
COMMUTATIVE RING SPECTRA

BIRGIT RICHTER

Abstract. In this survey paper on commutative ring spectra we present some basic features
of commutative ring spectra and discuss model category structures. As a first interesting class
of examples of such ring spectra we focus on (commutative) algebra spectra over commutative
Eilenberg-Mac Lane ring spectra. We present two constructions that yield commutative ring
spectra: Thom spectra associated to infinite loop maps and Segal’s construction starting with
bipermutative categories. We define topological Hochschild homology, some of its variants, and
topological André-Quillen homology. Obstruction theory for commutative structures on ring
spectra is described in two versions. The notion of étale extensions in the spectral world is
tricky and we explain why. We define Picard groups and Brauer groups of commutative ring
spectra and present examples.

1. Introduction

Since the 1990’s we have several symmetric monoidal categories of spectra at our disposal
whose homotopy category is the stable homotopy category. The monoidal structure is usually
denoted by ∧ and is called the smash product of spectra. So since then we can talk about
commutative monoids in any of these categories – these are commutative ring spectra. Even
before such symmetric monoidal categories were constructed, the consequences of their existence
were described. In [128, §2] Friedhelm Waldhausen outlines the role of ‘rings up to homotopy’.
He also coined the expression ‘brave new rings’ in a 1988 talk at Northwestern.

So what is the problem? Why don’t we just write down nice commutative models of our
favorite homotopy types and are done with it? Why does it make sense to have a whole chapter
about this topic?

In algebra, if someone tells you to check whether a given ring is commutative, then you can
sit down and check the axiom for commutativity and you should be fine. In stable homotopy
theory the problem is more involved, since strict commutativity may only be satisfied by some
preferred point set level model of the underlying associative ring spectrum and the operadic
incarnation of commutativity is an extra structure rather than a condition.

There is one class of commutative ring spectra that is easy to construct. If you take singular
cohomology with coefficients in a commutative ring R, then this is represented by the Eilenberg-
MacLane spectrum HR and this can be represented by a commutative ring spectrum.

So it would be nice if we could have explicit models for other homotopy types that come
naturally equipped with a commutative ring structure. Sometimes this is possible. If you are
interested in real (or complex) vector bundles over your space, then you want to understand
real (or complex) topological K-theory and Michael Joachim [56, 57] for instance produced
explicit analytically flavoured models for periodic real and complex topological K-theory with
commutative ring structures.

There are a few general constructions that produce commutative ring spectra for you. For
instance, the construction of Thom spectra often gives rise to commutative ring spectra. We will
discuss this important class of examples in Section 4. A classical construction due to Graeme
Segal also produces small nice models of commutative ring spectra (see Section 5).
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Quite often, however, the spectra that we like are constructed in a synthetic way: You have
some commutative ring spectrum R and you kill a regular sequence of elements in its graded
commutative ring of homotopy groups, (x1, x2, . . .), xi ∈ π∗(R), and you consider a spectrum E
with homotopy groups π∗(E) ∼= π∗(R)/(x1, x2, . . .). Then it is not clear that E is a commutative
ring spectrum.

A notorious example is the Brown-Peterson spectrum, BP . Take the complex cobordism
spectrum MU . Its homotopy groups are

π∗(MU ) = Z[x1, x2, . . .]

with xi being a generator in degree 2i. If you fix a large even degree, then you have a lot
of possible elements in that degree, so you might wish to consider a spectrum with sparser
homotopy groups. Using the theory of (commutative, 1-dimensional) formal group laws you
can do that: If you consider a prime p, then there is a spectrum, called the Brown-Peterson
spectrum, that corresponds to p-typical formal group laws. It can be realized as the image of
an idempotent on MU and has

π∗(BP) ∼= Z(p)[v1, v2, . . .]

but now the algebraic generators are spread out in an exponential manner: The degree of vi
is 2pi − 2. You can actually choose the vi as the xpi−1, so you can think of BP as a quotient
of MU in the above sense. Since its birth in 1966 [27] its multiplicative properties where an
important issue. In [18] it was for instance shown that BP has some partial coherence for
homotopy commutativity, but in 2017 Tyler Lawson finally shows that at the prime 2 BP is
not a commutative ring spectrum [62]! For the non-existence of E∞-structures on BP at odd
primes see [120].

There are even worse examples: If you take the sphere spectrum S and you try to kill the
non-regular element 2 ∈ π0(S) then you get the mod-2-Moore spectrum. That isn’t even a ring
spectrum up to homotopy. You can also kill all the generators vi ∈ π∗(BP ) including p = v0 and
leaving only one vn alive. The resulting spectrum is the connective version of Morava K-theory,
k(n). At the prime 2 this isn’t even homotopy commutative. In fact, Pazhitnov, Rudyak and
Würgler show more [95, 131]: If π0 of a homotopy commutative ring spectrum has characteristic
two, then it is a generalized Eilenberg-Mac Lane spectrum. Recent work of Mathew, Naumann
and Noel puts severe restrictions on finite E∞-ring spectra [80].

Quite often, we end up working with ideals in the graded commutative ring of homotopy
groups, but as we saw above, this is not a suitable notion of ideal. There is a notion of an ideal
in the context of (commutative) ring spectra [53] due to Jeff Smith, but still several algebraic
constructions do not have an analogue in spectra.

So how can you determine whether a given spectrum is a commutative ring spectrum if you
don’t have a construction that tells you right away that it is commutative? This is where
obstruction theory comes into the story.

There is an operadic notion of an E∞-ring spectrum that goes back to Boardman-Vogt and
May. Comparison theorems [77], [116] then tell you whether these more complicated objects
are equivalent to commutative ring spectra. In the categories of symmetric spectra, orthogonal
spectra and S-modules they are.

Obstruction theory might help you with a decision whether a spectrum carries a commutative
monoid structure: One version [16] gives obstructions for lifting the ordinary Postnikov tower
to a Postnikov tower that lives within the category of commutative ring spectra. The other
kind finds some obstruction classes that tell you that you cannot extend some partial bits and
pieces of a nice multiplication to a fully fledged structure of an E∞-ring spectrum or that some
homology or homotopy operation that you observe contradicts such a structure. This can be
used for a negative result (as in [62]) or for positive statements: There are result by Robinson
[106] and Goerss-Hopkins [38, 39] that tell you that you have a (sometimes even unique) E∞-
ring structure on your spectrum if all the obstruction groups vanish. Most notably Goerss
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and Hopkins used obstruction theory to prove that the Morava stabilizer groups acts on the
corresponding Lubin-Tate spectrum via E∞-morphisms [38].

The algebraic behaviour on the level of homotopy groups can be quite deceiving: com-
plexification turns a real vector bundle into a complex vector bundle. This induces a map
π∗(KO)→ π∗(KU ) which can be realized as a map of commutative ring spectra c : KO → KU .
On homotopy groups we get

(1.1) π∗(c) : π∗(KO) = Z[η, y, ω±1]/(2η, η3, ηy, y2 − 4w)→ Z[u±1] = π∗(KU ).

Here the degrees are |η| = 1, |y| = 4, |w| = 8, |u| = 2 and y is sent to 2u2. So on the algebraic
level c is horrible. But John Rognes showed that the conjugation action on KU turns the map
c : KO → KU into a C2-Galois extension of commutative ring spectra!

Even for ordinary rings, viewing a (commutative) ring R as a (commutative) ring spectrum
via the Eilenberg-Mac Lane spectrum functor changes the situation completely. The ring R
has a characteristic map χ : Z → R because the ring of integers is the initial ring. As a ring
spectrum, HZ is far from being initial. The map Hχ can be precomposed with the unit map
of HZ

S
η //HZ

Hχ //HR

and the sphere spectrum S is the initial ring spectrum! Now there is a lot of space between the
sphere and any ring. I will discuss two consequences that this has: There is actually algebraic
geometry happening between the sphere spectrum and the prime field Fp: There is a Galois
extension of commutative ring spectra (see 8.1) A→ HFp!

Another feature is that there exist differential graded algebras A∗ and B∗ that are not quasi-
isomorphic, but whose associated algebra spectra over an Eilenberg-Mac Lane spectrum [123]
are equivalent as ring spectra [31]. Similar phenomena happen if you consider differential graded
E∞-algebras: There are non quasi-isomorphic ones whose associated commutative algebras over
an Eilenberg-Mac Lane spectrum [103] are equivalent as commutative ring spectra [21].

Content. The structure of this overview is as follows: We start with some basic features of
commutative ring spectra and their model category structures in Section 2. The most basic
way to relate classical algebra to brave new algebra is via the Eilenberg-Mac Lane spectrum
functor. We study chain algebras and algebras over Eilenberg-Mac Lane ring spectra in Section
3. As you can study the group of units of a ring we consider units of ring spectra and Thom
spectra in Section 4. In Section 5 we present a construction going back to Segal. Plugging in a
bipermutative category yields a commutative ring spectrum.

In Section 6 we introduce topological Hochschild homology and some of its variants and
topological André-Quillen homology. In Section 7 we discuss some versions of obstruction
theory that tell you whether a given multiplicative cohomology theory can be represented by a
strict commutative model.

Some concepts from algebra translate directly to spectra but some others don’t. We discuss
the different concepts of étale maps for commutative algebra spectra in Section 8. Picard and
Brauer groups for commutative ring spectra are important invariants and feature in Section 9.

Disclaimers. For more than 30 years, the phrase commutative ring spectrum meant a com-
mutative monoid in the homotopy category of spectra. Since the 90’s this has changed. At the
beginning of this new era people were careful not to use this name, in order to avoid confusion
with the homotopy version. In this paper we reserve the phrase commutative ring spectrum for
a commutative monoid in some symmetric monoidal category of spectra.

The second disclaimer is that for this paper a space is always compactly generated weak
Hausdorff. I denote the corresponding category just by Top.

Last but not least: Of course, this overview is not complete. I had to omit important aspects
of the field due to space constraints. Most prominently probably is the omission of not discussing
topological cyclic homology and its wonderful applications to algebraic K-theory.
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I try to give adequate references, but often it was just not feasible to describe the whole de-
velopment of a topic and much worse, I probably have forgotten to cite important contributions.
If you read this and it affects you, then I can only apologize.

Acknowledgements. The author thanks the Hausdorff Research Institute for Mathematics in
Bonn for its hospitality during the Trimester Program K-Theory and Related Fields. She thanks
Akhil Mathew for clarifying one example, Jim Davis and Stefan Schwede for some corrections,
Andy Baker and Peter May for pointing out omissions and Steffen Sagave for many valuable
comments on a draft version of this paper.

2. Features of commutative ring spectra

2.1. Some basics. Before we actually start with model structures, we state some basic facts
about commutative ring spectra.

Let R be a commutative ring spectrum. Then the category of R-module spectra is closed
symmetric monoidal: For two such R-module spectra M,N the smash product over R, M ∧RN ,
is again an R-module and the usual axioms of a symmetric monoidal category are satisfied.
There is an R-module spectrum FR(M,N), the function spectrum of R-module maps from M
to N .

We denote the category of R-module spectra by MR. The category of commutative R-
algebras is the category of commutative monoids in MR and we denote this category by CR.

By definition, every object A of CR receives a unit map from R and hence R is initial in CR.
In particular, the sphere spectrum is the initial commutative ring spectrum. Every discrete ring
is a Z-algebra, similarly, every (commutative) ring spectrum is a (commutative) S-algebra. If
R is a commutative ring spectrum, then the category of commutative R-algebra is isomorphic
to the category of commutative ring spectra under R, i.e., such commutative ring spectra A
with a distinguished map η : R→ A in that category.

We allow the trivial R-algebra corresponding to the one-point spectrum ∗ and this spectrum
is a terminal object in CR.

In any symmetric monoidal category (C,⊗, 1, τ) the coproduct of two commutative monoids
A and B in C is A⊗B. So, for two commutative R-algebras A and B, their coproduct is A∧RB.

2.2. Model structures on commutative monoids. I will assume that you are familiar with
the concept of model categories and that you have seen some examples and read Chapter 4
in this book. Good general references are Hovey’s [52] and Hirschhorn’s [48] book. You could
also just skip this section and have in mind that there are some serious model category issues
lurking in the dark.

For this section I will mainly focus on two models for spectra: Symmetric spectra [54] and
S-modules [34]. They are different concerning their model structures. In the model structure
in [54] on symmetric spectra the sphere spectrum is cofibrant whereas in the one for S-modules
it is not, but all objects are fibrant.

The model structures on commutative monoids in either of the categories [34, 54] are special
cases of a right induced model structure: We have a functor PR from R-module spectra to
commutative R-algebra spectra assigning the free commutative R-algebra spectrum on M to
any R-module spectrum M , explicitly

PR(M) =
∨
n>0

M∧Rn/Σn.

The symbol PR should remind you of a polynomial algebra. This functor has a right adjoint,
the forgetful functor U . In a right-induced model structure one determines the fibrations and
weak equivalences by the right adjoint functor. In our cases, a map of commutative R-algebra
spectra is a fibration or a weak equivalence, if it is one in the underlying category of R-module
spectra. Note that establishing right induced model structures on commutative monoids in
some model category does not always work. The standard example is the category of Fp-chain
complexes (say p is an odd prime). Then the chain complex D2 is acyclic, having Fp in degrees 1
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and 2 with the identity map as differential, but the free graded commutative monoid generated
by it is ΛFp(x1)⊗ Fp[x2] with |xi| = i and the induced differential is determined by d(x2) = x1

and the Leibniz rule. But then d(xp2) is a cycle that is not a boundary, so the resulting object
is not acyclic.

If R is a commutative S-algebra in the setting of EKMM [34], then the categories of asso-
ciative R-algebras and of commutative R-algebras possess a right induced model structure [34,
Corollary VII.4.10]. The existence of the model structure for commutative monoids is a special
case of the existence of right-induced model structures for T-algebras ([34, Theorem VII.4.9])
where T is a continuous monad on the category of R-module spectra that preserves reflexive
coequalizers and satisfies the cofibration hypothesis [34, VII.4]. The category of commutative
S-algebras is identified [34, Proposition II.4.5] with the category of algebras for the monad PS
as above on the category of S-modules.

In diagram categories such as symmetric spectra and orthogonal spectra the situation is
different: In the standard model structures on these categories the sphere spectrum is cofibrant.
If one would take a right-induced model structure on the category of commutative monoids, i.e.,
the model structure such that a map of commutative ring spectra f : A → B is a fibration or
weak equivalence if it is one in the underlying category, then the sphere would still be cofibrant.
If we take a fibrant replacement of the sphere S → Sfib, then in particular Sfib would be fibrant in
the model category of symmetric spectra, hence it would be an Omega-spectrum and its zeroth
level would be a strictly commutative model for QS0. However, Moore shows [93, Theorem
3.29] that this implied that QS0 had the homotopy type of a product of Eilenberg-MacLane
spaces – but this is false.

The usual way to avoid this problem is to consider a positive model structure on SpΣ (see [77,
Definition 6.1] for the general approach). Here the positive level fibrations (weak equivalences)
are maps f ∈ SpΣ(X,Y ) such that f(n) is a fibration (weak equivalence) for all levels n > 1.
The positive cofibrations are then cofibrations in SpΣ that are isomorphisms in level zero.
The positive stable model category is then obtained by a Bousfield localization that forces the
stable equivalences to be the weak equivalences and the right-induced model structure on the
commutative monoids in SpΣ then has the desired properties.

