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Preface

Kurt Hensel (1861-1941) discovered or invented the p-adic numbers! around the
end of the nineteenth century. In spite of their being already one hundred years
old, these numbers are still today enveloped in an aura of mystery within the
scientific community. Although they have penetrated several mathematical fields,
number theory, algebraic geometry, algebraic topology, analysis, ..., they have
yet to reveal their full potential in physics, for example. Several books on p-adic
analysis have recently appeared:

F. Q. Gouvéa: p-adic Numbers (elementary approach);
A. Escassut: Analytic Elements in p-adic Analysis, (research level)

(see the references at the end of the book), and we hope that this course will
contribute to clearing away the remaining suspicion surrounding them. This book
is a self-contained presentation of basic p-adic analysis with some arithmetical
applications.

* k%

Our guide is the analogy with classical analysis. In spite of what one may think,
these analogies indeed abound. Even if striking differences immediately appear
between the real field and the p-adic fields, a better understanding reveals strong
common features. We try to stress these similarities and insist on calculus with the
p-adics, letting the mean value theorem play an important role. An obvious reason
for links between real/complex analysis and p-adic analysis is the existence of

1The letter p stands for a fixed prime (chosen in the list 2, 3, 5, 7, 11, ...) except when explicitly
stated otherwise.



vi Preface

an absolute value in both contexts.? But if the absolute value is Archimedean in
real/complex analysis,

if x # 0, for any y there is an integer n such that [nx| > |y|,
it is non-Archimedean in the second context, namely, it satisfies

Inxf=lx+x+---+x|=<Ixl.
————

n terms

In particular, |r| < 1 for all integers n. This implies that for any r > O the subset
of elements satisfying |x| < r is an additive subgroup, even a subring if r = 1.
For such an absolute value, there is (except in a trivial case) exactly one prime
p such that |p| < 1.3 Intuitively, this absolute value plays the role of an order
of magnitude. If x has magnitude greater than 1, one cannot reach it from 0 by
taking a finite number of unit steps (one cannot walk or drive to another galaxy!).
Furthermore, | p| < 1 implies that | p"| — 0, and the p-adic theory provides a link
between characteristic 0 and characteristic p.

The absolute value makes it possible to study the convergence of formal power
series, thus providing another unifying concept for analysis. This explains the
important role played by formal power series. They appear early and thereafter
repeatedly in this book, and knowing from experience the feelings that they inspire
in our students, I try to approach them cautiously, as if to tame them.

E I

Here is a short summary of the contents
Chapter I: Construction of the basic p-adic sets Z,, Q, and S,
Chapters II and III: Algebra, construction of C, and 2,
Chapters IV, V, and VI: Function theory,
Chapter VII: Arithmetic applications.

I have tried to keep these four parts relatively independent and indicate by an
asterisk in the table of contents the sections that may be skipped in a first reading.
1 assume that the readers, (advanced) graduate students, theoretical physicists, and
mathematicians, are familiar with calculus, point set topology (especially metric
spaces, normed spaces), and algebra (linear algebra, ring and field theory). The
first five chapters of the book are based solely on these topics.

The first part can be used for an introductory course: Several definitions of the
basic sets of p-adic numbers are given. The reader can choose a favorite approach!
Generalities on topological algebra are also grouped there.

2Both Newton’s method for the determination of real roots of f = 0 and Hensel’s lemma in the
p-adic context are applications of the existence of fixed points for contracting maps in a complete
metric space.

3Since the prime p is uniquely determined, this absolute value is also denoted by | . | p- However,
since we use it systematically, and hardly ever consider the Archimedean absolute value, we simply
write | . |.
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The second — more algebraic — part starts with a basic discussion of ultrametric
spaces (Section II.1) and ends (Section III.4) with a discussion of fundamental
inequalities and roots of unity (not needed before the study of the logarithm in
Section V.4). In between, the main objective is the construction of a complete and
algebraically closed field C,, which plays a role similar to the complex field C
of classical analysis. The reader who is willing to take for granted that the p-adic
absolute value has a unique extension | . | to every finite algebraic extension K
of Q, can skip the rest of Chapter II: If K and K’ are two such extensions, the
restrictions of | . [x and | . [x- to K N K’ agree. This proves that there is a unique
extension of the p-adic absolute value of Q, to the algebraic closure Q, of Q).
Moreover, if o € Aut(K/Q,), then x > |x7|x is an absolute value extending
the p-adic one, hence this absolute value coincides with | . |g. This shows that
o is isometric. If one is willing to believe that the completion Qf = C, is also
algebraically closed, most of Chapter IIT may be skipped as well.

In the third part, functions of a p-adic variable are examined. In Chapter IV,
continuous functions (and, in particular, locally constant ones) f : Z, — C, are
systematically studied, and the theory culminates in van Hamme’s generalization
of Mahler’s theory. Many results concerning functions of a p-adic variable are ex-
tended from similar results concerning polynomials. For this reason, the algebra of
polynomials plays a central role, and we treat the systems of polynomials — umbral
calculus — in a systematic way. Then differentiability is approached (Chapter V):
Strict differentiability plays the main role. This chapter owes much to the presenta-
tion by W.H. Schikhof: Ultrametric Calculus, an Introduction to p-adic Analysis.
In Chapter VI, a previous acquaintance with complex analysis is desirable, since
the purpose is to give the p-adic analogues of the classical theorems linked to the
names of Weierstrass, Liouville, Picard, Hadamard, Mittag-Leffler, among others.
In the last part (Chapter VII), some familiarity with the classical gamma function
will enable the reader to perceive the similarities between the classical and the p-
adic contexts. Here, a means of unifying many arithmetic congruences in a general
theory is supplied. For example, the Wilson congruence is both generalized and
embedded in analytical properties of the p-adic gamma function and in integrality
properties of the Artin-Hasse power series. I explain several applications of p-adic
analysis to arithmetic congruences.

* % %

Let me now indicate one point that deserves more justification. The study of metric
spaces has developed around the classical examples of subsets of R" (we make
pictures on a sheet of paper or on the blackboard, both models of R? ), and a famous
treatise in differential geometry even starts with “The nicest example of a metric
space is FEuclidean n-space R".” This point of view is so widely shared that one
may be led to think that ultrametric spaces are not genuine metric spaces! Thus the
commonly used notation for metric spaces has grown on the paradigmatic model
of subsets of Euclidean spaces. For example, the “closed ball” of radius r and
center a — defined by d(x, a) < r — is often denoted by B(a;r) or B,(a). This
notation comforts the belief that it is the closure of the “open ball” having the same
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radius and center. If the specialists have no trouble with the usual terminology and
notation (and may defend it on historical grounds), our students lose no opportunity
to insist on its misleading meaning. In an ultrametric space all balls of positive
radius (whether defined by d(x,a) < r or by d(x,a) < r) are both open and
closed. They are clopen sets. Also note that in an ultrametric space, any point of
a ball is a center of this ball. The systematic appearance of totally disconnected
spaces in the context of fractals also calls for a renewed view of metric spaces. I
propose using a more suggestive notation,

B (a)={x:d(x,a)<r}, Be(a)={x:d(x,a)<r}

which has at least the advantage of clarity. In this way I can keep the notation
A strictly for the closure of a subset A of a topological space X. The algebraic
closure of a field K is denoted by K*°.

* k% ok

Finally, let me thank all the people who helped me during the preparation of this
book, read preliminary versions, or corrected mistakes. I would like to mention
especially the anonymous referee who noted many mistakes in my first draft,
suggested invaluable improvements and exercises; W.H. Schikhof, who helped
me to correct many inaccuracies; and A. Gertsch Hamadene, who proofread the
whole manuscript. I also received encouragement and help from many friends and
collaborators. Among them, it is a pleasure for me to thank

D. Barsky, G. Christol, B. Diarra, A. Escassut, S. Guillod-Griener,
A. Junod, V. Schiirch, C. Vonlanthen, M. Zuber.

My wife, Ann, also checked my English and removed many errors.

Cross-references are given by number: (I1.3.4) refers to Section (3.4) of Chapter
II. Within Chapter II we omit the mention of the chapter, and we simply refer
to (3.4). Within a section, lemmas, propositions, and theorems are individually
numbered only if several of the same type appear. I have not attempted to track
historical priorities and attach names to some results only for convenience. General
assumptions are repeated at the head of chapters (or sections) where they are in
force.

Figures 1.2.5a, 1.2.5¢, 1.2.5d, and 1.2.6 are reproduced here (some with minor
modifications) with written permission from Marcel Dekker. They first appeared in
my contribution to the Proceedings of the 4th International Conference on p-adic
Functional Analysis (listed in the References).

Alain M. Robert
Neuchatel, Switzerland, July 1999
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1

p-adic Numbers

The letter p will denote a fixed prime.

The aim of this chapter is the construction of the compact topological ring Z,,
of p-adic integers and of its quotient field Q,, the locally compact field of p-adic
numbers. This gives us an opportunity to develop a few concepts in topological
algebra, namely the structures mixing algebra and topology in a coherent way.
Two tools play an essential role from the start:

¢ the p-adic absolute value | . |, = | .| orits additive version, the p-adic valuation
ord, = v,

¢ reduction mod p.

1. The Ring Z, of p-adic Integers

We start by a down-to-earth definition of p-adic integers: Other equivalent pre-
sentations for them appear below, in (4.7) and (4.8).

1.1. Definition
A p-adicinteger is a formal series Zizo a; p* with integral coefficients a; satisfying
0<ag <p-1.

With this definition, a p-adic integer a = ;.o a;p' can be identified with the
sequence (g; );>o of its coefficients, and the set of p-adic integers coincides with
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the Cartesian product

X=X,=[]0O,1,....p-1}={0,1,...,p— }".

i>0

In particular, if a = Zizoail’i, b= Zizobipi (withg;, b; € {0,1,...,p—1})
we have

a=b <<= a;=>b;foralli>0.

The usefulness of the series representation will be revealed when we introduce
algebraic operations on these p-adic integers. Let us already observe that the
expansions in base p of natural integers produce p-adic integers (ending with zero
coefficients: Finite series are special series), and we obtain a canonical embedding
of the set of natural integers N = {0, 1, 2, .. .} into X.

From the definition, we immediately infer that the set of p-adic integers is not
countable. Indeed, if we take any sequence of p-adic integers, say

a=Zaipi, b=Zbipi, c=Zcipi, ey

i=0 i=0 i=0

we can define a p-adic integer x = Zizo x; p' by choosing

XoFay, X1 b, xa¥f e, ...,

thus constructing a p-adic integer different from a, b, c, .. .. This shows that the
sequence a, b, c, ... does not exhaust the set of p-adic integers. A mapping from
the set of natural integers N to the set of p-adic integers is never surjective.

1.2. Addition of p-adic Integers

Let us define the sum of two p-adic integers a and b by the following procedure.
The first component of the sum is ag + by if this is less than or equal to p — 1, or
ag + bp — p otherwise. In the second case, we add a carry to the component of
p and proceed by addition of the next components. In this way we obtain a series
for the sum that has components in the desired range. More succinctly, we can say
that addition is defined componentwise, using the system of carries to keep them
in the range {0, 1,..., p — 1}.
An example will show how to proceed. Let

a=1=14+0p+0p*+---,
b=(p-D+@-Dp+(p-Dp*+---.

The sum a + b has a first component 0, since 1 + (p — 1) = p. But we have to
remember that a carry has to be taken into account for the next component. Hence
this next component is also 0, and another carry has to be accounted for in the
next place, etc. Eventually, we find that all components vanish, and the result is
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14 b = 0, namely b is an additive inverse of the integer a = 1 (in the set of p-adic
integers), and for this reason written b = —1. More generally, if

a= Zaipi,

i>0
we define

b=o@=)Y (p—1—a)p’
i>0

so that a + b + 1 = 0. This is best summarized by a + o(a@) + 1 = 0 or even
o(a)+ 1 = —a. In particular, all natural integers have an additive inverse in the
set of p-adic integers. It is now obvious that the set X of p-adic integers with the
precedingly defined addition is an abelian group. The embedding of the monoid
N in X extends to an injective homomorphism Z — X. Negative integers have
the form —m — 1 = o(m) with all but finitely many components equal to p — 1.
Considering that the rational integers are p-adic integers, from now on we shall
denote by Z,, the group of p-adic integers. (Another natural reason for this notation
will appear in (3.6).) The mapping o : Z, — Z,, obviously satisfieso? = 0 00 =
id and is therefore an involution on the set of p-adic integers. When p is odd, this
involution has a fixed point, namely the elementa = ;. i’;—l p ez,

1.3. The Ring of p-adic Integers

Let us define the product of two p-adic integers by multiplying their expansions
componentwise, using the system of carries to keep these components in the desired
range {0, 1,..., p—1}.

This multiplication is defined in such a way that it extends the usual multiplica-
tion of natural integers (written in base p). The usual algorithm is simply pursued
indefinitely. Again, a couple of examples will explain the procedure. We have
found that —1 = Y (p — 1)p’. Now we write

—1=(p-1-> 0, —(p—-DD_p' =1,

i=0 i=0

Hence 1 — p is invertible in Z, with inverse given as a formal geometric series of
ratio p. Since

p-Y ap =ap+ap’+---#1+0p+0p7+---,

i>0

the prime p is not invertible in Z, for multiplication. Using multiplication, we can
also write the additive inverse of a natural number in the form

—m=(-1)-m=Y (p—1p'- > mp,

i>0
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but it is not so easy to deduce the coefficients of —m from this relation. Together
with addition and multiplication, Z, is a commutative ring. When p is odd, the
fixed element under the involution o is

-1 . -1 : -1 1 1
a=Y P = N = =

i>0 i=0

but 2 is not an invertible element of Z,, —% ¢ Z,, and the involution & = o3 has
no fixed point in Z,.

1.4. The Order of a p-adic Integer

Leta = Zizo a; p' be a p-adic integer. Ifa # 0, there is a first index v = v(a) > 0
such that a, 7 0. This index is the p-adic order v = v(a) = ord,(a), and we get
a map

v=ord, :Z, — {0} > N.

This terminology comes from a formal analogy between the ring of p-adic integers
and the ring of holomorphic functions of acomplex variable z € C.If f is anonzero
holomorphic function in a neighborhood of a point a € C, we can write its Taylor
series near this point

f@ =) az—a), (an#0, z—al <s).

n>m
The index m of the first nonzero coefficient is by definition the order (of vanishing)
of f ata: this order is 0 if f(a) # O and is positive if f vanishes at a.

Proposition. The ring Z, of p-adic integers is an integral domain.

Proor. The commutative ring Z,, is not {0}, and we have to show that it has no
zero divisor. Let thereforea = Y, ga;p' #0, b =Y, b;p' # 0, and define
v = v(a), w = v(b). Then a, is the first nonzero coefficient of a, 0 < a, < p,and
similarly b,, is the first nonzero coefficient of b. In particular, p divides neither a,
nor b,, and consequently does not divide their product a,b,, either. By definition
of multiplication, the first nonzero coefficient of the product ab is the coefficient
Cyrw Of pUT™, and this coefficient is defined by

0<cyrw <P, Cypw =ayb, (mod p). m

Corollary of proof. The order v : Z, — {0} — N satisfies

v(ab) = v(a) + v(b),
v(a + b) > min(v(a), v(b))

ifa, b, and a + b are not zero. [ ]
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It is convenient to extend the definition of the order by v(0) = oc so that
the preceding relations are satisfied without restriction on Z,, with the natural
conventions concerning the symbol oo. The p-adic order is then a mapping Z, —
N U {00} having the two above-listed properties.

1.5. Reduction mod p
Let F, = Z/pZ be the finite field with p elements. The mapping

a= Zaipi — ap mod p
i>0
defines a ring homomorphisme : L, — F, called reduction mod p. This reduction
homomorphism is obviously surjective, with kernel

{acZ,:a)=0}= {Z.-Zmipi = szzoajﬂpj} = pZ,.

Since the quotient is a field, the kernel pZ, of ¢ is a maximal ideal of the ring
Z,. A comment about the notation used here has to be made in order to avoid a
paradoxical view of the situation: Far from being p times bigger than Z,, the set
pZ,, is a subgroup of index p in Z, (just as pZ is a subgroup of index p in Z).

Proposition. The group Zj; of invertible elements in the ring Z, consists of the
p-adic integers of order zero, namely

Zy={) ap' :a0#0).

i>0

Proor. If a p-adic integer a is invertible, so must be its reduction &(a) in F,. This
proves the inclusion Z;‘ - {Zizo a;p' : ap # 0}. Conversely, we have to show
that any p-adic integer a of order v(a) = 0 is invertible. In this case the reduction
£(a) € F) is not zero, and hence is invertible in this field. Choose 0 < by < p
with apgbg = 1 mod p and write agby = 1 + kp. Hence, if we write a = ag + po,
then

a-bo=1+kp-+ paby =1+ px

for some p-adic integer «. It suffices to show that the p-adic integer 1 4- «p is
invertible, since we can then write

a-bo(l+«p)y =1, al=by(l+«p)l

In other words, it is enough to treat the case ag = 1, a = 1 + kp. Let us observe
that we can take

A+kp) ' =1-kp+&pP —---=1+ciptop’+--

with integers ¢; € {0, 1, ..., p — 1}. This possibility is assured if we apply the
rules for carries suitably. Such a procedure is cumbersome to detail any further, and
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another, equivalent, definition of the ring Z,, will be given in (4.7) below, making
such verifications easier to handle. [ ]

Corollary 1. TheringZ, of p-adic integers has a unique maximal ideal, namely

pZ, =7, 7. =

The statement of the preceding corollary corresponds to a partition Z, = Z LI
PZ, (a disjoint union). In fact, one has a partition

Z, — {0} =[] P*Z; (disjoint union of p*ZX = v™"(k)).
x>0

Corollary 2. Every nonzero p-adic integer a € Z, has a canonical represen-
tation a = p*u, where v = v(a) is the p-adic order of aandu € Z,, is a p-adic
unit. [ |

Corollary 3. The rational integers a € Z that are invertible in the ring Z, are
the integers prime to p. The quotients of integers m/n € Q (n # 0) that are
p-adic integers are those that have a denominator n prime to p. ]

1.6. The Ring of p-adic Integers is a Principal Ideal Domain
The principal ideals of the ring Z,,

(P = P2, = {x € Z,:0ord,(x) > k},
have an intersection equal to {0}:

Z,5pL,>---DpL, >--- D[ ) p*Z, = {0}.
k>0

Indeed, any element a # O has an order v(a) = k, hence a ¢ (p**1). In fact, these
principal ideals are the only nonzero ideals of the ring of p-adic integers.

Proposition. The ring Z,, is a principal ideal domain. More precisely, its ideals
are the principal ideals {0} and p*Z p (k € N).

Proor. Let I # {0} be a nonzero ideal of Z, and 0 a € I an element of minimal
order, say k = v(a) < 0o. Write @ = p*u with a p-adic unit u. Hence p* =
u~la € I and (p*) = p"Zp C 1. Conversely, for any b € I let w = v(b) > k and
write

w, ! k w

b=p“u =p* p**u € p*Z,.

This shows that I C p*Z,. ]
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2. The Compact Space Z,
2.1. Product Topology on Z,,

The Cartesian product spaces

X,=[]0.1,2,....p -1} ={0,1,2,...,p— 1"

i>0

will now be considered as topological spaces, with respect to the product topology
of the finite discrete sets {0, 1,2, ..., p — 1}. These basic spaces will be studied
presently, and we shall give natural models for them (they are homeomorphic for
all p). By the Tychonoff theorem, X, is compact. It is also totally disconnected.
The connected components are points.

Let us recall that the discrete topology can be defined by a metric

5a, b) 1 ifa#b,

“P=10 ifa=»,
or, using the Kronecker symbol, §(a, b)) = 1 — 8,5. Several metrics compatible
with the product topology on X, can be deduced from these discrete ones. For
x =(ap, a1,...),y = (b, by, ...) € X, we can define

é(a;, b; 1
d(x,y) = sup (@ i ) = =’
iz0 D p
8(a;, b;
dx,y) = Z _(iti-—f—l—l)’ and so on.
iz0 P

Although all metrics on a compact metrizable space are uniformly equivalent, they
are not all equally interesting! For example, we favor metrics that give a faithful
image of the coset structure of Z,: For each integer k € N, all cosets of p*Z, in
Z, should be isometric (and in particular have the same diameter).

The p-adic metric is the first mentioned above. Unless specified otherwise, we
use it and introduce the notation

_ d(x,0)=p™ ifx # 0 (v = ord,(x)),
=10 ifx =0

(absolute values will be studied systematically in Chapter II). We recover the
p-adic metric from this absolute value by d(x, y) = |x — y|. With this metric,
multiplication by p in Z, is a contracting map

d(px, py) = 5 d(x, )

and hence is continuous.
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2.2. The Cantor Set

In point set topology the Cantor set plays an important role. Let us recall its
construction. From the unit interval Cy = I = [0, 1] one deletes the open middle
third. There remains a compact set

¢ =10, 1JuiZ, 1.

Deleting again the open middle third of each of the remaining intervals, we obtain
a smaller compact set

Iterating the process, we get a decreasing sequence of nested compact subsets of
the unit interval. By definition, the Cantor set C is the intersection of all C,.

remove
Temove F : g
0 H s -w * & g H IB 2"3 S - - - 1
- | | = = = -_— R
| § | | § | | B} [ ] ! . n ! | | - 5 !
The Cantor set

It is a nonempty compact subset of the unit interval / = [0, 1]. The Cantor
diagonal process (see 1.1) also shows that this compact set is not countable. If we
temporarily adopt a system of numeration in base 3 — hence with digizs 0, 1, and
2 — the removal of the first middle third amounts to deleting numbers having first
digit equal to 1 (keeping first digits 0 and 2). Removing the second, smaller, middle
intervals amounts to removing numbers having second digit equal to 1, and so on.
Finally, we see that the Cantor set C consists precisely of the numbers 0 < a <1
that admit an expansion in base 3:

o 0
O0.ajay...= 3 + D
with digits ¢; = 0 or 2. We obtain these expansions by doubling the elements of
arbitrary binary sequences. This leads to considering the bijection

. 2a;
1//22;0,'2’ = ,Z(;?,i_ﬂ:l’ Z, — C.

The definition of the product topology shows that this mapping is continuous, and
hence is a homeomorphism, since the spaces in question are compact.
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Binary sequences can also be considered as representing expansions in base 2
of elements in the unit interval. This leads to a surjective mapping

Q: Zaﬂ’ > Z%, Z, — [0,1].
i>0 i>0
This map is surjective and continuous but is not injective: The numbers ) _,_ i 2
and 2/ € Z, have the same image in [0, 1], as is immediately seen (in the decimal
system, a decimal expansion having only 9’s after place j can be replaced by a
decimal expansion with a single 1 in place j). In fact, Card ¢~!(¢) < 2 for any
t €[0,1].
We can summarize the situation by a commutative diagram of maps

v:Z, - C cC [0,1]
I A 4
p:Z, — [0,1]
The function g identifies contiguous extremities of the Cantor set C and sends

them onto points of the interval having two binary expansions (rational numbers
of the form a/2/). These constructions will now be generalized.

2/9 173

\
W

’
/
‘
/
’
’
\ ‘
\ ’
\ .
4 F

v
0 18 1/4 12

Gluing the extremities of the Cantor set

2.3.  Linear Models of Z,,

We choose a real number » > 1 and use it as numeration base in the unit interval
[0, 1]. In other words, we try to write real numbers in this interval in the form
ap/b + a1 /b* + - - - with integral digits 0 < a; < b. More precisely, fix the prime
p and consider the maps ¥ = ¥, (= ¥s,,) : Z, — [0, 1] defined by the infinite
series in R

with a normalizing constant ¥ chosen so that the maximum of v is 1. Since
this maximum 1is attained when all digits g; are maximal, it is attained at
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—1=3,.0(p — Dp' € Z,, and its image must be 1:

p—1 b1 -1
1=0.Z _ =z9(p—l)1_b_1 =z9‘Z_l,

namely

For p = 2 and b = 3 we find that & = 2, and we recover the special case studied
in the preceding section, where v furnished a homeomorphism Z, — C C [0, 11.
In general, ¥ = i, will be injective if the p-adic integers

d(p-Dpandp’ eZ,
i>j
have distinct images in [0, 1]. The first image is
P (p—1DD b =d(p—1b72/1-b7")
i>j
=07 Y p-1)/b—-1) = b L.

The second image is @ - b=/, The injectivity condition is thus & > 1, or b > p.
Let us summarize.

Theorem. The maps ¥y, (= ¥p ) : Z, — [0, 1] defined for b > 1 by

; b—1 a;
v Y ar' ) =— > =
are continuous. When b > p, ¥, is injective and defines a homeomorphism of
Z, onto its image Yr,(ZLy). When b = p, we get a surjective map ¥, which is
not injective. [ ]

The commutative diagram given in the last section generalizes immediately to
our present context.

Comment. When b > p, ¥, gives a linear model of Z, in the interval [0, 1]; the
image is a fractal subset A of this interval. The self-similarity dimension d of such
a set is “defined” by means of a dilatation producing a union of copies of translates
of A. If we denote by E(A) an intuitive — not formally defined — notion of extent
of A and if LA is a union of m translates of A, this self-similarity dimension d
satisfies

mE(A) = E(AA) = A°E(A),
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and hence d - logA = logm and d = logm/logA. In our case, take A=, so
that m = p and the self-similarity dimension of A=v(Z,) in [0,1] C R is
log p/loghb < 1. In this way we obtain a continuous family of fractal models of
increasing dimension for » \, p degenerating in the limit to a connected interval.

It may be useful to look at symmetric models obtained by replacing the digits
a; €{0,1,2,..., p— 1} by symmetric ones in {—p—gl, cees -p;—l}. Define

p-—1
v(k)=k—-—2—— O<k<p-1.

We can choose the normalization constant ¢ of the map

v Za,—pi = - Z ‘;Ejil)

i>0

in order to have
miny’ = —1, maxy’ = +1.

(When p = 2, v(k) = (—1)**'1 = +1, and the corresponding expansion has
fractional digits.) The involution ¢ induces a change of sign in the image. When
p # 2 it has the origin as fixed point. Here is a picture of centered linear models
of Z3 when b | 3.

| L | Y Y y
\ B v Yy y
-1 a2 -u4 0 u4e 12 1

A centered linear model of Z3

2.4. Free Monoids and Balls of Z),

Let B.,(a) denote the ball defined by d(x, a) = |x ~a| < r in Z,,. It is clear that
this ball does not change if we replace its radius 7 by the smallest power p~” that is
greater than or equal tor. If the p-adic expansionofa isap+a; p+- - -+a, p"+--- =
sn + p" e, the ball does not change either if we replace its center by s,. This ball
is fully determined by the sequence of digits (of variable length giving the radius)
ap, ai, ...,a,, and we associate to it the word

apay ---ap € M,

in the free monoid generated by S = {0, 1, ..., p — 1}.

Conversely, to each (finite) word in the elements of S — say apa; - - - a, — we
associate the ball of centera = ap +a1p+--- + a,p" andradius r = p~™. We
get in this way a bijective map between M, and the set of balls of Z,: Observe
that a ball B-,(a) defined by d(x, a) < r is the same as a ball B_,(a) for some
r'>r.
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The monoid M, has several matrix representations
M, — Gl(Z)).

For example, when n = 2, we can take

sr—>TS=(g ";) seS={0,1,...,p—1}.

_(p a\(p b\ _(p* a+bp
T“T”“(o 1)(0 1)‘(0 ] )

and more generally,

Indeed,

n+1 a +a +___+a n
TaoTal "'Ta,, = (po 0 1P 1 nP .

Observe that in this representation the length of a word corresponds to the order of
the determinant of the matrix. In terms of balls, the radius appears as the absolute
value of the determinant, whereas a center of the ball is read in the upper right-hand
corner of the matrix. With the preceding notation

pn+1 Sn
B (@) = Bo/(sn) <—> G0y -+ ay (€ M,,) <> ( . 1) ,
Euclidean models of the ring of p-adic integers will be obtained in the next section
by means of injective representations
M, — GL,(R).

Since M, is free, such representations are completely determined by the images
of the generators, namely by p matrices Mo, ..., Mp_;.

2.5. Euclidean Models

Let V be a Euclidean space, namely a finite-dimensional inner product space over
the field R of real numbers. Select an injective map

v:S={0,1,2,....,p—1}=>V, v§=XCV,
and define the vector mappings (using vector digits)
; v(a;)
U=U,,:Z, >V, Y ap'v)y P

i=0 i>0

Since Z, = Uaoes(aO + pZ,), we have

1
vz, = (z?% n E\IJ(Z,,)) .

veX
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For large enough values of b, the image F = F,, = ¥, ,Z, will also be a disjoint
union of self-similar images. In this way we get a construction of spatial models
W(Z,) by iteration (similar to the construction of the Cantor set as an intersection
of compact sets).

More explicitly, let us denote by 3 the convex hull of £ in V. As is known,
this is the intersection of all half spaces containing X. It is also the intersection
of those half spaces containing ¥ and having for boundary a hyperplane touching
the configuration. Let A be an affine linear functional on V such that

A<lonX, A(w)=1forsomev e X.

Choose # = b — 1. Then
v(a; 1
("Z b) 03 g =1

so that the image F of W is also contained in the convex hull of 2: F C $ = Ko.
Moreover, by choice of the constant ¢,

A (2 Tisozmy) = 1.

From the self-similarity representation of F we get a better approximation

F= U(ﬂ + )CK1=U<§§+%).
veX veX

Iterating this inclusion in the self-similarity representation of F we get an even
better approximation:

F= U(z? + ) CK2=U(19§+%U,,€E(0§+%)).
veX veX
Eventually, this leads to a representation of the fractal F as the intersection of
a decreasing sequence of compact sets K,. Several pictures will illustrate this
construction.
(2.5.1) Take, for example, p =3,V = R3 with canonical basis eg, €, e;, and
v(k) = e;. Then the corresponding vector maps W : Z3 — R? are given by

a =Za,~3i > W(a):ﬁzb‘:il.

i>0

Let us choose the constant ¢ such that
€0

namely Zizo 1/b'*! = ®/(b — 1) = 1. In this case, the image of W is contained
in the plane x + y + z = 1. Since the components of the images W (a) are positive,
the image of the map W is contained in the unit simplex of R? (convex span of the
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basic vectors). More precisely, the mappings W are injective for » > 2, and hence
give homeomorphic images — models — of Z3 in this simplex. When b = 2, the
image is a Sierpiriski gasket — hence connected — in this simplex. In general, the
image is a fractal having self-similarity dimension log 3/logb.

€
Models of Z3: Sierpifisky gasket

(2.5.2) Takenow p = 5,V = R?,and the map v defined by v(0) = (0, 0), v(1) =
(1,0), v(2) = (0, 1), v(3) = (—1,0), v(4) = (0, —1). With a suitably chosen
normalization constant ¥, the components of an image W(a) = (x, y) will satisfy
—1<x+y<1land -1 <x —y < 1. The image of V¥ is a union of the similar
subsets W (k +5Zs) (0 < k < 4). Observe that W(5Zs) = b~ W(Zs) and that these
subsets are disjoint when b > 3. In this case, the image is a fractal of self-similarity
dimension log 5/ log b. In the limit case b = 3 the image is connected.
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Model of Zs as planar fractal
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(2.5.3) It is interesting to refine the preceding construction by addition of an
extra component. Take p = 5 as before but V = R3 with v’ of the form

V(k) = (v(k), he) € R,
h0=0, h1 =h3=—h2=-—'h4=h>0.

The corresponding vector maps W have images in a tetrahedron bounded by an
upper edge parallel to the x-axis and a lower edge parallel to the y-axis (hence
two horizontal edges: Choosing A suitably, we get a regular tetrahedron). These
edges give linear models of Z,, and the vertical projection on the horizontal plane
(obtained by omitting the third component) is the previous construction. But now,
the vector maps W are already injective for » > 2, and in the limit case b = 2 the
image is a well-known connected fractal, parametrized by Zs. As in (2.2), these
vector mappings furnish commutative diagrams

‘I’bl Z5 - \Ilb(ZS) e d |4

[ 1f V&g
d>=\I/2: Z5 —> <I)(ZS)

Model of Zs as space fractal

(2.54)Take p =7, v:{0,1,2,...,6} — R? given by v(0) = 0 and

v(1)=(1,0,-1) v2)=(,1,-1) v3)=(-1,1,0)
vd) =(=1,0,1) v(5)=(0,—1,1) v(6)=(1,—1,0).

