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Preface

Kurt Hensel (1861-1941) discovered or invented the p-adic numbers' around the
end of the nineteenth century. In spite of their being already one hundred years
old, these numbers are still today enveloped in an aura of mystery within the
scientific community. Although they have penetrated several mathematical fields,
number theory, algebraic geometry, algebraic topology, analysis, . . . , they have
yet to reveal their full potential in physics, for example . Several books on p-adic
analysis have recently appeared:

F. Q. Gouvea: p-adic Numbers (elementary approach);
A. Escassut: Analytic Elements in p-adic Analysis, (research level)

(see the references at the end of the book), and we hope that this course will
contribute to clearing away the remaining suspicion surrounding them. This book
is a self-contained presentation of basic p-adic analysis with some arithmetical
applications .

* * *
Our guide is the analogy with classical analysis . In spite of what one may think,
these analogies indeed abound. Even if striking differences immediately appear
between the real field and the p-adic fields, a better understanding reveals strong
common features. We try to stress these sirnilarities and insist on calculus with the
p-adics, letting the mean value theorem play an important role. An obvious reason
for links between real/complex analysis and p-adic analysis is the existence of

IThe letter p stands for a fixed prime (chosen in the list 2, 3, 5, 7,11, . . . ) except when explicitly
stated otherwise.
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an absolute value in both contexts.? But if the absolute value is Archimedean in
reallcomplex analysis,

if x =f:. 0, for any y there is an integer n such that Inxl > lyl,

it is non-Archimedean in the second context, narnely, it satisfies

Inxl = I;X +x -+: ... +x,1 ::: Ix\.
n tenns

In particular, Inl ::: 1 for all integers n , This implies that for any r ::: 0 the subset
of elements satisfying lxi::: r is an additive subgroup, even a subring if r =1.
For such an absolute value, there is (except in a trivial case) exactly one prime
p such that Ipl < 1.3 Intuitively, this absolute value plays the role of an order
of magnitude. If x has magnitude greater than 1, one cannot reach it from 0 by
taking a finite number ofunit steps (one cannot walk or drive to another galaxy!).
Furthermore, Ipl < 1 implies that Ipn I~ 0, and the p-adic theory provides a link
between characteristic 0 and characteristic p.

The absolute value makes it possible to study the convergence oiformal power
series, thus providing another unifying concept for analysis . This explains the
important role played by formal power series. They appear early and thereafter
repeatedly in this book, and knowing from experience the feelings that they inspire
in our students, I try to approach them cautiously, as if to tarne them.

* * *
Here is a short summary of the contents

Chapter I: Construction of the basic p-adic sets Zp, Qp and Sp,

Chapters II and III: Algebra, construction of Cp and Qp,

Chapters IV, V, and VI: Function theory,

Chapter VII: Arithmetic applications.

I have tried to keep these four parts relatively independent and indicate by an
asterisk in the table of contents the sections that may be skipped in a first reading.
I assume that the readers, (advanced) graduate students, theoretical physicists, and
mathematicians, are familiar with calculus, point set topology (especially metric
spaces, normed spaces), and algebra (linear algebra, ring and field theory) . The
first five chapters of the book are based solelyon these topics.

The first part can be used for an introductory course: Several definitions of the
basic sets of p-adic numbers are given. The reader can choose a favorite approach!
Generalities on topological algebra are also grouped there .

2Both Newton's method for the determination of real roots of f = 0 and Hensel's lemma in the
p-adic context are applications of the existence of fixed points for contracting maps in a complete
metric space.

3Since the prime p is uniquely determined, this absolute value is also denoted by 1.lp . However,
since we use it systematically, and hardly ever consider the Archimedean absolute value, we simply
write 1.1.
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The second- more algebraic - part starts with a basic discussion of ultrametric
spaces (Section 11.1) and ends (Section lIlA) with a discussion of fundamental
inequalities and roots of unity (not needed before the study of the logarithm in
Section VA). In between, the main objective is the construction of a complete and
algebraically closed field Cp , which plays a role similar to the complex field C
of classical analysis. The reader who is willing to take for granted that the p-adic
absolute value has a unique extension I.IK to every finite algebraic extension K
of Qp can skip the rest of Chapter II: If K and K ' are two such extensions, the
restrictions of I.IK and I.IK' to K n K' agree. This proves that there is a unique
extension of the p-adic absolute value of Qp to the algebraic closure Q'; of Qp.
Moreover, if a E Aut (K /Qp), then x t-+ IxO" IK is an absolute value extending
the p-adic one, hence this absolute value coincides with I.IK' This shows that
o is isometrie. If one is willing to believe that the completion Qi = C p is also
algebraieally closed, most of Chapter III may be skipped as weIl.

In the third part , functions of a p-adic variable are examined. In Chapter IV,
continuous functions (and, in particular, locally constant ones) / : Zp -+ Cp are
systematically studied, and the theory culminates in van Hamme's generalization
of Mahler's theory. Many results conceming functions of a p -adic variable are ex­
tended from similar results conceming polynomials. For this reason, the algebra of
polynomials plays a central role, and we treat the systems of polynomials - umbral
calculus - in a systematic way. Then differentiability is approached (Chapter V):
Strict differentiability plays the main role. This chapter owes much to the presenta­
tion by W.H. Schikhof: Ultrametrie Caleulus, an Introduetion to p-adic Analysis.
In Chapter VI, a previous acquaintance with complex analysis is desirable, since
the purpose is to give the p-adic analogues of the classical theorems linked to the
names ofWeierstrass, Liouville, Picard, Hadamard, Mittag-Leffler, among others.
In the last part (Chapter VII), some familiarity with the classical gamma function
will enable the reader to perceive the similarities between the classical and the P:
adic contexts. Here, a means of unifying many arithmetic congruences in a general
theory is supplied. For example, the Wilson congruence is both generalized and
embedded in analytical properties of the p-adic gamma function and in integrality
properties of the Artin-Hasse power series. I explain several applications of p -adic
analysis to arithmetic congruences.

* * *
Let me now indicate one point that deserves more justifieation. The study of metric
spaces has developed around the classical examples of subsets of Rn (we make
pictures on a sheet of paper or on the blackboard, both models of R2 ) , and a famous
treatise in differential geometry even starts with "The nieest example 0/ametrie
spaee is Euclidean n-space Rn." This point of view is so widely shared that one
may be 100to think that ultrametrie spaces are not genuine metric spaces! Thus the
commonly used notation for metric spaces has grown on the paradigmatic model
of subsets of Euclidean spaces. For example, the "closed ball" of radius rand
center a - defined by d(x, a) :s: r - is often denoted by B(a ;r) or Br(a). This
notation comforts the belief that it is the closure of the "open ball" having the same
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radius and center. If the specialists have no trouble with the usual terrninology and
notation (and may defend it on historical grounds), our students lose no opportunity
to insist on its rnisleading meaning . In an ultrametric space all balls of positive
radius (whether defined by d(x, a) ::::: r or by d(x, a) < r) are both open and
closed. They are dopen sets. Also note that in an ultrametric space, any point of
a ball is a center of this ball. The systematic appearance of totally disconnected
spaces in the context of fractals also calls for a renewed view of metric spaces. I
propose using a more suggestive notation,

B<r(a) = {x : d(x, a) < r}, B~r(a) = {x : d(x, a) ::::: r}

which has at least the advantage of clarity. In this way I can keep the notation
A strictly for the closure of a subset A of a topological space X. The algebraic
closure of a field K is denoted by K" ,

* * *
Finally, let methank all the people who helped me during the preparation of this
book, read prelirninary versions, or corrected mistakes. I would like to mention
especially the anonymous referee who noted many mistakes in my first draft,
suggested invaluable improvements and exercises; W.H. Schikhof, who helped
me to correct many inaccuracies; and A. Gertsch Hamadene, who proofread the
whole manuscript. I also received encouragement and help from many friends and
collaborators. Among them, it is a pleasure for me to thank

D. Barsky, G. Christol, B. Diarra, A. Escassut, S. Guillod-Griener,
A. Junod, V. Schüreh, C. Vonlanthen, M . Zuber.

My wife, Ann, also checked my English and removed many errors.
Cross-references are given by number: (11.3.4) refers to Section (3.4) of Chapter

11. Within Chapter 11 we ornit the mention of the chapter, and we simply refer
to (3.4). Within a section, lemmas, propositions, and theorems are individually
numbered only if several of the same type appear. I have not attempted to track
historical priorities and attach names to some results only for convenience. General
assumptions are repeated at the head of chapters (or sections) where they are in
force.

Figures 1.2.5a, 1.2.5c, 1.2.5d, and 1.2.6 are reproduced here (some with rninor
modifications) with written perrnission from Marcel Dekker. They first appeared in
my contribution to the Proceedings ofthe 4th InternationaL Conference on p-adic
FunctionaLAnaLysis (listed in the References).

Alain M. Robert
Neuchätel, Switzerland, July 1999
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1

p-adic Numbers

The letter p will denote a fixed prime.
The aim of this ehapter is the eonstruetion of the eompaet topologieal ring Zp

of p-adic integers and of its quotient field Qp , the loeally eompaet field of p-adic
numbers. This gives us an opportunity to develop a few eoneepts in topological
algebra , namely the struetures mixing algebra and topology in a eoherent way.
Two tools play an essential role from the start:

• the p-adie absolute value I. Ip = I. Ior its additive version, the p -adie valuation
ord, = vp ,

• reduetion mod p .

1. The Ring Z p of p-adic Integers

We start by a down-to-earth definition of p-adie integers: Other equivalent pre­
sentations for them appear below, in (4.7) and (4.8).

1.1. Definition

A p-adie integer is aformal series L i:::O a, pi with integral coefficients ai satisfying

o~ ai ~ P -I .

With this definition, a p -adie integer a = Li>O ai pi ean be identified with the
sequenee (ai)i:::O of its eoeffieients, and the set -of p-adie integers eoineides with
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the Cartesian product

x = X p =n{O, 1, . . . , p -l} = {O, 1, . . . , p - I}N .
i:;:O

In particular, if a = Li>O a, p i, b = Li>O b,pi (with a., b, E {O, 1, . . . , p - I})
wehave - -

a = b {::::::> ai = b, for all i 2: O.

The usefulness of the series representation will be revealed when we introduce
algebraic operations on these p-adic integers. Let us already observe that the
expansions in base p of natural integers produce p-adic integers (ending with zero
coefficients: Finite series are special series), and we obtain a canonical embedding
of the set of natural integers N = {O, 1, 2, . . .} into X.

From the definition, we immediately infer that the set 0/ p-adic integers is not
countable. Indeed, if we take any sequence of p-adic integers, say

b= Lbi / ,

i:;:O
c= LCi/'

i:;:O

... ,

we can define a p-adic integer x = L i:;:O x ip i by choosing

thus constructing a p-adic integer different from a, b, c, .... This shows that the
sequence a , b, c, ... does not exhaust the set of p-adic integers. A mapping from
the set of natural integers N to the set of p-adic integers is never surjective.

1.2. Addition of p-adic 1ntegers

Let us define the sum of two p-adic integers a and b by the following procedure.
The first component of the sum is ao + bo if this is less than or equal to p - 1, or
ao + bo - p otherwise. In the second case, we add a carry to the component of
p and proceed by addition of the next components. In this way we obtain aseries
for the sum that has components in the desired range. More succinctIy, we can say
that addition is defined componentwise, using the system 0/carries to keep them
in the range {O, 1, ... , P - l}.

An example will show how to proceed. Let

a = 1 = 1+°p +°p2 +... ,
b = (p - 1) + (p - 1)p + (p - 1)p2 +....

The sum a + b has a first component 0, since 1 + (p - 1) = p. But we have to
remember that a carry has to be taken into account for the next component. Hence
this next component is also 0, and another carry has to be accounted for in the
next p1ace, etc. EventuaIly, we find that all components vanish, and the result is



1. The Ring Zp of p-adic Integers 3

1+b = 0, namely b is an additive inverse of the integer a = 1 (in the set of p-adie
integers), and for this reason written b = -1. More generally, if

a= Lail,
i?:O

we define

b = a(a) = L(p - 1 - ai)pi
i?:O

so that a + b + 1 = O. This is best summarized by a + a(a) + 1 = 0 or even
a(a) + 1 = -a. In partieular, all natural integers have an additive inverse in the
set of p-adie integers. It is now obvious that the set X of p-adie integers with the
preeedingly defined addition is an abelian group. The embedding of the monoid
N in X extends to an injeetive homomorphism Z --+ X. Negative integers have
the form -m - 1 = a(m) with all but finitely many eomponents equal to p - 1.
Considering that the rational integers are p -adie integers, from now on we shall
denote by Z p the group of p-adie integers. (Another natural reason for this notation
will appear in (3.6).) The mapping a : Zp --+ Zp obviously satisfies a 2 = a 0 a =
id and is therefore an involution on the set of p-adie integers . When p is odd, this
involution has a fixed point, namely the element a = L i?:O~ pi E Zp.

1.3. The Ring 01 p-adic 1ntegers

Let us define the produet of two p-adie integers by multiplying their expansions
eomponentwise, using the system of earries to keep these eomponents in the desired
range {O, 1, .. . , p - 1}.

This multiplieation is defined in sueh a way that it extends the usual multipliea­
tion of natural integers (written in base p) . The usual algorithm is simply pursued
indefinitely. Again, a eouple of examples will explain the procedure. We have
found that -1 = L(P - l)pi. Now we write

-1 = (p - 1) . L pi, - (p - 1) L pi = 1,
i?:O i?:O

"" . 1LJP'=--·
i?:O 1 - P

Henee 1 - P is invertible in Zp with inverse given as a formal geometrie series of
ratio p. Sinee

"". 2 2P'LJaiP'=aop+alP + · ··=/=1+0p+Op +"',
i?:O

the prime p is not invertible in Zp for multiplieation. Using multiplieation, we ean
also write the additive inverse of a natural number in the form

-m = (-1)· m = L:(p - l)pi . L:mipi,
i?:O
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but it is not so easy to deduce the coefficients of -m from this relation. Together
with addition and mult iplication, Zp is a commutative ring. When p is odd, the
fixed element under the involution a is

a = L p - 1 . pi = P - 1 . L l = p - 1 . _1_ = _~ ,
i~O 2 2 i~O 2 1 - P 2

but 2 is not an invertible element of Zz , -t ~ Zz, and the involution a = oz has
no fixed point in Zz.

1.4. The Order ofa p-adic Integer

Let a = Li>O ail be a p-adic integer. /fa =f. 0, there is afirst index v = v(a) 2: 0
such that av-=f. O. This index is the p-adic order v = v(a) = ordp(a), and we get
amap

v = ord, : Zp - {O} -+ N.

This terminology comes from a formal analogy between the ring of p-adic integers
and the ring ofholomorphic functions ofa complex variable z E C.If1 is a nonzero
holomorphic function in a neighborhood of a point a E C, we can write its Taylor
series near this point

I(z) = L an(z - a)n, (am =f. 0, [z - al < s).
n~m

The index m of the first nonzero coefficient is by definition the order (of vanishing)
of 1 at a: this order is 0 if I(a) =f. 0 and is positive if 1 vanishes at a.

Proposition. The ring Zp 01 p-adic integers is an integral domain.

PRoOF. The commutative ring Zp is not {O}, and we have to show that it has no
zero divisor. Let therefore a = Li>O a, pi =f. 0, b = L i>O b, pi =f. 0, and define
v = v(a) , w = v(b). Then av is theflrstnonzero coefficient ofa, 0< av < p, and
similarly bw is the first nonzero coefficient of b. In particular, p divides neither av

nor bw and consequently does not divide their product avbw either. By definition
of multiplication, the first nonzero coefficient of the product ab is the coefficient
cv+w of pV+w , and this coefficient is defined by

o< cv+w < p , cv+w == avbw (mod p).

Corollary of proof. The order v : Zp - {O} -+ N satisfies

v(ab) = v(a) + v(b),

v(a + b) 2: min(v(a), v(b»

if a, b, and a + b are not zero.

•

•
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It is convenient to extend the definition of the order by v(O) = 00 so that
the preceding relations are satisfied without restriction on Zp , with the natural
conventions concerning the symbol 00. The p-adic order is then a mapping Zp -+
Nu {oo} having the two above-listed properties.

1.5. Reduction mod p

Let F p = Z/pZ be the finite field with p elements. The mapping

a = Laipi 1-+ ao mod p
i~O

definesa ringhomomorphisms : Z p -+ F pcalled reductionmod p. This reduction
homomorphism is obviously surjective, with kernel

{a E Zp : ao = O} = {~i~laipi = p~j~oaj+lpj} = pZp.

Since the quotient is a field, the kernel pZp of e is a maximal ideal of the ring
Zp. A comment about the notation used here has to be made in order to avoid a
paradoxical view of the situation: Far from being p times bigger than Zp, the set
pZp is a subgroup of index p in Zp (just as pZ is a subgroup of index p in Z).

Proposition. The groupZ; ofinvertible elements in the ring Zp consists ofthe
p-adic integersoforder zero, namely

Z; = {Laipi: ao;l: O}.
i~O

PROOF. If a p-adic integer a is invertible, so must be its reduction e(a) in F p. This
proves the indusion Z; c rLi~Oaipi : ao ;l: O}. Conversely, we have to show
that any p-adic integer a of order v(a) = 0 is invertible. In this case the reduction
e(a ) E F p is not zero, and hence is invertible in this field. Choose 0 < bo < P
with aobo == 1 mod p and write aobo = 1 + kp . Hence, ifwe write a = ao + ptx,
then

a . bo = 1+ kp + pabo = 1+ pK

for some p-adic integer K. It suffices to show that the p-adic integer 1 + KP is
invertible, since we can then write

a . bo(l + Kp)-I = 1, a- I = bo(l + Kp)-I.

In other words, it is enough to treat the case ao = 1, a = 1 + Kp. Let us observe
that we can take

with integers Ci E {O, 1, .. . , p - 1}. This possibility is assured if we apply the
rules for carries suitably. Such a procedure is cumbersome to detail any further, and
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another, equivalent, definition ofthe ring Zp will be given in (4.7) below, making
such verifications easier to handle. •

Corollary 1. The ring Zpo/p-adic integers has a unique maximal ideal, namely

pZp =Zp -Z;. •
The statement ofthe preceding corollary corresponds to a partition Zp = Z; II

pZp (a disjoint union). In fact, one has a partition

Zp - {O} = Ulz; (disjoint union of pkZ; = v-I(k».
k~O

Corollary 2. Every nonzero p-adic integer a E Zp has a canonical represen­
tation a = pVu, where v = v(a) is the p-adic order 0/a and u E Z; is a p-adic
unit. •

Corollary 3. The rational integers a E Z that are invertible in the ring Zp are
the integers prime to p . The quotients 0/ integers m / n E Q (n #- 0) that are
p-adic integers are those that have adenominator n prime to p. •

1.6. The Ring 0/ p-adic Integers is a Principal Ideal Domain

The principal ideals ofthe ring Zp,

(pk) = pkZp = {x E Zp : ordp(x) ::: k},

have an intersection equal to {O}:

z; :j pZp :> . .. :> pkzp :> .. . :>npkzp = {O} .
k~O

Indeed, any element a #- 0 has an order v(a) = k, hence a r/:. (pk+I ). In fact , these
principal ideals are the only nonzero ideals of the ring of p-adic integers.

Proposition. The ring Zp is a principal ideal domain. More precisely; its ideals
are the principal ideals {O} and pkZp (k E N).

PROOF. Let I#- {O} be a nonzero ideal of Zp and 0 #- a E I an element of minimal
order, say k = v(a) < 00. Write a = pk u with a p-adic unit u. Hence pk =
u-Ia E land (pk) = pkZp C I . Conversely, for any bEI let w = v(b) ::: k and
write

This shows that I C pkZp. •
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2. The Compact Space z;
2.1. Product Topology on Zp

The Cartesian product spaces

Xp= TI{O,I,2, . .. ,p-l}={O,I,2, .. . ,p-I}N
i :::O

will now be considered as topological spaces, with respect to the product topology
ofthe finite discrete sets {O, 1,2, .. . , p - I}. These basic spaces will be studied
presently, and we shall give natural models for them (they are homeomorphic for
all p). By the Tychonoff theorem, Xp is compact. It is also totally disconnected:
The connected components are points.

Let us recall that the discrete topology can be defined by a metric

I1 if a =I b,
Sta, b) = 0 if - b

1 a - ,

or, using the Kronecker symbol, o(a, b) = 1 - Oab. Several metrics compatible
with the product topology on X p can be deduced from these discrete ones. For
x = (ao, al ," .), Y = (bo, bl , . . .) E X p, we can define

o(ai , bi) 1
d(x, y) = sup . = -(-)'

i:::O p' pw:»

I ""o(ai,bi)
d(x,y) = ~ i+l' andsoon.

i :::O p

Although all metrics on a compact metrizable space are uniformly equivalent, they
are not all equally interesting! For example, we favor metrics that give a faithful
image of the coset structure of Zp: For each integer k E N, all cosets of pkZp in
Zp should be isometrie (and in partieular have the same diameter).

The p-adic metric is the first mentioned above . Unless speeified otherwise, we
use it and introduee the notation

1
d(x, 0) = r: if x =I 0 (v = ordp(x»,

[x] = 0 ifx = 0

(absolute values will be studied systematieally in Chapter 11). We reeover the
p-adie metrie from this absolute value by d(x, y) = Ix - yl. With this metrie,
multiplication by p in Zp is a contracting map

d(px , py) = ~ d(x , y)

and henee is continuous.
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2.2. The Cantor Set

In point set topology the Cantor set plays an important role. Let us recall its
construction. From the unit interval Co = I = [0,1] one deletes the open middle
third. There remains a compact set

Cl = [0, t] u [~, 1].

Deleting again the open middle third of each of the remaining intervals, we obtain
a smaller compact set

C2 = [O,~] U [~ , t]u [~,~] U [~ , 1].

Iterating the process, we get a decreasing sequence of nested compact subsets of
the unit interval . By definition, the Cantor set C is the interseetion 0/all Cn •

remove

remove .:/ / ... ••••••• ••••\,. remove

.............. -- ........•........ -
'0 { 0: 7\ (" ':: : ( 0',:

O_m ~113 213~ _I-- -- ----•••• •••• ••••••••
The Cantor set

It is a nonempty compact subset of the unit interval I = [0, 1]. The Cantor
diagonal process (see 1.1) also shows that this compact set is not countable.lfwe
temporarily adopt a system of numeration in base 3 - hence with digits 0, 1, and
2 - the removal of the first middle third amounts to deleting numbers having first
digit equal to 1 (keeping first digits °and 2). Removing the second, smaller, middle
intervals amounts to removing numbers having second digit equal to 1, and so on.
Finally, we see that the Cantor set C consists precisely of the numbers °:s a :s 1
that admit an expansion in base 3:

with digits Ci; = °or 2. We obtain these expansions by doubling the elements of
arbitrary binary sequences. This leads to considering the bijection

The definition of the product topology shows that this mapping is continuous, and
hence is a homeomorphism, since the spaces in question are compact.
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Binary sequences can also be considered as representing expansions in base 2
of elements in the unit interval. This leads to a surjective mapping

Zz --+ [0, I].

This map is surjective and continuous but is not injective: The numbers Li>i 2i

and 2i E Zz have the same image in [0, 1], as is immediately seen (in the decimal
system, a decimal expansion having only 9's after place j can be replaced by a
decimal expansion with a single I in place j) . In fact, Card lp-!(t) :::: 2 for any
t E [0, 1].

We can summarize the situation by a commutative diagram of maps

c c [0,1]

t / g

tp : Zz --+ [0, I]

The function g identifies contiguous extremities of the Cantor set C and sends
them onto points of the interval having two binary expansions (rational numbers
ofthe form a/2i ). These constructions will now be generalized.

1

1

3/4

2/3

1/2

-- - \\
,,,,,,,,

'1

2/9 1/31/9o

o

-- -
i ~
T

Gluing the extremities of the Cantor set

2.3. Linear Models ojZp

We choose areal number b > 1 and use it as numeration base in the unit interval
[0, I]. In other words, we try to write real numbers in this interval in the form
ao/b +at/bz + ...with integral digits °:::: a, < b. More precisely, fix the prime
p and consider the maps Vt = Vtb (= Vtb,p) : Zp --+ [0, 1] defined by the infinite
series in R

(" i) " aiVt ~aiP = {}.~ bi+! '
i ~O i~O

with a normalizing constant {} chosen so that the maximum of Vt is I . Since
this maximum is attained when alI digits ai are maximal, it is attained at
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-1 = Li?;:O(P - 1)pi E Z p ' and its image must be 1:

L
p -1 b-I p-1

1 = tJ . - . - = tJ(p - 1) = tJ--
i?;:O b,+1 1 - b- I b - 1 '

namely

b-1
tJ=-­

p-1

For p = 2 and b = 3 we find that tJ = 2, and we recover the special case studied
in the preceding section, where Vr fumished a homeomorphism Z2 -+ C C [0, 1].
In general, Vr = Vrb will be injective ifthe p-adic integers

L(p _l)pi and pj E z;
i>j

have distinct images in [0, 1]. The first image is

tJ · (p -1) L 1/bi+1 = tJ(p - 1)b-j-2/(1- b- I )

i>j

= tJb-j-l(p - 1)/(b - 1) = b-j- I •

The second image is tJ · b- j - I • The injectivity condition is thus tJ > 1, or b > p .
Let us summarize.

Theorem. The maps Vrb (= Vrb,p) : Zp -+ [0,1] definedfor b» 1 by

are continuous. When b > p, v» is injective and defines a homeomorphism of
Zp onto its image Vrb(Zp). When b = p, we get a surjective map Vrp which is
not injective. •

The commutative diagram given in the last section generalizes immediately to
our present context.

Comment. When b > p , Vrb gives a linear model of Zp in the interval [0, 1]; the
image is afractal subset A of this interval. The self-simi1arity dimension d ofsuch
a set is "defined" by means ofa dilatation producing a union of copies of translates
of A. If we denote by E(A) an intuitive - not formally defined - notion of extent
of A and if ),.A is a union of m translates of A, this self-similarity dimension d
satisfies

mE(A) = E()"A) =),.d E(A),
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and hence d . log A = log m and d = log m / log A. In our case, take A= b so
that m = p and the self-similarity dimension of A = 1/fb(Zp) in [0, 1] C R is
log p / log b < 1. In this way we obtain a continuous family of fractal models of
increasing dimension for b '\i p degenerating in the limit to a connected intervaI.

It may be useful to look at symmetrie models obtained by replacing the digits
a, E {O, 1,2, ... , p - I} by symmetrie ones in {- P~l, •• • , P~l}. Define

p-I
v(k) = k - -2- (0 ~ k ~ p - 1).

We can choose the normalization constant f} of the map

,."j " v(aj)1/f . L.J a, p t-+ f} . L.J bi+l
j:,:O

in order to have

min 1/f' = -1, max 1/f' = +1.
(When p = 2, v(k) = (_l)k+l t = ±t, and the corresponding expansion has
fractional digits.) The involution a induces a change of sign in the image. When
p =1= 2 it has the origin as fixed point. Here is a pieture of centered linear models
of Z3 when b '\i 3.

~
...,

~ - ...,
~ - ...,

, . , . , ., , , , , ,
, , , , , ,, , . , , ., , j j j j

-1 -112 -114 0 1/4 1/2 1

A centered linear model of Z3

2.4. Free Monoids and Balls ojZp

Let B<r(a) denote the ball defined by d(x , a) = Ix- al < r in Zp. It is cIear that
this ball does not change if we replace its radius r by the smallest power r: that is
greaterthan orequal tor.lfthe p -adic expansion ofa isaO+aIP+' . +anpn+.. . =
Sn + pn+la, the ball does not change either ifwe replace its center by Sn ' This ball
is fully deterrnined by the sequence of digits (of variable length giving the radius)
ao, al, .. . , an, and we associate to it the word

aOal" ·an E M p

in the free monoid generated by S = {O, I, . .. , p - I}.
Conversely, to each (finite) word in the elements of S - say aoal . . . an - we

associate the ball of center a = ao + ai p + ... + anpn and radius r = »< We
get in this way a bijective map between M p and the set of balls of Zp: Observe
that a ball B~r(a) defined by d(x, a) ~ r is the same as a ball B<r,(a) for some
r' > r ,
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The monoid M p has several matrix representations

For example, when n = 2, we can take

S 1-+ r, = (~ ~) (s E S = {O, 1, . .. , p - I}).

Indeed,

Ta Tb = (~ ~) (~ ~) = ~2 a ~ bP) ,
and more generally,

Observe that in this representation the length of a word corresponds to the order of
the deterrninant of the matrix. In terms of balls, the radius appears as the absolute
value ofthe deterrninant, whereas a center ofthe ball is read in the upper right-hand
corner of the matrix. With the preceding notation

Sn)1 .

Euclidean models of the ring of p-adic integers will be obtained in the next section
by means of injective representations

Since M p is free, such representations are completely deterrnined by the images
ofthe generators, namely by p matrices Mo, . . . , Mp-l .

2.5. Euclidean Models

Let V be a Euclidean space, namely a finite-dimensional inner product space over
the field R of real numbers. Select an injective map

v : S= {O, 1,2, . . . ,p-l} ---+ V, v(S) = bC V,

and define the vector mappings (using vector digits)

'" i '" v(ai)\11 = \I1v,b : Zp ---+ V, L...J a,P 1-+ {} L.. bi+l .
i~O i~O

Since Zp = Uooes(ao + pZp), we have
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For large enough values of b, the image F = Fv.b = Wv.bZp will also be a disjoint
union of self-similar images. In this way we get a construction of spatial models
W(Zp) by iteration (similar to the construction of the Cantor set as an intersection
of compact sets).

More explicitly, let us denote by f the convex hull of :E in V . As is known,
this is the intersection of all half spaces contain ing :E . It is also the intersection
of those half spaces containing :E and having for boundary a hyperplane touching
the configuration. Let A be an affine linear functional on V such that

A :::: I on E , A(V) = 1 for some v E :E.

Choose f} = b - 1. Then

(
"v(ai ) ) ,,1

A o~ bi + ) s o~ b i + ) = 1,
12::0 12::0

so that the image F of Wis also contained in the convex hull of E: F C f = Ko.
Moreover, by choice of the constant f},

A(f} :Ei2::0 bi: ) ) = 1.

From the self-similarity representation of F we get a better approximation

F = U (f}~ + F) C K) = U (f}~ + Ko) .
vel: b b vel: b b

Iterating this inclusion in the self-similarity representation of F we get an even
better approximation:

Eventually, this leads to a representation of the fractal F as the intersection of
a decreasing sequence of compact sets Kn • Several pictures will illustrate this
construction.

(2.5.1) Take, for example, p = 3, V = R3 with canonical basis eo, e), ez,and
v(k) = ek. Then the corresponding vector maps W : Z3 -+ R3 are given by

" i " e
a

·a = L.., ai3 t-+ W(a) = f} L.., i~)'
i 2::0 b

Let us choose the constant f} such that

W(O) = f}L b~) = eo,

namely f} Li>O Ijbi+) = f}j(b -I) = 1. In this case, the image ofw is contained
in the plane x+y +z = 1. Since the components ofthe images W(a) are positive,
the image of the map Wis contained in the unit simplex of R3 (convex span of the
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basic vectors) . More precisely, the mappings q, are injective for b > 2, and hence
give homeomorphic images - models - of Z3 in this simplex . When b = 2, the
image is a Sierpitiski gasket - hence connected - in this simplex . In general, the
image is a fractal having self-similarity dimension log 3/ log b.

Models of Z3: Sierpirisky gasket

(2.5.2)Takenow p = 5, V = R2,andthemap v definedby v(O) = (0,0), v(1) =
(1,0), v(2) = (0,1), v(3) = (-1,0), v(4) = (0, -1). With a suitably chosen
normalization constant {}, the components of an image q,(a) = (x, y) will satisfy
-1 :5 x + Y :5 1 and -1 :5 x - Y :5 I. The image of q, is a union of the similar
subsets q,(k+5Zs) (0 :5 k :5 4). Observe that q,(5Zs) = b-I q,(Zs) and that these
subsets are disjoint when b > 3. In this case, the image is a fractal of self-similarity
dimension log 5/ log b. In the limit case b = 3 the image is connected.

. . . . . . . . .... .. . . . . . . . .
·...·
•...·

·...·· . ..........· . .·...··...·
•...
•·...·· . ..........· . .·...·

·...·
·...·

Model of Zs as planar fractal
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(2.5.3) It is interesting to refine the preceding construction by addition of an
extra component. Take p = 5 as before but V = R3 with v' of the form

v'(k) = (v(k), hk ) E R3,

ho = 0, h] = h3 = -h2 = -h4 = h > 0.

The corresponding vector maps Whave images in a tetrahedron bounded by an
upper edge parallel to the x-axis and a lower edge parallel to the y-axis (hence
two horizontal edges: Choosing h suitably, we get a regular tetrahedron) . These
edges give linear models of Z2, and the vertical projection on the horizontal plane
(obtained by omitting the third component) is the previous construction. But now,
the vector maps W are already injective for b > 2, and in the limit case b = 2 the
image is a well-known connected fractal, parametrized by Zs. As in (2.2), these
vector mappings fumish commutative diagrams

Wb : Zs -+ Wb(ZS) -+ V

i r / g

<I> = W2: Zs -+ <I>(Zs)

Model of Zs as space fractal

(2.5.4) Take p = 7, v: {O, 1,2, ... , 6} -+ R3 given by v(O) = °and

v(l)=(l ,O,-l) v(2) = (0, 1,-1) v(3)=(-1 ,1,0)
v(4)=(-1 ,0,1) v(5)=(0,-1,1) v(6)=(1,-1,0).

With a suitable normalization constant, all the image points will remain in the cube

-l~x~l, -l~y~l , -l~ z~l.

The components of an image also satisfy x + y + z = 0, and hence are situ­
ated in this plane, intersecting the cube in a regular hexagon . For b > 3 we get
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interesting models of Z7 in this hexagon. In the limit case b = 3, a connected
fractal parametrized by Z7 appears.

(2.5.5) We can give a 3-dimensional model refining the preceding one. Still
with p = 7, take the canonical basis el, e2, e3 of R3 and consider the vector map
corresponding to the choice v(O) = 0 and

v(l) = el

v(4) = -ei

v(2) = e2

v(5) = -e2

v(3) = e3

v(6) = -e3.

The image of the corresponding vector map 'i' : Z7 --+ R3 is a fractal model con­
tained in the octahedron

Ixl+IYI+lzl s I

(provided that we choose a correct normalization constant f}) . A suitable projection
ofthis model on a plane brings us back to the preceding planar example (contained
in a hexagon).

The preceding constructions are similar to the IFS (iterated function systems)
used for representing fractals : They stern from affine Euclidean representations of
the monoid of balls of Zp. In fact, in this section only translations and dilatations
are used (rotations will also occur in II.4.5 and II.4.6).

Models OfZ7

2.6. An Exotic Example

There is an interesting example connecting different primes. We can add formally
(i.e., componentwise) two 2-adic numbers and consider this sum in Z3' We thus
obtain a continuous map
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We can make a commutative diagram

Z2 X Z2
-!­

CxC
n

[O,lf

+--+

+--+

Z3
-!­

C+C
n

[0,2] .

Recall that the left vertical map is given by

and hence the diagonal composite is

( " ; " ;) " a, + b;LJa;2, LJb;2 t-+ 2 LJ 3i'+! '

Consequently, this composite has an image equal to the whole interval [0,2].
Hence addition C x C ~ [0, 2] is also surjective . A good way of viewing the
situation is to make a picture of the subset C x C in the unit square of R2 and
consider addition (x , y) t-+ (x + y , 0) as a projection on the x-axis. The image of
the totally disconnected set C x C is the whole interval [0, 2].

••• •••.. ..... . ....=:;:....•.....
-.

2

A projection of C x C

3. TopologicalAlgebra

3.1. Topological Groups

Definition. A topological group is a group G equipped with a topology such
thatthe map (x , y ) t-+ xy-l : G x G ~ Gis continuous.
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If Gis a topologieal group, the inverse map x 1--+ x-I is eontinuous (fix x = e
in the eontinuous map (x, y) 1--+ xy-I) and henee a homeomorphism of order 2
of G. The translations x 1--+ ax (resp. x 1--+ xa) are also homeomorphisms (e.g.,
the inverse of x 1--+ ax is x 1--+ a-Ix). A subgroup of a topologieal group is a
topologieal group for the indueed topology.

Examples. (1) With addition, Zp is a topologieal group . We have indeed

for all n ::: O. In other words , using the p-adie metrie (2.1), we have

proving the eontinuity ofthe map (x , y) 1--+ X - Y at any point (a, b).
(2) With respeet to multiplieation, Z; is a topologieal group . There is a funda­

mental system of neighborhoods of its neutral element 1 eonsisting of subgroups:

1+ pZp ::J 1+ p2Zp ::J • . . ::J 1+ pnZp ::J . . •

eonsists of subgroups: If er,ß E Zp, we see that (l +v"ß)-I = 1+ pnß' for some
ß' E Zp (as in (1.5», and henee

a = 1+ pner, b = 1+ pnß ===} ab-1 = (l + pner)(l + pnß') = 1+ pny

for some y E Zp. Consequently,

a' E a(1 + pnZp), b' E b(1 + pnZ p) ==} a'b,-I E ab-I(1 + pnZp) (n::: 1),

and (x, y) 1--+ xy-I is eontinuous. As seen in (1.5) ,1 + pZp is a subgroup ofindex
p - 1 in Z;. It is also open by definition (2.1). With respeet to multiplieation, all
subgroups 1 + pnzp (n ::: 1) are topologieal groups .

(3) The realline R is an additive topologieal group .

If a topologieal group has one eompaet neighborhood of one point, then it is a
loeally eompaet spaee. If a topologieal group is metrizable, then it is a Hausdorff
spaee and has a eountable fundamental system of neighborhoods of the neu­
tral element. Conversely, one ean show that these eonditions are sujjicient for
metrizability.'

Let G be a metrizable topologieal group . Then there exists ametrie d on G that
defines the topology of G and is invariant under left translations:

d(gx, gy) = d(x, y) .

1Specific references for the text are listed at the end of the book.
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A metrizable group G can always be completed , namely, there exists a comp­
lete group Gand a homomorphism j : G ~ Gsuch that

• the image j(G) is dense in G,
• j is a homeomorphism G ~ j (G) ,
• any continuous homomorphism f : G ~ G' into a complete group G' can be

uniquely factorized as f = g 0 j : G ~ G~ G' with a continuous homomor­
phismg : G~ G'.

3.2. Closed Subgroups ofTopological Groups

As already observed, a subgroup of a topological group is automatically a topolo­
gical group for the induced topology.

Lemma. Let G be a topological group, Ha subgroup of G.

(a) The closure Hof His a subgroup of G.
(b) Gis Hausdorffprecisely when its neutral element is closed.

PRoOF. (a) Let sp : G x G ~ G denote the continuous map (x, y) 1-+ xy-I . Since
His a subgroup, we have ifJ(H x H) eH and hence

ifJ(H x H) = ifJ(H x H) C ifJ(H x H) C H.

This proves that H is a subgroup .
(b) Let us recall that a topological space X is Hausdorff precisely when the

diagonal D.x is closed in the product space X x X. In any Hausdorff space the
points are closed, and thus

G Hausdorff~ {e} closed

~ D.G = ifJ-1(e) closed in G x G

~ G Hausdorff.

The lemma is completely proved. -
Proposition. Let H be a subgroup of a topological group G. If H contains
a neighborhood of the neutral element in G, then H is both open and closed
in G.

PROOF. Let V be a neighborhood of the neutral element of G contained in H. Then
for each h EH, h V is a neighborhood of h in G contained in H . This proves
that H is a neighborhood of all of its elements, and hence is open in G. Consider
now the cosets g H of H in G. Since translations are homeomorphisms of G,
these cosets are open in G. Any union of such cosets is also open. But H is the
complement of the union of all cosets g H f. H . Hence H is closed. _
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Examples. The subgroups pnzp (n ~ 0) are open and closed subgroups of the
additive group Zp, The subgroups 1+pnzp (n ~ 1) are open and closed subgroups
ofthe multiplicative group 1 + pZp .

Let us recall that a subspace Y of a topological space X is called locally closed
(in X) when each point y E Y has an open neighborhood V in X such that Y n V
is closed in V. When this is so, the union of all such open neighborhoods of points
of Y is an open set U in which Y is closed. This shows that the locally closed
subsets of X are the intersections U n F of an open set U and a closed set F
of X. In fact, Y is locally closed in X precisely when Y is open in its closure Y.
Locally compact subsets of a Hausdorff space are locally closed (a compact subset
is closed in a Hausdorff space). With this concept, the preceding proposition admits
the following important generalization.

Theorem. Let G be a topological group and H a locally closed subgroup. Then
His closed.

PRooF. If H is locally closed in G, then H is open in its closure H. But this closure
is also a topological subgroup of G. Hence (by the preceding proposition) H is
closed in H (hence H = H) and also closed in G by transitivity of this notion. _

Altematively, we could replace G by H, thus reducing the general case to H
locally closed and dense in G. This case is particularly simple, since all cosets g H
must meet H: gEH for all gE G, namely H = G.

Corollary 1. Let H be a locally compact subgroup 0/a Hausdorjftopological
group G. Then H is closed. _

Corollary 2. Let r be a discrete subgroup 0/a Hausdorjftopological group G.
Then r is closed. _

The completion Gof G is also a topological group. If G is locally compact, it
must be closed in its completion, and we have obtained the following corollary.

Corollary 3. A locally compact metrizable group is complete. -
3.3. Quotients ojTopological Groups

As the following statement shows, the use of closed subgroups is weIl suited for
constructing Hausdorff quotients. Let us recall that if H is a subgroup of a group
G, then G j H is the set of cosets g H (g E G) . The group G acts by left translations
on this set. When H is anormal subgroup of G, this quotient is a group . Let now
G be a topological group and

JT:G-+GjH
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denote the canonical projection. By definition of the quotient topology, the open
sets U' C GIH are the subsets such that U = 1T-1(U') is open in G. Now, if U is
any open set in G, then

1T-1(1TU) = U H = UUh
hEH

is open, and this proves that 1T U is open in GIH . Hence the canonical projection
1T : G ~ GIH is a continuous and open map. By complementarity, we also see
that the closed sets of GIH are the images of the closed sets of the form F = F H
(i.e., F = 1T-1(F ' ) for some complement F' of an open set U' C GIH). It is
convenient to say that a subset A C G is saturated (with respect to the quotient
map 1T) when A = AH, so that the closed sets of GIH are the images of the
saturated closed sets of G (but 1T is not a closed map in general).

Proposition. Let H be a subgroup0/a topological group G. Then the quotient
GIH (equipped with the quotient topology) is Hausdorffprecisely when H is
closed.

PRüOE Let 1T : G ~ GIH denote the canonical projection (continuous by defi­
nition ofthe quotient topology). Ifthe quotient GIHis Hausdorff, then its points
are closed and H = 1T-1(e) is also closed. Assume conversely that H is closed in
G. The definition of the quotient topology shows that the canonical projection 1T
is an open mapping. We infer that

1TZ = 1T X 1T : G x G ~ GIH x GIH

is also an open map. But Ker(1Tz) = H x H C G x G. Hence 1TZ induces a
topological isomorphism

1f : (G x G)/(H x H) ~ GIH x GIH.

To prove that GIH is Hausdorff, we have to prove that the diagonal

I:i. = {(x , x) : x E GIH}

is closed in the Cartesian product GIH x GIH. Since the map 1f is a homeomor­
phism, it is the same as proving that the inverse image A of this diagonal is closed
in (G x G)/(H x H). This inverse image is

A = {(g, k) mod H x H : gH = kH}
= {(g,k) mod H x H: k-1g EH} .

But R = {(g, k) : k-1gEH} C G x G is closed by assumption: It is an inverse
image of the closed set H under a continuous map. This closed set R is obviously
saturated, i.e., satisfies

R = R · (H x H).
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This proves that its image R' = A in the same quotient is closed, and the conclusion
is attained. _

Together with the theorem of the preceding section, this proposition establishes
the following diagram of logical equivalences and implications for a topological
group G and a subgroup H.

G j H finite Hausdorff {:::::>

.JJ.
G j H discrete {:::::>

.JJ.
G j H Hausdorff {:::::>

H closed of finite index

.JJ.
Hopen

.JJ.
H closed

3.4. Closed Subgroups ojthe Additive Real Line

Let us review a few well-known results conceming the classical realline, viewed
as an additive topological group. At first sight, the differences with Zp are striking,
but a closer look will reveal formal similarities, for example when compact and
discrete are interchanged.

Proposition 1. The discrete subgroups 0/ Rare the subgroups

aZ (0 S a ER).

PRooF. Let H #- {O} be a nontrivial discrete subgroup, hence closed by (3 .2) .
Consider any nonzero h in H, so that 0 < IhI (= ±h) EH. The intersection H ()
[0, IhIl is compact and discrete, hence finite, and there is a smallest positive element
a EH. Obviously, Z . aCH. In fact, this inclusion is an equality. Indeed, if we
take any b E Hand assume (without loss of generality) b > 0, we can write

b = ma + r (m E N, 0 Sr< a)

(take for m the integral part of bja). Since r = b - ma E H and 0 Sr< a,
we must have r = 0 by construction. This proves b = ma E Z . a, and hence the
reverse inclusion H C Z . a. _

Corollary. The quotient 0/ R by a nontrivial discrete subgroup H #- {O} is
compac~ _

Proposition 2. Any nondiscrete subgroup 0/ R is dense.

PRooF. Let HeR be a nondiscrete subgroup. Then there exists a sequence of
distinct elements hn E H with hn -+ h EH. Hence Sn = Ihn - h I E H and Sn -+ O.
Since H is an additive subgroup, we must also have Z . Sn C H (for all n ::: 0),
and the subgroup H is dense in R. _
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CoroUary. (a) The only proper closed subgroups of Rare the discrete sub­
groups aZ (a ER).

(b) The only compact subgroup of R is the trivial subgroup {O}. •

Using an isomorphism (of topological groups) between the additive realline
and the positive multiplicative line, for exarnple an exponential in base p

(the inverse isomorphism is the logarithm to the base p) we deduce parallel results
for the cIosed (resp. discrete) subgroups of the topological group R>o.

Typically, we shall use the fact that the discrete nontrivial subgroups of this
group have the form paZ (a > 0) or, putting () = p-a, are the subgroups

for some 0 < () < 1.

3.5. Closed Subgroups ofthe Additive Group of p-adic Integers

Proposition. The closed subgroups ofthe additive group Zp are ideals: They
are

PROOF. We first observe that multiplication in Zp is separately continuous, since

Ix'a -xa/ = lallx' -x/-+ 0 (x' -+ x).

Since an abelian group is a Z-module, if H C Zp is a cIosed subgroup, then for
any h e H,

ZH eH==> Zpa C Za C Jj = H.

This proves that a cIosed subgroup is an ideal of Zp (or a Zp-module). Hence the
result follows from (1.6). •

Corollary 1. The quotient of Zp bya closed subgroup H i= {O} is discrete. •

Corollary 2. The only discrete subgroup ofthe additive group Zp is the trivial
subgroup {O}.

PROOF. Indeed, discrete subgroups are cIosed: We have a complete list of these
(being cIosed in Zp compact , a discrete subgroup is finite hence trivial). Alterna­
tively, if a subgroup H contains a nonzero element h, it contains all multiples of h,
and hence H :J N . h. In particular, H :3 pnh -+ 0 (n -+ 00). Since the elements
r" h are distinct, H is not discrete. •
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3.6. Topological Rings

Definition. A topological ring A is a ring equipped with a topology such that
the mappings

(x , y) t-+ X + y : A x A -+ A,

(x, y) t-+ X • Y : A x A -+ A

are continuous.

The second axiom implies in particular that y t-+ - Yis continuous (fix x = -1
in the product). Combined with the first, it shows that

(x, y) t-+ X - Y : A x A -+ A

is continuous and the additive group of A is a topological group. A topological
ring A is a ring with a topology such that A is an additive topological group and
multiplication is continuous on A x A.

If A is a topological ring, the subgroup A x of units is not in general a to­
pological group, since x t-+ x-I is not necessarily continuous for the induced
topology (for an example of this, see the exercises). However, we can consider the
embedding

X t-+ (x ,x-I ) : A X -+ A x A,

andgive A X the initial topology: It is finerthan the topology induced by A . Forthis
topology, A x is a topological group: The continuity of the inverse map, induced by
the symmetry (x, y) t-+ (y, x) ofAx A, is now obvious. Still with this topology,
the canonical embedding A x C-)- A is continuous, but not a homeomorphism onto
its image in general.

Proposition. With the p-adic metric the ring Zp is a topological ring. It is a
compact, complete, metrizable space.

PRooF. Since we already know that Zp is a topological group (3.1), it is enough to
check the continuity of multiplication. Fix a and bin Zp and consider x = a + h,
y = b + k in Zp . Then

[xy - abi = I(a + h)(b + k) - abi = lak + hb - hkl

~ maxf]c], Ibl)(lhl + Ikl) + Ihllkl -+ 0 (Ihl, Ikl -+ 0).

This proves the continuity ofmultiplication at any point Ca, b) E Zp x Zp . •

Corollary 1. The topological group Zp is a completion ofthe additive group
Z equipped with the induced topology. •
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To make the completion process explicit, let us observe that if x = Li>O ai pi
is a p-adic number, then -

X n = L aipi E N
O::;:i<n

defines a Cauchy sequence converging to x .

Corollary 2. The addition and multiplication of p -adic integers are the only
continuous operations on Zp extending addition and multiplication ofthe nat­
ural numbers. _

3.7. Topological Fields, ValuedFields

Definition. A topological field K is a field equipped with a topology such that
the mappings

(x, y) f-+ X +Y : K x K ~ K,

(x, y) f-+ X • Y : K x K ~ K,

X f-+ X-I: K X ~ K X

are continuous.