There is another nice model for connective spectra, given by Γ-spaces [119, 71]. This category
is built out of functors from finite pointed sets to spaces, so it is a very hands-on category
with explicit constructions. It is also a symmetric monoidal category with a suitable model
structure. We refer to [71, 115] for background on this. Its (commutative) monoids are called
(commutative) Γ-rings. Beware that commutative Γ-rings, however, do not model all connective
commutative ring spectra. Tyler Lawson proves in [63] that commutative Γ-rings satisfy a
vanishing condition for Dyer-Lashof operations of positive degree on classes in their zeroth
mod-p-homology (for all primes p) and that for instance the free E∞-ring spectrum generated
by S0 cannot be modelled as a commutative Γ-ring.

2.3. Behaviour of the underlying modules. In the setting of EKMM it is shown that the
underlying R-modules of cofibrant commutative R-algebras have a well-behaved smash product
in the derived category of R-modules:

Theorem 2.1. [34, Theorem VII.6.7] If A and B are two cofibrant commutative R-algebras,

and if ϕA : ΓA
∼ //A and ϕB : ΓB

∼ //B are chosen cell R-module spectra approximations
then

ϕA ∧R ϕB : ΓA ∧R ΓB → A ∧R B
is a weak equivalence.

Brooke Shipley developed a model structure for commutative symmetric ring spectra in [122]
in which the underlying symmetric spectrum of a cofibrant commutative ring spectrum is also
cofibrant as a symmetric spectrum [122, Corollary 4.3].

She starts with introducing a different model structure on symmetric spectra. Let M denote
the class of monomorphisms of symmetric sequences in pointed simplicial sets and let S ⊗M
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denote the set {S⊗ f, f ∈M} where ⊗ denotes the tensor product of symmetric sequences. An
S-cofibration is a morphism in (S ⊗M)-cof, i.e., a morphism in SpΣ that has the left lifting
property with respect to maps that have the right lifting property with respect to S ⊗M . She
shows that the classes of S-cofibrations and stable equivalences determine a model structure
with the S-fibrations being the class of morphisms with the right lifting property with respect
to S-cofibrations that are also stable equivalences [122, Theorem 2.4]. This model structure
was already mentioned in [54, 5.3.6]. Shipley proves that this model structure is cofibrantly
generated, is monoidal and satisfies the monoid axiom [122, 2.4, 2.5].

Note that symmetric spectra are S-modules in symmetric sequences. This allows for a version
of an R-model structure for every associative symmetric ring spectrum R with R-cofibrations,
R-fibrations and stable equivalences [122, Theorem 2.6]. In the positive variant of this model
structure the positive R-cofibrations are R-cofibrations that are isomorphisms in level zero.
Together with the stable equivalences this determines the positive R-model structure.

The corresponding right induced model structure on commutative R-algebra spectra for a
commutative symmetric ring spectrum R is then the convenient model structure: The weak
equivalences are stable equivalences, the fibrations are positive R-fibrations and the cofibrations
are determined by the structure.

She then shows the remarkable property of this model structure on commutative R-algebra
spectra:

Theorem 2.2. [122, Corollary 4.3] If A is cofibrant as a commutative R-algebra then A is
R-cofibrant in the R-model structure. If A is fibrant as a commutative R-algebra, then A is
fibrant in the positive R-model structure on R-module spectra.

The positive R-model structure ensures that R is not cofibrant, hence cofibrant commutative
R-algebras will not be positively R-cofibrant!

2.4. Comparison, rigidification and En-structures. Stefan Schwede proves [116, Theorem
5.1] that the homotopy category of commutative S-algebras from [34] is equivalent to the ho-
motopy category of commutative symmetric ring spectra by establishing a Quillen equivalence
between the corresponding model categories. In [77, Theorem 0.7] the analogous comparison
result is proven for commutative orthogonal ring spectra and commutative symmetric ring spec-
tra.

Even before any symmetric monoidal category of spectra was constructed, the notion of
operadically defined E∞-ring spectra [82] was available. An E∞-structure on a spectrum is a
multiplication that is homotopy commutative in a coherent way. See Chapter 5 of this book for
background on operads and their role in the study of spectra with additional structure.

There is an explicit comparison of the good old E∞-ring spectra and commutative ring
spectra, see [34, Proposition II.4.5] or [77, Remark 0.14], in particular, every E∞-ring spectrum

R̃ can be rigidified to a commutative ring spectrum R in such a way that the homotopy type is
preserved.

There are several popular E∞-operads that will show up later: for instance the linear isome-
tries operad (see (4.3)) and the Barratt-Eccles operad. The n-ary part of the latter is easy to
describe: You take O(n) = EΣn, a contractible space with free Σn-action. For compatiblity
reasons it is advisible to take the realization of the standard simplicial model of EΣn whose set
of q-simplices is (Σn)q+1.

An operad with a nice geometric description is the little m-cubes operad, that in arity n
consists of the space of n-tuples of linearly embedded m-cubes in the standard m-cube with
disjoint interiors and with axes parallel to that of the ambient cube [23, Example 5]. We call this
(and every equivalent) operad in spaces Em. For m = 1 this operad parametrizes A∞-structures
and the colimit is an E∞-operad. Hence the intermediate Em’s for 1 < m < ∞ interpolate
between these structures, they give A∞-structures with homotopy-commutative multiplications
that are coherent up to some order.
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2.5. Power operations. The extra structure of an E∞-ring spectrum gives homology opera-
tions. The general setting allows for H∞-ring spectra [28]; for simplicity we assume that E and
R are two E∞-ring spectra whose structure is given by the Barratt-Eccles operad, i.e., there
are structure maps

(2.1) ξnR : (EΣn)+ ∧Σn R
∧n → R

for R and also for E. McClure describes the general setting of power operations in [28, IX
§1]. Fix a prime p and abbreviate (EΣp)+ ∧Σp R

∧p by Dp(R); DpR is often known as the pth
extended power construction on R. A power operation assigns to every class [x] ∈ EnR and
every class e ∈ Em(DpS

n) a class Qe[x] ∈ EmR, hence we can view Qe as a map

Qe : EnR→ EmR.

The construction is as follows. Take a representative x : Sn → E ∧R of [x] and e ∈ Em(DpS
n)

and apply the following composition to e:

(2.2) Em(DpS
n)

&&

Em(Dpx) // Em(Dp(E ∧R))
δ // Em(DpE ∧DpR)

Em(ξpE∧id)

��
Em(E ∧DpR)

µ∗

��
Em(DpR)

Em(ξpR)

��
Em(R).

Here,

δ : (EΣp)+ ∧Σp (E ∧R)∧p → (EΣp)+ ∧Σp E
∧p ∧ (EΣp)+ ∧Σp R

∧p

is the canonical map induced by the diagonal on the space EΣp and µ denotes the multiplication
in E, so it induces

µ∗ : π∗(E ∧ E ∧DpR)→ π∗(E ∧DpR).

There are several important special cases of this construction:

(a) For E the sphere spectrum one obtains operations on the homotopy groups of an E∞-ring
spectrum, see [28, IV §7].

(b) For E = HFp the power operations for certain classes ei ∈ Hi(Σp;Fp) are often called
(Araki-Kudo-)Dyer-Lashof operations. These are natural homomorphisms

(2.3) Qi : (HFp)n(R)→ (HFp)n+2i(p−1)(R)

for odd primes and Qi : (HF2)n(R)→ (HF2)n+i(R) at the prime 2 that satisfy a list of
axioms [28, Theorem III.1.1] and compatibility relations with the homology Bockstein
and the dual Steenrod operations.

(c) There are also important K(n)-local versions of such operations and we will encounter
them later.

3. Chain algebras and algebras over Eilenberg-Mac Lane spectra

The derived category of a ring is an important object in many subjects. The initial ring is
the ring of integers. Every ring R has an associated Eilenberg-Mac Lane spectrum, HR.
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3.1. HR-module and algebra spectra. We collect some results that compare the category
of chain complexes of R-modules with the category of module spectra over HR. We start with
additive statements and move to comparison results for flavors of differential graded R-algebras.
For an overview of algebraic applications of these equivalences see for instance [41].

In the eighties, so before any strict symmetric monoidal category of spectra was constructed,
Alan Robinson developed the notion of the derived category, D(E), of right E-module spectra
for every A∞-ring spectrum E. He showed the following result.

Theorem 3.1. [104, Theorem 3.1] For every associative ring R there is an equivalence of
categories between the derived category of R, D(R), and the derived category of the associated
Eilenberg-Mac Lane spectrum, D(HR).

Later, in the context of S-modules this corresponds to [34, IV, Theorem 2.4]. Work of
Schwede and Shipley strengthened the result to a Quillen equivalence of the corresponding
model categories:

Theorem 3.2. [118, Theorem 5.1.6] The model category of unbounded chain complexes of
R-modules is Quillen equivalent to the model category of HR-module spectra.

Stefan Schwede uses the setting of Γ-spaces [115] to embed simplicial rings and modules into
the stable world: He constructs a lax symmetric monoidal Eilenberg-Mac Lane functor H from
simplicial abelian groups to Γ-spaces together with a linearization functor L in the opposite
direction and proves the following comparison result:

Theorem 3.3. [115, Theorems 4.4, 4.5] If R is a simplicial ring, then the adjoint functors
H and L constitute a Quillen equivalence between the categories of simplicial R-modules and
HR-module spectra. If R is in addition commutative, then H and L induce a Quillen equivalence
between the categories of simplicial R-algebras and HR-algebra spectra.

Here, the functor L is actually left inverse to H and induces an isomorphism of Γ-spaces

Hom(HA,HB) ∼= H(HomsAb(A,B))

[115, Lemma 2.1], thus H embeds algebra into brave new algebra.
Brooke Shipley extends this equivalence to corresponding categories of monoids in the differ-

ential graded setting:

Theorem 3.4. [123, Theorem 1.1] For any commutative ring R, the model categories of
unbounded differential graded R-algebras and HR-algebra spectra are Quillen equivalent.

Dugger and Shipley show in [31] that there are examples of HR-algebras that are weakly
equivalent as S-algebras, but that are not quasi-isomorphic. A concrete example is the dif-
ferential graded ring A∗ which is generated by an element in degree 1, e1, and has d(e1) = 2
and satisfies e4

1 = 0. The corresponding HZ-algebra spectrum is equivalent as a ring spec-
trum to the one on the exterior algebra B∗ = ΛF2(x2) (with |x2| = 2) but A∗ and B∗ are not
quasi-isomorphic. You find more examples and proofs in [31, §§4,5].

We cannot expect that commutative HR-algebra spectra correspond to commutative differ-
ential graded R-algebras unless R is of characteristic zero, because of cohomology operations,
but we get the following result:

Theorem 3.5. [103, Corollary 8.3] Let R be a commutative ring. Then there is a chain of
Quillen equivalences between the model category of commutative HR-algebra spectra and E∞-
monoids in the category of unbounded R-chain complexes.

Haldun Özgür Bayındır shows [21] that one can find E∞-differential graded algebras that are
not quasi-isomorphic, but whose corresponding commutative HR-algebra spectra are equivalent
as commutative ring spectra.
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3.2. Cochain algebras. A prominent class of examples of commutative HR-algebra spectra
consists of function spectra F (X+,HR). Here, X is an arbitrary space and R is a commutative
ring. The diagonal ∆: X → X×X and the multiplication on HR, µHR, induce a multiplication

F (X+,HR) ∧ F (X+,HR) // F (X+ ∧X+,HR ∧HR) ∼= F ((X ×X)+,HR ∧HR)

∆∗,µHR

��
F (X+,HR)

that turns F (X+,HR) into a HR-algebra spectrum. As the diagonal is cocommutative and as
µHR is commutative, the resulting multiplication is commutative.

These function spectra are models for the singular cochains of a space X with coefficients in
R:

π∗(F (X+,HR)) ∼= H−∗(X;R).

Beware that the homotopy groups of F (X+,HR) are concentrated in non-positive degrees – i.e.,
F (X+,HR) is coconnective.

Studying the singular cochains of a space S∗(X;R) as a differential graded R-module is not
enough in order to recover the homotopy type of X. If we work over the rational numbers, then
Quillen showed that rational homotopy theory is algebraic in the sense that one can use rational
differential graded Lie algebras or coalgebras as models for rational homotopy theory [98].
Sullivan [124] constructed a functor, assigning a rational differential graded commutative algebra
to a space, that is closely related to the singular cochain functor with rational coefficients. He
used this to classify rational homotopy types.

For a general commutative ring R, the singular cochains are an E∞-algebra. Mike Man-
dell proves [73, Main Theorem] that the singular cochain functor with coefficients in an alge-
braic closure of Fp, F̄p, induces an equivalence between the homotopy category of connected
p-complete nilpotent spaces of finite p-type and a full subcategory of the homotopy category of
E∞-F̄p-algebras. He also characterizes those E∞-F̄p-algebras that arise as cochain algebras of
1-connected p-complete spaces of finity p-type explicitly [73, Characterization Theorem]. There
is also an integral version of this result, stating that finite type nilpotent spaces are weakly
equivalent if and only if their E∞-algebras of integral cochains are quasi-isomorphic [75, Main
Theorem].

A strictly commutative integral model of the E∞-algebra of cochains on a space is constructed
in [102] using chain complexes indexed by the category of finite sets and injections.

4. Units of ring spectra and Thom spectra

One construction that can give rise to highly structured multiplications on a spectrum is
the Thom spectrum construction: For instance, complex bordism, MU , obtains a commutative
ring structure this way. Early on Mahowald emphasized [72] that multiplicatve properties of the
structure maps for Thom spectra translate to multiplicative structures on the resulting Thom
spectra. Their properties and the corresponding orientation theory is systematically studied in
[82, 87]. There is the following general result by Lewis:

Theorem 4.1. [65, Theorem IX.7.1 and Remark IX.7.2] Assume that f is a map of spaces
from X to the classifying space for stable spherical fibrations, BG, that is a C-map for some
operad C over the linear isometries operad. Then the Thom spectrum M(f) associated to f
carries a C-structure. In particular, infinite loops maps from X to BG give rise to E∞-ring
spectra.
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Note that BG is the classifying space of the units of the sphere spectrum, GL1(S). A
seemingly naive definition of GL1(S) is given by the pullback of the diagram

(4.1) GL1S //

��

Ω∞S

��
π0(S)× = {±1} // π0(S) = Z,

so by the components of QS0 corresponding to ±1 ∈ Z.
In the following we give a short overview of Thom spectra that arise in a more general context,

where the target of the map is the space of units, GL1(R), for a commutative ring spectrum R.
The first idea is to define the space GL1(R) as the space that represents the functor that sends
a space X to the units in R0(X). Copying the definition from (4.1) above with S replaced by
R gives a valid definition of GL1(R) and it was shown [82] that for commutative R this model
is an E∞-space.

In the approaches [1] and [20], the idea is to replace the above model of GL1(R) with its E∞-
structure with a strictly commutative model. As spaces with an E∞-structure are not equivalent
to strictly commutative spaces (that’s the problem again that then QS0 would be a product
of Eilenberg-Mac Lane spaces [93]), one has to find a different category with the property that
there is a Quillen equivalence between commutative monoids in that category and E∞-monoids
in spaces and such that there are models of Ω∞(R) and GL1(R) in this category.