With a suitable normalization constant, all the image points will remain in the cube
-1<x=<1, —-1=<y=<l1l, -—-1=<z<lLl

The components of an image also satisfy x + y + z = 0, and hence are situ-
ated in this plane, intersecting the cube in a regular hexagon. For b > 3 we get
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interesting models of Z; in this hexagon. In the limit case b = 3, a connected
fractal parametrized by Z; appears.

(2.5.5) We can give a 3-dimensional model refining the preceding one. Still
with p = 7, take the canonical basis e, e,, e3 of R* and consider the vector map
corresponding to the choice v(0) = 0 and

vid)=e¢ v2)=¢€ v(B) = e
vd) =—e; v(5)=—e; v(6)= —es.

The image of the corresponding vector map W : Z; — R3 is a fractal model con-
tained in the octahedron

x|+ Iyl +1iz] = 1

(provided that we choose a correct normalization constant ). A suitable projection
of this model on a plane brings us back to the preceding planar example (contained
in a hexagon).

The preceding constructions are similar to the IFS (iterated function systems)
used for representing fractals: They stem from affine Euclidean representations of
the monoid of balls of Z,,. In fact, in this section only translations and dilatations
are used (rotations will also occur in 11.4.5 and 11.4.6).

OG0

89

Models of Z7

2.6. An Exotic Example

There is an interesting example connecting different primes. We can add formally
(i.e., componentwise) two 2-adic numbers and consider this sum in Z3. We thus

obtain a continuous map

Silxlo>Zs, (Y a2, Y bi2) e Y (@+b)3



3. Topological Algebra
We can make a commutative diagram

Z2XZ2 —E> Z3

4 4
cxCc 5 c+cC
n N

0,12 < (0,2

Recall that the left vertical map is given by

. . 2 — 2b,
(> a2,y b2) - ( 3%23—;—)

and hence the diagonal composite is

(ZaiZi,Zb,-Zi) = 22 0'3—:—1&

17

Consequently, this composite has an image equal to the whole interval [0, 2].
Hence addition C x C — [0, 2] is also surjective. A good way of viewing the
situation is to make a picture of the subset C x C in the unit square of R? and
consider addition (x, y) — (x + y, 0) as a projection on the x-axis. The image of

the totally disconnected set C x C is the whole interval [0, 2].

A projectionof C x C

3. Topological Algebra

3.1. Topological Groups

Definition. A topological group is a group G equipped with a topology such

that the map (x, y) — xy~' : G x G — G is continuous.
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If G is a topological group, the inverse map x > x~! is continuous (fix x = e
in the continuous map (x, y) ~ xy~!) and hence a homeomorphism of order 2
of G. The translations x +> ax (resp. x > xa) are also homeomorphisms (e.g.,
the inverse of x > ax is x — a~'x). A subgroup of a topological group is a
topological group for the induced topology.

Examples. (1) With addition, Z,, is a topological group. We have indeed
dea+p'L, Veb+p'L,=a -bea-b+p'Z,
for all n > 0. In other words, using the p-adic metric (2.1), we have
lx —al <1p"l=p™", ly=bl =pI=p" = lx—y)—(@a—-b) <p™",

proving the continuity of the map (x, y) = x — y at any point (a, b).
(2) With respect to multiplication, Z is a topological group. There is a funda-
mental system of neighborhoods of its neutral element 1 consisting of subgroups:

1+pZ,D1+pZ,D---D14p"Z,>---

consists of subgroups: If a, B € Z,, we see that (14 p" B)~! = 1+ p"p’ for some
B’ € Z, (as in (1.5)), and hence

a=1+p'a,b=1+p"B=>ab' =(1+pa)l+p"f)=1+p"y
for some y € Z,. Consequently,

a €a(l+ p"Z,), b’ € b(1+ p"Zy) => a'b ' eab™'(A + p"Z,) (n>1),

and (x, y) — xy~! is continuous. As seen in (1.5), 1 + pZ p» 18 a subgroup of index

p—1inZ}. It is also open by definition (2.1). With respect to multiplication, all
subgroups 1 4+ p"Z, (n > 1) are topological groups.
(3) The real line R is an additive topological group.

If a topological group has one compact neighborhood of one point, then it is a
locally compact space. If a topological group is metrizable, then it is a Hausdorff
space and has a countable fundamental system of neighborhoods of the neu-
tral element. Conversely, one can show that these conditions are sufficient for
metrizability.!

Let G be a metrizable topological group. Then there exists a metric d on G that
defines the topology of G and is invariant under left translations:

d(gx, gy) =d(x, y).

ISpecific references for the text are listed at the end of the book.
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A metrizable group G can always be completed, namely, there exists a comp-
lete group G and a homomorphism j : G — G such that

® the image j(G) is dense in 6,

® j is a homeomorphism G — j(G),

® any continuous homomorphism f :G — G’ into a complete group G’ can be
uniquely factorizedas f = goj:G - G — G’ with a continuous homomor-
phismg : G — G'.

3.2. Closed Subgroups of Topological Groups
As already observed, a subgroup of a topological group is automatically a topolo-
gical group for the induced topology.

Lemma. Let G be a topological group, H a subgroup of G.

(a) The closure H of H is a subgroup of G.

(b) G is Hausdorff precisely when its neutral element is closed.

Prook. (@) Letg : G x G — G denote the continuous map (x, y) +> xy~!. Since
H is a subgroup, we have ¢(H x H) C H and hence

o(Hx Hy=9(Hx H)Co(Hx H CH.

This proves that H is a subgroup.

(b) Let us recall that a topological space X is Hausdorff precisely when the
diagonal Ay is closed in the product space X x X. In any Hausdorff space the
points are closed, and thus

G Hausdorff = {e} closed
= Ag = ¢ e)closedin G x G
= G Hausdorff.

The lemma is completely proved. n

Proposition. Let H be a subgroup of a topological group G. If H contains
a neighborhood of the neutral element in G, then H is both open and closed
inG.

Proor. Let V be a neighborhood of the neutral element of G contained in H. Then
for each 2 € H, hV is a neighborhood of & in G contained in H. This proves
that H is a neighborhood of all of its elements, and hence is open in G. Consider
now the cosets gH of H in G. Since translations are homeomorphisms of G,
these cosets are open in G. Any union of such cosets is also open. But H is the
complement of the union of all cosets g H # H.Hence H is closed. [
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Examples. The subgroups p"Z, (n > 0) are open and closed subgroups of the
additive group Z ,. The subgroups 1+ p"Z, (n > 1) are open and closed subgroups
of the multiplicative group 1 + pZ,.

Let us recall that a subspace Y of a topological space X is called locally closed
(in X) when each point y € Y has an open neighborhood V in X suchthat Y NV
is closed in V. When this is so, the union of all such open neighborhoods of points
of Y is an open set U in which Y is closed. This shows that the locally closed
subsets of X are the intersections U N F of an open set U and a closed set F
of X. In fact, Y is locally closed in X precisely when Y is open in its closure Y.
Locally compact subsets of a Hausdorff space are locally closed (a compact subset
is closed in a Hausdorff space). With this concept, the preceding proposition admits
the following important generalization.

Theorem. Let G be atopological group and H a locally closed subgroup. Then
H is closed.

Proor. If H is locally closed in G, then H is open in its closure H. But this closure
is also a topological subgroup of G. Hence (by the preceding proposition) H is
closed in H (hence H = H) and also closed in G by transitivity of this notion. m

Alternatively, we could replace G by H, thus reducing the general case to H
locally closed and dense in G. This case is particularly simple, since ali cosets g H
must meet H: g € H forall g € G, namely H = G.

Corollary 1. Let H be a locally compact subgroup of a Hausdorff topological
group G. Then H is closed. n

Corollary 2. Let I be a discrete subgroup of a Hausdorff topological group G.
Then T is closed. ]

The completion GofGisalsoa topological group. If G is locally compact, it
must be closed in its completion, and we have obtained the following corollary.

Corollary 3. A locally compact metrizable group is complete. ]

3.3. Quotients of Topological Groups

As the following statement shows, the use of closed subgroups is well suited for
constructing Hausdorff quotients. Let us recall that if H is a subgroup of a group
G, then G/ H is the set of cosets g H (g € G). The group G acts by left translations
on this set. When H is a normal subgroup of G, this quotient is a group. Let now
G be a topological group and

m:G—>G/H
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denote the canonical projection. By definition of the quotient topology, the open
sets U’ C G/H are the subsets such that U = 7 ~1(U") is open in G. Now, if U is
any open set in G, then

7 @U)=UH = | JUh
heH

is open, and this proves that w U is open in G/H. Hence the canonical projection
m : G — G/H is a continuous and open map. By complementarity, we also see
that the closed sets of G/ H are the images of the closed sets of the form F = FH
(ie., F = n~Y(F’) for some complement F’ of an open set U’ C G/H). It is
convenient to say that a subset A C G is saturated (with respect to the quotient
map w) when A = AH, so that the closed sets of G/H are the images of the
saturated closed sets of G (but 7 is not a closed map in general).

Proposition. Let H be a subgroup of a topological group G. Then the quotient
G/ H (equipped with the quotient topology ) is Hausdor{f precisely when H is
closed.

Proor. Let 7 : G — G/H denote the canonical projection (continuous by defi-
nition of the quotient topology). If the quotient G/ H is Hausdorff, then its points
are closed and H = (@) is also closed. Assume conversely that H is closed in
G. The definition of the quotient topology shows that the canonical projection 7
is an open mapping. We infer that

m=nxXxm:GxG—G/HxG/H

is also an open map. But Ker(m,) = H x H C G x G. Hence m; induces a
topological isomorphism

7T:(GxG)/(HxH)—>G/HxG/H.
To prove that G/ H is Hausdorff, we have to prove that the diagonal
A={(kx,x):x e G/H}

is closed in the Cartesian product G/H x G/H. Since the map 7 is a homeomor-
phism, it is the same as proving that the inverse image A of this diagonal is closed
in (G x G)/(H x H). This inverse image is

A={(g,k)mod Hx H:gH =kH}
= {(g,k)mod H x H : kg € H}.

But R = {(g,k) : k~'g € H} C G x G is closed by assumption: It is an inverse
image of the closed set H under a continuous map. This closed set R is obviously
saturated, i.e., satisfies

R=R-(H x H).
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This proves that its image R’ = A in the same quotient is closed, and the conclusion
is attained. ]

Together with the theorem of the preceding section, this proposition establishes
the following diagram of logical equivalences and implications for a topological
group G and a subgroup H.

G/H finite Hausdorff <= H closed of finite index

4 4
G/H discrete — H open
4 4
G/ H Hausdorff — H closed

3.4. Closed Subgroups of the Additive Real Line

Let us review a few well-known results concerning the classical real line, viewed
as an additive topological group. At first sight, the differences with Z, are striking,
but a closer look will reveal formal similarities, for example when compact and
discrete are interchanged.

Proposition 1. The discrete subgroups of R are the subgroups

aZ (O<ae€R).

Proor. Let H # {0} be a nontrivial discrete subgroup, hence closed by (3.2).
Consider any nonzero & in H, so that 0 < |h| (= £h) € H. The intersection H N
[0, |h|]is compact and discrete, hence finite, and there is a smallest positive element
a € H. Obviously, Z - a C H. In fact, this inclusion is an equality. Indeed, if we
take any b € H and assume (without loss of generality) b > 0, we can write

b=ma+r (meN,0<r<a)

(take for m the integral part of b/a). Sincer = b —ma € Hand 0 < r < a,
we must have r = 0 by construction. This proves b = ma € Z - a, and hence the
reverse inclusion H C Z - a. m

Corollary. The quotient of R by a nontrivial discrete subgroup H # {0} is
compact. |

Proposition 2. Any nondiscrete subgroup of R is dense.

Proor. Let H C R be a nondiscrete subgroup. Then there exists a sequence of
distinct elements h, € H with h, — h € H.Hencee, =|h, — h| € H andg,, — 0.
Since H is an additive subgroup, we must also have Z - ¢, C H (for all n > 0),
and the subgroup H is dense in R. |
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Corollary. (a) The only proper closed subgroups of R are the discrete sub-
groupsaZ (a € R).
(b) The only compact subgroup of R is the trivial subgroup {0}. ]

Using an isomorphism (of topological groups) between the additive real line
and the positive multiplicative line, for example an exponential in base p

tl—)pt, R—> R,

(the inverse isomorphism is the logarithm to the base p) we deduce parallel results
for the closed (resp. discrete) subgroups of the topological group R..o.

Typically, we shall use the fact that the discrete nontrivial subgroups of this
group have the form p?Z (a > 0) or, putting § = p~, are the subgroups

02 = (0" :m e Z}
forsome 0 < 6 < 1.

3.5. Closed Subgroups of the Additive Group of p-adic Integers

Proposition. The closed subgroups of the additive group Z, are ideals: They
are

{0}, p"Z, (meN).

Proor. We first observe that multiplication in Z, is separately continuous, since
x'a—xa|=lal|x’ — x| >0 (' — x).

Since an abelian group is a Z-module, if H C Z, is a closed subgroup, then for
any h € H,

ZHCH = Z,acZacH=H.

This proves that a closed subgroup is an ideal of Z, (or a Z ,-module). Hence the
result follows from (1.6). n

Corollary 1. The quotient of Z, by a closed subgroup H # {0} is discrete. m

Corollary 2. The only discrete subgroup of the additive group Z, is the trivial
subgroup {0}.

Proor. Indeed, discrete subgroups are closed: We have a complete list of these
(being closed in Z,, compact, a discrete subgroup is finite hence trivial). Alterna-
tively, if a subgroup H contains a nonzero element A, it contains all multiples of 4,
and hence H O N - 4. In particular, H > p"h — 0 (n — 00). Since the elements
p"h are distinct, H is not discrete. ]
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3.6. Topological Rings

Definition. A topological ring A is a ring equipped with a topology such that
the mappings

x, )P x+y:AxA— A,
x,y)Px-y:AxXxA—> A

are continuous.

The second axiom implies in particular that y — —y is continuous (fix x = —1
in the product). Combined with the first, it shows that

X,V x—y:AxA—> A

is continuous and the additive group of A is a topological group. A topological
ring A is a ring with a topology such that A is an additive topological group and
multiplication is continuous on A x A.

If A is a topological ring, the subgroup A* of units is not in general a to-
pological group, since x > x~! is not necessarily continuous for the induced
topology (for an example of this, see the exercises). However, we can consider the
embedding

x> (x,xH: A > AxA,

and give A the initial topology: It is finer than the topology induced by A. For this
topology, A* is a topological group: The continuity of the inverse map, induced by
the symmetry (x, y) = (y, x) of A x A, is now obvious. Still with this topology,
the canonical embedding A* < A is continuous, but not a homeomorphism onto
its image in general.

Proposition. With the p-adic metric the ring Z,, is a topological ring. It is a
compact, complete, metrizable space.

Proor. Since we already know that Z,, is a topological group (3.1), it is enough to
check the continuity of multiplication. Fix @ and b in Z, and consider x = a + k,
y=b+kinZ,. Then

|xy —ab| = |(a + h)(b + k) — ab| = |ak + hb — hk|
< max(lal, [b)(|k| + |k]) + |Allk] — O (|A], k] — 0).

This proves the continuity of multiplication at any point (a, b) € Z, x Zp,. ]

Corollary 1. The topological group Z,, is a completion of the additive group
Z equipped with the induced topology. n
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To make the completion process explicit, let us observe that if x = Y, qa: p’
is a p-adic number, then

Xp = Z aipieN

O<i<n

defines a Cauchy sequence converging to x.

Corollary 2. The addition and multiplication of p-adic integers are the only
continuous operations on L, extending addition and multiplication of the nat-
ural numbers. ]

3.7. Topological Fields, Valued Fields

Definition. A topological field K is a field equipped with a topology such that
the mappings

x,y)»x+y: KxK-—>K,
x,yYH—x-y: KxK—>K,
x—>x1: KX K*
are continuous.

Unless explicitly stated otherwise, fields are supposed to be commutative. A
topological field is a topological ring for which K> = K — {0} with the induced
topology is a topological group. Equivalently, a topological field is a field K
equipped with a topology such that

(x,y) — x — y is continuous on K x K,

(x, y) > x/y is continuous on K> x K*.

Except for the appendix to Chapter II, we shall be interested only in valued fields:
Pairs (K, |.|) where K is a field, and |.| an absolute value, namely a group
homomorphism

[.]: K* = Ry
extended by |0| = 0 and satisfying the triangle inequality
Ix+yl < Ix[+1yl (x,y€K),
or the stronger ultrametric inequality
Ix +y| < max(|x|, |y}) (x,y € K).
In this case d(x, y) = [x — y| defines an invariant metric (or ultrametric) on K,

dx,y)=d(x—a,y—a)=d(x—y,0) (a, x, y € K).
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This situation will be systematically considered from (II.1.3) on, and in the ap-
pendix of Chapter II we shall show that any locally compact topological field can
be considered canonically as a valued field.

Proposition 1. Let K be a valued field. For the topology defined by the metric
d(x,y) = |x — yl, K is a topological field.

Proor. The map (x, y) + x —y is continuous. Let us check that the map (x, y)
xy~!is continuous on K* x K*. We have

x+h x hy—kx

y+k oy yO+b
Hence if y # 0 is fixed, [k| < |y|/2, and ¢ = max(|x]|, |y]),

h hl+ |k
xth Xl _p PR L a0
y+k y [y?]
This proves that K is a topological field. [ ]

Proposition 2. Let K be a valued field. Then the completion K of K isagaina
valued field.

Proor. The completion Kis obviously a topological ring, and inversion is contin-
uous over the subset of invertible elements. We have to show that the completion
is afield. Let (x,,) be a Cauchy sequence in K that defines a nonzero element of the
completion K. This means that the sequence }x,| does not converge to zero. There
is a positive ¢ > 0 together with an index N such that |x,| > ¢ foralln > N. The
sequence (1/x,),>n is also a Cauchy sequence

1 1

Xn  Xm

Xp — Xm

< s_zlx,, —Xp| >0 (n,m — o).

XnXm

The sequence (1/x,),>n (completed withl’s forn < N) defines an inverse of the
original sequence (x,) in the completion K. ]

4. Projective Limits

4.1. Introduction

Letx =), oa p' be a p-adic integer. We have defined its reduction mod p as
&(x) = ap mod p € F,. We can also consider the finer reduction ag +a; p mod p2
or more generally

en(x) = Za,-pi mod p” € Z/p"Z.

i<n
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By definition of addition and multiplication of p-adic integers, we get homomor-
phisms
&n:L, > Z1/p"L.

Since x, = Y;_, a;p' — x (n > 00), we would also like to be able to say that
therings Z/p"Z converge to Z . This convergence relies on the links given by the
canonical homomorphisms

0n:Z/p"ZL - Z/p"Z

and the commutative diagram

Z/p"'HZ
En+1 @n
/ &\
z, — Z/p"Z

which we interpret by saying that Z,, is closer to Z/ p"tZ than to Z/p"Z.
Before proceeding with precise definitions, let us still consider an example
emphasizing a similar situation for sets. Consider the finite products E, = [, _, X;
of a sequence (X;);>o0 of sets. We would like to say that these partial products
converge to the infinite product E = [];., X; and thus consider this last product
as limit of the sequence (E,). For this purpose, we have to formalize the notion of
approximation of E by the E,. This relation is given by the projections

pn:E — E,

omitting components of index i > n. In a sense, these projections are composed
of infinitely many arrows — each ¢; : Ej;; — E; omitting a component — as
in the chain of maps

pn:E—---—> E,»—> E, — E,.

One can consider that any set X, given with a family of maps f, : X — E, which
have the same property as above, is an upper bound of the sequence (E,). A limit of
the sequence would then be a least upper bound. Thus the limit would be an upper
bound (E, (p»)) such that every upper bound (X, f,) is obtained by composition
with amap f : X — E as follows:

fn=p,,of:X—f>E—)---—)E,,+2—>En+1_>En.

This factorization plays the role of remainder after division of f, by all maps
9;j Ejq1— Ejforj>n:

So =0n0 foil = PnOPni10 frr2=VYno f.

These preliminary considerations should motivate the following definition.



28 1. p-adic Numbers

4.2. Definition

A sequence (E,, ¢n)n>0 Of sets and maps ¢,:E,1 — E, (n > 0) is called a
projective system. A set E given together with maps . E — E, such that
Yn = @p 0 Yup1 (n > 0) is called a projective limit of the sequence (E,, ©n)n>0
if the following condition is satisfied: For each set X and maps f,: X — E, sat-
isfying fn = @n o fu+1 (n > 0) there is a unique factorization f of f, through the
set E:

fao=Ynof:X—>E—E, (n>0).

The maps ¢, : E,1 — E, are usually called transition maps of the projective
system. The whole system, represented by

EO(_.E1<_....<._En<_...’

is also called an inverse system. “The” projective limit E = lim E,, is also placed
—
at the end of the inverse system:

Y
o = By Epyy < -+~ limE,
@n —
f"‘\‘\‘\ Tf

X

The hypothesis f, = ¢, o f,+1 can be iterated, and it gives

Jn =000 fot1 = @0 0 Ont1 0 froi2
= (PnOPnt10 O Pnik) O frikt1 = Ynof

for £k > 0. Hence f behaves as a limit of the f; (j — o0) and ¥, as a limit
of composition of transition mappings @, 0 @p4+1 0 - - - 0 @u+x When k — 00. The
factorization condition is a universal property in the sense that it must hold for
all similar data. Finally, it is obvious that if (E, (¥,)s20) is a projective limit of a
sequence (E,, @, )n>0, it will still be a projective limit of any sequence (E,,, @)k,
since we can always define inductively ¥,—; = ¢,_1 o, for n < k. In other
words, projective limits do not depend on the first terms of the sequence.

4.3. Existence

Theorem. For every projective system (Ep, ¢n)n>0 Of Sets, there is a projective
limit E=1lmE, C l_[ E,, with maps v, given by (restriction of ) projections.

n>0
Moreover, if (E', ) is another projective limit of the same sequence, there is
a unique bijection f : E' — E such that ¥, = ¥, o f.
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Proor. Let us prove existence first. For this purpose, define

E = {(X) : ¢n(Xns1) =X, foralln > 0} C [ | En.

n>0

The elements of E are thus the coherent sequences (with respect to the transition
maps ¢,) in the product. If x € E, we have by definition

Pn (pn+1 (-x)) = Dn (x);

hence for the restrictions v, of the projections p, to E,

@n 0 Yni1 = Y.

The set E with the maps v, can thus be viewed as an upper bound of the sequence
E, with transition maps ¢,. Let us show that this construction has the required
universal property. For this purpose consider any other set E’ withmaps ¥, : E/ —
E, satisfying ¢, o ¥, ., = ¥, and let us show that there is a unique factorization
of ¥, by ¥,. It is clear first that the ¥, define a (vector) map

W) : E' = [[ Enr y > (0.

The relations ¥, (y) = @a(¥,,(¥)) show that the image of the vector map (¥,,)
is contained in the subset E of coherent sequences. There is thus a unique map
f:E' — E C [] E, having the required properties ¥, = ¥, o f, and this one
is simply the vector map (¥,) considered as having target E. All that remains
is to prove the uniqueness. If both (E, (¥,)) and (E’, (,)) have the universal
factorization property, there is also a unique map f’ : E — E’ with ¢, = ¥, o f.
Substituting this expression in ¥, = v, o f, we find that

n=Ynof=Y,0f of,

and f’ o f is a factorization of the identity map E’ — E’. Since we are assuming
that (E’, ¥;) has the unigue factorization property, we must have ' o f = idg.
One proves similarly that f o f' = idg. |

Corollary. When all transition maps in a projective system (E,, ¢n)n>0 are
surjective, then the projective limit (E, (¥,)) also has surjective projections ,,
and in particular, the set E is not empty.

Proor. By construction of E in the product [] E,, it is enough to show that if one
component x, € E, is given arbitrarily, then there is a coherent sequence with
this component in E,. It is enough to choose x,.; € E, 41 With ¢,(xp41) = x,
(this is possible by surjectivity of ¢,) and to continue choices accordingly. The
(countable!) axiom of choice ensures the possibility of finding a global coherent
sequence with prescribed nth component. ]



30 1. p-adic Numbers

4.4. Projective Limits of Topological Spaces

When the projective system (E,, ¢,)n>0 is formed of topological spaces and con-
tinuous transition maps, the construction made in the previous section (4.3) im-
mediately shows that the projective limit (E, v,,) is a topological space equipped
with continuous maps ¥, : E — E, having the universal property with respect to
continuous maps. Any topological space X equipped with a family of continuous
maps f, : X = E, suchthat f, = ¢,0 f,41 (n > 0) has the factorization property
fn = Ym o f with a continuous function f : X — E. Indeed, this factorization
is simply given in components by the f, and is continuous by definition of the
product topology (and the induced topology on the subset 1}3‘ E, C l_[ E,). When

the topological spaces E, are Hausdorff spaces, the subspace lim E,, is closed: It

is the intersection of the closed sets defined respectively by the coincidence of the
functions p, and ¢ o p,;. For future reference, let us prove a couple of results.

Proposition 1. A projective limit of nonempty compact spaces is nonempty and
compact.

Proor. Let (K, ¢») be a projective system consisting of compact spaces. The
product of the K, is a compact space (Tychonoff’s theorem), and the projective
limit is a closed subspace of this compact space. Hence lim K, is compact. Define

K,,, = @p(Kn41) D K,,;’ = Pn(Pn+1(Kny2)) (= %(K,,,.H)) Do

These subsets are compact and nonempty. Their intersection L, is not empty in
the compact space K,. Moreover, ¢,(L,+;) = L,, and the restriction of the maps
¢, to the subsets L, leads to a projective system having surjective transition map-
pings. By the corollary in (4.3), this system has a nonempty limit (with surjective

projections). Since lim L,, C lim K, the proof is complete. ]
Corollary. A projective limit of nonempty finite sets is nonempty. [ |

Proposition 2. In a projective limit E = lim E,, of topological spaces, a basis

of the topology is furnished by the sets ¥, (U,), where n > 0 and U, is an
arbitrary open set in E,,.

Proor. We take a family x = (x;) in the projective limit and show that the men-
tioned open sets containing x form a basis of neighborhoods of this point. If we
take two open sets V,, C E, and V,—; C E,_,, the conjunction of the conditions
x, € V, and x,_; € V,_; means that

wn(x) =x, €V, N (p;_l](vn—l)-

Call U, the open set V,, N (pn"_ll(V,,_l) of E,. Then the preceding condition is still
equivalent to x € V¥, l(U,,). By induction, one can show that a basic open set in



4. Projective Limits 31

the product — say [, .y Va X [[,- y E» — has an intersection with the projective
limit of the form 1//;1(UN) for some open set Uy C Ey. [ ]

Corollary. The projective limit of the sequence of initial partial products E, =
[1i-, X: of a sequence of topological spaces is (homeomorphic to) the topolo-
gical product ]_L-zo X; of the family. n

Proor. The canonical projections [];.o X; — E, furnish a continuous bijective
factorization ]—[,>0 X — hm E,, which 1s an open map by definition of the open
sets in these two spaces. n

Proposition 3. Let A be a subset of a projective limit E = hm E, oftopological
spaces. Then the closure A of A is given by

A=), @A)

n>0

Proor. Itis clear that A is contained in the above mentioned intersection, and that
this intersection is closed. Hence A is also contained in the intersection. Conversely,
if b lies in the intersection, let us show that b is in the closure of A. Let V be a
neighborhood of . Without loss of generality, we can assume that V is of the form
¥y 1(U,) for some open set U, C E,. Hence ¥,(b) C U,. Since by assumption
b € ¥, (¥n(A)), we have ¥, (b) € ¥,(A), and the open set U, containing b must
meet ¥,(A): There is a point a € A with ¥,(a) € U,. This shows that

ae ANy \(U.

In particular, this intersection is nonempty, and the given neighborhood of » indeed
meets A. |

Corollary 1. If K is a compact subset of a projective limit E = lim E,,, then

K = (¥, (K-

n>0

Corollary 2. A subset A of a topological projective limit is dense exactly when
all its projections Y, (A) are dense. [

4.5. Projective Limits of Topological Groups

Itis also clear that if a projective system (G, ¢,,) is formed of groups G, and homo-
morphisms ¢, : G,+1 = G,, then the projective limit G = lim G, is nonempty
since it contains the neutral sequence (e, e, ...). It is even Q_group having this
sequence as neutral element, and the projections ¥, : G — G, are group homo-
morphisms. The universal factorization property holds in the category of groups.

An interesting case is the following. Let G be a group and (H,) a decreasing
sequence of normal subgroups of G. We can then take G, = G/H, and (since
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H,., C H,),¢,:G/H,; — G/ H, the canonical projection homomorphism. The
projective limit of this sequence is a subgroup of the product

G =limG/H, c [ [ 6/H,

together with the restrictions of projections v, : GG / H,. Since the system of
quotient maps f, : G — G/H, is always a compatible system, we get a factoriza-
tion f : G — G such that f, = ¥, o f. It is easy to determine the kernel of this
factorization f:

ker f = f~! (ﬂkerw,,) = ket fou = () Ha-

In fact, we have the following general result.

Propesition. Let G =lim G, be aprojective limit of groups, andlet ,:G — G,
denote the canonical homomorphisms. Then Nkery, ={e} is reduced to

the neutral element and G is canonically isomorphic to the projective limit
lim (G / ker ¥,,).

Prook. Let G’ = [\ ker ¢, and consider the embedding f:G’ — G leading to
trivial composites f, = ¥,|l¢c = ¥, o f. Since the system (G’, f,) obviously
admits the trivial factorization g : G’ — G (constant homomorphism with image
e € G), we have f = g by uniqueness. This proves that the embedding f is trivial,
namely G’ = {e}. Of course, one can also argue that since the projective limit G
consists of the coherent sequences in the product [ | G,, with maps ¥, given by
restriction of projections, Nker ¥, consists only of the trivial sequence. ]

4.6. Projective Limits of Topological Rings

It would be a tedious task to give a list of all structures for which projective
limits can be defined. One can do it for rings, vector spaces, . . ., and one can mix
structures, for example by looking at topological groups, topological rings, and
so on. Just for caution: A projective limit of fields is a ring, not a field in general
(because a product of fields is not a field). Coming back to the case of a group
G (having no topology at first), in which a decreasing sequence (H,) of normal
subgroups has been chosen, we can consider the projective limit of the system of
discrete topologlcal groups G, = G/H,. Let again G = hm G/ H, and identify

G with its image in G.ThenG is dense in G, which can be v1ewed as a completion
of G. More precisely, the closure H of H; in Gis open and closed in G and these
subgroups form a basis of neighborhoods of the identity in G. The subgroups H;
make up a basis of neighborhoods of the neutral element in G for a topology, and
G is the completion of this topological group. At this point one should recall that
a topological group admitting a countable system of neighborhoods of its neutral
element is metrizable.
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Similarly, if A is a commutative ring given with a decreasing sequence (/) of
1dea1s and transition homomorphisms ¢, : A/I,;1 — A/I,, the projective limit
A= hm A/l is a topologlcal ring equipped with continuous homomorphisms
(pro_]ectlons) Yn: A A /I By the universal factorization property of this limit,
we get a canonical homomorphism A — A that is injective when () I, = {e}, and
in this case A can be identified with the completion of A for the topology of this
ring, having the I, as a fundamental system of neighborhoods of 0.

4.7. Back to the p-adic Integers

We apply the preceding considerations to the ring Z of rational integers and its
decreasing sequence of ideals I, = p"Z. The inclusions p"*'Z C p"Z lead to
canonical transition homomorphisms

¢ 1 Z/p"'Z — Z/p"Z.

The next theorem gives a second equivalent definition for p-adic integers.

Theorem. The mappmg Z,— hm Z/ p"Z that associates to the p-adic num-

ber x =) _ a;p' the sequence (x,, In>1 Of its partial sums x, =Y, _ a; p' mod
p" is an isomorphism of topological rings.

Proor. Since the transition homomorphism ¢, is given by
Zaipi mod p"*! > Zaipi mod p",
i<n i<n

the coherent sequences in the product [ Z/p"Z are simply the sequences (x,) of
partial sums of a formal series ) ;.o a; p* (0 < a; < p—1), and these are precisely
the p-adic integers. The relations

2
X1 =ap, X2=ay+ap, x3=a+ap+ayp’,

and conversely

X2 — X1 X3 — X2
Qp=x1, Q=—T", 0= )
p P

’

show that the factorization Z, — limZ/p"Z is bijective, and hence an algebraic
. . - - . . N . .

isomorphism. Since this is a continuous map between two compact spaces, it is a
homeomorphism, whence the statement. [ ]

One can note that the homomorphisms Z — Z/p"*'Z — Z/p"Z furnish a
limit homomorphism Z — lim Z/p"Z, which can be identified to the canonical
embedding Z — Z,. The map_

Za;pi mod p" — Za,—pi mod p"Z,

i<n i<n
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obviously defines an isomorphism Z/p"Z — Z,/p"Z,, and in particular,
Z,/pL,=Z/pZ =F,.
More generally, the same argument shows that
Z,/p"Z, =Z/p"L.