Unless explicitly stated otherwise, fields are supposed to be commutative . A
topological field is a topological ring for which K x = K - {O} with the induced
topology is a topological group. Equivalently, a topological field is a field K
equipped with a topology such that

(x, y) f-+ X - Y is continuous on K x K,

(x , y) f-+ x/y is continuous on K X x K X
•

Except for the appendix to Chapter 11, we shall be interested only in valuedfields:
Pairs (K , I . I) where K is a field, and I . I an absolute value, namely a group
homomorphism

extended by 101 = °and satisfying the triangle inequality

Ix + yl :s: [x] + lyl (x, y E K),

or the stronger ultrametric inequality

Ix + yl :s: maxt]r], Iyl) (x, y E K).

In this case d(x, y) = [r - yldefines an invariant metric (or ultrametric) on K,

d(x, y) = d(x - a, y - a) = d(x - y , 0) (a, x, y E K).
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This situation will be systematically considered from (II.1.3) on, and in the ap­
pendix of Chapter II we shall show that any locally compact topological field can
be considered canonically as a valued field.

Proposition 1. Let K be a valued fleld. For the topology deflned by the metric
dtx, y ) = Ix - YI, K is a topologicalfleld.

PROOF. The map (x, y ) 1-+ X - Y is continuous. Let us check that the map (x, y ) 1-+

xy-I is continuous on K X x K X
• We have

x +h x hy -kx
----=
y+k y y(y+k)

Hence if y =f:. 0 is fixed, Ikl < lyl/2, and c = maxt]x], Iyl),

IX + h -~I <2clhl+lkl-+O (lhl,lkl-+O).
y +k y ly21

This proves that K is a topological field. •
Proposition 2. Let K be a valuedfleld. Then the completion K0/K is again a
valued fleld.

PRooF. The completion K is obviously a topological ring, and inversion is contin­
uous over the subset of invertible elements. We have to show that the completion
is afleld. Let (xn ) be a Cauchy sequence in K that defines a nonzero element ofthe
completion K.This means that the sequence IXn Idoes not converge to zero. There
is a positive e > 0 together with an index N such that IXn I > e for all n 2: N. The
sequence (1/Xn)n~N is also a Cauchy sequence

1
1 1 I IX

n - X
m I 2- - - = :::: e- IXn -xml-+ 0 (n,m -+ 00).

Xn Xm XnXm

The sequence (l/Xn)n>N (completed with l 's for n < N) defines an inverse ofthe
original sequence (xn)in the completion K. •

4. Projective Limits

4.1. Introduction

Let x = Li>O ai pi be a p-adic integer. We have defined its reduction mod p as

e(x) = ao mod p E F p ' We can also consider the finer reduction ao +al P mod p2
or more generally

en(x) = Lai/ mod pn E Z/pnZ.
i<n
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By definition of addition and multiplication of p-adic integers, we get homomor­
phisms

Sn : Zp -+ ZjpnZ.

Since Xn = Li<n a.p' -+ X (n -+ (0), we would also like to be able to say that
the rings Zjpnz converge to Zp. This convergence relies on the links given by the
canonical homomorphisms

and the commutative diagram

Zjpn+lZ

Sn+l ({Jn
,/ Sn ">l

Zp ---+ Zj pnz

which we interpret by saying that Zp is closer to Zjpn+lz than to Zjpnz.
Before proceeding with precise definitions, let us still consider an example

emphasizingasimilarsituationforsets. Considerthe finite products E; = Di<n Xi

of a sequence (Xi)i:,:O of sets. We would like to say that these partial products
converge to the infinite product E = Di>O X, and thus consider this last product
as limit ofthe sequence (En). For this purpose, we have to fonnalize the notion of
approximation of E by the En • This relation is given by the projections

p;: E -+ En

omitting components of index i :::: n. In a sense, these projections are composed
of infinitely many arrows - each Ipj : E H 1 -+ E j omitting a component - as
in the chain of maps

Pn : E -+ . .. -+ En+2 -+ En+l -+ En·

One can consider that any set X, given with a farnily of maps In : X -+ En which
have the same property as above, is an upper bound ofthe sequence (En). A limit of
the sequence would then be aleast upper bound. Thus the limit would be an upper
bound (E, (Pn» such that every upper bound (X, In) is obtained by composition
with a map I : X -+ E as folIows:

f
In = Pn 0 I : X -+ E -+ ... -+ En+2 -+ En+1 -+ En.

This factorization plays the role of remainder after division of In by all maps
Ipj : EH 1 -+ E j for j :::: n:

In = Ipn Oln+l = ({Jn 0 Ipn+l 0 In+2 = 1{!n 0 I·

These preliminary considerations should motivate the following definition.
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4.2. Definition

A sequence (En, epnk:o of sets and maps epn: En+i --+ En (n 2:: 0) is ca lied a
projective system. A set E given together with maps Yn: E --+ En such that
Yn = qJn 0 Yn+i (n 2:: 0) is called a projective limit ofthe sequence (En, qJn)n~O
if the following condition is satisfied: For each set X and maps fn : X --+ En sat­
isfying fn = qJn 0 fn+i (n 2:: 0) there is a unique factorization f of fn through the
set E:

fn = Yn 0 f : X --+ E --+ E; (n 2:: 0).

The maps qJn : En+i --+ En are usually called transition maps of the projective
system. The whole system, represented by

is also called an inverse system. "The" projective limit E = lim En is also placed
<--

at the end of the inverse system:

fn~'" tf

x

The hypothesis fn = qJn 0 fn+i can be iterated, and it gives

fn = qJn 0 fn+i = qJn 0 qJn+i 0 fn+2

= (qJn 0 qJn+i 0 ... 0 qJn+k) 0 fn+k+i = Yn 0 f

for k 2:: O. Hence f behaves as a limit of the fj (j --+ 00) and Yn as a limit
of composition of transition mappings qJn 0 qJn+i 0 • •• 0 qJn+k when k --+ 00. The
factorization condition is a universal property in the sense that it must hold for
all similar data. Finally, it is obvious that if (E, (Yn)n~O) is a projective limit of a
sequence (En, qJn)n~O, it will still be a projective limit of any sequence (En, qJn)n~b
since we can always define inductively Yn-i = qJn-i 0 Yn for n < k. In other
words, projective limits do not depend on the first tenns of the sequence.

4.3. Existence

Theorem. For everyn'Ojective system a; qJn)n~O ofsets, there is a projective
limit E = lim En C En with maps Yn given by (restriction of) projections.

<--
n>O

Moreover, if(E', Y~) IS another projective limit ofthe same sequence, there is
a unique bijection f : E' --+ E such that Y~ = Yn 0 f.
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PROOF. Let us prove existence first. For this purpose, define

E = ((xn) : lpn(Xn+l) = Xn for all n 2: O} C nEn.
n:o:O

The elements of E are thus the coherent sequences (with respect to the transition
maps lpn) in the product. Ifx E E, we have by definition

hence for the restrictions 1f!n of the projections Pn to E,

lpn 01f!n+l = 1f!n'

The set E with the maps 1f!n can thus be viewed as an upper bound of the sequence
En with transition maps lpn' Let us show that this construction has the required
universal property. For this purpose consider any other set E' with maps 1f!~ : E' -+
En satisfying lpn 0 1f!~+1 = 1f!~, and let us show that there is a unique factorization
of v; by 1f!n ' It is clear first that the v; define a (vector) map

(1f!~) : E' -+ ne; Y ~ (1f!~(Y» ·

The relations 1f!~(Y) = lpn(1f!~+l (y» show that the image of the vector map (1f!~)

is contained in the subset E of coherent sequences. There is thus a unique map
/ : E' -+ E C TI E; having the required properties v; = 1f!n 0/, and this one
is simply the vector map (1f!~) considered as having target E. All that remains
is to prove the uniqueness. If both (E, (1f!n» and (E', (1f!~» have the universal
factorization property, there is also a unique map /' : E -+ E' with 1f!n = 1f!~ 01'.
Substituting this expression in 1f!~ = 1f!n 0/, we find that

1f!~ = 1f!n 0/ = 1f!~ 0/' 0 I,

and I' 0 / is a factorization of the identity map E' -+ E'. Since we are assurning
that (E', 1f!~) has the unique factorization property, we must have I' 0 / = idE,.
One proves sirnilarly that / 0 /' = idE. •

Corollary. When all transition maps in a projective system (En , lpn)n:o:O are
surjective, then the projective limit (E, (1f!n)) also has surjective projections 1f!n ,
and in particulat; the set E is not empty.

PROOF. By construction of Ein the product TI En , it is enough to show that if one
component Xn E E; is given arbitrarily, then there is a coherent sequence with
this component in En. It is enough to choose Xn+l E En+1 with lpn(Xn+l) = Xn
(this is possible by surjectivity of lpn) and to continue choices accordingly. The
(countable!) axiom of choice ensures the possibility of finding a global coherent
sequence with prescribed nth component. •
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4.4. Projective Limits ofTopological Spaces

When the projective system (En, qJnk:o is forrned of topological spaces and con­
tinuous transition maps, the construction made in the previous section (4.3) im­
mediately shows that the projective limit (E, ifln) is a topological space equipped
with continuous maps ifln : E -+ E; having the universal property with respect to
continuous maps . Any topological space X equipped with a family of continuous
maps fn : X -+ E; such that fn = qJn 0 fn+1 (n ~ 0) has the factorization property
fn = ifIn 0 f with a continuousfunction f : X -+ E . Indeed, this factorization
is simply given in components by the fn and is continuous by definition of the
product topology (andthe induced topology on the subset~ e, C TI En ) . When

the topological spaces E; are Hausdorff spaces, the subspace lim E; is closed : It
+--

is the intersection of the closed sets defined respectively by the coincidence of the
functions P» and sp 0 Pn+ I . For future reference, let us prove a couple of results.

Proposition 1. A projective limit ofnonempty compact spaces is nonempty and
compact.

!>ROOF. Let (Kn, qJn) be a projective system consisting of compact spaces. The
product of the K; is a compact space (Tychonoff's theorem), and the projective
limit is a closed subspace ofthis compact space. Hence lim K; is compact. Define

+--

These subsets are compact and nonempty. Their intersection Ln is not empty in
the compact space Kn. Moreover, qJn(Ln+l) = Ln, and the restriction ofthe maps
qJn to the subsets Ln leads to a projective system having surjective transition map­
pings. By the corollary in (4.3), this system has a nonempty limit (with surjective
projections). Since lim Ln C lim KM the proof is complete. _

+-- +--

Corollary. A projective limit ofnonempty finite sets is nonempty. -
Proposition 2. In a projective limit E = lim En oftopological spaces, a basis

+--

of the topology is furnished by the sets ifI;;I(Un), where n ~ 0 and U; is an
arbitrary open set in En.

!>ROOF. We take a family x = (Xi) in the projective limit and show that the men­
tioned open sets containing X form a basis of neighborhoods of this point. If we
take two open sets Vn C E; and Vn-I C En- I, the conjunction ofthe conditions
Xn E Vn and Xn-I E Vn-I means that

Call u, the open set Vn n qJ;~1 (Vn-I) of e; Then the preceding condition is still
equivalent to x E ifI;;I(Un). By induction, one can show that a basic open set in
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the product - say TIn<N Vn x TIn>N En - has an intersection with the projective

limit of the form 0/IV! (-UN) for some open set UNe E N. -

Corollary. The projective limit ofthe sequence ofinitial partial products En =
TIi<n X, ofa sequence oftopological spaces is (homeomorphic to) the topolo­
gical product Oi:':OXi ofthe family. -

PROOF. The canonical projections TIi>O X, ~ En fumish a continuous bijective
factorization Oi>O X, ~ lim En , which is an open map by definition of the open
sets in these two-spaces . ~ _

Proposition 3. Let A be a subset ofa projective limit E = lim En oftopological
spaces. Then the closure Aof A is given by ~

A= no/;;!(o/n(A» .
n:,:O

PROOF. It is clear that A is contained in the above mentioned intersection, and that
this intersection is closed.Hence Ais also contained in the intersection.Conversely,
if b lies in the interseetion, let us show that b is in the closure of A. Let V be a
neighborhood ofb, Without loss ofgenerality, we can assume that V is of the form
o/;;!(Un) for some open set U; C En. Hence o/n(b) C UnoSince by assumption
b E o/;;!(o/n(A», we have o/n(b) E o/n(A), and the open set U; containing b must
meet o/n(A): There is a point a E A with o/n(a) E UnoThis shows that

a E An o/;;!(Un) .

In particular, this intersection is nonempty, and the given neighborhood of b indeed
meets A. _

Corollary 1. If K is a compact subset ofa projective limit E = lim E«, then
~

K = no/;;!(o/n(K» .
n:,:O

Corollary 2. A subset A ofa topological projective limit is dense exactly when
all its projections o/n(A) are dense. _

4.5. Projective Limits ofTopological Groups

It is also clear that ifa projective system (G n v CPn) is formed of groups Gn and homo­
morphisms CPn: Gn+! ~ Gn, then the projective limit G = lim G, is nonempty
since it contains the neutral sequence (e, e, ...). It is even agroup having this
sequence as neutral element, and the projections o/n : G ~ G; are group homo­
morphisms. The universal factorization property holds in the category of groups .

An interesting case is the following . Let G be a group and (Rn) a decreasing
sequence of normal subgroups of G. We can then take Gn = G/ Rn and (since
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Hn+1 C Hn), CPn : G/ Hn+1~ G/ H; the canonical projection homomorphism. The
projective limit of this sequence is a subgroup of the product

G=1~G/Hn C nG/Hn

together with the restrictions of projections Vrn : G~ G/ Hs . Since the system of
quotient maps In : G ~ G/ H; is always a compatible system, we get a factoriza­
tion I : G ~ G such that In = Vrn 0 I . It is easy to determine the kernelofthis
factorization I:

In fact , we have the following general result.

Proposition. LetG = lim Gnbe aprojective limit ofgroups, andletVrn:G~ Gn
+-

denote the eanonieal homomorphisms. Then nkerVrn = {e} is redueed to
the neutral element and G is eanonieally isomorphie to the projeetive limit
lim (G / ker Vrn).
+-

PROOF. Let G' = nker Vrn and consider the embedding I: G' ~ G leading to
trivial composites In = VrnIG' = Vrn 0 I. Since the system (G', In) obviously
admits the trivial factorization g : G' ~ G (constant homomorphism with image
e E G), we have I = g by uniqueness. This proves that the embedding I is trivial,
namely G' = {e}. Of course, one can also argue that since the projective limit G
consists of the coherent sequences in the product nGn, with maps Vrn given by
restriction of projections, n ker Vrn consists only ofthe trivial sequence. _

4.6. Projective Limits ojTopological Rings

It would be a tedious task to give a list of all structures for which projective
limits can be defined. One can do it for rings, vector spaces, . . . , and one can mix
structures, for example by looking at topological groups, topological rings, and
so on. Just for caution: A projective limit of fields is a ring, not a field in general
(because a product of fields is not a field). Coming back to the case of a group
G (having no topology at first), in which a decreasing sequence (Hn ) of normal
subgroups has been chosen, we can consider the projective limit of the system of
diserete topological groups Gn = G/ Hn. Let again G = lim G/ H; and identify

G with its image in G. Then G is dense in G , which can be viewed as a eompletion
of G. More precisely, the closure Hi of H, in Gis open and closed in G, and these
subgroups form a basis of neighborhoods of the identity in G . The subgroups H,
make up a basis of neighborhoods of the neutral element in G for a topology, and
G is the completion of this topological group. At this point one should recall that
a topological group admitting a countable system of neighborhoods of its neutral
element is metrizable.
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Similarly, if A is a commutative ring given with a decreasing sequence (In) of
ideals and transition homomorphisrns epn : A/In+1 -+ A/In, the projective limit
A = lim A/In is a topological ring equipped with continuous homomorphisms
(projections) o/n : A-+ A/ In' By the universal factorization property ofthis limit ,
we get a canonical homomorphism A -+ Athat is injective when nIn = {e}, and
in this case Acan be identified with the completion of A for the topology of this
ring, having the In as a fundamental system of neighborhoods of O.

4.7. Back to the p-adic Integers

We apply the preceding considerations to the ring Z of rational integers and its
decreasing sequence of ideals In = pnZ. The inclusions pn+lz C pnz lead to
canonical transition homomorphisms

The next theorem gives a second equivalent definition for p-adic integers .

Theorem. The mapping Zp -+ lim Z/pnZ that associates to the p-adic num­

her x = Lai p' the sequence (X:fn::::1 of its partial sums Xn = L i<n ai p i mod
pn is an isomorphism oftopological rings.

?ROOF. Since the transition homomorphism epn is given by

Laipi mod pn+1 t-* Laii mod p",
i~n ;<n

the coherent sequences in the product nZ/pnz are simply the sequences (Xn) of
partial sums of a formal series Li>O ai p i (0 ::: ai ::: p -1), and these are precisely
the p -adic integers. The relations-

XI = ao, X2 = ao + ai p, x3 = ao + ai p + a2p2,

and conversely

X2 -XI
ao=XI, al=---,

p

show that the factorization Zp -+ limZ/pnZ is bijective, and hence an algebraic
<--

isomorphism. Since this is a continuous map between two compact spaces, it is a
homeomorphism, whence the statement. •

One can note that the homomorphisms Z -+ Z/pn+lz -+ Z/pnz fumish a
limit homomorphism Z -+ lim Z/pnz, which can be identified to the canonical
embedding Z -+ z; The map

Laii mod pn t-* 2: aipi mod pnZp
i-cn i -cn
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obviously defines an isomorphism Z/pnz ~ Zp/ pnZp, and in particular,

zp/pzp ~ Z/pZ = Fp.

More generally, the same argument shows that

On the other hand, the restriction of the reduction homomorphism Zp ~ Z/pnZ
to the subring

Z(p) = {alb : a E Z, 0 =I bEN and b prime to p} C Q

is already surjective and has kernel pnz(p), hence defines an isomorphism:

Starting with the subring Z(p) C Q, we see that Zp appears also as a projective
limit lim Z(p)/ pnZ(p) and hence as a completion of this ring Z(p).

+-

Comment. The presentation of the ring Zp of p-adic integers as a projective
limit of the rings Z/pnz shows that one can choose any system of representatives
for Z mod pZ and write a corresponding expansion for any x E Zp in the form
x = LSipi with all digits Si ES. In particular, when the prime p is odd, it can
also be useful to choose the symmetrical system of representatives

S = {- P~I , .. . ,0, . .. , P~I} .

In practice, we always choose a system ofrepresentatives S containing 0 in order to
allow finite expansions x = L Si p' . For example, if we choose the representative
pES instead of 0 E S, the representations

p . 1 + 0 . P +L Si pi = 0 . 1+ 1 . P +L Si pi
i ::2 i ::2

are not perrnitted, since 0 rf. S.

4.8. Formal Power Series and p-adic Integers

Let us derive yet another presentation of p-adic integers . We denote by Z[[X]] the
ring offormal power series in an indeterminate X with rational integral coefficients.
A formal power series is just a sequence (an)neN of integers an E Z. Addition is
made coefficientwise,

and multiplication according to

(an) . (bn) = (cn) with Cn = L a.b, (n::: 0).
i+ j=n
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These composition laws appear naturally if we use the notation 1= I(X) =
Ln>o anX" for the sequence (an)neN. In this way we identify polynomials to for­
mal power series having only finitely many nonzero coefficients: Z[X] c Z[[X]].
We shall use formal power series rings over more general rings of coefficients and
shall study their formal properties when needed (VI.l).

Theorem. The map

LaiXi f-+ Lai/ : Z[[X]] ~ Zp

is a ring homomorphism. It defines a canonical isomorphism

Z[[X]]J(X - p) .:+ Zp ,

where (X - p) denotes the principal ideal generated by the polynomial X - P
in the formal power series ring.

!'ROOF. Let us consider the sequence of homomorphisms

In : Z[[X]] ~ ZJpnZ, LaiXi f-+ Laipi mod pn.
;<n

Since these maps In are obviously compatible with the transition homomorphisms
CPn defining the projective limit, we infer that there is a unique homomorphism

I: Z[[X]] ~ limZJpnZ = Zp
<--

compatible with the In. Ifx = Laipi is any p-adic integer, thenx = I(LaiXi),
and this shows that I is surjective. We have to show that the kernel of I is the
principal ideal generated by the polynomial X - p. In other words, we have to
show that if the formal power series L aiXi is such that Li<n a.p' E pnz for
every n > 0, then this formal power series Laix! is divisible by X - p. For
n = 1 the condition implies ao == 0 mod p, hence ao = pCLo for some integer CLo .
Then, for n = 2 we get

ao + ai p == 0 mod p2 =? CLo + al == 0 mod p ,

and we infer that there is an integer CLI such that CLo +al = pCLI. Let us go on:

(ao + asp) + a2p2 == 0 mod p3 =? CLlp2 +a2p2 == 0 mod p3,

which gives CLI + a2 = PCL2 for some integer CL2. Generally, for n ~ 1,

pnCLn_1+ anpn = ao +aip + ...+anpn == 0 mod pn+1

fumishes an integer CLn with CLn-1 +an = pCLn. All these relations can be summa­
rized by
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or still more concisely by

aoalX +a2X2 + ...= (p - X)(ao + alX + a2X2 + ..'),
namely

This concludes the proof. •
5. The Field Qp of p-adic Numbers

5.1. The Fraction Field ojZp

The ring of p-adic integers is an integral domain. Hence we can define thejield 0/
p-adic numbers as the fraction field of Zp

Qp = Frac(Zp) .

An equivalent definition of Qp appears in (5.4).
We have seen that any nonzero p-adic integer x E Zp can be written in the form

x = p" U with a unit u of Z p and m E N the order of x . The inverse of x in the
fraction field will thus be I/x = p-mu-I. This shows that this fraction field is
generated - multiplicatively, and a fortiori as a ring - by Zp and the negative
powers of p . We can write

Qp = Zp[l/p] .

The representation I/x = p-mu-I also shows that I/x E p-mzp and

is a union over the positive integers m. These considerations also show that a
nonzero p-adic number x E Qp can be uniquely written as x = pmU with mEZ
and a unit u E Z; ; hence

is a disjoint union over the rational integers mEZ. The definition of the order
given in (1.4) for p-adic integers can now be extended to p-adic numbers x E Qp .
If 0 '# x = p'"U with a unit u E Z;, then we define

ordp(x) = vp(x) = vp(pm u) =mEZ.

(When the reference to the prime p is not needed, we simply denote this order by
v(x) =ordx.) Hence
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Wehave

v(x) ~ ° {=:> x E Zp,

and this equivalence is valid even when x = °with the usual convention v(o) =
+00 ~ 0. If x = afb (a E Zp, °=1= b E Zp), then v(x) = v(a) - v(b) E Z, and
the basic relation

v(xy) = v(x) + v(y)

holds for all x , Y E Zp (even when xy = °with the convention m + 00 = 00 +
00 = (0). The p-adic order is a homomorphism

v : Q; = U pmZ; -+ Z.
meZ

Moreover, if x = pVu is a nonzero p-adic number, with u a p-adic unit, we can
write u = I:aipi E Zp with ao =1= °(0 ~ ai ~ P - 1), and

is a sum starting at the integer v = ordx E Z, possibly negative.
As in (1.4), we may compare these expansions to the Laurent expansions of

meromorphic functions (in the complex plane, near a pole) . The index ofthe first
nonvanishing coefficient is the order of the power series.

By convention, the order of the zero power series is +00. Hence the relation

v(x + y) ~ min( v(x), v(y»

holds in all cases .

Comment. IfZ(p) C Q denotes the subring consisting of rational numbers having
denominator prime to p, we have similar formulas

Q = UP-mZ(p),
m~O

QX = UpmZ(P)'
peZ

since the group Z(p) consists of the fractions having both numerator and denomi­
nator prime to p.

5.2. Ultrametrie Structure on Qp

The map x f-+ IxI = 1I p", where v =ord x E Z, defines a homomorphism

Q; -+ (RX
)+ = R>o

that we conventionally extend by the definition 101 = 0. This map extends the
previous absolute value on Zp and is called the p-adic absolute value on Qp
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(cf. (2.1), (3.7); absolute values will be systematically studied in Chapter H, cf.
(H.1.3». This absolute value has the characteristic properties

[x] » 0 if x =1= 0, IxYI = lxi' lyl, Ix + yl :s maxt]x] , Iyl)·

In particular, we can define ametrie on Qp by

d(x, y) = Ix - yl·

This distanee satisfies

d(x, y) > 0 if x =1= y and d(y, x) = d(x, y)

as weil as the triangle inequality in the strong ultrametric form

d(x, y) :s max(d(x, z), d(z , y» :s d(x, z) + dtz, y).

This metric is invariant on the additive group

d(x + z, y + z) = d(x, y)

and also satisfies

d(zx, zy) = Izl .d(x, y)

for all x, y, z E Qp . In particular,

d(x , y)
d(px,py) = --.

p

From now on we shall always consider Qp as a metric field, endowed with this
ultrametric distance. By (3.7) Qp is a valued field, and hence a topological field.

Theorem. The field 0/ p-adic numbers Qp induees on Zp the p-adie topology.
It is a locally eompaet field 0/ eharaeteristie O. It ean be identified with the
completion 0/ Z[l/p] = {apV : a E Z, v E Z}, or 0/ Q, for the p-adie
metrie.

PRooF. With the metric just introduced Zp is the unit ball centered at the origin in
Qp: For x E Qp we have equiva1ences

xE Zp {::=::} v(x) ::: 0 {::=::} [x] :s 1 {::=::} d(x, O):s 1.

Sirni1arly, if k ::: 0, the ideal pkZp is the ball defined by d(x, 0) :s p:", These
balls make up a fundamental system of neighborhoods of 0 in Zp and Qp. Since
the group Zp contains a neighborhood ofO, it is open (and hence closed). In fact,
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it is a compact neighborhood of 0 in Qp. This proves that the topological field Qp
is locally compact, and hence complete (Corollary 3 in (3.2» . Finally, if

x = LXii (v = ordx E Z)
;?:.v

is the p-adic expansion of a nonzero element x E Qp , the sequence

xn = L x.p'
v5i <n

of truncated sums is a Cauchy sequence of Z[lI p] converging to x,

x - Xn = LXii E pnzp ,

;?:.n

This proves that Z[l I p] is dense in Qp , and this metric space can be viewed as a
completion of the ring Z[ II p] for the induced metric. •

5.3. Characterization 01Rational Numbers Among p-adic Ones

It is easy to recognize rationals among p-adic numbers if we know their expansions.
The result is similar to the characterization of rational numbers among real numbers
expressed in decimal expansions.

Proposition. Let x = Laii E Qp (i ::: v(x), 0:::: ai :::: p - I) . Then x is a
rational number, i.e., x E Q precisely when the sequence (ai) ofdigits ofx is
eventually periodic.

!'ROOF. Multiplying if necessary a p-adic expansion by apower of p , we see that
it is enough to consider the case v(x) ::: 0, namely x E Zp. If the sequence (ai)
is eventually periodic, x is the sum of an integer and a linear combination (with
integral coefficients) of series of the form

~ r"!' = ps__l_ E Q,
L..J 1 - p'
J?O

and hence is a rational number. Conversely, suppose that x = LXipi = afb is
the p-adic expansion of a rational number (as we mentioned, we can assume that
x E Zp;hence the summation is made for i ::: 0). Taking a reduced representation,
a and b will be relatively prime integers , with b prime to p . Adding a suitably
large integer to x, we may assume that x is positive (hence a and bare also posi­
tive). Considering the p -adic expansions ofthese integers, we are able to write an
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equality

In the left-hand side we have to take into aeeount some earries rt aeeording to the
following identities:

boXt + blxt_1 +...+ btxo + rt = at + rHIP.

For f > max(a, ß), we have more simply

boXt + blxt-I +...+bpxt-p + rt = rt+1p ·

It suffiees to eompute Xt mod P as a funetion of Xt-I, ... , Xt-p and rt, and then
to take the representative ofthis dass sueh that 0:::: Xt < p . This allows the deter­
mination ofthe earry rHI by division by p. In other words, starting with the data

(Xt-I , ... ,Xt-p , rt) E (Zj pzt+1

there is an algorithm (taking into aeeount the fixed values of bo, . .. , bp) furnishing

(Xt, Xt-I , " " Xt-P+I , rHI) E (Zjpzl+1

(the values of Xt-I, . . . ,Xt-P+I are simply eopied in a shifted position). Sinee the
set (Zj pZ)P+1 is finite, this aIgorithm will eventually produee a cyclic orbit (as
soon as a veetor takes a value already attained, it will produee the next veetor
already attained and start a cycle) . •

Corollary. The p-adic integers L pn
2

and L pn! are not rational. •

5.4. Fractional and Integral Parts of p-adic Numbers

As we have aIready notieed , any nonzero p-adie number X E Qp ean be written
as aseries X = Li~m x, p i starting at the index m = v(x) E Z. Let us define

[X] = LXipi E Zp : integralpartofx,
i ~O

(X) = LXi/ E Z[ljp] c Q :fractionalpartofx.
i<O

We thus obtain a deeomposition

X = [x] + (x) : Qp = Zp + Z[ljp].

If (x) f. 0, then (x) = ap" for integers a and v < O. This deeomposition depends
on the choice ofrepresentatives chosen for digits; here 0 :::: x, :::: p - I . With this
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choice, more can be said of the fractional part as areal number, namely

" i "X-j " 10::: (x) = L.JXiP = L.J j < (p - I) L.J j = 1.
i <O I ::;j::;-v P j?: 1 P

Hence the fractional part of any p-adic number satisfies

(x) E [0, I) n Z[llp].

Let us consider these representatives mod I , namely in Z[ II P]/Z c R/Z.
With the normalized exponential, we can embed the circle R/Z in the complex
numbers:

R ~ R/Z ~ C X
: t f-+ exp(27fit).

This leads us to consider the map (systematically considered by J. Tate, whence
the notation)

r : Qp ~ C X
: x f-+ exp(27fi(x».

Forexample, ifv(x) = -I, namely x = klp + y with 0< k ::: P-I and y E Zp,
then

r(x) = exp(27fiklp) = {k,

where { = exp(27f iI p) is a primitive pth root of unity in C. The image of an
elements x E Qp with v(x) ::: -I is the cyclic subgroup of order p in C X

:

It is useful to introduce some notation. The cyclic subgroup of mth roots of unity
in C will be denoted by

f-Lm = {z E C : z" = I}.

The union of an these cyclic groups is the group of an roots of unity (in C)

f-L = Uf-Lm = {z E C : zm = 1 for some integer m ::: I}.
m?:1

With respect to the prime p, we have a direct product decomposition

f-L = f-L(p) • f-L pOO ,

where f-L(p) is the group of roots of unity of order prime to p, and f-Lpoo the group
of roots of unity having order apower of p: pth power roots of unity. Hence f-L pOO

is the p-Sylow subgroup of the abelian torsion group u, It is the union of the
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increasing sequence of cyclic groups

I-tp C I-tp2 C .. . C I-tpk C . .. ,

I-tpoo = UI-tpk C c-.
k:,:O

Proposition. The map r : Qp ~ C", x r-+ exp(27Ti(x)) is a homomorphism.
It defines an isomorphism Qp/Zp ~ I-tpoo ofthe additive group Qp/Zp with the
group 01pth power roots 01unity in the complexfield C.

PROOF. Let us compute the difference

(x + y) - (x) - (y) = x + y - [x + y] - (x - [xl) - (y - [yl).

It is equal to [x] + [y] - [x + y] E Zp, and hence (x + y) - (x) - (y) E

Z[l/p] n Zp = Z. This proves that

exp(27Ti[(x + y) - (x) - (y)]) = 1

and r(x + y) = r(x) + r(y). The map r is a homomorphism. Its kernel is defined
by

ker r = {x E Qp : (x) E Z}.

But (x) E Z means x = [x] + (x) E Zp, so that ker r = Zp. The image of r
consists of the complex numbers of the form

Since exp(27T i / p m) is a root of unity of order pm, these roots of unity generate ­
when m varies among natural integers - the subgroup I-t pO<>. •

In particular, we have

Comment. It is possible to give the factorization of rational numbers into p­
integral and p-fractional components independent of the construction of p-adic
numbers. Indeed, any rational number has the form

va
x = p b (v E Z, a and b prime to p).

When v = -m < 0, namely when x rt. Z(p), we can use the Bezout theorem to
express the fact that e" and b are relatively prime,

(pm, b) = 1 = ap" + ßb;
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hence multiplying by X yields

a aa ßa
X = - =-+- E Z(p)+Z[ljp] .pmb b pm

This gives an elementary deseription of the decomposition

indueed by the deeomposition Qp = Zp +Z[ljp] .

5.5. Additive Structure ojQp and z;
Let us start with the sum fonnula Qp = Zp + Z[ 1j p] proved in the last seetion.
Observe that this sum is not direet, sinee

The various embeddings that we have obtained are gathered in the following
eommutative diagrams giving the additive (resp. multiplieative) strueture of Qp
(resp. Q;).

Q Qp
? " ? -.

Z(p) Z[ljp] Zp Z[ljp]

" ? <, ?
Z Z

QX Q;
? <, ? "Z(p) pz ZX pzp
<, ? <. ?

(1) (1)

Ifwe embed Z in the direet sum Zp $ Z[ljp] by means ofm f-+ (m, -m) and
eall I' the image, then the addition homomorphisms

Z(p) $ Z[ljp] -+ Z(p) + Z[ljp] = Q,

Zp $ Z[ljp] -+ Zp + Z[ljp] = Qp

have kernel fand fumish isomorphisms

(Z(P)$Z[ljpl) jf ~ Q,

(Zp $ Z[ljpl) j r ~ Qp.
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Thus we have the following diagrams with vertical short exact sequences.

Z
t

Z(p) ~ Z(p)El)Z[ljp] ~ Z[ljp] ,

t
Q

Z
t

Zp ~ z, El)Z[ljp] ~ Z[ljp].

t
Qp

Here is another pair of diagrams describing the inclusion relations between the
various abelian groups of numbers that we have considered:

Z[ljp] "-+ Q "-+ Qp

U U U

Z

pZ "-+ QX "-+ Q;

u u u
(1) "-+ Z{p) "-+ Z;.

Comment. The subgroup Zp ofQp admits no direct complement. Indeed, for any
subgroup r of o,

r n Zp = {O} ==? r discrete in Qp ==? r = {O}.

In asense, the subgroup Z[ 1j p] is the best near supplement that one can take, and
we have unique sum decompositions with two components:

xE Zp , Y E [0, 1) n Z[ljp].

But this system ofrepresentatives [0,1) n Z[ljp] is not a subgroup.

5.6. Euclidean Models ofQp

It is easy to give Euclidean models of the fields Qp extending the models of Zp
given in (2.5) if we only observe that the inclusions of additive topological groups

I
-Zp :) Zp and z; :) pZp
p

are similar. In other words, a dilatation of ratio p of the Euclidean model of Zp
gives a model of (1 j P)Z p' Iteration gives a model of

Qp = U p-mZp.
m:::O

An illustration shows a piece of Q7, with central portion Z7.
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•
o

•o

• • • • • • • •

••••

••••
A piece of Q7 with Z7 as centra! portion

6. Hensel's Philosophy

6.1. First Principle

Let us explain the first principle in a particular case. Let P(X, Y) E Z[X, Y]
be a polynomial with integral coefficients. When speaking of solutions of the
implicit equation P =°in a ring A, we mean a pair (x , y) E A x A = A2 such
that P(x, y) = 0.

Proposition. The following properties are equivalent:

(i) P = °admits a solution in Zp ,
(ii) For each n 2: 0, P = °admits a solution in Z/pnz.

(iii) For each n 2: 0, there are integers an, bn such that

?ROOF. (iii) is a simple reformulation of (ii) . Now for x = Li~O ai pi E Zp, define
xn = L i<n ai p' mod pn E Z/pnZ. Then if (x, y) E Zp x Zp, then

P(Xn, Yn) = P(x, y) mod pnZ p E Zp/pnZp (= Z/pnZ) ,

and hence (i) ~ (ii) . Conversely, to prove (ii) ~ (i) let us consider the finite sets

X; = {(x , y) E Z/pnZ x Z/pnZ : P(x , y) = O}.
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Reduction mod pn furnishes a map fPn : X n+1 ~ Xn, and the projective system
(Xn, fPn)n :::I has a projective limit X = ~Xn C z, X Zp. The pairs in X

fumish solutions of P = 0 in Zp, and the result follows from (4.4) (Corollary of
Proposition 1). •

Generalizations. Instead of a single polynomial P in two variables , one can
consider an arbitrary family (Pi)iel ofpolynomials having a finite number m 2: 2
of indeterminates and their common zeros . The above result shows similarly that
the algebraic variety defined by the equations Pi = 0 (i E I) will have points with
coordinates in Zp precisely when it has points with coordinates in all rings Zjpnz
(n 2: 1).

6.2. Algebrate Preliminaries

Proposition. Let A be a ring and P E A[X] be any polynomial. Then there are
polynomials PI and P2 E A[X, Y] such that

P(X + h) = P(X) + h . PI(X, h) = P(X) + h . P'(X) + h2P2(X , h) .

PROOF. Let us write the polynomial P explicitly as a finite sum P(X) = L a.X"
with some coefficients an E A. Then

P(X + h) = Lan(X + ht = Lan(Xn + nXn-Ih + h2(.. .))

= L anXn + h L nanXn-1 + h2 . P2(X, h);

hence the result. •
6.3. Second Principle

The idea for improving approximate solutions will now be given in its simplest
form. Take a polynomial P E Z[X] and an integer x such that P(x) == 0 mod p .
We can look for a better approximation x of P(X) = 0 in the form of an integer
such that P(x) == 0 mod p2. Without loss of generality, we may assurne that x is
an integer ao between 0 and p - 1. We are looking for an integer x = ao + al P
(again with 0::::; al < p) such that P(X) == 0 mod p2. But we have just seen that
we can write

for some integer b. By assumption, P(ao) = pt , and the desired congruence holds
mod p2 if t + P'(ao) . al == 0 mod p. We can suppose t ~ 0 (there is nothing to
prove otherwise). When P'(ao) ~ 0 mod p we can take al == -t j P'(ao) mod p
and

A pt P(ao)
x =ao+aIP =ao---=x---

P'(ao) P'(ao)
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exactly as in the classical Newton approximation method. With this choice, we have

P(x) = P(ao +alP) == 0 mod p2.

We shall occasionally use the notation

P(x)
Np(x)=x--­

P'(x)

for the Newton map. It is obvious that x = Np(x) can befar from x when P'(x)
is smalI.

xo

f(x) .

Newton's method

6.4. The Newtonian Algorithm

In this section we show that even when the derivative vanishes mod p, we can
still construct a better approximation of a root of P = 0, but we have to be less
demanding concerning its Iocation.

Proposition. Let P E Z p[X] and x E Zp be such that P(x) == 0 mod p". If
k = v(P'(x» < n12, then x = Np(x) = x - P(x)1 P'(x) satisfies

(l) P(x) == 0 mod pn+l (a definite improvement ),
(2) x == x mod pn-k (a controlled loss ),
(3) v(P'(x» = v(P'(x» (= k) (an invitation to iteration).

PROOF. Put P(x) = p"y for some y E Zp' and P'(x) = pkU for some unit u E Z; .
By definition of X,

x - x = _ P(x) = _pn-kyu-l E pn-kz .
P'(x) p

On the other hand, still by choice of x, the first two terms ofthe Taylor expansion
of the poIynomiaI P at the point x cancel each other:

P(X) = P(x) - P(x) P'(x) + (x - xi · 1.
P'(x)
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By (6.2) the t in the last tenn belongs to Zp . Hence

P(X) = (x - xi · t E p2n-2k Zp = pn . r:" Zp C pn+IZp

(recall that 2k < n). It only remains to compute the order of P'(X). For this, we
use a first-order Taylor expansion of P' at the point x (6.2):

P'(x) = P'(x + (x - x» = P'(x) + (x - x) . s

= pku + pn-kz· S = pk(u + pn-2kzs) = pkv.

Since n - 2k > 0, and since u is a unit,

v = u + pn-2k zs E u + pZp C Z; ,
which proves v(P'(x» = k as claimed.

Theorem (Hensel's Lemma). Assume that P E Zp[X] and XE Zp satisjies

P(x) == 0 mod p",

•

I/ k = v(P'(x» < n/2, then there exists a unique root ~ 0/ P in Zp such that

~ == x mod pn-k and v(P'(~» = v(P'(x» (= k).

PRooF. Existence. Let Xo = x and construct an improved root Xl E Zp,

Xl == Xo mod r:' and P(xd == 0 mod pn+l, v(P'(xd) = v(P'(xo» (=k).

Similarly, we can find an improvement X2 of the approximate root Xl in the form
of a p-adic integer satisfying

X2 == Xl mod pn+l-k and P(X2) == 0 mod pn+2.

Iterating the construction, we get a Cauchy sequence (xn )n2:0 having a p-adic limit
~ satisfying P(~) = 0 and ~ == X mod r:' .

Uniqueness. Let ~ and TI be two roots of P satisfying the required conditions:
In particular,

TI == ~ mod pn-k,

and since n > 2k, we have n - k :::: k + I , and a fortiori

Now,

P(TI) = P(~)+P'(~)(TI - ~) + (TI - ~)2a
'-v-" '-v-"

=0 =0
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for some p-adic integer a. Hence

But

P'(~) + (TJ - ~)a =f. 0,
'--.--' '-....-'
order k order :0: k + 1

so that the only possibility is TJ - ~ = 0, and uniqueness follows . •
Note that the uniqueness part of the proof shows that ~ is the unique root

satisfying the apriori weaker congruence ~ == x (mod pH I ) .

6.5. FirstApplication: Invertible Elements in Zp

Let us consider the first-degree polynomial P(X) = aX - 1, where a =f. °is a
p-adic integer. In order to be able to find an approximate root mod p, we have to
assume that a f/ pZp (in the p-adic expansion of a, the constant term ao =f. 0).
When this is the case, P'(X) = a and k = v(P'(x)) = 0, and any root mod p can
be improved to a root mod pn (n ::: 2). Eventually, we find a genuine root in Zp,
which means that a is invertib1e in this ring. Thus we have another "proof' of the
implication

a E Zp - pZp ==> a E Z; .
However, this proof is deceptive, since Newton's method assumes apriori that we
know how to divide: In the first step we are led to replacing x by

P(x) ax - 1 1x = x - -- = x - -- = - (!)
P'(x) a a

Numerically, it is betterto apply Newton's method to the rationalfunction feX) =
I/X - a, for which !'(X) = -1/x».Hence

A fex) 2 2
x=Nt(x)=x---=x+x f(x)=2x-ax.

f'(x)

With this function, Newton's method uses a polynomial, and no division is required
to evaluate the successive approximations of the inverse.

6.6. Second Application: Square Roots in Qp

Consider now the quadratic polynomials P(X) = X2 - a, where a is a p-adic
integer. It is obvious that such an equation can have a root x in Zp only if v(a) =
v(x 2 ) = 2v(x) is even. Then if we divide a by a suitable even power p2m of p, we
are brought back to the case v(a) = 0, namely a E Z; . Since P'(x) = 2x, we see
that the case p = 2 has to be treated separately.
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Case p odd. Hensel's lemma will apply as soon as we can find an approximate
root mod p . But we know that in the cyclic group F; squares make up a subgroup
of index two. The quadratic residue symbol of Legendre distinguishes them:

if ais a square mod p ,
if a is not a square mod p .

Let us choose an integer I < a < p that is not a square mod p . Then the three
numbers a , p, ap have no square root in Qp . They make afull set of representatives
for the classes mod squares

Since every quadratic extension of Qp is generated by a square root of an element
(every quadratic extension of a field of characteristic 0 is generated by a square
root), we see that we obtain all quadratic extensions of the field Qp for p 2: 3 ­
up to isomorphism - in the form of the three distinct fields

Casep =2. Observe that Z; = 1+ 2Z2, since the only possibility for the nonzero
constant digit is 1. Now we have

a E Z; is a square {=::} a E 1 + 8Z2.

PROOF. If a = b2 E Z; for sorne b = 1 + b\2 + b22
2 + ... = 1 + 2c, then b2 =

I + 4(c + c2 ) , and since c == c2 mod 2Z2, we have b2 E I + 8Z2 as claimed.
Conversely, if a == 1 mod 8Z2, we can apply Hensel's lemma to the resolution
of the equation X2 - a = 0, starting with the approximate solution x = 1. By
assumption, this is an approximate solution mod 23 (n = 3 > 2k = 2 is suitable).
We get an improved solution x,

x2 == a mod 23 but x == x mod 22 only,

since n - k = 3 - 1 = 2. By iteration, we get an exact root ~ == 1 mod 4 satisfying
x 2 = a in Z2. •

Wehave

Since

Z; = 1 + 2Z2 = {±1}· (1 +4Z2),

we also have
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so that finaliy

Q; j(Q;)2 ~ Zj2Z x Zj2Z x Zj2Z.

There are - up to isomorphism - seven quadratic extensions of the field Q2. They
are obtained by adjoining roots of elements in the nontrivial classes of Q; j(Q;i .
If we choose the elements

-1 , ±(l +4) = ±5, ±2, ±2· 5,

we get the seven nonisomorphie quadratic extensions

Examples. (1) Since 32 == 1 mod 8, x = 3 is an approximate root ofx 2 - 1 = o.
Newton 's method leads to the improvement x = 7, which is an improved solution
mod 16, but we on1y have 7 == 3 mod 4 as the theory predicts (and there is no
exact root ~ == 3 mod 4, since the only roots are ~ = ±1).
(2) Since a = -7 = 1 - 8 == 1 mod 8, we obtain

.J=7 E Z; C Q2.

(3) The preceding considerations prove that the equations

X2 + 1 = 0 and X2
- 3 = 0

have no solution in Q2. The polynomials X2 + 1 and X2 - 3 are irreducible in
Q2[X].

We shall determine later the structure of the multiplicative group 1 + 4Z2.

6.7. Third Application: nth Roots of Unity in Zp

Let s be any root ofunity in Qp, say ~n = 1.Then nv(~) = v(l) = 0 and v(~) = O.
This proves that all roots ofunity in Qp lie in Z; c Q;. In particular, each root of
unity has a well-defined reduction mod p , s(~) E F; . Let us show that the group
Z; contains roots ofunity in each class mod pZp, i.e. above each element ofF;.

Thepolynomial P(X) = Xp-I-l hasderivative P'(X) = (p-1)XP-2. Forany
unitx E Z;, k = v(P'(x» = 0, and the simplest case (6.3) ofthe approximation
method applies. Since the polynomial Xp-I - 1 has p - 1 distinct roots in the
field F p, namely al1elements ofF;, Hensel's lemma fumishes p -1 distinct roots
in Z;. This shows that the field Qp of p-adic numbers always contains a cyclic
subgroup of order p - 1,

f-tp- I C Z; c Q;,
consisting of roots of unity.
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Proposition 1. When p is an odd prime, the group of roots ofunity in the field
Qp is JLp-l.

PROOF. We have to prove that the reduction homomorphism e : JL(Qp) -+ F; is
bijective. It is surjective by Hensel's lemma So assurne that { = 1 + pt E ker e
(t E Zp) is a root ofunity, say ~ has order n :::: 1,

~n = (l + pt t = 1.

Hence npt +mp2t2+...+ p":" = 0, or

t (n + (~)Pt +...+ pn-l tn-l) = O.

This shows that t = 0 (when ptn) or p In . In the second case, replace ~ by ~ p and
n by n/ p: Starting the same computation, we see that t = 0 or p2 I n (original
n) , and so on. Finally, we are reduced to the case n = p. In this case, the above
equation is simply

and since p :::: 3,

p + (~)Pt + ...+ pP-1t P-1 = p + p2(.. .):;:'O.

This proves that t = 0 in all cases and ~ = 1. •
When p is odd, p - 1 is even and -1 belongs to JL p-l. The number -1 will

have a square root in Qp precisely when (p - 1)/2 is still even, namely when
p == 1 mod 4. We have

.J=1E Qp *=* 41 p - 1 *=* p == 1 mod 4.

A number i = .J=T can thus be found in Qs , Q13,

Proposition 2. The group ofroots ofunity in the field Q2 is JL2 = {±1}.

PROOF. We have

-1 = 1+ 2 + 22 + ... E 1 + 2Z2

and

{±1} = JL2 C Z; = 1 +2Z2.

On the other hand, F; = {I}, and the only roots ofunity in Z; have order apower
of 2. But -1 is not a square of Z; (6.6), and there is no fourth root of 1 in Q2.
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To summarize, we give a TABLE.

Numberof
quadratic

Field Units Squares Roots of unity extensions

Q2 Z;=1+2Z2 1 +8Z2 JL2 = {±l} 7
index 4
inZ;

Qp Z; ::> 1 + pZp index 2 JLp-l 3
p odd prime index p-I inZ;

6.8. FourthApplication: Field Automorphisms 0/Qp

It is possible to determine all automorphisms of the field Qp (over the prime
field Q). For this purpose, we need a lemma.

Lemma. Let x E Q;.Then the following properties are equivalent:

(i) x isa unit: XE Z;.
(ii) x p - 1 possesses nth roots for infinitely many values 0/ n.

PROOF. If xis a unit, then x t= 0 mod pZp and x p- 1 == 1 mod pZp . Let us put
a = x p- 1 and consider the equation P(X) = X" - a = O. It has an approximate
root 1 mod p , and when n is not a multiple of p, P'(1) = n does not vanish mod
p. By Hensel's lemma, there is an exact solution of this equation, namely there
exists an element ~ E Zp such that ~n = a = x p- 1• This proves (i) => (ii).

Conversely, if x p- 1 = y~, we have

(p - l)v(x) = n . v(Yn),

and n divides (p - 1)v(x). This can happen for infinitely many values ofn only if
v(x) = 0; hence xis a unit (we are assuming x i= 0 from the outset). •

Theorem. The only field automorphism 0/ Qp is the identity.