In [1] the authors work with ∗-modules and in [20] the authors use Schlichtkrull’s model
of GL1(R) in commutative I-spaces where I is the skeleton of the category of finite sets and
injections.

The idea is to construct a spectrum version of the assembly map for discrete rings: If R is a
discrete ring and if R× is its group of units, then there is a canonical map

(4.2) Z[R×]→ R

from the group ring Z[R×] to R that takes an element
∑n

i=1 airi of Z[R×] (with ai ∈ Z and
ri ∈ R×) to the same sum, but now we use the ring structure of R to convert the formal sum
into an actual sum

∑n
i=1 airi ∈ R. Note that R× is an abelian group if R is a commutative

ring.
We will sketch both constructions of Thom spectra and briefly discuss the application in [1]

to the question when a Thom spectrum allows for an E∞-map to some other E∞-ring spectrum,
for instance, whether one can realize an E∞-version of the string orientation MO〈8〉 → tmf [3]
or an E∞-version of a complex orientation [49].

The focus in [20] is on multiplicative properties of the Thom spectrum functor and on ap-
plications to topological Hochschild homology. We present the results about multiplicative
structures and discuss their results on THH of Thom spectra in Section 6. We’ll also describe
how the concept of I-spaces can be generalized to a setting in which the units can be adapted
to non-connective ring spectra.

4.1. Thom spectra via L-spaces and orientations. Fix a countably infinite-dimensional
real vector space U and consider

L = L(1) = L(U,U),

the space of linear isometries from U to itself. The notation L(1) is due to the fact that L(1)
is the 1-ary part of the famous linear isometries operad [23, §1] with arity n term

(4.3) L(n) = L(Un, U).

See [23] or [1] for details. Note that L is a monoid with respect to composition.

Definition 4.2. The category of L-spaces, Top[L], is the category of spaces with a left action
of the monoid L.

10



Using the 2-ary part of the linear isometries operad, one can manufacture a product on
Top[L]: For objects X,Y of Top[L] their product X ×L Y is the coequalizer

L(2)× (L(1)× L(1))×X × Y //// L(2)×X × Y //X ×L Y.

Here, one map uses the L(1)-action on the spaces X and Y and the other map uses the operad
product L(2)× L(1)× L(1)→ L(2).

As L(2) = L(U2, U) has a left L(1)-action, X×LY is an L(1)-space. The product is associative
and has a symmetry, but it is only weakly unital. See [22, §4] for a careful discussion.

By [22, Proposition 4.7] there is an isomorphism of categories between commutative monoids
with respect to ×L and E∞-spaces whose E∞-structure is parametrized by the linear isometries
operad.

For strict unitality, one restricts to the full subcategoryM∗ of objects of Top[L] for which the
unit map is a homeomorphism. Such objects are called ∗-modules. The commutative monoids
in M∗ again model E∞-spaces [22, Proposition 4.11].

For an associative ring spectrum R, there is a strictly associative model in M∗ of the space
of units GL1(R) and the functor GL1 is right adjoint to the inclusion of grouplike objects. One
can form a bar construction, B×L , of a cofibrant replacement of GL1(R), GL1(R)c, with respect
to the monoidal product ×L, where B×L(GL1(R)c) is the geometric realization of the simplicial
M∗ object

[n] 7→ ∗ ×L GLc1(R)×L . . .×L GLc1(R)︸ ︷︷ ︸
n

×L ∗ .

Similarly, E×L(GL1(R)c) is constructed out of the simplicial object

[n] 7→ ∗ ×L GLc1(R)×L . . .×L GLc1(R)︸ ︷︷ ︸
n+1

.

Adapted to the situation there are suspension spectrum and underlying infinite loop space
functors [66, Lemma 7.5]

(4.4) M∗
(Σ∞L )+ //MS

Ω∞S

oo

that are a Quillen adjoint pair of functors. Here, the suspension functor is strong symmetric
monoidal and the underlying loop space functor is lax symmetric monoidal.

The spectrum version of the assembly map from (4.2) is

(Σ∞L )+(GLc1(R))→ (Σ∞L )+(GL1(R))→ R

where the first map comes from the cofibrant replacement of the units and the second one is
the counit of an adjunction [1, (3.1)].

Definition 4.3. [1, Definition 3.12] The Thom spectrum for a map f : X → B×L(GLc1(R)) in
M∗ is the R-module spectrum (in the world of [34])

(4.5) M(f) = (Σ∞L )+P
c ∧(Σ∞L )+GLc1(R) R.

Here, P c is a cofibrant replacement as a right GLc1(R)-module of the pullback

P //

��

E×L(GLc1(R))

��
X // B×L(GLc1(R))

Remark 4.4. Because of the cofibrancy of P c, the smash product in (4.5) is actually a derived
smash product. See [1, §3] for the necessary background on the model structures involved.
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In the commutative case, [1, §4, §5] is set in the classical framework of E∞-ring spectra and
E∞-spaces as in [82]. For an E∞-ring spectrum R, the space Ω∞R is actually an E∞-ring space
[85, Corollary 7.5]; this is a space on which a pair of E∞-operads acts: one codifying the additive
structure that is present in every spectrum and one encoding the multiplicative structure [85,
§1]. Actually more is true. Call an E∞-ring spaces ring-like if its π0 is actually a ring and not
just a rig – a ring without negatives. The homotopy category of ring-like E∞-ring spaces is
equivalent to the homotopy category of connective E∞-ring spectra [85, Theorem 9.12].

If R is a commutative ring spectrum or an E∞-ring spectrum then the space of units, GL1(R),
is a group-like E∞-space and hence is an infinite loop space that has an associated connective
spectrum, gl1(R), with Ω∞gl1(R) = GL1(R).

The crucial ingredient in this case is the pair of functors (Σ∞+ Ω∞, gl1) that is an adjunction
between the homotopy category of connective spectra and the homotopy category of E∞-ring
spectra in the sense of Lewis-May-Steinberger.

In particular, one gets a version of the assembly map from (4.2)

Σ∞+ Ω∞(gl1(R))→ R

for every E∞-ring spectrum. By [34] one can replace E∞-ring spectra with commutative S-
algebras, i.e., with commutative ring spectra. This simplifies the discussion of pushouts and
allows us to replace Σ∞+ Ω∞ by (Σ∞L )+Ω∞S from (4.4) to get

(Σ∞L )+Ω∞S (gl1(R))→ R

Note, that a map of infinite loop spaces f : B → BGL1(R) encodes the same data as a map of
spectra f : b → bgl1(R) where the lower case letters denote the associated connective spectra.
As before we consider the pullback p

p //

��

egl1(R)

��
b

f // bgl1(R)

and form the corresponding derived smash product:

Definition 4.5. Let f : b→ bgl1(R) be a map of connective spectra. Then the Thom spectrum
associated to f , M(f), is the homotopy pushout in the category of commutative S-algebras

M(f) = (R ∧ (Σ∞L )+Ω∞S p) ∧LR∧(Σ∞L )+Ω∞S gl1(R) R

As the (homotopy) pushout is the (derived) smash product, this resembles the construction
from (4.5)

In the commutative ring spectrum setting the question about orientations is the following
problem: Assume that there is a map of commutative ring spectra α : R → A, then A is a
commutative R-algebra spectrum. For a map of spectra f : b → bgl1(R) as above we can ask
whether there is a morphism of commutative R-algebra spectra from M(f) to A. As M(f) is
defined as a (homotopy) pushout, we see that we get a condition that says that we get maps
from the ingredients of the derived smash product. As we start with a map α from R to A, we
get an induced map

gl1(α) : gl1(R)→ gl1(A).

So what is missing is a map

(Σ∞L )+Ω∞S p→ A

that is compatible with the map (Σ∞L )+Ω∞S gl1(R) → A. With the help of the adjunction this
means that we need a map

p→ gl1(A)

such that precomposing it with the map gl1(R)→ p gives gl1(α). This argument can be turned
into a proof for the following result:
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Theorem 4.6. [1, Theorem 4.6] The derived mapping space of commutative R-algebras from
M(f) to A, MapCR(M(f), A), is weakly equivalent to the fiber in the map between derived
mapping spaces

MapMS
(p, gl1(A))→ MapMS

(gl1(R), gl1(A))

at the basepoint gl1(α) of MapMS
(gl1(R), gl1(A)).

An important example is the question of the string orientation of the spectrum of topological
modular forms, tmf. For background on tmf and its variants see [126]. In particular, [126,
Chapter 10] contains André Henriques’ notes of Mike Hopkins’ lecture on the string orientation.
Let BO〈8〉 be the 7-connected cover of BO and let bo〈8〉 be the associated spectrum with the
canonical map f : bo〈8〉 → bgl1(S). So we are in the situation where R = S and we take A = tmf.
Ando, Hopkins and Rezk [3] establish the existence of an E∞-map

MString = MO〈8〉 → tmf

by showing a fiber property as above.
An approach to orientations of the form MU → E is described in [49]: You start with an

E∞-ring spectrum E and an ordinary complex orientation of E [101, §6.1] and want to know
whether you can refine this to an E∞-map MU → E. Hopkins and Lawson establish a filtration
of MU by E∞-Thom spectra

S →MX1 →MX2 → . . .→MU

and for a given E∞-map MXn → E they identify the space of extensions to an E∞-map
MXn+1 → E [49, Theorem 1].

Remark 4.7. In [1] the authors present a different approach to Thom spectra and questions
about orientations that uses ∞-categorical techniques. In certain cases it is unrealistic to hope
for E∞-maps out of Thom spectra, for instance if one doesn’t know that the target spectrum
carries an E∞ structure. The space of En-maps out of Thom spectra is described in [29, Theorem
4.2], [7, Corollary 3.18].

4.2. Thom spectra via I-spaces. Let I be the skeleton of the category of finite sets and
injective maps. As objects we choose the sets n = {1, . . . , n} for n > 0 with the convention that
0 denotes the empty set. A morphism f ∈ I(n,m) is an injective function from n to m. Hence
0 is an initial object of I and the permutation group Σn is the group of automorphisms of n in
I. The category I is symmetric monoidal with respect to the disjoint union: n tm = n + m
with unit 0 and non-trivial symmetry n + m → m + n given by the shuffle permutation that
moves the first n elements to the positions m+ 1, . . . ,m+ n.

The functor category of I-spaces, TopI , i.e., the category of functors X : I → Top together
with natural transformations as morphisms, inherits a symmetric monoidal structure from I
and Top via the Day convolution product. Explicitly, one gets:

Definition 4.8. Let X,Y be two I-spaces. Their product X � Y is the I-space given by

(X � Y )(n) = colimptq→nX(p)× Y (q).

The unit 1I is the discrete I-space n 7→ 1I(0,n).

As 0 is initial, the unit 1I is the terminal object in TopI . Commutative monoids in TopI

are called commutative I-space monoids in [20] and their category is denoted by C(TopI). A
general fact about Day convolution products is that commutative monoids correspond to lax
symmetric monoidal functors.

For an I-space X let’s denote by XhI the Bousfield-Kan homotopy colimit of X.

Definition 4.9. [20, Definition 2.2] A map of I-spaces f : X → Y is an I-equivalence, if the
induced map on homotopy colimits fhI : XhI → YhI is a weak homotopy equivalence in Top.
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With the corresponding I-model structure the category of I-spaces is actually Quillen equiv-
alent to the category of spaces [112, Theorem 3.3], but there is a positive flat model structure
on I-spaces (see [20, §2]) that lifts to a right-induced model structure on C(TopI) that makes
it Quillen equivalent to E∞-spaces.

Let SpΣ denote the category of symmetric spectra. There is a canonical Quillen adjoint
functor pair

(4.6) TopI
SI //SpΣ

ΩI
oo

modelling the suspension spectrum functor and the underlying infinite loop space functor with

SIX(n) = Sn ∧X(n), ΩI(E)(n) = ΩnEn

Where Sn is the n-fold smash product of the 1-sphere with Σn-action given by permutation of
the smash factors.

Stable equivalences in symmetric spectra do in general not agree with stable homotopy equiv-
alences, but there is a notion of semistable symmetric spectra, that has the feature that a map
f : E → F between two semistable symmetric spectra is a stable equivalence if and only if it is
a stable homotopy equivalence. See [54, §5.6] for details and other characterizations.

Definition 4.10. For a commutative semistable symmetric ring spectrum R the commutative
I-space monoid of units, GLI1(R), has as GLI1(R)(n) those components of the commutative
I-space monoid ΩI(R)(n) = ΩnRn that represent units in π0(R).

The adjunction from (4.6) gives a version of the assembly map from (4.2) as

SI(GLI1(R))→ SIΩI(R)→ R.

For technical reasons one has to work with a cofibrant replacement of GLI1(R), G→ GLI1(R)

in the positive flat model structure on C(TopI). The construction of a Thom spectrum associ-
ated to a map f : X → BG is now similar to the approach in [1]: One defines BG and EG via
two sided-bar constructions and takes a suitable pushout:

Definition 4.11. [20, Definitions 2.10, 2.12, 3.6]

• Let BG = B�(1I , G, 1I) and let EG be defined via a functorial factorization

B�(1I , G,G) // ∼ //EG // //BG.

• For any I-space X over BG define U(X) as the I-space with G-action given by the
pullback

U(X) //

��

X

��
EG // BG.

Here, X and BG are considered as I-spaces with trivial G-action.
• Let R be a semistable commutative symmetric ring spectrum that is S-cofibrant.

The Thom spectrum associated with a map of I-spaces f : X → BG is

(4.7) M I(f) = B�(SI(UX), SIG,R).

You should think of this two-sided bar construction as

SI(UX)�LSIG R

and then you have to admit that this looks very similar to (4.5). This Thom spectrum functor
is homotopically meaningful (see [20, Proposition 3.8]). Concerning multiplicative structures
one obtains the following result.
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Proposition 4.12. [20, Proposition 3.10, Corollary 3.11] The functor M I(−) is lax symmetric
monoidal and if D is an operad in spaces, then it sends D-algebras in TopI over BG to D-algebras
in R-modules in symmetric spectra over M IGL1(R) := B�(SI(EG), SI(G), R).

If you don’t like diagram categories for some reason, then there is also an I-spacification
functor [20, §4.1] that transforms a map of topological spaces

(4.8) f : X → BGhI

to a map of I-spaces over BG, so you can associate a Thom spectrum to such a map as well.
By abuse of notation, we will still denote this Thom spectrum by M I(f). This construction
respects actions of operads augmented over the Barratt-Eccles operad and hence it also provides
an E∞ Thom spectrum functor.

An important question is: Given a ring spectrum A, can it be realized as a Thom spectrum
with respect to a loop map, i.e., in the setting of [20] is A equivalent to M I(f) with f a loop
map to BGhI? A striking result is that one can identify certain quotients as such Thom spectra!

Theorem 4.13. [20, Theorem 5.6] Let R be a commutative ring spectrum whose homotopy
groups are concentrated in even degrees and let ui ∈ π2i(R) be arbitrary elements with 1 6
i 6 n − 1. Then the iterative cofiber of the multiplication maps by the ui’s, R/(u1, . . . , un−1)
can be realized as the Thom spectrum of a loop map from SU(n) to BGhI . In particular,
R/(u1, . . . , un−1) can be realized as an associative ring spectrum.