On the other hand, the restriction of the reduction homomorphism Z, — Z/p"Z
to the subring

Zy,y=1{a/b:acZ, 0#beNandbprimeto p} CQ
is already surjective and has kernel p"Z,, hence defines an isomorphism:
Z(p)/an(p) = Z/p"Z

Starting with the subring Z,)y C Q, we see that Z, appears also as a projective
limit lim Z,,/ p" Z ;) and hence as a completion of this ring Z,.

Comment. The presentation of the ring Z, of p-adic integers as a projective
limit of the rings Z/ p"Z shows that one can choose any system of representatives
for Z mod pZ and write a corresponding expansion for any x € Z, in the form
x = )_s;p' with all digits 5; € S. In particular, when the prime p is odd, it can
also be useful to choose the symmetrical system of representatives

S={-5%,....0,..., 5.

In practice, we always choose a system of representatives S containing O in order to
allow finite expansions x = Y s; p'. For example, if we choose the representative
p € Sinstead of O € S, the representations

p-1+0-p+Y sip'=0-1+1-p+ Y sp'

i>2 iz2

are not permitted, since 0 ¢ S.

4.8. Formal Power Series and p-adic Integers

Let us derive yet another presentation of p-adic integers. We denote by Z[[ X]] the
ring of formal power series in an indeterminate X withrational integral coefficients.
A formal power series is just a sequence (a,)nen Of integers a, € Z. Addition is
made coefficientwise,

(@) + (bn) = (¢n) withc, =a, +b, (n>0),
and multiplication according to

@) (bp) = () withe, = ) aih; (n 2 0).
i+j=n
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These composition laws appear naturally if we use the notation f= f(X)=
> n>0an X" for the sequence (a,)nen. In this way we identify polynomials to for-
mal power series having only finitely many nonzero coefficients: Z[X] C Z[[X]].
We shall use formal power series rings over more general rings of coefficients and
shall study their formal properties when needed (VI.1).

Theorem. The map
ZaiXi s Za,-pi (ZIX1) > Z,
is a ring homomorphism. It defines a canonical isomorphism
Z[IX]Y/(X ~ p) = Zy,

where (X — p) denotes the principal ideal generated by the polynomial X — p
in the formal power series ring.

Proor. Let us consider the sequence of homomorphisms

fu tZ[[XN1 = Z/p"Z, Za,-Xi > Zaipi mod p”.

i<n

Since these maps f,, are obviously compatible with the transition homomorphisms
¢, defining the projective limit, we infer that there is a unique homomorphism

fZUXN) > lmZ/p"Z = Z,

compatible with the f,. If x = }_ a; p’ is any p-adic integer, thenx = f(3_ a; X%),
and this shows that f is surjective. We have to show that the kernel of f is the
principal ideal generated by the polynomial X — p. In other words, we have to
show that if the formal power series Y_ ;X is such that ), _, a; p’ € p"Z for
every n > 0, then this formal power series Y a; X! is divisible by X — p. For
n = 1 the condition implies ap = 0 mod p, hence ay = pay for some integer op.
Then, for n = 2 we get

ap+a;p =0mod p*> => a9 +a; =0 mod p,
and we infer that there is an integer o) such that op + a; = pe;. Let us go on:
(ao + a1p) +¢12p2 = 0 mod p3 = a1p2 +a2p2 = 0 mod p3,
which gives a; + a; = pa, for some integer o;. Generally, forn > 1,
pran_1+a,p" =ap+ap+---+a,p” =0mod p"*!

furnishes an integer o, with o, + a, = pa,. All these relations can be summa-
rized by

ap = pay, ap = poy — 0y (n > 1),
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or still more concisely by
aam X +aX?+-- = (p = X)@o + o X + 0 X? +--),
namely

Y ax'=(p-X)) aX'.

This concludes the proof. ]

5. The Field Q, of p-adic Numbers
5.1. The Fraction Field of Z,

The ring of p-adic integers is an integral domain. Hence we can define the field of
p-adic numbers as the fraction field of Z,

Q, = Frac(Z)).

An equivalent definition of Q, appears in (5.4).

We have seen that any nonzero p-adic integer x € Z, can be written in the form
x = p™u with a unit ¥ of Z, and m € N the order of x. The inverse of x in the
fraction field will thus be 1/x = p~™u~!. This shows that this fraction field is
generated — multiplicatively, and a fortiori as a ring — by Z, and the negative
powers of p. We can write

Q, =Z,[1/p]
The representation 1/x = p~™u~! also shows that 1/x € p"Z,and
Q= U P_mzp
m=0

is a union over the positive integers m. These considerations also show that a
nonzero p-adic number x € Q,, can be uniguely written as x = p"u withm € Z
and aunitu € Z;; hence

Q=172
meZ

is a disjoint union over the rational integers m € Z. The definition of the order
given in (1.4) for p-adic integers can now be extended to p-adic numbers x € Q,,.
If 0 % x = p™u with a unit u € Z, then we define

ord,(x) = vp(x) = vp(p"u) =m € Z.

(When the reference to the prime p is not needed, we simply denote this order by
v(x) =ord x.) Hence

vi(m)=p"Z, - p"'Z, = P"Z;.
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‘We have
Wx)>0 <= xe€Z,

and this equivalence is valid even when x = 0 with the usual convention v(0) =
+00>0.Ifx =a/b(a €Z, 0#beZp),then v(x) = v(a)— v(b) € Z, and
the basic relation

v(xy) = v(x) + v(y)

holds for all x, y € Z, (even when xy = 0 with the convention m + 00 = 00 +
oo = 00). The p-adic order is a homomorphism

v:Q;,‘:]_Ip”‘Z;—>Z.

meZ

Moreover, if x = pYu is a nonzero p-adic number, with u a p-adic unit, we can
writtu =Y a;p' € Z, withap #0(0 <a; < p—1),and

x = Za,p“‘” = ijpj

is a sum starting at the integer v = ord x € Z, possibly negative.

As in (1.4), we may compare these expansions to the Laurent expansions of
meromorphic functions (in the complex plane, near a pole). The index of the first
nonvanishing coefficient is the order of the power series.

By convention, the order of the zero power series is +-00. Hence the relation

v(x + y) = min(v(x), v(y))

holds in all cases.

Comment. If Z(,y C Q denotes the subring consisting of rational numbers having
denominator prime to p, we have similar formulas

Q=Ur"zZy Q@ =[[r"%,

m=0 pel
since the group Z(’;) consists of the fractions having both numerator and denomi-

nator prime to p.

5.2.  Ultrametric Structure on Qp
The map x — |x| = 1/p?, where v =ordx € Z, defines a homomorphism
Q; - (RX)+ =R.o

that we conventionally extend by the definition [0] = 0. This map extends the
previous absolute value on Z, and is called the p-adic absolute value on Q,
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(cf. (2.1), (3.7); absolute values will be systematically studied in Chapter II, cf.
(I1.1.3)). This absolute value has the characteristic properties

x| > 0ifx #0, |xyl=Ix|-Iyl, I|x+ y|l <max(lx], |y}
In particular, we can define a metric on Q, by
dix,y)=I|x -yl

This distance satisfies

d(x,y) > 0ifx # yand d(y, x) = d(x, y)
as well as the triangle inequality in the strong ultrametric form

d(x, y) < max(d(x, z),d(z, y)) < d(x,2) + d(z, y).
This metric is invariant on the additive group
dx+z,y+z)=d(x,y)
and also satisfies
d(zx,zy) = |z| -d(x, y)

for all x, y, z € Q,. In particular,

d(x,
d(px, py) = (); y).

From now on we shall always consider Q, as a metric field, endowed with this
ultrametric distance. By (3.7) Q,, is a valued field, and hence a topological field.

Theorem. The field of p-adic numbers Q,, induces on Z, the p-adic topology.
It is a locally compact field of characteristic Q. It can be identified with the
completion of Z[1/p] = {ap’ : a € Z, v € Z}, or of Q, for the p-adic
metric.

Proor. With the metric just introduced Z,, is the unit ball centered at the origin in
Q,: For x € Q, we have equivalences

x€Zl, = v(x)>0 x| <1<==d(x,0 <1
Similarly, if kK > 0, the ideal p*Z, is the ball defined by d(x,0) < p~*. These

balls make up a fundamental system of neighborhoods of 0 in Z, and Q,,. Since
the group Z, contains a neighborhood of 0, it is open (and hence closed). In fact,
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it is a compact neighborhood of 0 in Q. This proves that the topological field Q,
is locally compact, and hence complete (Corollary 3 in (3.2)). Finally, if

X = inpi (v=ordx €Z)

izv

is the p-adic expansion of a nonzero element x € Q,, the sequence

Xn = Z XiPi

v<i<n

of truncated sums is a Cauchy sequence of Z[1/ p] converging to x,

X — X, = Zx,-pi € p'Z,,

i>n

d(x’xn) = Ix _xnl < P_" =0 (n— o0).

This proves that Z[1/p] is dense in Q,, and this metric space can be viewed as a
completion of the ring Z[1/ p] for the induced metric. ]

5.3.  Characterization of Rational Numbers Among p-adic Ones

Itis easy torecognize rationals among p-adic numbers if we know their expansions.
The resultis similar to the characterization of rational numbers among real numbers
expressed in decimal expansions.

Proposition. Letx = Y a;p' € Q, (i > v(x), 0<a; < p—1).Thenx isa
rational number; i.e., x € Q precisely when the sequence (a;) of digits of x is
eventually periodic.

Proor. Multiplying if necessary a p-adic expansion by a power of p, we see that
it is enough to consider the case v(x) > 0, namely x € Z,. If the sequence (g;)
is eventually periodic, x is the sum of an integer and a linear combination (with
integral coefficients) of series of the form

. 1
Zps+1t=psl - GQ,
4

jz0

and hence is a rational number. Conversely, suppose that x = Y _x;p’ = a/b is
the p-adic expansion of a rational number (as we mentioned, we can assume that
x € Zp; hence the summation is made for i > 0). Taking a reduced representation,
a and b will be relatively prime integers, with b prime to p. Adding a suitably
large integer to x, we may assume that x is positive (hence a and b are also posi-
tive). Considering the p-adic expansions of these integers, we are able to write an
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equality
2 bip’ 3 xip' =) ",
J=B i>0 k<a

In the left-hand side we have to take into account some carries r, according to the
following identities:

boxe +brxe—1 + -+ bexo+re = ag + re4 p-
For £ > max(«, B), we have more simply
boxe + bixe—y +---+ bgxg_pg+re =re1p.

It suffices to compute x; mod p as a function of x,_,, ..., x,—g and r¢, and then
to take the representative of this class such that 0 < x; < p. This allows the deter-
mination of the carry r¢; by division by p. In other words, starting with the data

(Xe—ty - -, Xe—p,re) € (Z/pZYPH!
there is an algorithm (taking into account the fixed values of by, . . ., bg) furnishing
(Xe, Xe—1, - - -, Xe—pi1, Few1) € (Z/ pZ)PH!

(the values of x¢_1, ..., x¢—g+1 are simply copied in a shifted position). Since the
set (Z/pZ)P*! is finite, this algorithm will eventually produce a cyclic orbit (as
soon as a vector takes a value already attained, it will produce the next vector
already attained and start a cycle). [ |

Corollary. The p-adic integers 3" p" and Y p™ are not rational. [ ]

5.4. Fractional and Integral Parts of p-adic Numbers

As we have already noticed, any nonzero p-adic number x € Q, can be written
as aseries x = Y .. X;p' starting at the index m = v(x) € Z. Let us define

i>m

[x]1= Zx,-pi € Z, : integral part of x,

i=0

{(x) = Zx,-pi € Z[1/p] C Q : fractional part of x.

i<0
We thus obtain a decomposition
x=[x]1+(x):Q,=Z,+Z[1/p].

If (x) # 0, then (x) = ap? for integers a and v < 0. This decomposition depends
on the choice of representatives chosen for digits; here 0 < x; < p — 1. With this
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choice, more can be said of the fractional part as a real number, namely
. X_; 1
O<@=) mp'= ) = <p-D) —=1
i<0 1<j=—v P = P
Hence the fractional part of any p-adic number satisfies
(x)€l[0,1) N Z[1/p].

Let us consider these representatives mod 1, namely in Z[1/p]/Z C R/Z.
With the normalized exponential, we can embed the circle R/Z in the complex
numbers:

R - R/Z — C* : t > exp(2mit).

This leads us to consider the map (systematically considered by J. Tate, whence
the notation)

7:Q, = C*: x > exp2mi(x)).

For example, if v(x) = —1,namelyx =k/p+ ywithO <k < p—landy € Z,,
then

(x) = expmik/p) = L%,

where ¢ = exp(27i/p) is a primitive pth root of unity in C. The image of all
elements x € Q, with v(x) > —1 is the cyclic subgroup of order p in C*:

p'Z,/Z,=v(p7'Z,) = p, C C*.

It is useful to introduce some notation. The cyclic subgroup of mth roots of unity
in C will be denoted by

um={z€C:7"=1}.
The union of all these cyclic groups is the group of all roots of unity (in C)

u= U/Lm = {z € C: 7" = 1 for some integer m > 1}.

m>1

With respect to the prime p, we have a direct product decomposition

K= (p) - Hp,

where j1(p) is the group of roots of unity of order prime to p, and 1~ the group
of roots of unity having order a power of p: pth power roots of unity. Hence e
is the p-Sylow subgroup of the abelian torsion group p. It is the union of the
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increasing sequence of cyclic groups

Proposition. The map © : Q, — C*, x +> exp(2mi(x)) is a homomorphism.
It defines an isomorphism Q, /L, = = of the additive group Qp /L, with the
group of pth power roots of unity in the complex field C.

Proor. Let us compute the difference
x+y)—x) - =x+y-x+yl-G—-[xD-0@-DD.

It is equal to [x] + [y] — [x + y]€Zp, and hence (x + y) — (x) — (y) €
Z[1/p]NZ, = Z. This proves that

expQrif{x +y) — (x} — (D=1

and 7(x + y) = t(x)+ t(y). The map 7 is a homomorphism. Its kernel is defined
by

kert ={x € Q,: (x) € Z}.

But (x) € Z means x = [x] + (x) € Z, so that kert = Z,. The image of t
consists of the complex numbers of the form
exp(2mik/p™) = exp(2mi/p™)~.

Since exp(2ri/p™) is a root of unity of order p™, these roots of unity generate —
when m varies among natural integers — the subgroup p p=. ]

In particular, we have
x € p‘kZ,, — prx e Z, = ‘c(x)”k =1l t(x) € up.

Comment. It is possible to give the factorization of rational numbers into p-
integral and p-fractional components independent of the construction of p-adic
numbers. Indeed, any rational number has the form

v

xX=p % (v € Z, a and b prime to p).

When v = —m < 0, namely when x ¢ Z;, we can use the Bézout theorem to
express the fact that p™ and b are relatively prime,

(p",b) =1=ap™ + Bb;
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hence multiplying by x yields

a xa a
=—+ Pa € Zy) + Z[1/p].

xz% b pm

This gives an elementary description of the decomposition
Q=7Zy) +Z[1/p]

induced by the decomposition Q, = Z, + Z[1/p].

5.5. Additive Structure of Q, and Z,

Let us start with the sum formula Q, = Z, + Z[1/p] proved in the last section.
Observe that this sum is not direct, since

Z,NZ[1/p] =1Z.

The various embeddings that we have obtained are gathered in the following
commutative diagrams giving the additive (resp. multiplicative) structure of Q,

(resp. Q; ).

Q Q,
/ N /! N
Z,) Z[1/p] Z, Z[1/p]
N /! N /
y/ y/
Q Q;
/ N / N
Zjy P z; r’
/! N /
¢)) ¢y

If we embed Z in the direct sum Z, & Z[1/p] by means of m > (m, —m) and
call I" the image, then the addition homomorphisms

Zy) ® Z[1/pl = Zp) + Z[1/p] = Q,
Z,®Z01/p]—>Z,+Z[1/p]=Q,
have kernel I" and furnish isomorphisms
(Zp®Zl1/p))/T =Q,

(2, ®Z[1/p]) /T = Q,.
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Thus we have the following diagrams with vertical short exact sequences.

Z
d
Z, — ZyndZ[1/p]l <« Z[1/p],

1
Q

Z
{
Z, > Z,9Z[l/p] <« Z[1/p].
)
Q,

Here is another pair of diagrams describing the inclusion relations between the
various abelian groups of numbers that we have considered:

Z[i/p] = Q = Q, = Q@ = Q
U U U U U U
Z7 <= Zy > Z,, M = Zy, = Zj.

Comment. The subgroup Z, of Q, admits no direct complement. Indeed, for any
subgroup I" of Q,,

I'NZ, = {0} = T discrete in Q, = I" = {0}.

In a sense, the subgroup Z[1/ p] is the best near supplement that one can take, and
we have unique sum decompositions with two components:

xeZ, yel0,1)nZ[1/p]

But this system of representatives {0, 1) N Z[1/p] is not a subgroup.

5.6. Euclidean Models of Qp
It is easy to give Euclidean models of the fields Q, extending the models of Z,
given in (2.5) if we only observe that the inclusions of additive topological groups

1
—};Zp DZ,andZ, D pZ,

are similar. In other words, a dilatation of ratio p of the Euclidean model of Z,
gives a model of (1/p)Z,. Iteration gives a model of

Q= U p"Ly.
m>0

An illustration shows a piece of Q,, with central portion Z;.
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e & o 0 e o o 0

A piece of Q with Z7 as central portion

6. Hensel’s Philosophy

6.1. First Principle

Let us explain the first principle in a particular case. Let P(X,Y) € Z[X, Y]
be a polynomial with integral coefficients. When speaking of solutions of the
implicit equation P = 0 in a ring A, we mean a pair (x, y) € A x A = A% such
that P(x, y) = 0.

Proposition. The following properties are equivalent:

(i) P =0 admits a solution in Z,.
(i) For eachn > 0, P = 0 admits a solution in Z./p"Z.
(iii) For each n > 0, there are integers a,, b, such that

P(a,, b,) =0 mod p".

Proor. (iii) is a simple reformulation of (if). Now for x = Zizo ap el p» define
Xp =) ; ,ap mod p" € Z/p"Z. Thenif (x,y) € Z, x Z,, then

P(xn, yo) = P(x,y)mod p"Z, € Z,/p"Z, (= Z/p"Z),
and hence (i) = (ii). Conversely, to prove (ii) = (i) let us consider the finite sets

Xy={(x,y)€Z/p"Z xZ/p"Z : P(x,y)=0}.
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Reduction mod p" furnishes a map ¢, : X,;1 — X,,, and the projective system

(X, @n)n>1 has a projective limit X = limX, C Z, x Z,. The pairs in X
—

furnish solutions of P = 0 in Z,, and the result follows from (4.4) (Corollary of

Proposition 1). |

Generalizations. Instead of a single polynomial P in two variables, one can
consider an arbitrary family (P;);<; of polynomials having a finite number m > 2
of indeterminates and their common zeros. The above result shows similarly that
the algebraic variety defined by the equations P; = 0 (i € I) will have points with
coordinates in Z, precisely when it has points with coordinates in all rings Z/ p"Z
(n>1).

6.2. Algebraic Preliminaries

Proposition. Let A be aring and P € A[X] be any polynomial. Then there are
polynomials Py and P € A[X, Y] such that

P(X+h)=PX)+h-Pi(X,h)=P(X)+h-P(X)+h*PxX, h).

Proor. Let us write the polynomial P explicitly as a finite sum P(X) = )_ a, X"
with some coefficients a, € A. Then

PX+h) =) auX+h)" = an(X" +nX""h+h¥-)
=Y aX"+h Y na, X" +h?- PyX, h);

hence the result. [

6.3. Second Principle

The idea for improving approximate solutions will now be given in its simplest
form. Take a polynomial P € Z[X] and an integer x such that P(x) = 0 mod p.
We can look for a better approximation X of P(X) = 0 in the form of an integer
such that P(%) = 0 mod p2. Without loss of generality, we may assume that x is
an integer gy between O and p — 1. We are looking for an integer X = ag + a; p
(again with 0 < a; < p) such that P(X) = 0 mod p?. But we have just seen that
we can write

P(ao +aip) = P(ao) + P'(ao) -a1p + (a1p)* - b

for some integer b. By assumption, P(ap) = pt, and the desired congruence holds
mod p2ift + P’(ap) - a; = 0 mod p. We can suppose ¢ # O (there is nothing to
prove otherwise). When P’(ag) # 0 mod p we can take a; = —t/P’(ap) mod p
and

__pt__ P
P'(ao) P'(ao)

)‘c=ao+a1p=ao
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exactly as in the classical Newton approximation method. With this choice, we have
P(®) = P(ap + a1 p) = 0 mod p>.

‘We shall occasionally use the notation
Np(x)=x — ——

for the Newton map. It is obvious that £ = Np(x) can be far from x when P’(x)
is small.

f(x) .....

o _— N® x >

Newton’s method

6.4. The Newtonian Algorithm

In this section we show that even when the derivative vanishes mod p, we can
still construct a better approximation of a root of P = 0, but we have to be less
demanding concerning its location.

Proposition. Let P € Z,[X] and x € Z, be such that P(x) = 0 mod p". If
k =v(P’'(x)) < n/2, then X = Np(x) = x — P(x)/P’(x) satisfies

(1) P(%) = 0mod p"'  (adefinite improvement ),
(2) £ =x mod p** (a controlled loss ),
3) v(P'R)) = v(P'(x)) (=k) (an invitation to iteration ).

Proor. Put P(x) = p"y forsome y € Z,,and P’(x) = p*u for some unitu € Z;.
By definition of %,
. P(x)

n—k. —1 n—k
—_x = — = — IS Z..
X—x 0 P “yu P p

On the other hand, still by choice of %, the first two terms of the Taylor expansion
of the polynomial P at the point x cancel each other:
P(x)

P(R)= P(x)— o P'(x)+ (& —x)*-1.
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By (6.2) the ¢ in the last term belongs to Z,. Hence
PR)=G—x) -tep™*Z,=p"-p"*Z,c p"tZ,

(recall that 2k < n). It only remains to compute the order of P’(%). For this, we
use a first-order Taylor expansion of P’ at the point x (6.2):

PR =PGEx+@E—-x)=PxX)+E—x)-s
— pku_l_pn—kz_s — pk(u_l_pn—Zkzs) — pkv_
Since n — 2k > 0, and since u is a unit,

v=u+p"H*zseu+pZ, CZX,

which proves v(P’(%)) = k as claimed. [ ]

Theorem (Hensel’s Lemma). Assume that P € Z,[X] and x € Z, satisfies
P(x) = 0mod p".
If k = v(P'(x)) < n/2, then there exists a unique root & of P in Z, such that

£ = x mod p"* and v(P'(£)) = v(P'(x)) (= k).

Proor. Existence. Let xp = x and construct an improved root x; € Zp,
x1 = xo mod p"* and P(x;) = 0 mod p™*!, v(P'(x1)) = v(P'(x0)) (=k).

Similarly, we can find an improvement x, of the approximate root x; in the form
of a p-adic integer satisfying

x, = x; mod p"*'* and P(x,) = 0 mod p"*2.

Iterating the construction, we get a Cauchy sequence (x,),>0 having a p-adic limit
£ satisfying P(£) = 0 and £ = x mod p" .

Uniqueness. Let & and 7 be two roots of P satisfying the required conditions:
In particular,

n=§ mod p" ™,

and since n > 2k, we have n — k > k + 1, and a fortiori
n = £ mod p*+!.

Now,

P(n) = PE)+P' E)Xn -8+ —&)a
g N -
=0 =0
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for some p-adic integer a. Hence

-8 (P®+m—5a) =0.

But
P'¢) + (n—&)a #0,
—— ——
order k order > k + 1
so that the only possibility is 7 — & = 0, and uniqueness follows. [

Note that the uniqueness part of the proof shows that £ is the unique root
satisfying the a priori weaker congruence £ = x (mod p**1).

6.5. First Application: Invertible Elements in Z,,

Let us consider the first-degree polynomial P(X) = aX — 1, wherea # Ois a
p-adic integer. In order to be able to find an approximate root mod p, we have to
assume that a ¢ pZ, (in the p-adic expansion of a, the constant term ag # 0).
When this is the case, P'(X) = a and k = v(P’(x)) = 0, and any root mod p can
be improved to a root mod p” (n > 2). Eventually, we find a genuine root in Z P>
which means that g is invertible in this ring. Thus we have another “proof™ of the
implication

a€l,—pl,=acl;.

However, this proof is deceptive, since Newton’s method assumes a priori that we
know how to divide: In the first step we are led to replacing x by
P(x ax — 1 1
PO _ _ly
P'(x) a a

I=x
Numerically, it is better to apply Newton’s method to the rational function f(X) =
1/X — a, for which f’(X) = —1/X?. Hence

x — ]{,((i)) =x+x2f(x) = 2x — ax’.

With this function, Newton’s method uses a polynomial, and no division is required
to evaluate the successive approximations of the inverse.

6.6. Second Application: Square Roots in Qp,

Consider now the quadratic polynomials P(X) = X? — a, where a is a p-adic
integer. It is obvious that such an equation can have a root x in Z,, only if v(a) =
v(x?) = 2v(x) is even. Then if we divide a by a suitable even power p*” of p, we
are brought back to the case v(a) = 0, namely a € Z;. Since P'(x) = 2x, we see
that the case p = 2 has to be treated separately.
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Case p odd. Hensel’s lemma will apply as soon as we can find an approximate
root mod p. But we know that in the cyclic group F; squares make up a subgroup
of index two. The quadratic residue symbol of Legendre distinguishes them:

a\ _ |+1 ifaisasquare mod p,
~ ] -1 ifaisnotasquare mod p.

Let us choose an integer 1 < a < p that is not a square mod p. Then the three
numbers a, p, ap have no square rootin Q,. They make a full set of representatives
for the classes mod squares

Q;/(Q}Y = (P2/p"%) x (Z;/@Z})’) 2 Z/2Z x Z/2Z.

Since every quadratic extension of Q,, is generated by a square root of an element
(every quadratic extension of a field of characteristic O is generated by a square
root), we see that we obtain all quadratic extensions of the field Q, for p > 3 —
up to isomorphism — in the form of the three distinct fields

Q,(va), Qu(v/P), Qp(/ap).

Casep = 2. ObservethatZ; = 14 2Z,, since the only possibility for the nonzero
constant digit is 1. Now we have

a €Zy isasquare < a €1+ 8Z,.

Proor. If a = b? € Z5 forsome b = 1+ 512+ b;22 +--- = 1 + 2¢, then b? =
1 + 4(c + ¢?), and since ¢ = ¢? mod 2Z,, we have b?> € 1 + 8Z, as claimed.
Conversely, if a = 1 mod 8Z,, we can apply Hensel’s lemma to the resolution
of the equation X2 — a = 0, starting with the approximate solution x = 1. By
assumption, this is an approximate solution mod 23 (n = 3 > 2k = 2 is suitable).
We get an improved solution %,

#2 =amod2® but % = x mod 22 only,

since n —k = 3 —1 = 2. By iteration, we get an exact root £ = 1 mod 4 satisfying

x> =ainZ,. n

We have
Q /(@) = (2/2%) x (23 /Z3Y") -
Since
1> =1+2Z, = {1} - (14 4Zy),
we also have

L3 /(T3 = {£1) x (1 +4Z)/(1 + 8Zy),
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so that finally
Q) /(Q)V? = Z/2Z x Z/2Z x Z/2Z.

There are — up to isomorphism — seven quadratic extensions of the field Q,. They
are obtained by adjoining roots of elements in the nontrivial classes of Q' /(Q>).
If we choose the elements

-1, £(1+4) =15, £2, £2.5,

we get the seven nonisomorphic quadratic extensions

Q:(v=1), Qu(vE5), Qu(W£2), Qa(v/E10).

Examples. (1) Since 32 = 1 mod 8, x = 3 is an approximate root of x? — 1 = 0.
Newton’s method leads to the improvement X = 7, which is an improved solution
mod 16, but we only have 7 = 3 mod 4 as the theory predicts (and there is no
exact root £ = 3 mod 4, since the only roots are £ = 1).

(2)Sincea = —7 =1 — 8 = 1 mod 8, we obtain

v=T¢€ Z; C Q.
(3) The preceding considerations prove that the equations
X>+1=0and X>-3=0

have no solution in Q,. The polynomials X2 + 1 and X? — 3 are irreducible in

Q:[X].
We shall determine later the structure of the multiplicative group 1 + 4Z,.

6.7. Third Application: nth Roots of Unity in Z,,

Let £ be any root of unity in Q,, say £” = 1. Then nv(§) = v(1) = Oand v(§) = 0.
This proves that all roots of unity in Q, lieinZ> C Q. In particular, each root of
unity has a well-defined reduction med p, £(§) € F;. Let us show that the group
Z contains roots of unity in each class mod pZ,, i.e. above each element of F;.

The polynomial P(X) = XP~!—1 has derivative P'(X) = (p—1)X?~2. Forany
unit x € Z; , k = v(P’(x)) = 0, and the simplest case (6.3) of the approximation
method applies. Since the polynomial X?~! — 1 has p — 1 distinct roots in the
field F, namely all elements of F;, Hensel’s lemma furnishes p — 1 distinct roots
in Z;‘. This shows that the field Q, of p-adic numbers always contains a cyclic
subgroup of order p — 1,

HKp—1 C Z;;( - QX’

consisting of roots of unity.
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Proposition 1. When p is an odd prime, the group of roots of unity in the field
Qpis pp-1.

Proor. We have to prove that the reduction homomorphism ¢ : u(Q,) — Fj is
bijective. It is surjective by Hensel’s lemma. So assume that ¢ = 1 4+ pt € kere
(t € Z,) is aroot of unity, say ¢ has ordern > 1,

"=Q0+pt) =1
Hence npt + (5)p*t* +--- + p"t" =0, or

t (n + (;)pt +-t p"_lt"_l) =0.

This shows that # = 0 (when ptn) or p | n. In the second case, replace ¢ by ¢? and
n by n/p: Starting the same computation, we see that t = 0 or p? | n (original
n), and so on. Finally, we are reduced to the case n = p. In this case, the above
equation is simply

t (p + (;’)pt +-o 4 p”“tl’—‘) =0,

p+ (p>1”+---+p”‘1t"“ =p+p*--) #0.

and since p > 3,

2

This proves that = O in all cases and ¢ = 1. ]

When p is odd, p — 1 is even and —1 belongs to y,_;. The number —1 will
have a square root in Q,, precisely when (p — 1)/2 is still even, namely when
p = 1 mod 4. We have

V=1€Q, < 4|p—-1 <= p=1mod4.
A number i = +/—1 can thus be found in Qs, Qy3, ...
Proposition 2. The group of roots of unity in the field Q, is u, = {£1}.
Proor. We have
—1=1+24+22+---€1+2Z,
and
{£1} =p, CZS =1+2Z,.

On the other hand, F5 = {1}, and the only roots of unity in Z> have order a power
of 2. But —1 is not a square of Z> (6.6), and there is no fourth root of 1 in Q.
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To summarize, we give a TABLE.

Number of
quadratic
Field Units Squares Roots of unity  extensions
Q: Z; =14+27, 1482, uny = {£1} 7
index 4
inZ3
Q, Z;>1+pZ, index2 Hp_i 3
p odd prime index p-1 inZ;

6.8. Fourth Application: Field Automorphisms of Q,

It is possible to determine all automorphisms of the field Q, (over the prime
field Q). For this purpose, we need a lemma.

Lemma. Let x € Q. Then the following properties are equivalent:
P

(@) xisaunit: x € Z;'
(ii) xP~! possesses nth roots for infinitely many values of n.

Proor. If x is a unit, then x # 0 mod pZ, and xP~1 = 1 mod PZ,. Let us put
a = xP~! and consider the equation P(X) = X" — a = 0. It has an approximate
root 1 mod p, and when n is not a multiple of p, P'(1) = n does not vanish mod
p- By Hensel’s lemma, there is an exact solution of this equation, namely there
exists an element £ € Z, suchthat §* =q = xP~1. This proves (i) = (ii).