PROOF. Let sp be an automorphism ofthe field Qp. By the algebraic characterization
of units of Q;,the automorphism f{J must preserve units . Hence if x E Q; is written
in the form x = pn u (where n = v(x) and u E Z; is a p-adic unit), we shall
have

and v(f{J(x» = n = v(x). This shows that the algebraic automorphisms ofthe field
Qp preserve the p-adic order : They are automatically continuous. Now, if Y E Qp
is an arbitrary element, we can take a sequence of rational numbers rn E Q with
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rn ~ y . For example, we can take these rational numbers by truncating the p-adic
expansion of y . Now, since the automorphism cp is trivial on rational numbers,

cp(y) = cp( lim Yn) = lim CP(Yn) = lim Yn = y.
n~OO n-i-OO n-e-cc

Note. The preceding theorem is similar to the following well-known result:

The only algebraic automorphism ofthe realfield R is the identity.

•

Indeed, if tp is a field automorphism ofR, we have cp(x2) = cp(x)2 for all x, and
hence cp(y) :::: 0 for all Y :::: 0 (write Y = x 2), and then also

cp(u) ::: cp(v) for all u ::: v

(put Y = v - u) . This means that these algebraic automorphisms automatically
preserve the order relation :::. Since they must be trivial on the prime field Q, they
must be trivial. In detail : If t E Rand a, b E Q, then

a ::: t ::: b ==::} a = cp(a) ::: cp(t) ::: cp(b) = b.

Thus we see that

Icp(t) - tl ::: b - a

is arbitrarily smalI; hence cp(t) - t = O.

Comment. Let us stress that in both the p-adic and the real cases, we are con­
sidering purely algebraic automorphisms over the prime field Q: The proofs show
that they are automatically continuous, and hence trivial. But there are infinitely
many automorphisms of the complex field C: Only two of them are continuous,
namely the identity and the complex conjugation. For example, the nontrivial au­
tomorphism

a +bh t--+ a - bh (a, b E Q)

of the field Q(./2) extends to any algebraieally closed extension of this field;
in partieular it extends to C. This extension is a discontinuous automorphism
ofC.

Appendix to Chapter 1: The p-adic Solenoid

The fields R of real numbers and Qp of p-adie numbers ean be linked in an
interesting topologieal group, the solenoid. We present a eouple of eonstruetions
and properties of this mathematieal strueture.
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A.I. Definition and First Properties

The canonical group homomorphisms

rpn : Rjpn+1z ~ RjpnZ, x mod pn+1z 1-+ X mod pnZ (n 2: 0)

make up a projective system (RjpnZ, rpn)n?:.O of topological groups .

Definition. The p-adic solenoid Sp is the projeetive limit Sp = lim RjpnZ 0/
the projeetive system (Rjpnz, rpn)' +-

By definition, the solenoid Sp is a compact abelian group equipped with canon­
ical projections

that are continuous surjective homomorphisms. In particular,

1f! = 1f!0 : Sp ~ RjZ

is continuous and surjective, and the solenoid can be viewed as a covering of the
circle. The kernelofthis covering is obviously ker 1f! = limZjpnZ = Zp, and we
have the following short exact sequence of continuous h~omorphisms,

o~ Zp ~ Sp ~ RjZ ~ 0,

presenting the circle as a quotient of the solenoid, or the solenoid as a eovering 0/
the circle withfiber Zp. Also observe that

pnZp = ker(1f!n) C Zp = ker(1f!) C Sp '

Alternatively, one could define the solenoid as the projective limit of the system
having transition homomorphisms

rp~ : RjZ ~ RjZ, x mod Z 1-+ px mod Z (n 2: 1).

A.2. Torsion 0/ the Solenoid

We recall the following well-known fact:

For eaeh positive integer m 2: 1 there is a unique cyclic
subgroup 0/order m in the circle: It is m-1ZjZ C RjZ.

Proposition 1. For eaeh positive integer m 2: 1prime to p the solenoid Sp has
a unique cyclic subgroup Cm 0/order m.

PROOF. Let us denote temporarily by C::, the cyclic subgroup of order m of the
circle RjpnZ (it is the subgroup m-1Zjpnz). Since the transition maps

rpn : Rjpn+1z~ RjpnZ
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have a kernel of order p prime to m (by assumption), they induce isomorphisms
C;:.+l -)- C;:. . The projective limit ofthis constant sequence is the cyclic subgroup
Cm C Sp. To prove uniqueness, let us consider any homomorphism a : ZjmZ -)­
s; The composite

has an image in the unique cyclic subgroup C;:. of the circle RjpnZ. Hence a has
an image in Cm, and this concludes the proof. •

Observe that this unique cyclic subgroup Cm of order m (prime to p) of Sp has
a projection 1/!(Cm ) in the circle given by

Since 1/!-1(m- 1ZjZ) ~ Cm x Zp, the cyclic group Cm is the maximal finite sub­
group contained in 1/!-1(m-1ZjZ).

Proposition 2. The p-adic solenoid Sp has no p-torsion.

PRooF. Let a : Zj pZ -)- Sp be any homomorphism of a cyclic group of order p
into the solenoid. I claim that all composites

qJn 0 1/!n+l 0 a : ZjpZ -)- Sp -)- Rjpn+lz -)- RjpnZ

are trivial . Indeed, the composite

1/!n+l 0 a : ZjpZ -)- Sp -)- Rjpn+lz

must have an image in the unique cyclic subgroup oforder p ofthe circle Rjpn+1Z,
and this subgroup is precisely the kernel of the connecting homomorphism qJn and
1/!n 0 a = qJn(1/!n+l 0 a). Consequently, there is no element of order p in Sp (and
a fortiori no element of order pk for k ~ I in Sp) . •

A.3. Embeddings ojR and Qp in the Solenoid

Theorem. The p-adic solenoid contains adense subgroup isomorphie to R It
also contains a dense subgroup isomorphie to Qp .

PRoOF. The projection maps In : R -)- Rjpnz are compatible with the transition
maps of the projective system defining the solenoid

In = qJn o In+l : R -)- Rjpn+lz -)- RjpnZ.

Hence there is a unique factorization I : R -)- Sp such that
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Ifx =1= 0 E R, as soon as p" > x we have In(x) =1= 0 E RjpnZ and consequently
I(x) =1= 0 E Sp. This shows that the homomorphism I is injective (this also
follows from (1.4.5), since nn>l ker In = nn>l pnz = {O}). The density ofthe
image of I follows from the density ofthe Images ofthe In (1.4.4, Proposition 3)
(in fact, all In are surjective). Consider now the subgroups

n, = 1/J-l(p-kZjZ) c Sp (k 2: 0) .

We have Ho = Zp by definition, and this is a subgroup of index pk of Hi :

Hk = lim p-kZjpnZ ~ p-kZp (k 2: 1).
~n

Hence

The density of this subgroup of Sp follows from the density of all images

(1.4.4, Proposition 3).

CoroUary. The solenoid is a (compact and) connected space.

PROOF. Recall that for any subspace A of a topological space X we have

A connected, A C B CA=} B connected.

•

In OUf context, take for A the connected subspace I(R) C Sp, which is dense in
the solenoid. The conclusion follows. •

Let us summarize the various homomorphisms connected to the solenoid in a
commutative diagram.

Z "-* Zp = Zp
-!. -!. -!.
R "-* Sp ~ Qp
-!. -!. -!.

RjZ = RjZ ~ QpjZp

AA. The Solenoid as a Quotient

The sequence of continuous homomorphisms

In: R X Qp -+ RjpnZ, (t ,x) t----+ t + I:ail mod pnZ
i <n

(if x = L v<i<ooail , V = ordp(x)) is compatible with the sequence of con­
necting homomorphisms defining the projective limit Sp. Hence there is a unique
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factorization consisting of a continuous homomorphism

f : R x Qp --+ Sp, (t, x) r+ t + x

having composites 1/Jn 0 f = fn' Alternatively, the two injective continuous ho­
momorphisms j, : R --+ Sp, n:Qp --+ Sp fumish a unique continuous homomor­
phism

h + h : R EB Qp --+ Sp ,

which coincides with the preceding one (we are identifying the product and the
direct sum). This homomorphism f will therefore be called the sum homomor­
phism.

Lemma. The kernel ofthe homomorphism f defined above is the subgroup

ker f = r = {Ca , -a) : a E Z[I/p]} eR x Qp.

It is a discrete subgroup ofthe product R x Qp.

!>ROOF. If f(t ,x) = 0, we have in particular fo(t,x) = 1/Jo 0 f(t,x) = 0 E

R/Z, namely t + L i <O ai p' E Z, t E - Li<O a.p' +Z C Z[I/p]. Sirnilarly,
fn(t ,x)=Ogives - -

t +L a.p' E pnZ (n 2: I).
i<n

This proves that the p-adic expansion of the element t E Z[I / p] is given by
t = -limLi<n ai p' in Qp. Hence t = -x E Qp . Conversely, it is obvious
that r C ker f. Let us show that the (closed) subgroup r is discrete . For this it
is enough to show that a suitable neighborhood of 0 in R x Qp contains only the
neutral element of r. Consider the open set

(-I, I) x z; eR x Qp.

If a pair (a, -a) is in r n (-I, I) x Zp, then the p-adic expansion of a E Z[I/p]
must be ofthe form Li>O a, p' , But we have seen (1.5.4) thatin the p-adic field Qp,
the intersection Z[1/pfnzp = Z contains only the rational integers. In particular,
a E Z n (-I, I) = {O}. Hence

r n«-I, I) x Zp) = {O} eR x Qp ,

and the proof is concluded. •
Theorem. The sum homomorphism f :R x Qp --+ Sp furnishes an isomor­
phism f' : (R x Qp)/ r p ~ Sp both algebraically and topologically.

PROOF. Since all maps fn are surjective, the map f has a dense image (1.5.4) .
Moreover, using the integral and fractional parts introduced there,

f(t, x) = f(t + (x), x - (x}) = fes, y) ,
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where SE R and y = x - {x} = [x] E Zp . Going one step further, we have

fes, y) = fes - [S], y + [s» = f(u, Z),

where u = s - [s] E [0, I) and Z = Y+ [s] E zp. This proves

Im f = f(R X Qp) = f([O , 1) x Zp).

A fortiori, the image of [ is equal to f([O, 1] x Zp), and hence is compact and
closed. Consequently, fis surjective (and f' is bijective). In fact, the preceding
equalities also show that the Hausdorff quotient (recall that the subgroup I'p is
discrete and closed) is also the image of the compact set Q = [0, I] x Zp and
hence is compact. The continuous bijection

i': (R x Qp)/fp ~ s,

between two compact spaces is automatically a homeomorphism. •
CoroUary 1. The solenoid can also be viewed as a quotient of R x Zp by the
discrete subgroup l:1z = {(m, -m) : mEZ}

PRooF. Since the restriction ofthe sum homomorphism f : R x Qp ~ Sp to the
subgroup R x Zp is already surjective, this restrietion gives a (topological and
algebraic) isomorphism

I' : (R x Zp)/ker f';;;: Zp.

But

ker t ' = (ker f) n (R x Zp) = l:1z = {(m, -m) : mEZ}. •

These presentations of the solenoid can be gathered in commutative diagrams
of homomorphisms:

R

Z[l/p]

R

Z

CoroUary 2. The solenoid can also be viewed as a quotient of the topo­
logical space [0,1] x Zp by the equivalence relation identifying (1, x) to
(0, x + 1) (x E Zp).
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PROOE This follows immediately from the previous corollary, since the restrie­
tion of the sum homomorphism to [0, 1] x Zp is already surjective, whereas its
restrietion to [0, 1) x Zp is bijective. •

Comment. This last corollary gives a good topological model of the solenoid:
One has to glue the two extremities of the cylinder [0,1] x Zp having basis Zp
bya twist representing the unit shift oJZp. This gives a model for the solenoid
as a very twisted rope! On the other hand, it is clear that instead of the subgroup
I' ~ Z[l/p] consisting ofthe elements (a , -a) (a E Z[l/p]) we could equally
weIl have taken the diagonal subgroup ö., image of

a 1-+ (a,a) : Z[1/p] --+ R x Qp,

the isomorphism (R x Qp)/ö. ~ Sp now being given by subtraction.

A.5. Closed Subgroups 0/the Solenoid

Lemma. Let a : Cpm --+ Cpm-I be a surjective homomorphism between two
cyclic groups of orders pm and pm-I . Then the only subgroup H C Cpm not
contained in the kemel ofa is H = Cpm.

PROOF. Recall that any subgroup of a cyclic group is cyclic and that the number of
generators of C; ~ Z/nZ is given by the Euler cp-functioncp(n). In particular, if
n = pm is apower of p, the number of generators is

((J(pm) = pm-I(p _ 1) = p'" _ pm-I .

Consequently, all elements not in the kernel of a surjective homomorphism of a
cyclic group of order pm onto a cyclic group of order pm-I are generators of the
cyclic group of order p'" (the kernel has order pm-I). •

Proposition. For each integer k 2: 0, there is exactly one subgroup Hk C Sp
having a projection oforder pk in the circle : 1{I(Hk) = p-kZ/Z c R/Z. This
subgroup is Hk = 1{I-I(p- kZ/Z) c Sp.

PROOE We can apply the lemma to each surjective homomorphism

p-kZ/ pn+1z --+ p-kZ/pnz

in the sequence ofconnecting homomorphisms defining the solenoid as a projective
limit. The projective limit ofthese cyclic groups is p-kZp. •

As a preliminary observation to the following theorem, let us assurne that the
solenoid contains a cyclic subgroup H of some finite order m > 1. Taking a gener­
ator x of H and n large enough so that 1{1n (x) #- 0, we see that the restrietion of this
homomorphism 1{1n to H must be injective. A fortiori, the restriet ion of 1{1n+ I (and all
1{IN for N > n) to H must beinjective. The restrietion of CPn : R/pn+lz --+ R/pnz
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to 1{Jn+I(H} must be injective. Hence H ;;: 1{Jn+I(H} has no element of order p
and m is prime to p.

Theorem. The closed subgroups of the solenoid Sp are

(1) Cm, the cyclic subgroup oforder m relatively prime to p (m 2:: I),
(2) Cm X pkZp, where m is prime to p and k E Z,
(3) s, itself(connected}.

?ROOF. Let H be a closed subgroup of the solenoid Sp. Since H is compact, its
image 1/J(H} is a closed subgroup of the circle RjZ. The only possibilities are

1/J(H} = n-IZjZ cyclic of order n 2:: 1,

or

1/J(H} = RjZ is the whole circle.

(1) The easiest case is the second one,

1/J(H} = RjZ is the whole circle,

in which case 1/Jn(H} c Rjpnz must be a closed subgroup ofjinite index. Hence
it must be open in this circle. By connectivity, 1/Jn(H} c Rjpnz. Since this must
hold for all n 2:: 1, we conclude that

H = II =nfn-I«fnH}} =s,
n~1

and H = Spin this case.
(2) If 1/J(H} = {O}, then H C 1/J-I(O) = zp C sp, and we have shown in (3.5)

that the only possibilities are

H = {O}, pkZp for some integer k 2:: O.

These possibilities occur in the list for Cm = {O} (m = I).
(3) We can now assume that 1/J(H) = a-IZjZ is cyclic and not trivial. Write

a = pk . m with k 2:: 0 and m prime to p . By the Chinese remainder theorem (or
the p-Sylow decomposition theorem) this cyclic group is a direct product of the
cyclic subgroups m-IZjZ and p-kZjZ. If k 2:: 1, the above lemma shows that
1/Jn+I(H) must contain an element of order pk+l. As in the proposition, we see
that H contains 1/J-I(p-kZjZ) = p-kZp C Sp, and finally H = Cm X p-kZp.1f
k = 0, two possibilities occur: Either 1/Jn(H) is cyclic of order m for all n , or there
is a first n such that this group 1/Jn(H) contains an element of order p, In the first
case H = Cm, while H = Cm x pnzp in the second. _

A.6. Topological Properties ofthe Solenoid

We have seen in (I.A.4) that the solenoid Sp can be viewed as a quotient of the
cylinder [0, 1] x Zp , and an image of [0, 1) x Zp . This leads to considering the
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second projection ofthis product as a (discontinuous) map (r, x) t-+ x. This map
has continuous restrictions to all subspaces [0, 1]] x Zp (0 < 1] < 1). It fumishes
continuous retractions of these subspaces onto the neutral Zp-fiber ofthe solenoid.

RecaII that we have a continuous surjective homomorphism 1{t :Sp -+ RjZ
leading to a presentation of the solenoid by the short exact sequence of continuous
homomorphisms

0-+ Zp -+ Sp -+ RjZ -+ 0.

The subspaces 1{t-l([O, 1]]) (0 < 1] < 1) have continuous retractions on thefiber
Zp, simply since 1{t-l([O, 1]]) is homeomorphic to [0,1]] x Zp. The foIIowing
statement is then an immediate consequence of these observations.

Proposition 1. Let U be any propersubset ofthe circle RjZ. Then the subspace
1{t-l(U) C Sp ofthe solenoid is homeomorphic to U x Zp. The map

(t, x) = (t - [t], x + [t]) t-+ (0, X + [t])

furnishes by restrietion a continuous retraction of1{t-l([O, 1]]) C Sp onto the
neutral fiber Zp C Sp (0 < 1] < 1). •

The solenoid has still another important topological property that we explain
and prove now.

Definition. A compact and connected topological space K is calied indecom­
posable when the only partition of K in two compact and connected subsets is
the trivial one.

Proposition 2. The solenoid Sp is an indecomposable compact connected to­
pological space.

PROOF. Let us take two compact connected subsets A and B covering Sp. We have
to show that if A =1= Sp, then B = Sp. Thus we assurne A =1= Sp from now on:
B =1= 0. Since we have

K = n1{t;;l(1{tn(K))
n:::l

for every compact set K, the assumption A =1= Sp leads to 1{tn(A) =1= Rjpnz for
some integer n = no and hence also for aII integers n ~ no (the transition maps
CPm are surjective). It will suffice to show 1{tn(B) = Rjpnz for all n ~ no. Take
such an n and an element bEB. Then

cp;;l(b) C Rjpn+lz

has cardinality p ~ 2, and the restriction of CPn to the connected set
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is not injeetive. The proof will be eomplete as soon as the following statement (in
whieh the situation and notation are simplified) is established.

Let a > I be any integer, cp : RjaZ ~ RjZ the canonical projection, and C a
connected subset 01 RjaZ containing two distinct points s :f. t with cp(s) = cp(t).
Then cp(C) = RjZ.

In terms ofthe restrietion cplc of the map cp to C, we have to prove

cplc not injeetive ==} cplc surjeetive

under the stated assumptions. It is obviously enough to do so when C :f. RjaZ.
In this ease, take a point P f/ C c RjaZ and eonsider a stereographic projection
from the point P ofthe eircle RjaZ onto a line R. This is a homeomorphism

I : RjaZ - {P}~ R.

The image I( C) of the subset C is a eonneeted subset of the realline eontaining
the images oftwo different eongruent points mod Z. Sinee any eonneeted set in the
realline is an interval, this proves that I(C) eontains the whole interval J linking
these two different eongruent points . Henee C eontains a whole are I of the eircle
having image cp(l) = RjZ. •

EXERCISES FOR CHAPTER 1

1. Compute the squares of the following numbers

6, 76, 376, 9376,

Show that one ean eontinue the sequence in a unique way: For example, the number

743740081787109376

appears in the 18th position . Define the limit

cx := LailOi = .. · a6aSa4a3a2a l aO= .. ·109376
i:;:O

as a lO-adic integer: €X E ZIO.Give the lO-adic expansion of -1.
Observe that by definition cx2 = a, and find the four solutions 0, 1, cx, ß of x 2 = x

in ZIO. What are a + ß , cxß?
Prove that Z IO ~ Zs x ~. (Hint. Consider the map x ~ (ox, ßx).)

2. (a) Give the 5-adic expansion of the integers 15, -1, -3. The integers 2, 3, 4 are
invertible in Zs: Give the 5-adic expansions ofthe inverses. Give the expansion of
1 · Z:3 In 7 ·

(h) What is the p-adic expansion of 1ifthe prime p is odd?
(e) If fi s a positive integer, give the expansion of 1/(1 - pi) in Zp.
(d) More generally, find the expansion of I/rn in Zp when the integer m is not divisible

by p . (Hint. Let f be the multiplicative order of p mod m so that pi - 1 = nm .
Then use I/rn = - n/(l - pi).)
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3. (a) Show XE pnZp <=:} -x E pnzp and so ordp(-x) = ordp(x).
(b) Check as in (1.5) that if a E Zp, then (l + pna)-I = 1+ p'ia' for some a' E Zp.
(e) Using the p-adic metric, reformulate (b) in the form

if 0 < r < I, then

Ix - l ] < r, Iy- l ] < r ===} [xy - 11 < r.

(d) Let adenote the involution introduced in (1.Z). Showthat a(B<r(a» = B<r(a(a» .

4. Show that there is a square root of Z in 7J]. (Compute the first coefficients in a =
ao+a]7 +a272+...iteratively using a2 = Z;do not be surprised ifno regular pattern
appears: The same happens for the eomputation of the decimal expansion of ../iin R;
cf. also (1.5.3).)

5. (a) Solve the equation x? = 1 in all z/znz (n ~ 1). Guess the result by making a small
table with the first values n ~ 4 or 5.
(Hint. Consider separately die cases n = 1, Z, ~ 3. When n ~ 3, observe that if
x 2 = I, then x is the dass of an odd integer Zk+ I (0 ~ k < zn-]), and 4k(k + I)
has to be divisible by zn. In (VII.1.7) we show that the unit group in z/znz is a
produet of two cydic groups (n ~ 3), from which the result also folIows.)

(b) Solve the equation x 2 = 1 in Z2.

6. (a) Let N be a positive integer. Show that the subset {N , N + I, N + Z, ...} is dense
inZp.

(b) For whieh values of a and b E Zp is the subset a + bN dense in Zp?
(e) Show that the subset {-I , -Z, -3, . . .} is dense in Zp .

7. Let jp : Q ~ Qp denote the eanonieal injeetion.
(a) Deterrnine the subring 1;I(Zp) ofthe field Q (this subring is simply written Qn

Zp = Z(p» . What is j;I(Zp) n Z[I/p]?
(b) Show that n i;I(Zp)=Z

pprime

(this equality is sometimes simply written np(Q n Zp) = Z).

8. Let X be a nonempty set and E = XN the set of sequences in X. For two different
sequence a = (an) , b = (bn) let us put

1 1
d(a ,b) = . =-.

mm{n : an =1= bn} v

(a) Show that d defines an ultrametrie distance on E.
(b) Show that E is eomplete for the preceding metrie.

9. The distanee between two subsets A, B of ametrie spaee is defined by dCA, B) =
infaEA,bEB d(a, b) . Show that ifthe metrie dis ultrarnetric, then

{

d(a, b) if r < dta, b) ,
d(B<r(a), B<r(b» = .

- - 0 Ifr~d(a,b) .

More generally, the distance of two disjoint balls B, B' is equal to the constant value
ofd(x,x')forx E B ,x' E B'.
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10. Let K be a (commutative) field and let K[[X]] be the ring of formal power series
f(X) = Ln2:0 anXn. Choose 0< e < 1 and for g(X) = Ln2:0 bnXn #- f(X), define

d(f(X) , g(X» = emin{n :an#nl.

Show that d defines an ultrametric distance on K[[X]] for which this space is complete.
Show that the space of polynomials K[X] is dense in K[[X]], and hence this is a
completion ofthe space ofpolynomials. The ball (f(X) : d(f(X) , 0) ~ en} is the ideal
(X") = K" K[[X]] . The fraction field K«X» = K[[X]][X- I ] consists ofthe Laurent
series Li2:v anXn (v E Z). It is a completion ofthe ring K[X, X-I].

11. Let e > 1 and for any nonzero polynomial f E R[X] define Ifl = edeg f . Extend this
definition by 101 = 0 and If/gl = Ifi/igl for a rational fraction f/g E R(X). Show
that this defines an ultrametric absolute value on the field R(X).

12. Let E be a compact metric space and f : Zz -7 E be a continuous surjective map . For
each ball B C Zz of positive radius , let AB = f(B) be the compact image of B in the
space E. Observe that

AB = AB' U AB" if B = B' u B",

nAB = (f(x)} .
B~x

Conversely, recall that Mz denotes the free monoid generated by two letters, say 0 and
1, and P(E) denotes the set of parts (power set) of E . For any map rp : Mz -7 P(E)
having the properties
(a) rp(0) = E, rp(w) = rp(wO) Urp(wl) (w E Mz),
(b) 8(rp(wn»-7 0 when the W n are the initial segments of an infinite word,
(c) nrp(w n ) #- 0 when the W n are the initial segments of an infinite word,

show that there exists a continuous surjective map

f : Zz -7 E such that f(Bw ) = rp(w) .

13. Let E be a compact metric space. Show that there exists a continuous surjective map
f :Zz -7 E. In other words , the metric space is a topological quotient of the space
Zz. (Hint. Let (Kj)J:o:j:o:k be a covering of E by closed sets of diameter ~ 1. If k > 1
call Ao = Ko U .. . U Kl and AI = Kt+J U .. . U Kk with , e.g., i = [k/2]. If i > 1,
start again and define similarly shorter unions Aoo, AOl such that Ao = Aoo U AOJ .
This leads to finitely many words Wi so that K, = Awi • Proceeding similarly for each
of them, show how to define a map rp : Mz -7 E having the properties listed in the
previous exercise.)
Conclude that all spaces Zp are homeomorphic to Zz .

.,.".=,----,...
Give an explicit continuous surjective map Zz -7 {I/n : n ~ 1}

14. Let E be a compact metric space. Show the equivalence
(i) there is a continuous surjective map f : [0, 1] -7 E,

(ii) E is path-connected.
(Hint. Use the previous exercise to construct a continuous surjective map fo:C -7

E, where C is the Cantor subset of the unit interval, and extend fo through the
missing intervals - this is possible if the space E is path-connected.)
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In particular, for every cornpact, convex subset K of a (real or complex) Hilbert
space, there is a continuous surjective i :[0, 1] -+ E ("space-filling curve" or
Peano curve).

15. Let E be a compact metric space with the following properties:
(a) Eis totally disconnected.

(b) E has no isolated point (hence is not a singleton set!) .
Show that E is homeomorphic to Z2.

16. Show that the planar fractal image of Zs is path-connected when it is connected (cf.
picture in text) .

17. Construct a planar model of Q7 using v : {O, 1, . .. 6} -+ C defined by

v(O) = 0, v(j) = eFbrij6 u s j s 6).

Observe the appearance of the von Koch curve in the image of

18. (a) Give an example of a discrete subset of [0, 1] C R that is not closed.
(b) Prove that if A is a discrete subset of a Hausdorff topological space X, then A is

open in A (the same is true for any locally compact subset in a Hausdorff space).
(c) Let G be a topological group that is Hausdorff, and I' a discrete subgroup. Prove

directly that I' is closed in G (cf. 1.3.2).
(d) Let G be a group having more than one elernent, let Gd denote the topological

group G with the discrete topology, and let Go denote the topological group G
with the topology having only 0 and G as open sets (not Hausdorff!). Prove that
I' = Gd x {e} is a discrete subgroup of the topological group Gd x Go. What is
its closure?

19. (a) Let H be anormal subgroup ofa topological group G. Prove that the subgroup Jj
is also normal.

(b) For any topological group G, the quotient G/ {e} is a Hausdorff topological group .
(c) Let H be a closed subgroup of a locally compact (topological) group G. Prove that

the space G/ H is locally compact.
(d) Let G be a locally compact totally discontinuous group, so that the connected com­

ponent of the neutral element in G is {e}. Prove that any neighborhood of the neutral
element contains a clopen subgroup. (Hint. Start with a compact neighborhood K
of e. There is a clopen neighborhood U of e contained in K . Since U is compact
and disjoint from the closed set F = G - U, there is a symmetric neighborhood
W of e such that UW n FW = 0 and hence

UW C (FW)C C FC= U.

By induction w n C Uwn C U. The subgroup generated by W is open and
contained in U.)

20. Here is an example ofa topological ring A that does not induce on its units A x a topology
compatible with the group structure (cf. (1.3.5)). Let H be a complex Hilbert space with
orthonormal basis (ei )i::;:O . Hence the elements of H are the serie s x = Li::;:O Xi ei such
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that xi E C and L i >O lXi 12 < 00. Cons ider the sequence of continuous operators Tn in
H defined by -

{
ei ifi=ln ,

Tn : ei H- / if .en nil = n .

Prove that for every X E H , IITnx _x1I 2 --+ 0, and hence Tnx --+ X and Tn --+ I forthe
strong topology on the ring A ofbounded operators on H . But Tn-

1 fr I for the strong
topology (considerthe vector X = Ln~l en/n).

21. Let K be an ultrametric field.
(a) Show that if K is locally compact, then all balls of K are compact (and conversely).
(b) Two balls of K having the same radius r > 0 are homeomorphic.

(Hint. Consider separately the cases IK xI discrete or dense; remember that all

spheres are clopen, and ifnecessary, use a bijection (0, r] n IKx I .:; (0, r) n IKx I.)

22 . Let G be a group and

G = Go ::> GI ::> G2 ::> . •. ::> G« ::> •.•

be a decreasing sequence of normal subgroups of G. Show that there is a unique group
topologyon G for which (Gn)n~O is a fundamental system ofneighborhoods of e. For
this topology, the Gn are clopen subgroups and

G Hausdorff {=} no, = {e}.
n~O

When this is the case, show that G is metrizable. (Hint. Note that G/ Gn is discrete and
metrizable. One can embed G in the countable metrizable product TI G/ Gn .)

23 . Let A = M2(Zp) be the noncommutative ring of 2 x 2 matrices having coefficients
in Zp . Show that A is a topological ring (for the product topology). The units in A
constitute a group A x =Gh(Zp):

Show that GI2(Zp) is a topological group with the topology induced from A. Let Gn C G
denote the normal subgroup consisting of matrices g = (g ij) congruent to the identity
matrix mod p",

gij == 8ij mod pnZp

(8ij = 1 if i = j and = 0 if i =I j is the Kronecker symbol). Show that the Gn form a
fundamental system of neighborhoods of the identity in Gl2(Z p).

24 . Let (An)n~O be a decreasing sequence of subsets of a set E. Consider the canonical
inclusions An+l C An as transition homomorphisms. Show that the intersection A =
nn>O An together with the inclusions A --+ A n has the universal property characterizing

the projective limit lim An and hence may be identified with it: lim An = nAn .
<-- <--

25 . Let (Xn , rpn)n~O and (Yn, 1frn)n~O be two projective systems. One can consider canoni­
cally (Xn x Yn , rpn X 1frn)n~O as a projective system. Prove
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26. Let a E Z be a rational integer. Show that X 2 + X +a = 0 has a root in Q2 if and only
if ais even.

27. (a) In which fields Qp does one find the golden ratio (root of x 2 = x + 1)?
(b) How many solutions of X 4 +X 2 + 1 = 0 are in Q1? (Either make a list of solutions

mod 7, or eonsider Y = X 2 and solve in two steps .)

28. (a) Show that if a E 1 + pZp and the integer n is prime to p, then there is an nth root
ofa inQp.

(b) Give an example of a E 1 + pZp having no pth root in Qp .
(c) Show that if a E I + p3Zp, then a has a pth root in Qp .

29. Let n be a positive integer, v = ordpn ; henee n = pVn' and (p, n') = 1. For integers
a, b E Z, prove

a == b (mod nZ(p» <=> a == b (mod pVZ) .

(Hint. Observe that nZ(p) = pVZ(p) and nZ(p) n Z = pVZ.)

30. Let p and q be distinet primes.
(a) Prove that the fields Qp and Qq are not isomorphie.
(b) Prove that the fields Qp and R are not isomorphie.
(c) Prove that the fields Qp(/-Lq-l) and Qq(/-Lp-l) are not isomorphie.

(Hint. Look at roots of unity. Observe that for eaeh prime p , the field Qp has an
algebraie extension of degree 4, whieh is not the ease of the field R. For part (c) ,
use the lemma in (6.8).)

31. Let p and q be distinet primes. What is the projeetive limit

Iim R2/ (pnZ x qnZ)?
<--



2
Finite Extensions of the Field
of p-adic Numbers

The field Qp is not algebraically closed: It admits algebraic extensions of arbitrarily
large degrees. These extensions are the p-adic fields to be studied here. Each one
is a finite-dimensional, hence locally compact, norrned space over Qp . A main
result is the following: The p-adic absolute value on Qp has a unique extension to
any finite algebraic extension K of Qp.

1. Ultrametrie Spaces

1.1. Ultrametrie Distances

Let (X, d) be ametrie space. Thus X is equipped with a distance function d : X x
X~ R~o satisfying the characteristic properties

d(x, y) > 0 <==> x I- y,

d(y, x) = d(x, y),

d(x, y) ::; d(x, z) + dtz, y)

for all x, y , and z E X. For r ~ 0 and a EX we define!

B~r(a) = {x EX : d(x, a) ::; r}

= dressed ball of radius rand center a ,

1Let me use this unconventional terminology in this section only.From (11.2) on, 1shall rely on the
reader for a proper distinctionbetween"open" and "closed" balls.
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B<r(a) = {x EX: d(x, a) < r}

= stripped ball of radius rand center a.

Hence B<r(a) is empty if r = 0, and the stripped balls form a basis of a topology
on X: In particular, all stripped balls are open.

Definition. An ultrametric distance on aspace X is a distance (or metric)
satisfying the strong inequality

d(x , y) ~ max (d(x, Z), dez, y» (~d(x, z) + dez, y»

for all x , y, and z E X. An ultrametric space (X, d) is a metric space in which
the distance satisfies this strong inequality.

The following results are valid in ultrametric spaces.

Lemma 1. (a) Any point ofa ball is a center ofthe ball.
(b) /ftwo balls have a common point, one is contained in the other.
(c) The diameter ofa ball is less than or equal to its radius.

PROOF. (a) If b E B<r(a), then dta, b) < r and

d(a ,b)<r
X E B<r(a) {=::=} d(x, a) < r {:::::::::::} d(x , b) < r {=::=} XE B<r(b)

proving B<r(a) = B<r(b). The case of a dressed ball is similar.
(b) Take, for example, a common point c of the balls B<r(a) and B~r,(b). By

the previous part, we have

Now, it is clear that B<r(c) C B~r'(c) if r ~ r', while B~r'(c) C B<r(c) if r' < r .
All other cases are treated similarly. Part (c) is obvious. •

It is immediately seen by induction that ultrametric distances also satisfy the
strong inequality for finite sequences Xl, XZ, •• • , Xn EX:

Consider a cycle containing n 2: 3 distinct points: x, (l ~ i ~ n), Xn+l = Xl. We
may assume d(XI, Xn) = maxi~n dtx), Xi+l): Renumber these points if necessary,
and observe that d(xn, Xn+l) = d(xn, xI>= d(XI, xn). Since

by the ultrametric inequality, it follows that
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for at least one index I :::: i :::: n - 1. In other words, the cycle has at least two pairs
of consecutive points with equal maximal distance . In particular, in a set a, b, c
of cardinality 3, at least two pairs have the same (maximal) length. A picturesque
way of formulating this property is this :

In an ultrametric space, all triangles are isosceles (or equilateral), with at
most one short side.

Here is an image of the situation. Let x be the earth and y, z be two stars in a
galaxy not containing the earth, so that d(x, y) > d(y, z). Then we consider that
d(x, y) = d(x, z) (this is the distance ofthe galaxy containing y, Z to the earth).
In other words, ultrametric distances behave as orders ofmagnitude.

Let us denote by Sr(a) = {x EX: d(x , a) = r} the sphere of center a and
radius r > O. Then if a ball B does not contain the point a , it lies on the sphere
Sr(a), where r = d(a, B)

if B = B<s(b), then r = d(a, b) ~ sand B C Sr(a),

and similarly,

if B = B:;s(b), then r = d(a , b) > sand B C Sr(a).

Let us reformulate these properties in the form of another lemma.

Lemma 2. (a) Ifd(x, z) > dtz, y), then d(x, y) = d(x, z).
(b) Ifd(x, z) :#= d(z , y), then d(x , y) = max (d(x, z), d(z, y».
(c) Ifx E Sr(a), then B<r(x) C Sr(a) and

Sr(a) = U B<r(x).
xeS,{a)

Balls withina ball

•

The stripped balls are open in any metric space: By definition, they make up a
basis of the topology. Similarly, the dressed balls are closed in any metric space.
In an ultrametric space we have some other peculiarities.



72 2. Finite Extensions of the Field of p-adic Numbers

Lemma 3. (a) The spheres Sr(a) (r > 0) are both open and closed.
(b) The dressed balls ofpositive radius are open.
(c) The stripped balls are closed.
(d) Let B and B' be two disjoint balls.

Then d(B, B') = d(x, x ')forany XE B , x ' E B'.

PROOF. (a) The spheres are closed in all metric spaces , since the distance function
x I--+ d(x, a) is continuous. A sphere of positive radius is open in an ultrametrie
space by part (c) ofthe previous lemma.

(b) If r > 0, then B::r(a) = B<r(a) U Sr(a) is open .
(c) If r > 0, the sphere Sr(a) is open; hence B<r(a) = B::r(a) - Sr(a) is closed.

If r = 0, B<r(a) = 0 is closed.
(d) Take four points : x, y E Band x', y' E B'. The 4-cycle of points x, x', y' , y

has two pairs with maximal distance: They can only be d(x, x') = d(y, y'), since
we assume that the balls are disjoint. All pairs of points x E B, x' E B' are at the
same distance, and d(B, B') := infxEB,X'EB' d(x , x') is this common value . _

Due to the frequent appearance of simultaneously open and closed sets in ultra­
metric spaces, it is useful to introduce adefinition.

Definition. An open and closed set will be called a clopen set.

Lemma 4. (a) Asequence(xn)n?:owithd(xn, Xn+l)~ 0 (n~ 00) isa Cauchy
sequence.

(b) Ifx.; ~ x =1= a, then d(xn, a) = d(x, a)for all/arge indices n.

PRooF. (a) Observe that if d(xn, xn+d < e for all n ~ N, then also

for all n ~ N and m ~ O.
(b) In fact, d(xn, a) = d(x, a) as soon as d(xn, x) < d(x, a) . -
Proposition. Let Q C X be a compact subset.
(a) For every a E X - Q, the set ofdistances d(x, a) (x E Q) is finite.
(b) For every a E Q, the set of distances d(x , a) (x E Q - {a}) is discrete

in R >o.

PRooF. (a) We have just seen that

d(x, y) < d(x, a) =} d(y , a) = d(x, a) ;

hence the function f : x I--+ d(x, a), Q ~ R>o is locally constant and continuous.
Its range is finite: The sets f- 1(c) (for c E f(Q» form an open partition of the
compact set Q .
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(b) The map f : x f-+ d(x, a), n - {al -+ R >o is locally constant as before.
For 8 > 0, its restriction to the compact subset n - B<e(a) has finite range. This
proves that all sets

[8,00) n {d(x, a) : XE n, x =1= a}

arefinite. Hence f(n - {aD is discrete in C R >o.

Let us summarize.

Properties of ultrametric distances.

(a) Any point ofa ball is a possible center ofthe ball
b E B~r(a) ==> B~r(b) = B~r(a) (and similarly for stripped balls).

(b) Iftwo balls have a eommon point,
then one is contained in the other.

(e) A sequenee (Xn)neN is a Cauchy sequenee
precisely when d(xn, xn+d -+ 0 (n -+ 00).

(d) In a compact ultrametric space X, for eaeh a E X,
the set ofnonzero distances {d(x, a) : a =1= x E X} is discrete in R >o.

•

1.2. Ultrametrie Principles in Abelian Groups

Let G be an additive (abelian) group equipped with an invariant metric d, namely
a metric satisfying

d(x + z. y + z) = d(x, y) (x, y and z E G) .

For x E G, define

[r] = d(x, 0).

Then

I-xl = d(-x, 0) = deO, x) = d(x, 0) = [x]

and

Ix + yl = d(x + y, 0) S d(x + y, y) + d(y, 0)

S d(x , 0) + d(y, 0) = [x] + lyl.

This shows that x f-+ -x and (x, y) f-+ X +y are continuous and G is a topological
group when equipped with the metric d. We shall say that G is a valued group
when such a metric d has been chosen.

Assuming that this metric satisfies the ultrametric inequality, we shall have
similarly

Ix+ yl = d(x + y , 0) S max (d(x + y, y), d(y, 0))

S max(d(x,O),d(y ,O)) = max t]x], Iyl) ·
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In particular, all nonempty balls centered at the neutral element 0 E G are sub­
groups of G. These subgroups are

B~r(O) = {x E G : lxi:::: r} (r ~ 0),

B<r(O) = {x E G : [x] « r} (r > 0).

Instead of applying (1.1) to see that the balls B~r(O) and B<r(O) are open and
closed when r > 0, one can observe that these subgroups are neighborhoods of
the origin and use (1.3.2) to reach the same conclusion.

Conversely, if we are given a function G -+ R:::o : x t-+ [x I satisfying

[x] » 0 for x "# 0, I-xl = [x],

Ix +Yl :::: [x] + lyl (resp.:::: max (lxi, Iyl) )

then we can define an invariant metric (resp. ultrametrie) on G by

d(x, y) = Ix - yl .

The characteristic properties of distances are immediately verified (see the specific
references at the end ofthe volume). A pair (G, I . I) consisting of an abelian group
G and a function G -+ R:::o : x t-+ [x I satisfying the preceding properties, with
the ultrametrie inequality

[x + yl :::: max t]x], Iyl) (x, y E G),

will be called an abelian ultrametrie group .
The study of convergence for series in a complete abelian group is simpler in

ultrametric analysis than in classical analysis. Let (a, )i:::O be a sequence and define

Sn = Lai.
;<n

If this sequence of partial sums Sn has a limit s, then

an = Sn+l - Sn -+ S - S = O.

This necessary condition for convergence of the series Li>O a, is sufficient in any
complete ultrametric group. Indeed, if Sn+l - Sn = an ~ 0, the sequence (sn)
is a Cauchy sequence and hence converges. Moreover, reordering the terms of a
convergent series, and grouping terms, alters neither its convergence nor its sum.

Proposition. Let (ai)i EN be a sequence in a complete ultrametric abelian group.
Assume that aj -+ 0, so that the series Li:::O a, converges: Let s be its sum.
Then

(a) for any bijection a : N -+ N we have s = Li>O au(i),

(b) for any partition N = Il, t, we have s = Lj-(LiElj ai).
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PRooF. (a) For 8 > 0, define the finite set

1(8) = {i : lad> 8}

and the corresponding sum

S(8) = L a. .
ie/(e)

For any finite set J :J 1(8),

L ai s max lad:::: 8 .
)-/(e) i ~/ (e)

This proves that the family (ai) is summable. This notion is independent of the
order on N. Explicitly, for 8 > 0, 17 > 0 we have

IS(8) - s(IJ)1 :::: maxrs, 17),

since S(8) - s(lJ) is a finite sum ofterms having absolute values between 8 and 17.
In particular, (s(ljn))n>O is a Cauchy sequence, and we call S its limit. If 8 > 0,
letting n -+ 00 in

IS(8) - s(ljn)1 :::: maxts, 1jn)

weget

IS(8) - s] :::: 8.

Hence we can say that S(8) -+ Swhen 8 -+ O. Now, ifa; = aq(i) is arearrangement
of the terms of the series and s~ = L i <n a;, the inequality

holds when {a(i) : i < n} contains the finite set 1(8), hence for all sufficiently
large n.

(b) Let sj ~ Ljelj a., so that we have to prove S = Lj Sj' Take any 8> 0 and
define the finite sets

Obviously, the nonempty Ij(8) make a partition ofthe finite set 1(8), and

S(8) = Laj= L (L ai ) .
I(e) j i e lj (e)
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Finally,

Since this is true for all e > 0, the conclusion folIows. _

Corollary. Let (ajj )j~o.j~O be a double sequence such that for any e > 0 the
set ofpairs (i, j) with laij I > e is finite. Then this double family is summable
and

PRooF. The family (aij)j~o.j~O is surnmable over the countable set N x N by
hypothesis, and the sum of the corresponding series Li,j ajj can be computed in
any order. It can also be computed using the two groupings mentioned. _

Comments (1) Surnmable families over arbitrary index sets will be considered
later (cf. (IVA.I)). The above proposition will be generalized correspondingly.

(2) In classical analysis , there is a distinction between conditionally convergent
and absolutely convergent - or cornmutatively convergent, or surnmable - series
(of real or complex numbers): This distinction disappears in non-Archimedean
analysis, since the sum ofa convergent series can be computed in any order, any
grouping. But in both contexts a grouping in a divergent series may produce a
convergent one: Think of ai = (-I)j, laj I = 1 -fr 0; here is a grouping that leads
to a convergent series

(1 - 1) + (1 - I) + .. . = 0 + 0 + . .. = 0,

and here is another grouping,

1 + (-1 + 1) + (-1 + 1) + ... = 1+ 0 + 0 + ... = 1

leading to a different sum . Or think of the divergent series Ln>O an where all
an = 1. A suitable grouping of its terms leads to a convergent series:

2 11 + (1 + ... + I) + (1 + . .. + I) + ... = 1+ p + p + .. . = --.
"-v-"' "-v-"' 1 - p

p tenns p2 tenns
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Basic Principles of Ultrametric Analysis in an Abelian Group

(1) The strongest wins

[x] » lyl => Ix + Yl = IxI.

(2) Equilibrium: All triangles are isoseeles (or equilateral )

a + b +c= 0, lei< Ibl => lai = Ibl·

(3) Competitivity

al + a2 + ...+ an = 0 =>
there is i#- j such that lail = lajl = max Jakl.

(4) A dream realized

(an)n~O is a Cauchy sequence <==> dta«, an+d -+ O.

(5) Another dream come true (in a complete group)

Ln~o an converges <==> an -+ O.

When Ln>Oan converges, Ln>O lanI may diverge but
ILn>O an1-:::: sup lanland the infinite version of(3) is valid.

(6) Stationarity ofthe absolute value

an -+ a #- 0 => there is N with lanl = lalforn 2: N.

1.3. Absolute Values on Fields

Definition 1. An absolute value on afield K is a homomorphism

f : K X
-+ R>o

extended by f(O) = 0 and such that fex + y) :::: fex) + f(y) (x, Y E K).

The trivial homomorphism fex) = 1 (x E K X
) defines the trivial absolute value

on K. We shall usually denote by f (x) = IxI an absolute value, and by definition,
such a function will always have the characteristic properties

[x] 2: 0,

[x] = 0 <==> x = 0,

[xy] = lxi ' lyl,
Ix + yl :::: [x] + lyl

for all x, y E K. The pair (K, I. J) is a valuedfield (1.3.7).
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Ifx" = 1 E K, then Ix In = Ixn I = 1 and [xI = 1. In particular, 1-11 = 111 = 1.
Also, 121 = 11 + 11 ~ 1+ 1 = 2, and by induction

Inl ~ n (n E N)

(here n = n . 1K E K in the left-hand side of the inequality, whereas n E R>o in
the right-hand side). Also, quite generally,

I

-x
y

1 __ IIX
yl
1 (x E K, Y E K X).

By induction

for every positive integer n.

Definition 2. An ultrametrie field is a pair (K, I .1) consisting oiafield K and
an ultrametrie absolute value on K, namely an absolute value satisfying the
strong triangle inequality

Ix + yl ~ max I]x], Iyl) ~ [x]+ lyl (x, Y E K).

As before, induction shows that

In this case, we have 121 = 11 + 11 ~ 1 and by induction

In I ~ 1 (n E N).

Hence ultrametrie fields have the non-Archimedean property

Inxl ~ [x] (n E N).

The following lemma is obvious (cf. (1.2)).

Lemma. All balls containing 0 in an ultrametricfield K are additive subgroups.
The dressed unit ball B:S1 (0) is a subring of K. The balls B:sr(O) (r < 1) are
ideals of B:S1(0). The balls B<r(O) (r ~ 1) are ideals of B:S1(0). •

Proposition. Let x f-+ [x] be an absolute value on afield K. Then:

(1) d(x, y) = Ix - Yl defines ametrie on K .
(2) For each exponent 0 < a ~ 1 , X f-+ [x la still defines

an absolute value on the field K.
(3) Ifx f-+ [x ] is an ultrametric absolute value,

then for each positive exponent a > 0, x f-+ Ix la still defines
an ultrametrie absolute value on the field K.
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PROOF. All statements are obvious except perhaps the triangle inequality, which is
nevertheless a simple exercise. •

The trivial absolute value defines the discrete metric: d(x , y) = I if x =f. y.

1.4. Ultrametrie Fields: The Representation Theorem

Let K be an ultrametrie field. We use the general notation

A = {x E K : [x] ~ I}: dressed unit ball,

M = {x E K : lxi< I}: stripped unit ball .

Hence

A = A X uM

is a disjoint union, where A x , the multiplicative group of invertible elements in A,
is the unit sphere IxI = I.

Proposition. The subset A is a maximal subring 01 K, and M is the unique
maximal ideal 01the ring A.

PROOF. Indeed, if A' is any subring strictly containing A, it will contain an element
y such that Iyl = r > I together with all its powers y". Hence B~r. = ynA C A',
and since r" = Iynl ~ 00, we see that K = Un>1 ynA = A' . Moreover, any ideal
not contained in M contains a unit, and hence coincides with the whole ring A.
This shows that M is the unique maximal ideal of A. •

Definition 1. A subring A 01afield K such that

foreveryx E K X
, x E A or I/x E A

is called a valuation ring of K . A commutative ring A having a single maximal
ideal is called a local ring .

The unit ball in an ultrametric field is a local ring and a valuation ring .

Definition 2. If K is an ultrametric field , its residue field is the quotient k =
A / M 01its dressed unit ball, the maximal subring 01 K, by its unique maximal
ideal.

The residue field parametrizes the stripped balls of unit radius in the dressed
unit ball of K : If S C A is a set of representatives for the classes mod M, then

A = B~I(O) = UB<I(X).
xeS

Theorem. Let K be a complete ultrametric field, A its maximal subring de­
fined by IxI ~ 1. Choose an element ~ with I~ I < I together with a set 01
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representatives Sc A containing Ofor the classes A/~A. Then each nonzero
element x E K x is a sum

x = Lai~i (m E Z, ai ES, am =f. 0)
;?:,m

with m 2: 0 precisely when x E A. The map x 1-+ (sn) where Sn = Lm<i<n ai~ i

defines an isomorphism A ~ lim A/~nA. -
<--

PROOF. The conditions I~I < 1, ~ E Ais not a unit, and ~ E Mare all equivalent.
Starting with x E A, there is a unique ao E S with x - ao E ~A,

x =ao+~xl (XI E A) .