An example of such a quotient is R = ku → ku/u = HZ. Note that there is no assumption
on the regularity of the elements ui in the above statement. For periodic ring spectra the
assumptions on the degree of the elements can be relaxed and the two-periodic version of
Morava K-theory can be constructed as a Thom spectrum relative to R = En, the n-th Morava
E-theory or Lubin-Tate spectrum [20, Corollary 5.7]. A related but different construction of
quotients of Lubin-Tate spectra modelling versions of Morava K-theory is carried out in [50,
§3].

4.3. Graded units. There is one problem with the constructions of spaces and spectra of units
as above. As they are constructed from the underlying infinite loop space of a spectrum and just
take into account the units in π0, they ignore graded units coming from periodicity elements
in the homotopy groups of a spectrum. So for instance, the Bott class u ∈ π2(KU ) is not
represented in GL1(KU ) or GLI1(KU ).

There is a construction of graded units. We’ll sketch the construction and mention two of its
applications: graded Thom spectra and logarithmic ring spectra.

Definition 4.14. [112, Definition 4.2] The category J has as objects pairs of objects of I. A
morphism in J((n1,n2), (m1,m2)) is a triple (α, β, σ) where α ∈ I(n1,m1), β ∈ I(n2,m2) and
σ is a bijection

σ : m1 \ α(n1)→m2 \ β(n2).

For another morphism (γ, δ, ξ) ∈ J((m1,m2), (l1, l2)) the composition is the morphism (γ◦α, δ◦
β, τ(ξ, σ)) where τ(ξ, σ) is the permutation

τ(ξ, σ)(s) =

{
ξ(s), if s ∈ l1 \ γ(m1),

δ(σ(t)), if s = γ(t) ∈ γ(m1 \ α(n1)).

Note that l1 \ γ(α(n1)) is the disjoint union of l1 \ γ(m1) and γ(m1 \ α(n1)).
With these definitions J is actually a category and it inherits a symmetric monoidal structure

from I via componentwise disjoint union [112, Proposition 4.3]. In particular, the category of
J-spaces, TopJ , is symmetric monoidal with the Day convolution product. Note, however, that
the unit for the monoidal structure �J is J((0,0), (−,−)) and this is not a constant functor
but J((0,0), (n,n)) can be identified with the symmetric group Σn!

Proposition 4.15. [112, 4.4, 4.5] For every J-space X the homotopy colimit, XhJ , is a space
over QS0.
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Proof. It is not hard to see that J is isomorphic to Quillen’s category Σ−1Σ [112, Proposition
4.4] and its classifying space is QS0 by the Barratt-Priddy-Quillen result. Therefore BJ is QS0.
Every J-space has a map to the terminal J-space that is the constant J-diagram on a point
and this induces a map

XhJ → ∗hJ = BJ ' QS0.

�

For any I-space X we also get that XhI is a space over BI, but as I has an initial object this
just gives a map to BI ' ∗, the terminal object.

Let C(TopJ) denote the category of commutative J-space monoids, i.e., commutative monoids
in TopJ . The following result is crucial:

Theorem 4.16. [112, Theorem 4.11] There is a model structure on C(TopJ) such that there
is a Quillen equivalence between C(TopJ) and the category of E∞-spaces over BJ .

Here, the E∞-structure is parametrized by the Barratt-Eccles operad.
For a (commutative) J-space monoid, one can associate units:

Definition 4.17. [112, §4] Let A be a J-space monoid. Then let A× be the J-space monoid
with A×(n1,n2) being the union of those components of A(n1,n2) that represent units in
π0(AhJ).

So now one has to construct a functor from spectra to J-spaces that sees all the homotopy
groups, not just the ones in non-negative degrees:

Definition 4.18. [112, (4.5)]

• Let ΩJ be the functor from symmetric spectra to J-spaces that takes a symmetric spec-
trum E and sends it to the J-space with

ΩJ(n1,n2) = Ωn2En1 .

• If R is a symmetric ring spectrum, then its J-space of units is

GLJ1 (R) = (ΩJ(R))×.

Sagave and Schlichtkrull show that this is homotopically meaningful and that for a commu-
tative symmetric ring spectrum R, the units GLJ1 (R) are actually in C(TopJ) [112, §4]. Most
importantly, the inclusion GLJ1 (R) ↪→ ΩJ(R) realizes the inclusion of graded units π∗(R)× into
π∗(R) for positively fibrant R.

Hence, for instance GLI1(KU ) (and any other model of the ’usual’ units) only detects the
units ±1 in π0(KU ) whereas GLJ1 (KU ) also detects the Bott class.

Remark 4.19.
(a) John Rognes developed the concept of logarithmic ring spectra and in [111] and [110]

this concept is fully explored with the help of graded units. The idea is that you want
a spectrum that sits between a commutative ring spectrum like ku and its localization
KU , so you remember the Bott class as the extra datum of a logarithmic structure. This
concept has its origin in algebraic geometry and is useful in stable homotopy theory for
instance for obtaining localization sequences in topological Hochschild homology [110].

(b) In [113] Sagave and Schlichtkrull use graded units adapted to the setting of orthogonal
spectra, GLW1 , to construct graded Thom spectra associated to virtual vector bundles,
i.e., associated to a map f : X → Z × BO in such a way that uses the E∞-structure
on Z × BO. They use this for orientation theory and relate GLW1 -orientations to loga-
rithmic structures. They provide an E∞-Thom isomorphism that allows to compute the
homology of spectra appearing in connection with logarithmic ring spectra [113, §§ 7,8].
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5. Constructing commutative ring spectra from bipermutative categories

In section 4 we saw that Thom spectra give rise to commutative ring spectra. Algebraic
K-theory is another machine that takes a commutative ring (spectrum) R and produces a
commutative ring spectrum K(R). In this section we focus on a classical construction that
takes a small bipermutative category R and turns it into a commutative ring spectrum. This
construction goes back to Segal [119]; its multiplicative properties were investigated by May
[82, 83, 84, 86], Shimada-Shimakawa [121], Woolfson [130] and Elmendorf-Mandell [35].

We sketch a simplified version of the construction, present some important examples and
refer to [35] for a discussion of the multiplicative properties.

Definition 5.1. A permutative category (C,⊕, 0, τ) is a category C together with an object 0
of C, a functor ⊕ : C × C → C and a natural isomorphism τC1,C2 : C1 ⊕ C2 → C2 ⊕ C1 for all
objects C1, C2 of C such that

• ⊕ is strictly associative, i.e., for all objects C1, C2, C3 of C
C1 ⊕ (C2 ⊕ C3) = (C1 ⊕ C2)⊕ C3.

• 0 is a strict unit, i.e., for all objects C of C: C ⊕ 0 = C = 0⊕ C.
• τ2 is the identity, i.e., for all objects C1, C2 of C the composite

C1 ⊕ C2

τC1,C2 //C2 ⊕ C1

τC2,C1 //C1 ⊕ C2

is the identity on C1 ⊕ C2.
• The diagrams

C ⊕ 0
τC,0 // 0⊕ C

C,

C1 ⊕ C2 ⊕ C3

idC1
⊕τC2,C3 ((

τC1⊕C2,C3 // C3 ⊕ C1 ⊕ C2

C1 ⊕ C3 ⊕ C2

τC1,C3
⊕idC2

66

commute for all objects C,C1, C2, C3 of C.
We work with small permutative categories, i.e., we require that the objects of C for a set

(and not a proper class). We recall Segal’s construction from [119, §2]:

Definition 5.2. Let C be a small permutative category and let X be a finite set with basepoint
+ ∈ X. Let C(X) be the category whose objects are families (CS , %S,T ) where

• S ⊂ X, + /∈ S,
• S and T are pairs of such subsets that are disjoint,
• the CS are objects of C and %S,T is an isomorphism in C

%S,T : CS ⊕ CT → CS∪T .

• For S = ∅: C∅ = 0 and %∅,T = idCT for all T and
• for pairwise disjoint S, T, U that don’t contain + the following diagrams commute:

CS ⊕ CT
%S,T //

τ

��

CS∪T

CT ⊕ CS
%T,S // CT∪S ,

CS ⊕ CT ⊕ CU
%S,T⊕idCU //

idCS⊕%T,U
��

CS∪T ⊕ CU
%S∪T,U
��

CS ⊕ CT∪U
%S,T∪U // CS∪T∪U.

Morphisms α : (CS , %S,T )→ (C ′S , %
′
S,T ) consist of a family of morphisms αS ∈ C(CS , C ′S) for all

S ⊂ X with + /∈ S such that α∅ = id0 and for all S, T ∈ X with + /∈ S, T and S ∩ T = ∅ the
diagram

CS ⊕ CT
%S,T //

αS⊕αT
��

CS∪T

αS∪T
��

C ′S ⊕ C ′T
%′S,T // C ′S∪T
17



commutes.

Thus up to isomorphism, every object CS for S = {x1, . . . , xn} can be decomposed as

CS ∼= C{x1} ⊕ . . .⊕ C{xn}

by an iterated application of the isomorphisms %, but these isomorphisms are part of the data.
Segal shows [119, Corollary 2.2] that this construction gives rise to a so-called Γ-space (see [119,
Definition 1.2] for a definition) that sends a finite pointed set X to the classifying space of C(X).
Every Γ-space gives rise to a spectrum, and we denote the spectrum associated to C by HC.

Remark 5.3. Segal’s construction actually works for symmetric monoidal categories and it
produces a spectrum whose associated infinite loop space is the group completion of the clas-
sifying space of the category C, BC, and the latter is the geometric realization of the nerve of
C.

Definition 5.4. A bipermutative category R is a category with two permutative category struc-
tures: (R,⊕, 0R, τ⊕) and (R,⊗, 1R, τ⊗) that are compatible in the following sense:

(a)

0R ⊗ C = 0R = C ⊗ 0R

for all objects C of R.
(b) For all objects A,B,C we have an equality between (A ⊕ B) ⊗ C and A ⊗ C ⊕ B ⊗ C

and the diagram

(A⊕B)⊗ C

τ⊕⊗id

��

A⊗ C ⊕B ⊗ C

τ⊕

��
(B ⊕A)⊗ C B ⊗ C ⊕A⊗ C

commutes.
(c) We define the distributivity isomorphism d` : A ⊗ (B ⊕ C) → A ⊗ B ⊕ A ⊗ C for all

A,B,C in R via the following diagrem

A⊗ (B ⊕ C)
τ⊗ //

d`
��

(B ⊕ C)⊗A

A⊗B ⊕A⊗ C B ⊗A⊕ C ⊗A
τ⊗⊕τ⊗
oo

then the diagram

(A⊕B)⊗ (C ⊕D)
d`

,,
(A⊕B)⊗ C ⊕ (A⊕B)⊗D

A⊗ (C ⊕D)⊕B ⊗ (C ⊕D)

d`⊕d`

��

A⊗ C ⊕B ⊗ C ⊕A⊗D ⊕B ⊗D

A⊗ C ⊕A⊗D ⊕B ⊗ C ⊕B ⊗D

id⊕τ⊕⊕id
22

commutes.
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This definition is taken from [82, Definition VI.3.3, p. 154]. The definition in [35] is less
strict, but bipermutative categories in the above sense are also bipermutative in the sense of
[35, Definition 3.6]. We refer to Elmendorf and Mandell for a proof that for a bipermutative
category R, one actually obtains a commutative ring spectrum HR:

Theorem 5.5. [35, Corollary 3.9] If R is a bipermutative category, then HR is equivalent to
a strictly commutative symmetric ring spectrum.

There is an alternative construction of an E∞-ring spectrum from a bipermutative category
in [86]: May first constructs an E∞-ring space associated to a bipermutative category and then
builds the corresponding E∞-ring spectrum.

Segal’s construction enables us to find small and explicit models for certain connective com-
mutative ring spectra. Famous examples of bipermutative categories and their associated com-
mutative ring spectra are the following:

(a) If R is a commutative discrete ring, then the category RR which has the elements of R
as objects and only identity morphisms is a bipermutative category with the addition in
the ring being ⊕ and the multiplication being ⊗. The associated spectrum, HRR is the
Eilenberg-Mac Lane spectrum of the ring R, HR.

(b) Let E denote the bipermutative category of finite sets whose objects are the finite sets
n = {1, . . . , n} for n ∈ N0. By convention 0 is the empty set. The morphisms in E are

E(n,m) =

{
∅, n 6= m,
Σn, n = m.

For the full structure see [82, VI, Example 5.1]. Here, HE is the sphere spectrum, S.
(c) The bipermutative category of complex vector spaces, VC, with objects the natural

numbers with zero and morphisms

VC(n,m) =

{
∅, n 6= m,

U(n), n = m

is bipermutative. On objects we set n⊕m = n+m and n⊗m = nm and on morphism
we use the block sum and the tensor product of matrices. The associated spectrum is
HVC = ku, the connective version of topological complex K-theory. Its real analog, VR,
gives a model for connective topological real K-theory, ko. You can also work with the
general linear group instead of the unitary or orthogonal group.

(d) If R is a discrete commutative ring, then we define the category FR as the one with
objects N0 again. As morphisms we have

FR(n,m) =

{
∅, n 6= m,

GLn(R), n = m.

This category is often called the small category of free R-modules. Its spectrum is the free
algebraic K-theory of R, Kf (R). Its homotopy groups agree with the algebraic K-groups
of R from degree 1 on.

6. From topological Hochschild to topological André-Quillen homology

For rings and algebras Hochschild homology contains a lot of information. For commutative
rings and algebras André-Quillen homology is the adequate tool. There are spectrum level
versions of these homology theories: topological Hochschild homology, THH, and topological
André-Quillen homology, TAQ.

We can determine classes in the algebraic K-theory of a ring spectrum using the trace to
topological Hochschild homology or to topological cyclic homology:

(6.1) tr : K(R)→ THH(R).
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For instance the trace from K(Z) to THH(Z) detects important classes. Bökstedt, Madsen and
Rognes [26, 108] show for instance that

tr : K2p−1(Z)→ THH2p−1(Z) ∼= Z/pZ
is surjective for all primes p.

We give a construction of topological Hochschild homology and more generally, for commuta-
tive ring spectra R we define X⊗R for X a finite pointed simplicial set. We give some examples
of calculations of such X-homology groups of R and tell you about topological Hochschild co-
homology as a derived center of an algebra spectrum. We define topological André-Quillen
homology and we will see applications to Postnikov towers for commutative ring spectra later
in 7.

6.1. THH and friends. Let X be a finite pointed simplicial set and let R be a cofibrant
commutative ring spectrum.

Definition 6.1. We denote by X ⊗R the simplicial spectrum with

(X ⊗R)n =
∧
x∈Xn

R.

By slight abuse of notation we will use the same symbol for the geometric realization of X ⊗R.