Conversely, if xPl = y?, we have
(P = Dv(x) =n-v(y),
and n divides (p — 1)v(x). This can happen for infinitely many values of » only if

v(x) = O; hence x is a unit (we are assuming x # 0 from the outset). [ |

Theorem. The only field automorphism of Q) is the identity.

Proor. Let ¢ be an automorphism of the field Q. By the algebraic characterization
of units of Q7 , the automorphism ¢ must preserve units. Henceif x € Q;‘ is written
in the form x = p"u (where n = v(x) and 4 € Z; is a p-adic unit), we shall
have

e(x) = p(p"u) = p(p")pu) = p"o(u)

and v(¢(x)) = n = v(x). This shows that the algebraic automorphisms of the field
Q,, preserve the p-adic order: They are automatically continuous. Now, if y € Q)
1s an arbitrary element, we can take a sequence of rational numbers r, € Q with
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r, — y. For example, we can take these rational numbers by truncating the p-adic
expansion of y. Now, since the automorphism ¢ is trivial on rational numbers,

9(y) = ¢(lim y,) = lim ¢(y,) = lim y, = y. n
n—oo n—->o0 n—>co
Note. The preceding theorem is similar to the following well-known result:
The only algebraic automorphism of the real field R is the identity.

Indeed, if ¢ is a field automorphism of R, we have ¢(x?) = ¢(x)? for all x, and
hence ¢(y) > O for all y > 0 (write y = x2), and then also

p(u) <gp()forallu <v

(put y = v — u). This means that these algebraic automorphisms automatically
preserve the order relation <. Since they must be trivial on the prime field Q, they
must be trivial. In detail: If r € R and a, b € Q, then

a<t<b=a=g¢@)<¢9t) <pb)=>b.
Thus we see that
lp@®) —tl<b—a

is arbitrarily small; hence ¢(t) — ¢t = 0.

Comment. Let us stress that in both the p-adic and the real cases, we are con-
sidering purely algebraic automorphisms over the prime field Q: The proofs show
that they are automatically continuous, and hence trivial. But there are infinitely
many automorphisms of the complex field C: Only two of them are continuous,

namely the identity and the complex conjugation. For example, the nontrivial au-
tomorphism

a+bv2r>a—bv2 (a, b€ Q)

of the field Q(+/2) extends to any algebraically closed extension of this field;
in particular it extends to C. This extension is a discontinuous automorphism
of C.

Appendix to Chapter 1: The p-adic Solenoid

The fields R of real numbers and Q, of p-adic numbers can be linked in an
interesting topological group, the solenoid. We present a couple of constructions
and properties of this mathematical structure.
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A.l. Definition and First Properties
The canonical group homomorphisms

¢n :R/p"Z > R/p"Z, xmod p""'Z+> x mod p"Z (n > 0)
make up a projective system (R/p"Z, ¢,),>0 of topological groups.

Definition. The p-adic solenoid S, is the projective limit S, = limR/p"Z of
the projective system (R/p"Z, ¢,). -

By definition, the solenoid S, is a compact abelian group equipped with canon-
ical projections
¥,:Sp, > R/p"Z (n=0)
that are continuous surjective homomorphisms. In particular,
¥Y=v9y:8, > R/Z

is continuous and surjective, and the solenoid can be viewed as a covering of the

circle. The kernel of this covering is obviously ker v = imZ/p"Z = Z,, and we
- . «— .

have the following short exact sequence of continuous homomorphisms,

0->2Z,—-8S,—>R/Z-0,

presenting the circle as a quotient of the solenoid, or the solenoid as a covering of
the circle with fiber Z,. Also observe that

P"Z, = ker(Y,) C Z, = ker(¥) C S,.

Alternatively, one could define the solenoid as the projective limit of the system
having transition homomorphisms

¢,:R/Z—>R/Z, xmodZ+> pxmodZ (n>1).

A.2.  Torsion of the Solenoid
We recall the following well-known fact:

For each positive integer m > 1 there is a unique cyclic
subgroup of order m in the circle: It ism~'Z/Z C R/Z.

Proposition 1. For each positive integer m > 1 prime to p the solenoid S, has
a unique cyclic subgroup C,, of order m.

Proor. Let us denote temporarily by C7 the cyclic subgroup of order m of the
circle R/ p"Z (it is the subgroup m~'Z/p"Z). Since the transition maps

¢ :R/p"Z — R/p"Z
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have a kernel of order p prime to m (by assumption), they induce isomorphisms
C+! — C". The projective limit of this constant sequence is the cyclic subgroup
Cn C S;. To prove uniqueness, let us consider any homomorphismo : Z/mZ —
S,. The composite

Ynoo :Z/mZ - S, > R/p"L

has an image in the unique cyclic subgroup C7, of the circle R/ p"Z. Hence o has
an image in C,,, and this concludes the proof. ]

Observe that this unique cyclic subgroup C,, of order m (prime to p) of S, has
a projection ¥ (C,,) in the circle given by

Y(Cpn) =m~'ZJZ C R/Z.

Since ¥ Y(m™1Z/Z) = C,, x Z p» the cyclic group C,, is the maximal finite sub-
group contained in ¥ ~!(m~'Z/Z).

Proposition 2. The p-adic solenoid S, has no p-torsion.

Proor. Leto : Z/pZ — S, be any homomorphism of a cyclic group of order p
into the solenoid. I claim that all composites

@noYnt100 :Z/pZ — S, - R/p""'Z — R/p"Z
are trivial. Indeed, the composite
Yny100 :Z/pL — S, - R/p"'Z

must have an image in the unique cyclic subgroup of order p of the circle R/ p**1Z,
and this subgroup is precisely the kernel of the connecting homomorphism ¢, and
¥ 00 = @p(Yns1 0 o). Consequently, there is no element of order p in S, (and
a fortiori no element of order p* fork > 1in S,). m

A.3. Embeddings of R and Q,, in the Solenoid

Theorem. The p-adic solenoid contains a dense subgroup isomorphic toR. It
also contains a dense subgroup isomorphic to Q,.

Prook. The projection maps f, : R — R/p"Z are compatible with the transition
maps of the projective system defining the solenoid

fo=¢no fry1:R—> R/Pn+lz — R/p"L.
Hence there is a unique factorization f : R — S, such that

fa=vYnof:R—>S, > R/p"Z.
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If x # 0 € R, as soon as p" > x we have f,(x) # 0 € R/p"Z and consequently
f(x) # 0 € S,. This shows that the homomorphism f is injective (this also
follows from (1.4.5), since ()., ker f» = [),>; P"Z = {0}). The density of the
image of f follows from the density of the images of the f, (L4.4, Proposition 3)
(in fact, all f, are surjective). Consider now the subgroups

He=y~'(p™Z/2)CS, *=0).
We have Hy = Z, by definition, and this is a subgroup of index p* of Hy:
He =lim p*2/p"TL=p*L, (k=)
Hence
Q, =y '@il/p)/D) = v (p72/2) = J Hi C S,
The density of this subgroup of S, follows from the density of all images
¥n(Qp) = Z[1/p)/p"Z C R/p"L
(1.4.4, Proposition 3). ]

Corollary. The solenoid is a (compact and ) connected space.
Proor. Recall that for any subspace A of a topological space X we have

A connected, A C B C A = B connected.

In our context, take for A the connected subspace f(R) C S,, which is dense in
the solenoid. The conclusion follows. ]

Let us summarize the various homomorphisms connected to the solenoid in a
commutative diagram.

zZ - Z, = z,
{ ! 2
R = §, <« Q,
\ 1 A
R/Z = R/Z « Q,/Z,

A.4. The Solenoid as a Quotient

The sequence of continuous homomorphisms

fn:RxQp, = R/p"Z, (t,x)—> t+Za,~pi mod p"Z

i<n

(fx = szkw a;p', v = ord,(x)) is compatible with the sequence of con-
necting homomorphisms defining the projective limit S,,. Hence there is a unique
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factorization consisting of a continuous homomorphism
F:RxQ,= S, (t,x)>t+x

having composites ¥, o f = f,. Alternatively, the two injective continuous ho-
momorphisms j; : R — S, j>:Q, — S, furnish a unique continuous homomor-
phism

jl +j2:R®Qp - Sp7

which coincides with the preceding one (we are identifying the product and the
direct sum). This homomorphism f will therefore be called the sum homomor-
phism.

Lemma. The kernel of the homomorphism f defined above is the subgroup
ker f =T ={(a,—a):a € Z[1/p]} CR x Q,.
It is a discrete subgroup of the product R x Q.

Proor. If f(t,x) = 0, we have in particular fy(¢t,x) = Yoo f(t,x) = 0 €
R/Z,namely t + Y ; oaip' € Z, t € —Y ;o ap' +Z C Z[1/p]. Similarly,
falt,x) =0gives -
t+z a;p' € p"Z (n>1).
i<n

This proves that the p-adic expansion of the element t € Z[1/p] is given by
t = —1limY ,_, a;p' in Q,. Hence t = —x € Q,. Conversely, it is obvious
that I" C ker f. Let us show that the (closed) subgroup I is discrete. For this it
is enough to show that a suitable neighborhood of 0 in R x Q,, contains only the
neutral element of I". Consider the open set

(-1,1) x Z, CR xQ,.

If apair (a, —a)isin I’ N (—1, 1) x Z,, then the p-adic expansion of a € Z{1/p]
must be of the form ) ", a; p’. But we have seen (1.5.4) that in the p-adic field Q ps
the intersection Z[1/p]NZ, = Z contains only the rational integers. In particular,
aeZ N (—1,1) = {0}. Hence

I'N((~1,1)xZ,)={0} CR x Q,,

and the proof is concluded. n

Theorem. The sum homomorphism f:R x Q, — S, furnishes an isomor-
phism f': (R x Qp)/ T, =8, both algebraically and topologically.

Proor. Since all maps f, are surjective, the map f has a dense image (1.5.4).
Moreover, using the integral and fractional parts introduced there,

f@,x)=f+ (x),x = (x)) = f(s, ),
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where s € R and y = x — (x) = [x] € Z,. Going one step further, we have
fG.)=fG—IsLy+[sD=fu,2),
where u = s — [s] € [0, 1) and z = y + [s] € Z,,. This proves
Im f = fRxQp) = f([0,1) x Z)).

A fortiori, the image of f is equal to f([0, 1] x Z;), and hence is compact and
closed. Consequently, f is surjective (and f’ is bijective). In fact, the preceding
equalities also show that the Hausdorff quotient (recall that the subgroup I, is
discrete and closed) is also the image of the compact set Q = [0, 1] x Z,, and
hence is compact. The continuous bijection

ffRxQy/T, =S,

between two compact spaces is automatically a homeomorphism. ]

Corollary 1. The solenoid can also be viewed as a quotient of R x Z, by the
discrete subgroup Az = {(m, —m) : m € Z}

fRXZ,)/Az=S,.

ProoE. Since the restriction of the sum homomorphism f : R x Q, — S, to the
subgroup R x Z, is already surjective, this restriction gives a (topological and
algebraic) isomorphism

iR xZp)/ker f' = Zp.
But

ker f' = (ker )INR X Z,) = Az = {(m, —m) : m € Z}. a

These presentations of the solenoid can be gathered in commutative diagrams
of homomorphisms:

Z[1/p] z
W N W N
R Qp R ZP
N v N e
SP SP

Corollary 2. The solenoid can also be viewed as a quotient of the topo-
logical space [0,1] x Z, by the equivalence relation identifying (1,x) to
O,x+1) (xeZp.
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Proor. This follows immediately from the previous corollary, since the restric-
tion of the sum homomorphism to [0, 1] x Z,, is already surjective, whereas its
restriction to {0, 1) x Z, is bijective. [ ]

Comment. This last corollary gives a good topological model of the solenoid:
One has to glue the two extremities of the cylinder [0, 1] x Z, having basis Z,
by a twist representing the unit shift of Z,. This gives a model for the solenoid
as a very twisted rope! On the other hand, it is clear that instead of the subgroup
I' = Z[1/p] consisting of the elements (a, —a) (a € Z[1/p]) we could equally
well have taken the diagonal subgroup A, image of

ar(a,a):Z[1/p] > R x Q,,

the isomorphism (R x Q,)/A = S, now being given by subtraction.

A.5. Closed Subgroups of the Solenoid

Lemma. Let 0 : Cyn — Cpn-t be a surjective homomorphism between two
cyclic groups of orders p™ and p™~'. Then the only subgroup H C C pm Hot
contained in the kernel of o is H = Cpn.

Proor. Recall that any subgroup of a cyclic group is cyclic and that the number of
generators of C, = Z/nZ is given by the Euler ¢-function ¢(n). In particular, if
n = p™ is a power of p, the number of generators is

o™ =p "l p—D=p" - p"L.
Consequently, all elements not in the kernel of a surjective homomorphism of a
cyclic group of order p™ onto a cyclic group of order p™~! are generators of the
cyclic group of order p™ (the kernel has order p™~!). ]

Proposition. For each integer k > O, there is exactly one subgroup Hy C S,
having a projection of order p* in the circle: ¥ (Hy) = p~*Z/Z c R/Z. This
subgroup is H, = ¢y~ (p™*Z/Z) C S,.

Proor. We can apply the lemma to each surjective homomorphism
p—kz/pn+lz — p—kz/pnz

in the sequence of connecting homomorphisms defining the solenoid as a projective
limit. The projective limit of these cyclic groups is p~*Z e [ ]

As a preliminary observation to the following theorem, let us assume that the
solenoid contains a cyclic subgroup H of some finite order m > 1. Taking a gener-
ator x of H and n large enough so that ¥, (x) 7% 0, we see that the restriction of this
homomorphism ¥, to H must be injective. A fortiori, the restriction of ¥,+; (and all
Yy for N > n)to H must be injective. The restriction of ¢, : R/p"*'Z — R/p"Z
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to ¥,+1(H) must be injective. Hence H = v,,11(H) has no element of order p
and m is prime to p.

Theorem. The closed subgroups of the solenoid S, are

(1) C., the cyclic subgroup of order m relatively prime to p (m > 1),
) Cp x p"Zp, where m is prime to p and k € Z,
(3) S, itself (connected).

Proor. Let H be a closed subgroup of the solenoid S,. Since H is compact, its
image ¥ (H) is a closed subgroup of the circle R/Z. The only possibilities are

¥(H) = n~1Z/Z cyclic of order n > 1,
or
Y (H) = R/Z is the whole circle.
(1) The easiest case is the second one,
Y (H) = R/Z is the whole circle,

in which case ¥,(H) C R/p"Z must be a closed subgroup of finite index. Hence
it must be open in this circle. By connectivity, ¥,(H) C R/p"Z. Since this must
hold for all » > 1, we conclude that
H=H=\f{HH) =S,
n>1

and H = S, in this case.

@) If y(H) = {0}, then H C ¥~1(0) = Z, C S,, and we have shown in (3.5)
that the only possibilities are

H = {0}, p*Z, for some integer k > 0.

These possibilities occur in the list for C,, = {0} (m = 1).

(3) We can now assume that ¥ (H) = a~'Z/Z is cyclic and not trivial. Write
a = p* -m with k > 0 and m prime to p. By the Chinese remainder theorem (or
the p-Sylow decomposition theorem) this cyclic group is a direct product of the
cyclic subgroups m~'Z/Z and p*Z/Z.1f k > 1, the above lemma shows that
Vn+1(H) must contain an element of order p**!. As in the proposition, we see
that H contains ¥ ~!(p™*Z/Z) = p~*Z, C S,, and finally H = C,, x p~*Z,.If
k = 0, two possibilities occur: Either ¥, (H) is cyclic of order m for all n, or there
is a first n such that this group ¥, (H) contains an element of order p. In the first
case H = C,,, while H = C,, x p"Z,, in the second. |

A.6. Topological Properties of the Solenoid

We have seen in (I.A.4) that the solenoid S, can be viewed as a quotient of the
cylinder [0, 1] x Z,, and an image of [0, 1) x Z,. This leads to considering the
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second projection of this product as a (discontinuous) map (¢, x) +> x. This map
has continuous restrictions to all subspaces [0, n] x Z, (0 < < 1). It furnishes
continuous retractions of these subspaces onto the neutral Z ,-fiber of the solenoid.

Recall that we have a continuous surjective homomorphism ¥ :S, — R/Z
leading to a presentation of the solenoid by the short exact sequence of continuous
homomorphisms

0—>2Z,—->S,—->R/Z—0.

The subspaces ¥ ~1([0, n]) (0 < n < 1) have continuous retractions on the fiber
Z,, simply since ¥ ~1([0, 5]) is homeomorphic to [0, n] x Z,. The following
statement is then an immediate consequence of these observations.

Proposition 1. Let U be any proper subset of the circle R/Z. Then the subspace
¥y I(U) c S, of the solenoid is homeomorphic to U x Z,. The map

t.x)=@¢—-1[t,x+[tD > O,x+[t])
furnishes by restriction a continuous retraction of ¥~1([0,1]) C S p onto the

neutral fiberZ, C S, (0 < n < 1). [

The solenoid has still another important topological property that we explain
and prove now.

Definition. A compact and connected topological space K is called indecom-
posable when the only partition of K in two compact and connected subsets is
the trivial one.

Proposition 2. The solenoid S, is an indecomposable compact connected to-
pological space.

ProoF. Let us take two compact connected subsets A and B covering S,,. We have
to show that if A # S, then B = S,. Thus we assume A # S, from now on:
B # @. Since we have

K =), Wn(K))

n>1

for every compact set K, the assumption A # S, leads to ¥,(A) # R/p"Z for
some integer n = ng and hence also for all integers n > ng (the transition maps
¢m are surjective). It will suffice to show ¥,(B) = R/p"Z for all n > ny. Take
such an n and an element b € B. Then

¢; (b)) CR/p™Z
has cardinality p > 2, and the restriction of ¢, to the connected set

C = (pn_l‘(//,,(B) = I/fn-l—l(B)



Exercises for Chapter 1 63

is not injective. The proof will be complete as soon as the following statement (in
which the situation and notation are simplified) is established.

Let a > 1 be any integer;, ¢ : R/aZ — R/Z the canonical projection, and C a
connected subset of R/aZ containing two distinct points s # t with ¢(s) = ¢(t).
Then ¢(C) = R/Z.

In terms of the restriction ¢|¢ of the map ¢ to C, we have to prove

@|c not injective == ¢|¢ surjective

under the stated assumptions. It is obviously enough to do so when C # R/aZ.
In this case, take a point P ¢ C C R/aZ and consider a stereographic projection
from the point P of the circle R/aZ onto a line R. This is a homeomorphism

f:R/aZ — {P} = R.

The image f(C) of the subset C is a connected subset of the real line containing
the images of two different congruent points mod Z. Since any connected set in the
real line is an interval, this proves that f(C) contains the whole interval J linking
these two different congruent points. Hence C contains a whole arc I of the circle
having image ¢(I) = R/Z. [ |

EXERCISES FOR CHAPTER 1

1. Compute the squares of the following numbers
6, 76, 376, 9376, ....
Show that one can continue the sequence in a unique way: For example, the number
74374008 17871 09376
appears in the 18th position. Define the limit

o= ZaiIOi = ---agasasazaraiag = - - - 109376

i=0

as a 10-adic integer: o € Z;p. Give the 10-adic expansion of —1.

Observe that by definition o2 = «, and find the four solutions 0, 1, a, 8 of x2 = x
in Zjo. What are ¢ + B8, ¢f8 ?

Prove that Z1¢ = Zs x Z,. (Hint. Consider the map x — (ax, Bx).)

2. (a) Give the 5-adic expansion of the integers 15, —1, —3. The integers 2, 3, 4 are

invertible in Zs: Give the 5-adic expansions of the inverses. Give the expansion of
% in Z7.

(b) What is the p-adic expansion of % if the prime p is odd?

(c) If f is a positive integer, give the expansion of 1/(1 — pHinZ p-

(d) More generally, find the expansion of 1/m in Z, when the integer m is not divisible
by p. (Hint. Let f be the multiplicative order of p mod m so that p/ — 1 = nm.
Then use 1/m = ~n/(1 — p7).)
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. (@) Show x € p"Z, <= —x € p"Zp and s0 ordy(—x) = ord,(x).

(b) Check asin (1.5) thatif @ € Zp, then (1 + pta)~! =14 p"o’ forsome o’ € Z,.
(¢) Using the p-adic metric, reformulate (b) in the form
if0 <r < 1,then

Ix—1l<n |ly-ll<r=lxy—1] <r.

(d) Let o denote the involution introduced in (1.2). Show that o(B<,(a)) = B<,(c(a)).

. Show that there is a square root of 2 in Z7. (Compute the first coefficients in a =

ag+a17+ax7% + - - - iteratively using a2 = 2; do not be surprised if no regular pattern
appears: The same happens for the computation of the decimal expansion of +/2 in R;
cf. also (1.5.3).)

. (@) Solve the equation x2 =1inall Z/2"Z (n > 1). Guess the result by making a small

table with the first values n < 4 or 5.
(Hint. Consider separately the cases n = 1, 2, > 3. When n > 3, observe that if
x2 = 1, then x is the class of an odd integer 2k +1 (0 < k < 2"~1), and 4k(k + 1)
has to be divisible by 2". In (VIL1.7) we show that the unit group in Z/2"Z is a
product of two cyclic groups (n > 3), from which the result also follows.)

(b) Solve the equation x2=1inZ,.

. (@) Let N be a positive integer. Show that the subset {N, N + 1, N + 2, ...} is dense

inZp.
(b) For which values of a and b € Z,, is the subset a + bN dense in Z,?
(c) Show that the subset {—1, —2, =3, ...} isdensein Z,.

. Let jp : Q — Qp denote the canonical injection.

(a) Determine the subring jp l(Zp) of the field Q (this subring is simply written Q N
Z, = Z(p)). What is j;l(z,,) NZ1/p]?
(b) Show that
N i,'@»=1%
p prime

(this equality is sometimes simply written [ ,QNZp)=12).

. Let X be a nonempty set and E = X N the set of sequences in X. For two different

sequence a = (ap), b = (b,) let us put

1

da b) = e Z b

1
Ty

(a) Show that d defines an ultrametric distance on E.
(b) Show that E is complete for the preceding metric.

. The distance between two subsets A, B of a metric space is defined by d(A, B) =

infyeA pep d(a, b). Show that if the metric d is ultrametric, then

d(@a,b) ifr <d(a,b),

d(B<,(a), B<,(b)) = {0 i£r > dia.b).

More generally, the distance of two disjoint balls B, B’ is equal to the constant value
ofd(x,xYforx e B,x' € B’.



10.

11.

12.

13.

14.

Exercises for Chapter 1 65

Let K be a (commutative) field and let K[[X]] be the ring of formal power series
f(X) =3 ,50anX". Choose 0 < 6 < 1 and for g(X) = 3,50 bn X" # f(X), define

d(f(X), g(X)) = g™ : an#ba}

Show that d defines an ultrametric distance on K [[ X]] for which this space is complete.
Show that the space of polynomials K[X] is dense in K[[X]], and hence this is a
completion of the space of polynomials. The ball { f(X) : d(f(X), 0) < 6"} is the ideal
(X™) = X"K[[X]]. The fraction field K ((X)) = K[[X11{X "] consists of the Laurent
series ) ;... an X" (v € Z). It is a completion of the ring K[X, X1

Let 6 > 1 and for any nonzero polynomial f € R{X] define | f| = 89°€ . Extend this
definition by {0] = 0 and | f/g| = [ f|/|g| for a rational fraction f/g € R(X). Show
that this defines an ultrametric absolute value on the field R(X).

Let E be a compact metric space and f : Z; — E be a continuous surjective map. For
each ball B C Z, of positive radius, let Ag = f(B) be the compact image of B in the
space E. Observe that

Ap = Ap U Apr if B= B'uB”,
() Az = {f)}

B>x

Conversely, recall that M> denotes the free monoid generated by two letters, say 0 and
1, and P(E) denotes the set of parts (power set) of E. For any map ¢ : My — P(E)
having the properties
(@) (@) =E, ow)=epwl)Uepwl) (we M),
(b) 8(p(wy)) — 0 when the w,, are the initial segments of an infinite word,
(©) N e(wy) # @ when the w, are the initial segments of an infinite word,

show that there exists a continuous surjective map

f :Zy; — E suchthat f(By) = g(w).

Let E be a compact metric space. Show that there exists a continuous surjective map
f:Zy — E. In other words, the metric space is a topological quotient of the space
Z;. (Hint. Let (K;)1<i<k be a covering of E by closed sets of diameter < 1. If k > 1
cal Ag = KgU---UKpand A] = Kg41 U--- UKy with,e.g., £ = [k/2].If £ > 1,
start again and define similarly shorter unions Agg, Aoy such that Ag = Ago U Aqs.
This leads to finitely many words w; so that K; = Ay,. Proceeding similarly for each
of them, show how to define a map ¢ : M> — E having the properties listed in the
previous exercise.)

Conclude that all spaces Z, are homeomorphic to Z>.

Give an explicit continuous surjective map Z> — {l/n :n > 1}

Let E be a compact metric space. Show the equivalence

(i) there is a continuous surjective map f : [0,1] - E,

(ii) E is path-connected.
(Hint. Use the previous exercise to construct a continuous surjective map fp: C —
E, where C is the Cantor subset of the unit interval, and extend f through the
missing intervals — this is possible if the space E is path-connected.)
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In particular, for every compact, convex subset K of a (real or complex) Hilbert
space, there is a continuous surjective f:[0, 1] — E (“space-filling curve” or
Peano curve).

15. Let E be a compact metric space with the following properties:
(a) E is totally disconnected.

(b) E has no isolated point (hence is not a singleton set!).
Show that E is homeomorphic to Z.

16. Show that the planar fractal image of Zs is path-connected when it is connected (cf.
picture in text).

17. Construct a planar model of Q7 using v : {0, 1, ... 6} — C defined by
v(0) =0, v() =/ (1< j<6).

Observe the appearance of the von Koch curve in the image of

X7 = {Zaﬂ" i1<a, 56} C Q.

n=0

18. (a) Give an example of a discrete subset of [0, 1] C R that is not closed.

(b) Prove that if A is a discrete subset of a Hausdorff topological space X, then A is
open in A (the same is true for any locally compact subset in a Hausdorff space).

(c) Let G be a topological group that is Hausdorff, and I a discrete subgroup. Prove
directly that I is closed in G (cf. 1.3.2).

(d) Let G be a group having more than one element, let G; denote the topological
group G with the discrete topology, and let Go denote the topological group G
with the topology having only @ and G as open sets (not Hausdorff!). Prove that
I' = G4 x {e} is a discrete subgroup of the topological group G4 x Go. What is
its closure?

19. (@) Let H be a normal subgroup of a topological group G. Prove that the subgroup H
is also normal.

(b) For any topological group G, the quotient G/{e} is a Hausdorff topological group.

(¢) Let H be a closed subgroup of a locally compact (topological) group G. Prove that
the space G/ H is locally compact.

(d) Let G be a locally compact totally discontinuous group, so that the connected com-
ponent of the neutral element in G is {e}. Prove that any neighborhood of the neutral
element contains a clopen subgroup. (Hinz. Start with a compact neighborhood K
of e. There is a clopen neighborhood U of e contained in K. Since U is compact
and disjoint from the closed set F = G — U, there is a symmetric neighborhood
W of e such that UW N FW = @ and hence

UWC(FWY CF* =U.

By induction W" C UW?" ¢ U. The subgroup generated by W is open and
contained in U.)

20. Here is an example of a topological ring A that does not induce on its units A* atopology
compatible with the group structure (cf. (1.3.5)). Let H be a complex Hilbert space with
orthonormal basis (e;);>0. Hence the elements of H are the series x = ZizO x;e; such
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thatx; € Cand ) ;5 ¢ Ixi [? < oo. Consider the sequence of continuous operators 7, in
H defined by
e; ifi #n,

Tn:eir> {en/n ifi =n.

Prove that forevery x € H, || T, x —x]|2 - 0, and hence Tyx — x and T, — I for the
strong topology on the ring A of bounded operators on H. But T,,'l + I for the strong
topology (consider the vector x = 3, ex/n).

Let K be an ultrametric field.
(a) Show that if X is locally compact, then all balls of K are compact (and conversely).
(b) Two balls of K having the same radius r > 0 are homeomorphic.

(Hint. Consider separately the cases |K*| discrete or dense; remember that all

spheres are clopen, and if necessary, use a bijection (0, r] N | K *| 35 0, rN|K*|)

Let G be a group and
G=GpD>G1DG2D---02G, D

be a decreasing sequence of normal subgroups of G. Show that there is a unique group
topology on G for which (Gp)n>0 is a fundamental system of neighborhoods of e. For
this topology, the G, are clopen subgroups and

G Hausdorff <= ﬂ Gp = {e}.

n>0

When this is the case, show that G is metrizable. (Hint. Note that G/ G, is discrete and
metrizable. One can embed G in the countable metrizable product [ G/G.)

Let A = M3(Zp) be the noncommutative ring of 2 x 2 matrices having coefficients
in Z,. Show that A is a topological ring (for the product topology). The units in A
constitute a group A* = Gla(Zp):

g € Gla(Zp) <= g € Ma(Zp) and det g € Z;.

Show that Glz(Z ) is a topological group with the topology induced from A.LetG, C G
denote the normal subgroup consisting of matrices g = (g;;) congruent to the identity
matrix mod p”,

gij = 8;; mod p"Zp
(8;; = 1ifi = j and = 0if i # j is the Kronecker symbol). Show that the G, form a
fundamental system of neighborhoods of the identity in Gl2(Zp).

Let (An)n>0 be a decreasing sequence of subsets of a set E. Consider the canonical
inclusions A,; C A, as transition homomorphisms. Show that the intersection A =
(>0 An together with the inclusions A — Aj, has the universal property characterizing

the projective limit lim A, and hence may be identified with it: lim A, = ﬂ An.
<« «—

Let (Xp, ¢n)n>0 and (Y, ¥»)n>0 be two projective systems. One can consider canoni-
cally (X, X Yu, @n X ¥n)n>0 as a projective system. Prove

lim(X, x Y,) 2 1limX, xlimY,.
«— «— <«
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Let a € Z be a rational integer. Show that X 2+ X +a = Ohas aroot in Q5 if and only
if a is even.

(@) In which fields Q, does one find the golden ratio (root of 2=x4+1)
(b) How many solutions of X*+ X2+ 1 = 0 are in Q7? (Either make a list of solutions
mod 7, or consider ¥ = X2 and solve in two steps.)

(a) Show that if a € 1 + pZ, and the integer n is prime to p, then there is an nth root
ofain Q).

(b) Give an example of a € 1 + pZ, having no pth root in Q,.

(c) Show thatifa € 1+ p>Z,, then a has a pth root in Q.

Let n be a positive integer, v = ordpn; hence n = p¥n’ and (p, n’) = 1. For integers
a, b e Z, prove

a=b (modnZy)<>a=>b (modp"Z).

(Hinr. Observe that nZpy = p"Zpy and nZpy NZ = p*'Z.)

Let p and g be distinct primes.

(a) Prove that the fields Q, and Q, are not isomorphic.

(b) Prove that the fields Q, and R are not isomorphic.

(¢) Prove that the fields Qp(sy—1) and Qg (1 p—1) are not isomorphic.
(Hint. Look at roots of unity. Observe that for each prime p, the field Q, has an
algebraic extension of degree 4, which is not the case of the field R. For part (¢),
use the lemma in (6.8).)

Let p and g be distinct primes. What is the projective limit

lim R/ (p"Z x q"Z)?
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Finite Extensions of the Field
of p-adic Numbers

The field Q,, is not algebraically closed: It admits algebraic extensions of arbitrarily
large degrees. These extensions are the p-adic fields to be studied here. Each one
is a finite-dimensional, hence locally compact, normed space over Q,. A main
result is the following: The p-adic absolute value on Q), has a unique extension to
any finite algebraic extension K of Q.

1. Ultrametric Spaces

1.1. Ultrametric Distances
Let (X, d) be a metric space. Thus X is equipped with a distance functiond : X x
X — R, satisfying the characteristic properties

dx,y) >0 x #y,
d@y,x)=d(x,y),
d(x,y) <d(x,z)+d(z, y)

forall x, y,and z € X.Forr > 0 and a € X we define!
B,@={xeX:dx,a)<r}

= dressed ball of radius r and center a,

11 et me use this unconventional terminology in this section only. From (I1.2) on, I shall rely on the
reader for a proper distinction between “open” and “closed” balls.



70 2. Finite Extensions of the Field of p-adic Numbers
B.,(@={xeX:dx,a)<r}
= stripped ball of radius r and center a.