Repeating the procedure for XI, and so on, we get by induction

x = ao + al~ + . . . + an_l~n-1 + xn~n

with ai E Sand X n E A. In the notation of the statement of the theorem, we can
write x = Sn + xn~n. Since IXn~n I ~ !~n I = I ~ In ---+ 0, the sequence (sn)n>O is a
Cauchy sequence, and the series Ln>o ai~i converges to the element X E A.-Since
for any x E K there is an integer k such that I~kx I ~ 1, namely such that ~kx E A,
the preceding expansion can be derived for this element, and we obtain aseries
expansion for x starting at the index i = m = -k. •

Observe that even when K is not complete, each x E K x has aseries represen­
tation as indicated in the theorem, but an arbitrary series

Lai~i (m E Z, a, ES, am =f. 0)
;?:,m

will - in general - converge only in the completion of K . In other words, even
when K is not complete, we get an injection

A ~ A= limA/~nA .
<--

1.5. General Form ofHensel's Lemma

Theorem (Hensel's Lemma). Let K be a complete ultrametric field with max­
imal subring A and f E A[X). Assume that x E A satisfies

If(x)! < If'(x) 12•

Then there is a root ~ E A of f such that I~ - x] = If(x)/f'(x)1 < If'(x)l .
This is the only root of f in the stripped ball ofcenter x and radius If'(x)!.

PRÜÜF. In spite ofthe similarity with (1.6.4) (particular case K = Qp), we give a
complete proof with absolute values (instead of congruences). The idea is again to
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use Newton's method iteratively. Since the polynomials 1 and I' have coefficients
in the ring A, we have I/(x)1 ::: 1 and 0< 1/'(x)1 ::: 1.

First step: Estimates conceming the distance olx = x - I(x)/f'(x) to x .
The assumption is c := I/(x)/I'(xil < 1. We have

~ I(x) I(x),
x - x = --- = --- . 1 (x)

I'(x) l'(x)2 '

IX - x] = cl/'(x)l·

Similarly

~ 2 (/(X»)2 I(x)
(x - x) = I'(x) = l'(x)2 ·/(x),

Ix - xl2 = cl/(x)l .

The second-order expansion (1.6.2) of 1 at the point x gives

I(x) = /(x) + (x - x)/'(x~+(x - X)2r (r E A : Irl::: 1),.
=0: Newton's choice

I/(x)1 ::: IX - xl2 = cl/(x)1 < I/(x)l,

and x is an improved approximation to a root. The first-order expansion (1.6.2) of
I' at the point x gives

I'(x) = I'(x) + (x - x)s (s E A : Isl::: 1),

1/'(x) - 1'(x)1 ::: IX - x] = c1/'(x)1 < 1f'(x)l·

It shows that

1/'(x)1 = I I'(x) + (f'(x) - I'(x» I = 1/'(x)l.
"'--v-"
strengest

The invitation to iteration is clear.

Second step: Further iterations.
Let now;' = N j(x)

~ I I(x) I cl/(x)1 2c'- -- < -c.- l'(x)2 - II'(x)12 - .

This iteration fumishes

and since I/(x)1 = clf'(x)12 by definition, we obtain

1/(;')1::: c41/'(x)12
.
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We can construct the sequence Xo = X, XI = X, X2 = ~, ... inductively with
Xi+1 = Xi, Define also CI =C, Ci+1 =Ci, The preceding estimates show that

If(Xi)l::: Ci-I " 'CIClf(xo)l::: C2'-llf(xo)1= c2'lf'(xo)1 2 --* 0 (i --* 00),

IX2 - xIi = Fx' - xl ::: c2If'(xo)1 < c] f'(xo) I = lXI - xol,

and by induction,

IXi+1 - xii ::: c2
' If'(xo)1 < clf'(xo)1= lXI - xol (i ~ 1).

In particular, lXi - xol = lXI - xol = Ix - x] = c]I'(xo) I is constant for i ~ I
(these x ; are closer to each other than to xo) .

Third step: The limit root ~ .

The sequence (x,)i~O is a Cauchy sequence, so it converges in the complete field
K. Since all iterates Xi belong to the closed subring A, we have

~ = lim xi E A,
n.....oc

I~ - xol = lXI - xol = IX - x] = clf'(x)1 < If'(x)l,

f(~) = f( lim Xi) = lim f(Xi) = O.
n~oo n--iHX)

Fourth step: Uniqueness ofthe root ~ .
Let ~ be as before and 1/ have the required properties, say 1/ = ~ + h. Hence

Ihl = 11/ - ~I < II'(x)1 = 11'(01· The second-order expansion (1.6.2) of f at the
point ~ gives

0= f(1/) = f(~) +hf'(~) + h2t (t E A : Itl::: 1),
'-v-'

=0

0= h( f'(~) + ht ) = h(f'(~) + ht);
'-v-" '-..-'
strengest ,=0

hence h = 0, i.e., 1/ = ~. •
Observe that when the absolute value is trivial, it takes only the values 0 and 1,

the assumption reduces to

0= If(x)1 < If'(x)1 2 = 1,

and the statement is trivially correct.

1.6. Characterization 0/ Ultrametrie Absolute Values

Theorem. Let X ~ IxI be an absolute value on a field K . Then the following
properties are equivalent:

(i) InI ::: 1for all natural integers n E N.
(ii) The absolute value is bounded on N . Ix .
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(iii) 11 +x] :::: Ifor every x E K such that lxI:::: l.
(iv) x ~ lxi is an ultrametric absolute value.
(v) {x E K : lxi:::: I} is a subring of K .

PROOF. We proceed according to the following scheme of implications:

(i) =} (ii) =} (iii) =} (iv) =} (v) =} (iii)

and

(iv) =} (i).

Among these implications, several are trivial, namely,

(i) =} (ii) , (iv) =} (v) =} (iii) and (iv) =} (i).

It only remains to prove two implications. For (ii) =} (iii) we can assume InI :::: M
for all integers n and use the binomial formula to compute

When lxi:::: 1, we obtain

11 +xln
:::: (n + I)M,

11 +xl :::: (n + Ii/n . Ml /n

for all integers n 2: 1. Since (n + I)l /n ~ 1 as weIl as Ml/n ~ 1 for n ~ 00 , we
infer 11 + x] :::: 1. To prove (iii) =} (iv), we can - without loss of generality ­
assume that [x] 2: Iyl in Ix+y], [x] » 0 and estimate this quantity as folIows:

Ix+ yl = lxi' 11 + yJxl :::: [z] = max I]x], Iyl)· -
CoroUary. Any absolute value on afield ofcharacteristic p#-O is ultrametric.

PRooF. Indeed, any absolute value is bounded on the image of N in a field of
characteristic p, since this image is afinite prime field. The second condition of
the theorem is automatically satisfied. _

The absolute values that are not bounded on the prime field of K (necessarily
of characteristic zero) are sometimes called Archimedean absolute values: They
have the property that

if x #- 0, then for each y there is an n E N such that Inxl > Iyl.

1.7. Equivalent Absolute Values

Distinct absolute values can define the same topology on a field K. It is not always
useful to distinguish them.
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Theorem. Let I . h and I . h be two absolute values on a field K. Then the
following conditions are equivalent:

(i) There is an (X > 0 with I·h = 1.lf.
(ii) 1. 11and I.h define the same topology on K.

(iii) The stripped unit balls for 1.11 and I.h coincide.

We say that I . II and I. 12 are equivalent absolute values when these conditions
are satisfied.

PROOF. (i) =} (ii) Since Ix - al2 < r {::=} Ix - all< r l
/
a

, the stripped balls are
the same for the two topologies. Hence the topologies defined by 1. II and I . 12 are
the same.

(ii) =} (iii) Let us observe that

Ixh < I {::=} x" ~ 0(for the topology defined by I. 11)

and similarly for I . 12. By assumption we obtain

(iii) =} (i) Let us assume lxii< I {::=} Ixh < 1. Since II/xh = l/Ixh and
similarly for I. 12. we see that

lxh > I {::=} Ixl2 > I

and consequently

lxII = 1 {::=} Ixl2 = 1.

If I. h is trivial, [x h = 1 for all x E K x , and the same is true for I. 12. so that
we can take (X = 1 in the statement of (i). Otherwise, we can find Xo E K X with
Ixo1I #- 1, and replacing Xo by 1/Xo if necessary, we can assume Ixo1I < 1. Define

log IXol2
(X = ,

log IxoIt

so that Ixoh = Ixolf by definition. Take then any element x E K X with lxii< 1
and consider the rational numbers r > 0 such that lxii< Ixoll' These rational
numbers r = m/ n are those for which

Ix:I < 1.
Xo I

By assumption, these are the same as those for which

Ix:I < 1,
Xo 2
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namely Ix l~ < Ixol~ or Ixl2 < Ixolz . On the other hand, these rational numbers
are precisely those for which

r loglx], < loglxoll (resp. r loglxlz < loglxolz)

or

r > loglxoltlloglxlt (resp. r > loglxolz/loglxlz)

(alllogarithms in question are negative). This proves

loglxoltlloglxll = loglxolz/loglxlz ,

loglxlz/loglxll = loglxolz/loglxoll = a,

Hence Ixlz = Ixlf, as was to be shown.

2. Absolute Values on the Field Q

2.1. Ultrametric Absolute Values on Q

•

Let us recall that if p is a prime number, we can define an absolute value on
the field Q of rational numbers by the following procedure. If x = pma/b with
a, b, mEZ, b =1= 0, and p prime to a and b, we put

In other words, we put Ipl p = l/p < 1 and Inlp = 1 for any integer n prime to
p, and extend it multiplicatively for products. Since

Qx Z z: U »z:= p X ( p ) = p (p) .

meZ

this defines the absolute value uniquely. This absolute value is an ultrametric
absolute value on Q.

Theorem (Ostrowski). Let x 1--+ IxIbe a nontrivial ultrametric absolute value
on the field Q. Then there exists a prime p and areal number a > 0 such that

[x] = Ixl~ (x E Q).

?ROOF. Since the integers generate Q(by multiplication and quotients), the absolute
value must be nontrivial on N. As we have seen, any ultrametric absolute value
satisfies InI ::: I (n E N). Hence there must exist a positive integer n with InI < 1.
The smallest such integer is a prime p because in any factorization n = nl . nz- we
have Ind . Inzl = Inl < 1, and consequently one factor n, must satisfy Ind < 1.
Let us call this prime p so that by definition

Inl = I for I ::: n < p
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but 0 < Ipi< 1. I claim that for every integer mEZ prime to p, we have ImI = 1.
Indeed , if m is prime to p, the Bezout theorem asserts that there are integers u and
v with up + vm = 1. Hence

1 = 111 = lup + vml ::: max(lupl, Ivm\) ::: 1.

Since by assumption lupl = lullpl < lul ::: 1, the maximum must be Ivm l = 1
and hence Iml = 1 (we know apriori that lvi::: 1 and Iml ::: 1). There is now a
unique positive real number a such that

Ipl = (I/pt

(indeed, take a = (loglp\)/(log(I/p» - a quotient of two negative numbers­
independent from the basis of logarithms chosen). Then if the rational number x
is written in the form x = pVa/b E QX with p prime to a and b (i.e., afb E Z0,»'
we shall have

and the theorem is completely proved.

2.2. Generalized Absolute Values

•

Observe that if I . I is an absolute value and a > 0, then I. la is not an absolute
value in general. For example if I. I is the usual absolute value on Q and a = 2,
then fex) = Ixl2 does not satisfy the triangle inequality

4 = f(2) = f(I + 1) > f(I)+ f(I) = 2.

But it satisfies

fex + y) = Ix + Yl2 ::: (jr] + ly\)2 ::: (Zmaxj]x] , lyl})2 = 4max(f(x), f(y» .

This is one reason for considering generalized absolute values.

Definition. A generalized absolute value on a field K is a homomorphism f :
K x ~ R>o extended by f (0) = 0 for which there exists a constant C > 0 such
that

fex + y) ::: C max(f(x), f(y» (x, y E K).

Observations. (1) For any generalized absolute value f and any a > 0 (not only
for 0 < a ::: 1), fa is also a generalized absolute value: Replace C by C" ,

(2) The ultrametric absolute values are those for which the above inequality
holds with C = 1. Moreover, if f is a (usual) absolute value, then

fex + y) ::: fex) + f(y)::: 2max(f(x), f(y» ,

and (usual) absolute values are generalized absolute values: The above inequality
holds with C = 2. Let us prove a converse .
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Theorem. Let f be a generalized absolute value on a field K for which

f(x + y) ~ 2 rnax(f(x), f(y» (x, y E K).

Then f is a usual absolute value: It satisfies the identity

f(x + y) ~ f(x) + f(y) (x, Y E K).

PROOF. Iterating the defining inequality for generalized absolute values, we find
that

fta, + a2 + a3 + a4) ~ C rnax(f(al + a2), f(a3 + a4»

.s C2 rnaxI~;~4 f(a;).

More generally, by induction if n = 2', then

Since we are assuming that the constant C = 2 can be taken in the preceding
inequalities, we have

Now, if n is not apower of 2, say 2,-1 < n < 2', we can cornplete the surn by
taking coefficients a, = 0 for n < i ~ 2' and still write

We shall have to use two particular cases of this general inequality:

(1) j(n) :::: 2n (take ai = 1 for 1 :::: i :::: n),
(2) f (LI~;~n a;) s 2n rnax f(a;) ~ 2n LI:Si~n f(a;).

To estirnate f(a+b), we shall estirnate f{{a +b)n) thanks to the binomial formula
(the nth power of a + b is a surn of n + 1 rnonomials)

f{{a + bt) = f (L: G)a;bn-;)

~ 2(n + 1) L: f (G)) .f(ai f(bt-;

~ 2(n + 1) L 2(; ) f (ai f(bt-;

=4(n + 1)(f(a) + f(b)t .

Let us extract nth roots:

f(a + b) ~ 41/ n(n + l)1/n . (f(a) + f(b» -+ f(a) + f(b) (n -+ (0). •



88 2. Finite Extensions of the Field of p-adic Numbers

2.3. Ultrametric Among Generalized Absolute Values

We can give a generalization of (1.6).

Theorem. Let f be a generalized absolute value on afield K. If fis bounded
on the image of the natural numbers N in K , then it is an ultrametric absolute
value.

PRooF. Let n = 2r be apower of 2 and consider a sum of n tenns ai, As in (2.2),
we see by induction that

Take now x E K and consider the element

Since this sum has n elements, we have

If f is bounded on the image of N in K, say f(k) ::: A for all k E N, we shall
have

(/(1 +x)t- I .s erAmax(l, f(xt- I )

and

f(1 + x) ::: Cr/(n-I)A I /(n-I) max (1, f(x)) .

Letting again n ~ 00, we obtain

f(1 +x) ::: max(l , f(x)) .

Ifnowa f. 0 and bE K , then f(a) f. 0 and

f(a + b) = f(a)f(1 + b/a)

::: f(a) max (1, f(b/a)) = max(f(a), f(b)) . •

2.4. Generalized Absolute Values on the Rational Field

The ultrametrie absolute values on the rational field Q have been detennined in
(2.1). Here, we treat the generalized absolute values .

Theorem. Any nontrivial generalized absolute value on the rational field Q is
either apower of the usual absolute value or apower of the p-adic absolute
value.
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PRooF. Take any nontrivial generalized absolute value fand assurne that

f(x + y) :5 e . max (f(x), f(y»·

If e :5 1, then f is ultrametrie, and we conclude by (2.1). Assurne now e 2: 1.
By induction - regardless of the size and number of addends - we can prove

f(ao + ...+ ar) :5 er .max f(ai) ·

Let us fix an integer n 2: 2 and put A = An = max(f(1), .. . , f(n» 2: 1. Now,
any integer m 2: 2 can be expanded in base n, say

m = L mini (0:5 m, < n, m, i= 0).
O~i~r

Hence

f(m) :5 er. max f(mi)f(n i)

:5 erAn . max f(n) i = erAn max (1, f(n)r) .

But m, i= 0, nr :5 m, and thus r :5 logmjlogn, so that we can write

f(m) :5 A nelogm /logn . max (1, f(n)logm/logn) ,

f(m)l/logm :5 A~/Iogmel/logn . max(1, f(n)l/logn) .

Let us replace m by mk (keeping n fixed), so that the left-hand side is unchanged,
and let k --+ 00, whence A~/(klogm) --+ 1. We obtain

f(m)I/logm :5 el/logn . max(1, f(n)l/Jogn) .

In other words, we have obtained an inequality in which the constant An does not
appear. We can now replace n by nk , and since e1/k --+ 1, we have simply

f(m)I /logm :5 max (1, f(n)I/logn).

First case: There is an integer n 2: 2 with f(n) :5 1.
We can use such an integer n in the inequality just found and deduce

f(m) :5 1 for every integer m 2: 2.

Hence f is an ultrametric absolute value by (2.3). Finally, Ostrowski's theorem
(2.1) applies: f is apower of the p-adic absolute value

f(x) = lxi; (x E Q)

for some real a (determined by the condition f (p) = Ip I~ = (1 j p)ct).
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Second case: We have f(n) > 1 for every integer n 2: 2.
The general inequality

f(m)l/Iogm :5 max(l, f(n)l/Iogn)

is now simply

f(m)l/Iogm :5 f(n)l/Iogn .

Since we can permute the roles ofn and m, we must even have

f(m)l/logm = f(n)l/Iogn .

Hence f(n)l/logn = e" is independent from n. This leads to

f(n) = ealogn = n"

for aII integers n 2: I, and with the usual absolute value

f(n) = Inla (n E Z).

By the multiplicativity property, we also have

fex) = Ixla (x E Q).

Since 0 < a < 00, the map f is apower of the usual absolute value, and the
theorem is completely proved. •

Comment. The preceding result shows that for a generalized absolute value f on
the field Q, the only possibilities are

• f is trivial,
• Ip1< 1 for some prime p and f is apower ofthe p-adic absolute value,
• In I 2: I for all positive integers n and f is apower of the usual Archimedean

absolute value.

Observe that the two nontrivial cases can also be cIassified according to the
value of 121 : If 12/ < 1, fis apower ofthe 2-adic absolute value; if 121 = I, fis a
power of the p-adic absolute value for some odd prime p; if 121 > I, f is apower
of the usual Archimedean absolute value.

3. Finite-Dimensional Vector Spaces

3.1. Nonned Spaces over Qp

Let V be a vector space over the field Qp . A norm on V is a mapping

" . " : V - {O} -+ R>o
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extended by 11011 = °and satisfying the following characteristic properties:

lIaxli = lalllxII (a E Qp, x E V),

IIx +yll :::: max rllx], lIylD (x, y E V).

Inparticular, the norms that we are considering are ultrametric norms. A normed
space over Qp is simply a vector space over this field equipped with a norm. A
norm defines an invariant (ultra-)metric on the underlying additive group of V.
Hence a norm defines a topology on V, which becomes an additive topological
group in which scalar multiplications

X 1--+ ax : V ~ V (a E Q;)

are continuous homeomorphisms.

Examples. (1) Let V = Qp with norm IIxll = clx] where c > °is a fixed,
arbitrarily chosen positive real constant. This example shows that {lIvII : v E V}
can be different from the set of absolute values of scalars, i.e. the absolute values
ofthe elements ofthe field Qp . (This is a difference fromreal andcomplex normed
spaces) .

(2) Let V = Cl;, for some positive integer n. Then for x = (Xj)l~j~n E V we
can put IIxlloo = SUP1~j~n Ix;! = maxl~j~n Ix;!. This defines an ultrametrie norm
on V.

Two norms x 1--+ IIxll and x 1--+ IIxll' are called equivalent when they induce
(uniformly) equivalent metrics on V, namely when there exist two constants°<
c:::: C < 00 with

clIxII :::: IIxll' :::: CIIxll·

This happens precisely when the topologies defined by these two norms are the
same (exercise).

Theorem. Let V be afinite-dimensional vector space over Qp. Then alt norms
on V are equivalent.

?ROOF. Let n = dirn V and choose a basis (ej )l~j~n of V. Hence

x = (Xj) 1--+ V = LXjej = tp(x)

defines an algebraic isomorphism tp : Cl;, ..::;. V. On the space Q; we consider the
sup norm given in the above example. We have to show that the isomorphism tp is
bicontinuous. But
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where C = max lIej 11 . (Note that the strong triangle inequality is not really nec­
essary here since it would be enough to observe that 11 L xie, 11 ::: L IIxjej 11 :::
L lleill - rnax lxii = C'lIx1100 ')Thisproves that IIqJ(x) 11 ::: Cllxlloo and e iscontinu­
ous.Finally.we showthat e is an openmap. Let B = B:: I = {x E Cf;: IIxlloo::: I}
be the unit ball in Q;.We have to show that qJ(B)contains an open ball of positive
radius centered at 0 in V. Denote by SI the unit sphere

in Cf; . Then SI is a closed subset ofthe compact set B:: I , and hence is compact.
This implies that qJ(Sd is also compact. This image does not contain the origin of
V (remember that sp is bijective) . Hence the distance from 0 to qJ(Sd is positive,
and the minimum is attained for some point qJ(xo):

If v E V - {O} has norm 11 vII< e, the norm of all multiples AVwhere lAI ::: 1 will
also satisfy 11 I..vII< e. Hence in particular, if 11 vII< e, then

Since (ej) is a basis, we can write

v = L vie, = qJ«Vj)).

Without loss of generality we may assume that the largest component is the last
one:

°=1= IVnl = max lvii = II(Vj)lIoo'

With I.. = l/vn we have AV = qJ«vi/vn)) = qJ(W) E qJ(SI). The remark made
before proves that this scalar I.. satisfies lAI > 1, so that

1
II(Vj)lIoo = IVnl = - < 1.

lAI

This shows that v = qJ«Vj))with II(Vj)lIoo < 1: v E qJ(B), where B = B::I(O, Q;).
Consequently,

•
Corollary 1. Let V and W be two finite-dimensional normed vector spaces
over Qp and Ot : V ~ W a linear map. Then Ot is continuous. •

Corollary 2. Any algebraic isomorphism ofafinite-dimensional normed vector
space over Qp is bicontinuous. •
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Corollary 3. Let V be a finite-dimensional vector space over Qp . A subset
S c V that is bounded with respect to one norm on V is bounded with respect
to any other norm on V. _

Remark. Observe that the proof could be simplified if we knew that all nonns of
elements of V were absolute values of scalars, namely if IIV II = IQpl. But this
equality is in general not satisfied.

3.2. Locally Compact VectorSpaces over Qp

There are not many compact nonned spaces over Qp. In fact, any nonzero element
x of a vector space generates a line, and the norm is an unbounded continuous
function on this line because

IIhll = lAlllxII (A E Qp).

This shows that the only compact nonned space is the trivial nonned space {O}.
Let us turn to locally compact nonned spaces over Qp.

Theorem. If V is a locally compact normed space over Qp , then its dimension
isfinite.

!'ROOF. Let us select a compact neighborhood n of 0 in V . Also choose a scalar
a E Qp with 0 < lai< 1 (for example a = p with lai = 1/p will do). The
interiors of the translates x +an (x E V) cover the whole space . A fortiori there
is a finite covering of the compact set n of the form

nC U(aj +an) (for some c, E V) .
finite

Consider the finite-dimensional subspace L generated by the elements ai. By
(3.1), this finite-dimensional subspace is isomorphie to a nonned space Q~, and
hence is complete. Consequently, this subspace L is closed, and in the Hausdorff
quotient V / L (1.3.3) the image A of the set n is a compact neighborhood of 0 and
satisfies

AC aA (ora-1A CA),

whence a-n A C A by induction. Since la-n I~ 00, we see that

AC V/L C Ua-nA C A .
n?;1

In particular V / L is compact: V / L = 0, V = L is a finite-dimensional space. _

Corollary. In a locally compact normed vector space over Qp , the compact
subsets are the closed bounded sets.
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PROOF. The compact subsets of any metric space are closed and bounded (by con­
tinuity of the distance function) . Conversely, if V is a locally compact normed
vector space over Qp , it has finite dimension and its norm is equivalent to the
sup norm of this space (3.1). But in Cf;, any bounded set is contained in a (com­
pact) product of balls of Qp. Hence the closed bounded sets are compact subsets
ofQ;. •

3.3. Uniqueness 01Extension 01Absolute Values

Let K be a finite (hence algebraic) extension ofthe field Qp . We can consider K as
a finite-dimensional vector space over Qp. Each absolute value on K that extends
the p-adic absolute value of Qp is a norm on this vector space, and we can apply
the results of (3.1).

Proposition. There is at most one absolute value on K that extends the p-adic
absolute value 0/ Qp .

PROOF. Let I. Iand I. I'be two absolute values on K that extend the absolute value
of Qp . These two norms must be equivalent, and there exist constants 0 < c ~
C < 00 such that

clr ] ::: [x]' ::: Clr] (x E K).

Replace x by x n in the preceding inequalities:

Since I . I and I . I' are absolute values, they are multiplicative, and the preceding
inequality is simply

or

Letting n ~ 00, we have c1/ n ~ 1 and C1/ n ~ 1. This proves [x] = [x]', •

Application. Let K be a Galois extension of Qp and assume that the p-adic
absolute value 0/ Qp extends to K. Then for each automorphism a of K /Qp we
can consider the absolute value [x ]' = [ox]. By the preceding proposition, this
absolute value must coincide with the original one. Let G = Gal (K /Qp) and for
each x E K , consider the element

N(x) = f1 a x E Qp .
<lEG
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We musthave

IN(x)\ = IIl axl = Il\ax\ = Ixl#(G).
ueG «ec

Hence with d = #(G) = [K : Qp] = dimQ/K),

[x] = IN(x)I'/d .

Since N(x) E Qp, this formula gives an explicit expression for the extension of
the absolute value of Qp (provided that one exists!). This observation can be used
to prove the existence of an extension of the absolute value of Qp.

3.4. Existence ofExtension ofAbsolute Values

Let again K be a finite extension of degree d of the field Qp. The relative norm
(as defined in field theory, not to be confused with a vector space norm!) is a
multiplicative homomorphism (3.3)

N = NK / Q p : K X -+ Q;, x ~ N(x),

which coincides with the dth power on Q; . It can be defined either by embedding
K in a Galois extension Land taking a product over the d distinct embeddings
K "-+ L orby usingthedeterminantoftheQp-linearmap y ~ xy of'the Qj-vector
space K .

Theorem. Let K be a finite extension of degree d of the field Qp of p-adic
numbers. For each x E K, let f.x denote the Qp-linear operator y ~ xy in K.
Then

f(x) = IN(x)\'/d = Idetixl'/d

defines an absolute value on K that extends the p-adic one. This is the unique
absolute value on K having this property.

PROOF. If a E Qp, it is obvious that N(a) = ad whence IN(a)I' /d = lai, and
the proposed formula is an extension of the p-adic value. The multiplicativity
f(xy) = f(x) . f(y) is a consequence of the multiplicativity of the determinant
(or of the norm). We still have to check the ultrametric inequality. For this crucial
point we use the local compactness of K . Let us choose any norm x ~ IIx 11 on K
with 11 K 11 = IQpI.For example, pick a basis e" . . . , ed of K over Qp and use the
sup norm on components in this basis. Since the continuous function f does not
vanish on the compact set IIx 11 = 1, it is both bounded above and below on this
set, say

0< E :s f(x) :s A < 00 (lIxII = I).
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For xE K X choose A E Qp with IIxll = I}..I. Hence the vector x f): has norm 1,

e ~ f(x/}..) ~ A (x =f:. 0),

and since f(x/}..) = f(x)/I}..I,

sl}..1 ~ fex) ~ AI}..I (x =f:. 0),

sllxll ~ fex) ~ AlIxII (x =f:. 0).

Thus with a = s-l we have both IIxll ~ af(x) and fex) ~ AlIxII. Suppose now
fex) .s 1 (hence IIxll ~ a) . We infer

f(I +x) ~ AIII +xll ~ Amax(IIIII , IIx ll)

~ Amax(IIIII, a) = C = Cmax(f(1), fex»~.

If more generally f(y) ::: fex), we can divide by y and apply the preceding
inequality to x f y, since f(x/y) = f(x)/f(y) ~ 1. Finally, multiplying both sides
by f(y), we obtain the general inequality

fex + y) s C max (f(x) , f(y».

This proves that f is a generalized absolute value. Since f extends the p-adic
absolute value, it is bounded on N C Qp c K and is an ultrametrie absolute value
by (2.3).

The uniqueness of the extension has already been proved in (3.3). •

3.5. Locally Compact Ultrametric Fields

In locally compact ultrametric fields K, we shall use adapted notation

R = B:::l :::> P = e.,

instead of

which will still be used in the general - not necessarily locally compact - case.
We are going to prove the following general result.

Theorem. Let K be a field equipped with a nontrivial ultrametric absolute
value and consider the corresponding (ultra-)metric space. Then K is locally
compact precisely when the following three conditions are satisfied:

(1) K is a complete metric space.
(2) The residue field k = R/P isfinite.
(3) IK x I is a discrete subgroup of R>o,

hence ofthe form ()Z for some 0 < () < 1.
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PROOF. Assume first that the field K is locally eompaet. Henee there is a eompaet
neighborhood of 0 in K. This neighborhood eontains a ball B~e(O), where E > o.
This ball B~e is eompaet. Using dilatations, we see that all balls B~r(O) of K are
eompaet. Any Cauehy sequenee in K is bounded , henee eontained in a eompaet
ball: It must eonverge in K . This shows that K is eomplete (reeall more generally
that every locally eompaet topologieal group is eomplete (1.3.2)). Now the residue
field parametrizes the open unit balls eontained in the unit ball B~l (0). If this
last one is eompaet, the preeeding partition in open sets must be finite, whieh
proves (2). Finally, sinee the open unit ball B<l(O) is closed in the eompaet ball
B~l(O), the eontinuous funetion x 1-+ [x] must attain a maximal value over the
eompaet set B<l(O). Call e < 1 this maximal absolute value. The only possible
nonzero absolute values are now the integral powers of e. Indeed, a multiplieative
subgroup of R>o is either diserete or dense (1.3.4). (Altematively, one eould use
the last property of ultrametrie distanees mentioned in (1.1) for the eompaet sets
B~s - B<nO < r < s.)

Conversely, assume that the three eonditions are satisfied and ehoose an element
TC E K with largest possible absolute value less than 1: TC E PeR ==} TC R C P.
The reverse inclusion also holds:

xE P ==} lxi:::: ITCI ==} x = TC· X/TC (X/TC E R) ==} x ETC R.

This proves that P = (TC) = TC R is prineipal. By the representation theorem
(1.4), the eomplete ring R is topologieally isomorphie to the projeetive limit
R= lim R/TCn R of the finite rings R/TCn R:

+--

R = B~l (0) is isomorphie to Reompaet.

The field K is loeally eompaet, sinee it has a eompaet neighborhood of O. •

4. Structure of p-adic Fields

4.1. Degree and Residue Degree

Let K be a finite extension of the field Qp of p-adie numbers. Henee K is loeally
eompaet and eomplete. Let us ehoose an element TC of maximal absolute value
smaller than 1, say 0 < ITCI = e < 1, and eome baek to the usual notation for
the ring

R = {x E K : lxi:::: I}

and its maximal ideal P = TC R. The residue field k = R/Pis finite, henee a finite
extension of Fp = Zp/pZp.1f f = [k : F p] = dimFp(k), then
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since there is - up to isomorphism - only one finite field having q elements.
Since the integer p belongs to P, we have

l/p = Ipl = Oe , Irrl = Ipil le

for some integer e ::: 1.

Definitions. The residue degree ofthe finite extension K of Qp is the integer

f = [k : Fp] = dimF/k).

The ramification index of K over Qp is the integer

Warning. I hope that the degree f will not occur next to a polynomial feX) or a
function I, or if it does, let me rely on the reader to distinguish them (using P for
a polynomial could similarly lead to a confusion with the maximal ideal P = n R
in a finite extension K of Qp, and here n is not 3.14159 . . . !) In the same vein, k
will usually denote a residue field and here, we try to avoid its use as a summation
index .

Let al and a2 E Q;, XI and X2 E K X be such that

Then lXII = la2/all . IX21 E pZ IX21, and the absolute values of XI and X2 belong
to the same coset mod pZ . Consequently, in a finite sum

of nonvanishing terms, if the lXiI belong to distinct cosets mod pZ, we cannot
have a competition of absolute values, and necessarily L a.x, =1= O. This argument
shows that n = [K : Qp] = dim(K) ::: e. One can also see directly that n ::: f
(exercise !). Let us prove that n ::: ef (we even prove n = ef below).

Proposition. In the situation described in this section, we have ef ~ n.

PROOF. Let us choose a family (Si )I~i~f in R such that the images Si E k make up
a basis over the prime field Fp ' I claim that the elements

are independent over Qp . Consider indeed a nontrivial linear combination
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where x j = Li cusr . Then for each j there is an index f. = tU) such that

and Xj/Clj = Li(Cij/Clj)Si = Li YiSi is a nontriviallinear combination with
coefficients in R (and Yl = 1). Consider this relation mod P: Define Y; = Yi mod
P . Since (Si)i is a basis of the residue field k = R / P considered as a vector space
over its prime field, we have

0# L jliSi E R/P
i

simply because Yl = 1. Hence

LYiSi = I
i

and IXjl = \cljl E IQ;I is apower of p. There can be no competition among the
absolute values ofthe distinct terms XjJrj, and this proves

LCijSiJrj = LXjJr
j

#0.

This proves the expected linear independence, and hence the inequality stated in
the proposition. •

Theorem. FOT each finite extension K of Qp, we have

ef = [K : Qpl = n,

PRooF. By the above proposition it is enough to prove the existence of a set of
generators of K over Qp containing ef elements. We shall show that the family

of the Proposition generates the Qp-vector space K . For this purpose we use the
representation theorem (lA) for the complete field K and the element ~ = p E

PeR. In this case R/pR is finite with representatives

S= { L CijSiJr j : 0s Cij :::: P - I} .
l::;i::;!,O::;j<e

Hence one can write any element x E R as aseries

x = LClpl (Cl ES).
l:=:.O

If we write explicit expressions for the coefficients

Cl = L CijlSi Jr j E S,
l::;i:::J,O::;j<e
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we obtain

and if we sum in a different order (only f can take infinitely many values, and
pi --+ 0: The family in question is summable by the Proposition in (1.2», then

x = L (L CijiPi) . Sjj(j .

i-ssr. O~j<e i

But Cij = Li Cijipi E Zp and x = Lij CijSij(j . This proves that the ef elements

Sij(j (1 .::: i .::: J, 0 .::: j .::: p - I) constitute a spanning set of the field K

considered as a vector space over Qp. Together with the proposition, this concludes
the proof of the theorem. •

A finite extension K of Qp is said to be

unramified when e = I, i.e., when [K : Qp] = J,
totally ramified when J = I, i.e., when [K : Qp] = e,
tamely ramified when p does not divide e,
wildly ramified when e is apower of p .

In other words, an extension K /Qp is

unramified when p is a generator of the maximal ideal PeR,
totally ramified when the residue field does not grow.

Comment. Let us come back to the analogy between p-adic numbers and func­
tions of a complex variable already mentioned in (1.1.4) and (1.5.1), since it is also
responsible for the preceding terminology, Let us explain this in its simplest form.

Let ~ =1= 0 be a meromorphic function defined in a neighborhood of 0 in C. It is
known that there is a representation

~(z) = L anZn (am =1= 0)
n?:m

valid in a punctured disc 0 < IzI < E. The smallest index mEZ such that am =1= 0 is
the order of~ at the origin. This integer is positive when ~ vanishes and is negative
when ~ has a pole at the origin. In this way, we see an analogy between the field
L of meromorphic functions defined in a (variable) neighborhood of the origin in
C and the p-adic field Qp consisting of the formal expansions x = Ln>m anpn
(m E Z). The functions that are holomorphic at the origin make a maximalsubring
l-o of L comparable to Zp in Qp. The local construction of the field L is also a
justification for calling Qp a localfield.

Now take an integer e > land consider the change of variable

u t-+ z = ue : C --+ C.
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This is a canonical example of a ramifiedcovering 01degree e at the origin, in a
topological sense: The inverse image of any z i=0 consists of e distinct preimages,
while u = 0 is the only preimage of z = O. If ~ = Ln>m anZn (0 < Izi < s) is as
before a meromorphic function in a neighborhood of the origin, we can make the
change of variable z = u" and obtain a new expansion

TJ(u) = ~(ue) = I>nuen.
n~m

In this way, the field L is embedded in the field L' consisting of convergent Laurent
series in the variable u. There is no function .:fidefined in a neighborhood of z =0
in C, so that the field L' = L(zlle) is a proper extension of the field of convergent
Laurent series L in the variable z. This extension L' is totally ramified over L , with
degree e: It is obviously comparable to the extension Qp(Jr) of Qp if n = p'!",

Observe that with meromorphic functions it is traditional to work with the order-of­
vanishing function ordo(~) = m, instead of a corresponding ultrametric absolute
value 1~lo = 8m (for a choice 0 < 8 = Izlo < 1; there is no canonical choice for
8 here) .

The rational field Q can similarly be compared to the field of rational functions
C(z) , the completions Qp (letting now the prime p vary) corresponding to the
fields of meromorphic functions near a variable point a E C instead of the origin.

4.2. TotallyRamified Extensions

Let us recall the following well-known irreducibility result stated over Zp rather
than over Z.

Theorem 1 (Eisenstein). Let I(X) E Zp[X] be a monic polynomial 01degree
n ~ 1 with I(X) == X" modp, 1(0) ~ 0 modjr'. In other words,

I(X) = X" + an_IXn- 1 + .. .+ ao,
ord (ai) ~ 1 (0::: i ::: n - 1), ord (ao) = 1.

Then I is irreducible in the rings Zp[X] and Qp[X].

PROOF. Take a factorization I = g . h in Zp[X] - or in Qp[X]; this is the same
by an elementary lemma attributed to Gauss - say

g = blXl + ... + bo, h = cmXm+ .. .+ Co .

Hence

l + m = n, blcm = 1, boco = ao.

Since ao is not divisible by p2, P can divide only one of the two coefficients bo
and Co. Without loss of generality we can assume that p divides Co but p does not
divide bo. Consider now all these polynomials mod p . By assumption 1= X" is
a monomial, so that its factorization 1= g.h must be a product of monomials
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and h= CO is a constant. Considering that btcm = 1, the only possibility now is
m = 0 and a trivial factorization. •

Tbe preceding argument mod p can be made directly on the coefficients. Let
r 2: I be the smallest power of X in h having a coefficient not divisible by p:

p does not divide c, but p divides Cr-I, Cr-2 , . '·' Co.

Tbe coefficient of X r in the product of g and h is

Since bocr is not divisible by p, the preceding equality shows that p does not
divide a; either. By assumption, this shows that r = n. Summing up,

n=m+l2:m2:r=n

implies m = n and l = O. Tbe factorization g . h of f is necessarily trivial.
Tbe same proof shows the following more general result .
Let A be a factorial ring with fraction field K , and Jr a prime of A. Any poly­

nomial

f = anxn + an_IXn-I + ... + ao E A[X] (ofdegree n 2: 1)

with an not divisible by n , ai divisible by Jr for 0 ::::; i ::::; n - 1, ao not divisible by
Jr2, is irreducible in the rings K[X] and A[X].

Definition. A monic polynomial f(X) E Zp[X] ofdegree n 2: 1 satisfying the
conditions ofthe theorem, namely

f(X) == X" modp , f(O);j= 0 mod p2,

is called an Eisenstein polynomial.

Theorem 2. Let K be a finite, totally ramified extension of Qp. Then K is
generated by a root ofan Eisenstein polynomial.

!>ROOF. Tbe maximal ideal P of the subring R = B~I of K is principal and gen­
erated by an element Jr with IJr le = Ipl. Since n = [K : Qp] = e by assumption,
the linearly independent powers (Jri)O~i <e generate K and K = Qp[Jr]. Tbe irre­
ducible polynomial of this element can be factored (in a Galois extension of Qp
containing K) as

f(X) = O(X-Jr")=Xe+ L aiXi±OJr"·
" O<i<e"

Tbe constant term has absolute value ITI"Jr" I = IJr le = Ipl (by (3.3) all automor­
phisms a are isometric), whereas the intermediate coefficients a, satisfy laiI < 1
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(each is divisible by one tt" at least, and a, E Zp). Hence these intermediate
coefficients are in pZp as required: fis an Eisenstein polynomial. _

Examples, (1) In the field Qz, -1 is not a square (1.6.6), and we can construct the
quadratic extension K = Qz(i) = Qz[X]/(Xz + 1). Since

(i + l)z = iZ + 2i + 1 = 2i,

the element i + 1 is a square root of2i. With the (unique) extension ofthe 2-adic
absolute value we have

so that i + 1 is a generator of the maximal ideal P of the maximal subring R of
the field K: P = Ci + I)R. The quadratic extension K is totally ramified of index
e = 2, hence wildly ramified. Let x = i + 1. Then x - I = i and (x - l)z = -1
shows that x is a root of the polynomial

This is an Eisenstein polynomial (relative to the prime 2), and K = Qz(i) is also
obtained as a splitting field of this Eisenstein polynomial .

(2) For p =I- 2 let us add a primitive pth root of unity to Qp. In other words, we
are adding to Qp a root of ~ p - 1 = 0 with ~ =I- 1. Hence ~ is a root of

ct>p(X) = (XP - 1)/(X - 1) = Xp-I + ...+ X + 1.

This is the pth cycLotomic polynomial:It is irreducible, since the change ofvariable
X-I = Y produces

ct>p(X) = [(Y + I)P - 1]/Y = yp- I + p(.. .) + p,

an Eisenstein polynomial. Hence we obtain an extension of Qp of degree p - 1
prime to p . We shall prove that it is totally ramified. Since the powers ~ i are also
roots of the same equation when i is not a multiple of p, the powers ~i (1 ~ i ~
P - 1) form a complete set of conjugates of ~ , and

ct>p(X) = Tl (X - ~i) .
I::::i::::p-I

Obviously, ct>p(l) = 1 + ...+ 1 = p, so that

p = ct>p(1) = Tl (1- ~ i).
I ::::i ::::p-I

But all absolute values 11 - ~i I are equal by (3.3), since these elements are
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conjugate. The preceding inequality leads to

Ipl = n 11 - c': = 11- ~IP-I .
I::;i::;p-I

This proves that n = 1 - ~ is a generator of P in R: The extension K = Qp(n
is ramified with degree n = e = p - 1, hence totally and tamely ramified.

In the course of the preceding deduction we have used the uniqueness of exten­
sion of valuations again. However, in the present context, it is obvious that

implies 11 - ~il ::: 11 - SI. But the roles of ~ and ~ i may be reversed : ~i is also
a generator of the cyclic group J.Lp of order p when 1 :::i ::: p - 1, so that ~ is
a power (~i)j of ~ i (take j such that ij == 1 mod p). This fumishes the equality
11 - ~i1= 11 - SI. By the way, this proves that

I . 11 1
1 - ~i I1 + ~ +...+ ~I- = -- = 1
1-~

and 1 + ~ + ...+ ~i-I are units of the maximal subring R C K = Qp(n.
These are the so-called cyclotomic units of K. Since ~ == 1 mod P, we have
1+ ~ + ...+ ~ i-I == i mod P.

4.3. Roots ofUnity and Unramified Extensions

Let K be a (commutative) field of characteristic 0 and let J.L(K) be the multiplicative
group consisting of the roots of unity in K . Since every element of this group has
finite order (by definition), we can apply the Sylow decomposition theorem (or the
Chinese remaindertheorem) and write a direct product J.L( K) = J.L poo(K) . J.L(p) (K),
where elements in J.Lpoo(K) have a pth power order and elements in J.L(p)(K) have
order prime to p. We shall prove that when K is a finite extension of Qp, the group
J.L(p)(K) is finite, and compute its order. (In the next section we show the finiteness
ofthe group J.Lpoo(K).)

In any valued field, all roots of unity are on the unit sphere :

In the case of an ultrametrie extension of Qp,

K ::> A = B ::;I ::> M = B <I ,

we see that J.L = J.L(K) C A x C K X
• By reduction mod M,

s : A -+ AlM =k

we obtain c (J.L ) C k x • To explain the effect of reduction mod M on roots of unity
let us give a lemma.
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Proposition 1. Let K be any ultrametric extension 01 Qp . Then

JLpoo(K) = JL(K) n (1 + M).

PROOF. First, if ~ E JL(K) has order apower of p, denote by ~ = e(n E k its
reduction. Then

since the field k has characteristic p. Conversely, if ~ E 1 + M has order n > 1,
write ~ = 1 +; with °=11;1 < 1. Then

1 = (1 + ;)n = 1+ n; + ...+;n = 1+ ;(n + ;a)

implies n +;a = 0, and

Inl = I;al ~ 1;1< 1

implies p I n. If n =I p, we can replace ~ by ~p, which has order n]p > 1, and
iterate the procedure. Eventually, we see that n is apower of p . •

Corollary 1. The restriction 01the reduction map e to JL( K) has kerne! JL pOO (K).
It is injective on JL(p)(K): The distance between two distinct roots 01 unity 01
order prime to p is 1. •

Corollary 2. 11 the residue degree I = I(K /Qp) is finite, then the group
JL(p)(K) of roots ofunity having order prime to p in K isfinite and

•
When K /Qp is finite, the next proposition shows that the order of JL(p)(K) is

exactly pi - 1.

Proposition 2. Assume that the extension K 01 Qp is complete with residue
field k algebraic over F p. Then we have a split exact sequence

(1) -+ JLpoo(K) -+ JL(K) -+ k " -+ (1) .

Ifthe residuefield isfinite, say 1= [k : Fp] < 00, then the cyclic group JL(p)(K)
has order pi - 1.

PROOF. Let e : /-L -+ k x be the group homomorphism obtained by restriction
of the reduction (ring) homomorphism A -+ A / M . It will be enough to show
that s induces an isomorphism JL(p)(K) ~ P . By the preceding proposition, the
reduction map induces an isomorphism of JL(p )(K) into P . We have to prove that
it is surjective. Let a E P and replace k by the finite field F p(a) ~ Fq so that
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ais a root of unity of order prime to p, dividing m = q - 1 = # (k X
) . Choose

an element a E A in the coset a (mod M) and consider the solutions x of the
following problem:

X" - 1 = 0 with x == a (mod M) (i.e., sex) = a).

Since m is prime to p, and K is complete, Hensel's lemma (lA) can be applied,
and this fumishes an element x in K X with x m = 1; hence x E JL(p)(K) and
sex) = s(a) = a ,

This proves that - when the residue field k is algebraic - the restriction of the
reduction mod M is an isomorphism JL(p)(K) ~ k" : •

Application. Let K be a locally compact (i.e., finite) extension of Qp and adopt
the usual notation corresponding to this case:

K :::> R = B::;:I(K) :::> P = rrR,

k=RIP, f=[k :Fp], q=pf=#(k).

Then we have canonical isomorphisms

JL(p)(K) x (1 + P) ~ R X (multiplication),

JL(p)(K) ~ e (reduction mod P).

With a choice of rr , we also have an isomorphism

rrZ x JL(p)(K) x (l + P) .; K X (multiplication).

We infer that if ps is the highest power of p such that K has a root of unity of
order p", then

JLpoo(K) = JL(K) n (l + P) has order v' .

The p-adic logarithm will fumish a way of analyzing more precisely the structure
ofthe abelian group 1+ P (cf. VA.5).

It is useful to relativize the definitions of ramification index and residue degree
as follows. Let K C L be two finite extensions of the p-adic field Qp and denote
by R the maximal subring of K, P its maximal ideal, k = RIP (residue field of
K) as before . Introduce the maximal subring RL of L, the maximal ideal PL of
RL , and kc = RL!PL (residue field of L) . We can define

e=e(LIK)=[IL XI: IKxl],

f = f(LIK) = [kL : k] = dim, kt..

n = [L : K] = dimK(L).
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Then n = ef simply because this relation holds for both index and degree over
Qp :

n' = e'r (where n' = [L : Qp], )

n" = elfr (where n" = [K : Qp), ),

and we ean divide these relations,

n' e' r
n=-=- ·-.

n" elf f"

Theorem. Let K C L be two finite extensions of Qp . Then there is a unique
maximal intermediate extension K C Kur CL that is unramijied over K.

PROOF. If the residue field kL of L has order qL, we have seen that LX eontains
a eyclie subgroup JL(p)(L) of order qL - I eonsisting of the roots of unity having
order prime to p in L. More preeisely, if q = # (k) and f = f(Lj K) is the
residue degree of the extension, then qL = «'. The unramified extensions of
K eontained in L eorrespond one-to-one to the extensions of k = Fq in kc. This
eorrespondanee is order-preserving, henee the uniqueness of a maximal unramified
extension . Explieitly,

•
4.4. Ramification and Roots 01Unity

Let us keep the notation introdueed in the preeeding seetion for the group of roots
of unity in the extension K of Qp .

Theorem. Let s be a root of unity in the field K having order pt (t 2: 1).
Then Is - 11 = Ipllj<p(pl) < 1, where f{J(pt) = pt-l(p - 1) denotes the Euler
f{J-function.

PROOF. (1) Case t = 1, the root S has order p . In this ease sP = 1 but S i= 1 and
s = 1 +; (1;1 < 1) is a root ofthe polynomial (XP - l)j(X - 1):

0= (1+;r-1 = ~(P; + p;2x + ;P) (lxi ~ 1).

Henee

and sinee I~I < I and [x] ~ I, we have 11 + pxl = I ,

l;p-11 = I - p(1 + px)1 = Ipl,

Is - 11 = I ~ I = Ipll j(p-l) < 1.
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Since this absolute value occurs frequently in p-adic analysis, let us introduce a
special notation for it:

f; = Ipl ~ Iplp:· := rp < 1,

so that

ri = t = 121, r p > f; (p odd prime).