Remark 6.2.
• As the smash product is the coproduct in CS , the simplicial structure maps of X ⊗ R

are induced from the ones on X.
• As X is pointed, X ⊗R comes with maps

R→ X ⊗R→ R

whose composition is the identity.
• The commutative multiplication on R induces a commutative multiplication on X ⊗R,

hence X ⊗R is an augmented commutative (simplicial) R-algebra spectrum.
• One could also work with the fact that the spectra of [34] are tensored over topological

spaces or similarly, that symmetric spectra [54] in topological spaces are enriched over
simplicial sets and over topological spaces. This gives an equivalent situation. It is for
instance shown in [34, Corollary VII.3.4] that |X ⊗A| ' |X| ⊗A for simplicial spaces X
and commutative R-algebra spectra A.
• The above definition can be extended to tensoring with an arbitrary pointed simplicial

set by expressing such a simplicial set as the colimit of its finite pointed simplicial
subcomplexes.

There are many important special cases of this construction.

Definition 6.3.
(a) For the simplicial 1-sphere X = S1 the commutative R-algebra spectrum S1 ⊗ R is the

topological Hochschild homology of R and is denoted by THH(R).

(b) More generally, for an n-sphere, we denote by THH[n](R) the spectrum Sn ⊗R and this
is called topological Hochschild homology of order n.

(c) If Tn denotes the torus (S1)n, then Tn ⊗R is the n-torus homology of R.

For the small model of the simplicial 1-sphere with just one non-degenerate 0 and 1 simplex
we have (S1)n = {0, 1, . . . , n} and the simplicial spectrum S1 ⊗ R is precisely the cyclic bar
construction on R:

R // R ∧Roo oo //// R ∧R ∧Roooooo
////// . . .oooo

oooo

where the degeneracy map si : R
n+1 → Rn+2 inserts the unit map η : S → R after the ith factor

of R and the face maps di : R
n+1 → Rn for 0 6 i < n are given by the multiplication in R of

the ith and (i+ 1)st smash factor. The last face map dn cyclically permutes the smash factors
to bring the last one to the front and then it multiplies the former factors with number n and
0.
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As for Hochschild homology you should think about this as a genuine cyclic object:

R
R

R

∧ ∧

∧

∧ · · ·

···

The original definition of THH is due to Marcel Bökstedt [24]. McClure, Schwänzl and Vogt
[89] show that for an E∞-ring spectrum R, THH(R), is equivalent to tensoring R with the
topological 1-sphere. Kuhn systematically studies constructions like X⊗R in a reduced setting
[61] for pointed spaces X. So the above definition is an unreduced variant of this that uses
simplicial sets instead of topological spaces.

Lemma 6.4. Let X and Y be finite simplicial pointed sets. Then

(X × Y )⊗R ' X ⊗ (Y ⊗R).

Proof. Observe that

((X × Y )⊗R)n =
∧

(x,y)∈Xn×Yn

R ∼=
∧
x∈Xn

(
∧
y∈Yn

R)

and this is the diagonal of the bisimplicial spectrum

([m], [`]) 7→ (X ⊗ ((Y ⊗R)`))m

in degree n. �

One of the important features of THH(R) is that it receives a trace map from algebraic
K-theory (see (6.1)) that we can now write as

tr : K(R)→ S1 ⊗R.
Taking higher dimensional tori gives targets for iterated trace maps. Algebraic K-theory of a
commutative ring spectrum is again a commutative ring spectrum and the trace map is a map
of commutative ring spectra, hence one can iterate the process of forming K-theory and traces.
If we denote by Kn(R) the n-fold iteration, then – as we have the product formula from Lemma
6.4 – we get an iterated trace to Tn ⊗R. Explicitly, for n = 2 this is

K(K(R))→ S1 ⊗ (S1 ⊗R) ' (S1 × S1)⊗R = T2 ⊗R.
There are variants of Definition 6.1: As we work with pointed simplicial sets, we can glue an

R-module to the base point and use the R-module structure for the face maps. A second variant
is to work relative to some commutative ring spectrum R: In 6.1 the smash products were over
the sphere spectrum, but if we work with a commutative R-algebra spectrum A, then we can
take smash products over R instead of S. Recall that ∧R is the coproduct in the category of
commutative R-algebra spectra, CR.

Definition 6.5. Let R be a cofibrant commutative ring spectrum, A a cofibrant commutative
R-algebra spectrum, M an A-module spectrum over R and let X be a finite pointed simplicial
set. We denote by LRX(A;M) the simplicial spectrum with

LRX(A;M)n = M ∧R
∧

x∈Xn\∗
R
A.

We call LRX(A;M) the Loday construction of A over R with coefficients in M .

As M is just an A-module spectrum, the resulting simplicial spectrum and also its realization
carries an A-module structure over R, but no multiplicative structure in general. However, if we
place a commutative A-algebra C at the basepoint, then the resulting spectrum is an augmented
commutative C-algebra spectrum.
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We will see later in Section 8 that for instance

THHR(A) := LRS1(A)

measures properties of A as a commutative R-algebra spectrum. The case of X = S0 gives

LRS0(A) = A ∧R A

so there is a Künneth spectral sequence [34, IV.4.1] for calculating its homotopy groups.
An important example of a Loday construction is Pirashvili’s construction of higher order

Hochschild homology. He works with discrete commutative k-algebras A and A-modules M
and defines HHkX(A;M) [96, §5.1]. For X = Sn this is his notion of higher order Hochschild

homology (in his notation H [n](A;M)). In our setting this corresponds to LHkX (HA;HM) if A
is flat over k.

6.2. Examples.

(a) A classical example of a THH-calculation is the one of HZ and HFp by Marcel Bökstedt
([25], see [68, Chapter 13] and the references for published accounts of these results):

Proposition 6.6.

THH∗(HFp) ∼= Fp[µ], |µ| = 2.

THHi(HZ) ∼=


Z, i = 0,

Z/jZ, i = 2j − 1,

0, otherwise.

A crucial ingredient for these and for many other calculations of THH is Bökstedt’s
spectral sequence: If R is a commutative ring spectrum and if E∗ is a homotopy com-
mutative ring spectrum such that E∗(R) is flat over E∗ then there is a multiplicative
spectral sequence

E2
p,q = HHE∗p,q(E∗(R))⇒ Ep+qTHH(R).

Here HHp,q denotes Hochschild homology in homological degree p and internal degree q
([25], [34, Theorem IV.1.9]).

(b) If we apply THH to Eilenberg-Mac Lane spectra of number rings, Lindenstrauss and
Madsen show that THH detects arithmetic properties:

Proposition 6.7. [67, Theorem 1.1] Let K be a number field and let OK be its ring of
integers. Then

THHn(HOK) =


OK , n = 0,

D−1
OK/`OK , n = 2`− 1,

0, otherwise.

Here, D−1
OK is the inverse different. This is the set of all x ∈ K such that the trace

tr(xy) is an integer for all y ∈ OK . The inverse different detects ramified primes and
their ramification type.

Dundas, Lindenstrauss and I calculate higher order THH of number rings with reduced
coefficients in [32, Theorem 4.3].

(c) For a suspension spectrum on a based (Moore) loop space, Σ∞+ ΩMX, the cyclic bar
construction reduces to the suspension spectrum of the cyclic bar construction on ΩMX
and Goodwillie [40, Proof of Theorem V.1.1] identifies the latter with the free loop space
on X, LX. Hence one obtains

THH(Σ∞+ ΩMX) ' Σ∞+ LX.
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(d) Let R be a ring spectrum and let Π be a pointed monoid. Hesselholt and Madsen show
that THH(R[Π]) splits as

THH(R[Π]) ' THH(R) ∧ |N cyΠ|
where |N cyΠ| denotes the cyclic nerve of Π [45, Theorem 7.1].

(e) As a sample calculation for second order THH Dundas, Lindenstrauss and I get [33,
Theorem 2.1]:

(6.2) THH
[2]
∗ (HZ(p)) ∼= Z(p)[x1, x2, . . .]/(p

nxn, x
p
n − pxn+1, n > 1)

with |x1| = 2p.
(f) At an odd prime KU(p) splits as

KU(p) '
p−2∨
i=0

Σ2iL.

Here, L is the Adams summand of KU(p) with π∗(L) ∼= Z(p)[v
±1
1 ] and |v1| = 2p− 2. For

consistency we set L = KU(2) at the prime 2. We denote by ku, ` and ko the connective
covers of KU , L and KO .

McClure and Staffeldt determine the mod p-homotopy of THH(`) at odd primes [91]
and they show that THH(L)p ' Lp ∨ (ΣLp)Q [91, Corollary 7.2, Theorem 8.1].

Ausoni [9] determines the mod p and mod v1 homotopy of THH(ku) as an input for
his work on K(ku).

Angeltveit, Hill and Lawson show [5, Theorem 2.6] that for all primes, as an `∗-module

THH∗(`) ∼= `∗ ⊕ Σ2p−1F ⊕ T
where F is a torsionfree summand and T is an infinite direct sum of torsion modules
concentrated in even degrees. They describe F explicitly using a rational calculation.
Determining the torsion is way more involved [5, Theorem 2.8]. The calculation of
THH∗(`) uses the method of duelling Bockstein spectral sequences for the Bockstein
spectral sequences associated to

`

��

// `/p

��
`/v1 = HZ(p)

// HFp = `/(p, v1).

They describe the 2-local homotopy groups of THH(ko) [5, §7] by first determining
THH∗(ko; ku) and then using the Bockstein spectral sequence associated to the cofiber
sequence Σko→ ko→ ku.

Again, things are way easier for the periodic versions [9, Proposition 7.13], [5, Corol-
lary 7.9]:

THH(KO) ' KO ∨ ΣKOQ, THH(KU) ' KU ∨ ΣKUQ.

(g) John Greenlees uses a generalization of the concept of Gorenstein maps of commutative
rings to the spectral world in order to determine Gorenstein descent properties for cofiber
sequences of connective commutative ring spectra [42, Theorem 7.4].

6.3. Topological Hochschild homology of Thom spectra. We start with a general state-
ment about X ⊗M I(f) if M I(f) is a Thom spectrum associated to an E∞-map to BGhI with
BGhI as in (4.8) with R = S, hence G is a cofibrant replacement of GLI1(S).

Theorem 6.8. [114, Theorem 1.1] For any pointed simplicial set X and any map of grouplike
E∞-spaces f : A→ BGhI there is an equivalence of E∞-ring spectra

X ⊗M I(f) 'M I(f) ∧ Ω∞(a ∧ |X|)+

where a is the spectrum associated to A with Ω∞a = A.
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This result generalizes [22], where the case of X = S1 is covered. In general, for X = Sn the
above result determines the higher order topological Hochschild homology of M I(f) [114, (1.6)]
as

THH[n](M I(f)) 'M I(f) ∧BnA+.

As an example consider the canonical map f : BU → BGhI . Then one obtains

X ⊗MU 'MU ∧ Ω∞(bu ∧ |X|)
and

THH[n](MU) 'MU ∧ Ω∞(bu ∧ Sn) 'MU ∧BnBU+.

There is also a statement about THH of Thom spectra associated to single loop maps in [22,
Theorem 1]. We state the relative version of this, so in the following G is a cofibrant replacement
of GLI1(R).

Theorem 6.9. [20, Theorem 6.6] Assume that R is a commutative symmetric ring spectrum
that is semistable and S-cofibrant. Let M I(f) be a Thom spectrum associated to a map f : M →
BGhI of topological monoids, where M is grouplike and well-pointed. Then

THHR(M I(f)) 'M I(Lη(B(f))).

Here, M I(Lη(B(f))) is the Thom spectrum associated to the map

L(B(M))
L(B(f)) //

Lη(B(f))

��

LBBGhI ' BGhI ×BBGhI
id×η
��

BGhI BGhI ×BGhI
µoo

Note that BBGhI is an H-group, so we can split the free loop space LBBGhI into the base
space and the based loops

LBBGhI ' BBGhI × ΩBBGhI

and the second factor is equivalent to BGhI . As usual, η denotes the Hopf map η : S3 → S2 and
it induces a map η : BBGhI → BGhI as above via

BBGhI ' Ω2B4GhI → Ω3B4GhI ' BGhI
by reducing the loop coordinates by precomposition.

For quotient spectra, this results gives a new way of calculating THHR(R/I). For related
results see [4] and in the case where R/I happens to be commutative see [33, §7].

A second example comes from viewing HZ(p) as a Thom spectrum associated as a 2-fold loop

map Ω2(S3〈3〉)→ BGhI which allows for a determination of THH(HZ(p)) as HZ(p) ∧Ω(S3〈3〉)+

[22, Theorem 3.8] and an additive equivalence

THH[2](HZ(p)) ' HZ(p) ∧ S3〈3〉+.

This gives a geometric interpretation of (6.2), but without an identification of the multiplicative
structure. See also [60, §4], where Klang presents related results, using the framework of
factorization homology.

6.4. Topological Hochschild cohomology as a derived center. In the discrete case, i.e.,
for a commutative ring k and a k-algebra A one can describe the center of A,

Z(A) = {b ∈ A, ab = ba for all a ∈ A}
as the set of A-bimodule maps from A to A. If f is such a map, f : A→ A with f(cad) = cf(a)d
for all a, c, d ∈ A, then f is determined by f(1) =: b and this b satisfies

ab = af(1) = f(a · 1) = f(a) = f(1 · a) = f(1)a = ba

so the set of such morphisms gives rise to an element in the center and vice versa, for any
b ∈ Z(A) we get such an f by setting f(1) = b.
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Hochschild cohomology of A over k can be described as

HH∗k(A) = Ext∗A⊗kAo(A,A)

if A is k-projective. Hence HH0
k(A) = Z(A) and the Hochschild cohomology of A is the derived

center of A. Hochschild cohomology has a graded commutative algebra structure via a cup
product, but the solved Deligne conjecture [90] says that the Hochschild cochain complex is in
general not a differential graded commutative algebra, but that it has an E2-algebra structure.

For ring spectra there is no homotopically meaningful definition of a center: requiring equality
translates to an equalizer diagram and this wouldn’t be homotopy invariant. For a commutative
ring spectrum R and an R-algebra spectrum A this equalizer corresponds precisely to taking
not just R-module endomorphisms but A-bimodule endomorphisms. So a homotopy invariant
version is as follows.

Definition 6.10. For a commutative ring spectrum R and an R-algebra spectrum A, the
topological Hochschild cohomology groups of A over R are

THH∗R(A) = π∗ExtA∧RAo(A,A)

and the derived center of A over R is

THHR(A) = ExtA∧RAo(A,A).

Here, ExtA∧RAo(A,A) denotes the derived endomorphism spectrum of A as an A-bimodule [34,
IV §1].

McClure and Smith’s proof of the Deligne conjecture also provides a spectrum version for
topological Hochschild cohomology, giving the derived center an E2-structure:

Theorem 6.11. [90] If A is an associative R-algebra spectrum, then THHR(A) is an E2-ring
spectrum.

An important example of a calculation of such a derived center is Angeltveit’s calculation of
THHEn(Kn). Here En denotes Morava E-theory with

π∗(En) ∼= W (Fq)[[u1, . . . , un−1]][u±1]

where the ui are deformation parameters for the height n Honda formal group law with |ui| = 0
and u is a periodicity element with |u| = 2. The sequence of elements (p, u1, . . . , un−1) is a
regular sequence and Kn is the 2-periodic version of Morava K-theory

Kn = En/(p, u1, . . . , un−1), (Kn)∗ = Fq[u±1].

Angeltveit shows that the derived center of Kn over En depends on the chosen A∞-algebra
structure of Kn over En:

Theorem 6.12. [4, Theorems 5.21, 5.22]

(a) For any prime p and any n > 1 there is an A∞-structure on Kn such that THHEn(Kn) '
En.