Hence B_,(a) is empty if » = 0, and the stripped balls form a basis of a topology
on X: In particular, all stripped balls are open.

Definition. An ultrametric distance on a space X is a distance (or metric)
satisfying the strong inequality

d(x,y) <max(d(x,2),d(z,y)) (=< dx,2)+d(z,y))

forallx, y, and z € X. An ultrametric space (X, d) is a metric space in which
the distance satisfies this strong inequality.

The following results are valid in ultrametric spaces.

Lemma 1. (a) Any point of a ball is a center of the ball.
(b) If two balls have a common point, one is contained in the other.
(¢c) The diameter of a ball is less than or equal to its radius.

Proor. (a)If b € B_,(a), thend(a,b) < r and
x € Bo(@) <= d(x,a) <r "5 d(x,b) < r <= x € B_,(b)

proving B_,(a) = B.,(b). The case of a dressed ball is similar.
(b) Take, for example, a common point ¢ of the balls B.,(a) and B, (b). By
the previous part, we have

B_,(a) = B (c) and Bsr’(b) = Bsr’(c)-

Now, it is clear that B.,(c) C B<»(c)if r < r’, while B<,/(¢) C B, (c)if ' <r.
All other cases are treated similarly. Part (¢) is obvious. n

It is immediately seen by induction that ultrametric distances also satisfy the
strong inequality for finite sequences x3, x3,..., X, € X:

d(xl ’ xn) S max (d(-xl’ x2), d(x2’ x3)9 b | d(xn—l ’ xn))-

Consider a cycle containing #» > 3 distinct points: x; (1 < i < n), Xp41 = x;. We
may assume d(x1, X,) = max;<, d(x;, x;+1): Renumber these points if necessary,
and observe that d(x,, X,+1) = d(x,, x1) = d(x1, x,). Since

d(x1, x,) < max(d(x1, x2), . . ., d(Xn-1, Xn))
by the ultrametric inequality, it follows that

d(XI, xn) = d(-xis xi+1)
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for atleast oneindex 1 < i < n— 1. In other words, the cycle has at least two pairs
of consecutive points with equal maximal distance. In particular, in a set a, b, ¢
of cardinality 3, at least two pairs have the same (maximal) length. A picturesque
way of formulating this property is this:

In an ultrametric space, all triangles are isosceles (or equilateral), with at
most one short side.

Here is an image of the situation. Let x be the earth and y, z be two stars in a
galaxy not containing the earth, so that d(x, y) > d(y, z). Then we consider that
d(x, y) = d(x, z) (this is the distance of the galaxy containing y, z to the earth).
In other words, ultrametric distances behave as orders of magnitude.

Let us denote by S,(a) = {x € X : d(x,a) = r} the sphere of center a and
radius r > 0. Then if a ball B does not contain the point a, it lies on the sphere
Sy(a), where r = d(a, B)

if B = B_;(b),thenr =d(a,b) > s and B C S,(a),
and similarly,
if B = B<(b), thenr =d(a,b) > s and B C S,(a).
Let us reformulate these properties in the form of another lemma.
Lemma 2. (a) Ifd(x,z) > d(z,y), thend(x,y) =d(x, 2).

(b) Ifd(x,z) #d(z,y), thend(x, y) = max (d(x, z), d(z, y))-
(¢) Ifx € S;(a), then B_.(x) C S,(a) and

S-(a) = U B_,(x). ]

xeS,(a)

N
&/

Balls within a ball

The stripped balls are open in any metric space: By definition, they make up a
basis of the topology. Similarly, the dressed balls are closed in any metric space.
In an ultrametric space we have some other peculiarities.
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Lemma 3. (a) The spheres S,(a) (r > 0) are both open and closed.
(b) The dressed balls of positive radius are open.
(c) The stripped balls are closed.
(d) Let B and B’ be two disjoint balls.
Thend(B, B’y =d(x,x’)foranyx € B,x' € B'.

Proor. (a) The spheres are closed in all metric spaces, since the distance function
x > d(x, a) is continuous. A sphere of positive radius is open in an ultrametric
space by part (c¢) of the previous lemma.

(b) If r > 0, then B, (a) = B.,(a) U S,(a) is open.

(c)If r > 0, the sphere S, (a) is open; hence B_,(a) = B<,(a)— S,(a) is closed.
Ifr =0, B..(a) = Dis closed.

(d) Take four points: x, y € Band x’, y’ € B’. The 4-cycle of points x, x’, y’, y
has two pairs with maximal distance: They can only be d(x, x") = d(y, ¥’), since
we assume that the balls are disjoint. All pairs of points x € B, x’ € B’ are at the
same distance, and d(B, B’) := infycp »ep d(x, x’) is this common value. [

Due to the frequent appearance of simultaneously open and closed sets in ultra-
metric spaces, it is useful to introduce a definition.

Definition. An open and closed set will be called a clopen set.

Lemma 4. (a) Asequence (xp)n>oWithd(x,, Xp41) — 0 (n— 00)isa Cauchy
sequence.
(b) Ifx, — x # a, then d(x,, a) = d(x, a) for all large indices n.

Proor. (a) Observe that if d(x,, x,+1) < ¢ for all n > N, then also
d(xXn, Xnym) < max dXnyi, Xnyit1) <€
O<i<m

foralln > Nandm > 0.
(b) In fact, d(x,, a) = d(x, a) as soon as d(x,, x) < d(x, a). [ ]

Proposition. Let 2 C X be a compact subset.

(a) Forevery a € X — R, the set of distances d(x, a) (x € Q) is finite.

(b) For every a € X2, the set of distances d(x,a) (x € Q2 — {a}) is discrete
in R>0.

Proor. (a) We have just seen that

d(x,y) <d(x,a) = d(y,a) = d(x, a);

hence the function f : x — d(x, a), 2 — R.pislocally constant and continuous.
Its range is finite: The sets f~!(c) (for ¢ € f(2)) form an open partition of the
compact set 2.



1. Ultrametric Spaces 73

(b) The map f : x > d(x,a), Q2 — {a} — R,y is locally constant as before.
For ¢ > 0, its restriction to the compact subset £ — B_.(a) has finite range. This
proves that all sets

[e,00) N {d(x,a):x € Q, x #a}

are finite. Hence f(Q2 — {a}) is discrete in C R . ]
Let us summarize.

Properties of ultrametric distances.

(a) Any point of a ball is a possible center of the ball
b € B.,(a) = B<,(b) = B<,(a) (and similarly for stripped balls ).
(b) If two balls have a common point,
then one is contained in the other.
(¢) A sequence (x,)nen is a Cauchy sequence
precisely when d(x,, x,41) —> 0 (n = 00).
(d) In a compact ultrametric space X, for eacha € X,
the set of nonzero distances {d(x,a) : a # x € X} is discrete in R.¢.

1.2.  Ultrametric Principles in Abelian Groups
Let G be an additive (abelian) group equipped with an invariant metric d, namely
a metric satisfying

dx+z,y+2)=d(x,y) (x,yandz e G).
For x € G, define

|x| = d(x, 0).
Then
|—x| =d(—x,0) =d(0,x) =d(x,0) = |x|

and

x+yl=dx+y,0)<dx+y,y)+d(y,0)

<d(x,0)+d(y,0) = |x| + |yl

This shows that x > —x and (x, y) > x4y are continuous and G is a topological
group when equipped with the metric d. We shall say that G is a valued group

when such a metric d has been chosen.
Assuming that this metric satisfies the ultrametric inequality, we shall have

similarly

Ix +yl =d(x+y,0) <max(d(x +y, y),d(y, 0)
< max (d(x, 0),d(y, 0)) = max (Jx}, |y]).
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In particular, all nonempty balls centered at the neutral element 0 € G are sub-
groups of G. These subgroups are

B,(0)={xeG:|x|=r} (r20),

B.,0)={xeG:|x|<r} (>0).
Instead of applying (1.1) to see that the balls B.,(0) and B_,(0) are open and
closed when r > 0, one can observe that these subgroups are neighborhoods of
the origin and use (I.3.2) to reach the same conclusion.

Conversely, if we are given a function G — R : x > |x] satisfying
lx] >0 forx #0, |—x|=|x|,
Ix+yl <Ix|+Iyl (resp. < max(|x|,|y]))

then we can define an invariant metric (resp. ultrametric) on G by
d(x,y)=|x —yl.

The characteristic properties of distances are immediately verified (see the specific
references at the end of the volume). A pair (G, | . |) consisting of an abelian group
G and a function G — Rso : x > [x] satisfying the preceding properties, with
the ultrametric inequality

x +y| <max(lx], [y]) (x,y€G),

will be called an abelian ultrametric group.
The study of convergence for series in a complete abelian group is simpler in
ultrametric analysis than in classical analysis. Let (a;);>0 be a sequence and define

Shp = E a;.

If this sequence of partial sums s, has a limit s, then
Ay =Spy1 —Sp > 5 —s5s=0.

This necessary condition for convergence of the series ) ;. a; is sufficient in any
complete ultrametric group. Indeed, if 5,41 — 5, = a, — 0, the sequence (s,)
is a Cauchy sequence and hence converges. Moreover, reordering the terms of a
convergent series, and grouping terms, alters neither its convergence nor its sum.

Proposition. Let (a;);cn be a sequence in a complete ultrametric abelian group.
Assume that a; — 0, so that the series ) ;. a; converges: Let s be its sum.
Then

(a) for any bijectiono : N — Nwe have s = ) ;. Go(iy

(b) for any partitionN =[], I; we have s = }_; (Zielj a,-).
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Proor. (a) For ¢ > 0, define the finite set
Ie)={i:lai] > &}

and the corresponding sum

s(e) = Z a;.

iel(e)

For any finite set J D I(¢g),

> a

J=I(s)

< max |ag;| <e.

i¢l(e)

This proves that the family (a;) is summable. This notion is independent of the
order on N. Explicitly, for ¢ > 0, n > 0 we have

|s(e) — s(n)| < max(e, ),

since s(g) — s(n) is a finite sum of terms having absolute values between ¢ and 7.
In particular, (s(1/n)),-0 is a Cauchy sequence, and we call s its limit. If & > 0,
letting n — 00 in

Is(e) — s(1/n)| < max(e, 1/n)
we get
s(e) —s| <e.

Hence we can say that s(g) — s whene — 0.Now, ifa] = a,; is arearrangement
of the terms of the series and s, = ) !, the inequality

i<n ai 4
Is—sil<e
holds when {o(i) : i < n} contains the finite set /(g), hence for all sufficiently
large n.
(b)Lets; = Ziel,— a;, so that we have to prove s = Zj s;j. Take any & > 0 and
define the finite sets

Ii(e) = I; N I(e).
Obviously, the nonempty /(&) make a partition of the finite set I(¢), and

s(s)=Za,— =Z Z a;

I(g) J ielj(e)
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Finally,
ls= Y sjl<max[ls—s@LD | Y a|-D s
j J iel;(e) J
< max | |s — s(¢)|, max Z a —sjif <e
ielj(s)
Since this is true for all £ > 0, the conclusion follows. n

Corollary. Let (aij)i>0,j>0 be a double sequence such that for any & > O the
set of pairs (i, j) with la;;| > & is finite. Then this double family is summable
and

> () - (Ta)

i=0 \j>0 j=0 \ix0

Proor. The family (a;j)i>0,j>0 is summable over the countable set N x N by
hypothesis, and the sum of the corresponding series ) j @ij can be computed in
any order. It can also be computed using the two groupings mentioned. |

Comments (1) Summable families over arbitrary index sets will be considered
later (cf. (IV.4.1)). The above proposition will be generalized correspondingly.

(2) In classical analysis, there is a distinction between conditionally convergent
and absolutely convergent — or commutatively convergent, or summable — series
(of real or complex numbers): This distinction disappears in non-Archimedean
analysis, since the sum of a convergent series can be computed in any order, any
grouping. But in both contexts a grouping in a divergent series may produce a
convergent one: Think of a; = (—1)/, |a;| = 1 5 0; here is a grouping that leads
to a convergent series

a-nD+AQ-D+---=04+0+-.-=0,
and here is another grouping,
14+C-14+D4+C-14+D+---=140+04+---=1

leading to a different sum. Or think of the divergent series Y, ., a, where all
a, = 1. A suitable grouping of its terms leads to a convergent series:

1+(\1+'--+l)+(l+---+l)+-..=1+p+p2+---=T—:—;.

p terms p? terms
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Basic Principles of Ultrametric Analysis in an Abelian Group
(1) The strongest wins
x| > Iyl = |x + yl = Ix|.
(2) Equilibrium: All triangles are isosceles (or equilateral )
a+b+c=0,|c| <|b| = la| =|b|.

(3) Competitivity

atat---+a,=0 =
there isi # j such that |a;| = |a;| = max |a|.

(4) A dream realized
(an)n>o0 is a Cauchy sequence <= d(an, an+1) — 0.
(5) Another dream come true (in a complete group)

E 150 dn cOnverges < a, — 0.

When Y, ., an converges, 3, la,| may diverge but
|ano a,,| < sup |a,| and the infinite version of (3) is valid.
(6) Stationarity of the absolute value

a, — a # 0 = there is N with |a,| = |a| forn > N.

1.3. Absolute Values on Fields

Definition 1. An absolute value on a field K is a homomorphism

f:K* >Ry

extended by f(0) = 0 and suchthat f(x+y) < f(x)+ f(y) (x,y € K).

77

The trivial homomorphism f(x) = 1(x € K*) defines the trivial absolute value
on K. We shall usually denote by f(x) = |x| an absolute value, and by definition,

such a function will always have the characteristic properties

x| = O,
x| =0 x =0,
lxyl = I|x]-lyl,

x+yl < Ixl+1yl

forall x, y € K. The pair (X, |.|) is a valued field (1.3.7).
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Ifx* =1 € K, then |x|* = |x"| = 1 and |x| = 1. In particular, |[—1| = |1| = 1.
Also, |2| = |1+ 1] <14 1 = 2, and by induction
Inl<n (mneN)

(here n = n - 1x¢ € K in the left-hand side of the inequality, whereas n € R, in
the right-hand side). Also, quite generally,

X

y

=% (xeK,yeK>).

By induction
lx1 4+ x2 4+ + x5 < Ixa] + [x2| + - -+ + |x4]

for every positive integer n.

Definition 2. An ultrametric field is a pair (K, | . |) consisting of a field K and
an ultrametric absolute value on K, namely an absolute value satisfying the
strong triangle inequality

x4+ yl <max(|x|, [y < Ix| +1y| (x,y € K).

As before, induction shows that
X1 +x2 + - + x| < max(fxa, |x2l, ..., x4 ])-
In this case, we have |2| = |1 4+ 1] < 1 and by induction
In] <1 (neN).
Hence ultrametric fields have the non-Archimedean property
Inx| < |x| (neN).

The following lemma is obvious (cf. (1.2)).

Lemma. All balls containing Oin an ultrametric field K are additive subgroups.
The dressed unit ball B<1(0) is a subring of K. The balls B-,(0) (r < 1) are
ideals of B<1(0). The balls B..(0) (r < 1) are ideals of B<1(0). ]

Proposition. Let x > {x| be an absolute value on a field K. Then:

(1) d(x, y) = |x — y| defines a metric on K.

(2) Foreach exponent) < a <1, x > |x|* still defines
an absolute value on the field K.

(3) If x — |x| is an ultrametric absolute value,
then for each positive exponent a > 0, x — |x|* still defines
an ultrametric absolute value on the field K.
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Proor. All statements are obvious except perhaps the triangle inequality, which is
nevertheless a simple exercise. [

The trivial absolute value defines the discrete metric: d(x,y) =1 if x # y.

1.4. Ultrametric Fields: The Representation Theorem
Let K be an ultrametric field. We use the general notation
A = {x € K : |x]| < 1}: dressed unit ball,
M = {x € K : |x| < 1}: stripped unit ball.
Hence
A=A"uM
is a disjoint union, where A*, the multiplicative group of invertible elements in A,

is the unit sphere |x| = 1.

Proposition. The subset A is a maximal subring of K, and M is the unique
maximal ideal of the ring A.

Proor. Indeed, if A’ is any subring strictly containing A, it will contain an element
y such that |y| = r > 1 together with all its powers y". Hence B<,» = y"A C A/,
and since r" = |y"| — oo, weseethat K = | J,.; y"A = A’. Moreover, any ideal
not contained in M contains a unit, and hence coincides with the whole ring A.
This shows that M is the unique maximal ideal of A. n

Definition 1. A subring A of a field K such that

foreveryx e KX, x e Aorl/x e A
is called a valuation ring of K. A commutative ring A having a single maximal
ideal is called a local ring.

The unit ball in an ultrametric field is a local ring and a valuation ring.

Definition 2. If K is an ultrametric field, its residue field is the quotient k =
A /M of its dressed unit ball, the maximal subring of K, by its unique maximal
ideal.

The residue field parametrizes the stripped balls of unit radius in the dressed
unit ball of K: If § C A is a set of representatives for the classes mod M, then

A=B4O) =]]Baw.

x€eS

Theorem. Let K be a complete ultrametric field, A its maximal subring de-
fined by |x| < 1. Choose an element & with || < 1 together with a set of
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representatives S C A containing 0 for the classes A/& A. Then each nonzero
element x € K> is a sum

x=Za,-s" (meZ, a €8, ay #0)

i>m

withm > O precisely when x € A. The map x v+ (s,) wheres, = _,, <i<n Gi& i
defines an isomorphism A = lim A/£§" A.

Proor. The conditions [£] < 1,& € A is not aunit, and £ € M are all equivalent.
Starting with x € A, there is a unique ap € S withx —ap € £A4,

x=ap+&x; (x; €A).
Repeating the procedure for x;, and so on, we get by induction
x=a+aé+--- +an—1§n_l +xn§-n

with g; € S and x, € A. In the notation of the statement of the theorem, we can
write x = 5, + x,£". Since |x,£"| < |§"] = [§]* — 0, the sequence (s,)n>0 is a
Cauchy sequence, and the series ), >0 @:i§' converges to the element x € A. Since

for any x € K there is an integer & such that |£ kx| <1, namely such that & kx e A,
the preceding expansion can be derived for this element, and we obtain a series
expansion for x starting at the index i = m = —k. [

Observe that even when K is not complete, each x € K™ has a series represen-
tation as indicated in the theorem, but an arbitrary series

Za,-fi (mel, a €S, a, #0)

i>m

will — in general — converge only in the completion of K. In other words, even
when K is not complete, we get an injection

A< A=IlimA/E"A.

1.5. General Form of Hensel’s Lemma

Theorem (Hensel’s Lemma). Let K be a complete ultrametric field with max-
imal subring A and f € A[X]. Assume that x € A satisfies

IFG) < 1F/ )%

Then there is a root £ € A of f such that |§ — x| = |fF&x)/f'(x)| < |f %)l
This is the only root of f in the stripped ball of center x and radius | f'(x)|.

Proor. In spite of the similarity with (1.6.4) (particular case K = Qj), we give a
complete proof with absolute values (instead of congruences). The idea is again to
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use Newton’s method iteratively. Since the polynomials f and f” have coefficients
in the ring A, we have | f(x)| < 1and 0 < | f'(x)| < 1.

First step: Estimates concerning the distance of ¥ = x — f(x)/f'(x) to x.
The assumption is ¢ := | f(x)/f'(x)?] < 1. We have

s f®O_ &
f'l® ey
X — x| = clf@).

[,

Similarly

~ 2 (f®Y _ f®
* ”_(ﬂn)_ﬂm2ﬂ”

£ — xP = cl f0)I.

The second-order expansion (I.6.2) of f at the point x gives

@ =fO)+EF-0f®)+E—x’r eA:|r|<D,

“

=0: Newt;n’s choice
If@)) < B—xP =clf@] < &),

and X is an improved approximation to a root. The first-order expansion (1.6.2) of
S’ at the point x gives

A =f@+FE-x) (scA: |s|<1),
/)= f@l <x—x|=clf/ ] < |f &l
It shows that
IFOl=1 f@®)+ @)= /&) =1 &)l
——
strongest
The invitation to iteration is clear.

Second step:. Further iterations.
Let now x = Ny(%)

< cf®l _ 2
| f/(x))?

A |I®
-Gy

This iteration furnishes
IFGOI <CIF@) <Cel f@)] < 2 F()l,
and since | f(x)| = c| f’(x){? by definition, we obtain

LFGOI < 1 F )1
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~ PS . . )
We can construct the sequence xg = x, x; = X, X = X, ... inductively with
X;+1 = x;. Define also ¢; =7, ¢;+1 = ¢;. The preceding estimates show that

|FG! < o1 -~ crel fFo)l < @ 7 f@o) = 1 f o) = 0 (i = o0),
lx —x1] = & =% < A1 o)l < el f'(xo)l = |x1 — xol,

and by induction,

Ixis1 — xil < Z 1 (xo)l < el f'(xo)l = Ixi — %0l (G > 1).

In particular, |x; — xo| = |x1 — xo| = [ — x| = ¢|f'(x0)| is constant for i > 1
(these x; are closer to each other than to xp).

Third step: The limit root &.
The sequence (x;);>0 1s a Cauchy sequence, so it converges in the complete field
K. Since all iterates x; belong to the closed subring A, we have

&= lim x; € A,
n—->00
& —xol = Ix1 — %ol = ¥ — x| = ¢| f'(0)| < |f' ),
f&) = f(lim x;) = im f(x;) =0.
n—->oo n—->oo
Fourth step: Uniqueness of the root €.
Let £ be as before and 7 have the required properties, say n = £ + h. Hence

|kl = In —&| < 1f'(x)] = | f'(&)]. The second-order expansion (1.6.2) of f at the
point £ gives

0= f(p)= L(Q+hf’(€) +h* (teA: |t
=0
0= h( f'(§) + ht ) = h(f'() + ht);
S—— S——

strongest #0
hence h =0,1e.,n=E&. ]

Observe that when the absolute value is trivial, it takes only the values 0 and 1,
the assumption reduces to

0=1fOl<I1f®F=1,
and the statement is trivially correct.

1.6. Characterization of Ultrametric Absolute Values

Theorem. Let x +> |x| be an absolute value on a field K. Then the following
properties are equivalent:

(D) |n] < 1 for all natural integers n € N.
(i) The absolute value is bounded on N - 1.
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@ii)) |14+ x| <1 foreveryx € K suchthat |x| < 1.

(iv) x — |x]| is an ultrametric absolute value.

) {x € K : |x| < 1}is a subring of K.
Proor. We proceed according to the following scheme of implications:

() = (i) = (@) = (v) = (v) = (i)
and
i) = ().
Among these implications, several are trivial, namely,
@ =), =)= @) and (@Gv)= @)

It only remains to prove two implications. For (ii) => (iif) we can assume |n| < M
for all integers n and use the binomial formula to compute

3 (:_l)xi <3 Mixf.

N+x" <@+ DM,
1+4x| <@+ D" MYn

N+x"=11+x)" =

When [x| < 1, we obtain

for all integers n > 1. Since (n + 1)/ — 1 as wellas M/* — 1forn — o0, we
infer |1 + x| < 1. To prove (iii) = (iv), we can — without loss of generality —
assume that [x| > |y| in |[x 4+ y|, |x| > O and estimate this quantity as follows:

Ix +yl=Ix|- 11+ y/x| < x| =max(|x], [yD- -

Corollary. Any absolute value on a field of characteristic p # 0 is ultrametric.

Proor. Indeed, any absolute value is bounded on the image of N in a field of
characteristic p, since this image is a finite prime field. The second condition of
the theorem is automatically satisfied. |

The absolute values that are not bounded on the prime field of K (necessarily
of characteristic zero) are sometimes called Archimedean absolute values: They
have the property that

if x # 0, then for each y there is an n € N such that [nx| > |y|.

1.7. Equivalent Absolute Values

Distinct absolute values can define the same topology on a field K. It is not always
useful to distinguish them.
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Theorem. Let |.|, and | .|, be two absolute values on a field K. Then the
following conditions are equivalent:

(i) Thereisana > Owith|.|, =|.[{.
(i) |. |1 and | . |, define the same topology on K.
(iii) The stripped unit balls for | .|, and | . | coincide.

We say that | . || and | . |, are equivalent absolute values when these conditions
are satisfied.

ProoE. (i) => (ii) Since |x — al, < r < |x —al; < r!/®, the stripped balls are
the same for the two topologies. Hence the topologies defined by | . |; and | . |, are
the same.

(i) = (iii) Let us observe that

[xli <1 <= x" — 0 (for the topology defined by | . |;)
and similarly for | . |,. By assumption we obtain
xi1 <1<<=|x|p < 1.

(iii) = (i) Let us assume |x|; < 1 <= |x|, < 1. Since |1/x|; = 1/|x|; and
similarly for | . |,, we see that

x}; > 1 <= |x[2 > 1
and consequently
xh =14 [x2=1.

If | .|y is trivial, |x|; = 1 for all x € K*, and the same is true for |. |5, so that
we can take o = 1 in the statement of (i). Otherwise, we can find xo € K* with
|xo]1 # 1, and replacing xo by 1/x if necessary, we can assume |xg|; < 1. Define

_ log|xol>
loglxoly’

so that |xo|2 = |xo|{ by definition. Take then any element x € K> with |x|; < 1
and consider the rational numbers r > 0 such that |x|] < |xg|;. These rational
numbers r = m/n are those for which

m
< 1.

Ix|T" < |xolf,
X0 1

By assumption, these are the same as those for which

xm

<1
n b
X0

2
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namely |x|5 < |xol5 or |x|5 < |xp|2. On the other hand, these rational numbers
are precisely those for which

rlog|x]; <loglxol1 (resp.rloglx|> < log|xol2)
or

r > log|xoli/log|x|; (resp.r > log|xol2/loglx[2)

(all logarithms in question are negative). This proves

loglxol1 /loglx|; = log|xol2/log|x}2,
log|x|>/log|x|; = loglxol2/log|xol; = a.

Hence |x|, = |x|{, as was to be shown. [ ]

2. Absolute Values on the Field Q

2.1. Ultrametric Absolute Values on Q

Let us recall that if p is a prime number, we can define an absolute value on
the field Q of rational numbers by the following procedure. If x = p™a/b with
a,b,meZ, bs#0,and p prime to a and b, we put
Ixlp=p™".
In other words, we put |p|, = 1/p < 1 and |n|, = 1 for any integer n prime to
P, and extend it multiplicatively for products. Since
Q* =p* x 25, = || "5,
meZ

this defines the absolute value uniquely. This absolute value is an ultrametric
absolute value on Q.

Theorem (Ostrowski). Let x — |x| be a nontrivial ultrametric absolute value
on the field Q. Then there exists a prime p and a real number o > 0 such that

k=% (eQ).

Proor. Since the integers generate Q (by multiplication and quotients), the absolute
value must be nontrivial on N. As we have seen, any ultrametric absolute value
satisfies |n| < 1 (n € N). Hence there must exist a positive integer n with |n| < 1.
The smallest such integer is a prime p because in any factorization n = ny - ny, we
have |n1] - |n2] = |n| < 1, and consequently one factor n; must satisfy |n;| < 1.
Let us call this prime p so that by definition

jnl=1 for 1<n<p
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but 0 < |p| < 1.Iclaim that for every integer m € Z prime to p, we have |m| = 1.
Indeed, if m is prime to p, the Bézout theorem asserts that there are integers u and
v with up + vm = 1. Hence

1 =|1] = |up + vm| < max(lup|, lvm|) < 1.

Since by assumption |up| = |u||p| < |u] < 1, the maximum must be |[vm| = 1
and hence |m| = 1 (we know a priori that |v| < 1 and |m| < 1). There is now a
unique positive real number « such that

lpl =Q1/p)*

(indeed, take o = (log|p|)/(log(1/p)) — a quotient of two negative numbers —
independent from the basis of logarithms chosen). Then if the rational number x
is written in the form x = p¥a/b € Q> with p primetoa and b (i.e.,a/b € Z(:)),
we shall have

Ixl = I’ = (1/p)™ = Ix[C

and the theorem is completely proved. u

2.2. Generalized Absolute Values

Observe that if | .| is an absolute value and ¢ > 0, then |.|* is not an absolute
value in general. For example if | . | is the usual absolute value on Q and a = 2,
then f(x) = |x|? does not satisfy the triangle inequality

4=fQ=7A+D>fH+ fN)=2
But it satisfies
e+ =lx+yP < (x| +y)* < @max{jx], yI})* = 4max(f(x), fG).
This is one reason for considering generalized absolute values.
Definition. A generalized absolute value on a field K is a homomorphism f :

K> — R. g extended by f(0) = O for which there exists a constant C > 0 such
that

f(x+y) < Cmax(f(x), f(y)) (x,y€K).

Observations. (1) For any generalized absolute value f and any o > 0 (not only
for0 < @ < 1), f¢is also a generalized absolute value: Replace C by C*.

(2) The ultrametric absolute values are those for which the above inequality
holds with C = 1. Moreover, if f is a (usual) absolute value, then

FG+y) < f()+ f(y) < 2max(f(x), f(¥)),

and (usual) absolute values are generalized absolute values: The above inequality
holds with C = 2. Let us prove a converse.
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Theorem. Let f be a generalized absolute value on a field K for which
f(x+y) < 2max(f(x), f(») (x,y € K).
Then f is a usual absolute value: It satisfies the identity
FE+y = f@+ ) &, yeKk).

Proor. Iterating the defining inequality for generalized absolute values, we find
that

flai 4+ ar + a3 + as) < Cmax(f(a1 + ay), f(az + as))
< C?’maxi<i<s fla)-

More generally, by induction if n = 27, then
fla +---+a,) < C"max f(a;).

Since we are assuming that the constant C = 2 can be taken in the preceding
inequalities, we have

flai+--- +a,) < 2" max f(a;) = nmax f(a;).

Now, if n is not a power of 2, say 2"~! < n < 27, we can complete the sum by
taking coefficients a; = 0 for n < i < 27 and still write

flai +---+ay) < 2" max f(a;) < 2nmax f(a;).
We shall have to use two particular cases of this general inequality:

(1) f(n) <2n (takeg; =1forl1 <i < n),
@ f (215,'5" ai) <2nmax f(a;) <2n leisn f(ai).

To estimate f(a-+ b), we shall estimate f((a +b)") thanks to the binomial formula
(the nth power of @ + b is a sum of n + 1 monomials)

fla+by)y=f (Z (;’)a"b"“")
<2n+D)Y f ((7)) - f@) FBy
n i n—i
<2n+1) 22(i)f(a) F(b)
= 4(n + 1(f(@) + FB)".

Let us extract nth roots:

f@+b) <4+ D" (f@)+ fB) > f@+ fB) (n—>o00). W
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2.3.  Ultrametric Among Generalized Absolute Values

We can give a generalization of (1.6).

Theorem. Let f be a generalized absolute value on a field K. If f is bounded
on the image of the natural numbers N in K, then it is an ultrametric absolute
value.

Prook. Let n = 2" be a power of 2 and consider a sum of n terms a;. As in (2.2),
we see by induction that

fa+---+ap) < C"max f(a;).

Take now x € K and consider the element

(1 +x)n—1 — Z (n l— l)xi.

O<i<n

Since this sum has n elements, we have
(fA+x)"" = f((1+x'"") < C" max [f ((" l_ 1)) : f(x")] :

If f is bounded on the image of N in K, say f(k) < A for all ¥k € N, we shall
have

(FA+x)7" < C"Amax(l, f(x)"™")
and
F(+x) < 7O DAVED max (1, F(x)).
Letting again n — 00, we obtain
f(+x) <max(l, f(x)).
Ifnowa #0and b € K, then f(a) # 0 and

fla+b)= fl@)f(1+b/a)
< f(@)max (1, f(b/a)) =max(f(a), f(b)). "

2.4. Generalized Absolute Values on the Rational Field
The ultrametric absolute values on the rational field Q have been determined in

(2.1). Here, we treat the generalized absolute values.

Theorem. Any nontrivial generalized absolute value on the rational field Q is
either a power of the usual absolute value or a power of the p-adic absolute
value.
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Proor. Take any nontrivial generalized absolute value f and assume that

fx+y) < C-max(f(x), f(¥))-

If C < 1, then f is ultrametric, and we conclude by (2.1). Assume now C > 1.
By induction — regardless of the size and number of addends — we can prove

fl@+---+a)<C" -max f(a).

Let us fix an integer n > 2 and put A = A, = max (f(1), ..., f(n)) = 1. Now,
any integer m > 2 can be expanded in base n, say

m= Z mint (0 <m; <n, m, #0).