(2) General case: The order of ~ is precisely pl+1 (t + 1 > 1). Then ~pl has
order p, and by the special case already treated,

I~pl - 11 = rp < 1.

Let us write ~ = 1+ Tl with ITlI < 1, so that

.J I I

~p - 1 = (l + Tl)P - 1 = TlP + PTlY

with lyl ~ 1. Since

I I I/p'
we see that rp = 11 - ~p I = ITl P land finally ITlI = rp as expected. •

:

--
--

h+-- -.l

Location of the Znth roots of unity on the unit sphere

The appearance of the Euler qJ-function is even more natural if we proceed as in
(4.2). Let us give this deduction as areminder of the properties of the cyclotomic
polynomials. Recall that

XP -1
<Pp(X)=-­

X-I

denotes the pth cyclotomic polynomial (of degree p - 1).
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Location ofthe pnth roots ofunity on the unit sphere (p = 3 and 5)

Then, it is weIl known that the ptth cylotomic polynomial (of degree cp(pt) =
pl-I(p - 1» is given by

I-I XPI - 1
<ppl(X) = <Pp(XP ) = I I

X P -1

= X(p-I )p,- I +...+ Xp,-I + 1.

If ~ is a root of unity of order p", then the other roots of unity having the same
order are the powers ~ j of ~ , where the integer j is prime to p, hence the preceding
cyclotomic polynomial has a factorization

<Ppl(X) = X (p -I)pt-l +...+ Xp,- I + 1

= TI (X - ~ j)
I~j ~p'-I , pfj

with a product restricted to the integers j prime to p :There are cp(pt) linear factors
in this product, On the other hand, substituting X = 1, we get

p = TI (1- ~j) .
I~j~p' - I ,p fj

But ~ =1 (mod P) and

1 - ~ j ' - 1 .
-- = 1+ s+...+ ~J = ] (mod P) .
1-~

When p is prime to i . we infer 11 - ~ j 1= 11 - SI, and all factors in the above
product have the same absolute value,
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Corollary 1. Ifthe ramification indexe = eCK) isfinite, then the group JLpoo(K)
0/roots 0/ unity in K having order apower 0/ p is finite. More precisely,

e
# (JLpoo(K)) ::: .

1-1/p

PRooF. In general, if the field K has a root of order p", the preeeding theorem
shows that the ramifieation index e is a multiple of ((J(pt) = p' - pt-I. Henee

This gives abound for the order pt ::: ep/(p - 1), and

ep
# (JLpoo(K)) ::: --.

p-1 •
Observe that the result of this eorollary is valid for any valued field K of ehar­

aeteristie 0, provided that its absolute value extends the p-adie one on Q.
In partieular, if e = 1, we have# (JLpoo(K)) ::: piep - 1),

# (JLpoo(K)) = 1 if p ~ 3,

whereas # (JLzoo(K)) ::: 2 if p = 2. This proves again a result obtained in (1.6.7).

Corollary 2. The group ofroots ofunity in Qp is precisely

JL(Qp) = JL(p)(Qp) = JLp-1 P odd prime,

JL(Q2) = JLz(Qz) = {±1} . •
Example. Let K be the extension generated over Qp by a primitive pth root of
unity and K' the extension of K generated by a primitive root of unity of order pZ.
Both extensions are totally ramified . The degrees of these eyclotomie extensions
are detennined by the previous theory, and a diagram summarizes the situation.

K' = Qp(~p2)

degree p I wild
K = Qp(~p)

degree p - 1 I tarne
Qp

The element tt = ~p - 1 has absolute value Irr I = Ipll/(p-I) generating the group
ofvalues IK x I: P = tt Re R c K = Qp(~p). Similarly, the element ir' = ~p2-1

has absolute value Irr'l = Ipll /p(p-I) generating the group of values IK'x I:
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4.5. Example 1: The Field 0/Gaussian 2-adic Numbers

The ring of Gaussian integers Z[i] is a square lattice generated by land i = .;=T
in the complex field :

Z[i] = Z Efl iZ C C.

It is known that this ring is a principal ideal domain. We can also embed it in an
algebraic extension of the 2-adic field Q2. Since we have seen that -1 has no root
in Q2, the extension K = Q2(i) has degree 2 over Q2' Observe that (1 + i)2 = 2i ;
hence 11 + i I = 121 1/ 2, and this extension is totally and wildly ramified: e = 2.
The general notation gives in this case

We shall consider the generator

Ir = i-I = i(1 + i)

of the maximal ideal P,

Since the residue field of K is

we can consider representations with "digits" in the representative system

Expansions in base b = Ir of nonzero elements of K = Q2(i) have the fonn:

while elements of Z2[i] have expansions

Li~O a.b' ; (a, ES).

A parametrization ofZ2[i ] is given by the set ofbinary sequences, hence a bijective
map

or equivalently,

<I> : P(N) -7 Z2[i], J r+ L bi
.

J

Proposition. The elements 0/ Z2[i] admitting a finite expansion
LO::ooi::oon a.b' : (where ai E S , n E N) in base bare precisely the Gaussian
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integers, and we have

Z[i] = {~bi : J afinite subset ofN j.
PROOF. Since Z[i] is a ring containing 1 and b, it certainly contains all polynomials
in b. We have to prove the converse inclusion, namely :

Every Gaussian integer admits a finite representation in base b.

Let F = <p(S(N» c Z[i] be the image of the finite binary sequences. It will
be enough to prove that this image is a subgroup of Z[i], since it contains the
generators 1 and b. In other words, we have to prove

F + F C Fand - F C F.

Starting with

b = i-I, b + 1 = i,

b2 = -2i, b4 = -4,

we infer successively

b2(b + 1) = 2,

b2(b + 1) + 1 = 3,

b4 + b2(b + 1) + 1 = 3 - 4 = -1.

We have obtained the expansions

2 = b2 +b3
,

-1 = 1 + b2 + b3 + b4
,

and more generally,

2bi = bi+2 + bi+3
,

_bi = bi + bi+2 + bi+3 + bi+4 .

These expansions give reduction algorithms to prove that for finite subsets J and
K ofN,

•

4.6. Example 2: The Hexagonal Field of3-adic Numbers

Here , we consider the quadratic extension K = Q3(.J=3) of the field Q3 of 3­
adic numbers. Since it is obtained by adjunction of the root of a generator of the
maximal ideal 3Z3 of Z3, it is totally and tamely ramified with index e = 2. This
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quadratic extension contains { = (1 + ..r:::3)/2, which is a root of unity of order
6: One can check in succession

Also observe that if we add a root 1'/ of unity of order 3 to Q3, we obtain a totally
ramified extension ofdegree 2, for which 1'/ - 1 is a generator of the maximal ideal.
In fact, we can take 1'/ = {2 and check (with the 3-adic absolute value)

(1'/ - 1)2 = {4 - 2{2 + 1 = -{ - 2({ - 1) + 1 = 3(1 - n = _3{2,

and since 1'/ + 1 = {2 + 1 = {, it follows that 11'/ + 11 = 1 and

11'/2 - 112 = 11'/ - 112 = 1-3{21 , 11'/ - 1/ = IW/2 =-J1i3.

We shall now take the generatorb = ..r:::3and consider expansions Li a,bihaving
coefficients a, in a fixed set of representatives (containing 0) of the residue field

We could take {O, 1, -I} as a set of representatives. However, we shall take S =
{O, I, {}: Indeed by definition 2{ = 1 + b, so that

-1 = -2{ + b = {+ b - 3{ = {+ b + {b 2 == { (mod b)

and we can replace the representative -1 by { . It is easy to check that

2{ = 1+b,
2 = { + b + b2 + {b3

,

1 + { = {b + {b 2 + b3 + {b 4
•

These relations show how to compute sums. Finally, a picture shows(!) how the
image of the finite temary sequences

fills in the whole lattice Z[{].

"
' .'

" '.' "'.'
"

,.,

" '-'
'-' ",..

Finite sums Lo:::;; <3" aibi
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As in the preceding section , we have obtained unique representations for
the elements of the hexagonal lattice Z[n, which is the ring of integers in
Q(~=3).

Proposition. Let b = H, ~ = (l + H)/2, and S = {O, 1, n Then the
finite sums LJ ajbj (aj E S) fill up the hexagonallattice Z[~] in C (or in
K =Q3(H)). •

4.7. Example 3: A Composite ofTotally Ramified Extensions

Let us consider the following quadratic extensions of Q3:

K, = Q3(H), K2 = Q3(.J3).

They are both totally (tamely) ramified, since IHI = 1,J31 = 131'/2. Hence
n = e = 2, f = 1 for both . Let K = K, . K2 denote the composite (in a common
extension). Obviously, .J=T = H/,J3 E K, and the cyclic group ofroots of
unity in K contains JL4 . But the residue field of Q3 is F3 = Z3/3Z3; it contains
only the roots of unity ± 1. Hence the residue field of K contains the quadratic
extension F9 and its cyclic group of units JLs. On the other hand, as we have seen
in the preceding example,

where ~ = ~6 = (l +H)/2 is a root ofunity of order 6. Altogether, K contains
JLs • JL3 = JL24 (Chinese remainder theorem). Both the residue degree and the
ramification index of K must be greater than 1. The only possibility is e(K) = 2,
f(K) = 2 (and n(K) = 4).

Q3(,J3, H) = Q3(,J3,.J=T)

/' ,
K, K2, /'

Q3

It is interesting to observe that although both K; are totally ramified over Q3, their
composite K is not totally ramified over Q3' In fact, take an odd prime p and
a positive integer a prime to p that is not a square mod p . Then the quadratic
extensions Qp(-Jji) and Qp(,JäP) are nonisomorphic and totally ramified over
Qp. But they generate

which contains the unramified quadratic extension Qp(,jä) of Qp. The image of
,jä in the residue field of Qp(,jä) is a square root of a mod p . Hence f 2: 2, and
since ef = n = 2, we have e = 1.
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Appendix to Chapter 2: Classification of Locally
Compact Fields

In this appendix we shall give an approach to the classification of locally compact
(commutative) fields of characteristic O. This contains our main case of interest,
namely that of ultrametric fields. For this purpose we shall take for granted the
existence of a Haar measure on such a field: On any locally compact group G
there exists a positive Radon measure JL on G - or equivalently a regular Borel
measure JL on G - that is left invariant. Thus we view this measure either as a
(1) positive continuous linear functional

JL : Cc(G;R) ~ R, f t-+ JLU)

on the space of compactly supported continuous funetions on G, invariant under
left translations

JL(f) = Lf(x)dJL(x) = Lf(gx)dJL(x) (g E G) ,

oras a
(2) er-additive function on a suitable er-algebra of subsets containing the relatively
eompact open sets U of G. We also write JL(U) for the measure of the subset U .

If U is a relatively eompact open subset of K, we denote by vol (U) the measure
of U. By left invarianee of this measure, we have vol(U) = vol(gU) for any
g E G. The Radon measure can be extended as a linear form on a vector space of
functions containing the charaeteristic functions of relatively eompaet open sets
U C G, and if we denote by ({Ju the eharacteristic function of U, the two points of
views are linked by the relation vol (U) = JL«({Ju). By abuse of notation, we shall
also write vol (U) = JL(U).

The uniqueness ofHaarmeasures will play an essential role and will be admitted
here without proof:

Let JL and v be two Haar measureson a locally compact group G;
then there exists a positive constant a such that JL = av.

For a general classifieation of locally compaet fields, not neeessarily commu­
tative and in any characteristic, the reader ean eonsult the referenees given at the
end of this volume .

A.l. Haar Measures

Let K be a locally eompaet eommutative field (the general definition of topologieal
fields was given in (1.3.7» and let us choose and fix a Haar measure JL on the additive
group K. By invariance, we have vol (U) = vol (U +a) for any a E K .

For any automorphism a of the field K, the invariant measure a(JL) defined
by a(JL)(U) = JL(aU) (for all U in the suitable er-algebra) is proportional to
JL , say a(JL) = m(a) . JL . Sinee two Haar measures are proportional, this scalar
m(a) is independent of the choice of Haar measure. Now take in particular for
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automorphism Ol an automorphism of the form Ol : x Ho ax where a '# 0 E K . In
this case we shall simply denote by m(a) the resulting scalar. By definition

vol (aU) = m(a) . vol (U) (a E K X
) .

The associativity of multiplication in K gives immediately

m(ab) = m(a)m(b) (a , bE K X
) .

Hence m is a homomorphism K X ~ (RX»o, m(l) = 1 and m(a-1) = m(ar1•

This homomorphism m is the modulus of K. It is conventionally extended by
m(O) = O. We shall eventually show that it is a generalized absolute value on K .

A.2. Continuity ofthe Modulus

Take a compact neighborhood V of0 in K and choose a E K. Since aVis compact
and the Haar measure is regular, for each e > 0 we can find an open set U :>a V
with

vol(U) ~ vol(aV)+s.

By continuity of multiplication in K, there is a neighborhood W of a such that
U :> WV. Thus for x E W

vol(xV) ~ vol(U) ~ vol(aV)+s,

m(x) ~ m(a) + s/vol (V) .

Since m(x) ::: 0 and m(O) = 0, this inequality proves that m is continuous at the
point O.It also proves that m is upper semicontinuous at each point a E K . But for
a '# 0 we can write m(a) = 1/m(a-1

) , whence m is also lower semicontinuous at
such points. This proves the continuity of the modulus on K.

A.3. Closed Balls are Compact

For r ::: 0 we denote by B, = {x E K : m(x) ~ r} a closed ball in K. Fix again
a compact neighborhood V of 0 in K. We shall prove

B, is contained in a compact set of theform yv.
As ajirst step, we construct a sequence (1l'nk:o C V with 1l'n ~ O. Since

O · V = {O} C V,

there is a neighborhood U of 0 in K for which we still have U V C V (take Vo
an open neighborhood of 0 in V and choose U such that U V is contained in Vo).
We can find an element tt E U n V with 0 < m(rr) < 1. Hence rr2 E U V c V,
rr3 = n '1l'2 E UV C V, and by induction, n" E V (n ::: 1). But V is compact, so
that the sequence (rr") must have a cluster value tt in V . By continuity ofm, m(1l")
must be a cluster value of the sequence (m(1l'n)). Since m(1l'n) = m(1l'l ~ 0,
the only possibility is m(1l") = 0 and tt = O. This proves that the sequence
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(zr") has only one cluster value in the compact set V: It must converge, and
n" -+ o.Finally, observe that since rr E U and U V C V, we have n V C V and
V C n -I V. We see by induction that the sequence ofcompact sets tt -n V increases
monotonically.

Second step: We show that B, C rr-NV for some large N 2: 1. Since we already
know that B, isclosed and rr-NV is cornpact, this will indeed show that B, is
compact. Let a E B) , By the first part rrna -+ 0, and there is a first integer n such
that n" a E V . Ifa fj V, this first positive n is such that it"a E V but rrn- Ia fj V.
In other words, rrna E V - rrV. The set V - rrV is relatively compact (in V
compact) and

o 'I. Q := V - rrV.

We can define r' = infn m(x) > 0 and choose N 2: 1 such that m(rr)N . r ~ r' ,
Hence

m(rr)N . r ~ r ' ~ m(rrna) = m(rrtm(a) ~ m(rrtr (a E Br ) .

This shows that m(rr)N ~ m(rr)n and hence n ~ N. Thus we have a E rr-nV C
x:" V for all a E Br : The ball B, is contained in the compact set rr-N V. •

Corollary 1. The balls B, (r > 0) make up afundamental system ofneighbor-
hoods % in K. In particular;

an -+ 0 in K <==> m(a) < 1.

PROOF. If V is any compact neighborhood of 0 in K, put r = maxv m(x) in
order to have V C Br • Since 0 is not in the closure of B, - V, the minimum r'
of m(x) on the closure Q of B; - V is positive; for 0 < r" < r' it is clear that
s.: C V. •

Corollary 2. Any discrete subfield 0/ K is finite.

PROOF. Let F be a discrete subfield of K . Choose any a E K with m(a) > 1. Then
we have m(a-n) = m(a)-n -+ 0, whence a-n -+ 0, and since F is discrete it
shows a fj F. This proves F C BI. But we know that Fis closed (1.3 .2). Thus F
is compact and discrete, hence finite. •

Remark, If the field K has characteristic 0 but is not assumed to be commutative,
we see here that its center is a locally compact nondiscrete (commutative) field.
Indeed, this center is closed and contains the rational field Q by assumption, hence
is not finite. It is locally compact and not discrete by Corollary 2.
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A.4. The Modulus is a Strict Homomorphism

We claim that r = m(K X
) is closed in R >o and m : K X -+ r is an open map.

For r > 0, the compact set m(B,) is simply m(B,) = {O} U (r n [0, rl). In
particular, if 0 < B < r < 00, r n [B, r] is closed in R>o. Since the interiors of
the intervals [B, r] cover R >o, we can conclude that r is closed in this topological
space. If V is a neighborhood of 1 in K X

, we have now to prove that m(V) is
a neighborhood of 1 in r . It is enough to show that for every sequence (Yn) in
r such that Yn -+ 1, there is a subsequence Yn; in m(V) (a subset A is not a
neighborhood of 1 in r when there is a sequence Yn -+ 1 in r and Yn f/. A). Let
us write Yn = m(xn) for some elements X n E V . Since V is compact, the sequence
(xn ) must have - at least - one cluster point x E V. By continuity of m, m(x)
must be a cluster point of m(xn) = Yn -+ 1. This proves m(x) = 1, namely
x E N := ker(m) C K x. But V N is a neighborhood of x E N. By definition of a
cluster point, for each no there must be an integer n > no with X n E V N and hence
Yn = m(xn) E m(VN) = m(V). This proves the existence of the subsequence of
(Yn) in m(V) as desired.

Corollary. If the jield K is locally compact and nondiscrete, the subgroup
m(K X

) is either R>o or of the form {on: n E Z} = OZ for some 0 < 0 < 1.
When C = max {m(1 + x) : x E BI} = 1, the second case occurs.

PROOF. Since 1+BI is a neighborhood of 1in K x , its image must be a neighborhood
of 1 in r . When C = 1, this neighborhood is contained in (0, 1] and its image
under t J--+ t- I is a neighborhood of 1 in F contained in [l, 00). The intersection of
these two neighborhoods of 1 in r is reduced to the single point {I}, thus proving
that r is discrete in this case . •

In an obvious sense, the modulus m defines the topology of K: Any neighbor­
hood of an element x E K has the form x + V for some neighborhood V of 0 in
K, and m(V) contains a neighborhood of 0 Er, namely,

there is an e > 0 such that m(x) < e ==> x E V ,

which implies that the given neighborhood x + V contains x + Be.

A.5. Classijication

Let us recall the result obtained above (Corollary 2 in A.3): In a nondiscrete locally
compact field, any discrete subfield is finite. Now the discussion of cases can be
made according to the value of the constant

C = max m(1 + x) ~ 1.
XEBJ

It is obvious that

m(a + b) ::s C . max (m(a), m(b)),
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since if 0 =1= m(a) ~ m(b), we can divide by a so that x = bfa E BI and
m(l +b/a):::; C, m(a +b):::; C ·m(a) = C ·max(m(a), m(b» . Hencem defines
a generalized absolute value (11.2.2) on K . In every case, a suitable power of C
will be less than or equal to 2, and apower of m is a metric defining the topology
of K . This shows that any locally compact jield is metrizable.

First case: C> 1. In this case, the field K is not ultrametric; hence it is automat­
ieally of characteristic 0 and contains the field Q. If K is not discrete, Q is not
discrete either (because infinite, by the resultjust reealled), and the metric induced
by K on Q must be equivalent to the usual Arehimedean metric. The completion
R of Q for this metric must also be contained in K. Hence K is areal vector space.
Being locally compact, it must be finite-dimensional. One can show that the only
possible cases are K = R, C (or H: Hamilton quaternions if it is not commutative).

Second case: C = 1. Then K is ultrametric. Ifwe assume K to be of eharacteristic
0, it contains the field Q, and as before, the induced metric on Q is not trivial. By
the classification of ultrametric absolute values on Qwe infer that K must induce a
p-adic metric on Q and contain a completion Qp . Since K is assumed to be locally
compact, its degree over Qp is finite (11.3.2). We leave out the positive eharacteristie
case (interested readers can find a complete discussion in the specific references
given at the end of this book).

It is easy to see that contrary to the real case, there are extensions of Qp of
arbitrarily large degree (cf. (III.1.3».

A.6. Finite-Dimensional Topological Vector Spaces

In order to approach the structure of locally compact fields (having no apriori
norm), we have to give a few general definitions and results coneeming topologi­
cal vector spaees. Instead oflimiting ourselves to the field of sealars Qp, let us treat
the ease of arbitrary valued fields: This general context has the advantage of em­
phasizing the individual properties needed to establish each result. Thus we shall
eonsider in this section that K is any ultrametric valued field (11.1 .3), nondiserete:
IK x I =1= {I}. In particular, K is a metric space.

Definition. A topological vector space over K is a vector space V (over K)
equipped with a Hausdorjftopology for which

the additive group V is a topological group,
the multiplication (a, v) ~ a . v : K x V -+ V is continuous.

Let V be a neighborhood of 0 in such a topological vector space. By continuity
of multiplication at (0, 0), there is e > 0 and a neighborhood Vo C V of 0 such
that

VI := {av : a E K, lai:::; e, v E Vo} C V.
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This neighborhood VI C V of 0 has the property

a E K, lai::: 1 ==} aVI C VI '

Definition. A nonempty subset V in a topologieal veetor spaee V is balanced
when

a E K , lai::: 1 ==} aU C U.

The balanced neighborhoods ofOin a topological vector space play the role of the
balls in normed spaces. We have just proved that in a topological vector space
there is a fundamental system of neighborhoods of 0 eonsisting of balaneed
ones.

Theorem 1. A one-dimensional topological veetor spaee V over K is isomor­
phie as a topologieal veetor spaee to K . More precisely,for eaeh 0 #- v E V,
the map a t-+ av : K ~ V is a bijeetive linear homeomorphism.

!>ROOF. Fix 0 #- v E V . The one-to-one linear map a t-+ av : K ~ V is
continuous, since V is a topological vector space over K . We have to show the
continuity of the inverse, namely

Ve > 03 U neighborhood ofO in V such that av E V ==} lai< e.

We proceed as follows. If s > 0 is chosen, we take b E K with 0 < Ibl ::: s and a
balanced neighborhood V of 0 in V such that U ~ bv #- 0 (this is possible, since
we assurne that V is Hausdorft) . Now, if av EU, then

bv = ~ . aa fi U ==} I~ I > 1 ==} lai< Ibl ::: e. •
'-v--' U balanced

EU

Lemma. A linearform ({J : V ~ K on a topologieal veetor spaee V is eontin­
uous precisely when its kemel is closed in V .

!>ROOF. If the linear form ({J is continuous, its kernel is closed. Conversely, assurne
that the kernel of ({J is closed. We mayassume ({J #- 0 and take Vo E V with
((J(vo) #- O. Replace Vo by vO/({J(vo), so that ({J(vo) = 1. The linear variety

{({J = I} = vo+ker({J

is closed and does not contain the origin. Hence there is a balanced neighborhood
U of 0 that does not meet this closed subset :

(vo+ker({J)nU =0.
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I claim that qJ(U) C B<J, so that tp is bounded, eontinuous at the origin, and
eontinuous. Now, if v E U and qJ(v) =1= 0, eonsider the sealar a = 1/qJ(v). We have

qJ(av) = 1 =} av fj; U =} lai> 1.
U balanced

This proves IqJ(v)1 < 1, as expeeted. •
Theorem 2. Assume that the field K is eomplete. Then a finite-dimensional
topologieal veetor spaee V over K is isomorphie as a topologieal veetor spaee
to a Cartesian produet s». More precisely, for any basis (e.) of V, the linear
map

(Ai) f-7 I:>iei : K d ~ V
i

is an isomorphism oftopologieal veetor spaees.

?ROOF. We proeeed by induetion on the dimension of the veetor spaee V: The
dimension-l ease is eovered by the first theorem. Assume that the statement is true
up to dimension d - 1. Ifdimj- V = d, se1ect a basis el, . .. , ed of V and eonsider
the linear span W of the first d - 1 ei. By the induetion assumption, the spaee W
is isomorphie to K d - 1 and henee eomplete and closed in V . The linear form

qJ : LAiei f-7 Ad' V ~ K
i

is eontinuous, sinee its kernel ker(qJ) = W is closed. The one-to-one linear map

d d I'" sumK = K - x K ~ W x K ed~ V

is eontinuous. Its inverse is

and henee is also eontinuous. •
A.7. Locally Compact Vector Spaces Revisited

We have seen in (3.2) that locally eompaet normed spaees V over Qp are finite­
dimensional. Using the existenee of Haar measures, we ean now prove the same
statement without the assumption that the topology is derived from a norm.

Theorem. Any loeally eompact vector space over Qp is finite-dimensional.

?ROOF (WEIL). The proof is based on (A.6): A finite-dimensional subspaee of a
loeally eompaet veetor spaee V over Qp is isomorphie as a topologieal veetor spaee
to a finite produet Q~, henee is eomplete, and henee is closed in V and loeally
compact. Let now V be any loeally eompaet veetor spaee over Qp' In partieular,
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it is a locally compact abelian group, and we can choose a Haar measure fL on V.
We can define a modulus homomorphism

as for locally compact fields (A.I). For 0 f::. a E Qp, the map U t-+ vol(aU) is
also a Haar measure on V, and by uniqueness , there is a unique positive scalar
my(a) > 0 such that vol(aU) = my(a)· vol(U) (for all relatively compact
open sets U C V). For example, If W = Q~ has dimension d over Qp, then
mw(a) = lald • Since p" -+ 0 in Qp, we have

and this proves my(p) < I for alllocally compact Qp-vector spaces V . Select
now a d-dimensional vector subspace W of V . Integrating in succession over W
and F = V/W,

f t-+ LdfLF(Y) Lf(x + y)dfLw(X),

we get an invariant Radon measure on V, which we may take for fLy (or we can
change the choice of Haar measure on F to obtain this equality). Hence

i f(x)dfLy(X) = LdfLF(Y) Lf(x + y)dfLw(X)

for all continuous functions f with compact support on G. We see that

my(a) = mw(a) . mF(a) = lal d . mF(a),

mv(p) = Ipld . mF(p) ~ Ipld,

logmy(p) ~ d . log Ipl,

and by division by log Ipl < 0,

d ~ logmy(p)/ log Ipl.

This shows that the dimension d of finite-dimensional subspaces of V is bounded,
and this implies that V itself is finite-dimensional. _

A.8. Final Comments on Regularity ofHaar Measures

Let us consider the Haar measure on the locally compact group G = R x ~
where the first copy of R has the usual topology and the second copy the discrete
topology. The usual Lebesgue measure fLL is a Haar measure on R, and we can
take for Haar measure of~ the counting measure
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The product of these two Haar measures is a Haar measure on the product R x R<t.
The subset A = {O} x R<t has the discrete topology, and

JL(A) = inf JL(U) = 00,
UopenJA

simply since each open set U :J A contains an uncountable family ofopen intervals
ofpositive length. However, a compact set K C A is finite (because discrete), hence
JL(K) = 0, and SUPK compaet cA JL(K) = 0 is different from JL(A) = 00. In general,
innerregularity holds only for subsets having JL(A) < 00 (and in a suitable algebra
containing the Borel subsets). This pathology disappears in locally compact spaces
that are countable at infinity. This last property holds for alliocally compact fields:
we have seen this in characteristic zero in (A.5) .

EXERCISES FOR CHAPTER 2

I. Let X be an ultrametrie space. Show that the spheres of radius r > 0 in X are the
complements of one open ball of maximal radius r in a closed ball of radius r.

2. Let X be an ultrametric space.
(a) Fix a positive radius r > O. Show that the eondition d(x, y) .:::: r is an equivalenee

relation x ~ y between elements of X. The equivalenee classes are the closed
balls of radius r , and the quotient spaee is the uniformly discrete metrie spaee of
closed balls offixed radius r (the inequality d(x , y) < r also defines an equivalence
relation, for whieh the equivalenee classes are the open balls ofradius r) .

(b) Fixa E X andassumethat {d (x , a ) : XE X} isdensein R:::o .Show thattheordered
set of closed balls eontaining the point a (with respeet to inclusion) is isomorphie
to the half line [0, 00) C R.

(c) Assume that for eaeh x E X, {d(x , y) : y E X} is dense in R:::o. Define Tx as the
ordered set of closed balls in X (with respect to inclusion) . Prove that this is a tree.
Reeall that we denote by 8(A) the diameter of a bounded subset of ametrie spaee,
so that 8B:s.r = r , We have two natural maps

X x R:::o -)0 Tx
i s
R:::o

(a , r) ~ B = B:s.r(a)

-!-8
8(B) = r

For r > 0, the fiber ,s-I(r) is the uniformly diserete metrie space consisting of
closed balls of fixed radius r . If X is separable, this fiber is eountable . For any subset
AC X define Tx(A) as the subset eonsisting ofthe (dressed) balls B meeting A.
Prove that this is a subtree of Tx -Take for A sueeessively sets eontaining only one,
two, or three elements : What are the possible eonfigurations ?

(d) The metrie space Zp ean be embedded in an ultrametrie spaee X satisfying the
eondition required in (c) (cf. Chapter III). Sketch Tx(Zp) and show that the picture
does not depend on the ehoice of ambient spaee X.

3. Let I. Ibe an absolute value on a field K.
(a) Prove the triangle inequality

Ix+ yl" .:::: lxi" + Iyl" (x, y E K , 0< ct .:::: I) .
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(b) When the absolute value is ultrametrie, prove the same result for all IX > o.
(c) If a = ao + LI~i~n ai and lad:::: lai for I :::: i :::: n, prove lai = maxO~i~n lad .

4. As corollary of the proof of Theorem 1 of (11.1.4) we see that (with the notation of the
theorem): If A/;A is finite , then A/;n A is also finite and #(A/;n A) = [#(A/; A)]n.
More generally, show that in any integral domain A,

#(A/(ab» = #(A/(a» . #(A/(b»

ifab # O. (Hint. Observe that multiplication by b on (a) = aA leads to an isomorphism
ofthe A-modules A/(a) and Ab/(ab). Then use the isomorphism A/abA ~ A/aA x
aA/abA.)

5. (a) Let P(X) = X2 - 2X + 1 E Z[X]. This polynornial has the root x = 1. Find
explicitly the sequence of iterates given by Newton's method starting at an element
x # 1: Does this sequence converge in Qp?

(b) Let A bethemaximal subringofan ultrametric fieldasin (1.4),andlet P(X) E A[X]
be a polynornial having a simple root x = ; .

Show that for any x in the open ball of center s and radius IP'(;)I # 0 Newton's
method fumishes a sequence of iterates that converges to ; .

6. Prove directly the follow ing: If an --+ 0 and bn --+ 0 in an ultrametric field, then

Cn = LO~i~n aibn-i --+ 0 and

[Hint. The assumption implies that the two sequences are bounded, say

lad:::: C, Ibd:::: C for all i 2: 0,

and for each given e > 0 there exists N = NE such that

lad:::: e, Ibil:::: e (i 2: N).

For i + j 2: 2N, we have laibj I :::: sC, since one index at least is greater or equal to
N .]

7. Show that two norms on a vector space define the same topology when there exist two
constants c, C such that

cllxll s IIxll' :::: CIIxll ·
(The unit ball for one norm must contain a ball for the other norm; observe that this
condition is independent from the ultrametricity.)

8. Let K' / K be a finite extension ofultrametric fields . Show directly that the residue field
k' of K' has finite degree over the residue field of K and

f = [k' : k] :::: n = [K' : K]

(cf. 4.1 and 4.3) .

9. Let K be a valued field that is an extension of Qp, and let ~ E K. Suppose that there
exist integers aoU) , al (j) , .. . , an-I (j) E Z U 2: I) such that

I~n + an-I (j)~n-I + ...+ ao(j)1 --+ 0 U --+ 00).
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(a) Show that I; I :::: 1. (Ifyou cannot, glimpse at the proofofProposition 3 in (I1I.2.1».
(b) Prove that s is algebraic of degree less than or equal to n over Qp .

(Hint . Consider the nonempty sets Xm C (Z/pmZt consisting of the families
(ao mod »". .. . ,an-l mod pm) such that I;n +an_l;n-l + ...+aol :::: Ipm1=
1/ p'", Then any element of lim Xm =F 0 gives a polynornial dependence relation

+--
for s over Qp.)

10. Let s < t and s a root of unity of order p", ( a root of unity of order pI , both in Q~ .

What is the distance Is - (I?

11. Let K be an ultrametric extension ofQp. Prove that ifthe group /1-(K)ofroots ofunity
in K is infinite, then this field K is not locally compact. (Hint. Can you find a convergent
subsequence?)

12. Show that the quadratic extensions Qs(,J2) and Qs(J3) ofQs in Q~ coincide , by two
methods:
(a) Use the fact that 6 has a square root in Qs .
(b) X2 -2 and X2 - 3 areirreducible over F, (hence /1-24 C Qs(,J2), /1-24 c Qs(.J3» .

13. Consider the following quadratic extensions of Q7 in Q~

By (1.6.6), they cannot be distinct: Give identities. What is the degree of Q7(,J2, .J3)
over Q7? (What is the degree of Q(,J2, .J3) over Q?)

EXERCISES FOR ApPENDIX TO CHAPTER 2

1. Let U be a neighborhood of 0 in a topological vector space V over a valued field K .
Show that n AU

AEK ,IAI::1

is a balanced neighborhood of 0 contained in U.

2. Let K be a nondiscrete ultrametric field. Assume that K is not complete and consider
the topological vector space Kover K . If a , b E Kare linearly independent over K, the
two-dirnensional subspace Ka + K b is not isomorphic, as a topological vector space,
to K 2• (Hint. The one-dimensional subspaces of K 2 are not dense in this space!)

3. Let K be a finite extension of Qp (hence locally compact). A character of K is a
continuous homomorphism X : K ~ U(l) = [z E C X

: Izi = I}.
(a) Prove that such a character Xis locally constant and takes its values in /1-poo .
(b) If 1fr is a fixed nontrivial character, considerthe characters 1fra(x) = 1fr(axHa E K).

Show that a 1-+ 1fra is an injective homomorphism f : K ~ K tt where K tt is the
(multiplicative) group of characters of K . (For a nontrivial character on K, one can
take the composite of the trace TK /Qp and the Tate homomorphism r (1.5.4).)

(c) Define a topology on xs having for neighborhoods of a given character X the
subsets

Ve.A(X) = (X' E K tt : Ix'(x) - x(x)1 :::: s]

(s > 0, A a compact subset of K). Show that the above-defined homomorphism
f : a 1-+ 1fra is continuous.
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(d) Show that the inverse homomorphism Vra H- ais eontinuous on j(K). Conclude
that this image is locally eompaet, and henee closed in K~ . (Hint. Use Corollary 1
in (1.3.2).)

Comment. For any locally eompaet abelian group G, one ean define its Pontryagin
dual

G~ = {X : G --+ U(l) a eontinuous homomorphism}

and show that G~ is again a loeally eompaet abelian group with (G~)~ eanonieally
isomorphie to G. When G = K is the additive group of a locally eompaet field, one ean
show (as above) that K and K~ are isomorphie. This generalizes the known situation
for the field R.



3
Construction of Universal
p-adic Fields

In order to be able to define K-valued functions by means of series (mainly power
series), we have to assurne that K is complete. It turns out that the algebraic
closure Q~ is not complete, so we shall consider its completion Cp : This field turns
out 10 be algebraically closed and is a natural domain for the study of "analytic
functions ," However, this field is not spherically complete (2.4), and spherical
completeness is an indispensable condition for the validity of the analogue of the
Hahn-Banach theorem (Ingleton's theorem (IV.4.7); spherical completeness also
appears in (VI.3.6)). This is a reason for enlarging Cl;, in a more radical way than
just completion, and we shall construct a spherically complete, algebraically closed
field Qp (containing Cl;, and Cp ) having still another convenient property, namely
IQpl = R:;::o. This ensures that all spheres ofpositive radius in Qp are nonempty :
B<r(a) =1= B:;:r(a) far all r ~ O. In fact, we shall define the big ultrametric extension
Qp first - using an ultraproduct - and prove all its properties (this method is
due to B. Diarra) and then define Cp as the topological closure ofQ~ in C p • This
simplifies the proof that C p is algebraically closed. By a universal p -adic field we
mean a complete, algebraically closed extension of Qp .

In this chapter % denotes ajixed algebraic closure 0/ Qp.

1. The Algebraic Closure Q~ of Qp

1.1. Extension of the Absolute Value

There is a canonical absolute value on~. Indeed, the absolute value of Qp extends
uniquely to Q~, as the following observation shows. If K1 and K2 are two finite
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extensions of Q; in Q~, the two extensions (11.3.4) ofthe absolute value of Qp to
these fields must agree on their interseetion Kin K 2 by uniqueness (11.3.3). Hence
an the extensions of the absolute value of Qp to finite subextensions of~ define
a unique extension ofthis absolute value to Q~. As a eonsequenee, this algebraie
closure is an ultrametrie field, and we set

Aa := the maximal subring of Q~ : IxI :::: I ,

M" := the maximal ideal of Aa : Ix I < I,

k a := Aa
/ M a the residue field of Q~.

We shall see below that Q~ is not complete, henee not locally compact. Moreover,
the residue field k" is infinite, and I(~)X 1is a dense subgroup ofR>o.Henee none
of the eonditions of (11.3.5) for local eompaetness are satisfied!

1.2. Maximal UnramifiedSubextension

We have seen in (11.4.3) that every finite extension K of Qp contains a maximal
unrarnified subextension: Sinee K is complete , the group J-L(p)(K) of roots of
unity in K having order prime to p is isomorphie to the eyclie group P of order
q - I = pi - 1, where / is the residue degree of K :

It is not difficult to generalize this result to the algebraically closed extension
Q~ .

Proposition. The residue field k" 0/ the algebraic closure Q~ 0/ Qp is an
algebraic closure 0/ the prime field Fp -

PROOF. Since any algebraic element x E ~ generates a finite-dimensional ex­
tension K of Qp , the residue field of K is also finite-dimensional over Fp. This
proves that the residue field of~ is algebraic over Fr - Conversely, if ~ i= 0 is
algebraic over Fp» it belongs tothe cyclie group Fp@Y and hence is aroot ofunity
of order m prime to p. Now eonsider the cyc1otomie extension Qp(J-Lm) obtained
by adjoining to Qp an roots ofunity of order m , If ~ i= 1/ are two such roots, then
I~ - 1/1 = land the reduetions of ~ and 1/ are distinct (cf. 11.4.3). Henee the residue
field of Qp(J-Lm) contains m distinet mth roots of unity and contains ~. •

We shall denote by F~ = F poo = Uhl F pi an algebraic closure of F p and by
(~)ur = Qp(J-L(p)) C Q~ the extension generated by an roots of unity having
order prime to p . This is the maximal unramified extension of Qp in~.

Corollary. The residuefield ofthe maximal unramified extension o/Qp in~
is an algebraic closure 0/the prime field Fp. •
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1.3. Ramified Extensions

One can give another reason for the fact that the extension Cl;, has infinite degree

over Qp. Choose algebraic numbers Jre = r'" (e ~ 2). We have

and consequently the ramification index of Qp(Jre) is greater than or equal to e.
This proves that Qp has algebraic extensions ofarbitrarily large degree. Indeed,
the polynornial X" - p is an Eisenstein polynomial, and hence is irreducible (II.4.2)
in Zp[X] or Qp[X]: This defines an extension of degree e of Qp . More generally,
if K is any finite extension of Qp (contained in Q~), it is locally compact, and we
can choose a generator n for the maximal ideal P of R. The polynornial xe - n
is an Eisenstein polynomial, hence is irreducible in R[X] and K[X], whence K is
not algebraically closed. These simple observations show that

I(Q~)X I ::J pQ = {p" : v E Q} = Up<lle)Z.
e;::1

Proposition. The absolute values ofalgebraic numbers over Qp are fractional
powers of p: 1(Cl;,)XI = pQ.

PROOF. Ifx E Cl;, - Qp is any algebraic number not in Qp, it satisfies a nontrivial
polynornial equation

L aix' = 0 (ai E Qp)
O::; i::;n

of degree n ~ 2. By the principle of competition, there are two distinct indices,
say i > j, with

Hence

Ixli -
j = lai/ad E pZ,

and [x] E p(l le)Z (e = i - j ~ 1). •
1.4. The Aigebraic Closure Q~ is not Complete

A complete metric space X is a Baire space: A countable union of closed subsets
K; in X having no interior point cannot have an interior point. In particular, such
a countable union cannot be equal to X. Recall that locally compact spaces and
complete metric spaces are Baire spaces.

Theorem. The algebraic closure Q~ of Qp is not a Baire space.
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PRüüE Let us define the sequence of subsets

X; = {x E Q~ : degx = [Qp(x) : Qp] = n} C Q~ (n ~ 1)

so that Q~ = Un~IXn. It is also obvious that AXn C K; (A E Qp), Xm +K; C
Xmn , and in particular,

x, +Xn C Xn2.

(a) These subsets are closed. If x =1= 0 is in the closure of Xn , say x = lim z,
with a sequence (Xi) in X n , then for each x, let /;(X) E Qp[X] be a polynomial
of least degree with x, as a root and coefficients scaled so they lie in Zp and at
least one of them is in Z;. Extracting if necessary a subsequence of (fi), we can
assume that it converges (in norm, coefficientwise), say /; --+ [, so [ E Zp[X]
has degree less than or equal to n and at least one coefficient in Z;, so [(X) =1= o.
By the ultrametric property, the convergence /; --+ [ is uniform on all bounded
sets of Q~ . Since the convergent sequence (Xi) is bounded, we have

[(X) - [ i(Xi) = [(X) - [(Xi) + [(Xi) - [i(Xi) --+ O.---..- '---.-'
.....0 .....0

This implies j(x) = lim /;(xj) = 0 and X E X n .

(b) The subsets X; have no interiorpoint. Since for any closed ball B ofpositive
radius in Q~ we have Q~ = Qp . B, such a ball cannot be contained in a subset
Xn , and no translate can be contained in Xn - •

Corollary. The space~ is neither complete nor locally compact. •

1.5. Krasner's Lemma

Theorem 1 (Krasner's Lemma). Let K C Q'f, be afinite extension of Qp and
let a E Q~ (so that a is algebraic over Qp). Denote by a" the conjugates o[
a over K and put r = minaa;ofa laU - zz]. Then every element b E B<r(a;Q'f,)
generates (over K) an extension containing K(a).

PRüüE Take any algebraic element b such that a rt K(b). Since we are in charac­
teristic 0, Galois theory asserts that there is a conjugate a" =1= a of a over K(b)
(the automorphism a fixes K(b) elementwise) and we can estimate the distance
of a to b as folIows :

Ib - aUI = I(b - an = Ib - zz] ,

la - aUI ~ maxt]« - bl , Ib - a" I) = Ib - al ·

This shows that

Ib - al ~ la - aUI ~ r.

Hence if bE B<r(a), namely Ib - al < r, we have

a E K(b), K(a) C K(b) . •
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Examples. (a) Take K = Q2 and a = .J=T = i. Then i" = -i and

r = li - i U
\ = 12il = 121 = ~ .

Hence for b E Q2,

Ib - il < ~ ==} i E Q2(b).

(b) Take K = Q3 and a =R. Then a" =-R and

r = la - a" I = 12RI = IRI = \31 1
/
2 =If·

Hence for b E Q3,

Recall that the norm of a polynomial I(X) = Li<n anXn is the sup norm on the
coefficients 11 f/I = maXi:::n lan I· -

Theorem 2 (Continuity of Roots of Equations). Let K be afinite extension
01 the p-adic field Qp and fix an algebraic element a E C4 01 degree n over
K corresponding to a monic irreducible polynomial f s: K[X) (01degree n).
There is a positive e such that any monic polynomial g E K[X) 01degree n with
IIg - fII < e has a root bE K(a) also generating thisfield: K(b) = K(a).

PRooF. Let us factorize the polynomial g in the algebraic closure Cl'p of K, say
g(X) = I1(X - bi ) , and evaluate it at the root a of I:

n(a -bi) = g(a) = g(a) - I(a).

With M = maxO::i::n (Iali) = max(l, laln
) we can estimate

n la - bd = Ig(a) - l(a)1~ IIg - f/I . M,

hence for one index i at least,

la - bd ~ IIg - f/I1/n . uv»,

By the preceding theorem, if e > 0 is chosen small enough, then IIg - 111 < e
will imply K(bi) ~ K(a) for some i , But the degree of b, is less than or equal to
n, since it is a root ofthe nth degree polynomial gE K[X) . This proves K(bi) =
K~~ •

CoroUary 1. Let 1 E K [X) be a monic irreducible polynomial, a E Q~ a root
01I, and (gi )iEN a sequence 01monic polynomials with coefficients in K 01the
same degree as I . 11 gi --+ 1 (coefficientwise), there is a sequence (Xi) ofroots
01these polynomials such that x, E Kiay for large i and xi --+ a.
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!'ROOF. As soon as IIgi - 111 < s is small enough , the above result is applicable
and shows that la - x, I is small for at least one root x, of gi. More precisely, the
inequality

shows that la - x, I -+ 0, and the convergence x, -+ a in K (a) folIows. •

Corollary 2. The algebraic closure Q~ 01 Qp is a separable metric space.

!'ROOF. Take a E Q~ and let I be its minimal polynomial over Qp. Since Q is
dense in Qp , we can find monic polynomials g E Q[X] as close to I as we want.
If we choose a sequence gn -+ I, the continuity principle for the roots shows
that a is a limit of roots Xn of the polynomials gn. This shows that the algebraic
closure of Q is dense in~. But this algebraic closure is a countable field since
the set of polynomials of fixed degree with coefficients in the countable field Q is
countable. •

1.6. A FinitenessResult

In the last two sections of this chapter, let us prove a couple of theorems easily
obtained with the techniques developed above. (We shall not need them in the
sequeI.)

Theorem. Let K be a finite extension 01 Qp and n 2:: 1 an integer. Then there
are only finitely many extensions 01 K 01degree n in Q~.

!'ROOF. (1) Let F be an extension of degree n of K and let e be its relative ram­
ification index, I its residue degree: n = ef. The cyclic subgroup consisting of
roots of unity in F having order prime to p is isomorphie to the cyclic group
of nonzero elements in the residue field of F (IIA.3). These roots generate the
maximal unramified subextension Fur of Kin F,

[Fur : K] = I

(IIAA), and the extension F / Fur is totally ramified of degree e. If the residue
degree I is given, there is only one unramified extension of degree I of K in
Q~ . Hence the announced result will be established as soon as the same finiteness
property for totally ramified extensions is established.

(2) Let us show that there are only finitely many totally ramified extensions of
given degree n = e of K. Fix such an extension Fand let K ::::> R ::::> P = n R
(conventional notation) . By (IIA.2, IIAA) it is generated by an element having
minimal polynomiaI
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which is an Eisenstein polynomial. Its coefficients ai belong to P, and Uo E R X is
a unit: Uo E K and IUol = 1. The Cartesian product

is compact, and by continuity of the roots of equations (1.5), each element of
this product has an open neighborhood corresponding to polynomials having
their roots generating the same extension F in Q~ . This completes the finiteness
proof. •

1.7. Structure ofTotally and Tamely Ramified Extensions

It is possible to improve the result (11.4.2) conceming the generation of totally
ramified extensions.

Theorem. Let K C L C~ be finite extensions 01 Qp . Assume that LIK is
totally and tamely ramified 01degree e. Then there exists a generator 1f 01 the
maximal ideal P 01 R c K such that L is generated by an eth root 011f in ~.

PROOF. By assumption e = [L : K] is prime to p . The proofwill be accomplished
in three steps.

(1) Consider arbitrary generators 1f of PeR c K and 1fL of PL C RL C L.
Since LIK is totally ramified of degree e, I1fL le = 11f Iand 1f'fj1f= u is a unit in
RL . Since the residue degree of LIK is 1, the residue fields are the same, and there
is a unit ~ of R (one can take a root of unity in K) such that ~ == u (mod P)L .

Let us write

Hence

1ff = 1f • (~+ lTLV) = ~1f + 1flTLV .

The element ~lT is also a generator ofthe ideal P of R. We are going to show that
L is generated by a root of the equation K" - t n . Let us replace the generator n
by n' = ~1f and simply denote it by n again. Thus we assurne from now on that
the generators 1fL and tt are linked by a relation

(2) The polynomial I = X" - n is an Eisenstein polynomial (11.4.2) of R[X) .
Hence it is irreducible over K[X) . We have

Let us factor I in Q~:

I(X) = Xe - lT = n(X - IXj)

l ~j~e
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(where na, = ±rr). Since f is irreducible, the roots a, are conjugate and have
the same absolute value in q;, say laj I = c independent of i , Hence

c' =nla;! = [zr],

la;! = c = Irril l e = IrrLI,

and

IrrL - a;! ~ max(la;l, IrrLD = IrrLI .

If we come back to the polynomial f, then

n (rrL - aj) = If(rrdl < Irrl = IrrLle

1::9~e

shows that at least one of the factors is smaller than IrrLI . Without loss of generality
we may assume

(3) The roots of f(X) = X" - tt = 0 are the a, = {ja, where {{ = 1. Since e
is prime to p, we have I{j - 11 = 1 when {j =1= 1 by Proposition 1 in (11.4.3). This
proves

laj - al = lai = c = Irrt! (i =1= 1),

IrrL - al < IrrLi = la - ad (i =1= 1).

By Krasner's lemma, we infer that

K(a) C K(rrd,

and since the element a has degree e, this inclusion is an equality. •
Example. If we add a primitive pth root {p of unity to Qp, we obtain a totally
rarnified extension K of degree p - 1. Hence K /Qp is tamely ramified and can
be generated by a (p - 1)-th root ofthe generator -p of pZp.

For p = 3, we have seen in (11.4.6) that b = R works:

Q3({3) = Q3(vC3").