(b) For n = 1 and any d with 1 6 d < p − 1 and any a with 1 6 a 6 p − 1 there is an
A∞-structure on K1 with

THH∗E1
(K1) ∼= π∗(E1)[[q]]/(p+ a(uq)d).

Here, the first structure in (a) occurs as the one coming from the least commutative A∞-
structure on Kn (see [4, Theorem 5.8] for a precise statement). The case n = 1, p = 2 of (a) is
due to Baker and Lazarev [11, Proof of Theorem 3.1] who show that at the prime 2

THHKU2(K(1)) ' KU2.
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6.5. Topological André-Quillen homology. We will first sketch the definition of ordinary
André-Quillen homology. See [99] for the original account and [55] for a very readable modern
introduction.

Definition 6.13. Let k be a commutative ring with unit and let A be a commutative k-algebra.
The A-module of Kähler differentials of A over k is the A-module generated by elements d(a)
for a ∈ A subject to the relations that d is k-linear and satisfies the Leibniz rule:

d(ab) = d(a)b+ ad(b).

This A-module is denoted by Ω1
A|k.

The conditions imply d(1) = d(1 · 1) = 2d(1) and hence d(1) = 0. For a polynomial algebra
A = k[x1, . . . , xn] the A-module Ω1

k[x1,...,xn]|k is freely generated by dx1, . . . , dxn. By induction

one shows d(xmi ) = mxm−1
i d(xi) for all m > 2.

Consider for instance the Fp-algebra Fp[x]/(xp− x). Then the module of Kähler differentials
is generated by d(x). However, as we are in characteristic p we get

d(x) = d(xp) = pxp−1d(x) = 0

and hence Ω1
Fp[x]/(xp−x)|Fp = 0.

Remark 6.14. For a commutative k-algebra A there is an isomorphism between Ω1
A|k and the

first Hochschild homology group of A over k: Every a ⊗ b in Hochschild chain degree one is
a cycle and if you send a ⊗ b to ad(b) then this gives a well-defined map modulo Hochschild

boundaries and it induces an isomorphism HHk1(A) ∼= Ω1
A|k [68, Proposition 1.1.10].

Definition 6.15. Let M be an A-module. A k-linear derivation from A to M is a k-linear map
δ : A→M which satisfies the Leibniz rule.

The set of all such derivations, Derk(A,M), is an A-submodule of the A-module of all k-linear
maps. The symbol d in the definition of Ω1

A|k satisfies the conditions of a derivation, hence the
map

d : A→ Ω1
A|k, a 7→ da

is a derivation, in fact, it is the universal derivation:

Proposition 6.16. [55] For all A-modules M the canonical map

HomA(Ω1
A|k,M)→ Derk(A,M), f 7→ f ◦ d

is an A-linear isomorphism.

There is another crucial reformulation of the above isomorphism: Derk(A,M) can also be
identified with the morphisms of commutative k-algebras over A from A to the square-zero
extension A⊕M . The latter is the commutative augmented A-algebra with underlying module
A⊕M with multiplication

(a1,m1)(a2,m2) = (a1a2, a1m2 + a2m1), a1, a2 ∈ A,m1,m2 ∈M.

A derivation δ : A→M corresponds to the map into the second component of A⊕M .
The idea of André-Quillen homology is to take the derived funtor of A 7→M ⊗A Ω1

A|k. But in

which sense? As A is a commutative algebra, we need a resolution of A as such an algebra. The
category of differential graded commutative k-algebras in general doesn’t have a (right-induced)
model structure, so instead one works with simplicial resolutions. The category of simplicial
commutative k-algebras does have a nice model structure. Let P• → A be a cofibrant resolution.
Each Pn can be chosen to be a polynomial algebra [55, §4].

Definition 6.17. The André-Quillen homology of A over k with coefficients in M is

AQ∗(A|k : M) = π∗(M ⊗P• Ω1
P•|k).
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A definition of Ω1
A|k in terms of generators and relations is not suitable for a generalization

to commutative ring spectra. Instead we use the following description:

Lemma 6.18. Denote by I the kernel of the multiplication map µ : A⊗k A→ A. Then Ω1
A|k is

isomorphic to I/I2.

Proof. Note that I is generated by elements of the form a ⊗ 1 − 1 ⊗ a. Such an element is
identified with d(a). Taking the quotient by I2 corresponds to the Leibniz rule for d. �

The ideal I can also be viewed as a non-unital k-algebra and I/I2 is the module of indecom-
posables of I. This definition translates to brave new commutative rings. Basterra’s work is
formulated in the setting of [34]:

Definition 6.19. Let A be a commutative R-algebra spectrum.

• We define I(A ∧R A) as the pullback

I(A ∧R A) //

��

A ∧R A
µ

��
∗ // A

• If N is a non-unital commutative R-algebra spectrum, then its R-module of indecom-
posables, Q(N), is defined as the pushout

N ∧R N
µN
��

// ∗

��
N // Q(N)

• For an A-module spectrum M we define the topological André-Quillen homology of A
over R with coefficients in M as

(6.3) TAQ(A|R : M) = LQ(RI(A ∧R A))

and denote its homotopy groups as TAQ∗(A|R : M). We abbreviate LQ(RI(A ∧R A))
by ΩA|R.

Thus for ΩA|R we take homotopy invariant versions of the kernel of the multiplication map
followed by taking indecomposables by applying the right derived functor of I and the left
derived functor of Q.

Definition 6.20. Dually, topological André-Quillen cohomology of A over R with coefficients
in M is FA(ΩA|R,M) and we set TAQn(A|R;M) = π−nFA(ΩA|R,M).

Basterra proves [16, Proposition 3.2] that maps from ΩA|R to M in the homotopy category
of A-modules correspond to maps in the homotopy category of commutative R-algebra maps
over A from A to A ∨M where A ∨M carries the square-zero multiplication.

For example, if f : B → BGL1(S) is an infinite loop map and M(f) is the associated Thom
spectrum, then Basterra and Mandell show [17, Theorem 5 and Corollary] that

TAQ(M(f)) 'M(f) ∧ b
where Ω∞b ' B. In the case of an E∞-space B the spherical group ring Σ∞+ B has

TAQ(Σ∞+ B) ' Σ+B ∧ b.

7. How do we recognize ring spectra as being (non) commutative?

If you have a concrete model of a homotopy type, say in symmetric spectra, then you can be
lucky and this model posseses a commutative structure and you should be able to check this by
hand. Of course you could also try to disprove commutativity by showing that your spectrum
doesn’t have power operations as in (2.2) and this has been done in many cases, but sometimes
you might need a different approach.
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7.1. Obstructions via filtrations and resolutions. An obstruction theory forA∞-structures
on homotopy ring spectra was developed as early as 1989 [105] by Alan Robinson. Obstruction
theories for E∞-structures came much later: Goerss-Hopkins and Robinson [38], [106] inde-
pendently developed one with obstruction groups that later turned out to be isomorphic [19].
The idea is to use a filtration or resolution of an operad such that the corresponding filtration
quotients or the corresponding spectral sequence gives rise to obstruction groups that contain
obstructions for lifting a partial structure to a full E∞-ring structure [106, Theorem 5.6], [38,
Corollary 5.9]. The Goerss-Hopkins approach also allows to calculate the homotopy groups of
the derived E∞ mapping space between two such E∞-ring spectra [38, Theorem 4.5].

The obstruction groups have as input the algebra of cooperations E∗E of a spectrum E and
they compute André-Quillen cohomology groups of the graded commutative E∗-algebra E∗E in
the setting of differential graded (or simplicial) E∞-algebras. See [74], [39, §2.4] for background
on these cohomology groups and see [19, §2] for the comparison results. In Robinson’s setting
these groups are called Gamma-cohomology. The obstruction groups vanish if for instance E∗E
is étale as an E∗-algebra.

If you prefer to work with explicit chain complexes, then there are several equivalent ones
computing Gamma cohomology groups in Robinson’s setting [106, §2.5], [107, §6], [97, §2] and
therefore, by the comparison result from [19, Theorem 2.6], computing the obstruction groups
in the Goerss-Hopkins setting as well.

There is another version of obstruction theory for promoting a homotopy T -algebra structure
to an actual one by Johnson and Noel [59] where T is a monad. This includes obstructions for
operadic structures on spectra but also includes for instance group actions. Noel shows that in
certain situations the obstruction theory [59] can be compared to the one of [38].

We list some important applications:

(a) The development of the Hopkins-Miller and Goerss-Hopkins obstruction theory was mo-
tivated by the Morava-E-theory spectra, also known as Lubin-Tate spectra, En and
variants of those. These are Landweber exact cohomology theories that govern the de-
formation theory of height n formal group laws. In [101] an obstruction theory was
established that allowed to show that the En are A∞-spectra and that the Morava stabi-
lizer group Gn acts on En via maps of A∞-spectra. In [38] the corresponding obstruction
theory for E∞-structures was developed and [38, Corollaries 7.6, 7.7] shows that the Gn-
action is via E∞-maps.

(b) It was known that KU and KO are E∞-spectra and it was also known that the p-
completed Adams summand Lp is E∞. In [12] Andy Baker and I use Robinson’s version
of the E∞-obstruction theory to show that these E∞-structures are unique and that
the p-local Adams summand also has a unique E∞-structure. Uniqueness also holds for
the connective covers [14]. It is important to have uniqueness results for E∞-structures
because calculations can depend on a choice of such a structure.

(c) For an E∞-ring spectrum R there is a θ-algebra structure on its p-adic K-theory,
π∗LK(1)(KUp ∧R) [39, Theorem 2.2.4] and in good cases

π∗LK(1)(KUp ∧R) ∼= lim
k

(KUp)∗(R ∧M(pk))

where M(pk) is the mod-pk Moore spectrum. The study of such structures was initiated
by McClure in [28, Chapter IX]. There is a variant of the Goerss-Hopkins obstruction
theory for realizing for instance a θ-algebra (see [39, §2.4.4] and [64, Theorem 5.14]) as
a K(1)-local E∞-ring spectrum.

There is one for realizing an E∞-Hk-algebra spectrum with a fixed Dyer-Lashof struc-
ture on its homotopy [94, Proposition 2.2] (for k a field of characteristic p). Other
variants can be found in the literature.

The θ-algebra version was successfully applied by Lawson and Naumann [64] to show
that BP〈2〉 at 2 has an E∞-structure. By a different method Hill and Lawson [46,
Theorem 4.2] find a commutative model for BP〈2〉 at the prime 3.
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(d) Mathew, Naumann and Noel use operations in Morava-E-theory to prove May’s nilpo-
tence conjecture:

Theorem 7.1. [80, Theorem A] If R is an H∞-ring spectrum and if x ∈ π∗(R) is in
the kernel of the Hurewicz homomorphism π∗(R)→ H∗(R;Z), then x is nilpotent.

They use this – among many other applications – for the following result about E∞-
ring spectra:

Theorem 7.2. [80, Proposition 4.2] If R is an E∞-ring spectrum and if there is an
m ∈ Z, m 6= 0 with m · 1 = 0 ∈ π0(R), then for all primes p and for all n > 1:

K(n)∗(R) ∼= 0.

Lawson observed that using K(n)-techniques (see [100] for background) this implies
that for finite E∞-ring spectra R either the rational homology is non-trivial or R is
weakly contractible, because if H∗(R;Q) ∼= 0, then by the above result all the Morava
K-theories also vanish on R, but then the finiteness of R implies weak contractibility
(see [80, Remark 4.3] for the full argument).

The Dyer-Lashof variant is for instance important when one wants to decide whether a given
H∞-map can be upgraded to an E∞-map: Roughly speaking, an H∞-spectrum is like an E∞-
spectrum in the homotopy category. You can find applications of this approach for instance in
Noel’s work [94] and in [59].

Other spectra, for instance, BP , come with homology operations just because they sit in the
right place: analyzing the maps MU → BP → HFp gives [28, p. 63] that (HFp)∗(BP) embeds
into the dual of the Steenrod algebra such that (HFp)∗(BP) is closed under the action of the
Dyer-Lashof algebra – even without establishing a structured multiplication on BP . This led
Lawson [62] to look for the right obstructions for an E∞-structure of BP at 2 via secondary
operations (see Theorem 7.5).

7.2. Obstructions via Postnikov towers. A different approach to obstruction theory is to
consider Postnikov towers in the world of commutative ring spectra [16] or in the setting of
En-algebras [18].

To this end Basterra uses TAQ-cohomology to lift ordinary k-invariants of a connective com-
mutative ring spectrum to k-invariants in a multiplicative Postnikov tower:

Assume that R is a connective commutative ring spectrum. Then there is a map of commu-
tative ring spectra

p0 : R→ H(π0(R))

and without loss of generality we can assume that p0 is a cofibration of commutative ring spectra
that realizes the identity on π0, i.e., π0(p0) = idπ0(R).

If we abbreviate π0(R) to B and if M is a B-module, then an element in TAQn(A|R;HM)
corresponds to a morphism ϕ : A→ A∨ΣnHM in the homotopy category of R-algebra spectra
over A and we can form the pullback of

A

iA
��

A
ϕ // A ∨ ΣnHM

If we postcompose ϕ with the projection map to ΣnHM

(7.1) A
ϕ //A ∨ ΣnHM //ΣnHM

such a TAQ-class forgets to an Ext-class in ExtnR(A;HM), i.e., if R is the sphere spectrum, to an
ordinary cohomology class. Basterra shows that this projection maps k-invariants in the world
of commutative ring spectra to ordinary k-invariants of the underlying spectrum.
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Theorem 7.3. [16, Theorem 8.1] For any connective commutative ring spectrum A there is a
sequence of commutative ring spectra Ai, π0(A)-modules Mi and elements

k̃i ∈ TAQi+2(Ai|S;HMi+1)

such that

• A0 = Hπ0(A) and Ai+1 is the pullback of Ai with respect to k̃i,
• πjAi = 0 for all j > i,
• there are maps of commutative ring spectra λi : A → Ai which induce an isomorphism

in homotopy groups up to degree i such that the diagram

Ai+1

��
A

λi //

λi+1
==

Ai

commutes in the homotopy category of commutative ring spectra.

You start with A0 = Hπ0(A) and then you have to find a suitable map A0 → A0∨Σ2H(π1(A))
as a starting point of the multiplicative Postnikov tower.

Basterra’s result can be used as an obstruction theory as follows. If A is a connective spectrum
then it has an ordinary Postnikov tower with k-invariants living in ordinary cohomology groups

ki ∈ H i+2(Ai;πi+1(A)).

You can then investigate whether it is possible to find multiplicative k-invariants

k̃i ∈ TAQi+2(Ai|S;Hπi+1(A))

that forget to the ki’s under the map from (7.1).
Basterra and Mandell show the following result using Postnikov towers for En-algebra spectra.

Theorem 7.4. [18, Theorem 1.1] The Brown Peterson spectrum, BP, has an E4-structure at
every prime.

This ensures by the main result of [76] that the derived category of BP -module spectra has
a symmetric monoidal smash product. Tyler Lawson, however, showed that there are certain
secondary operations in the F2-homology of every such spectrum with an E12-structure and he
could show that these are not present in the F2-homology of BP at 2. Let BP〈n〉 denote the
spectrum BP/(vn+1, vn+2, . . .).