O<i<r
Hence
fm) < C"-max f(m)f(n')
< C"A, -max f(n) = C"A, max (1, f(n)).
Butm, # 0, n” < m, and thus r < logm/logn, so that we can write
flm) < AC°8"/ 8" - max (1, f(n)/°8™/ 1%8"),
F(m)l/loem < Arll/logmcl/logn -max (1, f(n)"/ 1",

Let us replace m by m* (keeping n fixed), so that the left-hand side is unchanged,

and let k — oo, whence AY*°2™ _, 1 We obtain

f(m)l/logm < Cl/logn . max(l, f(n)I/IOg").

In other words, we have obtained an inequality in which the constant A, does not
appear. We can now replace n by n¥, and since C!/* — 1, we have simply

Fm)!/ ™ < max (1, f(n)'/18™).

First case: There is an integer n > 2 with f(n) < 1.
‘We can use such an integer n in the inequality just found and deduce

f(m) <1 for every integer m > 2.

Hence f is an ultrametric absolute value by (2.3). Finally, Ostrowski’s theorem
(2.1) applies: f is a power of the p-adic absolute value

fO=k5 e

for some real & (determined by the condition f(p) = |pl3 = (1/p)*).



90 2. Finite Extensions of the Field of p-adic Numbers

Second case: We have f(n) > 1 for every integer n > 2.
The general inequality
f(m)l/ logm < max (1’ f(n)l/logn)
is now simply
f(m)lllogm _<_ f(n)l/logn.
Since we can permute the roles of n and m, we must even have
f(m)l/logm — f(n)l/l(]g”.
Hence f(n)!/1°6” = ¢% is independent from n. This leads to
f(n) = ealogn =n"
for all integers n > 1, and with the usual absolute value
fm)=In|* (neZ).
By the multiplicativity property, we also have
Fx)=1x" (xeQ.

Since 0 < ¢ < oo, the map f is a power of the usual absolute value, and the
theorem is completely proved. |

Comment. The preceding result shows that for a generalized absolute value f on
the field Q, the only possibilities are

® f istrivial,

® |p| < 1 for some prime p and f is a power of the p-adic absolute value,

® |n| > 1 for all positive integers n and f is a power of the usual Archimedean
absolute value.

Observe that the two nontrivial cases can also be classified according to the
value of |2|: If |2| < 1, f is a power of the 2-adic absolute value; if 2] =1, fisa
power of the p-adic absolute value for some odd prime p; if |2] > 1, f is a power
of the usual Archimedean absolute value.

3. Finite-Dimensional Vector Spaces

3.1. Normed Spaces over Q,

Let V be a vector space over the field Q,. A norm on V is a mapping

I-1F:V —{0} > Rso
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extended by ||0]] = O and satisfying the following characteristic properties:

lax|l = lalllxll (@ € Qp, x € V),
llx + yll <max(iix|l, [yl) (x,yeV).

In particular, the norms that we are considering are ultrametric norms. A normed
space over Q, is simply a vector space over this field equipped with a norm. A
norm defines an invariant (ultra-)metric on the underlying additive group of V.
Hence a norm defines a topology on V, which becomes an additive topological
group in which scalar multiplications

x>ax:V—->V (@eQ))

are continuous homeomorphisms.

Examples. (1) Let V = Q, with norm |lx]] = c|x| where ¢ > 0 is a fixed,
arbitrarily chosen positive real constant. This example shows that {||v]| : v € V}
can be different from the set of absolute values of scalars, i.e. the absolute values
of the elements of the field Q,,. (This is a difference from real and complex normed
spaces).

2)LetV = Q; for some positive integer n. Then for x = (x;)1<i<n € V we
can put ||x|lec = SUpP;;<, |Xi| = max;<;<, |x;|. This defines an ultrametric norm
onV.

Two norms x +— ||x] and x — ||x|’ are called equivalent when they induce
(uniformly) equivalent metrics on V, namely when there exist two constants 0 <
¢ < C < oo with

clxll < llxl” < Clixil.

This happens precisely when the topologies defined by these two norms are the
same (exercise).

Theorem. Let V be a finite-dimensional vector space over Q. Then all norms
on'V are equivalent.

Proor. Let n = dim V and choose a basis (¢;)1<j<, of V. Hence
x=@)>v=) xe =p(x)

defines an algebraic isomorphism ¢ : Q, 5 V.On the space Q), we consider the
sup norm given in the above example. We have to show that the 1somorphism ¢ is
bicontinuous. But

|3 x| < maxiixiei) = maxixilliesll < maxle; | - maxix;| = Clxle,
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where C = max [le;[|. (Note that the strong triangle inequality is not really nec-
essary here since it would be enough to observe that || > x;e;l] < Y |Ixell <
> lleill - max x;| = C’[lx|loo.) This proves that [ p(x)|| < C|jx [l and ¢ is continu-
ous. Finally, we show that g isanopenmap.Let B = B = {x € Q; ixlleo < 1}
be the unit ball in Q7. We have to show that ¢(B) contains an open ball of positive
radius centered at 0 in V. Denote by S; the unit sphere

Si={reQp: lxllo =1}

in Q’;,. Then §; is a closed subset of the compact set B<;, and hence is compact.
This implies that ¢(S;) is also compact. This image does not contain the origin of
V (remember that ¢ is bijective). Hence the distance from 0 to ¢(S)) is positive,
and the minimum is attained for some point ¢(xp):

x € §1 = lle@)ll = llexo)ll =& > 0.

If v € V — {0} has norm |jv|| < &, the norm of all multiples Av where |A| < 1 will
also satisfy ||Av]] < e. Hence in particular, if ||v]] < &, then

AeK, A < 1= Av & o(5).
Since (¢;) is a basis, we can write
v= Z vie; = o((v;))-

Without loss of generality we may assume that the largest component is the last
one:

0 # |va| = max [v;| = [[(vi)llco-
With A = 1/v, we have Av = @((v;/v,)) = ¢(w) € ¢(S1). The remark made

before proves that this scalar A satisfies |A| > 1, so that

1
; = |Up| = — 1.
Hwidlloo = lvnl <

This shows that v = ¢((v;)) with ||(vi){l < 1: v € @(B), where B = B<;(0, Q'I',).
Consequently,

B (V) C 9(B). ]

Corollary 1. Let V and W be two finite-dimensional normed vector spaces
over Qp and a : V — W a linear map. Then « is continuous. .

Corollary 2. Any algebraic isomorphism of a finite-dimensional normed vector
space over Q,, is bicontinuous. [
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Corollary 3. Let V be a finite-dimensional vector space over Qp. A subset
S C V that is bounded with respect to one norm on V is bounded with respect
to any other normon'V. [}

Remark. Observe that the proof could be simplified if we knew that all norms of
elements of V were absolute values of scalars, namely if ||V = |Q,|. But this
equality is in general not satisfied.

3.2.  Locally Compact Vector Spaces over Q,,

There are not many compact normed spaces over Q. In fact, any nonzero element
x of a vector space generates a line, and the norm is an unbounded continuous
function on this line because

[Ax]l = [Allxl (A € Qp).

This shows that the only compact normed space is the trivial normed space {0}.
Let us turn to locally compact normed spaces over Q.

Theorem. If V is a locally compact normed space over Qp, then its dimension
is finite.

Proor. Let us select a compact neighborhood €2 of 0 in V. Also choose a scalar
a € Q, with 0 < |a| < 1 (for example a = p with |a| = 1/p will do). The
interiors of the translates x + a2 (x € V) cover the whole space. A fortiori there
is a finite covering of the compact set €2 of the form
QcC U(a,- +af?) (for somea; € V).
finite

Consider the finite-dimensional subspace L generated by the elements g;. By
(3.1), this finite-dimensional subspace is isomorphic to a normed space Q‘;, and
hence is complete. Consequently, this subspace L is closed, and in the Hausdorff
quotient V/L (1.3.3) the image A of the set €2 is a compact neighborhood of 0 and
satisfies

ACaA (ora 'A cC A),
whence a™A C A by induction. Since |[a™"| — oo, we see that

AcvV/Lc|Ja™AcA.

n>1

In particular V/L is compact: V/L =0, V = L is a finite-dimensional space. m

Corollary. In a locally compact normed vector space over Q,, the compact
subsets are the closed bounded sets.
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Proor. The compact subsets of any metric space are closed and bounded (by con-
tinuity of the distance function). Conversely, if V is a locally compact normed
vector space over Q,, it has finite dimension and its norm is equivalent to the
sup norm of this space (3.1). But in Q’;J any bounded set is contained in a (com-
pact) product of balls of Q,. Hence the closed bounded sets are compact subsets

OfQ;' [ ]

3.3. Uniqueness of Extension of Absolute Values

Let K be afinite (hence algebraic) extension of the field Q,. We can consider K as
a finite-dimensional vector space over Q. Each absolute value on X that extends
the p-adic absolute value of Q,, is a norm on this vector space, and we can apply
the results of (3.1).

Proposition. There is at most one absolute value on K that extends the p-adic
absolute value of Q,.

Proor. Let|.|and|.| be two absolute values on K that extend the absolute value
of Q. These two norms must be equivalent, and there exist constants 0 < ¢ <
C < oo such that

clxl < xI'< Clx| (x € K).
Replace x by x" in the preceding inequalities:
clx™ < Ix*|" < Clx"|.

Since |.| and | .|’ are absolute values, they are multiplicative, and the preceding
inequality is simply

clx|” < Ix|™ < ClxI”,
or
x| < x| < CV7xl.
Letting n — 0o, we have c!/* — 1 and C" — 1. This proves |x| = |x|'. [
Application. Let K be a Galois extension of Q, and assume that the p-adic
absolute value of Q,, extends to K. Then for each automorphism o of K/Q, we
can consider the absolute value |x|' = |ox|. By the preceding proposition, this

absolute value must coincide with the original one. Let G = Gal (K/Q),) and for
each x € K, consider the element

Nkx)= H ox €Q,.

oceG
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‘We must have

IN(x)| =

[Tox

oceG

Hence withd = #(G) = [K : Q,] = dimq,(K),

=[] loxl = 1x*?.

oeG

x| = |N(x)M.

Since N(x) € Q,, this formula gives an explicit expression for the extension of
the absolute value of Q, (provided that one exists!). This observation can be used
to prove the existence of an extension of the absolute value of Q,,.

3.4. Existence of Extension of Absolute Values

Let again K be a finite extension of degree d of the field Q. The relative norm
(as defined in field theory, not to be confused with a vector space norm!) is a
multiplicative homomorphism (3.3)

N=NK/QPZKX—>QX, XHN(X),

which coincides with the dth power on Q7. It can be defined either by embedding
K in a Galois extension L and taking a product over the d distinct embeddings
K < L orby using the determinant of the Q,-linearmap y > xy of the Q,,-vector
space K.

Theorem. Let K be a finite extension of degree d of the field Q, of p-adic
numbers. For each x € K, let £ denote the Q,-linear operator y — xy in K.
Then

FG) = NIV = | det£,|'/?

defines an absolute value on K that extends the p-adic one. This is the unique
absolute value on K having this property.

Proor. If a € Q,, it is obvious that N(a) = a? whence |N(a)|"/? = |a|, and
the proposed formula is an extension of the p-adic value. The multiplicativity
fxy) = f(x)- f(y) is a consequence of the multiplicativity of the determinant
(or of the norm). We still have to check the ultrametric inequality. For this crucial
point we use the local compactness of K. Let us choose any norm x > |[x}} on K
with | K || = |Qp]|. For example, pick a basis ey, ... ., e; of K over Q, and use the
sup norm on components in this basis. Since the continuous function f does not
vanish on the compact set | x|] = 1, it is both bounded above and below on this
set, say

O<e<fx)<A<oo (Ixf=D.
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For x € K> choose A € Q,, with [lx]| = |A]. Hence the vector x /A has norm 1,
e<fx/M)=A (x#0),
and since f(x/A) = f(x)/|Al,
glA = f(x) < AlAl (x #0),
elixll < f&x) < Allxll (= #0).
Thus with a = £~ we have both ||x|| < af(x) and f(x) < A|lx]|. Suppose now

f(x) <1 (hence || x|| < a). We infer
FA+x) < All+ x| < Amax (11}, lIx]))
< Amax (||1f, @) = C = Cmax (f(1), f(x)).
If more generally f(y) > f(x), we can divide by y and apply the preceding

inequality to x/y, since f(x/y) = f(x)/f(y) < 1.Finally, multiplying both sides
by f(y), we obtain the general inequality

fx+y) < Cmax (f(x), f(¥).

This proves that f is a generalized absolute value. Since f extends the p-adic
absolute value, it is bounded on N C Q, C K and is an ultrametric absolute value
by (2.3).

The uniqueness of the extension has already been proved in (3.3). [

3.5. Locally Compact Ultrametric Fields

In locally compact ultrametric fields K, we shall use adapted notation
R=B<1 D P =B,

instead of
A=B, DM=B_,

which will still be used in the general — not necessarily locally compact — case.
We are going to prove the following general result.

Theorem. Let K be a field equipped with a nontrivial ultrametric absolute
value and consider the corresponding (ultra-)metric space. Then K is locally
compact precisely when the following three conditions are satisfied:

(1) K is a complete metric space.

(2) The residue field k = R/ P is finite.

(3) |K*|is a discrete subgroup of R.y,
hence of the form 6% for some 0 < 6 < 1.
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Proor. Assume first that the field K is locally compact. Hence there is a compact
neighborhood of 0 in K. This neighborhood contains a ball B..(0), where ¢ > 0.
This ball B, is compact. Using dilatations, we see that all balls B,(0) of K are
compact. Any Cauchy sequence in K is bounded, hence contained in a compact
ball: It must converge in K. This shows that X is complete (recall more generally
that every locally compact topological group is complete (1.3.2)). Now the residue
field parametrizes the open unit balls contained in the unit ball B.;(0). If this
last one is compact, the preceding partition in open sets must be finite, which
proves (2). Finally, since the open unit ball B_;(0) is closed in the compact ball
B.1(0), the continuous function x + |x| must attain a maximal value over the
compact set B.1(0). Call 8 < 1 this maximal absolute value. The only possible
nonzero absolute values are now the integral powers of 8. Indeed, a multiplicative
subgroup of R, is either discrete or dense (I.3.4). (Alternatively, one could use
the last property of ultrametric distances mentioned in (1.1) for the compact sets
B —B.,,0<r<s)

Conversely, assume that the three conditions are satisfied and choose an element
7 € K with largest possible absolute value lessthan 1: m € P C R= 7R C P.
The reverse inclusion also holds:

rxeP=x|<|iml=x=m-x/m (x/m € R)=> x € R.
This proves that P = () = m R is principal. By the representation theorem

(1.4), the complete ring R is topologically isomorphic to the projective limit
R = lim R/n" R of the finite rings R/7" R:

R = B;(0) is isomorphic to R compact.

The field K is locally compact, since it has a compact neighborhood of 0. ]

4. Structure of p-adic Fields

4.1. Degree and Residue Degree

Let K be a finite extension of the field Q, of p-adic numbers. Hence X is locally
compact and complete. Let us choose an element 7 of maximal absolute value
smaller than 1, say 0 < {7] = € < 1, and come back to the usual notation for
the ring

R={xeK:|x| <1}

and its maximal ideal P = & R. The residue field k = R/ P is finite, hence a finite
extension of ¥, = Z,/pZ,.1f f = [k : F)] = dimg, (k), then

k=F,, q=4#k =HF) =p’,
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since there is — up to isomorphism — only one finite field having ¢ elements.
Since the integer p belongs to P, we have

1/p=Ipl=6° |n|=|pl'*

for some integer e > 1.

Definitions. The residue degree of the finite extension K of Q,, is the integer
f = [k : Fp] = dimg, (k).
The ramification index of K over Q,, is the integer

e=[IK*| : {Q:1=T[IK*| : p“1=#(K*|/p").

Warning. I hope that the degree f will not occur next to a polynomial f(X) or a
function f, or if it does, let me rely on the reader to distinguish them (using P for
a polynomial could similarly lead to a confusion with the maximal ideal P = w R
in a finite extension K of Q,,, and here 7 is not 3.14159 .. .!) In the same vein, k
will usually denote a residue field and here, we try to avoid its use as a summation
index.

Leta; anda; € Q;,‘, x1 and x, € K> be such that

laixi| = lazxz| (5 0).

Then |x1| = |az/a1] - |x2] € p? |x;], and the absolute values of x; and x, belong
to the same coset mod p%. Consequently, in a finite sum

Zaixi (a; €Q,, xi € K™)

of nonvanishing terms, if the |x;| belong to distinct cosets mod pZ, we cannot
have a competition of absolute values, and necessarily Y a;x; # 0. This argument
shows that n = [K : Q,] = dim(K) > e. One can also see directly thatn > f
(exercise!). Let us prove that n > ef (we even prove n = ef below).

Proposition. In the situation described in this section, we have e f <n.

Proor. Let us choose a family (s;)1<i<s in R such that the images §; € k make up
a basis over the prime field F,. I claim that the elements

(i Vi<i<s 0<j<e

are independent over Q,. Consider indeed a nontrivial linear combination

Zcijs,-nj = ijﬂf (cij € K),
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where x; = Zi c;jsi. Then for each j there is an index € = £(§) such that
lcejl = leijl forall i,

and x;/cg; = Y ;(cij/cej)si = Y_; viSi is a nontrivial linear combination with
coefficients in R (and y,; = 1). Consider this relation mod P: Define ; = y; mod
P. Since (5;); is a basis of the residue field k = R/ P considered as a vector space
over its prime field, we have

0% ) 7% eR/P

simply because ¥, = 1. Hence

Zyisi é P, ’Z ViSi
i 7

and |x;| = |c¢j| € |Qj | is a power of p. There can be no competition among the
absolute values of the distinct terms x jn'f , and this proves

Zc,-js,-nj = ijnj # 0.

This proves the expected linear independence, and hence the inequality stated in
the proposition. [ ]

=1

Theorem. For each finite extension K of Q,, we have
ef =[K:Qpl=n.

Proor. By the above proposition it is enough to prove the existence of a set of
generators of K over Q, containing ef elements. We shall show that the family

(ST N<i<f 0<j<e

of the Proposition generates the Q,-vector space K. For this purpose we use the
representation theorem (1.4) for the complete field K and the element & = p €
P C R. In this case R/pR is finite with representatives

S={ Z C,'jsiﬂ"ZOSC,'jfp—l .
1<i<f0<j<e
Hence one can write any element x € R as a series

x = Zc[pe (ce € S).

€20

If we write explicit expressions for the coefficients

Cp = E c,-jgs,-n’ S S,

1=i<f0<j<e
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we obtain

x= Z Z cijesit’ pt,
£>0 1<i<f,0<j<e
and if we sum in a different order (only £ can take infinitely many values, and
p® — 0: The family in question is summable by the Proposition in (1.2) ), then

M (Zp) s,

1<i<f,0<j<e

Butci; = 3, cijep® € Zpand x = Y ,; cijsim/. This proves that the ef elements
sim/ (1 <i < f, 0 < j < p—1) constitute a spanning set of the field K
considered as a vector space over Q,,. Together with the proposition, this concludes
the proof of the theorem. ]

A finite extension K of Q,, is said to be

unramified whene = 1,i.e., when [K : Q,] = f,
totally ramified when f = 1,i.e., when[K : Q,] =,
tamely ramified when p does not divide e,

wildly ramified when e is a power of p.

In other words, an extension K /Q,, is

unramified when p is a generator of the maximal ideal P C R,
totally ramified when the residue field does not grow.

Comment. Let us come back to the analogy between p-adic numbers and func-
tions of a complex variable already mentioned in (I.1.4) and (1.5.1), since it is also
responsible for the preceding terminology. Let us explain this in its simplest form.

Let & # 0 be a meromorphic function defined in a neighborhood of 0 in C. It is
known that there is a representation

E@R) =) a." (am #0)
n=m
valid in a punctured disc 0 < |z| < &. The smallestindexm € Z suchthata,, # Ois
the order of & at the origin. This integer is positive when & vanishes and is negative
when £ has a pole at the origin. In this way, we see an analogy between the field
L of meromorphic functions defined in a (variable) neighborhood of the origin in
C and the p-adic field Q, consisting of the formal expansions x = anm a,p”
(m € Z). The functions that are holomorphic at the origin make a maximal subring
Lo of L comparable to Z, in Q. The local construction of the field L is also a
Jjustification for calling Q, a local field.
Now take an integer ¢ > 1 and consider the change of variable

ur>z=u*:C—->C.
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This is a canonical example of a ramified covering of degree e at the origin, in a
topological sense: The inverse image of any z # 0 consists of e distinct preimages,
while u = 0 is the only preimageof z = 0.If§ =} ., a.2" (0 <|z] < &)isas
before a meromorphic function in a neighborhood of the origin, we can make the
change of variable z = u° and obtain a new expansion

) = £ =Y au.
n>m

In this way, the field L is embedded in the field L’ consisting of convergent Laurent
series in the variable u. There is no function /7 defined in a neighborhood of z = 0
in C, so that the field L’ = L(z!/¢) is a proper extension of the field of convergent
Laurent series L in the variable z. This extension L’ is totally ramified over L, with
degree e: It is obviously comparable to the extension Q, () of Q, if 7 = pl/e.
Observe that with meromorphic functions it is traditional to work with the order-of-
vanishing function ordy(§) = m, instead of a corresponding ultrametric absolute
value |£|o = 8™ (for a choice 0 < 8 = |z|p < 1; there is no canonical choice for
0 here).

The rational field Q can similarly be compared to the field of rational functions
C(z), the completions Q, (letting now the prime p vary) corresponding to the
fields of meromorphic functions near a variable point @ € C instead of the origin.

4.2. Totally Ramified Extensions
Let us recall the following well-known irreducibility result stated over Z, rather

than over Z.

Theorem 1 (Eisenstein). Ler f(X) € Z,[X] be a monic polynomial of degree
n > 1with f(X) = X" mod p, £(0) # 0 mod p> In other words,

fX)=X"+a,1 X"+ +a,
ord(@;)>1 (0<i<n-1), ord(a)=1.
Then f is irreducible in the rings Z,[X] and Q,[X].

Proor. Take a factorization f = g - kin Z,[X] — or in Q,[X]; this is the same
by an elementary lemma attributed to Gauss — say

g=bX'+.--+by, h=cnX"+---+co.
Hence
£4+m=n, blcm =1, b0C0=aO-

Since aq is not divisible by p?, p can divide only one of the two coefficients by
and co. Without loss of generality we can assume that p divides co but p does not
divide bo. Consider now all these polynomials mod p. By assumption f = X" is
a monomial, so that its factorization f = g - h must be a product of monomials
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and h = Co is a constant. Considering that bgc,, = 1, the only possibility now is
m = 0 and a trivial factorization. |

The preceding argument mod p can be made directly on the coefficients. Let
r > 1 be the smallest power of X in 4 having a coefficient not divisible by p:
p does not divide ¢, but p divides ¢,_3, ¢, 2, - - ., Co-

The coefficient of X" in the product of g and & is
ar = boc; + bicr—1 +brc, 2 + -+ - = bocr + p(-- ).

Since bgc, is not divisible by p, the preceding equality shows that p does not
divide a, either. By assumption, this shows that » = n. Summing up,

n=m+E€>m>r=n

implies m = n and £ = 0. The factorization g - & of f is necessarily trivial.

The same proof shows the following more general result.

Let A be a factorial ring with fraction field K, and 7 a prime of A. Any poly-
nomial

f=a,X"4+ a1 X" '+ 4ag € A[X] (ofdegreen >1)

with a, not divisible by w, a; divisible by w for 0 <i < n — 1, ag not divisible by
72, is irreducible in the rings K[X] and A[X).

Definition. A monic polynomial f(X) € Z,[X] of degree n > 1 satisfying the
conditions of the theorem, namely

f(X)=X"modp, f(0)= 0 modp?,

is called an Eisenstein polynomial.

Theorem 2. Let K be a finite, totally ramified extension of Qp. Then K is
generated by a root of an Eisenstein polynomial.

Proor. The maximal ideal P of the subring R = B<; of K is principal and gen-
erated by an element = with |7 |® = |p|. Since n = [K : Q,] = e by assumption,
the linearly independent powers (77*)o<; <. generate K and K = Q,[x]. The irre-
ducible polynomial of this element can be factored (in a Galois extension of Q)
containing K) as

foO=[lx-z)=x+ > ax £]]="
o O<i<e 4

The constant term has absolute value [I1, 77| = |7 |¢ = |p] (by (3.3) all automor-
phisms o are isometric), whereas the intermediate coefficients a; satisfy |a;| < 1
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(each is divisible by one 77 at least, and a; € Z,). Hence these intermediate
coefficients are in pZ, as required: f is an Eisenstein polynomial. ]

Examples. (1) In the field Q,, —1 is not a square (1.6.6), and we can construct the
quadratic extension K = Q,(i) = Q2[X1/(X? + 1). Since

G(+1)P2=i>4+2i+1=2i,

the element i + 1 is a square root of 2i. With the (unique) extension of the 2-adic
absolute value we have

i1 =Ril=21=4 li+1=,/L

so that i + 1 is a generator of the maximal ideal P of the maximal subring R of
the field K: P = (i + 1)R. The quadratic extension K is totally ramified of index
e = 2, hence wildly ramified. Let x =i+ 1.Thenx — 1 =i and (x — 1)*> = —1
shows that x is a root of the polynomial

X2 -2X+2=(X -1’ +1.

This is an Eisenstein polynomial (relative to the prime 2), and K = Q,(i) is also
obtained as a splitting field of this Eisenstein polynomial.

(2) For p # 2 let us add a primitive pth root of unity to Q. In other words, we
are adding to Q, arootof {? —1 =0 with £ % 1. Hence { is a root of

O,(X)=X"-D/X-D=XP"+... 4+ X+ 1

This is the pth cyclotomic polynomial: It is irreducible, since the change of variable
X — 1 =Y produces

O,X)=[Y+1)» —11/Y =Y?' 4+ p(--)+ p,

an Eisenstein polynomial. Hence we obtain an extension of Q,, of degree p — 1
prime to p. We shall prove that it is totally ramified. Since the powers ¢' are also
roots of the same equation when i is not a multiple of p, the powers ¢’ (1 <i <
p — 1) form a complete set of conjugates of ¢, and

o,Xx)= [] x-¢).

1<i<p-1

Obviously, ®,(1) =1+ ---+1 = p, so that

p=o,)= [] a-¢b.

1<i<p—1

But all absolute values |1 — ¢f| are equal by (3.3), since these elements are
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conjugate. The preceding inequality leads to

lpl= ] n-¢i=n-g¢r
I=izp-1
This proves that w = 1 — ¢ is a generator of P in R: The extension K = Q,(¢)
is ramified with degree n = e = p — 1, hence totally and tamely ramified.
In the course of the preceding deduction we have used the uniqueness of exten-
sion of valuations again. However, in the present context, it is obvious that

1= =01=0)A 4+

implies [1 — ¢¢] < |1 — ¢|. But the roles of ¢ and ¢’ may be reversed: ¢/ is also
a generator of the cyclic group u, of order p when 1 <i < p — 1, so that ¢ is
a power (¢%)/ of ¢! (take j such that ij = 1 mod p). This furnishes the equality
[1 —¢f] = |1 — ¢|. By the way, this proves that

1-¢f
1-¢
and 1 4 ¢ + --- + ¢! are units of the maximal subring R C K = Q,(¢).

These are the so-called cyclotomic units of K. Since ¢ = 1 mod P, we have
1+¢+---+¢ 1 =imod P.

|1+§+...+§i_1|= ’:1

4.3. Roots of Unity and Unramified Extensions

Let K be a(commutative) field of characteristic 0 and let ;£(K') be the multiplicative
group consisting of the roots of unity in K. Since every element of this group has
finite order (by definition), we can apply the Sylow decomposition theorem (or the
Chinese remainder theorem) and write a direct product w(K) = ppe(K)- p(p)(K),
where elements in pp~(K') have a pth power order and elements in u(,)(K) have
order prime to p. We shall prove that when K is a finite extension of Q,, the group
i py(K) is finite, and compute its order. (In the next section we show the finiteness
of the group pp»(K).)
In any valued field, all roots of unity are on the unit sphere:

t=1= " =1"=ll=1=[¢|=1
In the case of an ultrametric extension of Q,,
KDA=BgDM=B,
we see that u = u(K) C A* C K*. By reduction mod M,
£:A—> A/M =k

we obtain e(u) C k*. To explain the effect of reduction mod M on roots of unity
let us give a lemma.
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Proposition 1. Let K be any ultrametric extension of Q. Then
Hpe(K) = (K)N (1 + M).
Proor. First, if £ € w(K) has order a power of p, denote by £ = &(¢) € k its
reduction. Then
W =1=" =leck=i=1=t(cl+M,

since the field k has characteristic p. Conversely, if ¢ € 1 + M has order n > 1,
write { = 1 + & with 0 # |§] < 1. Then

1=(01+&§"=1+nf+---+&" =1+&n+éa)
implies n 4+ £« = 0, and
In| =S| < 8] <1

implies p | n. If n # p, we can replace ¢ by {?, which has order n/p > 1, and
iterate the procedure. Eventually, we see that n is a power of p. ]

Corollary 1. Therestriction of the reduction map & to u(K) has kernel pi p (K).
It is injective on p(,)(K): The distance between two distinct roots of unity of
order prime to p is 1. [

Corollary 2. If the residue degree f = f(K/Q)) is finite, then the group
wpy(K) of roots of unity having order prime to p in K is finite and

#(up(K) < pl —1. -

When K/Q), is finite, the next proposition shows that the order of p;)(K) is
exactly p/ — 1.

Proposition 2. Assume that the extension K of Q, is complete with residue
field k algebraic over F,. Then we have a split exact sequence

(1) > ppe(K) = w(K) > k* — (1).

Ifthe residue field is finite, say f = [k : F,] < 00, then the cyclic group jp)(K)
has order pf — 1.

Proor. Let £ : u — k> be the group homomorphism obtained by restriction
of the reduction (ring) homomorphism A — A/M. It will be enough to show
that £ induces an isomorphism () (K) = k. By the preceding proposition, the
reduction map induces an isomorphism of p(,)(K) into k. We have to prove that
it is surjective. Let & € k* and replace k by the finite field F (o) = F, so that
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« is a root of unity of order prime to p, dividing m = g — 1 = # (k). Choose
an element @ € A in the coset @ (mod M) and consider the solutions x of the
following problem:

X" —1=0withx=a (mod M) (ie., e(x) = a).

Since m is prime to p, and K is complete, Hensel’s lemma (1.4) can be applied,
and this furnishes an element x in K™ with x™ = 1; hence x € p,(K) and
e(x) =¢(a) = c.

This proves that — when the residue field & is algebraic — the restriction of the
reduction mod M is an isomorphism p(,)(K) gy n

Application. Let K be a locally compact (i.e., finite) extension of Q, and adopt
the usual notation corresponding to this case:

K DR=Bu(K)DP=nR,
k=R/P, f=I[k:F,], qg=p/ =#®).

Then we have canonical isomorphisms
np(K) x (1 + P) 5 RX (multiplication),
Hpy(K) 5 k* (reduction mod P).
With a choice of 7, we also have an isomorphism
7% x wp(K)x 1+ P) > K* (multiplication).

We infer that if p° is the highest power of p such that K has a root of unity of
order p°, then

1p=(K) = u(K) N (1+ P)has order p*.

The p-adic logarithm will furnish a way of analyzing more precisely the structure
of the abelian group 1 + P (cf. V4.5).

It is useful to relativize the definitions of ramification index and residue degree
as follows. Let K C L be two finite extensions of the p-adic field Q, and denote
by R the maximal subring of K, P its maximal ideal, kK = R/P (residue field of
K) as before. Introduce the maximal subring R; of L, the maximal ideal P; of
R;,and k; = R; /P; (residue field of L). We can define

e=e(L/K)=[IL"| : |[K™|],
f = f(L/K)=[kp : k] = dimg kp,
n=[L : K] =dimg(L).
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Then n = ef simply because this relation holds for both index and degree over
Q;:

n'=é€f (wheren' =[L:Q,],...)

n"=¢€"f" (wheren” =[K :Q,],...),

and we can divide these relations,

nl el f/
n = —,7 = ? . F,

Theorem. Let K C L be two finite extensions of Q. Then there is a unique

maximal intermediate extension K C K,, C L that is unramified over K.