2. Definition of a Universal p-adic Field

2.1. More Results on Ultrametrie Fields

Let us start with a couple of general results concerning (nondiscrete) ultrametric
fields.



2. Definition of a Universal p-adic Field 135

Proposition 1. Let K be an ultrametrie field and Kits completion. Then Kis
still an ultrametrie field and

(a) IKI = IK I,
(b) K and K have the same residuefield.

PROOF. Let A be the ring of Cauchy sequences in K . The ideal I of A consisting
of Cauchy sequences a = (an) with an -+ °(also called null Cauchy sequences)
is a maximal ideal : If an fr 0, then an #- °except for finitely many indices n
and a is invertible in the quotient A / I. We can define K = A / I with a canonical
injection K "-+ K given by constant sequences. If a = (an) E A - I is a Cauchy
sequence that is not null, the sequence (Ian \) is stationary (stationarity principle),
and we define an absolute value on Kby

lai = lim lanl E IKx I c R>o for a #- ° and 101 = 0.
n->oo

Obviously, the canonical injection K "-+ K is an isometrie embedding, and we
view K as a subfield of K: The absolute value of Kextends the absolute value
of K. The residue field k of K parametrizes the open unit balls B<I(a) (a =0
or lai= 1) contained in the closed unit ball: P parametrizes the open unit balls
contained in the unit sphere SI = {x E K : [x] = l}. Any Cauchy sequence ofthe
closed unit ball has all its final terms in an open unit ball; hence it corresponds to
a fixed element in the residue field k. •

An extension L of an ultrametrie field K having same residue field k L = k and
the same absolute values IL I = IK I is called an immediate extension of K . Hence
the completion of K is an immediate extension of K.

Proposition 2. Let K be a nondiscrete ultrametrie field and put

A = {x E K : lxi:::: l} : maximal subring 0/ K

M = {x E K : [x] « I} : maximal ideal 0/ A.

Then , either M is principal, or M = M 2 and the ring A is not Noetherian.

!>ROOF. BY hypothesis r = IK x I#-{ I}, and either r n (0, 1) has a maximal
element () or it has a sequence tending to 1. In the first case we can choose tt E M
with IJr I= (),and M = x Ais principal. In the second case, for each x E M, namely
[x] « 1, we can find an element y such that [x] « lyl < 1, so that

x = y . (x /y) E M 2•

Since y and x / y belong to M , this shows that x E M 2, and we have proved M = M 2•

In this last case, the subgroup r = IK x I is dense in R>o, and all the ideals

Ir = B~r = B~r(O;K) = {x E K : lxi:::: r}

for r Ern (0, 1) are distinct : The ring A is not Noetherian. •
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Proposition 3. With the same notation as before:

(a) 1/K is algebraically closed, so is the residuefield k.
(b) If L is an algebraic extension 0/ K, the residuefield ki. 0/L

is also an algebraic extension ofthe residuefield k 0/ K.

PROOF. In any ultrametrie field, I~I > 1, la;! ::::: 1 (i < n) implies

WI > I~il 2: lai~il (i < n),

1~ln > ILai~il,
;<n

and henee

I~n + Lai~il = 1~ln > 1,
;<n

~n + Lai~i :10.
;<n

This proves that any root of a monie polynomial having eoeffieients lai I ::::: 1belongs
to the closed unit ball IxI ::::: 1.

(a) Let X" +Li<n (Xix! E k[X] be a monie polynomial of degree n 2: 1. Choose
liftings a, E A of the eoeffieients, i.e., a, = ai (mod M), and eonsider the monie
polynomial

x: + L.>iXi E A[X].
;<n

Sinee the field K is algebraieally closed, this polynomial has a root x E K . By the
preliminary observation, x E A and x mod M is a root of the redueed polynomial
X" + Li<n a, x'. This proves that k is algebraieally closed.

(b) Let 0 :I ~ E kc and ehoose a representative x E AL - ML of the eoset
~ :I 0: [x] = 1. By assumption, this element is algebraie over K, and henee x
satisfies a nontrivial polynomial equation

LaiXn = 0 (n 2: 1, ai E K).
i=:;n

By the prineiple of eompetitivity, at least two monomials have maximal eompeting
absolute values

Dividing by a.,we obtain a polynomial equation with eoeffieients la~ I ::::: 1, a~ E A
and at least two of them not in M . By reduetion mod M we get a nontrivial
polynomial equation satisfied by ~ . •
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2.2. Construction 0/a Universal Field Qp

Let R be the nonned ring fOO(Q~) consisting ofbounded sequences a = (ai )ieN of
Q~ with the sup nonn

Let us also choose and fix an ultrafilter U on N containing the subsets [n, 00)
(n E N). (Readers not familiar with ultrafilters can find all definitions and properties
used here in the Appendix to this Chapter.) Recall that for each subset A C N either
A E U or AC = N - A E U. On the other hand (here is the reason for choosing an
ultrafilter), each bounded sequence of real numbers has a limit along U, and we
put

ep(a) = lim lai I ~ o.
u

Proposition 1. The subset :1 = ep-l(O) is a maximal ideal of the ring R, and
the field Q p = R /:1 is an extension ofthe field Q~.

PRooF. Let us show that each element a rf. .1 is invertible mod.Z, But if a = (an)
is not in the ideal :1, the limit r = ep(a) > 0 does not vanish, so we can find a
subset A EU such that r/2 < lad< 2r (i E A) . Define a sequence ß = (ßi) by

1
ßi = - for i E A and ßi = 0 for i rf. A.

ai

Since IßiI < 2/r (i E A), the sequence ß is bounded ß :::: 2/r and ß E R. By
construction 1 - aß vanishes on the set A, hence 1 - aß E .1. This shows that
a mod J is invertible in the quotient Qp . Consequently, the quotient is a field,
and :1 a maximal ideal of R. Finally, constant sequences provide an embedding
Q~ ~ Qp . •

The map ep defines an absolute value on the field Qp: For a = (a mod :1) we
put

lai = laln = ep(a) = lim lad·
U

This absolute value extends the absolute value on Q~ (considered as a subfield of
Qp through constant sequence) .

Proposition 2. The absolute value I . In coincides with the quotient norm of
R/:1, namelyfora = (a mod :1),

laln = lIa mod :1I1R/.J := inf lIa - ßII·
ße.J
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PRooF. We have limu In I ~ sup IYi I (y ER), and hence

l~ lai I = l~ lai - ßi I s sup lai - ßi I (ß E .1),

laln ~ lIa - ßII (ß E .1).

This proves

Conversely, if a = a mod .1,then for any subset A E U we ean define the sequenee
ß = (ßi) as ßi =0 (i E A) and ßi =ai Ci JE A) so that ß E.1 and lIa - ßII =
SUPiEA lad and

lIaIiR/.J ~ inf sup lad = lim suplo.] = lim lad = laln. _
A~i~ U

From now on we shall simply write laI = jaInfor either the absolute value on the
field Qp or the quotient norm in R/.1.

Proposition 3. We have

PROOF. This is a simple eonsequenee ofthe fact that IQ~I is dense in R:::o. Indeed,
eaeh positive real number r is limit of a sequence (rn) of elements rn E IQ~I, say
r« = lan I (an E Q~), so that the sequence o is bounded and defines an element a
in the quotient Qp with lai = r. _

Comment. This construetion of Qp is reminiscent of nonstandard analysis. Let
X = Q~ and in the Cartesian produet XN introduce the equivalence relation

The quotient *X := XNr- is an ultrapower of X (as systematically used in non­
standard analysis, in the construction of superstructures). The subset bXconsisting
of classes of bounded sequences is the set of limited elements in this ultraproduet
*X, and the classes of sequences tending to zero (along U) are the infinitesimal el­
ements 'x C 'x , The quotient bX/X = R/.1 = Qp has more simply been obtained
in one step.

2.3. The Field Qp is Algebraically Closed

Let I E Qp[X] be a monie polynomial of degree n ~ 1, say

I(X) = X" + an_ 1xn-1 + ... + ao (ak E Qp)'
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We show that this polynomial 1 has a root in the field Qp . Select representative
families for the coefficients:

We can consider the polynomials

li(X) = x» + ~::>~kiXi E Q~[X].
k<n

Since the field~ is algebraically closed, each of these has all its roots in ~.
More precisely, the product of the roots of li is (up to sign) the constant term aOi
of this polynomial, so that we can choose at least one root ~i with ~i ::: laoi 11/ n •

The sequence ~ = (~i) is bounded II~II ::: lIaoIl1/n, ~ E R, and the class x of ~ is a
root of 1 in Qp . •

2.4. Spherically Complete Ultrametric Spaces

Consider a decreasing sequence (B::;rn(an))n?O of closed balls in an ultrametric
space X:

d(ai' an) ::: rn for all pairs i :::: n.

When r« ~ 0, the sequence of centers is a Cauchy sequence; hence it converges if
we assume that the space X is complete. The limit of this sequence belongs to every
B::;rn (an) (these balls are closed) . In particular, this shows that the intersection of
the sequence is not empty.

At first, it seems surprising that even in a complete space, a nested sequence
of closed balls may have an empty intersection when the decreasing sequence 01
radii has apositive limit. Consider, however, the following situation. In the discrete
space N with the ultrametric distance d(n, m) = 1- 8mn• the decreasing sequence
of closed sets Fn = [n , 00) has an empty intersection (they all have diameter equal
to I). This space is complete (it is uniformly discrete), and a small modification of
the metric (cf. the exercises) transforms these sets Fn into closed balls of strictly
decreasing radii.

Definition. An ultrametric space X is called spherically complete when all
decreasing sequences 01closed balls have a nonempty intersection.

A spherically complete space X is complete : If (xn ) is any Cauchy sequence of
X, consider the decreasing sequence (rn) where rn = sUPm >n IXm - xnl (which
converges to 0). Then (B::;rn (xn )) is a decreasing sequence of closed balls having
for intersection a limit of the sequence.

Comment. Any extension of an ultrametric field K which has the same residue
field and the same value group (in R X) is called an immediate extension of K. It
can be proved that each ultrametric field admits an immediate extension that is
spherically complete. For example, there is a spherically complete extension of
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Q~ that has residue field F p"" and value group pQ. In fact, spherically complete
extensions are maximal elements among extensions having prescribed residue field
and value group.

2.5. The Field Q p is Spherically Complete

Let us consider any decreasing sequence (Bn)n:=o of closed balls B; = Ryn(an)
in the field Qp . The ultrametric inequality shows that such a sequence of balls
decreases if

lan+I - anI ~ r« and (rn) decreases.

Take liftings CXn E R of the centers an E R/ 3 in the following way. Since

and since the absolute value is the quotient norm, we can proceed by induction and ,
once CXn has been chosen, successively choose the next lifting CXn+I still satisfying
IIcxn+I -CXn 11 < rn-I. Then IIcxk -CXn 11 < rn-I for all k ~ n. The ith component will
a fortiori satisfy ICXk; - cxnil < rn-I (k ::: n). Consider now the diagonal sequence
~ = (~;) in R defined by~; = CX;;. Then

II~ - CXn 11 ~ sup I~; - CXn; I ~ rn-I
i?:n

because the interval [n, (0) of N belongs to the ultrafilter U, whence for x =~
mod 3,

Ix-anl ~ II~-cxnll ~rn-I,

Ix - an-I! ~ maxt]x - anI, lan - an-lI) ~ rn-I ,

namely x E Bn-I. Since this happens for all integers n > 0, we infer x E nBn,
and the intersection of the given decreasing sequence of balls is not empty.

The field Q p is spherically complete, hence cornplete.

3. The Completion Cp ofthe Field~

3.1. Definition ojCp

Let us define

C p = Q';, = closure ofQ~ in Qp .

Hence c, is a completion ofQ~:

Proposition. The field Cp is a separable metric space.
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PRooF. The algebraic closure Q~ of Qp is a separable metric space (by CoroIIary
2 in (1.5» and is dense in Cp • Any countable dense subset of~ is automatically
dense in C p : For example Qa is dense in C p • •

The universal field Cp is not locally compact: IC;I = pQ = {p" : v E Q} is
dense in R>o.We shaII use the foIIowing notation

A p = {x E Cp : [x] ~ l} : maximal subring ofCp ,

M, = {x E C, : [x] « I}: maximal ideal of A p •

Hence M p = M~, and Ap is not a Noetherian ring (2.1).

3.2. Finite-Dimensional VectorSpaces over a Complete
Ultrametrie Held

Let us formulate and prove a generalization of (11.3.1) (cf. Theorem 2 in (II.A.6)
for the most general version).

Theorem 1. Let K be a complete (nondiscrete) ultrametricfield and V afinite­
dimensional vector space over K . Then all norms on V are equivalent.

PROOF. We use induction on the dimension n of V. Since the property is obvious for
n = I, it is enough to establish it in dimension n assuming that it holds in dimension
n - 1. Choose a basis (ei)l::i::n of V and consider the vector space isomorphism
ep : K" ~ V sending the canonical basis of K" onto the chosen basis of V .
Considering that K" is equipped with the sup norm, we have to show that for any
given norm 11 . 11 on V, the mapping ep is bicontinuous. First , for x = (Xi) E K" ,
we have

IIxl el + ... + xnen 11 ~ L lXi I11 ej 11 ~ max lXii· ~lIejll,

lIep(x)1I .s CIIxll (C = ~lIed/) ,

which proves the continuity of the map tp, Conversely, let F be the subspace of
V generated by the last n - 1 basis vectors. Since the dimension of Fis n - I,
the induction hypothesis shows that on this subspace, the given norm is equivalent
to the sup norm of the components. In particular, F is complete and closed in V.
Since e = el rt F, we can define

d(e, F) = inf [e - YII > 0
yEF

and put y = d(e, F)/liell ~ 1. By the induction hypothesis, there is also aconstant
CF such that
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For each v = q>(x) E E - F, say v = ~e + Y (~ i= 0, Y E F), we can write

with

IIvll = 1~1 ·lIe+Y/~1I = 1~1 ·lle-y'1I

2: 1~I ·d(e, F) = I~I· yllell = y · 1I ~e ll ,

and hence

lIylI = IIv - ~ell ::s maxtjlv], lI~ell) ::s maxrllv], y-lllvll) = IIvll/y

(since y ::s 1). This shows that IIvll 2: y IIYII . We have thus proved

IIvll 2: yll~ell, IIvll 2: YIIYII,

IIvll 2: y . max(lI~ell , IIYII),

and since lIylI 2: CF maxi~2 lXi I, we have

IIlp(x)1I = IIvll 2: y max(l~llIell , CF maxi~2Ixil)

2: cmaxi~l lxii = c · [x];

with Xl = ~ and c = Cv = Ymin(cF, lIe ll)· •
Corollary. If K is a complete (nondiscrete) ultrametric field and L is a finite
extension of K, there is at most one extension ofthe absolute value of K to L.
Any K -automorphism ofL is isometric.

PROOF. Same as in (11.3 .3).

We can now give Krasner's lemma (1.5) in a more general form.

•

Theorem 2. Let Q be any algebraically closed extension of Qp and K C Q
any complete subfield. Select an algebraic element a (E Q) over K and denote
by a" its conjugates over K. Let r = minaa;k lau - al . Then every algebraic
element b over K , b E B<r(a), generates with K an extension containing
K(a).

PROOF. We can proceed as in (1.5), since we now have uniqueness of the extension
of absolute values for finite extensions of K. For any algebraic element b such
that a 't K(b), a has a conjugate a" i= a over K(b) (the automorphism aleaves
aIl elements of K(b) fixed), and

Ib-aul = l(b -a)UI = Ib-a l,

la - aUI ::s maxt]c - bl , Ib - a"I) = Ib - zr].
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Hence

Ib-al::: la-aul:::r .

Taking the contrapositive, Ib - zz] < r ===} a E K (b) and K (a) e K (b). •

3.3. The Completion is Algebraically Closed

Theorem. The universal field Cp is algebraically closed.

PROOF. Let L «: Qp) be a finite - hence algebraic - extension of C p . We can
apply the general form of Krasner's lemma to the extension Cp e Qp, since we
already know that

• the field C; is complete,
• the field <4 is algebraically closed,
• he field Qp has an absolute value extending the p-adic one.

Assume that L = Cp(a) is generated by an algebraic element a of degree n ::: 1
and let f E Cp[X] be the monic irreducible polynomial of a. By density ofthe
algebraic closure <4 of Qp in Cp , we can choose (1.5) a polynomial g E Q~[X]

sufficiently close to f in order to ensure that a root of g generates Lover Cp • But
<4 is algebraically closed, so that g has all its roots in <4, and this proves that f
has degree 1: L = Cp • •

Comment. We have not used the possibility of extending the absolute value of
C; to finite extensions of this field, since we work in the field Qp constructed
in (2.2). The general possibility of extending absolute values for finite (algebraic)
extensions - where the base field is not locally compact- involves other algebraic
techniques.

3.4. The Held Cp is not Spherically Complete

Proposition. The universalfield C; is not spherically complete.

PROOF. Here is an argument showing the existence of strictly decreasing sequences
of closed balls of C p having an empty interseetion (without explicitly constructing
one such sequence!).

Let r; -+ r > 0 be a strictly decreasing sequence of r = pQ = IC;I

ro> rl > . . . > rn > .. . > lim r, = r > O.

In the ball B = B:9o(O) we can choose two closed disjoint balls Bo and BI with
the same radius rl < ro. In each of these we can select two closed disjoint balls of
radii rz < rl, say

BiO and Bil closed and disjoint in Bi.
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Continuing these choices, we define sequences of closed balls having decreasing
radii given by the sequence (rn) and satisfying in particular

Bi ~ B ij ~ ... ~ B ij ...k ~ Bi j .--kl ~ .• .

(with multi-indices equal to 0 or 1).By construction, two balls having distinct multi­
indices of the same length are disjoint. If (i) = (i), iz, ...) is a binary sequence we
can define

B(i) = nB il--·in "

n2:1

Such an intersection is either empty or is a closed ball of radius r = lim r« having
for center any element in it, as always in the ultrametric case. In any case, all B(i)

are open subsets of C; (this is where r = lim r; > 0 is used). If two sequences (i)
and (j) are distinct - say in =1= in - then by construction Bil ---i. and Bh--_j. are
disjoint, and a fortiori B(i) C B i. -- -i., B(j) C Bh __-j. are disjoint. Since the metric
space Cp is separable, the uncountablefamily of disjoint open sets (B(i») can only
be a countable set of distinct open sets (any countable dense subset must meet all
nonempty open sets) . This forces most of the B(i) to be empty! •

A pictorial representation of the preceding proof is sketched in the exercises.

3.5. The Field Cp is Isomorphie to the Complex Field C

The result of this section will not be used in this book. It gives the answer to a
natural question, namely: What is the algebraic structure of the field Cp ?

Let us start by the determination ofthe cardinality of the field Cp '

Lemma. The jield Cp has the power 0/the continuum.

!>ROOF. The unit ball of Q; is Zp ~ fln >o{O, 1, . . . , p-l}, hence has the powerof
the continuum c: numeration in base p gives a 1-1 correspondence with [0, 1] C R
except for contably many overlaps, so these sets have the same cardinality. (In
fact, each Zp is homeomorphic to the Cantor set: Exercise 13 of Chapter 1.) The
field Qp itself has the same power, since it is the countable union of balls pmzp
(each having cardinality c). All finite extensions of Qp have the same power. The
algebraic closure Q~ of Qp still has the same power (the ring of polynomials in
one variable over Qp has also the power of the continuum). Finally, a countable
product (Q~)N cannot have bigger cardinality. Such a product contains all Cauchy
sequences of Q~, and

•
Recall the terminology used for field extensions . A transcendence basis of a field
extension K / k is a family (X)iEI in K such that



3. The Completion c, ofthe Field~ 145

the subfield k(Xi )iEI C K is a purely transeendental extension 01k,
and K / k(Xi)iEI is an algebraie extension .

Here are some general results of Steinitz eoneeming field theory :

Two algebraie closures 01a field kare k-isomorphie.
Every field extension K / k hasa transeendenee basis.
Two transeendenee bases 01 K / k have the same eardinality.

For example, let oa be the algebraie closure of Q in C, and Qb the algebraie
closure of Q in C. Then there is an isomorphism

These fields are eountable. But the fields Cp and C have the power of the eontinuum,
henee the same transeendenee degree (over the prime field Q or its algebraie
closure) .

Theorem. The fields C and Cp are isomorphie.

!'ROOF. Any extension of the rational field Q having the power of the eontinuum
has a transeendenee basis having this eardinality. By the above lemma the tran­
seendenee degrees of C and C p over Q (or its algebraie closure) are the same, and
we ean seleet transeendenee bases (X)iEI in C and resp. (Y)iEI in Cp (indexed by
the same set). Now, C is an algebraie closure of Q(Xi)iEI and C p is an algebraie
closure of Q(Yi )iEI. Henee these two algebraie closures are isomorphie. _

As a eonsequenee, we ean view the field Cp as the eomplex field C endowed with
an exotic topology. But the preceding considerations do not lead to a canonieal
isomorphism between these universal fields: The axiom 01choice has to be used
to show the existenee of sueh an isomorphism.

Field:J B~I :J s., Residue field Nonzero 1.1 Properties

Qp :J z, :J pZp Fp pZ locally compact

Fq (q = pi)
! Z { ef = dimQp K < 00K:JR:JP=rrR Irrlz = p' locally compact

q;, :J AO:J MO kO=F~=Fp oo pQ { algebraically closed
not locally compact

Cp:J Ap:J M p ~ = Fpoo pQ { algebraically closed
complete

Qp:J An:J Mn
kn R>o

{ algebraically closed
uncountable spherically complete
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4. Multiplicative Structure of Cp

4.1. Choice ofRepresentatives for the Absolute Value

Definition. Let G be an abelian group written multiplicatively and n 2: 2 an
integer. We say that

1. G is n-divisible iffor each g E G, there is x E G with x n = g,
2. G is uniquely n-divisible iffor each g E G, there is a unique x E G

with x" = g,
3. G is divisible if it is n-divisible for all n 2: 2.

A simple application ofZom's lemma will show the possibility of extending all
homomorphisms having a divisible group as target.

Theorem. Let G be a divisible abelian group. For each abelian group H and
homomorphism ip : Ho -+ G ofa subgroup Ho C H, there is a homomorphism
1/1 : H -+ G extending sp,

PROOF. Consider all homomorphisms Ho C H' .z; G (H' is a subgroup of H
containing Ho) extending a given homomorphism qJ : Ho -+ G. There will be a
maximalone 1/1 for the order relation given by continuation: Every totally ordered
set of extensions has an upper bound, defined in the obvious way on the union
of the increasing chain of subgroups. I claim that the domain of such a maximal
homomorphism is the whole group H . Indeed, if the domain of an extension tp' is
a proper subgroup Hf eH, let us show that it is not maximal. For this purpose,
seleet any element gEH, g fj Hf and consider the subgroup H" generated by H'
and g, narnely the image of the homomorphism

(i ,x') h)-lx
f

: Z x Hf -+ H.

When the only power of the element g that lies in Hf is the trivial one, the subgroup
H" is isomorphie to Z x H ', and an extension of tp' is given by

qJ"(lx
f)

:= qJf(X').

If other powers of g lie in Hf, the inverse image of H' by the homomorphism
i h)- s' : Z -+ H is a nontrivial subgroup mZ c Z (m > 0) (in other words, gm is
the smallest positive power of g in H ') . In this case, we choose an mth root z E G
of qJ'(gm) E G such that z" = qJ'(gm) . We can define the extension tp" : H" -+ G
by

qJ"(lx') := lqJ'(x').

This is well-defined because if gll x; = lzx~ (x; EH'), we have

ll-lz = x~(X; )- l EH';
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hence l! - i 2 = km is a multiple of m and

qJ/(ll-lZ) = qJ/(gkm) = qJ/(gml = (zml = zmk,

qJ/(x~)qJ/(x;r! = qJ/(x~(x;>-!) = qJ/(ll-lz) = i l- l z,

and finally

•
Remarks. (1) For an additively written abelian group G, divisibility requires that
all equations nx = a (x E G, n positive integer) have (at least) one solution x E G,
hence the terminology. For example, the additive groups Q and R are divisible,
but Z is not a divisible group.

(2) An abelian group G having the extension property mentioned in the statement
of the theorem is called injective group or injective Z-module .

Application. The universal field Cp is algebraically closed; hence the multi­
plicative group C; is divisible . The homomorphism qJ : Z -+ C; defined by
qJ(n) = pn E C; has an extension 1ft : Q -+ C;. This extension is one-to-one,
since its kernel is a subgroup of Q with ker1/J n Z = {O}. The image of 1ft is a
discrete subgroup r c C; isomorphic to the subgroup pQ C R>o. Instead of 1ft(r)
we shall often write pT E C, and 1/J(Q) = pQ. But - although the notation does
not emphasize it - this subgroup pQ C C; depends on a sequence of choices of
roots of p in Cp and is not canonical. When we consider pQ as a subgroup of C;,
we have to remember that Ipal = I/pa> O. This subgroup is a complement to
the kernel

U(l) = {x E C p : [x] = I} c C;

of the absolute value. In particular, we have a direct product decomposition

C; = r .U(1) ~ pQ x U(1)

(analogous to polar coordinates in C X
) given by

x = r· (x/r) 1-+ (]x], x/r) (r E I', [r] = [r], x [r E U(1».

Since both Ap and M p are dopen subsets of the metric space Cp , the subgroup
U(I) = A p - M p is dopen and the preceding product is a topological isomorphism.

4.2. Roofs of Unity

A first analysis of the structure of the group of units

U(1) = A p - M, c C;
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is made by looking at the reduction mod M p • The restrietion ofthe (ring) homo­
morphism

(where F pOO is an algebraic closure of Zp/pZp = F p) to units gives a surjeetive
(group) homomorphism (11.4.3)

E : U(1) -7 F;oo

with kernel i l
(1) = 1 + M; C U(1), whenee a eanonieal isomorphism

In the algebraiea11y closed field Cp , we ean find roots of unity of a11 orders, so
that IL = IL(Cp) is isomorphie to the group ofroots ofunity in the eomplex field.
There is a eanonieal produet decomposition of this group,

IL = lL(p) ·lLpoo (direct produet),

where lL(p) is the subgroup eonsisting of the roots of unity of order prime to p, and
ILpoo the subgroup consisting ofthe pth power roots ofunity (in C p).

The restrietion of the reduetion homomorphism E gives an isomorphism of this
subgroup lL(p) with F;oo, and henee a direet produet deeomposition

U(1) = lL(p) . (1 +M p) C C;.

On the other hand,

Let us reca11 the more precise result established in (II.4.4).

Theorem. Let ~ E ILpoo C C p be a root ofunity having order p' (t ::: 1). Then

I~ _ 11 = Ipllf<p(pl) < 1 (qJ(pt) = pt-l(p - 1)).

For a subextension K of Cp , the link with the notation used in (11.4.3) is

lL(p)(K) = lL(p) n K : roots of unity (in K) having order prime to p,

ILpoo(K) = ILpoo n K: pth power roots ofunity (in K).

4.3. Fundamental Inequalities

In the preceding seetion (4.2) - based on 11.4.4 - we reea11ed the estimates for
absolute values of pth powers. Sueh estimates form a reeurring theme of p-adie
analysis, and we give a few more preeise forms of these estimates for eonvenient
referenee. The first one is purely algebraie.
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Fundamental Inequalities: First form. Denote by I = (p , T) the ideal ofthe
ring Z[T] generated by the prime p and the indeterminate T . Then

(1 + tv: - 1 E T . I" (n ~ 0).

PROOF. For n = 0, the assertion is a tautology, and we proceed by induction on
n ~ O. Assurne that (I + tv: = I + Tu for some u E P . Hence

(1 + tv'" = (1 + Tu)P = 1+ pTuv + TPu P

for some polynomial v E Z[T] . But

pTu E T . p l" c T . rr',
TPuP = T · TP-lup E T · r+I

(since p ~ 2), and the sum pTu + TPu P belongs to T . p+I as expected. •

Let us replace the indeterminate T by an element t E A p C Cp • Since each
element in P is a sum of terms containing factors p i Tn- i for 0 :::: i :::: n, the
ultrametrie inequality shows that all elements obtained have an absolute value
smaller than or equal to the maximum of Ipir':' I,and we see that we have obtained
the following inequality.

Fundamental Inequalities: Second form. Let t E C p, Itl :::: 1. Then

1(1 + iv" - 11:::: Itl' (maxtjz] , Ip/))n (n ~ 0)

(cf. (VA.3)). •

Other forms are often used (they are not completely equivalent to the preceding
ones, but also admit useful applications). We mention them briefly.

Third form. Let K beafinite extension ofQp, K :J R:J P. Then

(1 + P)p
n

C 1 + p n+1 (n ~ 0) .

If P = n Rand Irr I = () < 1 (generator of the discrete group IK x I C R >o),
then in K the announced inclusion is equivalent to

•
This third form follows from the first one (replace T by rr)but is less precise than
the second form because

and () = Ipil le > Ipl if e > 1.
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Fourth form. With the same assumptions as in the third form, we have

(1 + t)n := 1 + nt (mod pntR)

ift E 2pR (n E N, Z or even Zp).

If we look at the first term only in the expansion

(l + t)n - 1 - nt = n(n - 1)t2 /2 + ...,

we find that for t /2 E pR,

n(n - 1)t2 t
2 = (n - 1) . nt . 2 E nt . pR.

•

It only remains to check that the next terms are not competitive. Since we shall
not need this form before Chapter VII, we refrain from giving a proof now, It will
be obtained by a general method in (V.3.6). •

4.4. Splitting by Roots of Unity ofOrder Prime to p

We have a direct product decomposition (4.2)

U(1) ~ JL(p) x (1 +M p )

of the multiplicative subgroup defined by lxi= 1 in C; . The corresponding pro­
jection U(1) ~ JL(p) is the Teichmüller character. It can be made explicit in
several forms . Let Ix I= 1 and K = Qp(x) have residue degree I .The residue field
k = R/P of K has order q = pi , and the reduction homomorphism S sends the
given unit x to an element s(x) E F; of order dividing q - 1 (11.4.3). Hence

S(X)q- l = I, x q-1 := I (mod P).

The fundamental inequality (second form) shows that the pth powers of x q- 1 =
1+ t (t E P C Kor t E M p C C p ) tend to I :

x(q-l)p' ~ I (n ~ 00).

A fortiori , taking n = Im,

..+1.. h 0 H ..+1 .. ..Say x q = x q (l + Sm) W ere Sm ~ . ence x q - x q = x q Sm ~ 0,
and the Cauchy sequence (xq")m~O has a limit S in the complete (locally compact)
field K C Cp . Obviously, sq = sand

s= lim x q" =x+(xq-x)+(xq2-xq)+ . .. :=x (modP).
m.....oo
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Themap

X t-7 l; = w(x) = lim x
qm

m"""' oo

defines a homomorphism U(I) n K X --r f.Lq-l C K X that corresponds to the
projeetion on the first faetor in the direet produet deeomposition (1104.3)

U(1) n K X
~ f.Lq-l X (l + P).

It is possible to give a formula working independently from the residue degree of
x E U(I). Indeed, if q is given, the subsequenee (x pn!) has an end tail in (x qm

) .

We have obtained the following result.

Theorem. Let x E Cp with [x] = 1. Then the sequence (x pn!) converges to the
unique root ofunity that is congruent to x (mod M p ) and the homomorphism

co : x t-7 l; = w(x) = lim x
pn

'
m"""'oo

corresponds to the projection on thejirstfactor in the direct product decompo­
sition

U(l) ~ f.L(p) x (l + M p ) . •
4.5. Divisibility ofthe Group of Units Congruent to 1

In this seetion we investigate the divisibility properties of the multiplieative group
I+Mp •

Proposition 1. The group I +M; is divisible. For each m :::: 2 prime to p, it is
uniquely m-divisible.

PROOF. It is enough to prove that the group I + M p is p-divisible and uniquely
m-divisible for eaeh m prime to p .

(1) Let 1+t E 1+Mp and seleet a root x E C; of XP - (l + t): this is possible,
sinee this field is algebraieally closed. Sinee IxJP = IxPI = 11 + r] = 1, we have
[x] = 1: x E U(I). Now

(x mod Mp)P = x" mod M p = 1 E k

implies x mod M p = 1, sinee k has eharaeteristie p. This proves x = 1 + s E

1+Mp •

(2) Let 1 + tEl + M, and seleet a positive integer m prime to p. We are
looking for a root of the polynomial f(X) = X" - (1 + t). We already have an
approximate root y = 1 for whieh the derivative mXm- 1 does not vanish mod M;
(p does not divide m):

f(y) = I - (l + t) = -t, f '(y) = m, If'(y)1 = 1.
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Tbus we have 1f (y )/ I '(y i I = 1-r] < 1, and Hensel's lemma (11.1.5) is applicable:
There is a unique root of f in the open ball of center 1 and radius 1. •

In fact , for each I; E JLm C JL(p) CF;"", there is one root x of f with x == I;
(mod M p ) . These m roots of f are all the roots of this polynomial, and for each
given I; E JLm there can be only one root of f congruent to this root of unity 1; .

For later reference, let us formulate explicitly the following characterization of
the topological torsion of C;.

Proposition 2. For XE Cp we have

x E I +M p {:::::=} x
pn

-+ 1 (n -+ (0).

PROOF. If x = 1 + r e I +M p , the sequence

x pn _ 1 = (1 + t)pn - I

tends to 0 by the fundamental inequality (4.3) (second form). Conversely, assume
that x-" -+ 1 (for somex E C p) and take an integer n such that x/" belongs to the
open neighborhood 1+M p of 1 in C p- Since we have proved in (4.1) that there is
a torsion-free subgroup r (~ pQ) of C; and a direct-product decomposition

C; = r . JL(p) . (I + M p),

we see thatx E JL(p) ·(1+Mp). The first component I; ofx is trivial simply because
it has an order prime to p:

•
Observe that the convergent sequence (x pn )n:::O is eventually constant precisely
when x is a pth power root of unity

XE JLp"" C 1 +Mp.

Appendix to Chapter 3: Filters and Ultrafilters

A.l. Definition and First Properties

Let X be a set. A farnily F of subsets of Xis afilter when

o. X E F, 0 rt F,
1. A E F, B E F ==> A n B E F,
2. A E F, A' ::> A ==> A' E F.

If there is a filter on a set X, then this set is not empty by the condition O. The
condition 1 shows (by induction) that the intersection of a finite farnily of subsets
Ai E :Fis an element of the filter Fand in particular is not empty. The intersection
of all elements of F may be empty, in which case we say that this filter isfree.
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Example. Let X be a subset of a topological space Y, choose a point y E X - X,
and define a filter F on X as follows:

F = {V n X: V is a neighborhood of y in Y}.

This example is typical, since if F is any free filter on a set X, we can define a
topology on the disjoint union Y = X u {w} by specifying its open sets :

subsets of X and subsets A U {w} (A E :F).

The topology induced on X is the discrete one, but w is in the closure of X in Y,
and the filter on X attached to to is precisely F.

A family B c Fis a basis of this filter if any A E F contains a BEB.

Lemma. Let B be a family 0/nonempty subsets 0/a set X such that

A E B, BEB ==> there exists CE B such that Ce An B.

Then the family 0/subsets 0/X containing elements 0/ B is a filter having B as
a~~ •

The filter constructed in the previous lemma is called the filter generated by B.

Lemma. Let F be a filter on a set X and let / : X -4 Y be a map. Then the
family /(:F) = {f(A) : A E F} is afilter on /(X) and a basis 0/afilter on Y .

•
Example. Let F be a free filter on N. Choose for each n E N an element An E F
such that n rt An' Hence A = nl<n <N An E :F and [N, (0) ::> A, and hence
[N ,oo) E F . Any free filter on N contains all subsets [N, (0) (N E N).

More generally, let X be an infinite set. Then any free filter on X contains
all cofinite subsets (i.e. complements of finite subsets) as elements. The cofinite
subsets form the Frechet filter on X.

A.2. Ultrafilters

The inc1usion relation for families F c P(X) is an order relation, and if:F' :J F ,
we say that F' is finer than F . For example, any free filter on X is finer than the
Frecher filter.

In an obvious sense, the subsets of a finer filter F' are smaller than those of F.1

Definition. Maximalfilters are called ultrafilters.

'Compare with coffee powder, where finer grinding also provides finer granules!
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Any totally ordered sequence of filters on a set X has a majorant (the union
in P(X», and by Zom's lemma, any filter is contained in a maximal one. For
example, the Frecher filter on X is contained in an ultrafilter (necessarily free).

Theorem. Let F be a filter on a set X. Then F is an ultrafilter precisely when
the following criterion is satisfied:

for each Y C X either Y E F or y c = X - Y E F.

PROOF. If the condition is satisfied, F is obviously maximal. Conversely, assurne
that there is a subset Y C X with Y fj. Fand y c fj. F . Observe that all A E F
meet Y :

y C fj. F ==:} y c 1> A ==:} Y n A =ft 0.
AEF

Define F' :J F as follows:

F' = {A' C X : A' :J A n Y for some A E F} .

Hence F' is a filter, and Y E F'. Since Y fj. F, F' is strictly finer than F , proving
that this last filter was not maximal. _

Corollary 1. Let U be an ultrafilter on a set X. lf Al, ... , An is a finite family
ofsubsets ofX such that U1<i <n Ai E U, then there exists at least one index i
for which Ai E U. - -

PROOF. It is enough to prove the assertion for two subsets (by induction). If A fj. U
and B fj. U , we infer from the above criterion that AC E U, BC E U; hence
(A U B)C = N n B C EU, and A U B fj. U. _

Corollary 2. Let f : X -+ Y and let U be an ultrafilter on the set X. Then
f(U) is an ultrafilter on f(X) and a basis ofan ultrafilter on Y.

PROOF. It is enough to prove the assertion when f is surjective. For any A C Y,
either f-l(A) or f-l(A)C = f-1(A C) belongs to U ; hence

either A = f(f-l(A» or AC = f(f-l(A C» belongs to U .

By the criterion, f(U) is an ultrafilter on Y . -
A.3. Convergence and Compactness

Definition. Let X be a topological space. Afilter F on X is said to converge to
a point x E X if it is finer than the filter ofneighborhoods ofthis point, namely,
when each neighborhood ofx in X contains a subset A E F .
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For example, the filter of neighborhoods of a point converges to this point. In a
Hausdorff space, a convergent filter can converge to at most one point.

Let X be a compact space. Then for each filter F on X, the family (A)AEF has
nonempty finite intersections; hence by compactness

If U is any open set containing Q, then

UC n Q = 0 ==} tr nnAj = 0 ==} U :::> nAj :::> nAj ( E F)
jE] jE] jE]

for some finite family (A j ) of subsets A j E F . This proves that U contains an
element of Fand this filter is finer than the filter of neighborhoods of Q.

Theorem. In a compact space, every ultrafilter converges.

!>ROOF. Let U be an ultrafilter on the compact space X and choose x in the non­
empty intersection nAEU A. The nonempty subsets

U n V (U EU, V neighborhood of x)

generate a filter finer than U, hence equal to U. Hence this ultrafilter converges to
x, and aposteriori

•
Application. Let U be an ultrafilter on the set N of natural numbers and let (an)n:::O
be a bounded sequence of real numbers. Then lirnu an exists and

infzz, ~ lim c, ~ supan •
nUn

Paoor, Since the sequence (an)n:::O is bounded, then

-00 < a := inf'c, ~ ß := supc, < 00,
n n

and this sequence defines a map

n t-+ an : N -+ [a, ß] C R

taking its values in a compact space. The image of the ultrafilter U is a basis of an
ultrafilter in the compact space [o , ß]; hence it converges in this space. •
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A.4. Circular Filters

Let K = np be the spherically complete extension of Qp constructed in (111.2).
Recall that In; I = R>o and the residue field kn is infinite.

To each closed ball B C K we associate a filter FB on K defined as follows:
Ifthe ball B is a single point {c}, we take for FB the filter ofneighborhoods of

this point, generated by the B<e(a) (s > 0).
If B = B=:;r(a) has positive radius r, we take for F B the filter generated by the

subsets

A(e, al , . . . ,an) = By+e(a) - U B<r- e(ai) (0 < s < r, ai E B) .
l=:;i=:;n

When e decreases and/or the number of points n increases, these subsets decrease,
and we see that these subsets make up a basis of a filter. The filter FB generated
by this basis is the circularfilter associated to the closed ball B.

By definition, the subset A(e, al, . .. , an) contains

r< Ix - al < r + e (x E K)

(observe that this set is independent of the choice of center a E B). Also, for any
bEB there is a 8 > 0 such that

{x E K : r - 8 < Ix - bl < r} C A(e , a], .. . , an)'

Lemma. Let B be a closed ball of radius r > 0 and choose a E B. Then a
basis ofthe circularfilter FB is given by thefollowing subsets

A'(e, a], . . . , an) = {r - e < Ix - al < r + s] - UB<r-e(ai),
fin ite

where the aj are chosen on the sphere Sr(a) : Ix - al = rand 0< s < r. •

Here, replacing e by a smaller one, we may even assurne that the points a, satisfy
laj - a j I = r (i =1= j).

The preceding definitions can be relativized to a subset X C K = np • Assurne

X n A =1= 0 for all A E F B ,

so that FB induces a filter on X. Then this induced filter FB(X) = FB n X is still
called a circularfilter on X .

For example, let X = Cp • When the closed ball B C K does not meet Cp , we
have r := d(B , C p ) > 0, and if8(B) = r, the trace of F B on C p is a circularfilter
without a center in C p •

EXERCISES FOR CHAPTER 3

1. Prove that Q~ is not complete by considering the series L(p.n)=l v" p'!",
(Hint. Let x be the sum in a completion of~ and let K be the completion of Qp(x).
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Show by induetion that all pl/n E K for (n, p) = 1, and henee K is not algebraie over
Qp .)

2. Let K be an algebraieally closed valued field. Prove that its eompletion K is also
algebraieally closed.
(Hint. Let f(X) = X" + an_IXn-1 + ... + ai X + ao E K[X] and select monie
polynomials f/X) = K" + an_I ,jXn-1 + ...+ al ,jX + aO,j E K[X] eonverging
coefficientwise to f .Then /j j := IIh+1 - h 11 = maxi lai,j+1 - at.] I ~ 0 (j ~ 00).
Choose inductively a root x j (in the algebraieally closed field K) of h so that (x j)j is
a Cauchy sequence (cf III.l.5) and hence converges in the eompletion K to a root of
f .This type of proof also appears in (VI.2 .2).)

3. Let X be the real Banach space eonsisting of sequences x = (xn)n:;:O of real numbers
eonverging to zero with the norm IIxll = sup IXn I = max IXn I. Consider the sequence
in X defined by

ao = (0), an = (l + 1, I + !,.. .,I + ~, 0, 0, .. .) (n::: 1)

so that lIan 11 = 2 (n ::: 1). Show that with the induced metrie, the set A = {an : n ::: O}
is an complete ultrametric space which is not spherically complete.
(Hint. The induced metric on A is given by

What is the closed ball of center an and radius I + ~?)

4. (a) Let X be a eomplete metric space having the following property : Any decreasing
sequence of possible values of the distance function converges to O. Show that X is
spherically complete.
(b) If a complete metric space is not spherically complete , show that we can replace
its metric by a uniformly equivalent one /j for which it is spherically complete. (Hint:
For given x and y, define /j(x, y) = 2n , where the integer n E Z is chosen so that
d(x, y)::: Zn < 2d(x , y). Then use (a) .)

5. Prove that the residue field of Qp is uncountable.
(Hint. Each sequence N ~ J.t(p) c Q~ leads to a nonzero element ofthe residue field
ka of Qp . IfN ~ ks: is any map, use Cantor's diagonal procedure as in (1.1.1) to define
an element not contained in the image .)

6. There are many possible choices of copies of pQ in C p • Let CPn denote the homomor­
phism x ~ x n: C~ ~ C~ (n ::: 1), then ker~CPn = limJ.tn! gives a parametrization
of choiees . (Recall that a countable projective limit of sUI]eCtive maps is surjective (4.3).)

7. Let K be an extension of Qp with IK x I dense in R>o. Recall (exercise of Chapter 11)
that the tree TK is the ordered set ofclosed balls of K. This tree comes with a projection
/j : TK ~ R:;:o.Forr > 0, thefiberrl(r) = K/B~ristheuniformlydiscretequotient

group of closed balls of radius r .
(a) Show that the maximal totally ordered subsets of TK are isomorphic to either [0, 00)

or to (0, 00) : Let us call these subsets maximal branches, and in the first case, we
say that the corresponding branch bears a fruit , The projection by /j of a maximal
branch is either an isomorphism with the interval [0,00) or an isomorphism with
an interval (r, 00) (r ::: 0): The fruit of a branch can lie only above r = O.
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(b) Show that K is complete exactly when all maximal branches having a projection
containing (0, 00) do bear a fruit , i.e., are isomorphie to [0, 00) by projection.

(c) Assume that the field K is separable, so that all fibers 0-1(r) (r > 0) are countable.
Show that such a field cannot be spherically complete.
(Hint. The set of distinct branches having a nonempty intersection with any
8-1[r' , r"] for some fixed r' < r" is uncountable.)

K

r=O r=l

Tree of K : Fruits, branches, and holes

(d) Define an action ofthe 2 x 2 upper triangular matrix group T2+(K) C Gh(K) on
TK (cf. (VI.3.I)) . When K = r2p , show that this action is transitive on the subtree
defined by 8 > O.

8. Let a E r2p - C p and r := d(a, C p ) > O. Show that the cases Sr(a) n C p = 0 and
Sr(a) n C p =1= 0 both occur.
(Hint. Choose first a E r2p with laI = 1 and residue class ä E kc: not algebraic over the
prime field: In this case r = 1 and the sphere SI (a) meets Cp , On the other hand, select
a decreasing sequence of closed balls B-s.rn(an), rn '\. 1 having an empty intersection
in Cp and choose a in the intersection ofthe same balls of r2p : The sphere SI (a) does
not meet Cp .)

9. Let K be an ultrametric field. Assume that both k (the residue field) and IKx Iare count­
able. Prove that for fixed r > 0, the set of dressed balls of radius r is also countable.
(Hint. Observe that the set of open balls of radius r is countable. Define a surjective
map from the set of open balls to the set of closed balls of the same radius .)

10. Let K be an ultrametric field with IKx Idense in R>o . For real t ~ 1 let Pt denote the
partition ofthe closed unit ball A = {x E K : lxi ~ I} into its cosets mod the additive
subgroup B-s.I/t = {x E A : [x] ~ I/t} . The farnily (Pt) indexed by t E [0,00) has the
property

for s > t ~ 1, Ps is strictly finer than Pt.

(The "continuous farnily" (At)t~1 of associated o-algebras is afiltration of the space
A in the sense used in the theory of stochastic processes.)
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11. Let us denote by B9 (r 2: 0) the additive subgroup lxi:::: r (in Cp or in any ultrametric
field having dense valuation).
(a) ForO < r < s, showthatthe subgroup B:::;r ofB~s hasno supplement: B~s is not a di­

rect product of B~r with another subgroup. In other words, the short exact sequence

0-+ H = B:::;r -+ G = B~s -+ GI H -+ 0

does not split. (Hint. For all x E G = B9 , pnx -+ 0.)
(b) For 0 < r < s < 1 show that the multiplicative subgroup I + B~r of I + B~s has

no supplement, (Hint. If lx i< 1, then (l + x)p" -+ 1.)
(c) For 0< s2 :::: r < s < 1, prove that there is a canonical isomorphism

(Hint . Consider the homomorphism x t-+ t = x - I mod B~r.)

(d) We have J.Lpoo n (l + B<rp ) = {I}, but the direct product J.Lpoo . (1 + B<rp ) is a
proper subgroup of 1 + M p. Show that 1 + B<rp has no supplement in I + M p
and more precisely, J.Lpoo is maximal among the subgroups Hel + M p such that
H n (l + B<rp ) = {l}. (Hint. The sequence (1 + t)p" -+ 1 is eventually stationary
precisely when 1 + t E J.Lpoo.)

12. Prove the first form ofthe fundamental inequalities by induction, using a = (l + tv'
and the factorization

aP - 1 = (a -1)(1 +a + ...+aP- I ) ,

where each ak E I + I (k 2: 1) so that I +a + ...+ aP- 1 E p + I = I . (Observe that
the case n = I ofthe statement is crucial , and the induction step is based solely on it!)



4
Continuous Functions on Zp

The goal of this chapter is the study of continuous functions on subsets of the
p-adic field Qp with values in an extension of Qp. Since Qp admits a partition into
clopen balls x + Zp (x E Qp/Zp = Z[l/p]/Z), it is enough to study continuous
functions on Zp . Thus, we shall typically study continuous functions Zp ~ Cp.
Since the natural numbers N form a dense subset of the ring Zp , we shall start by
the study of functions on N or Z and with values in any abelian group.

In classical analysis, real- or complex-valued functions that are continuous on
an interval can be uniformly approximated by polynomial functions (theorem of
Weierstrass). But there is no canonical series representation for them. It is a specific
feature of p-adic analysis that continuous functions Zp ~ Cp have a canonical
Mahler series representation. As has been noticed and proved by L. van Hamme,
many systems of polynomials can also be used instead of the binomial system.
This leads us into the umbral calculus, where suitable systems are found.

Due to the granular structure ofZp, the locally constant functions also constitute
a dense subspace ofC(Zp; Cp) (these functions correspond to the step functions on
an interval in the classical theory). A basis of this space consisting of characteristic
functions of suitable balls has been devised by M. van der Put.

1. Functions of an Integer Variable

1.1. Integer-Valued Functions on the Natural Integers

A polynomial f (x) E Q[x] can take integral values on all natural integers even if its
coefficients are notintegers. Forexample n2 == n (mod 2) shows that 4x2 - 4x is
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such a polynomial. More generally, nP == n (mod p) shows that the polynomial
lx p - lx is also such a polynornial.
P The ttudy of these polynomials is based on the following observation . Each
binomial polynomial

(
X) x(x - 1)· ·· (x - n + 1)= E Q[x]
n n!

(n ::: 0)

defines an integer-valued function N --+ N. This (and the theorem below) explains
their central role in this chapter.