Theorem 7.5. [62, Theorem 1.1.2] The Brown-Peterson spectrum at the prime 2 does not
possess an En-structure for any n with 12 6 n 6 ∞. The truncated Brown-Peterson spectrum
BP〈n〉 for n > 4 cannot have an En-structure for any n with 12 6 n 6∞.

See [120] for the corresponding results at odd primes.

7.3. Realization of E∞-spectra via derived algebraic geometry. There is a completely
different important and highly successful approach to realization problems, namely using derived
algebraic geometry. You can learn about derived algebraic geometry in the next Chapter of the
book.

8. What are étale maps?

We first recall the algebraic notion of an étale k-algebra from [68, E.1]: Let k be a commutative
ring and let A be a finitely generated commutative k-algebra. Then A is étale, if A is flat over
k and if the module of Kähler differentials Ω1

A|k is trivial. If Ω1
A|k = 0, then k → A is called

unramified. A k-algebra B (not necessarily commutative) is called separable, if the multiplication
map

B ⊗k Bo → B
30



has a section as a B-bimodule map. In algebra, a commutative separable algebra has Hochschild
homology concentrated in homological degree zero, in particular the module of Kähler differen-
tials is trivial.

8.1. Rognes’ Galois extensions of commutative ring spectra.

Definition 8.1. [109, Definition 4.1.3] Let A→ B be a map of commutative ring spectra and
let G be a finite group acting on B via commutative A-algebra maps. Assume that S → A→ B
is a sequence of cofibrations in the model structure on commutative ring spectra of [34, Corollary
VII.4.10]. Then A→ B is a G-Galois extension if

(a) the canonical map ι : A→ BhG is a weak equivalence and
(b)

(8.1) h : B ∧A B →
∏
G

B

is a weak equivalence.

The first condition is the familiar fixed points condition from classical Galois theory of fields.
The map ι comes from taking the adjoint of the map

A ∧ EG+
id∧p //A ∧ S0 ∼= A //B

where p : EG+ → S0 collapses EG to the non-base point of S0.
The map h is adjoint to the composite

B ∧A B ∧G+ → B ∧A B → B

that comes from the G-action on the right factor of B ∧A B followed by the multiplication in
B. (Informally, if smashes were tensors, then h(b1 ⊗ b2) = (b1 · g(b2))g∈G.) Note that

∏
GB is

isomorphic to F (G+, B), so we could rewrite the condition in (8.1) as the requirement that

h : B ∧A B → F (G+, B)

is a weak equivalence.
The condition that the map h from (8.1) is a weak equivalence is crucial. It is also necessary

for Galois extensions of discrete commutative rings in order to ensure that the extension is
unramified. For instance Z ⊂ Z[i] satisfies that Z[i]C2 = Z, but h : Z[i] ⊗Z Z[i] → Z[i] × Z[i] is
not surjective: h detects the ramification at the prime 2. Therefore Z→ Z[i] is not a C2-Galois
extension but Z[1

2 ]→ Z[1
2 , i] is C2-Galois.

Galois extensions of commutative ring spectra can have rather bad properties as modules.
So the following definition is actually an additional assumption (this does not happen in the
discrete setting).

Definition 8.2. [109, Definition 4.3.1] A Galois extension A→ B is faithful if it is faithful as
an A-module, i.e., for every A-module M with M ∧A B ' ∗ we have M ' ∗.

Important examples of Galois extensions of commutative ring spectra are the following. By
Cn we denote the cyclic group of order n.

(a) The concept of Galois extensions of commutative ring spectra corresponds to the one
for commutative rings via the Eilenberg-Mac Lane spectrum functor [109, Proposition
4.2]: Let R→ T be a homomorphism of discrete commutative rings and let G be a finite
group acting on T via R-algebra homomorphisms. Then R→ T is a G-Galois extension
of commutative rings if and only if HR → HT is a G-Galois extension of commutative
ring spectra.

(b) The complexification of real vector bundles gives rise to a map of commutative ring
spectra KO → KU from real to complex topological K-theory. There is a C2-action on
KU corresponding to complex conjugation of complex vector bundles. Rognes shows
[109, Proposition 5.3.1] that this turns KO → KU into a C2-Galois extension.
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(c) At an odd prime p there is a p-adic Adams operation on KUp that gives rise to a
Cp−1-action on KUp such that Lp → KUp is a Cp−1-Galois extension (see [109, 5.5.4]).

(d) There is a notion of pro-Galois extensions of commutative ring spectra and LK(n)S → En
is a K(n)-local pro-Galois extension with the extended Morava stabilizer group as the
Galois group [109, Theorem 5.4.4].

(e) Let p be an arbitrary prime. The projection map π : ECp → BCp induces a map on
function spectra

F (π+, HFp) : F ((BCp)+, HFp)→ F ((ECp)+, HFp) ∼ HFp
which identifies HFp as a Cp-Galois extension over F ((BCp)+, HFp) [109, Proposition
5.6.3]. Hence in the world of commutative ring spectra group cohomology sits between S
and HFp as the base of a Galois extension! Beware, this Galois extension is not faithful.

This observation is due to Ben Wieland: the Tate construction HFtCpp isn’t trivial and
it is actually killed by the Galois extension (in the spectral sequence you augment a
Laurent generator to zero).

(f) Studying elliptic curves with level structures gives C2-Galois extensions TMF0(3) →
TMF1(3) and Tmf0(3)→ Tmf1(3) [79, Theorems 7.6, 7.12]. For TMF1(3) (and Tmf1(3))
you consider elliptic curves with one chosen point of exact order 3 and for TMF0(3)
(and Tmf0(3)) you only remember a subgroup of order 3. As C2

∼= Z/3Z× this gives a
C2-action. This can be made rigorous (see [47, 46, 79]).

8.2. Notions of étale morphisms. Weibel-Geller [129] show that for an étale extension of
commutative rings ϕ : A → B Hochschild homology satisfies étale descent : The map HH(ϕ)∗
induces an isomorphism

(8.2) B ⊗A HH∗(A) ∼= HH∗(B)

and for finite G-Galois extensions ϕ : A→ B one obtains Galois descent :

(8.3) HH∗(A) ∼= HH∗(B)G

It is easy to see that for a G-Galois extension of discrete commutative rings ϕ : A → B with
finite G, the induced extension of graded commutative rings HH∗(ϕ) : HH∗(A) → HH∗(B) is
again G-Galois. In addition to having the right fixed-point property it satisfies

HH∗(B)⊗HH∗(A) HH∗(B) ∼= B ⊗A HH∗(A)⊗HH∗(A) B ⊗A HH∗(A)

∼= B ⊗A B ⊗A HH∗(A)

∼=
∏
G

B ⊗A HH∗(A)

∼=
∏
G

HH∗(B).

If ϕ : A → B is étale, then the module of Kähler differentials Ω1
B|A is trivial and it can be

easily seen that the map B → HHA∗ (B) is an isomorphism and that André-Quillen homology of
B over A is trivial, because étale algebras are smooth.

For commutative ring spectra the situation is different. There are several non-equivalent
notions of étale maps:

Definition 8.3. Let ϕ : A→ B be a morphism of commutative ring spectra.

(a) [70, Definition 7.5.1.4] We call ϕ Lurie-étale, if π0(ϕ) : π0(A) → π0(B) is an étale map
of commutative rings and if the canonical map

π∗(A)⊗π0(A) π0(B)→ π∗(B)

is an isomorphism.

(b) [88, Definiton 3.2], [109, Definition 9.2.1] The morphism ϕ is (formally) THH-étale, if
B → THHA(B) is a weak equivalence.
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(c) [88, Definiton 3.2], [109, Definition 9.4.1] We define ϕ to be (formally) TAQ-étale, if
TAQ(B|A) is weakly equivalent to ∗.

Remark 8.4.
• Rognes [109] reserves the labels THH-étale and TAQ-étale only for such maps that – in

addition to the conditions above – identify B as a dualizable A-module.
• The condition of being Lurie-étale is strong and is a very algebraic one. It is for instance

not satisfied by the C2-Galois extension KO → KU because on the level of homotopy
groups this extension is rather appalling, compare (1.1).
• McCarthy and Minasian show that THH-étale implies TAQ-étale and they show that for
n > 1 the map HFp → F (K(Z/pZ, n)+, HFp) is a TAQ-étale morphism that is not THH-
étale. They attribute this example to Mike Mandell [88, Example 3.5]. Minasian [92,
Corollary 2.8] proves that both notions are equivalent for morphisms between connective
commutative ring spectra.
• For connective spectra, the notion of Lurie-étaleness has several good features [70, §7.5]

and Mathew shows in [78, Corollary 3.1] that one can use [69, Lemma 8.9] to show that
under some finiteness condition TAQ-étaleness implies Lurie-étaleness in the connective
case.

Definition 8.5. [109, Definition 9.1.1] Let C be a cofibrant associative A-algebra spectrum.
Then C is separable if the multiplication map µ : C ∧A Co → C has a section in the homotopy
category of C-bimodule spectra.

Proposition 8.6. [109, Lemma 9.2.6] If C is a commutative separable A-algebra spectrum,
then C is THH-étale.

Proof. Recall from Remark 6.2 that THHA(C) is an augmented commutative C-algebra spec-
trum, so the composite of the unit map C → THHA(C) with the augmentation

C → THHA(C)→ C

is the identity. In addition, we get a splitting in the homotopy category of C-bimodule spectra,

C
s //C ∧A C

µ //C,

i.e., the above composite is the identity on C. Taking the derived smash product C ∧LC∧AC (−)
of the above sequence gives the sequence

THHA(C)→ C → THHA(C)

in which the last map is equivalent to the unit map of THHA(C) and whose composite is the
identity. So the unit map C → THHA(C) has a right and a left inverse in the homotopy category
of C-module spectra. �

Definition 8.7. Let A → B be a map of commutative ring spectra and let G be a finite
group acting on B via maps of commutative A-algebra spectra. Assume that S → A→ B is a
sequence of cofibrations in the model structure on commutative ring spectra of [34, Corollary
VII.4.10]. Then A→ B is unramified if

h : B ∧A B →
∏
G

B

is a weak equivalence.

Proposition 8.8. (compare [109, Lemma 9.1.2]) If A→ B is unramified, then B is separable
over A.

Proof. The canonical inclusion map i : B → F (G+, B) can be modelled by the pointed map
from G+ to S0, that sends the neutral element e ∈ G to the non-basepoint of S0 and sends all
other elements to the basepoint. We define a section to the multiplication map of B to be

B
i //F (G+, B) B ∧A B.

h,∼oo
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Note that h is not a B-bimodule map, but we are only interested in its e-component of F (G+, B).
�

Thus we can conclude that unramified maps of commutative ring spectra are THH-étale and
that the failure of the map B → THHA(B) to being a weak equivalence detects ramification.
This idea was exploited in [33] in order to show that the inclusion of the Adams summand
` → ku(p) is tamely ramified [33, Theorem 4.1]. Sagave also identifies this map as being log-
étale [111, Theorem 1.6].

8.3. Versions of étale descent. Transferring the Geller-Weibel result to the setting of com-
mutative ring spectra, it seems natural to define two versions of descent:

Definition 8.9. In the following ϕ : A→ B is a cofibration and A is cofibrant.

• The morphism ϕ : A→ B satisfies étale descent if the canonical morphism

(8.4) B ∧A THH(A)→ THH(B)

is a weak equivalence.
• If ϕ : A → B is a map of commutative ring spectra and if G is a finite group acting on
B via commutative A-algebra maps, then we say that ϕ satisfies Galois descent if the
map

(8.5) THH(A)→ THH(B)hG

is a weak equivalence.

Akhil Mathew clarifies the relationship between the different notions of étale morphisms and
the notions of descent. He proves that Lurie-étale morphisms satisfy étale descent [78, Theorem
1.3] and he shows that for a faithful G-Galois extension with finite Galois group G, both descent
properties are equivalent [78, Proposition 4.3] and they are in turn equivalent to the property
that THH(A)→ THH(B) is again a G-Galois extension.

Moreover, he shows that the morphism

ϕ : F (S1
+, HFp)→ F (S1

+, HFp)

that is induced by the degree-p map on S1 is a faithful Cp-Galois extension, but that it does
not satisfy étale descent [78, Theorem 2.1] and hence it doesn’t satisfy Galois descent.

The Hopf fibration S1 → S3 → S2 is a principal S1-bundle. The corresponding morphism of
commutative HQ-algebra spectra of cochains

F (η,HQ) : F (S2
+, HQ)→ F (S3

+, HQ)

is therefore an S1-Galois extension [109, Proposition 5.6.3].
In joint work with Christian Ausoni we show that the morphism F (η,HQ) does not satisfy

Galois descent, i.e.,

THH(F (S2
+, HQ)) � THH(F (S3

+, HQ))hS
1

:

The homotopy groups of THH(F (S2
+, HQ)) contain an element in degree −1 that is not present

in π∗(THH(F (S3
+, HQ))hS

1
).

Mathew identifies the problem with étale descent of finite faithful Galois extensions for THH
as being caused by the non-trivial fundamental group of S1. He shows the following result.

Theorem 8.10. [78, Proposition 5.2] Let X be a simply connected pointed space and let A→ B
be a faithful G-Galois extension of commutative ring spectra with finite G. Then the map

B ∧A (X ⊗A)→ X ⊗B

is a weak equivalence.
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In particular, higher order topological Hochschild homology, THH[n] for n > 2, does satisfy
étale descent for faithful finite Galois extensions. However, étale descent remains for instance
an issue for torus homology.

Note that sometimes THH does satisfy descent, even for ramified maps of commutative ring
spectra. For instance, Christian Ausoni shows in [9, Theorem 10.2] that THH(`p) is p-adically

equivalent to THH(kup)
hCp−1 and even that K(`p) is p-adically equivalent to K(kup)

hCp−1 .

Remark 8.11. In [30] Clausen, Mathew, Naumann and Noel prove far-reaching Galois descent
results for topological Hochschild homology and algebraic K-theory; in particular they confirm
a Galois descent conjecture for algebraic K-theory by Ausoni and Rognes in many important
cases. They identify THH as a weakly additive invariant (see [30, Definition 3.10]) and prove
descent in the form of [30, Theorems 5.1,5.6].

9. Picard and Brauer groups

9.1. Picard groups in the setting of a symmetric monoidal category. Let (C,⊗, 1, τ)
be a symmetric monoidal category. An important class of objects in C are those objects C that
have an inverse with respect to ⊗, i.e., there is an object C ′ of C such that

C ⊗ C ′ ∼= 1.

One wants to gather such objects in a category and build a space and spectrum out of them:

Definition 9.1. The Picard groupoid of C, Picard(C), is the category whose objects are the
invertible objects of C and whose morphisms are isomorphisms between invertible objects.

In general, this category might not be small. Note that if C1 and C2 are objects of Picard(C),
then so is C1 ⊗ C2; in fact, Picard(C) is itself a symmetric monoidal category.

Definition 9.2. Let C be as above and assume that Picard(C) is small.
Then PIC(C) is the classifying space of the symmetric monoidal category Picard(C) and let

pic(C) denote the connective spectrum associated to the infinite loop space associated to PIC(C).
The Picard group of C, Pic(C), is π0PIC(C).