Proor. If the residue field k; of L has order g;, we have seen that L* contains
a cyclic subgroup fi(p)(L) of order g; — 1 consisting of the roots of unity having
order prime to p in L. More precisely, if ¢ = #(k) and f = f(L/K) is the
residue degree of the extension, then q; = g7. The unramified extensions of
K contained in L correspond one-to-one to the extensions of K = F, in k. This
correspondance is order-preserving, hence the uniqueness of a maximal unramified
extension. Explicitly,

Ky = K(pp)(L)) = K(pg,—1) C L. [ ]

4.4. Ramification and Roots of Unity

Let us keep the notation introduced in the preceding section for the group of roots
of unity in the extension K of Q.

Theorem. Let { be a root of unity in the field K having order p* (¢ > 1).
Then |t — 1] = |p|V¥?) < 1, where o(p') = p'~}(p — 1) denotes the Euler
@-function.

Proor. (1) Caset = 1, the root ¢ has order p. In this case {? = 1 but ¢ # 1 and
¢ =1+& (§] < 1)is aroot of the polynomial (X? — 1)/(X — 1):

1 P_1 1
S et pgren) (xl <),

0
§ §

Hence
p(A+Ex)+£771 =0,
and since |§] < 1 and |x]| < 1, we have |1 + px| =1,

77! =1 = p(1 + px)l = |pl,
¢ — 1= 1§ = pl"*" ™ < 1.
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Since this absolute value occurs frequently in p-adic analysis, let us introduce a
special notation for it:

1 _ =
> =Pl = |plr T i=rp <1,
so that

=2, r,> % (p odd prime ).

=

r, =

(2) General case: The order of ¢ is precisely p**! (z +1 > 1). Then ¢” has
order p, and by the special case already treated,

g7 =1 =r, < 1.
Let us write { = 1+ 5 with || < 1, so that
g7 —1=(1+n" —1=n"+pny
with |y| < 1. Since

lpnyl < Ipl <rp,=11=2¢7],

14

we see thatr, = |1 — ¢ = |n”'| and finally |n| = r,l,/ " as expected. »

Location of the 2"th roots of unity on the unit sphere

The appearance of the Euler.¢-function is even more natural if we proceed as in
(4.2). Let us give this deduction as a reminder of the properties of the cyclotomic
polynomials. Recall that

Xr -1
X -1

®,(X) =

denotes the pth cyclotomic polynomial (of degree p — 1).



4. Structure of p-adic Fields 109

Location of the p™th roots of unity on the unit sphere (p = 3 and 5)

Then, it is well known that the p’th cylotomic polynomial (of degree ¢(p') =
p~1(p — 1)) is given by

X -1
xXrt—1

7—1

=xPVr L xPT .

D (X)) =D, (XP ) =

If ¢ is a root of unity of order p’, then the other roots of unity having the same
order are the powers ¢/ of ¢, where the integer j is prime to p, hence the preceding
cyclotomic polynomial has a factorization
®,(X) = XPVPT o xPT 4
= J] &-¢h
1=j<p'-1,ptj

with a product restricted to the integers j prime to p: There are ¢(p") linear factors
in this product. On the other hand, substituting X = 1, we get

=[] a-¢H.

1=jsp'~1,pij

But =1 (mod P)and

1-¢7 )
1_‘; =1+¢+--+¢ =) (mod P).
When p is prime to j, we infer |1 — ¢/| = |1 — ¢|, and all factors in the above

product have the same absolute value,

Pl =11 =", |g — 1] = |p|/##".
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Corollary 1. Ifthe ramificationindex e = e(K) s finite, then the group pp~(K)
of roots of unity in K having order a power of p is finite. More precisely,

#(upe(KD) < T

Prook. In general, if the field K has a root of order p’, the preceding theorem
shows that the ramification index e is a multiple of ¢(p*) = p* — p'~!. Hence

p(l—1/p)<e.
This gives a bound for the order p* < ep/(p — 1), and

#upe(K) <~ .

Observe that the result of this corollary is valid for any valued field X of char-
acteristic 0, provided that its absolute value extends the p-adic one on Q.
In particular, if e = 1, we have # (1 ,<(K)) < p/(p — 1),

#(upe(K) = 1if p > 3,

whereas # (112 (K)) < 2 if p = 2. This proves again a result obtained in (1.6.7).

Corollary 2. The group of roots of unity in Q) is precisely

w(Qp) = py(Qp) = up—1 p odd prime,
1(Q2) = u2(Q2) = {£1}. ]

Example. Let K be the extension generated over Q, by a primitive pth root of
unity and K’ the extension of K generated by a primitive root of unity of order pZ.
Both extensions are totally ramified. The degrees of these cyclotomic extensions
are determined by the previous theory, and a diagram summarizes the situation.

K' = Qp({pZ)
degree p | wild
K = Qp({p)
degree p — 1 I tame
Q,
The element 7w = ¢, — 1 has absolute value || = |p|!/(P~D generating the group
of values [K*|: P =7 R C R C K = Q,(Z,). Similarly, the element 7" = {2 —1
has absolute value |7’| = | p|!/P(P~D generating the group of values |K’*|:

P=aRCR CcK = Q,(¢p2).
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4.5. Example 1: The Field of Gaussian 2-adic Numbers

The ring of Gaussian integers Z[i] is a square lattice generated by 1 and i = +/—1
in the complex field:

Zli)=Z ®iZ C C.

It is known that this ring is a principal ideal domain. We can also embed it in an
algebraic extension of the 2-adic field Q,. Since we have seen that —1 has no root
in Q,, the extension K = Q,(i) has degree 2 over Q,. Observe that (1 +i)? = 2i;
hence |1 + i] = |2|1/2, and this extension is totally and wildly ramified: e = 2.
The general notation gives in this case

K=Q(i)D R=2Z,Ji]> P=(1+Ii)R.
‘We shall consider the generator
m=i—1=i(1+1i)
of the maximal ideal P,
7% ==2i, |n|=]2|"2
Since the residue field of X is
k=R/P =F,,
we can consider representations with “digits” in the representative system
§=1{0,1} C Q C Q).
Expansions in base b = 7 of nonzero elements of K = Q,(i) have the form:
Yispaib @ €S, vel, a #0),
while elements of Z,[i] have expansions
ZizO a;b*, (a; € S).

A parametrization of Z,[i] is given by the set of binary sequences, hence a bijective
map

®: SN > Lolil, (@) Y ab,
or equivalently,

®: PN) > Zo[i], J+> Zb".
J

Proposition. The elements of Z»[i] admitting a finite expansion
Zog <naib', (where a; € S, n € N) in base b are precisely the Gaussian
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integers, and we have
Z[i] = {ij : J afinite subset ofN] .
J

Proor. Since Z[i]is aring containing 1 and b, it certainly contains all polynomials
in b. We have to prove the converse inclusion, namely:

Every Gaussian integer admits a finite representation in base b.

Let F = ®(S™) c Z[i] be the image of the finite binary sequences. It will
be enough to prove that this image is a subgroup of Z[i], since it contains the
generators 1 and b. In other words, we have to prove

F+FCFand -FCF.

Starting with
b=i—-1, b+1=i,.
b? = —~2i, b* = —4,
we infer successively
bb+1)=2,

PPb+1)+1=3,
P+’ +1)+1=3-4=-1
We have obtained the expansions
2=0"+b,
—1=1+b>+b+b",
and more generally,
2bi — bi+2 +bi+3
__bi — bi _I__bi+2 +bi+3 +bi+4.

These expansions give reduction algorithms to prove that for finite subsets J and
K of N,
D b+ Z b* e F,
7 K
- Z b € F. [
J

4.6. Example 2: The Hexagonal Field of 3-adic Numbers

Here, we consider the quadratic extension K = Qj3(+/—3) of the field Q3 of 3-
adic numbers. Since it is obtained by adjunction of the root of a generator of the
maximal ideal 3Z3 of Z3, it is totally and tamely ramified with index e = 2. This
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quadratic extension contains ¢ = (1 4+ 4/—3)/2, which is a root of unity of order
6: One can check in succession

;2:;.._1, ;3,:;2_;:(;—1)—;:_1

Also observe that if we add a root 7 of unity of order 3 to Qs, we obtain a totally
ramified extension of degree 2, for which n — 1 is a generator of the maximal ideal.
In fact, we can take 1 = ¢2 and check (with the 3-adic absolute value)

(=17 =¢*-22+1=~¢ =2¢ = D+1=31-¢) = -3¢
and since n + 1 = {2 + 1 = ¢, it follows that | + 1| = 1 and
P =17 =In =12 =[-3¢%, In—1=B3"?=J1/3.

We shall now take the generator b = +/—3 and consider expansions Y _; a;b’ having
coefficients a; in a fixed set of representatives (containing 0) of the residue field

k=R/P =R/bR =1Z3/3Zs =F;.

We could take {0, 1, —1} as a set of representatives. However, we shall take § =
{0, 1, ¢}: Indeed by definition 2¢{ = 1 + b, so that

—1=-204b=0+b-3.=C+b+¢b*>=¢ (modb)
and we can replace the representative —1 by ¢. It is easy to check that

2t =1+b,
2=¢+b+b* 42,
1+¢ =¢b+ b + b + ¢bh.

These relations show how to compute sums. Finally, a picture shows(!) how the
image of the finite ternary sequences

F=oE™) cz[¢]
fills in the whole lattice Z[¢].

Finite sums Y o; 3» a;b*
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As in the preceding section, we have obtained unique representations for
the elements of the hexagonal lattice Z[{], which is the ring of integers in

=)

Proposition. Let b = /-3, { = (1 4+ +/-3)/2,and § = {0, 1, ¢}. Then the
finite sums )_, a jbj (aj € S) fill up the hexagonal lattice Z[¢] in C (or in
K = Q3(v—3)). u

4.7. Example 3: A Composite of Totally Ramified Extensions

Let us consider the following quadratic extensions of Qs:
Ki=Q:(vV=3), K»=Q:(~3).

They are both totally (tamely) ramified, since |+/—3| = |v/3] = |3]/2. Hence
n=-e=2, f = 1forboth. Let K = K; - K, denote the composite (in a common
extension). Obviously, V=1 =V/=3 /ﬁ € K, and the cyclic group of roots of
unity in K contains 4. But the residue field of Qs is F3 = Z3/3Z5; it contains
only the roots of unity 1. Hence the residue field of K contains the quadratic
extension Fyg and its cyclic group of units j.3. On the other hand, as we have seen
in the preceding example,

K1 = Q3(v=3) D Q(/-3) D Z[¢]

where ¢ = £g = (1 ++/—3)/2 is aroot of unity of order 6. Altogether, K contains
g - 3 = U4 (Chinese remainder theorem). Both the residue degree and the
ramification index of K must be greater than 1. The only possibility is e(K) = 2,
f(K)=2 (and n(K) = 4).

Q:(v/3,V/=3) = Q3(+/3, /1)

/ N
K K>

N /!
Qs

It is interesting to observe that although both K are totally ramified over Qs, their
composite K is not totally ramified over Q3. In fact, take an odd prime p and
a positive integer a prime to p that is not a square mod p. Then the quadratic
extensions Q,(,/p) and Q,(,/ap) are nonisomorphic and totally ramified over
Q,. But they generate

Qp(x/i’_’ ﬁ) = Qp(«/l_” «/6_1)7

which contains the unramified quadratic extension Q,(/a) of Q,. The image of
J/a in the residue field of Q,(./a) is a square root of a mod p. Hence f > 2, and
since ef =n =2, wehavee = 1.
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Appendix to Chapter 2: Classification of Locally
Compact Fields

In this appendix we shall give an approach to the classification of locally compact
(commutative) fields of characteristic 0. This contains our main case of interest,
namely that of ultrametric fields. For this purpose we shall take for granted the
existence of a Haar measure on such a field: On any locally compact group G
there exists a positive Radon measure ¢ on G — or equivalently a regular Borel
measure i on G — that is left invariant. Thus we view this measure either as a
(1) positive continuous linear functional

p:C(GR) >R, fru(f)

on the space of compactly supported continuous functions on G, invariant under
left translations

w(f) = [G Fe)dpux) = fG Flgx)dux) (g € G),

orasa
(2) o -additive function on a suitable o -algebra of subsets containing the relatively
compact open sets U of G. We also write (U for the measure of the subset U.

If U is arelatively compact open subset of K, we denote by vol (U) the measure
of U. By left invariance of this measure, we have vol (U) = vol(gU) for any
g € G. The Radon measure can be extended as a linear form on a vector space of
functions containing the characteristic functions of relatively compact open sets
U C G, and if we denote by ¢y the characteristic function of U, the two points of
views are linked by the relation vol (U) = u(gpy). By abuse of notation, we shall
also write vol (U) = u(U).

The uniqueness of Haar measures will play an essential role and will be admitted
here without proof:

Let 1t and v be two Haar measures on a locally compact group G;
then there exists a positive constant o such that . = av.

For a general classification of locally compact fields, not necessarily commu-
tative and in any characteristic, the reader can consult the references given at the
end of this volume.

A.l. Haar Measures

Let X be alocally compact commutative field (the general definition of topological
fields was given in (1.3.7)) and let us choose and fix a Haar measure ¢ on the additive
group K. By invariance, we have vol (U) = vol (U +a) forany a € K.

For any automorphism « of the field K, the invariant measure «(w) defined
by a(u)(U) = p(aU) (for all U in the suitable o-algebra) is proportional to
W, say a(u) = m(e) - 1. Since two Haar measures are proportional, this scalar
m(c) is independent of the choice of Haar measure. Now take in particular for
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automorphism « an automorphism of the form « : x +> ax wherea #0 ¢ K. In
this case we shall simply denote by m(a) the resulting scalar. By definition

vol(aU) =m(a) - vol(U) (a € K*).
The associativity of multiplication in K gives immediately
m(ab) = m(@m() (a,be K*).

Hence m is a homomorphism K* — (R*).o, m(1) = 1 and m(a~!) = m(a)~'.
This homomorphism m is the modulus of K. It is conventionally extended by
m(0) = 0. We shall eventually show that it is a generalized absolute value on K.

A.2. Continuity of the Modulus

Take a compact neighborhood V of Oin K and choosea € K. Since aV is compact
and the Haar measure is regular, for each £ > 0 we can find an openset U D aV
with

vol(U) < vol(aV) + e.

By continuity of multiplication in K, there is a neighborhood W of a such that
UDWV.Thusforx e W

vol(xV) < vol(U) < vol(aV) + &,
m(x) < m(a)+¢e/vol (V).

Since m(x) > 0 and m(0) = O, this inequality proves that m is continuous at the
point 0. It also proves that m is upper semicontinuous at each pointa € K. But for
a # 0 we can write m(a) = 1/m(a™"), whence m is also lower semicontinuous at
such points. This proves the continuity of the modulus on K.

A.3. Closed Balls are Compact

Forr > O we denote by B, = {x € K : m(x) < r} aclosed ball in K. Fix again
a compact neighborhood V of 0 in K. We shall prove

B, is contained in a compact set of the form yV.

As a first step, we construct a sequence (7,),>0 C V with m, — 0. Since
0-v={0}cV,

there is a neighborhood U of 0 in K for which we still have UV C V (take Vo
an open neighborhood of 0 in V and choose U such that UV is contained in V).
We can find an element 7 € U NV with0 < m(n) < 1. Hencen2 ¢ UV C V,
73 =m-n% e UV C V, and by induction, " € V (n > 1). But V is compact, so
that the sequence (") must have a cluster value 7’ in V. By continuity of m, m(z”)
must be a cluster value of the sequence (m(x")). Since m(n") = m(r)* — 0,
the only possibility is m(nr’) = 0 and =’ = 0. This proves that the sequence
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(7") has only one cluster value in the compact set V: It must converge, and
w"® — 0. Finally, observe that since w € U and UV C V,we have 7V C V and
V C n~1V. We see by induction that the sequence of compact sets 7~V increases
monotonically.

Second step: We show that B, C 7~V for some large N > 1. Since we already
know that B, is closed and # ~VV is compact, this will indeed show that B, is
compact. Let a € B,. By the first part 7”a — 0, and there is a first integer n such
that 7"a € V.Ifa ¢ V, this first positive 7 is such that 7”a € V but 7" la ¢ V.
In other words, #"a € V — aV. The set V — wV is relatively compact (in V
compact) and

0¢Q:=V —aV.
We can define ' = infq m(x) > 0 and choose N > 1 such that m(mw)Y - r < r'.
Hence

m@V . r <r <m@"a) = m@)Y'm@) < mx)'r (a € B,).

This shows that m()¥ < m(7)" and hence n < N. Thus we have a € 7"V C
77NV forall a € B,: The ball B, is contained in the compact set 7~V V. ]

Corollary 1. The balls B, (r > 0) make up a fundamental system of neighbor-
hoods of 0 in K. In particular,

a"—>0inK < m@)<1.

Proor. If V is any compact neighborhood of O in K, put r = maxy m(x) in
order to have V C B,. Since 0 is not in the closure of B, — V, the minimum r’
of m(x) on the closure Q of B, — V is positive; for 0 < r” < r’ it is clear that
B.»CV. ]

Corollary 2. Any discrete subfield of K is finite.

Prook. Let F be a discrete subfield of K. Choose any a € K withm(a) > 1. Then
we have m(a™) = m(a)™ — 0, whence a™ — 0, and since F is discrete it
shows a € F. This proves F C B). But we know that F is closed (1.3.2). Thus F
is compact and discrete, hence finite. n

Remark. Ifthe field K has characteristic 0 but is not assumed to be commutative,
we see here that its center is a locally compact nondiscrete (commutative) field.
Indeed, this center is closed and contains the rational field Q by assumption, hence
is not finite. It is locally compact and not discrete by Corollary 2.
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A.4. The Modulus is a Strict Homomorphism

We claim that I' = m(K*) is closed in R.g and m : K* — T is an open map.
For r > 0, the compact set m(B,) is simply m(B,) = {0} U (' N [0, r]). In
particular, if 0 < ¢ < r < oc, I' N [g, r] is closed in R..g. Since the interiors of
the intervals [¢, r] cover R, we can conclude that I is closed in this topological
space. If V is a neighborhood of 1 in K>, we have now to prove that m(V) is
a neighborhood of 1 in T'. It is enough to show that for every sequence (y,) in
I' such that y,, — 1, there is a subsequence y,, in m(V) (a subset A is not a
neighborhood of 1 in I when there is a sequence 3, — 1in " and y, & A). Let
us write ¥, = m(x,) for some elements x, € V. Since V is compact, the sequence
(x,) must have — at least — one cluster point x € V. By continuity of m, m(x)
must be a cluster point of m(x,) = ¥, — 1. This proves m(x) = 1, namely
x € N :=ker(m) C K*. But VN is a neighborhood of x € N. By definition of a
cluster point, for each ng there must be an integer n > no with x, € VN and hence
¥a = m(x,) € m(VN) = m(V). This proves the existence of the subsequence of
(y») in m(V) as desired.

Corollary. If the field K is locally compact and nondiscrete, the subgroup
m(K*) is either Ruq or of the form {6" : n € Z} = 6% for some 0 < 6 < 1.
When C = max {m(1 + x) : x € By} = 1, the second case occurs.

Proor. Since 1+ B; is aneighborhood of 1 in K, its image must be a neighborhood
of 1 in I'. When C = 1, this neighborhood is contained in (0, 1] and its image
under ¢ +> ¢~ ! is a neighborhood of 1 in I" contained in [1, 00). The intersection of
these two neighborhoods of 1 in I' is reduced to the single point {1}, thus proving
that I' is discrete in this case. ]

In an obvious sense, the modulus m defines the topology of K: Any neighbor-
hood of an element x € K has the form x + V for some neighborhood V of 0 in
K, and m(V) contains a neighborhood of 0 € I', namely,

thereisane > Osuchthat m(x)<es=—=x €V,

which implies that the given neighborhood x + V contains x + B..

A.5. Classification

Let us recall the result obtained above (Corollary 2 in A.3): In a nondiscrete locally
compact field, any discrete subfield is finite. Now the discussion of cases can be
made according to the value of the constant

C =max m(1+x)>1.
x€B)

It is obvious that

m(a + b) < C - max (m(a), m(b)),
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since if 0 # m(a) > m(b), we can divide by a so that x = b/a € B; and
m(l+b/a) < C, m(a+b) < C-m(a) = C-max (m(a), m(b)). Hence m defines
a generalized absolute value (II.2.2) on K. In every case, a suitable power of C
will be less than or equal to 2, and a power of m is a metric defining the topology
of K. This shows that any locally compact field is metrizable.

First case: C > 1. In this case, the field X is not ultrametric; hence it is automat-
ically of characteristic 0 and contains the field Q. If K is not discrete, Q is not
discrete either (because infinite, by the result just recalled), and the metric induced
by K on Q must be equivalent to the usual Archimedean metric. The completion
R of Q for this metric must also be contained in K. Hence K is a real vector space.
Being locally compact, it must be finite-dimensional. One can show that the only
possible cases are K = R, C (or H: Hamilton quaternions if it is not commutative).

Second case: C = 1. Then K isultrametric. If we assume K to be of characteristic
0, it contains the field Q, and as before, the induced metric on Q is not trivial. By
the classification of ultrametric absolute values on Q we infer that K must induce a
p-adic metric on Q and contain a completion Q,,. Since K is assumed to be locally
compact, its degree over Q,, is finite (II.3.2). We leave out the positive characteristic
case (interested readers can find a complete discussion in the specific references
given at the end of this book).

It is easy to see that contrary to the real case, there are extensions of Q, of
arbitrarily large degree (cf. (I11.1.3)).

A.6. Finite-Dimensional Topological Vector Spaces

In order to approach the structure of locally compact fields (having no a priori
norm), we have to give a few general definitions and results concerning topologi-
cal vector spaces. Instead of limiting ourselves to the field of scalars Q,, let us treat
the case of arbitrary valued fields: This general context has the advantage of em-
phasizing the individual properties needed to establish each result. Thus we shall
consider in this section that K is any ultrametric valued field (I1.1.3), nondiscrete:
|K*| # {1}. In particular, K is a metric space.

Definition. A topological vector space over K is a vector space V (over K)
equipped with a Hausdorff topology for which
the additive group V is a topological group,

the multiplication (a,v) +— a - v : K x V — V is continuous.

Let U be a neighborhood of 0 in such a topological vector space. By continuity
of multiplication at (0, 0), there is £ > 0 and a neighborhood Uy C U of 0 such
that

Uy={av:aekK, laj<e, velp}CU.
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This neighborhood U; C U of 0 has the property

acek, lal <1 = alU; C U;.

Definition. A nonempty subset U in a topological vector space V is balanced
when

aekK, la|<1=aUcCU.

The balanced neighborhoods of 0 in a topological vector space play therole of the
balls in normed spaces. We have just proved that in a topological vector space
there is a fundamental system of neighborhoods of 0 consisting of balanced
ones.

Theorem 1. A one-dimensional topological vector space V over K is isomor-
phic as a topological vector space to K. More precisely, foreachQ # v € V,
the map a +— av : K — V is a bijective linear homeomorphism.

Proor. Fix 0 # v € V. The one-to-one linear mapa + av : K — Vis
continuous, since V is a topological vector space over K. We have to show the
continuity of the inverse, namely

V & > 03 U neighborhood of 0 in V such thatav € U = |a| < ¢.

We proceed as follows. If £ > 0 is chosen, we take b € K with0 < |b] < e and a
balanced neighborhood U of 0 in V such that U ¥ bv # 0 (this is possible, since
we assume that V is Hausdorff). Now, if av € U, then

b b
bv=—--aa ¢U = —l>1=>|a|<|b|§8. ]
a

S—— U balanced
eU

Lemma. A linear form ¢ : V — K on a topological vector space V is contin-
uous precisely when its kernel is closed in V.

Proor. If the linear form ¢ is continuous, its kernel is closed. Conversely, assume
that the kernel of ¢ is closed. We may assume ¢ # 0 and take vg € V with
¢(vg) # 0. Replace vy by vo/¢@(vp), so that ¢(vg) = 1. The linear variety

{o =1} =vy + kero

is closed and does not contain the origin. Hence there is a balanced neighborhood
U of 0 that does not meet this closed subset:

(vo +kerp)NU = Q.
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I claim that ¢(U) C B.j, so that ¢ is bounded, continuous at the origin, and

continuous. Now, if v € U and ¢(v) # 0, consider the scalar a = 1/¢(v). We have

plav)=1=av¢ U = |a|>1.
U balanced

This proves |¢(v)| < 1, as expected. [ |
Theorem 2. Assume that the field K is complete. Then a finite-dimensional
topological vector space V over K is isomorphic as a topological vector space

to a Cartesian product K®. More precisely, for any basis (e;) of V, the linear
map

(A) > ine,- K45V
i
is an isomorphism of topological vector spaces.

Proor. We proceed by induction on the dimension of the vector space V: The
dimension-1 case is covered by the first theorem. Assume that the statement is true
up todimensiond — 1. If dimg V = d, selectabasis ey, . . ., €5 of V and consider
the linear span W of the first d — 1 e;. By the induction assumption, the space W
is isomorphic to K?~! and hence complete and closed in V. The linear form

(p:ZAieiH)»d,V—aK
i

is continuous, since its kernel ker(¢) = W is closed. The one-to-one linear map
K=K 'x K3 WxKeg By
is continuous. Its inverse is
x> (x —p(x)eq , p(x)es)

and hence is also continuous. ]

A.7. Locally Compact Vector Spaces Revisited

We have seen in (3.2) that locally compact normed spaces V over Q, are finite-
dimensional. Using the existence of Haar measures, we can now prove the same
statement without the assumption that the topology is derived from a norm.

Theorem. Any locally compact vector space over Q,, is finite-dimensional.

Proor (WELL). The proof is based on (A.6): A finite-dimensional subspace of a
locally compact vector space V over Q,, is isomorphic as a topological vector space
to a finite product Qf,, hence is complete, and hence is closed in V and locally
compact. Let now V be any locally compact vector space over Q,,. In particular,
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it is a locally compact abelian group, and we can choose a Haar measure @ on V.
We can define a modulus homomorphism

my : Q; = Roo

as for locally compact fields (A.1). For 0 # a € Q,, the map U + vol(aU) is
also a Haar measure on V, and by uniqueness, there is a unique positive scalar
my(a) > 0 such that vol(@U) = my(a) - vol (U) (for all relatively compact
open sets U C V). For example, If W = Qf, has dimension d over Q,, then

mw(a) = |aj?. Since p" — 0in Q,, we have
my(p)" = my(p") — 0,

and this proves my(p) < 1 for all locally compact Q,-vector spaces V. Select
now a d-dimensional vector subspace W of V. Integrating in succession over W
and F=V/W,

fro / dur(y) f £+ y)dpw ),
F w

we get an invariant Radon measure on V, which we may take for py (or we can
change the choice of Haar measure on F' to obtain this equality). Hence

/ fx)duy(x) = / dup(y)/ fx+ y)dpw(x)
v F w
for all continuous functions f with compact support on G. We see that

my(a) = my(a) - mp(a) = la|* - mp(a),
my(p) = |pI® - mp(p) < |pl*,
logmv(p) < d -log|pl,

and by division by log |p| < 0,

d < logmy(p)/log|pl.

This shows that the dimension d of finite-dimensional subspaces of V is bounded,
and this implies that V itself is finite-dimensional. [

A.8. Final Comments on Regularity of Haar Measures

Let us consider the Haar measure on the locally compact group G = R x Ry
where the first copy of R has the usual topology and the second copy the discrete
topology. The usual Lebesgue measure py, is a Haar measure on R, and we can
take for Haar measure of R, the counting measure

na(A) =#(A) (A CRy).
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The product of these two Haar measures is a Haar measure on the product R x R;.
The subset A = {0} x Ry has the discrete topology, and

u(A) = UongA w(U) = oo,

simply since each openset U O A contains an uncountable family of open intervals
of positive length. However, acompactset K C A is finite (because discrete), hence
u(K) = 0, and supg compact c4 #(K) = 0 is different from p(A) = oo. In general,
inner regularity holds only for subsets having 14(A) < oo (and in a suitable algebra
containing the Borel subsets). This pathology disappears in locally compact spaces
that are countable at infinity. This last property holds for all locally compact fields:
we have seen this in characteristic zero in (A.5).

EXERCISES FOR CHAPTER 2

1. Let X be an ultrametric space. Show that the spheres of radius r > 0 in X are the
complements of one open ball of maximal radius r in a closed ball of radius r.

2. Let X be an ultrametric space.

(a) Fix a positive radius r > 0. Show that the condition d(x, y) < r is an equivalence
relation x ~ y between elements of X. The equivalence classes are the closed
balls of radius r, and the quotient space is the uniformly discrete metric space of
closed balls of fixed radius r (the inequality d(x, y) < r also defines an equivalence
relation, for which the equivalence classes are the open balls of radius ).

(b) Fixa € X and assume that {d(x, a) : x € X}is densein R>g. Show that the ordered

set of closed balls containing the point a (with respect to inclusion) is isomorphic
to the half line [0, c0) C R.
Assume that for each x € X, {d(x, y) : y € X} is dense in R>¢. Define Ty as the
ordered set of closed balls in X (with respect to inclusion). Prove that this is a tree.
Recall that we denote by §(A) the diameter of a bounded subset of a metric space,
so that  B<, = r. We have two natural maps

(c

~—

XxRsp — Ty (a,r) = B =B(a)
16 18
R>o 8B)=r

For r > 0, the fiber §71(r) is the uniformly discrete metric space consisting of
closed balls of fixed radius r. If X is separable, this fiber is countable. For any subset
A C X define Tx(A) as the subset consisting of the (dressed) balls B meeting A.
Prove that this is a subtree of Tx. Take for A successively sets containing only one,
two, or three elements: What are the possible configurations?

(d) The metric space Z, can be embedded in an ultrametric space X satisfying the
condition required in (c) (cf. Chapter III). Sketch Tx(Z) and show that the picture
does not depend on the choice of ambient space X.

3. Let | .| be an absolute value on a field K.
(a) Prove the triangle inequality

x+y* <xI*+IyI* ,yeK, 0<ax<l).
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(b) When the absolute value is ultrametric, prove the same result for all « > 0.
(©Ifa=ao+ Y 1<j<n @ and |a;] < |a| for 1 <i < n, prove ja| = maxo<i<n la;|.

. As corollary of the proof of Theorem 1 of (II.1.4) we see that (with the notation of the

theorem): If A/£A is finite, then A/§™ A is also finite and #(A/£"A) = [#(A/£A)]".
More generally, show that in any integral domain A,

#(A/(ab)) =#(A/(a)) - #(A/ (b))

ifab # 0. (Hint. Observe that multiplication by b on (a) = aA leads to an isomorphism
of the A-modules A/(a) and Ab/(ab). Then use the isomorphism A/abA = A/aA x
aA/abA.)

. (@) Let P(X) = X2 —2X + 1 € Z[X]. This polynomial has the root x = 1. Find

explicitly the sequence of iterates given by Newton’s method starting at an element
x # 1: Does this sequence converge in Qp?
(b) Let A be the maximal subring of an ultrametric field asin (1.4), andlet P(X) € A[X]
be a polynomial having a simple root x = §.
Show that for any x in the open ball of center £ and radius | P/(§)| # 0 Newton’s
method furnishes a sequence of iterates that converges to .

. Prove directly the following: If @, — 0 and b, — O in an ultrametric field, then

Cn = ZOsisn aiby—i — 0and

Zan-an =Zc,,.

n>0 n>0 n=>0
[Hint. The assumption implies that the two sequences are bounded, say
lail < C, |bj] < C foralli >0,
and for each given ¢ > 0 there exists N = N, such that
lail <&, |bil<e (@ =N).

Fori + j > 2N, we have |a;bj| < £C, since one index at least is greater or equal to
N.]

. Show that two norms on a vector space define the same topology when there exist two

constants ¢, C such that
clxll < lix|I" < Cllx]l.

(The unit ball for one norm must contain a ball for the other norm; observe that this
condition is independent from the ultrametricity.)

. Let K’/K be a finite extension of ultrametric fields. Show directly that the residue field

k' of K’ has finite degree over the residue field of K and
f=k:kl<n=[K:K]

(cf. 4.1 and 4.3).

. Let K be a valued field that is an extension of Qp, and let £ € K. Suppose that there

exist integers ao(j), @1(j), - - -, an-1(j) € Z (j > 1) such that

IE" + an_1(NE™ T+ +ag(NI = 0 (j — 00).
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(a) Show that |§| < 1. (If you cannot, glimpse at the proof of Proposition 3 in (111.2.1)).
(b) Prove that £ is algebraic of degree less than or equal to n over Q.
(Hint. Consider the nonempty sets X,, C (Z/p™Z)" consisting of the families
(ap mod p™, ..., a,—1 mod p™) such that |£" +a,_ 1" +--- +aol < |p™| =
1/p™. Then any element of I(in X # O gives a polynomial dependence relation

for £ over Qp.)

