the unique
abelian group structure which exists on a classical abelian variety.

In the classical case, the underlying variety of an abelian variety admits a unique group structure
compatible with a given identity section. In the spectral setting, this is no longer the case, and a
group structure of some sort needs to be imposed.

There are∞-categories AbVar(R) and AbVars(R) of abelian varieties and strict abelian varieties;
morphisms are maps of nonconnective spectral DM stacks over R which preserve the commutative
monoid structure or abelian group structure as the case may be. We are going to be interested in
Ells(R) ⊆ AbVars(R), the full subcategory of strict elliptic curves.

Remark 20.5. Since abelian varieties overR are in particular flat morphisms, we see that AbVar(R) ≈
AbVar(τ≥0R) and AbVars(R) ≈ AbVars(τ≥0R) by (13.10).

There is a moduli stack of strict elliptic curves.

Theorem 20.5.1 (Lurie). There exists a spectral DM stackMs
Ell such that

MapSpDMnc(SpétR,Ms
Ell) ≈ Ells(R)≃;

the right-hand side is the maximal ∞-groupoid inside Ells(R). The underlying 0-truncated spectral
DM stack ofMs

Ell is equivalent to the classical moduli stackMEll.

This is proved in [8, 2], using the spectral version of the Artin Representability Theorem [12,
18.3]. That Ms

Ell is a connective object (i.e., not nonconnective) is immediate from the fact that
Ells(R) ≈ Ells(τ≥0R). That the underlying 0-truncated stack of Ms

Ell is the classical one is a
consequence of the fact that strict elliptic curves over ordinary rings are just classical elliptic
curves.

20.6. Oriented elliptic curves. For any strict elliptic curve C → SpétR, we may consider the
formal completion C∧

e along the identity section. It turns out that C∧
e is a 1-dimensional formal

group over R [9, 7.1].
Thus, we define an oriented elliptic curve over R to be a pair (C, e) consisting of a strict elliptic

curve C → SpétR together with an orientation e ∈ OrDat(Ĉe) of its formal completion Ĉ in the
sense of (17.9). There is a corresponding∞-category Ellor(R) of oriented elliptic curves: morphisms
must preserve the orientation.
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Theorem 20.6.1 (Lurie). There exists a nonconnective spectral DM stackMor
Ell such that

MapSpDMnc(SpétR,Mor
Ell) ≈ Ellor(R)≃.

The map Mor
Ell → Ms

Ell classifying the strict elliptic curve induces an equivalence of underlying
classical DM stacks.

This is proved in [9, 7].

Remark 20.7. Taken together, we have maps of nonconnective spectral DM stacks

MEll
i−→Ms

Ell
p←−Mor

Ell

in which is Ms
Ell is a spectral DM stack (i.e., is connective), and MEll is a 0-truncated spectral

DM stack (and in fact is a DM stack). The map i witnesses the fact that every classical elliptic
curve is a strict elliptic curve, while the map p forgets about orientation. All of these objects have
the same underlying DM stack (i.e., they have equivalent∞-topoi and π0 of their structure sheaves
coincide); in the case ofMor

Ell this is a non-trivial observation.

Remark 20.8. Note that if SpétA →Mor
Ell is any map of nonconnective spectral DM stacks, then

the theorem produces an oriented elliptic curve over A, and hence an oriented formal group over
A. Thus (17.13) implies that the E∞-ring A must be weakly 2-periodic and complex orientable.

In fact, the proof of the theorem shows a little more in the case that SpétA→Mor
Ell is étale. In

this case, A is not merely weakly 2-periodic; it also has the property that πodd(A) ≈ 0.
As the underlying classical DM stack of Mor

Ell is MEll, we have that the full subcategory U ′ ⊆
SpDMnc

/Mor
Ell

spanned by étale morphisms SpétA → Mor
Ell is equivalent to the étale site of the

classical stack MEll, which we called U in (19.4). Putting all this together, we see that we have
functors

Uop ∼←− U ′op → CAlg

given by
(Spétπ0A→MEll)←[ (SpétA→Mor

Ell) 7→ A.

We see that the resulting functor Uop → CAlg is precisely of the sort demanded by (19.6).
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