If the Picard groupoid of C is small, then the Picard group can also be described as the set
of isomorphism classes of invertible objects of C with the product

[C1]⊗ [C2] := [C1 ⊗ C2].

The neutral element is the isomorphism class of the unit, [1].

Definition 9.3. Let R be a (discrete) commutative ring, then we denote by Pic(R) the Picard
group of the symmetric monoidal category of the category of R-modules and by PIC(R) (and
pic(R)) the Picard space (and Picard spectrum) of this category.

For instance the Picard group of a ring of integers in a number ring is its ideal class group.

9.2. Picard group for commutative ring spectra. For commutative ring spectra R, the
above definition of PIC(R) and pic(R) would either be much too rigid (if one would choose C to
be the category of R-module spectra and isomorphisms) or not strict enough (if one would take
C to be the homotopy category of R-module spectra). See [81, §2] for an adequate background
for a suitable definition and see [36, §4] for a dictionary how to pass from a commutative
ring spectrum R and its category of modules to the ∞-categorical setting. Instead of working
with symmetric monoidal categories, one uses presentable symmetric monoidal ∞-categories C.
Then the Picard ∞-groupoid of C is the maximal subgroupoid of the underlying ∞-category
of C spanned by the invertible objects. This groupoid is equivalent to a grouplike E∞-space
PIC(C) and hence there is a connective ring spectrum, pic(C), associated to C [36, §5].

Let R be a commutative ring spectrum. The operadic nerve of the category of cofibrant-
fibrant R-modules is a stable presentable symmetric monoidal ∞-category [70, Proposition
4.1.3.10] and we will abbreviate this as the ∞-category of R-modules, Rmod.
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Definition 9.4. The Picard group of a commutative ring spectrum R, Pic(R), is the group
π0(PIC(Rmod)).

Again, these Picard groups can also be described as the set of isomorphism classes of invertible
R-modules in the homotopy category of R-module spectra.

The Picard space PIC(R) is a delooping of the units of R ([81, §2.2], [125, §5]): There is an
equivalence

PIC(R) ' Pic(R)×BGL1(R).

Remark 9.5. There is a map Pic(π∗R) → Pic(R) that realizes an element in the algebraic
Picard group of invertible graded π∗R-modules as a module over R and in many cases this map
is actually an isomorphism [13, Theorem 43]. In this case we call Pic(R) algebraic. A notable
exception comes from Galois extensions of ring spectra: As in algebra, if A→ B is a G-Galois
extension of commutative ring spectra with abelian Galois group G, then [B] ∈ Pic(A[G]) [109,
Proposition 6.5.2]. But for instance [KU∗] is certainly not an element in the algebraic Picard
group Pic(KO∗[C2]), see (1.1).

The equivalence classes of suspensions of R are always in Pic(R), but if R is periodic, these
suspensions don’t generate a free abelian group. Let us mention some crucial examples of Picard
groups of commutative ring spectra:

• The Picard group of the initial commutative ring spectrum S is Pic(S) ∼= Z where n ∈ Z
corresponds to the class of Sn [51].
• For connective commutative ring spectra the Picard group of R is algebraic [13, Theorem

21], [81, Theorem 2.4.4].
• For periodic real and complex K-theory the Picard groups just notices the suspensions of

the ground ring: The Picard group of KU is algebraic: Pic(KU ) ∼= Z/2Z, and Pic(KO) ∼=
Z/8Z (Hopkins, [81, Example 7.1.1] and [36, §7]).
• The same applies to the periodic verison of the spectrum of topological modular forms:
Pic(TMF) ∼= Z/576Z [81, Theorem A]. But for Tmf, the spectrum of topological forms
that mediates between TMF and its connective version tmf one gets [81, Theorem B]

Pic(Tmf) ∼= Z⊕ Z/24Z

where the copy of the integers comes from the suspensions of Tmf and the generator of
the Z/24Z-summand is described in [81, Construction 8.4.2]
• For any odd prime and any finite subgroup G of the full Morava stabilizer group Gp−1

Heard, Mathew and Stojanoska [44, Theorem 1.5] prove – using Galois descent techniques
for pic – that the Picard group of EhGp−1 is a cyclic group generated by the suspension of

EhGp−1.

A Picard group that contains more elements than just the ones coming from suspensions of the
commutative ring spectrum says that there are more self-equivalences of the homotopy category
of R-modules than the standard suspensions. One might view this as twisted suspensions.
Gepner and Lawson explore the concept of having a Picard-grading on the category of R-module
spectra and they develop a Pic-resolution model category structure in the sense of Bousfield
[36, §3.2].

9.3. Descent method and local versions. A crucial method for calculating Picard groups
is Galois descent. If A → B is a G-Galois extension (for G finite), then for the Picard spectra
and spaces the following equivalences hold [36, 81]:

(9.1) pic(A) ' τ>0pic(B)hG and PIC(A) ' PIC(B)hG.

Here, τ>0 denotes the connective cover of a spectrum. In general, the extension B is easier to
understand than A, for instance in the case of the C2-Galois extension KO → KU , one obtains
information about pic(A) using the homotopy fixed point spectral sequence

H−s(G;πtpic(B))⇒ πt−s(pic(B)hG).
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In [47, §6] for instance, Hill and Meier use Galois descent to determine the Picard groups of
TMF0(3) and Tmf0(3):

Theorem 9.6. [47, Theorems 6.9, 6.12]

Pic(TMF0(3)) ∼= Z/48Z and Pic(Tmf0(3)) ∼= Z⊕ Z/8Z.

Hopkins-Mahowald-Sadofsky started the investigation of the Picard groups of the K(n)-local
homotopy categories for varying n [51]. They denote these Picard groups by Picn. Note that
the relevant symmetric monoidal product for fixed n is

X ⊗ Y = LK(n)(X ∧ Y )

for K(n)-local X and Y . They determined Pic1 for all primes p:

Theorem 9.7. [51, Theorem 3.3, Proposition 2.7]

• At the prime 2: Pic1
∼= Z×2 × Z/4Z.

• For all odd primes p, Pic1
∼= Zp × Z/qZ with q = 2p− 2.

In the K(n)-local setting the notion of algebraic elements in Picn is slightly more involved.
Hopkins, Mahowald and Sadofsky show [51] (see also [37, Theorem 2.4]) that a K(n)-local
spectrum X is K(n)-locally invertible if and only if π∗(LK(n)(En ∧X)) is a free (En)∗-module
of rank one and if and only if π∗(LK(n)(En ∧X)) is invertible as a continuous module over the
completed group ring (En)∗[[Gn]]. Here, Gn is the full Morava-stabilizer group. Hence applying
π∗(LK(n)(En∧−) gives a map from Picn to the Picard group of continuous (En)∗[[Gn]]-modules

and this group is called Picalg
n . The kernel of the map, κn, collects the exotic elements in Picn:

0→ κn → Picn → Picalg
n .

For odd primes, all elements in Pic1 can be detected algebraically but for p = 2 one has a
non-trivial element in κ1. See [37] for Pic2 at p = 3 and a general overview. There is ongoing
work on Pic2 at p = 2 by Agnès Beaudry, Irina Bobkova, Paul Goerss and Hans-Werner Henn.

9.4. Brauer groups of commutative rings. Probably most of you will know the definition
of the Brauer group of a field. But as for many features that we want to transfer to the spectral
world we need to consider algebraic concepts developed for commutative rings (not fields).

Azumaya started to think about general Brauer groups [10] in the setting of local rings. A
general definition of the Brauer group of a commutative ring R was given by Auslander and
Goldman [8] as Morita equivalence classes of Azumaya algebras. The Brauer group was then
globalized to schemes by Grothendieck [43]. He also shows that the Brauer group of the initial
ring Z is trivial; this is a byproduct of his identification of Brauer groups of number rings in
[43, III, Proposition (2.4)].

9.5. Brave new Brauer groups. Baker and Lazarev define in [11] what an Azumaya alge-
bra spectrum is. We use one version of this definition in [15] to develop Brauer groups for
commutative ring spectra. Related concepts can be found in [58] and [127].

Fix a cofibrant commutative ring spectrum R.

Definition 9.8. A cofibrant associative R-algebra A is called an Azumaya R-algebra spectrum
if A is dualizable and faithful as an R-module spectrum and if the canonical map

A ∧R Ao → FR(A,A)

is a weak equivalence.

We list some crucial properties of Azumaya algebra spectra. For the first property recall the
discussion of derived centers from Definition 6.10.

Proposition 9.9.
(a) [11, Proposition 2.3] If A is an Azumaya R-algebra spectrum, then A is homotopically

central over R, i.e., R→ THHR(A) is a weak equivalence.
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(b) [15, Proposition 1.3] Every Azumaya R-algebra spectrum A is separable over R.
(c) [15, Proposition 1.5] If A is Azumaya over R and if C is a cofibrant commutative R-

algebra then A∧RC is Azumaya over C. Conversely, if C is as above and dualizable and
faithful as an R-module, then A∧RC being Azumaya over C implies that A is Azumaya
over R.

If A and B are Azumaya over R, then A ∧R B is also Azumaya over R.
(d) [15, 2.2] If M is a faithful, dualizable, cofibrant R–module, then (a cofibrant replacement

of) FR(M,M) is an R-Azumaya algebra spectrum.

Thus the endomorphism Azumaya algebras are the ones that are always there and you want
to ignore them.

Definition 9.10. Let A and B be two Azumaya R-algebra spectra. We call them Brauer
equivalent if there are dualizable, faithful R-modules N and M such that there is an R-algebra
equivalence

A ∧R FR(M,M) ' B ∧R FR(N,N).

We denote by Br(R) the set of Brauer equivalence classes of R-Azumaya algebra spectra.

Note that Br(R) is an abelian group with multiplication induced by the smash product over
R. Johnson shows [58, Lemma 5.7] that one can reduce the above relation to what he calls
Eilenberg-Watts equivalence. This implies that one can still think about the Brauer group of a
commutative ring spectrum as the Morita equivalence classes of Azumaya algebra spectra.

We showed a Galois descent result [15, Proposition 3.2], saying that under some natural
condition you can descent an Azumaya algebra C over B to an Azumaya algebra ChG over A
is A→ B is a faithful G-Galois extension with finite Galois group G.

9.6. Examples of Brauer groups. As we know that Br(Z) = 0, we conjecture [15] that
the Brauer group of the initial ring spectrum is also trivial. This conjecture was proven in [6,
Corollary 7.17]. They actually showed a much stronger result:

Theorem 9.11. [6, Theorem 7.16] If R is a connective commutative ring spectrum such that
π0(R) is either Z or the Witt vectors W (Fq), then the Brauer group of R is trivial.

Different approaches can be used to construct a Brauer space for a commutative ring spectrum
R, BrR, [6, Definition 7.1], [36, §5], [125] and to show that this space is a delooping of the Picard
space, PIC

ΩBrR ' PIC(R)

with π0(BrR) ∼= Br(R).
An important question in the classical context of Brauer groups of schemes is to which extend

these groups can be controlled by the second étale cohomology group. See the introduction of
[127] for a nice overview. Toën shows that for quasi-compact and quasi-separated schemes X one
can identify the derived Brauer group of X with H1

ét(X;Gm)×H2
ét(X;Gm). The work of Antieau

and Gepner [6, §7.4] relates Brauer groups of connective commutative ring spectra to étale
cohomology groups by establishing a spectral sequence starting from étale cohomology groups
for étale sheaves over a connective commutative ring spectrum converging to the homotopy
groups of the Brauer space [6, Theorem 7.12].

It is not hard to see that the integral version of the quaternions gives a non-trivial element
in Br(S[1

2 ]) [15, Proposition 6.3]; Antieau and Gepner show [6, Corollary 7.18]

Br(S[1
p ]) ∼= Z/2Z for all primes p

and they prove the existence of a short exact sequence

0→ Br(S(p))→ Z/2Z⊕
⊕
q 6=p

Q/Z→ Q/Z→ 0
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by applying [6, Corollary 7.13] where they calculate the homotopy groups of the Brauer space
of any connective commutative ring spectrum R in terms of étale cohomology groups and the
homotopy groups of R.

They use the classical exact sequence for the Brauer group of the rationals [43, §2] coming
from the Albert-Brauer-Hasse-Noether theorem:

0→ Br(Q)→ Z/2Z⊕
⊕

p prime

Br(Qp)→ Q/Z→ 0

with Br(Qp) = Q/Z. This determines Br(Z[1
p ]) and Br(Z(p)) and this in turn gives the above

result for the sphere spectra with p inverted or localized at p.
In [15, Theorem 10.1] we show that the K(n)-local Brauer group of the K(n)-local sphere is

non-trivial at least for odd primes and n > 1.
Gepner and Lawson prove a version of Galois descent for a suitable ∞-category of Azumaya

algebras:

Theorem 9.12. [36, Theorem 6.15] There is an equivalence of symmetric monoidal ∞-
categories

AzA → (AzB)hG

for every G-Galois extension A→ B with finite G.

They also construct a map of ∞-groupoids AzR → BrR for any commutative ring spectrum
R and show that this map is essentially surjective, such that equality in π0(BrR) corresponds
precisely to Morita equivalence. They investigate the algebraic Brauer groups (i.e., the Morita
classes of Azumaya algebras over the coefficients) [36, §7.1] of 2-periodic commutative ring
spectra with vanishing odd homotopy groups, such as KU or En, by relating them to the
classical Brauer-Wall group of π0 of the ring spectrum and they identify a non-trivial Morita
class of a quaternion KO-algebra that becomes Morita-trivial over KU .

There is recent work by Hopkins and Lurie [50] who identify the K(n)-local Brauer group of
a Lubin-Tate spectrum E at all primes. For odd primes they obtain:

Theorem 9.13. [50, Theorem 1.0.11] The K(n)-local Brauer group of E is the product of
the Brauer-Wall group of the residue field π0(E)/m and a group Br′(E) which in turn can be
expressed as an inverse limit of abelian groups Br′` such that the kernel of Br′` → Br′`−1 is

non-canonically isomorphic to m`+2/m`+3.

One ingredient is their construction of atomic E-algebra spectra [50, Definition 1.0.2] via a
Thom spectrum construction relative to E for polarizations of lattices [50, Definition 3.2.1]
using the machinery from [1, 2]. Here, the starting point is a lattice Λ of finite rank together
with a polarization map Q : K(Λ, 1)→ PIC(E) ' Pic(E)×BGL1(E).
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author in collaboration with Teimuraz Pirashvili. Grundlehren der Mathematischen Wissenschaften 301,
Springer-Verlag, Berlin, (1998), xx+513 pp.

[69] Jacob Lurie, Derived Algebraic Geometry VII: Spectral Schemes, available at http://www.math.harvard.

edu/~lurie/.
[70] Jacob Lurie, Higher Algebra, available at http://www.math.harvard.edu/~lurie/.
[71] Manos Lydakis, Smash products and Γ-spaces, Math. Proc. Cambridge Philos. Soc. 126 (1999), no. 2,

311–328.

41

http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/


[72] Mark Mahowald, Ring spectra which are Thom complexes, Duke Math. J. 46 (1979), no. 3, 549–559.
[73] Michael A. Mandell, E∞-algebras and p-adic homotopy theory, Topology 40 (2001), no. 1, 43–94.
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