10. Let s < ¢ and ¢ a root of unity of order p*, ¢’ a root of unity of order p, both in Q‘I‘,.
What is the distance | — ¢'|?

11. Let K be an ultrametric extension of Q. Prove that if the group x(K) of roots of unity
in K is infinite, then this field X is not locally compact. (Hint. Can you find a convergent
subsequence?)

12. Show that the quadratic extensions Qs5(~/2) and Qs (x/?—:) of Qs in Q‘s‘ coincide, by two
methods:
(a) Use the fact that 6 has a square root in Qs.
(b) X2 —2 and X2 — 3 are irreducible over Fs (hence 174 C Qs(+/2), u2a C Qs(+v/3)).

13. Consider the following quadratic extensions of Q7 in Qf

Q:(V=1), Q1(v2), Q3(v3), Q3(v5), Q1(v/6).

By (1.6.6), they cannot be distinct: Give identities. What is the degree of Q7(v2,/3)
over Q7? (What is the degree of Q(+/2, +/3) over Q?)

EXERCISES FOR APPENDIX TO CHAPTER 2

1. Let U be a neighborhood of 0 in a topological vector space V over a valued field K.
Show that
AU
Y SNES

is a balanced neighborhood of 0 contained in U'.

2. Let K be a nondiscrete ultrametric field. Assume that X is not complete and consider
the topological vector space K over K.Ifa, b € K are linearly independent over K, the
two-dimensional subspace Ka + Kb is not isomorphic, as a topological vector space,
to K2. (Hint. The one-dimensional subspaces of K2 are not dense in this space!)

3. Let K be a finite extension of Qj (hence locally compact). A character of K is a

continuous homomorphism x : K — U(1) ={z € C* : |z] = 1}.

(a) Prove that such a character x is locally constant and takes its values in u poo.

(b) If y is a fixed nontrivial character, consider the characters ¥, (x) = ¥(ax) (a € K).
Show that @ —> ¥, is an injective homomorphism f : K — K* where K7 is the
(multiplicative) group of characters of K. (For a nontrivial character on K, one can
take the composite of the trace Tk, » and the Tate homomorphism 7 (1.5.4).)

(c) Define a topology on K* having for neighborhoods of a given character x the
subsets

Ve aGO) = (X' € K% 1 |x/(x) — x(®)| < ¢}

(e > 0, A acompact subset of K). Show that the above-defined homomorphism
f :a — Y, is continuous.
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(d) Show that the inverse homomorphism ¥, > a is continuous on f(K). Conclude
that this image is locally compact, and hence closed in K%. (Hint. Use Corollary 1
in (1.3.2).)

Comment. For any locally compact abelian group G, one can define its Pontryagin
dual
Gt = {x : G = U(1) a continuous homomorphism}

and show that G¥ is again a locally compact abelian group with (G*)* canonically
isomorphic to G. When G = K is the additive group of a locally compact field, one can
show (as above) that K and K are isomorphic. This generalizes the known situation
for the field R.
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Construction of Universal
p-adic Fields

In order to be able to define K-valued functions by means of series (mainly power
series), we have to assume that K is complete. It turns out that the algebraic
closure Q7 is not complete, so we shall consider its completion C ,: This field turns
out to be algebraically closed and is a natural domain for the study of “analytic
functions.” However, this field is not spherically complete (2.4), and spherical
completeness is an indispensable condition for the validity of the analogue of the
Hahn-Banach theorem (Ingleton’s theorem (IV.4.7); spherical completeness also
appears in (V1.3.6)). This is a reason for enlarging Q¢ in a more radical way than
justcompletion, and we shall construct a spherically complete, algebraically closed
field 2, (containing Q, and Cp) having still another convenient property, namely
|S2;| = Rxo. This ensures that all spheres of positive radius in 2, are nonempty:
B_,(a) # B<,(a)forallr > 0.Infact, we shall define the big ultrametric extension
2, first — using an ultraproduct — and prove all its properties (this method is
due to B. Diarra) and then define C,, as the topological closure of Q/, in Cp. This
simplifies the proof that C,, is algebraically closed. By a universal p-adic field we
mean a complete, algebraically closed extension of Q,,.
In this chapter Q, denotes a fixed algebraic closure of Q.

1. The Algebraic Closure Q;‘, of Qp

1.1. Extension of the Absolute Value

There is a canonical absolute value on Q;‘,‘ Indeed, the absolute value of Q,, extends
uniquely to Q7, as the following observation shows. If Ky and K, are two finite
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extensions of Q, in Q?, the two extensions (I1.3.4) of the absolute value of Q, to
these fields must agree on their intersection K; N K3 by uniqueness (I1.3.3). Hence
all the extensions of the absolute value of Q,, to finite subextensions of Qf, define
a unique extension of this absolute value to Q7. As a consequence, this algebraic
closure is an ultrametric field, and we set

A? := the maximal subring of Q}, : |x| < 1,
M? := the maximal ideal of A? : |x| < 1,

k® := A®/M* the residue field of Q.

‘We shall see below that Q¢ is not complete, hence not locally compact. Moreover,
the residue field k7 is infinite, and I(Q‘l’,)x | is a dense subgroup of R..o. Hence none
of the conditions of (I1.3.5) for local compactness are satisfied!

1.2.  Maximal Unramified Subextension

We have seen in (I1.4.3) that every finite extension K of Q, contains a maximal
unramified subextension: Since K is complete, the group p(;)(K) of roots of
unity in K having order prime to p is isomorphic to the cyclic group k* of order
q — 1= p/ — 1, where f is the residue degree of K :

Ky = Qp(gq—l) = Qp(ﬂq—l) CcK.

It is not difficult to generalize this result to the algebraically closed extension

Q3

Proposition. The residue field k* of the algebraic closure Qj, of Q, is an
algebraic closure of the prime field F .

Proor. Since any algebraic element x € Qf, generates a finite-dimensional ex-
tension K of Q,, the residue field of K is also finite-dimensional over F,. This
proves that the residue field of Q7 is algebraic over F,. Conversely, if £ # 0 is
algebraic over F,, it belongs to the cyclic group F,(£)* and hence is a root of unity
of order m prime to p. Now consider the cyclotomic extension Q,(jt,,) obtained
by adjoining to Q,, all roots of unity of order m. If { # n are two such roots, then
|¢ —n| = 1 and the reductions of ¢ and 7 are distinct (cf. II.4.3). Hence the residue
field of Qp (1) contains m distinct mth roots of unity and contains &. a

We shall denote by F4 = Fpw = |/, F,s an algebraic closure of F, and by
(Qpur = Qp(u(p)) C Qf the extension generated by all roots of unity having
order prime to p. This is the maximal unramified extension of Q, in Q5.

Corollary. The residue field of the maximal unramified extension of Qp in Q,
is an algebraic closure of the prime field ¥ . »
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1.3. Ramified Extensions

One can give another reason for the fact that the extension Qf, has infinite degree
over Q. Choose algebraic numbers 7, = pl/¢ (e > 2). We have

il = |pl =1/p, Iml=(1/p)Ve,

and consequently the ramification index of Q, () is greater than or equal to e.
This proves that Q, has algebraic extensions of arbitrarily large degree. Indeed,
the polynomial X — p is an Eisenstein polynomial, and hence is irreducible (I1.4.2)
in Z,[X] or Q,[X]: This defines an extension of degree e of Q,. More generally,
if K is any finite extension of Q,, (contained in Q‘;,), it is locally compact, and we
can choose a generator 7 for the maximal ideal P of R. The polynomial X¢ —
is an Eisenstein polynomial, hence is irreducible in R{X] and K[X], whence K is
not algebraically closed. These simple observations show that

|(Q'117)"| D pQ ={p’:veQ}= Up(l/e)z.

ex>1

Proposition. The absolute values of algebraic numbers over Q,, are fractional
powers of p: [(Q})*| = e

Proor. If x € Qf ~ Q,, is any algebraic number not in Q,, it satisfies a nontrivial
polynomial equation

Z ax'=0 (g€ Qp)

0<i<n

of degree n > 2. By the principle of competition, there are two distinct indices,
say i > j, with

laix'| = lajx’| # 0.
Hence
x|~/ = |a;/a;| € p?,

and x| € pV/9Z (e =i—j>1). [ |

1.4.  The Algebraic Closure Q7 is not Complete

A complete metric space X is a Baire space: A countable union of closed subsets
X, in X having no interior point cannot have an interior point. In particular, such
a countable union cannot be equal to X. Recall that locally compact spaces and
complete metric spaces are Baire spaces.

Theorem. The algebraic closure QF, of Q, is not a Baire space.
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Proor. Let us define the sequence of subsets
X, ={xeQp:degx =[Qp(x): Qpl=n}CQ;, (n=1)

so that Q; = Up>1X,. It is also obvious that A X, C X, (A € Q,), X+ X, C
Xomn, and in particular,

X, + X, C X2

(a) These subsets are closed. If x # 0 is in the closure of X, say x = lim x;
with a sequence (x;) in X,,, then for each x; let f;(X) € Q,[X] be a polynomial
of least degree with x; as a root and coefficients scaled so they lie in Z, and at
least one of them is in Z . Extracting if necessary a subsequence of (f;), we can
assume that it converges (in norm, coefficientwise), say f; — f,so f € Z,[X]
has degree less than or equal to n and at least one coefficient in Z 7, so f(X) # 0.
By the ultrametric property, the convergence f; — f is uniform on all bounded
sets of Q‘I’,. Since the convergent sequence (x;) is bounded, we have

F&x) = fitx) = fx) = fx) + fa) — filx) - 0.

—0 —0
This implies f(x) = lim f;(x;) = 0and x € X,,.
(b) The subsets X,, have no interior point. Since for any closed ball B of positive
radius in Q‘;, we have Qf, = Q,, - B, such a ball cannot be contained in a subset
X,, and no translate can be contained in X,. ]

Corollary. The space Q, is neither complete nor locally compact. a

1.5. Krasner’s Lemma

Theorem 1 (Krasner’s Lemma). Let K C Q‘I', be a finite extension of Q, and
leta € Q‘I’J (so that a is algebraic over Qp). Denote by a° the conjugates of
a over K and put r = minge 4, |a® — a|. Then every element b € B_,(a; QZ)
generates (over K) an extension containing K(a).

Proor. Take any algebraic element b such that a ¢ K(b). Since we are in charac-
teristic 0, Galois theory asserts that there is a conjugate a® # a of a over K(b)
(the automorphism o fixes K (b) elementwise) and we can estimate the distance
of a to b as follows:

b—a’|=|b—-a)|=|b—al,
la —a°| <max(la — b, |b—a°]) =|b—al.
This shows that
lb—al=la—a’|=r.
Hence if b € B.,(a), namely |b — a| < r, we have

aec K®b), K(a)CK(®). [
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Examples. (a) Take K = Q;anda = +/—1 =i.Then i’ = —i and
r=li—i° =2 =2|=1.
Hence for b € Qf,
Ib—il <3 =>i€Qyb).
(b) Take K = Q3 and a = +/—3. Then a® = —+/—3 and
r=la-a’l=12v73 = W3 = 3”2 =/},
Hence for b € Q4,
b—v3l < /1 = VT e Q).

Recall that the norm of a polynomial f(X) =)
coefficients || f|| = max;<, la,l|.

a, X" is the sup norm on the

i<n

Theorem 2 (Continuity of Roots of Equations). Let K be a finite extension
of the p-adic field Qp, and fix an algebraic element a € Q‘I’J of degree n over
K corresponding to a monic irreducible polynomial f € K{X] (of degree n).
There is a positive £ such that any monic polynomial g € K[X] of degree n with
lg — fll < & has a root b € K(a) also generating this field: K (b) = K(a).

Proor. Let us factorize the polynomial g in the algebraic closure Qf of K, say
2(X) = (X — b;), and evaluate it at the root a of f:

[T@-b) = g@) = g(a) - f(@.
With M = maxo<;<, (la}’) = max(1, |a|") we can estimate
[Jla—bil=ls@—- f@l <lig— fl-M,

hence for one index i at least,
la —b;| < llg — fIIM"- M=

By the preceding theorem, if ¢ > 0 is chosen small enough, then jjg — f|| < ¢
will imply K (b;) O K(a) for some i. But the degree of b; is less than or equal to
n, since it is a root of the nth degree polynomial g € K[X]. This proves K(b;) =
K(a). ]

Corollary 1. Let f € K[X] be a monic irreducible polynomial, a € Qf, aroot
of f, and (g;)ieN a sequence of monic polynomials with coefficients in K of the
same degree as f. If gi — f (coefficientwise), there is a sequence (x;) of roots
of these polynomials such that x; € K (a) for large i and x; — a.
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ProoF. As soon as ||g; — f]| < ¢ is small enough, the above result is applicable
and shows that Ja — x;| is small for at least one root x; of g;. More precisely, the
inequality

la — x| < llgi — FIY™ - M*"

shows that [a — x;| — 0, and the convergence x; — a in K (a) follows. [ |
Corollary 2. The algebraic closure Qj, of Q, is a separable metric space.

Proor. Take a € Q}, and let f be its minimal polynomial over Q,. Since Q is
dense in Q,,, we can find monic polynomials g € Q[X] as close to f as we want.
If we choose a sequence g, — f, the continuity principle for the roots shows
that g is a limit of roots x, of the polynomials g,. This shows that the algebraic
closure of Q is dense in Q‘I‘,. But this algebraic closure is a countable field since
the set of polynomials of fixed degree with coefficients in the countable field Q is
countable. ]

1.6. A Finiteness Result

In the last two sections of this chapter, let us prove a couple of theorems easily
obtained with the techniques developed above. (We shall not need them in the
sequel.)

Theorem. Let K be a finite extension of Qp and n > 1 an integer. Then there
are only finitely many extensions of K of degree n in Q.

Proor. (1) Let F be an extension of degree n of K and let e be its relative ram-
ification index, f its residue degree: n = ef. The cyclic subgroup consisting of
roots of unity in F having order prime to p is isomorphic to the cyclic group
of nonzero elements in the residue field of F (I1.4.3). These roots generate the
maximal unramified subextension F,, of K in F,

[Fu:K]=f

(I1.4.4), and the extension F/F,; is totally ramified of degree e. If the residue
degree f is given, there is only one unramified extension of degree f of K in
Q‘;,. Hence the announced result will be established as soon as the same finiteness
property for totally ramified extensions is established.

(2) Let us show that there are only finitely many totally ramified extensions of
given degree n = e of K. Fix such an extension F andlet K D R D P = nR
(conventional notation). By (I1.4.2, I11.4.4) it is generated by an element having
minimal polynomial

X"+ ap 1 X"V - Fougm,
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which is an Eisenstein polynomial. Its coefficients a; belong to P, and ug € R is
aunit: u9 € K and |ug| = 1. The Cartesian product

P x R*

is compact, and by continuity of the roots of equations (1.5), each element of
this product has an open neighborhood corresponding to polynomials having
their roots generating the same extension F in Q. This completes the finiteness
proof. n

1.7.  Structure of Totally and Tamely Ramified Extensions

It is possible to improve the result (I1.4.2) concerning the generation of totally
ramified extensions.

Theorem. Let KCLC Q;‘, be finite extensions of Q,. Assume that L/K is
totally and tamely ramified of degree e. Then there exists a generator m of the
maximal ideal P of R C K such that L is generated by an eth root of 7 in Q‘l‘,.

Proor. By assumption e = [L : K] is prime to p. The proof will be accomplished
in three steps.

(1) Consider arbitrary generators # of P C R C K and 7 of PL C Ry C L.
Since L/K is totally ramified of degree e, |71 |° = |7| and #{ /7 = u is a unitin
R_ . Since the residue degree of L /K is 1, the residue fields are the same, and there
is a unit ¢ of R (one can take a root of unity in K) suchthat{ = u (mod P),.
Let us write

ni=m-u, u=¢{+mv (veRrR.
Hence
af=n - +mav)=¢{m+nmLv.

The element ¢ 7 is also a generator of the ideal P of R. We are going to show that
L is generated by a root of the equation X¢ — ¢mr. Let us replace the generator &
by 7’ = ¢ and simply denote it by 7 again. Thus we assume from now on that
the generators r; and 7 are linked by a relation

7 =m+nmmv (v E€RL.

(2) The polynomial f = X¢ — & is an Eisenstein polynomial (I1.4.2) of R[X].
Hence it is irreducible over K[X]. We have

fry)y=n] —a =nmv, |f(mL)l = |mmLv| < 7]

Let us factor f in Q7:

fO=x"-n=[[X-a)

1<i<e
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(where []o; = =+7). Since f is irreducible, the roots «; are conjugate and have
the same absolute value in Q?, say |o;| = ¢ independent of i. Hence

¢ =[] leul = Iml,
o] = ¢ = [ |'/¢ = |m,],
and
lmL — e} < max(es|, |7 ]) = ..
If we come back to the polynomial f, then

I_[ (L — o)

1<i<e

= |flr)l < lm| = |mLI

shows that at least one of the factors is smaller than |7 |. Without loss of generality
We may assume

iy —an| < |mpl.

(3) The roots of f(X) = X¢ — m = 0 are the a; = ¢;cr, where ¢f = 1. Since e
is prime to p, we have |{; — 1] = 1 when {; # 1 by Proposition 1 in (I1.4.3). This
proves

o —a|l=lel=c=|mL] (@#1),

lm —a) < |mel=lo—o] @G #1).
By Krasner’s lemma, we infer that
K(a) C K(7p),

and since the element o has degree e, this inclusion is an equality. ]

Example. If we add a primitive pth root £, of unity to Q,, we obtain a totally
ramified extension K of degree p — 1. Hence K /Q,, is tamely ramified and can
be generated by a (p — 1)-th root of the generator —p of pZ,.

For p = 3, we have seen in (I1.4.6) that b = +/—3 works:
Q3(&3) = Q3(v—3).

2. Definition of a Universal p-adic Field

2.1. More Results on Ultrametric Fields

Let us start with a couple of general results concerning (nondiscrete) ultrametric
fields.
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Proposition 1. Let K be an ultrametric field and K its completion. Then K is
still an ultrametric field and

@ IK| = K|,
(b) K and K have the same residue field.

Proor. Let A be the ring of Cauchy sequences in K. The ideal I of A consisting
of Cauchy sequences a = (a,) with a, — 0 (also called null Cauchy sequences)
is a maximal ideal: If a, /> O, then a, # O except for finitely many indices n
and a is invertible in the quotient A/I. We can define K = A/ with a canonical
injection K < K given by constant sequences. If a = (a,) € A — I is a Cauchy
sequence that is not null, the sequence (|a,|) is stationary (stationarity principle),
and we define an absolute value on K by

la| = lim |a,| € |[K*| C Rogfora# 0 and |0} =0.
n—oo

Obviously, the canonical injection K <> K is an isometric embedding, and we
view K as a subfield of K: The absolute value of K extends the absolute value
of K. The residue field k of K parametrizes the open unit balls B.i(a) (a =0
or |a| = 1) contained in the closed unit ball: £* parametrizes the open unit balls
contained in the unit sphere S; = {x € K : |x| = 1}. Any Cauchy sequence of the
closed unit ball has all its final terms in an open unit ball; hence it corresponds to
a fixed element in the residue field k. [ ]

An extension L of an ultrametric field K having same residue field k;, = k and
the same absolute values |L| = |K| is called an immediate extension of K. Hence
the completion of K is an immediate extension of K.

Proposition 2. Let K be a nondiscrete ultrametric field and put
A ={x € K : |x| < 1} : maximal subring of K
M = {x € K : |x| < 1} : maximal ideal of A.
Then, either M is principal, or M = M? and the ring A is not Noetherian.
Proor. By hypothesis I' = [K*| # {1}, and either ' N (0, 1) has a maximal
element 0 or it has a sequence tending to 1. In the first case we can choose 7 € M

with {7r| =6, and M = 7 A is principal. In the second case, for each x € M, namely
|x| < 1, we can find an element y such that |x| < |y| < 1, so that

x=y-(x/y) € M.

Since y and x/y belong to M, this shows that x € M2, and we have proved M = M?2.
In this last case, the subgroup I' = | K| is dense in R..¢, and all the ideals

I =B =B,(0;K)={xe K:|x|<r}

forr € I' N (0, 1) are distinct: The ring A is not Noetherian. ]
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Proposition 3. With the same notation as before:

(a) If K is algebraically closed, so is the residue field k.
(b) If L is an algebraic extension of K, the residue field k; of L
is also an algebraic extension of the residue field k of K.

Proor. In any ultrametric field, |§] > 1, |a;] < 1 (i < n) implies
"] > 1§°] = la:g'] G <n),

g > 1) aiE'l,

i<n
and hence

g" + ) ait'| = lgI" > 1,

i<n

£+ ) at #0.
<n
This proves that any root of a monic polynomial having coefficients |a;] < 1 belongs
to the closed unit ball |x| < 1.
(@LetX"+,_, X i € k[X] be a monic polynomial of degree n > 1. Choose
liftings a; € A of the coefficients, i.e., ¢; =a; (mod M), and consider the monic
polynomial

X"+ Y aX' € AIX].
<n

Since the field X is algebraically closed, this polynomial has aroot x € K. By the
preliminary observation, x € A and x mod M is a root of the reduced polynomial
X"+ Y, a;X'. This proves that k is algebraically closed.

(b) Let 0 # £ € ki and choose a representative x € A; — M, of the coset
& # 0: [x| = 1. By assumption, this element is algebraic over K, and hence x
satisfies a nontrivial polynomial equation

dax"=0 (1, aeKk).

i<n
By the principle of competitivity, at least two monomials have maximal competing
absolute values

la;] = laix’| = |ajx’| = |aj| forsomei < j.

Dividing by a;, we obtain a polynomial equation with coefficients |a;| < 1,a; € A
and at least two of them not in M. By reduction mod M we get a nontrivial
polynomial equation satisfied by &. ]
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2.2.  Construction of a Universal Field Q,

Let R be the normed ring £*° (Q‘I’,) consisting of bounded sequences « = (@;);en of
Q}, with the sup norm

llall = sup;en leil-

Let us also choose and fix an ultrafilter /{ on N containing the subsets [n, 00)
(n € N).(Readers not familiar with ultrafilters can find all definitions and properties
used here in the Appendix to this Chapter.) Recall that for each subset A C N either
A €U or A° =N — A € U. On the other hand (here is the reason for choosing an
ultrafilter), each bounded sequence of real numbers has a limit along U, and we
put

pla) = hl;n je;| = 0.

Proposition 1. The subset J = ¢~(0) is a maximal ideal of the ring R, and
the field Q, = R/J is an extension of the field Q5.

Proor. Let us show that each element & ¢ 7 is invertible mod 7. But if & = (&)
is not in the ideal 7, the limit r = ¢(a) > 0 does not vanish, so we can find a
subset A € U such that r/2 < |e;| < 2r (i € A). Define a sequence 8 = (8;) by

Bi = a—l-fori €A and B;=0forigA.
i
Since |Bi| < 2/r (i € A), the sequence B is bounded 8 < 2/r and 8 € R. By
construction 1 — a8 vanishes on the set A, hence 1 — a8 € J. This shows that
a mod J is invertible in the quotient £2,,. Consequently, the quotient is a field,
and 7 a maximal ideal of R. Finally, constant sequences provide an embedding
Q‘; — Qp. m

The map ¢ defines an absolute value on the field 2,: For a = (¢ mod J) we
put

lal = lale = (@) = lim o]

This absolute value extends the absolute value on Q;‘, (considered as a subfield of
2, through constant sequence).

Proposition 2. The absolute value | . |q coincides with the quotient norm of
R/J, namely for a = (¢ mod J),

lale = llo mod Jllgsg = ,«}25 llee — Bl
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Proor. We have limy |y;| < sup |y;| (¥ € R), and hence
lim|o;| = lim oy — B < supla — Bi| (B € T,
lale < lla =Bl (B € D).
This proves

lale < llallz/g-

Conversely, if a = ¢ mod 7, then for any subset A € U we can define the sequence
B=(Bi)as Bi=0(@ € A)and B;=a; (i /eA)sothat BeJ and ||l — B| =
Sup;c4 o} and

a < inf sup ;| = lim suple;| = lim |o; | = |a|o.
lallzs < inf sup e plai| = lim o] = lale .

From now on we shall simply write la| = |a|q for either the absolute value on the
field 2, or the quotient norm in R/J.

Proposition 3. We have
1251 = Rao.

Proor. This is a simple consequence of the fact that | Q| is dense in R>. Indeed,
each positive real number r is limit of a sequence (r,,) of elements r,, € 1Q51, say
rn = lan| (an € QF), so that the sequence « is bounded and defines an element a
in the quotient €2, with |a| =r. ]

Comment. This construction of £, is reminiscent of nonstandard analysis. Let
X = Qf, and in the Cartesian product X N introduce the equivalence relation

(xn)N(yn)<=>{neN:xn=yn}€u-

The quotient *X := XN/~ is an ultrapower of X (as systematically used in non-
standard analysis, in the construction of superstructures). The subset ®X consisting
of classes of bounded sequences is the set of limited elements in this ultraproduct
*X, and the classes of sequences tending to zero (along Uf) are the infinitesimal el-
ements 'X C®X. The quotient X /’X = R/J = 2, has more simply been obtained
in one step.

2.3. The Field Q,, is Algebraically Closed

Let f € Q,[X] be a monic polynomial of degree n > 1, say

fX)=X"+a,1 X" ' +---+ay (@€ Q).
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We show that this polynomial f has a root in the field €2,. Select representative
families for the coefficients:

a; = (o) mod J.
We can consider the polynomials

fX)=X"+) auX € QX].
k<n
Since the field QF, is algebraically closed, each of these has all its roots in Q.
More precisely, the product of the roots of f; is (up to sign) the constant term o,
of this polynomial, so that we can choose at least one root & with & < |ag; |/
The sequence £ = (§;) is bounded [|£[| < [laol|'/”, £ € R, and the class x of £ is a
root of fin €. n

2.4. Spherically Complete Ultrametric Spaces

Consider a decreasing sequence (Bx,, (a,))s>0 of closed balls in an ultrametric
space X:

d(a;, a,) < ry, for all pairs i > n.

When r, \ 0, the sequence of centers is a Cauchy sequence; hence it converges if
we assume that the space X is complete. The limit of this sequence belongs to every
B, (ay) (these balls are closed). In particular, this shows that the intersection of
the sequence is not empty.

At first, it seems surprising that even in a complete space, a nested sequence
of closed balls may have an empty intersection when the decreasing sequence of
radii has a positive limit. Consider, however, the following situation. In the discrete
space N with the ultrametric distance d(n, m) = 1 — §,,,,, the decreasing sequence
of closed sets F,, = [n, 00) has an empty intersection (they all have diameter equal
to 1). This space is complete (it is uniformly discrete), and a small modification of
the metric (cf. the exercises) transforms these sets F,, into closed balls of strictly
decreasing radii.

Definition. An ultrametric space X is called spherically complete when all
decreasing sequences of closed balls have a nonempty intersection.

A spherically complete space X is complete: If (x,) is any Cauchy sequence of
X, consider the decreasing sequence (r,,) where r, = sup,,., |X» — Xx,| (which
converges to 0). Then (B<,, (x,)) is a decreasing sequence of closed balls having
for intersection a limit of the sequence.

Comment. Any extension of an ultrametric field K which has the same residue
field and the same value group (in R*) is called an immediate extension of K. It
can be proved that each ultrametric field admits an immediate extension that is
spherically complete. For example, there is a spherically complete extension of
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Q5 that has residue field F~ and value group pQ. In fact, spherically complete
extensions are maximal elements among extensions having prescribed residue field
and value group.

2.5. The Field Q2 is Spherically Complete

Let us consider any decreasing sequence (B,),>o of closed balls B, = B;,(a,)
in the field 2,. The ultrametric inequality shows that such a sequence of balls
decreases if

|@py1 — an|l <r, and (r,) decreases.
Take liftings «z, € R of the centers a, € R/J in the following way. Since
|an+1 '_anl Sy <Tp-i

and since the absolute value is the quotient norm, we can proceed by induction and,
once o, has been chosen, successively choose the next lifting a1+ still satisfying
letns1 —nll < ra—i.Then oy —ay, || < ry— forall k > n. The ith component will
a fortiori satisfy |ay; — ;] < rp—1 (k > n). Consider now the diagonal sequence
& = (&) in R defined by & = «;;. Then

&€ — e I < sup 1§ — ani] <y
i>n

because the interval [n, 0o) of N belongs to the ultrafilter I/, whence for x =&
mod 7,

|x _anl < "5 —CY,,II <TIn-1,

|x — @n—1] < max(lx — ap|, lan — Gn_1|) < a1,

namely x € B,_;. Since this happens for all integers n > 0, we infer x € [) B,,
and the intersection of the given decreasing sequence of balls is not empty.
The field €2, is spherically complete, hence complete.

3. The Completion C,, of the Field Q?,
3.1. Definition of Cp

Let us define
C,= @ = closure of Q‘I’, in Q,.
Hence C,, is a completion of Q7:
C, =Qs.

Proposition. The field C, is a separable metric space.
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Proor. The algebraic closure Qj, of Q, is a separable metric space (by Corollary
2in (1.5)) and is dense in C,. Any countable dense subset of Q;‘, is automatically
dense in Cp: For example Q7 is dense in C,. ]

The universal field C, is not locally compact: |C]| = pe={p’:veQlis
dense in R..o. We shall use the following notation

A, = {x € C, : |x| < 1}: maximal subring of C,,

M, = {x € C, : |x| < 1}: maximal ideal of A ,.

Hence M, = M%, and A, is not a Noetherian ring (2.1).

3.2. Finite-Dimensional Vector Spaces over a Complete
Ultrametric Field

Let us formulate and prove a generalization of (I1.3.1) (cf. Theorem 2 in (IL.A.6)
for the most general version).

Theorem 1. Let K be a complete (nondiscrete) ultrametric field and V a finite-
dimensional vector space over K. Then all norms on V are equivalent.

Proor. We use induction on the dimension n of V. Since the property is obvious for
n = 1,itis enough to establishitin dimension n assuming that it holds in dimension
n — 1. Choose a basis (e;);<i<», of V and consider the vector space isomorphism
¢ : K" — V sending the canonical basis of K” onto the chosen basis of V.
Considering that K" is equipped with the sup norm, we have to show that for any
given norm || . || on V, the mapping ¢ is bicontinuous. First, for x = (x;) € K",
we have

Ixier + -+« + Xneall < Y Ixillle;l} < max x| - Zle;],
le@ < Clixll  (C = Xlle D,
which proves the continuity of the map ¢. Conversely, let F be the subspace of
V generated by the last n — 1 basis vectors. Since the dimension of F isn — 1,
the induction hypothesis shows that on this subspace, the given norm is equivalent

to the sup norm of the components. In particular, F is complete and closed in V.
Since e = e; ¢ F, we can define

d(e, F)=inf le—y| >0
yeF
and puty = d(e, F)/|le}} < 1. By the induction hypothesis, there is also a constant
cr such that

Iyl = cr - max |x;| (¥ = Xo<i<n Xi€; € F).
2<i<n
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Foreachv=¢(x)e E— F,sayv=£&e+y (§ #0, y € F), we can write

v=£§(e+y/8)
with
Ivll =1&1-le+y/&ll = 1&] - lle— ¥
> |§]-d(e, F) = |§] - vllell = v - |Igell,
and hence

Iyll = v — &ell < max(|Ivl, lIgell) < max(jivll, ¥ lIvl) = Ivil/y
(since ¥ < 1). This shows that ||v|| > y|yll. We have thus proved
Ivll = yiigell, lvll = ylyl,
vl = y - max(l|\&ell, lyl),
and since |ly|| > ¢ max;>2 |x;|, we have

le@ll = Ivll = y max(|§|llell, cr max;>2 |x:)

> cmax;» |x;i| = c - |ix]],

with x; = £ and ¢ = cy = y min(cr, [le])).

Corollary. If K is a complete (nondiscrete) ultrametric field and L is a finite
extension of K, there is at most one extension of the absolute value of K to L.

Any K -automorphism of L is isometric.
Proor. Same as in (I1.3.3).

We can now give Krasner’s lemma (1.5) in a more general form.

Theorem 2. Let Q be any algebraically closed extension of Q, and K C Q2
any complete subfield. Select an algebraic element a (€ S2) over K and denote
by a° its conjugates over K. Let r = mings 4, |a’ — a|. Then every algebraic
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