The first binomial polynomials are

(~) = 1, G) = x, G) = ~2 -~.

One can read the sequence of values given by ~) in Pascal's triangle: The first
values are 0 (outside ofthe triangle)

In the figure below, we exhibit the values of the binornial polynornials in vertical
columns, with special attention to G).

o
-Ir

1 0
1 1 0
1 2 1 0
1 3 3 1 0
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
1 8 28 56 70 56 28 8 1

Values of the binomial polynornials as vertical columns

On the other hand, introduce thejinite-difference operator V defined by

(V f)(x) = f(x + 1) - f(x) .

(This is a discrete analogue of the gradient operator, whence the notation; we
keep !:J. for a discrete analogue of the Laplace operator.) This forward-difference
operator acts on any function f on N taking values in an abelian group. An abelian
group can always be considered as a Z-module , and conversely, any Z-module is
an abelian group. Thus we shall now consider functions f : N --+ M where M is
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a Z-module. The action of the finite-difference operator on the binomial functions
is easily detennined: An elementary computation shows that

The binomial polynomials behave with respect to the difference operator as the
polynomials x' / i! do with respect to the derivation operator:

(
Xi) tx':' xi-1

D(xo) = 0, D - - -- - (i ~ 1).
i! i! (i-I)!

This analogy will be exploited and generalized.

Theorem. Let M be any abelian group and let f : N -+ M be an arbitrary
map. Then there is a unique sequence (mik,:o ofM such that

fex) = ?=mi(~) = ~ mi(~) (x E N).
, :::0 0::9::;x

For x E N only jinitely many tenns ofthe sum are nonzero, and m, = (Vi neO).

PRooF. Since e) = 0 for x = 0 and i ~ 1, we see that mo = f(O) is uniquely de­
fined. The finite-difference operator can be used repeatedly to bring any coefficient
into the constant term position:

Vf(x) = LmiV(~) = L:m;(. ~ ),
i:::l l ;:::1 l 1

Vk fex) = Lmi(. x ).
i:::k l - k

Hence mk = Vk f(O). These computations already prove the uniqueness of the
coefficients mk and show how they have to be computed. Conversely, if the function
f is given , let us compute the iterated differences Vkf (0) E M and define g(x) =
LO::;i:::x v! f(O)W , cp = f - g . The iterated differences of sp vanish at the origin
by construction : cp(O) = 0, cp(l) - cp(O) = 0, whence cp(I) = 0, .. . , from which
it is apparent that cp vanishes at the points 0, 1, 2, . . . . More formally, one can
establish by induction the general formula

Vkcp(O) = L(-li (~) cp(k - i) = cp(k) + ....
i::;k l

The induction hypothesis cp(j) = 0 for all j < k and Vkcp(O) = 0 implies

cp(k)=- L(-li(~)CP(k-i)=O (k~O).
l ::;i ::;k l
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Hence qJ == 0, as expected. This proves f = g and the existence of an expansion
of the desired form. •

Comments. (1) The preceding proof shows that the expansion of f is simpIy f =
L j:::o m, (JThis series converges pointwise: Although infinitely many coefficients
m, will be nonzero in general, for each fixed x E N the sum :Ej :::o m;fj(x) is a
finite sum. Let us introduce the Pochhammersymbol

(X)O = 1, (x), = x(x - 1) ··· (x - i + 1) (i 2: 1),

so that

(X) (x),
V(x)j = i(X)j_l and . = -.-,.

I l.

The preceding series expansion of f takes the form

v! f(O)
f=L-·,- ·(x)j,

j:::O I.

which is strikingly sirnilar to the Taylor-Macl.aurin power series of an analytic
function (of areal or complex variable).

(2) The formulas

Vk f(O) = L(-I)k-j(~)f(i)
j~k I

correspond to the formal power series identity

X k xn

L Vk f(O)- = e-x • L f(n)-
k:::O k! n~O n!

between these two generating functions.

1.2. Integer-Valued Polynomial Functions

We shall denote by L = L(Z) C Q[x] the Z-module consisting of polynornial
functions taking integer values on the natural integers :

L = {f E Q[x] : f(N) C Z}.

We have seen in (1.1) that Z[x] C L is a proper inclusion: All binornial functions
belong to L.

Theorem. The Z-module L consisting of polynomial functions f E Q[x]
integer-valued on N isfree, with a basis given by the binomial polynomials (;).

PROOF. Let f be an integer-valued polynomial. Obviously, all the iterated differ­
ences of f have the same property, and in particular the coefficients m, of the series
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expansion of f are rational integers. On the other hand , the iterated differences
v!f will vanish identically if the exponent i is greater than the degree of f .Hence
the series L m, (;) is a finite sum, and the uniqueness of the representation has
been proved in (1.1). •

Corollary 1. Ifa polynomial f E Q[x] takes integral values on N, it also takes
integral values on Z.

PROOF. It is enough to check this property for the basis of L consisting of the
binomial polynomials. If x = -m is a negative integer, then

(-im) = -m(-m -l)· · ·(-m -i+1)/i! = (_li(m +: -1) E Z.
Hence the (;) and all f E L define functions Z -+ Z . •

Corollary 2. 1fa polynomial ofdegree d ::: 0 (with rational coejjicients) takes
integral values on d + 1 consecutive integers, then it takes integral values on
all integers.

PROOF. Let f take integral values on the integers a, a + 1, ... , a + d and con­
siderits translate g(x) = fex - a) which takes integral values on the first integers
0, 1, . .. , d. Hence the first iterated differences of g at the origin are also integers,
and if f is a polynomial of degree d, so is g . The expansion g = Li~d Vig(O) (;)
shows that gEL. •

Definition. Let M be a Z-module. The M -valued polynomial functions are those
that have a finite expansion in the basis consisting ofbinomial polynomials.

Since the polynomial functions with values in M are the finite sums L m, (;), the
mapping

Maps(N; M) -+ MN : f Ho (Vi f(O))i~O

induces a bijection between the polynomial functions and M(N) : The subspace of
the product consisting of families with only finitely many nonzero entries.

1.3. Periodic Functions Taking Values in a Field
ofCharacteristic p

We shall have to consider the case where the Z-module M is a vector space over
the finite field F p- To start with, let us take M = F p.

Proposition. For i < r'. the functions (;) : Z -+ Fp' X Ho e) mod p are
periodic ofperiod T = p', They make up a basis of this space of T -periodic
maps.
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PRoOF. The binomial coefficients are best described by their generating function

The identity (1 + uy+T = (1 +uy . (1 +ul combined with the congruence

(1 + U)pl == 1 + uPI (mod p)

leads to

(1 + ut+
pl == (1 +ut . (1 + u

PI
) (mod p).

For i < o',the coefficients of ui in (1+uy+pl and in (1+uY are the same mod p;
hence

(X+1' pt) -= (XI') (mod p) (i < l).

To prove the second part of the statement, consider the linear map

j: MapsT_periodic(Z;Fp ) ~ F~, f ~ ('li f(O))O:Si<T .

If Vi f(O) = 0 for 0 ::: i < T, then f vanishes at the points 0, 1, .. . , T - 1 (1.1),
hence vanishes identically by T -periodicity. This proves that the linear map j is
injective. Since both spaces MapsT-periodic(Z; F p) and F~ have the same dimension
over F p (even the same number of elements, since this field is finite), it is bijective.
It will be enough to check that the image of the set of binomial polynomials 0 is
the canonical basis of the target

~ ~

(i) is a polynomial of degree i :=} Vk~) = 0 for k > i,
~ - -

Vk (j) = C":'k) vanishes at 0 for k < i, Vk (k)(0) = 1. •

Remark. It is not difficult to prove periodicity of the binomial coefficients relative
to nonprime moduli. For example,

X~ G) modm

is periodic of period m' :

Theorem. Let M be a vector space over Fp and f : Z ~ M a function that is
periodic ofperiod T = pt (for some t 2: 0). Then f can be uniquely written
in theform

f = L (:)mi (m, E M).
O:si<T I
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In other words,

Maps- -periodie (Z; M) = EB Mi
i

is the direct sum ofthe subspaces

Mi= C)M C Maps(Z;M) (0 ~ i < T).

!>ROOF. A T -periodie map on Z is a map on the finite quotient Z/TZ, and hence
takes only finitely many values. This reduces the proof to the finite-dimensional
case . The map

is linear and injective. Since both spaces MapsT-periodic and MT have the same
dimension over F p (even the same number of elements, since this field is finite),
it is bijective. •

1.4. Convolution 01Functions 01an Integer Variable

Let A be a commutative ring and f, g : N ~ A two functions. We define their
shifted convolution product by'

f ~g(n) = L f(i)g(j) = L f(i)g(n - I-i) (n 2: I)
Hj=n-I O::;:: i::;::n-I

and f ~g(O) = O. This is a commutative, associative, and distributive product on
Maps(N, A) .

Proposition. The iterated dijferences ofa shifted convolution product are given
by

!>ROOF. It will be practical to use the notation fl for a unit translate of a function
f :

ft(n) = f(n + 1) (n 2: 0)

(the value f(O) is lost). With this notation the difference operator is expressed
by

Vf=ft-f.

IThe usual convolution product is defined by f * g(n) = L H j=n f(i)g(j) (n ::: 0).
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Let us evaluate the translate of a shifted convolution product:

(f :!:g>I(n) = I :!:g(n+ I) = L I(i)g(j)
i+j=n

= I(n)g(O) + L I(i)g(j + I)
i+j=n-!

= I(n)g(O) +(f :!:g!)(n),

whence

Iterating the preceding formula, we obtain

V2(f :!:g) = V(f . g(O)+ I:!: Vg)

= VI . g(O)+ V(f:!:Vg)

= V I . g(O)+ I . Vg(O)+ I:!: v?g.

By induction, we obtain

Vn(f:!:g)= L ViI·V jg(O)+I:!:Vng,
i+j=n-!

which expresses vn (I:!: g) as a sum of I:!: vng and a linear combination of the
finite differences v! I (i < n) of I. •

1.5. Indefinite Sum 01Functions 01an Integer Variable

If the finite-difference operator V is to be compared to the derivation operator­
pursuing the analogy - we should construct an inverse of it, corresponding to
integration. It is clear that for any function I : N -+ A, there is a unique primitive
F : N -+ A satisfying

V F = land F(O) = O.

These conditions indeed imply

1(0) = V F(O) = F(l) - F(O) = F(l)

and then

I(n) = F(n + I) - F(n), F(n + 1) = F(n) + f tn] ,

By induction, F(n + 1) = LO:::;i:::;n I(i).

Definition. The indefinite sum operator S is defined by

SI(O) = 0 and SI(n) = L I(i) (n:::: 1).
O:::;i <n
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If we use the shifted convolution product introduced in the preceding section, we
see that Sf = 1s.T, where 1 represents the constant function 1 on N. In fact,

vn~f)(n) = L fU) - L f(i) = f(n), vu~f) = f.
tz» i -cn

Examples. (1) Let f = 1 be the constant unit function . Then SI(n) = n.
(2) Let f (= SI) be the identity function N -+ N. Then

" . (n) n(n - 1)Sf(n) = L.Jl = = .
. 2 2
l<n

(3) More generally, let f = (k) be the kth binomial polynomial N -+ N. We

have seen in (1.1) that V(~) = ~':'I) and ~) = °(k ~ 1). Hence

This property can be read in Pascal's triangle. Consider, for example, the two
consecutive sequences

fz : 0,0, 1,3,6, 10, ,

h : 0, 0, 0, 1, 4, 10, .

The differences of the second one indeed give the first one.
(4) Consider now f(n) = n2, the square function. In this case

Sf(n) = L i 2 = 12 + 22 + ... + (n - 1)2.
;<n

Since

wehave

and

Sf(n) = 2G) + (;).

6Sf(n) = 2n(n - 1)(n - 2) + 3n(n - 1)

= n(n - l)[2n - 4 + 3] = n(n - 1)(2n - 1).

We have obtained the well-known formula

Sf(n) = L i 2 = tn(n - 1)(2n - 1).
; <n
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This way of proceeding is similar to the general procedure that consists in writing
the binomial series expansion of F = SI ,

F = F(O) + VF(O)C) + V
2
F(O)C) + V

3F(O)(~).

using F(O) = 0 and V F = I ; hence

V F(O) = 1(0) = 0, V2 F(O) = V1(0) = I, V3 F(O) = V 2 / (0) = 2.

The preceding examples lead to the foIIowing result.

Proposition 1. If the function I 01an integer variable is given by

I(n) =LCi(~)'
i:,,:O I

then

F(n) = S/(n) = LCi ( . n ) .
i :,,:O I + 1

The preceding examples also show that

I!.I = id , 1!.1!.I(n) = (;). . . . , ~(n) = G)'
k+l factors

•

A few more formulas may be useful. By definition I = V(Sf) = V(1!.f). Let
us compute S(V f):

S(V f)(n) = I!. VI(n) = L VI(k)
O::;k<n

= L [/(k + I) - I(k)) = I(n) - 1(0).
O::;k <n

If we denote by Po the projection on constant functions defined by

Po : Maps (N; A) -+ A, I 1-+ 1(0) . 1

we have obtained S 0 V = id - Po. Hence the foIIowing proposition.

Proposition 2. The indefinite-sum andfinite-difference operators are linked by
the formulas

V 0 S = id, S 0 V = id - Po, V 0 S - S 0 V = Po . •

The identity S(Vf) = 1- 1(0) . I gives a first-order limited expansion of I if
we only rewrite it I = 1(0) . I + S(V f) . This point of view has been generalized
by van Hamme.
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Theorem. For everyJunction f ofan integer variable and every integer n 2: 0,
we have

with the van Hamme form for the remainder Rn+d = y>n+I f 1:. (J

PROOF. The case n = 0 has already been obtained: R I f = sv f = 11:. V f . For
n 2: 1 we can use the identity

V n(f1:.g) = L Vif· Vig(O) + f1:. v»
i+i=n- I

proved in (1.4). Let us apply

Vn+l(g 1:.f) = L Vi g . vi f(O) + g 1:. Vn+1 f
i+i=n

to the function g(x) = e.for which Vig(x) = (n~) = G).We find that

vn+1 (G) 1:.f) = o~n C) .Vi f(O) + G) 1:. vn+1 f·
_J_

But the left-hand side is

vn+1 ( G) 1:.f) = Vn+I(11:. 11:. .. . 1:. 11:.f) = vn+l(sn+1 f) = f,

whence the result, since V 0 S = id.

2. Continuous Functions on Zp

2.1. Review ofSome Classical Results

Let us recall the basic property of uniform convergence.

•

Theorem. Let X be a topological space, M a complete metric space, and
(fn)n~O a sequence ofcontinuous maps X ~ M . If

d(fm, fn) := supdM(fm(x), fn(x)) ~ 0 (m , n ~ 00),
x eK

then the sequence (fn)n~O has a limit that is a continuousfunction f : X ~ M .

PROOF. Fix mornentarily x EX. Then (fn (x) )n~O is a Cauchy sequence in the
complete space M; hence it converges. Let f(x) = lim, ..... oo fn(x) denote its limit.
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This defines a function I : X -+ M. We have to prove that this function is
continuous. But for each positive 8 > 0 there is a rank N = Ne such that

(m, n ::: N, Y EX). Letting m -+ 00 we infer

dM(f(y), In(Y» s 8 (n::: N , Y EX),

and hence

d(f, In) = supdM(I(Y), In(Y» =:: 8 (n::: N).
yEX

This proves that the sequence (fn)n~O converges unifonnly to I and implies the
expected continuity: let us recall this point. For a, Y EX, we write

whence

Let us choose and fix an integer n ::: N. If a EX, the continuity of the function
In assures us that there is a neighborhood V of a in X such that

The preceding inequality shows that

dM(f(y) , I(a» s 38 (y E V),

and hence I is continuous at the point a (for any a EX). •
Another classical result for continuous functions I : Zp -+ R is the following.

If we fix a continuous injective function cp : Zp -+ R (for example, a linear
model of Zp (1.2.3) corresponds to such a function), then I can be uniforrnly
approximated by polynomial expressions in cp . Indeed, the algebra ofpolynomials
in cp is a subalgebra of the algebra of continuous functions over the compact
space Zp, which separates points. The Stone-Weierstrass theorem implies that this
subalgebra is dense for uniform convergence.

Finally, let I : Zp -+ C; be a continuous function . Then 1I I : Zp -+ R is
continuous, and since Zp is a compact space, sup 1II= max 1I1is attained at
some point xE Zp. More precisely, !(Zp) is a compact subset of C; and the
proposition in (11.1.1) shows that

{1!(x)1 -:/= 0: XE Zp} is discrete in R >o.

In particular, for every 8 > 0 there are only finitely many possible real values of
II(x)1 satisfying 1!(x)1 ::: 8.
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2.2. Examples 0/ p-adic Continuous Functions on Zp

The definition of a topological ring A shows that any polynomial f E A[X] gives
rise to a continuous polynomial function A -+ A. In particular, if f E Cp[X] is a
polynomial with coefficients in Cp, itgivesriseto acontinuous function Zp -+ C;
by restriction. Since x E Zp implies [x] ~ 1, any power series Li>O a.x' with
a, E Cp and lai I -+ 0 converges uniformly, and hence defines a- continuous
function Zp -+ Cp. For any continuous function f : Zp -+ Cp, we define its sup
norm by

1If11 = sup If(x)1 = max If(x)1 «00).
xeZp xeZp

Finally, let us give examples of continuous functions Zp -+ Cp of an apparently
differenttype. Ifx = L i>Oaipi E Zp, wedefine f(x) = L i>OaiP2i. Thisdefines
a continuous function z;-+ Zp with -

If(x) - f(y)1 = [x - Y1 2
•

This estimate shows that f is even differentiable at every point with f' == 0, but
f is not locally constant. We shall come back to this example later on. If we put
f (x) = L ai pmi, we have similarly

If(x) - f(y)1 = Ix - Ylm
,

and with f(x) = Laipi!, then for any m ~ 1,

If(x) - f(y)1 ~ Ix - ylm

if Ix - YI is small enough .

2.3. Mahler Series

The binomial polynomials define continuous functions

Since N is dense in Zp' we have II~) 11 = sUPN 1G) Is 1. In fact, C) = 1 proves
that

11 (~) 11 = 1 (k ~ 0).

As noted in the previous section, for any sequence (aik::o in C p with laiI-+ 0, the
series Lk:::O ak~) defines a continuous function f : Zp -+ Cp. It is quite remark­
able that conversely, every continuous function Zp -+ Cp can be so represented.
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This result has been obtained by Mahler and will be established below. For exarn­
ple, it is applicable to alllocally constant functions .

Definition. A Mahler series is aseries Lk;::O ak(k) with coefficients lakl -+ 0
in Cp (or Qp).

Comment. If aseries Lk;::O ak(k) converges simply at each x E Zp, it converges
uniformlyon Zp and is a Mahler series. In fact , assurne that it converges at the
single point -1. This implies ak(~l) -+ 0, and since (~l) = (-ll, we see that

jakl = lak(~I)I-+ 0: the series converges uniformly.

Example. Let t E M p - namely, tE Cp , Itl < 1 - and consider the sequence
ak = tk, which tends to O. The Mahler series Lk;::O tk(Z) converges uniformly to

a continuous function I : z, -+ c; Since Cl + t)n = LO<k<n (~)tk for integers
n :::: 1, the preceding continuous function extends n t-+ (1 :+ t)n, and it is still
denoted by

(1 + tt = L: tk(X) (x E Zp).
k;::O k

2.4. The Mahler Theorem

Keeping the preceding notation conceming the binomial polynomials Ik(X) = (Z)
and the sup norm 11/11 = supz I/(x)1 for continuous functions on Zp , we intend

• p
to prove the following general result.

Theorem 1. Let I : Zp -+ Cp be a continuousfunction and put ak = Vk1(0).
Then /akl -+ 0, and the series Lk;::Oak(k) convergesuniformly to I. Moreover,
11 I 11 = SUPk;::O jak I·

!>ROOF. Since the function I is continuous, I(Zp) is a compact subset of Cp and
I/(Zp)1 has at most 0 as an accumulation point in R;::o . Without loss of generality
we may assurne 1=1= 0 and replace I by I/I(xo), where Xo E Zp is chosen with
I/(xo)1 maximal. Hence we shall assurne 11/11 = 1 from now on: The image of I
is contained in the unit ball A p of Cp. Let us consider the quotient E = A p/ pAp
(pAp = B~lpl(Cp» as a vector space over the prime field F p' Then the composite
rp = Cf mod p) : Zp -+ A p -+ Eis continuous (takes only finitely many values,
is locally constant) and is not identically zero. Since Zp is compact, it is uniformly
continuous and uniformly locally constant. This means that for t suitably large, rp
is constant on cosets mod plZp. Hence tp is T -periodic on Z, where T = pI with
values in the vector space E . By (1.3) we can write
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Taking representatives a2 E A p for the ab the difference

has values in pAp • By the competition principle, at least one la21 = 1, and

la21 ::: 1, max la21 = 1.

By construction 111- Lk<T a2(k) 11 = r s Ipl. If 1 - Lk<T a2(k) is not 0, we
can iterate the procedure on this difference and find S > T and coefficients al
(k < S) with

lall ::: r, max lall = r,

and

We can even write

if we agree to define a2 = 0 for k :::: T. It is obvious that this procedure leads to
convergent series

ak =a2+al + ... E C p, lakl::: Ipnl ~ 0,

lakI ::: I (k < T), lakI ::: r (T::: k < S), etc.,

and also SUPk>O lakI = SUPk<T lakI = 1 = 11 I 11. The proof of the theorem is there­
fore complete, since 11 I - Lk~O ak(k) 11 < Iplm for a11 positive integers m. •

Corollary. For any continuous function I : Zp ~ C p• there is a sequence 01
polynomials In E Cp[x] that converges uniformly to I. •

Theorem 2. Let I : N ~ C p be any map and define ak = Vk1(0). Then the
following properties are equivalent:

(i) lakl ~ 0 when k ~ 00.

(ii) The Mahler series Lk~O ak(k) converges uniformly.
(iii) I admits a continuous extension to Zp ~ C p.
(iv) I is uniformly continuous tfor the p-adic topology on N).
(v) IIVkfII ~ 0 when k ~ 00.
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!'ROOF. Here is a complete scheme of implications.
(i)~ (ii) We have

hence the uniform convergence if lak I -+ O.
(ii) ~ (iii) This is the basic property ofuniform convergence reviewed in (3.1).
(iii) <=> (iv) On a compact metric space, any continuous function is uniformly

continuous.
(iii) ~ (v) Apply the Mahler theorem to the continuous extension of I to Zp

(still denoted by I):

Since V(;) = (k':"l)' we have

and by induction

By the same theorem

11 Vi 111 = sup lakl -+ O.
k~j

In particular, lail = lVi1(0)1 :s 11 Vi fII -+ 0; hence (v) ~ (i). •
2.5. Convolution ofContinuous Functions on Zp

As an application of the Mahler theorem, we show that the (shifted) convolution
product defined in (1.4) for functions of an integer variable N -+ Cp extends to
Z p -+ Cp. In turn, this result aIIows us to give an explicit estimate for the remainder
in a finite Mahler expansion. By definition,

I :!:.g(n) = L I(i)g(j),
i+i=n-!

I/:!:.g(n)I:s.max 1/(i)g(j)1 < 1If11l1gll,
'+J=n-!

and

111 :!:.gll :s 1I/1111gll·
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Proposition. Let J and g be two continuous maps Zp ~ C p. Then the shifted
convolution product J ss has a continuous extension Zp ~ Cp.

PROOF. By (3.4) (Theorem 2, (i) => (iii» , the existence of a continuous extension
of J :! g (initially only defined on N) will follow from Vk(f :! g )(0) ~ O. To prove
this convergence, let us come back to the formula (proved in 1.4)

V2n+I(f :!g) = L Vi J. v! g(O) + J:! V2n+lg,

i+i =2n

V2n+I(f :!g)(O) = L Vi J(O) · vig(O) + (f:! V2n+1 g)(O) .

i+i =2n

For any bounded function h, the ultrametric property gives IIVhll :::: IIhll , and we
can estimate

where

Tl = L Vi J(O) . v2n- ig(O),
n~i~2n

Tz = L V 2n- i J(O) · Vig(O),
n <i~2n

as folIows:

ITI! .s IIVn fII . IIgll,

ITz l:::: IIf11 · II vngll,

IT31 .s 1If11 . IIV2n
+I gll :::: 1If11 . IIVn gll ·

Altogether, this shows that

iV2n+l(f :!g)(O)! :::: max(ITI!, ITzl, IT3D

s max(IIVn JII . IIgll , IIf11· IIVnglD
~ O.

Similar estimates can be made for IV2n(f :!g)(O)I, and we prove thereby the re­
quired convergence: Vk(J :!g)(O) ~ O. •

Corollary 1. Any continuous J : Zp ~ Cp has limited Mahler expansions

J = J(O) + V J(O) . C) + VZ
J(O) . (~) + ...

+ V
n

J(O)· C) + Rn+I! (n ~ 1)
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with the van Hamme form ofthe remainder

n+' (.)Rn+d = V f"± n ' IIRn+dll ~ IIVn+'fII~ 0 (n ~ 00).

PRooF. The announced fonnulas hold on N by the preceding section . Taking g =
(;.) in IIf"±gl/ < I/fllilgl/, we see that they extend continuously to Zp by the
proposition. •

Another application of the Mahler theorem (or of the possibility of extending
the convolution product to continuous functions over Zp) is given by the following
corollary.

CoroUary 2. For any continuous function f : Zp ~ Cp, the indefinite sum
Sf = f"± I of f extends continuously to Zp . More precisely, if f = Lk2:0 ak~)

is the Mahler expansion of f, then

Sf = l"±f = I>k( . ), I/SfII = IIf11 ·
k2:0 k + 1

PRooF. We have noticed that

whence the result. •
CoroUary 3. The only linear form qJ : C(Zp; K) ~ K that is invariant under
translation is the trivial one qJ = O.

PRoOF. In fact, we prove that ifefF) = qJ(Fdforall FE C(Zp; K), where F,(x) =
F(x + 1), then qJ = O. Indeed, take any f E C(Zp; K). There exists an F E

C(Zp ; K) with f = VF = F, - F (take F = Sf), and thus

qJ(f) = qJ(F, - F) = qJ(Fd - qJ(F) = O. •
Corollary 4. Let a : Zp ~ Zp , X Ho -1 - x, be the canonical involution
(1.1.2). Then S(f ou)(x) = -Sf(-x).

PRooF. For integers n, m ~ 1 we have

Sf(n + m) - Sf(n) = f(n) + ...+ f(n + m - 1).

By density of the integers n ~ 1 in Zp and continuity of both sides, we get more
generally

Sf(x + m) - Sf(x) = f(x) + ...+ f(x +m - 1) (x E Zp).
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Take now x = - m in this equality :

Sf(O) - Sf(-m) = f(-m) + ...+ f(-I)

= f(a(m - I)) + ... + f(a(O))

= S(f 0 a)(m).

Since Sf(O) = 0, the result folIows.

Example. Let a = 1 + tEl + M C Cp and take

x x '"' k(X)f(x) = a = (1 + t) = L...J t .
k~O k

Then wehave

Sf(X)=Ltk( x )=(1+tY-I (t#O),
k~O k + 1 t

aX -1
Sf(x) = a _ 1 (a # 1).

•

3. Locally Constant Functions on Zp

3.1. Review ofGeneral Properties

When X is a topological space and E any set, a map f : X ~ E is locally constant
if for each x E X

Vx = {y EX: f(y) = f(x)}

is a neighborhood of x . Equivalently, one can require t-1(e) open in X for each
e E E , or even f-l(A) open in X for each subset ACE. In other words, locally
constant functions f : X ~ E are continuous functions when E is endowed
with the discrete topology. On a connected space, a locally constant function is
constant (take x E X, put e = f(x) E E, A = E - {e}, and consider the partition
ofthe connected space X into two disjoint open sets t-1(e) and f- 1(A ): Since
f- 1(e) # 0, f-l(A) must be empty and f == e is constant). A locally constant
function f on a compact space X can take only a finite number of values (f(X)
must be compact and discrete) .

Lemma. If X is a compact metric space, a locally constant function f on X is
uniformly locally constant when there exists 8 > 0 such that

d(x , y) < 8 ===} f(x) = f(y) .
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PROOF. Give E the discrete metric. Since X is compact, f : X -7 E is uniformly
continuous. Hence there is a 8 > 0 such that

d(x , y) < 8 ==} d(f(x), f(y)) < 1 ==} f(x) = f(y),

and the conclusion folIows. •
The set of functions X -7 Eis denoted by F(X; E), and when E = K is a

field, F(X; K) = F(X) is a vector space over K (ornitted from the notation if
this field is implicit from the context) . When X is a compact ultrametric space , the
locally constant functions X -7 K form a K -vector subspace FIc(X) of F(X).
The characteristic functions of clopen balls of X form a system of generators of
FIc(X).

3.2. CharacteristicFunctionsofBalls ojZp

We are interested in locally constant functions on X = Zp taking values in any
abelian group M (this abelian group will typically be an extension K of Qp). Let
us start by the study ofthe (uniformly) locally constant functions f E FIc(Zp; M)
satisfying

. 1
Ix - yl ~ Ipll = j ==} f(x) = f(y)

p

for some fixed integer j ~ O. These are the functions that are constant on all closed
balls ofradius rj = 1/pj. Since the balls in question are the cosets of pjZp in Zp,
these functions are the elements of the vector space

In fact, we have a partition

z, = U (i + pjzp)
0:9 <pi

into balls ofradius rj, and

i + pjzp = B:sp-i(i) (0 ~ i < p j)

is an enumeration of these balls in Zp . For fixed j the characteristic functions

rpi,j = characteristic function ofthe ball B:s1/pi(i) (0 ~ i < pj)

make up a basis of the finite-dimensional space F], When we let j increase, the
subspaces Fj also increase, and

F1C(Zp; K) = UFj •

j~O

Unfortunately, the previously given basis of F j has no element in common with the
basis constructed sirnilarly in Fj - 1• A clever way of constructing coherent bases
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of the spaces F j - where the basis of F j extends the basis of Fj-1 - has been
devised by M. van der Put. Let

{

qJo,o = 1
1/Ii = qJi,l

qJi,2

characteristic function of Zp
characteristic function of i + pZp
characteristic function of i + p2Zp

(i = 0)
(1 s i < p)
(p ~ i < p2), etc .

Generally,

1/Ii = qJi ,j characteristic function of i + pjzp if pj-l ~ i < pj .

Since absolute values of elements of Zp can only be powers of p, we have

and 1/Ii = qJi,j is also the characteristic function of the ball

Bi = {x E Zp : Ix - il < I/i}

(with the convention Bo= Zp for i = 0).
On the other hand, the indices i in the range pj-l ~ i < p! are precisely those

that admit an expansion of length j in base p, namely an expansion of the form

i = io + ilP + ...+ ij-lpj-I (0 ~ il ~ P - I, i j_1 I- 0).

Definition. The length ofan integer i 2: 1 is the integer v = v(i) 2: 1 such that
the expansion of i in base p has digits i l = 0 for l 2: v, while iv-1 I- O.

With this definition, the van der Put sequence is defined by

./, . h . . f . f . v(i)Z
'l'i = qJi,v(i) . c aracteristrc unenon 0 t + P P'

Here are the first few functions:

1
qJO,1

qJO,2
qJO,3

qJo,j

qJp-I ,1

qJp-I,2 qJp,2

qJp-l ,3

The sequence (1/Ii)i « pt appears at the top of this triangular table of characteristic
functions .

Proposition. The sequence (1/Ii)0:9<pi is a basis of F j (j 2: 0).
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?ROOF. For fixed j :::: 0, the components of any f E Fj in the known basis ({J;.j
(i < pj) of Fj are the (constant) values of fon the balls i + pjZp:

f = L f(i)({J;,j.
j<pi

In particular, for f = 1/Ie, the characteristic function of Be = .e + pVZp, we have
a sum of the form

where the indices that occur are the same as those occurring in the partition

Be = 11 (i + pjzp).

They are the indices i such that 0 :5 i < p! and i == .e (mod pY (in order to have
i E Be). These indices can be listed:

i =.e, .e + p", .e + Zp", .. ..

The first one is .e itself, and they are all greater than or equal to .e. The matrix
of the components of the 1/Ie in the basis ({Jj, j is lower triangular with 1's on its
diagonal (all its entries are O's and 1's). This matrix U has determinant 1and hence
is invertible : The 1/Ie (0 :5 .e < pj) form a basis of F]. If we write U = 1+ N,
the matrix N is lower triangular with O's on its diagonal and hence is nilpotent: A
power of N vanishes. This proves that

U- I = I - N + N 2 - • • • + (_l)m Nm if N m+1 = O.

In particular, the inverse U-I of U has integral entries: The components ofthe ({Jj,j

in the basis (1/Ie) are also integers. _

Here is an even more precise result.

Proposition. If f = L aj1/l; E Fj , the coefficients are given by

ao = f(O) and an = f(n) - f(n_) (n:::: 1),

where n: = n - nv-l pv-I denotes the integer oflength strictly smaller than n
obtained by deleting its top digit in base p.

?ROOF. We have already observed that f(O) = ao. Fix a positive integer n and
considerthe sum f(n) = Li<pi aj1/l;(n) in which 1/I;(n) = Oor 1. More precisely,

1/Ij(n) = 1~ n E B,

~ n == i mod pV(;)

~ the digits of n and i
are the same up to v(i)

~ i is an initial partial sum of n.
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This shows that

whereas

Hence I(n) - I(n_) = an as claimed in the proposition. •
Corollary. When 1 = L ai 1/Ij E Fj takes its values in an ultrametricfield, we
have

1If11 = max lad ·

?ROOF. For each x E Zp we have 1/Ij(x) = Oor 1: I1/Ij(x)1 ::: 1 and

I/(x)1 = IL aj1/lj(x)1 ::: max lad ·

This proves

1If11 = sup I/(x)1 ::: max lad·

Conversely, ao = 1(0) ===> laol::: IIf11, and for n :::: 1,

lanl = I/(n) - l(n_)1 ::: max(l/(n)l, I/(n_)I) ::: IIf11,

hence max lan I ::: 11 1 11 · •
Since (1/Ij)j~O is a basis of FIc(Zp; K) = Uj~O Fj , it is easy to generalize

the preceding results to all locally constant functions (taking their values in an
extension K of Qp).

Theorem. Let 1 : Zp -+ K be a locally constant function. Dejine

aO = 1(0), an = I(n) - I(n_) (n:::: 1).

Then 1 = L aj1/lj is ajinite sum and 1If11 = SUPj lad·

3.3. The van der Put Theorem

•

We are now able to give the main result, namely the representation of any contin­
uous 1 : Zp -+ K where K is a complete extension of Qp.

Theorem. Let I: Zp -+ K be a continuousfunction. Dejine

ao = 1(0), an = I(n) - I(n_) (n:::: 1).
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Then lanI -+ 0, and L aio/i converges uniformly to f. Moreover,

IIf11 = sup lail = max lad·
i i

PROOF. Since In - n_1 -+ 0 (n -+ 00) and f is uniformly continuous, we have
Janl = If(n) - f(n_)1 -+ 0 (n -+ 00), and the series converges uniformly. The
sum of this series is a continuous function,

g = L aio/i'

We still have to prove f = g. Since these functions are continuous, it is enough
to show that their restrictions to the dense subset N are the same. The obvious
equality f(O) = ao = g(O) can be used as the first step in an induction on n. Let
gj = L i<pi aio/i ' For n < pj we have

f(n) - f(n_) = an

= coefficient of s,
= gj(n) - gj(n_),

f(n) - gj(n) = f(n_) - gj(n_).

This shows that if fand gj agree on {O, 1,2, ... , n - I}, they will also agree at
the point n (provided that n < pj). As a consequence, for a11 integers n E N,
f(n) = lim, gj(n) = g(n) (with a stationary convergence) . As mentioned, this
proves f = g . The equality 11 f 11 = SUPi lai I is obtained exactly as in the case f
10ca11y constant. •

4. Ultrametrie Banach Spaces

In this section K will always denote a complete ultrametric extension of Qp .
We have already given in (11.3.1) the formal properties ofultrametric norms on

Qp-vector spaces, and we have studied finite-dimensional such spaces over K .
Here we turn to infinite-dimensional ones.

We shall simply say normed space for ultrametric normed space over K, and
Banach space for complete normed space.

4.1. Direct Sums ofBanach Spaces

The direct sum of a farnily (Ei )ieI of normed spaces is the algebraic direct sum of
this farnily,

EB Ei = {(Xi) : only finitely many Xi # O} c fl Ei
ieI tet

equipped with the sup norm on the components,

IIxil = sup IIxi" = max 11 x, " if X = (Xi)'
i i
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When (Ei)iE/ is a family ofBanach spaces, it is convenient to consider a cornpletion
of the preceding direct surn. Here is the construction. The support of a family
x = (Xi)iE/ E niE/ Ei, is Ix = {i EI: x, # O} C I, and IIxill ~ 0 means

for all E > 0, the set Ix(E) := {i EI : 11xiii > E} is finite.

If 11 x, 11 ~ 0, then the support Ix of the family x is at most countable, since it is
the countable union ofthe finite sets Ix(l/n) (n :::: I) .

Definition. The Banach direct surn of the family (Ei )iE/ ofBanach spaces Ei
is the normed space

consisting of the families x = (Xi) such that IIxi 11 ~ 0, equipped with the sup
norm

IIxll = 11 (Xi) 11 := sup 11 Xi 11 = rnax IIxill .
i i

This terminology is justified by the following result.

Theorem. The Banach direct sum of afamily (Ei)iE/ of Banach spaces is a
completion of the normed direct sum ofthe family.

PRooF. The set offamilies X such that 11 x, 11 ~ 0 is a vector subspace of the product
niE/ Ei, and the algebraic direct surn is dense in it. Let us show that the Banach
direct surn is complete,

Let n f-+ x(n) = (X~n»iE/ be a Cauchy sequence in the direct surn. For each i EI,

n f-+ x~n) is a Cauchy sequence in Ei. Let x, be its limit. For given E > 0, there is
an integer Ne such that

A fortiori , for all i EI,

IIx~n) - x~m)1I ~ E (n, m :::: Ne)'

Letting m ~ 00, we obtain

IIx~n) -xiii ~ E (n:::: Ne, i E I).

Since IIxt)1I ~ E outside a finite set J (depending on E and n), we also have

11 xiii ~ rnax(lIx~n)lI, IIx~n) - Xi 11) ~ E (i fj. J).
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This proves that the family x := (x,) is in EBielEi. Coming back to the inequality
(*), we see that

IIx(n) - xII = sup IIx~n) - x, 11 ::: e
i

Thi (n) · -;Ti EIS proves X -+ x In Wiel i· •
Example. When all Banach spaces Ei = E are equal, the algebraic direct sum is
also denoted by

E9 E = EU) C EI =nE.
iel iel

Its completion is the space of sequences in E converging to 0: we denote this
space by co(l; E) . (The notation co(K) is similar to the classical (co) introduced
by S. Banach when K = C.) When E = K is the base field, or when I = N, we
drop them from the notation if there is no risk of confusion:

co(l) = co(l; K), co(E) = co(N; E), Co = co(N) = co(N; K) .

We can now formulate a few consequences of the theorem.

Corollary 1. Let E be a Banach space. Then co(l; E) is a completion ofEU) C
EI for the sup norm. •

Corollary 2. Let E be a Banach space. Then the sum map EU) -+ E has a
unique continuous extension :E : co(l; E) -+ E.

PRüüF. The sum x = (Xi) ~ Liel x, : EU) -+ E is a contracting linear map

It has a unique continuous extension :E . This extension is also a contracting linear
map by density and continuity. Hence we have more generally

II~xi 11 ::: s~p 11 x, 11 = IIxll (x E co(l; E». •

This sum :E can be computed using any ordering of the index set land any
grouping I = Uj I j : The equality for families with finite support extends by
continuity to the completion co(l; E) (cf. (11.1.2».

Corollary 3 (Universal Property of Direct Sums). Let ej denotethe canonical
injection of a factor into the direct sum Ej -+ ffii e l Ei C ffiielEi. Then
for each Banach space E and family (!i) consisting of linear contractions
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h : E j -+ E, there is a unique linear contraction f such that the following
diagram is commutative:

PROOF. Under the assumptions made,

(r,) 1--7 (fiXi) : EBiEIEi -+ co(l; E)

is a linear contracting map, and composition with the sum :E yields the unique
solution to the factorization problem

•
4.2. Normal Bases

When E and F are (ultrametric) normed spaces over K, we denote by L(E; F) the
normed vector space of continuous linear maps T : E -+ F. Recall that a linear
map is continuous precisely when it is continuous at the origin, or, equivalently,
when it is bounded:

IITxll
IITII := sup -- < 00.

x#o IIxll

By definition, we have

IITxll ~ IITllllxll (x E E).

This shows that T is a contraction precisely when 11 T 11 ~ 1.

Comment. The inequality 11 Tx 11 ~ 11 T IIl1x 11 (x E E) shows that 11 Tx 11 .s 11 T 11

when IIxll ~ 1, and hence sUPllxll::1 IITxll ~ IIT11. But contrary to classical func­
tional analysis, this inequality can be a strict inequality: When 1 f/ 11 Eil, the unit
sphere IIxll = 1 is empty, closed and open unit balls coincide, and sUPllxll::1 =
sUPllxll <l. Forthe operator T = id (and IIE - {Olll discrete in R>o) we have

sup IIxll = sup IIxll < 1 =1= lIidll = 1.
IIxll::1 IIxll <1

Proposition 1. If Fis complete, then L(E; F) is also complete.

PROOF. Let (Tn) be a Cauchy sequence in L(E; F). For each x E E, (Tn(x» is
a Cauchy sequence in the complete space F, and hence has a limit Tx which
obviously depends linearlyon x E E. This defines a linear map T : E -+ F.
Let e > 0 be given. There exists an integer Ne such that 11 T; - Tm 11 ~ e for all
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n , m ::: Ne. Letting m -+ 00 we deduce IITx - Tmx ll :::: slIxll for all n, m ::: Ne.
This proves that the operator T - Tm is continuous (bounded); hence T = Tm +
(T - Tm) is continuous. Moreover, 11 T - Tm11 :::: e when m ::: Ne . This shows that
11 T - Tm 11 -+ 0, Tm -+ T (m -+ 00), and everything is proved. _

CoroUary. For any normed space E , the topological dual E' = L(E; K) is a
Banach space. _

Example. Let I be any index set and E a Banach space. The vector space of
bounded sequences a = (ai)iEI in E with the norm [a] = SUPi 11 a; 11 is a normed
space, denoted by 100

(/ ; E) (it is complete: cf. exercise) .

The universal property of a direct SUfi consisting of factors Ei all equal to the
same Banach space E and for linear forms ({Ji : E -+ K leads to the following
statement.

Proposition 2. The topological dual 0/ the space co(/ ; E) is canonically iso­
morphic as a normed space to 100

(/ ; E').

PROOF. If ({J is a continuous linear form on co(/ ; E), we let ({Ji = ({J 0 Si denote the
restrietion of ({J to the ith factor E in co(/ ; E) (farnilies having a zero component for
all indices except i). Since lI({Jill :::: II({JII, we get a bounded farnily (((Ji) E 100

(/ ; E') .
Conversely, if (((Ji) E 100

(/ ; E') , we can define a linear form ({J = I:({Ji on co(/ ; E)
by the formula (ai) f4 Li ({Ji(ai) (a summable series, since the sequence ({Ji is
bounded and lIai 11 -+ 0). Both maps

({J f4 (ep 0 Si ), (({Ji) f4 I:({Ji

are linear and decrease norms. Hence they are inverse isometries.

In other words, the bilinear map

((ai), (({Ji)) f4 L ((Ji(ai), co(/; E) x 100
(/ ; E') -+ K

is a duality pairing that proves the proposition.

CoroUary. The space 100
(/ ) = 100

(/ ; K) is a Banach space.

-

-
In the space Co = co(/), the farnily of elements ei = (Oij)te» (Kronecker symbol)

has the following basic property. Each sequence a = (an)n:::O E Co is the sum of a
unique convergent series



188 4. ContinuousFunctionson Zp

and I/all = sUPn>O lan I = maxn~O lan I. We say that this family of elements ei =
(oij) constitutes tbe canonical basis of this space (in spite of the fact that it is not
a vector space basis: In linear algebra, linear combinations are always assumed to
be finite linear combinations).

This leads to the following definition.

Definition. A normal basis in an ultrametric Banach space E is afamily (e;)iEI
ofelements of E such that

• each x E E can be represented by a convergent series
x = LI Xiei where the sequence ofcomponents lXi I --+ 0,

• in any representation x = LI Xiei we have
[x] = SUPiEI lXi I·

A normal basis is sometimes called an orthonormal basis . In particular, for each
convergent series LI x, ei , the set of nonzero components is at most countable, as
observed earlier. If (ei) I is a normal basis, we have 11 ei 11 = 1 for each i EI . On
the other hand,

x = LXiei = LYiei ==> L(xi - Yi)ei = 0,
i i i

and by the second postulated property of a normal basis,

sup lXi - Yi l = 1101/ = 0, ==> x , = Yi Ci EI),
iEI

whence the uniqueness ofrepresentations in normal bases. All properties ofnormal
bases are summarized in the following obvious result.

Proposition 3. Let E be an ultrametric Banach space having a normal basis
(ei)iE/. Then the mapping (Xi) r+ LiEI x.e, defines a linear bijective isometry
Co(I ; K) ~ E. Conversely, any linear bijective isometry Co(I ; K) ~ E defines
a normal basis in E, namely the image ofthe canonical basis ofCo(I ; K). •

Example 1. The Banach spaces co(I; K) supply examples of ultrametric spaces
with normal bases. In particular, when the index set I is finite, we get the (finite)
product spaces K" with the sup norm (cf. exercises).

Example 2. Let E = C(Zp; K) be the space of continuous functions Zp --+ K
(where K is a complete extension of Qp) equipped with the sup norm. The Mahler
theorem (2.4) asserts that the binomial polynomials constitute a normal basis of
E : The map
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is a bijective linear isometry. The van der Puttheorem (3.3) asserts thatthe sequence
(1{!j )j~O constitutes another normal basis of E. These two normal bases are quite
different in nature .

4.3. Reduction 0/a Banach Space

Let K be a complete extension of Qp and E an ultrametric Banach space over K .
We keep the general notation for

• A = B:;I(K): maximal subring of K ,
• M = B<I(K): maximal ideal of A,
• k = AlM: residue field of K.

Moreover, we consider the closed unit ball in E, EI = {v E E : IIv ll ~ I}, as an
A-module and M EI = {h : }.. E M , x E Eil as an A-submodule (M EI is
obviously an additive subgroup of Ei). As a consequence, E = EI!M EI is a
k-vector space.

Remark. We have quite generally M EI C B<I(E). This inclusion is in general
a strict inclusion. For example consider any finite, ramified extension K of Qp as
a Banach space over Qp. Its open unit ball is strictly larger than pB:;I(K): The
open unit ball contains an element ofnorm Ipil/e, while all elements of pB:;I(K)
have norms ~ Ipl < Ipil/e.

Lemma. Ifeither IIEII = IKI, or IKxl is dense in R>o, then MEI = B<I(E).

!>ROOF. In the first case, if}" = IIxll < 1, we can write x = }... (xl}..) E M EI. In
the second case, if IIx 11 < I we can choose a scalar }.. E K with IIx 11 ~ I}..I < 1
and still write x =}... (xl}..) E M EI. •

Proposition. 1/(ei)iE/Js a normal basis 0/E , then (ei mod M EI)iEI is a basis
ofthe k-vector space E .

!>ROOF. Define Ci = (e, mod M Ed E E. These elements generate E: If x =
(x mod M EI) E E, we can write x = I>iei with all lxii ~ 1 and only finitely
many lxii = 1, givingrise to ajinite linear combination x= Li(xi mod M)Ci . On
the other hand, take a linear combination Li cqs, = 0 E E= EI!M EI (ai E k,
only finitely many nonzero such coefficients). We can choose scalars ai E A C K
with a, = (ai mod M) and a, = 0 if a, = O. By assumption

L:>iei E MEI C B<I(E),
i

namely 11 Li a.e, 11 < 1. By definition of a normal basis,
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and laiI < 1 for all i, This proves that all a, = (ai mod M) = 0 E k and the linear
combination is trivial. The family (Si)/ isfree and is a basis ofthe reduced vector
space E . •

4.4. A Representation Theorem

With the same notation as before, observe that the closed balls B~r(E) (r 2:: 0)
and the open balls B<r(E) (r > 0) are A-modules and for any ideal I of A,

B~r(E)1I B~r(E) is an AII -module.

In particular, if the ideal I is principal, say I = (~) with I~ I < 1, then

B~r(E)/~ B~r(E) is an AI(~)-module.

Let us generalize the expansion theorem (11.1.4) to the vector case.

Theorem. Let E be an ultrametric Banach space, ~ E K, I~I < 1, and choose
a set ofrepresentatives S C B~r(E)for the classes mod ~ B~r(E). Assume that
OE S. Then every element x E B~r(E) can be represented uniquely as the sum
ofa convergent series

x = Lai~i (ai ES).
i:::O

PROOF. Take for ao the (unique) representative in S with x - ao E ~ B~r(E). Hence
x - ao = r) = 5"x) for some X I E B9(E) . One can proceed similarly for XI and
find elements al ES, X2 E B9(E) with XI - al = ~X2, namely

X = ao + a1~ + ~2X2 '

Iterating the construction, we obtain aseries Li>O ai~i, which converges to x . For
this part of the proof, the completeness of E is-not needed, since the element x,
the limit of partial sums, is known apriori. But when E is complete, every series
Li>Oai5"i with coefficients a, E S is convergent, since lai~ il ::: rl~l i -+ O. The
uniqueness statement is immediately verified. Indeed, if Li:::O ai~i = 0, we have

ao = - L ai~i E ~ B~r(E),
i:::1

hence ao = 0, since this representative is in S. By induction, all a ; = O. •

4.5. The Monna-Fleischer Theorem

In a Banach space co(l ;K), we have

[x] = sup lxii = max lxii E IKI·
/ /
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Hence if an ultrametric Banach space admits a normal basis, we have

Theorem. Let K be a complete ultrametricfield with IK x I discrete in R>o and
E an ultrametric Banach space over K . Then E admits a normal basis precisely

when IIEII = IKI·

PROOF. The preliminary comment proves the necessity of the condition. Con­
versely, let us show why it is sufficient. Since K has a discrete valuation, its
maximal subring A = R is principal, with maximal ideal M = P = n R. Then
PE I = n EI. Let us choose and fix a system of representatives S C R for the
classes mod P, with 0 ES. Also choose and fix a basis (Bi)/ ofthe k-vector space
E = Ei/Jr EI with liftings ei E EI, so Bi = ei mod tt EI. I claim that (ei)/ is a
normal basis of E. Consider first the case of a vector x E EI : [x] ~ 1. The vector
X = (x mod Jr Ed can be expanded in the k-basis (Bi)l, say x = L cqe, (only
finitely many a, =I 0). Consider the representatives

hence a~O) = 0 except for finitely many indices . If [x] = 1, at least one la~O)1 = 1

and allla~O)1 ~ 1. We have

By the lemma in (4.3), wehave B<I(E) = PEI = n EI, and the same construction
with the vector Jr-I(x - L a~O)ei) E EI gives a family

a?) E S, a?) =I 0 for finitely many indices only,

such that

By iteration, we obtain a sequence rn E n"EI and convergent series

a, = a~O) + Jra~I) + ... E Re K
, I

giving a representation x = LI a.e, with a, -+ 0 (for fixed j, only finitely many
a~j) =I 0). At each step of the iteration we have to choose a scalar An such that

This is possible by the assumption 11 E 11 = 1K I. •
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4.6. Spaces 0/Linear Maps

Let K be a complete ultrametrie field and E, F two ultrametrie Banach spaces
over K . Assume that E admits a normal basis and fix an isomorphism co(J) ~ E.
Then any linear map T : E -+ F fumishes a family offj = Te, E F, namely the
image of the normal basis of E - canonical basis of co(J). When the linear map
T is continuous, this family is bounded

We thus obtain a linear map

L(E; F) -+ [OO(J; F) : T Ho (fj ) } .

Proposition 1. Assume that E admits a normal basis andfix an isomorphism
co(1) ~ E. Then the map

L(E; F) -+ [00(1; F)

defined above is an isometric isomorphism.

PRooF. We have already seen that lI(fj ) } 11 :::: IIT/1. Conversely,

x= I>jej ==} T(x) = I>jfj (this sum converges!),
j j

11 T(x) 11 :::: sup II xj f j 11 :::: sup Ixj Isup II fj 11 = IIxll sup II fj 11
j j j j

whence /lT/I :::: SUPj /lfj/l = /I(fj)J/I. Observe that for any choice of bounded
family f j E F, there is aT E L(E; F) with Te, = f j (j E J), so that the map
L(E; F) -+ [00(1; F) is surjective. •

In particular, for F = K , we get the following result (cf. Proposition I in (4.2».

Corollary. There is a canonical isometric isomorphism

•
Assume now symmetrically that F has a normal basis and fix an isomorphism

co(I) ~ F. The linear maps T : E -+ F ~ co(I), x Ho T(x) = (f/lj(x» give a
family (f/li) I of linear forms tp, : E -+ K. If T is continuous, so are the linear
forms f/lj and IIT(x)1I = SUPi lf/li(X)I,

1IT/1 = sup IIT(x)II/lIxll
x,eo

= sup sup lf/lj(x)l/llxll
x#Q i

= supsup lf/lj(x)I/llxll = sup IIf/1dl.
i x,eO i

This proves the following proposition.
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Proposition 2. The linear map

L(E;co(l» --+ l""(l ;E'): T t-+ (CPi)

is isometric, but not always surjective.

When both E and F have normal bases, we get the following statement.

•

Proposition 3. When E = co(J) and F = co(l). we can make canonical
identifications

L(E; F) = l""(1; co(l» c r «,E') = l""(l ;l""(1» ~ l""(l x J). •

In other words, when normal bases are chosen, continuous linear maps E --+ F
are represented by bounded matriees with columns in co(/) ~ F.

More particularly, if T is eontinuous and of rank less than or equal to 1, we can
write

T(x) = cp(x)a = (cp(x)ai)/

for some cP E E' . In this ease, CPi(x) = cp(x)ai, 11 CPi 11 = lai 111 cP 11 --+ O. This proves
that the image of T belongs to the closed subspaee co(I ; E'). BYlinearity, the same
property will hold for any eontinuous linear map T 0/finite rank:

L fr(E ;co(l» --+ co(I; E') : T t-+ (CPi)'

Definition. A eompletely eontinuous linear map T : E --+ F is a linear map
that can be approximated (uniformlyon the unit ball ) by finite-rank continuous
linear maps.

Ifwe denote by Lcc(E, co(I» the spaee of completely eontinuous maps E --+ F ,
then T t-+ (cp;) defines an isometrie map Lcc(E, co(I» --+ co(I, E') . Itis surjective:
It is enough to check that the image of the finite-rank operators is dense in the target
space. But if (CPi) is an arbitrary sequence of eontinuous linear fonns on E with
IIcpi 11 --+ 0, and E > 0 is given, there is a finite subset J C I such that IIcpi 11 ~ E

for i rt J. Define o/i = CPi for i E J and o/i = 0 for i rt J. Then (o/i) is the image
of a eontinuous finite-rank operator and II(CPi) - (o/i)11 ~ E .

Comment. One ean show that when K is a loeally compaet field, the completely
continuous maps T : E --+ F are preeisely the linear maps that transform bounded
sets of E into relatively eompact sets in F. These transfonnations are classieally
ealled compact linear maps. In the general ease, the distinction between eompaet
and completely eontinuous operators has been studied in detail and has led to the
definition of compactoids.
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4.7. The p-adic Hahn-Banach Theorem

Let E be a normed space, V C E a vector subspace, and rp : V -+ K a continuous
linear form

Irp(x)1
IIrpl/ = sup -11-1-1 < 00 .

O;fxeV X

Is there acontinuous linear form Vi :E -+ K extending rp?Ifthe answeris positive,
can we find a linear form Vi with the same norm ?

Theorem (Ingleton). Let V be a subspace ofa normed space E. When the base

field K is spherically complete, the restriction map

1fr ~ rp = 1frlv, E' -+ V'

is surjective. Moreover,for each tp E V', it is possible tofind an extension 1fr = Vi
with 1I1fr1l = I/rpll.

PROOF. (a) Let us show first that a continuous linear form on a subspace V =1= E
can be extended to V + K a (for any a E E - V) without increasing its norm. The
definition of 1fr =Vi has to satisfy

1/1fr(x + Aa)1I ::s: IIrpll . IIx + Aall (x E V, A E K).

For Ä = 0 this is satisfied, since 1frlv = tp, When Ä =1= 0, we may divide by -Ä

and see that it is sufficient to find a linear form 1fr with

1I1fr(x - a)1I ::s: IIrpll . IIx - all (x E V),

IIrp(x) -1fr(a)1I ::s: IIrpll . IIx - all := rx (x E V) .

In other words, we have to choose Ci = 1fr(a) in the intersection ofthe balls B, =
B :':h(rp(X» c K. For any pair of points x , y E V, rp(x) E B; and rp(y) E Byare

at distance

This proves that the smallest among the balls B; and By is contained in the largest:
B, n By =1= 0 . Since we are assuming that the field K is spherically complete,
the intersection nxev B, is not empty and any Ci in this intersection is a possible
choice for Ci = 1fr(a).

(b) Considernowthesetofpairs (V', rp') consisting ofa vectorsubspace V' ::) V
and an extension tp' of rp to V' with the same norm as ip , This set ofpairs is ordered
by the relation

(V", rp") >- (V', rp') <==> V"::) V' and rp"lv' = rp'.
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Any linearly ordered set of such pairs has an upper bound. By Zorn's lemma,
there is a maximal pair. By the first part , this maximal pair is defined on the whole
space E. •

5. Umbral Calculus

The Mahler theorem (3.4) has been generalized by L. van Hamme. To be able
to give this generalization, we have to briefly review umbral calculus: This term
has its origin in the nineteenth century, when formal computations were used with
little justification. Today, it refers to an algebraic treatment of polynomials, power
series, and identities between them .

5.1. Delta Operators

Let K be a field of characteristic 0 and K[X] the vector space of polynomials (in
one variable) with coefficients in K . The translations Ta (a E K) are the linear
operators in K[X] defined by

(Taf)(X) = feX +a).

We shall often identify the indeterminate X with a variable x (in K or in an exten­
sion of K: Since K is infinite, there is no danger in identifying formal polynomials
and polynomial functions on K). Since the degree of the zero polynomial is not
defined, let us adopt the ad hoc convention deg(O) = -1 : This allows us to speak
of the subspace of polynomials having degree less than or equal to n for any n 2: O.
The unit translation will also be denoted by Tl = E.

Definition. A delta operator is a linear endomorphism 8 of K[X] such that

(1) 0 commutes with all translations Ta (a E K) ,
(2) O(X) = c E K X is a nonzero constant.

Proposition. Let 0 be a delta operator in K[X]. Then

(1) o(a) = Oforall constantsa E K,
(2) if fis a nonconstant polynomial, then deg(of) = deg f - 1.

PROOE By hypothesis, O(X) = c i= 0, and by translation,

c = TaC = TaOX = OraX = o(X + a) = oX + Ba = c + Sa.

Hence Sa = 0 for all constants a E K. To prove the second point, it will suffice to
show that

deg(oXn
) = n - 1 (n 2: 1).
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Fix an integer n 2: 1 and put oXn = feX). Then

fex + a) = Taf(X) = TaOXn = OTa(Xn) = o(X +at

= 0L G)a
k

. x n-k = L G)ak. o(Xn-k),

and for X = 0,

or

feX) = L G)O(Xn-k)(O). x' ,

We see that f is a polynomial of degree less than or equal to n with a coefficient
of X" given by 0(1)(0) = 0(1) = 0 (using the first part, already proved). The
coefficient of xn- l is noX(O) = nc =/; 0 (the field K has characteristic 0). Hence
feX) = oxn is a polynomial of degree n - 1. •

Corollary. The image by a delta operator of the subspace ofpolynomials of
degrees less than orequal to n (n 2: 1) is the subspace ofpolynomials ofdegrees
less than or equal to n - 1.

PROOF. The dimension of the image of a linear operator is equal to the dimension
of the source minus the dimension of the kerne!. The assertion follows from the
proposition. _

Examples. (1) The differentiation operator D is itself a delta operator. More
generally, if a E K , the operator TaD = DTa is a delta operator.

(2) The finite difference operators (recall E = T,: Unit translation)

'V = 'V+ = T, - id = E - id,

'V_ =id-T_, =c,'V,

and Ta 'V± are delta operators. When a =/; b, the operators Ta - Tb are also delta
operators.

(3) Any formal power series in D of order 1, namely

0= L Ci D i = c.D + ... E K[[DJ) (Cl =/; 0),
i:::l

defines a delta operator. For example

10g(1 + D) = D - ~ D2+ ~ D3 - ... ,

D 1 D 'D2 I D3e - = +2I +3f +"',
D2/ (eD -1) = D - 4D2+ ...

are delta operators.
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5.2. The Basic System 0/Polynomials 0/a Delta Operator

Let 0 be a delta operator. If I is a nonzero polynornial, there is a polynomial g
such that o(g) = I (and necessarily degg = deg I + I by the preceding section).
This polynomial g is detennined up to an additive constant, since the kernet of 0
consists of the constants. Replacing g by g - g(O), we see that there exists a unique
polynomial g such that

o(g) = I, g(O) = 0 (normalization),

and the degree of this polynomial is one more than the degree of I.

Definition. The basic system (Pn)n~O corresponding to a delta operator 0 is the
system 01polynomials such that

1. deg Pn = n (n 2: 0),
2. oPn = npn-I (n 2: I),
3. Po = 1, Pn(O) = 0 (n 2: 1).

Starting with Po = 1 there is a unique polynomial PI (of degree 1) such that
O(PI) = I and PI (0) = O.Proceeding inductively, there is a unique polynomial Pn
(of degree n) such that o(Pn) = npn-I and Pn(O) = O.Hence the definition char­
acterizes a unique system of polynomials for any delta operator. Explicit formulas
for computing these polynornials will be given in (5.5) and (6.2). Any basic system
constitutes a K -basis of the vector space K [X] .

For example, the basic system ofthe delta operator D (derivation) is the system
(x" )n~O of powers of x . For the operator 0 = V the basic system is

(x), = x(x - 1)· · . (x - n + 1) (Pochhammer symbol)

with the convention (x)o = 1. We indeed have (1.1)

V(x)n = n(x)n_1 (n 2: I),

and (x), vanishes at x = 0 if n 2: 1. For 0 = V_ the basic sequence consists of
the polynomials Pn(x) = x(x + 1) ... (x + n - 1). For every basic sequence, we
have

Ok Pn = n(n - 1)· . . (n - k + 1) . Pn-k (k ~ n).

In particular,

onPn = n! . Po = n!

Generalized Taylor Expansion. Let 0 be a delta operator and (Pn)n~O its basic
system in K[X]. Then we have general expansions

Ok I(x)
I(x + y) = ~ -k!- . Pk(Y) (f E K[X1).
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We can indeed write the tautology

where all coefficients of the Pk are 0 except for Pn, which is 1. For any linear
combination 1 of the Pn we obtain by linearity

1 = L ok(f)(O) . Pk.

k~O k!

Replacing 1 by one translate Tx1 in the preceding equality, we obtain

~ ok(Txf)(O) ~ Tx(okf)(0)
Tx1 =~ .Pk =~ . Pk

k~O k! k~O k!

= L okI~x) . Pb
k~O k.

which is the announced generalized Taylor expansion.

In particular, if we take for 1 the polynomial Pn, we obtain the following
equalities.

Binomial Identities. Any basic sequence 01a delta operator satisjies the 101­
lowing identities:

Pn(X + y) = L (:) .Pk(X)Pn-k(Y)·
O::;k::;n

The binomial identity can be written in the mnemonic way

Pn(X + y) = "(p(x) + p(y)l"

•

where one must remember to replace powers by indices in the binomial expansion
of the right-hand side.

5.3. Composition Operators

Definition. A composition operator is an endomorphism T 01 K[X] that com­
mutes with translations.

We shall determine all composition operators. More precisely, we shall establish
the following result .

Theorem. The following properties ofan endomorphism T: K[X] ---+ K[X]
are equivalent: They characterize composition operators.

(i) T commutes with the unit translation.
(ii) T commutes with all translations.
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(iii) For alt delta operators 0, T can be written as aformal
power series in 0: T = q;(o) E K[[o]].

(iv) T = q;(D) E K[[D]] is aformal power series in the derivation D.
(v) T commutes with the derivation T D = D T.

(vi) T commutes with any delta operator.

PROOF. (i) => (ii) Write T, = E and use the Taylor series expansion around n:

x k

E" f(x) = f(n + x) = L f(k)(n) . - .
k~O k!

By the commutation hypothesis TE = E T we infer

Put g = Tfand consider the polynomial in two variables

T(xk )
F(x, y) = g(x + y) - {; f(k)(y). ~.

We have seen that F(x, n) = 0 for all positive integers n and all x . If x is fixed, the
corresponding polynomial in y has infinitely many roots and is consequently iden­
tically zero. This proves F == O. Hence Tyg - TTyf = 0, or TyTf - TTyf = O.
Since this is valid for all polynomials f, we see that the operator T commutes with
translations.

(ii) => (iii) Let T be a composition operator and 0 a delta operator. Write the
generalized Taylor fonnula using the basic sequence (Pk) corresponding to 0:

" k Pk(x)Tyf(x) = f(x + y) = L O f(y) ·~

(first for fixed y and variable x). We have

Tyf = L ~~ .ok f(y) ·

Let us apply the composition operator T to this polynomial,

and evaluate it at the origin (we now fix x = 0 and consider a variable y) :

(Tf)(y) = (TyTf)(O) = (TTyf)(O) = L (TP;i(O) . okf(y).

Hence



200 4. Continuous Functions on Zp

and finally,

T = " (Tpk)(O) . c/ E K[[oJ] .
c: k!

The coefficients of the expansion of a composition operator T as apower series
in the delta operator 0 - say T = L akok - are given by ak = (TPk)(O)/ k1. In
particular, let us remember that for the case 0 = D these coefficients are

(T(xk»(O)
ak =

k!

Since obviously (ii) => (i) and (iii) => (iv) => (v) => (vi) it only remains to prove
(vi) => (ii) to accomplish the full cycle of equivalences. Let 0 be a delta operator
and write the generalized Taylor formula for an arbitrary polynomial:

I(x + y) = LokI(x) . Pk(Y)/k!,

'Cyl(x) = LokI(x), Pk(Y)/ k!,

'Cd = L Pk(Y)/ k! . okI,

'Cy = L Pk(Y)/k! . ok.

This shows that all translations can be expressed as formal power series in any
delta operator. As a consequence, if an operator commutes with a delta operator,
it commutes with all translations. _

For convenience, let us use the following notation for the commutant of a subset
A ofthe endomorphism ring of K[X]:

A' = {T E EndK[X]: TS = ST forall S E A}.

The commutant of A' is the bicommutant - or double commutant - of A: It is
denoted by A" = (A')'.

Corollary. In the endomorphism ring 01 K[X], the commutant 01a delta oper­
ator 0 can be identified with the ring K[[D]] . In particular, this commutant is
commutative, and the bicommutant 01any delta operator can be identified with
the ring K[[D]] .

PROOF. The equivalences (v) {:> (vi) {:> (iv) ofthe theorem show that the commu­
tant of the derivation, or of any delta operator, coincides with the ring of power
series in the derivation D. This ring is independent of the delta operator in question
and is commutative; hence by (ii) {:> (v) {:> (vi) we have

{DV = {'Cy : Y E KV = {oV C End K[X].
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Since {D}' is commutative, {D}' C {D}" . On the other hand, the operation that
consists in taking the commutant obviously reverses inclusions, and

D E {D}' ===> {D}' ::) {D}". •
Let T be a nonzero composition operator. We can write T = L ie» aj Dj with a

first nonzero coefficient av :f. 0 (v ~ 0). In this case, we say that the composition
operator T hasorderv and wewrite T = D V S = SD v with acomposition operator
S of order 0, namely, S is invertible. Since the kernel of the operator D V consists
of the polynomials of degree less than v, we infer

v = dimker D V = dirn ker T.

This equality shows that the order of a composition operator is independent of the
delta operator used to represent it as apower series. On the other hand, the delta
operators are the composition operators of order 1.

If T = L aj Dj and T' = L bj Dj are two composition operators, then T 0 T'
is also a composition operator, and its formal power series is obtained by multipli­
cation ofthe formal power series giving T and T'.

5.4. The van Ramme Theorem

Let T be a continuous endomorphism of the Banach space C(Zp) of continuous
functions on Zp (and values in a fixed complete extension K of Qp). Let us recall
the definitions of the norms

1If11 = sup /f(x)1 = max If(x)/,

sup = max taken on the compact space Zp,

IITII = sup IITfII/llf11 = sup IITfII·
NO 11/11=\

When this continuous endomorphism commutes with the unit translation operator
E = "\, it also commutes with the (forward) difference operator V = "\ - id and
its powers. Hence T leaves the subspaces ker vn C C(Zp) invariant.

Lemma. The subspace ker vn ofC(Zp) consists ofall polynomials ofdegree
strictly smaller than n.

PROOF. The statement is obvious for n = 0 and 1. In fact, if vn f = 0, the finite
difference theory applied to the restriction of f on N shows that this restriction is
a polynomial p of degree smaller than n. Hence we have f = p on N and also on
Zp by continuity and density ofN in Zp. •
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As a consequence, any continuous endomorphism T of C(Zp) commuting with
E (or equivalently, with V') leaves the polynomial subspace

TI = K[X] = Uker V'n C C(Zp)
n:,:O

invariant and induces a composition operator in this space. Let us expand this
composition operator as a formal power series in the delta operator V'

Tin = L anv: E K[[V']].
n:::v

If T ;/:; 0, the order v of T is the index of the smallest nonzero coefficient. Since
11 V'11 = 1, the ultrametric inequality shows that

On the other hand, the basic polynomial sequence of the delta operator V' is the
sequence (x), = x(x - 1) · . . (x - n + 1), and the coefficients an are given by the
formula

In particular for n = 1, laI! = IIT(x)1I ~ 1IT11l1xll = IITII. If we assume IITII =
laI!, we see that lan I ~ laI! for all n 2: 1. The main step of van Hamme's gener­
alization of the Mahler theorem can now be given.

Proposition. Let T be a continuous endomorphism 0/ C(Zp) that commutes
with V'. Assume T(l) = 0 and 1IT11 = lall = 1, so that T induces a delta oper­
ator on K[X] with basic polynomial sequence (Pn)n:,:O:

Po = 1, deg Pn = n, T(Pn) = npn-l and Pn(O) = 0 (n 2: 1).

Then IIPn/n!1I = 1.

?ROOF. Let us use the renormalized qn = Pn/n!, so that by definition

We.haveto prove jc.] = 1 (n 2: 1).ReplacingTbyT/aJ,wemayassumeal = 1,

Now by assumption, T = V'+ a 2V'2 + ... = V'(I + a2V' + ...) = V'U with
an invertible composition operator U = (I + a2V' + ...), 11 U 11 = 1. Define
V = U- l = I - a2V'+ ... also with 11 V 11 = 1. We claim that there is a suitable
continuous invertible composition operator S, with IISII = 1, such that
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where In = (,;) denote momentarily the binomial polynomials: VIn = ln-I. First,
for any composition operator S of order 0, the preceding definition leads to poly­
nomials with deg qn = n. Moreover,

Tq; = T 0 SVn(fn) = VV 0 SVn(fn),

and since V = V-I and all the operators in question commute,

Tq.; = SVn-1
0 V(fn) = SVn-I(ln_l) = qn-I .

There only remains to construct a suitable invertible composition operator S with
IISI1 = 1 so that the formula (*) fumishes polynomials with qn(O) = 0 (n ~ 1).
Let us take

V'
S = I - V - = I - VV'V,

V

where V' is given by the formally derived power series in V giving V. Namely,

V = 1+ Lßnvn ==} V' = Lnßnvn-l .
n:;:1 n:;:1

Now wehave

SVn(fn) = (I -V ~) 0 Vn(fn)

= (V" - VVn-1V')(fn).

Recall that all the operators are formal power series in V, and VkIn = In-k van­
ishes at the origin for k < n, The only interesting term is thus the monomial
containing vn In. But if qJ = qJ(t)is a formal power series, the formal power series

qJn _ tqJn-IqJ' = qJn - (t/n)(qJn), = 1/J - (t/n)1/J'

has a coefficient of t" equal to o. Since this is the constant term in SVn(fn), this
proves that qn(O)= O. All operators used in the definition of S have norm less than
or equal to 1; hence IISI1 ~ 1, IIqn 11 ~ IISIII1 V n 11 11 In 11 = 1. •

Theorem. Let T be a continuous endomorphism oIC(Zp) that commutes with
V. Assume T(I) = 0 and IITII = IT (x )1= 1. Define the polynomial sequence

Then each continuous function I E C(Zp) can be expanded in a generalized
Mahler series

with Cn = (P f)(0) ~ 0 and 11 I 11 = sUPn:;:O ICn I.
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PROOF. Using the notation of the preceding proposition, we have T = \lU with U
invertible and I/U 11 = 1. Hence

(by the Mahler theorem). It will be enough to establish all statements for the
polynomial functions f , since the general case will result from this by density
and continuity. The generalized Taylor expansion of a polynomial f takes the
form

From IIqn11 = 1 fOllOWS quite generally

1If11 =5 sup Icnl,

and from the asserted formula for the coefficients,

whence conversely sup Icnl =5 1If11 and finally sup Icnl = IIf11. •
Comment. The generalized Mahler expansion is not valid for the delta operator
D (differentiation): This operator does not extend continuously to all of C(Zp).
On the other hand, its renormalized basic sequence is qn(x) = xnIn!, and even if a
seriesexpansion fex) = Ln>O cnxnIn! convergesuniformly, 1If11 = sup If(x)1=
max If (x)1is not usually equal to sup Icnl. The delta operator Don K[X]) has a
power series expansion in \l with coefficients

CXn = D (:~n ) (0) = coefficient of x in G)
= constant coefficient of (x - 1) · . . (x - n + 1)ln! = (_l)n-I In .

In particular, CXI = 1, but Icxnl > 1 when n is a multiple of P, so that the theorem
is not applicable.

5.5. The Translation Principle

To illustrate an important principle we begin with a particular case.

Example. We know that the basic sequence for the delta operator D is the sequence
ofpowers. The basic sequence corresponding to a translate raD of Dis

Pn(x) = x(x - nar- I (n ~ 1).
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Indeed, we have

Dpn = (x - na)n-l + (n - l)x(x - na)n-Z

= (x - na)n-Z[x - na + nx - x] = n(x - na)n-Z[x - a],

whence

To be able to prove the general translation principle we need a couple of easy
results.

Lemma. Let T = cp(D) = Ln>oanDn be a composition operatorand let Mx
be the multiplication by x operator f f-+ xf. Then

TMx - MxT = cp'(D).

PROOF. By definition,

(DMx - MxD)f = (xf)' - x]' = f,

whence DMx - MxD = I (identity operator). Sirnilarly,

whence D" Mx - MxDn = nD(n-l). This is the particular case T = D" of the
expected formula. The general case results by additivity, since for any polynornial
f, (T Mx - MxT)(f) is a finite sum

(only terms with n S deg(f) + 1 really occur) . •
Comment. One can define the Pincherle derivative T' = T Mx - MxT of any
composition operator. For T = cp(D) the lemma shows that T ' = ip'(D). A sim­
ilar result has been used for a long time in quantum theory: If Mf denotes the
multiplication operator by a polynornial f , then

DMf - M f D = Mf' : multiplication operator by the derivative f":

Observe that in (5.4) we have used a different derivative, namely a derivative with
respect to aseries expansion in the operator V. For this reason, it is always necessary
to specify with respect to which delta operator the derivative of a composition
operator is taken.
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Proposition. Let ä be a delta operator and write ä = Dcp(D) with an invertible
power series tp. Then the basic sequence 0/polynomials 0/ä is given by

PROOF. Since cp(D) as weIl as cp(D)-n are invertible operators, cp(Drn(xn-l) is
a polynomial of degree n - I and the polynomial Pn = xcp(D)-n(xn-l) has de­
gree n. Since x divides Pn, we obviously have Pn(O) = O. It only remains to
check that äpn = npn-I. By definition, Pn = Mxcp(D)-n(xn- I), so that äpn =
Dcp(D)Mxcp(D)-n(xn-I). Using the lemma, we can write

Mxcp(Drn(xn-l) = cp(D)-n Mx(xn- I) - [cp(D)-n]'(xn-l)

= cp(Drn(xn) + n[cp(D)-n-I](xn- I) .

Hence

Sp; = Dcp(D)Mxcp(Drn(x n-I)

= Dcp(D)[cp(D)-n(xn) + n[cp(Drn-1](xn-I)]

= cp(Drn+t(Dxn) + ncp(D)-n(Dxn-l)

= cp(D)-n+l(nxn- 1) + n(n - l)cp(D)-n(xn-Z)

= [ncp(D)-n+t Mx + n(n - l)cp(Drn](xn-Z) .

Using again the lemma to bring the operator Mx into the first position , we obtain

Sp; = [Mxncp(D)-n+l + (ncp(Drn+I)' + n(n - l)cp(D)-n](xn-Z)

= nMxcp(Dr(n-I)(xn-Z) + [-n(n - l)cp(Drn + n(n - l)cp(D)-n](xn-Z)

= nMxcp(D)-(n-I)(xn-Z) = npn-l · •

The Translation Principle. Let ä be a delta operator and (Pn)n?:O its basic
sequence. Then the basic sequence of the translate delta operator Taä is given
bypo=land

_ X
Pn = --Pn(x - na) (n:::: I) .

x -na

PROOF. By the explicit formula of the proposition with ä = Dcp(D), we have

ji" = x[ Tacp(D)rn(xn-1)

= xLnacp(D)-n(xn-1
) = xLna[(ljx)Pn],

from which the translation principle folIows. •
Observe that since the polynomial Pn is divisible by x (n :::: I), Pn(x - na)

is divisible by x-na and the polynomial ji" is divisible by x: It vanishes at the
origin as required. Several cases of this translation principle are interesting. For
example, the case a = -I leads to the backward difference operator LI V = V_,
while a = -! leads to a centered difference operator.
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Umbral calculus

Delta
operator

(lV.5)

D =d/dx

Basic sequence
ofpolynomials

(IY.S.2)

Related
sequences
(IV.6.1)

Appell sequences
Dp; = npn-I

( _ x - pn(x + ny»)
x+ny n>O
translation principle(IV.S.S)

T
umbral

-!. operator
(Pn)n ~O Sheffer sequences

8sn =nSn_1

Binomial identity: Pn(x + y) = " (p(x) + p(y)l ,"

Appell sequences: Pn(x + y) = " (p(x) + y)n ,"

Sheffer sequences: sn(x + y) =" (s(x) + p(y))n,"

cf. (V.5.4), (V.5.5) for the example of the Bemoulli numbers and polynomials.

6. Generating Functions

6.1. Sheffer Sequences

In this section a will be a fixed delta operator, and (Pkk~.o will denote its basic
sequence. Recall the generalized Taylor series (5.2)

(ak f)(0)
f(x) = L kl . Pk(X) ,

k;::O .

valid for any polynomial f E K[X] .

Definition. A Sheffer sequence (relative to a ) is any sequence ofpolynomials

(sn)n;::O such that

I . deg s, = nfor all n 2: 0,
2. Ss; = n . Sn-l for all n 2: 1.

The constant So is nonzero. If (sn)n;::O is a Sheffer sequence, we have

aksn = n(n - 1) ... (n - k + 1)· Sn-k = (nh . Sn-k (k.::: n).



208 4. Continuous Functions on Zp

The generalized Taylor expansion

fex + y) = L cl f(y)/ k! . Pk(X)

gives for f = Sn

(S)

This formula generalizes the binomial identity for the basic sequence (pd.

Definition. An Appell sequence is a Shejfer sequence corresponding to the
derivation operator D.

The Appell sequences (Pn) are characterized by the relations

I . deg Pn = n for all n 2: 0,
2. p~ = n . Pn-lforall n 2: 1.

The Appell sequences satisfy (S), which is in this case

Pn(X+ y) = L (:)x
k

. Pn-k(Y)·
O::;k ::;n

This identity may be symbolically written

Pn(X + y) = "(x + p(y))n,"

where we interpret exponents of the binomial expansion of the right-hand side as
indices.

Proposition. Let S be an invertible composition operator. Then the polynomial
sequence Sn = S(Pn) is a Shejfer sequence. Conversely, if (sn) is a Shejfer se­
quence, the endomorphism S of K[X] that sends the basis (Pn) onto the basis
(sn) is an invertible composition operator.

PROOF. To check the first statement, we compute aSn using the fact that aand S
commute:

Conversely, for n 2: 0 we have

Since the polynomials Pn make up a basis of K[X], this proves that S and a
commute. Hence S is a composition operator (5.3). •
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6.2. Generating Functions

Let us still consider a fixed delta operator 8 with basic system of polynomials
(Pn)n?;O . Let S be an invertible composition operator. The polynomial system
S-l Pn = Sn is a Sheffer sequence, and we are going to determine more explicitly
the exponentialgeneratingfunction

(where z is a new indeterminate, a variable in C or Cp , • • •). We know that

8 = cp(D) E K[[D]], cp(O) = 0 and cp'(O) =f. 0,

S = t/J(D) E K[[D]], t/J(O) =f. O.

By (5.3) the formal power series corresponding to the composition operator .xS-1
is

On the other hand, the formal power series (in D resp. 8) corresponding to 8 can
be computed as folIows. Firstly, we have seen that

8n tr.x = '"" Pn(x)- = '"" x
n_ = exp(xD),L.J n! L.J n!

and secondly,

.x = .xS-1 0 S = Fs(x , 8) 0 t/J(D).

Since 8 = cp(D), or equivalently D = cp-I(8) (a systematic characterization of
invertibility offormal power series is given in (VL1.3) Theorem 1), a comparison
of the two expressions for .xfumishes

Fs(x , cp(D)) . t/J(D) = exp(xD).

With the formal power series 8 = cp(D), we can express D = cp-l(8) and come
back to the above expression:

Fs(x, z) · t/J(cp-I(Z)) = exp(xcp-l(z)),

z" 1
Fs(x, z) = L sn(x) n! = t/J(cp-l(Z)) . exp(xcp-l(z)).
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We can deduce several useful identities from this one. For example, derivation
with respect to x leads to

cp-l(Z) -I
= J/!(cp-l(Z» . exp(xcp (z»,

" s' (0) zn = cp-l(Z) .
~ n n! J/!(cp-l(Z»

In particular, for the basic sequence Sn = Pn which corresponds to the identity
composition operator S = id, hence to the formal power series J/! == 1,

zn
L Pn(x)- = exp(xcp-l(z» ,
n:,:O n!

The first identity gives an algorithm for the computation of the basic sequence
(Pn)n :,:O. Here are a few examples .

Example 1. Let us consider the delta operator

'il = 'il+ = r - 1 = eD
- 1 = cp(D),

for which

z = cp(u) = e" - 1, e" = Z + 1, U = log(1 + z) = cp-I(Z).

Wehave

exp(xcp-I(Z» = exp(x log(l + z) = (l + zl

(x) z"= L zn = L(X)n,.
n:,:O n n:,:O n.

The basic polynomials for this delta operator 'il are simply the Pochhammer poly­
nomials

Po = 1, Pn(x) = (x); = x(x - 1)· ·· (x - n + 1) (n ~ I) .

Example 2. As with the delta operator 'il_ = I-L = l-e-D , which corresponds
to Z = cp(u) = 1- e-u , u = log 1/(1 - z) = cp-l(Z), we have

exp(xcp-l(z» = (I - z)-X = L (~X)<-zr.
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The basic polynomials are now

Po = 1, Pn(x) = x(x + 1)· · · (x + n - 1) = (-lt(-x)n (n:::: I).

Another exarnple ofthe general fonnulas follows (cf. the exercises for the Fibonacci
numbers and the Gould polynomials).

6.3. The Bell Polynomials

The Bell polynomials Bn(x) can be defined by their generating function

znL Bn(x)- = exp[x(eZ
- 1)].

n2:0 n!

This generating function has the required form for a basic sequence ofpolynomials
of a delta operator. We can indeed take

u = cp-I(Z) = eZ
- 1 = ('LI 0 exp)(z)

and hence

z = cp(u) = (log ot"t)(u) = log(l + u) .

This shows that the delta operator 8 that leads to this generating function is

I 2 1 3
8=cp(D)=log(l+D)=D- 2D +3 D - . . . .

The following fonnulas result from the general theory:

whence B~(O) = I (n :::: 1). The polynomials Bn are monic polynomials having
zero constant term if n :::: 1. The first ones are

Bo=l, BI(X)= X, B2(X)=X+x2, B3(X)=x+3x2+x3,

B4(x) = X +7x 2+ 6x 3+x4 •

If we take the derivative of the generating function (with respect to z), we obtain
the relation

from which these polynomials are easily computed inductively.
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Comment. The special values B; = Bn(l) of the Bell polynomials are the Bell
numbers. They represent the numbers of distinct partitions of the set {I, 2, .. . , n}
into nonempty subsets. The first ones are

where, für example, the five partitions üf {I , 2, 3} are

{l} , {2}, {3}
{l, 2}, {3}
{2, 3}, {l}
{l,3},{2}
{l,2,3}.

EXERCISES FÜR CHAPTER 4

1. (a) Suppose that we define the notion of Banaeh spaee E over an ultrametrie field K
simply as a complete normed K-vector space. Try to prove that if E is a Banaeh
spaee of positive dimension over K, then K is complete .

(b) Ifyou eannot prove (a), think of the following examples: K is a noneomplete ultra­
metrie field and E = Kis its eompletion with the norm given by the extension of the
absolute value. This is a Banaeh spaee over K. For example , take K = Q with the
p-adic absolute value and E = Qp as Banaeh spaee over Q, or K = Q~ (algebraie
closure of Qp) and E = Cp as Banaeh spaee over Q~ . What is happening?

2. Let (Ei )iEI be a family of Banaeh spaees. Define the Banaeh produet of this farnily as
the normed veetor subspaee

n- CnEi
iEI iEI

eonsisting of the bounded families x = (Xi) , equipped with the sup norm

IIxll = lI(xi)1I := sup IIxill ·
i

In partieular, EBiEI Ei is a normed veetor subspaee of DiEI Ei .
(a) Show that this B~aeh produet is complete and henee is a Banaeh spaee . Observe

that 100(l ; E) = DiEI E and eonclude that 100(l ; E) is eomplete for any Banaeh
spaee E.

(b) Show that the dual of EBiEI Ei is eanonieally isomorphie to D iEI E; .
(c) Formulate the universal properties ofthedireet sum and Banaehproduet as eanonieal

isometries

L(E; nEi) ~ nL(E; Ei) ,

L(EBEi ; E) ~ nL(Ei; E) .

[The seeond isomorphism for E = K gives (b) .]
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3. Let E = K" (for some n 2:: 1) with the sup norm. If (ejh~j~n is a normal basis of
E, show that the matrix having the ej for columns is in Gin (A): It has entries in A and
determinant in A x . Conversely, any normal basis is obtained in this form .

4. When IK x I = Irr ,Z is discrete but the condition 1/ E 1/ = IK I is not satisfied, show that
the norm of E can be replaced by an equivalent one that satisfies it. Take either

[x]" = sup (I).I : ). E K, P..I ~ I/xl/}

or
[x]" = inf{l).1 : ). E K, 1).12:: I/xl/},

forwhich

Since sup = max and inf = min, these new norms take their values in IKI.

5. Let (Ui )iEI be a family ofcontinuous operators in an unltrametrlc Banach space E such
that for each x E E, rp(x) := sUPiEI l/ui(X)1/ < 00. Show that SUPiEI I/ui 1/ < 00.

(Hint. Consider the subsets En C E defined by rp~ n and use the Baire property for
the union Un::l En = E, or copy the proof ofthe Banach-Steinhaus theorem from any
book on functional analysis !)

6. (a) Assume f E Q[X], f(O) E Z, and that V f takes integral values on all natural
numbers. Prove that f also takes integral values on N.

(b) Let the polynomial f E Q[X] take integral values on all natural numbers: f(N) C
Z. Prove that f also takes integral values on all integers : feZ) C Z.
(Hint. Show that feZ) C Qn zp for all primes p .)

7. The maximal number of electrons on atomic layers is given by the following sequence

K : 2, L : 8, M: 18, N : 32, .. ..

What is the next one? Find a polynomia1formula f(n) giving these values .
(Hint. Compute the finite differences to determine the simple st polynomial f taking
these prescribed values.)

8. The maximal number ofregions in the plane R2 determined by n lines is given by (make
pictures!)

1 2 3 4

2 4 7 11
~r---0_
f(n) I 1

Find a po1ynomial formula for f(n) .

9. Let f(n) denote the maximal number of regions determined in the unit disk Izi ~ 1 (of
the complex plane C) by connecting n distinct points on its boundary [z] = 1 by lines .
Show that this sequence starts as folIows:

~1234 56

f(n) I 1 2 4 8 16 31

Find a polynomial formula for f(n) .

10. Consider the Fibonacci sequence as a function of an integer variable n ~ fn :

fo = 0, fl = 1, fn+l = t« + fn-l (n 2:: 1).

Does this function extend continuously to any Zp (p prime)?
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11. What are the Mahler series expansions of the following polynomial functions:

I(x) = 2x2 - 1, g(x) = 4x 3 - 3x , I(g(x» .

12. Let x" = Lk>O an,k(~) be theMahler series ofthe continuous function x": Zp ~ Qp.
Hence an,k =-0 for k > n. Show that

an,O = lln (=1 for n = 0 and = 0 for n > 0),

an,k = L: (-I)k-j(~)r ,
O~j~k )

an,k = k(an-I ,k + an-I ,k-I> (k::: 1, n ::: 1).

Show also that when p is an odd prime,

apk == 0 (mod p) (2:::: k :::: p - 1).

The an,k/k! are the Stirling numbers of the second kind ; cf. (VI.4.7).

13. Let I : Zp ~ Qp be continuous, given by a Mahler series

I(x) = L:an(x) .
n~O n

What is the Mahler series ofthe function xf"l

14. Prove the following fonnula:

for n ::: 1.

15. Show that the series

converges for all x E Z p , x =1= 1.The sum I (x) defines a continuous unbounded function
Zp - {-I} ~ Qp .

16. Let a E 1 + M p and m a positive integer prime to p. Show that there is a unique mth
rootofa in 1 +Mp .

(Hint. Consider the series expansion (l + t)l/m = Lk~O e~m)tk .)

17. Let I : Z p ~ C p be a continuous function and F = SI its indefinite sum (IV.1.5).
(a) Show that there are uniform estimates

IF(n + pV) - F(n)1 :::: 8 v (n E N) ,

where 8 v ~ 0 (v ~ 00). (Hint . In a sum F(n + p V) - F(n) = Ln~i<pv I(i)
group the indices i in question into cosets mod pSZ. Let C be one such coset and
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pick one CE C,

L f(x) = L(f(x) - f(c» + pv-s f(c).
xEC XEC

Hence ILXEC f(x)1 :::: maxxeC <If(x) - f(c)l , Ipv-s f(c)I) .)
(b) Show that for every given e > 0, there is an integer v such that

IF(n + kpV) - F(n)1 :::: e (n, k E N) .

(c) Prove directly (i.e., without the Mahler theorem) that for any continuous function
f : Zp -+ Cp, the indefinite sum F of f extends continuously to Zp . (Corollary
2 in 3.5).

18. Show that the finite sums

are delta operators (notations of 5.l).

19. Let us define the Bell-Carlitz polynornials B~ by their generating function

Hence Bg(O) = Bn (=Bn(l) cf. (IV.6.3» are the usual Bell numbers.
(a) Prove that

Hence these polynomials interpolate consecutive values in the sequence (Bn)n~O.

(b) Prove that the sequence (B~)n?:o is an Appell sequence (IY.6.1).
(Hint. Differentiate the expression found under (a) .)

20. Considerthe powerseries expansion (l-t-t2)-1 = Ln>oant n. Show that a, = fn+t.
where (fn)n~O is the Fibonacci sequence -

fo = 0, fl = 1, fn+1 = f n + fn-I (n 2: 1).

Define a sequence (Pn) of polynornials by the identity

( 1) t"exp X log 2 = '"Pn(x)-,
l-z-z L..J n!

so that an = Pn(l)/n!' Show that this generating function corresponds to the choice

U = Ip-I(Z) = log 1/(1 - z - z2), e-u - 1 = -z - z2, 8 = Ip(D) .

Show that
1 (2k)8 = Ip(D) = L - .(_"V_)k

k~1 2 k

(the operator -"V_ is simply given by f Ho f(x - 1) - f(x» .
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21. Show that the basic sequence of polynomials corresponding to the translate delta oper­
ator <-s V is

Pn(x) = x . (x + ne - l)n-I (n ~ 1).

The renorrnalized polynomials qn(x) = Pn(x)/n ! are the Gould polynomials

qn(x) = _x_ . (x +ne)n = _x_(x +ne) = ::(x +ne -1).
x +ne n! x + ne n n n - 1

(Hint. Check by induction that

V Pn = n(x + e)(x + e + (n - l)e - l)n-2 = n<s(Pn-l)

and hence L s VPn = npn-I , then use the translation principle (5.5).) Write explicitly
the binomial identity for the Gould polynomials.
Show that the delta operators L sV satisfy the condition 11 T 11 = lall = 1 of the van
Ramme theorem (5.4), and hence they give rise to uniforrnly convergent expansions of
all continuous functions Zp ~ K (complete extension ofQp).



5
Differentiation

Calculus in the p-adic domain is rather straightforward. Let us emphasize, however,
that:

• A function with a continuous derivative is not necessarily strictly differentiable.
• The mean value theorem is valid provided the increment is small enough:

Ihl:::: rp •

• The radius of convergence of the exponential series is rp < 00.

In this chapter thefield K will denote a complete extension 0/ Qp, e.g., K = C p
orQp.

1. Differentiability

1.1. Strict Differentiability

Let X C K be a subset with no isolated point.

Definition. Afunction j: X -+ K is said to be differentiable at a point a EX if
the difference quotients (f(x) - j(a»/(x - a) have a limit l = !,(a) as x -+ a
(x #- a) in X.

Equivalently, one can require the existence of a limited expansion of the first
order

j(x) = j(a) + (x - a)j'(a) + (x - a)4>(x) where 4>(x) -+ 0 (x -+ a) .
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Example 1. Let (Sn)n?1 be the sequence of open balls

Sn = {x E Zp: Ix - pnl < Ip 2n 1} C {x E Zp: [x] = Ipnl}

and f the function on Zp vanishing outside USn (a disjoint union) with values

fex) = r" (x E Sn).

Then f is constant on each open ball Sn and hence is locally constant outside
the origin. Consequently f is differentiable at each x =f:. 0 with f' (x) = O. At
the origin lim,.....o(f(x) - f(O»/x = lim, .....o f(x)/x exists and is zero, so that
f is also differentiable at this point with ['(0) = O. In this example, f' = 0
(identically), f' is continuous, a situation classically denoted by f E Cl, but the
difference quotients

f(y) - fex) fex) - f(y)
=

y -x x - y

take the value 1 on the pairs x =Xn =p", y =Yn = pn - p2n, which are arbitrarily
close to the origin.

Example 2. Let f: Zp ~ Zp be the continuous function defined by

x = I:>npn ~ fex) = I:>np2n.
n?O n~O

Then f is differentiable at all points x E Zp with ['(x) = O. Again f' = 0 E Cl,

but f is injective, and hence far from being locally constant.

The preceding examples show that the notion of differentiability at each point of
a set X is not very useful, even if we require these derivatives to vary continuously,
and we shall introduce a stronger condition.

Definition. We say that f is strictly differentiable at a point a E X - anti
denote this property by f E Sl(a) - ifthe dijference quotients

ct>f(x, y) = fex) - f(y)
x-y

have a limit l = ['Ca) as (x, y) ~ (a, a) (x and y remaining distinct).

Classically, i.e., for a function f: I ~ R (where I C R is an open interval),
if ['Ca) exists at each a E I anti f": a ~ ['Ca) is continuous, then f is strictly
dijferentiable at all points a EI . The examples preceding the definition show
that in ultrametrie analysis, the situation is different and we have to assurne strict
differentiability to get interesting results.

Proposition 1. Let f : X ~ K be strictly dijferentiable at a point a E X with
['Ca) =f:. O. Then there is a neighborhood V ofa in X such that the restriction
of f/f'(a) to V is isometric.
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PRooF. Since f E Sl(a), for each E > 0 there is a neighborhood VEof a for which

I<l>f(x, y) - f'(a)1 < E if XE VEand y E VE.

Let us take E = If'(a)1 (:#: 0 by assumption) and V the corresponding neighbor­
hood. Then

l<I>f(x , y) - f'(a) 1< If'(a)1 :#: 0, if (x, y) E V x V

and there is a competition between the terms <l>f(x , y) and f'(a)

l<I>f(x, y)1 = If'(a)1 for (x, y) E V x V.

Hence If(x) - f(y)1 = If'(a)1 . Ix - yl for (x, y) E V x V. •
CoroUary. If f E Sl(a) and f '(a) :#: 0, then there is a neighborhood V of
a E X in which f is injective. •

Theorem. Assume that the function f is dejined in a neighborhood ofa E K
and strictly differentiable at this point with f'(a) :#: O. Choose an open ball B
containing a such that

I
f(x) - f(y) f'()1 If'()1

(1 = sup - a < a.
x'!-yeB x - Y

Then f maps each open ball contained in B onto an open ball, namely

PRooF. Put s = f'(a) :#: O. As in the preceding proposition, we have

If(x) - f(y) I= Isl (x:#: y E B),
x-y

and f f s is an isometry in the ball B. This already proves

To prove that this inclusion is an equality, we select any c E B<lsIE(f(b)),namely
If(b) - c] < IslE, and show that the equation f(x) = c has a solution x with
Ix - bl < E. Equivalently, we show that the map qJ(x) = x - (f(x) - c)fs has a
fixed point x with Ix - bl < E.Observe first that qJ(B«(b)) C B«(b):

qJ(x) - b = x - b - (f(x) - c)fs

= x - b - (f(x) - f(b))fs - (f(b) - c)fs,

IqJ(x) - bl :::; max (Ix - bl, If(x) - f(b)lflsl, If(b) - clflsl) < E.
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Now we prove that cp is a contracting map with contraction ratio alis i< 1:

f(x) - f(y)
cp(x)- cp(y) = x - y - .:......c...-'--...:..-..::~

S

= x - y (s _f(x) - f(Y)) ,
s X- Y

Ix- YI a
Icp(x) - cp(y)1 ::: -- a = - . Ix - yl·

Isl Isl
Since the ball B<E(b) is closed in the complete space K, the mapping cp has a
unique fixed point in this ball and the theorem is completely proved. •

Observe that this theorem is a generalization of Hensel's lemma (II.1.5) (here
fis not a polynomial): The function f - c has a zero x E B, or f(x) = c, as soon
as If(b) - c] is small enough for some bEB.

Let us turn to strict differentiability on a subset X having no isolated point.
Since X is ametrie space, it is Hausdorff and the diagonal of X is closed in X x X.
The open subset X x X - ßx is dense in the product X x X.

Proposition 2. For f: X -+ K , thefollowing properties are equivalent:

(i) f E Si (a)for all a E X.
(ii) Thefunction cI>f, initially defined only on X x X - ßx, admits a continuous

extension Ci> to X xX.
(iii) I is differentiable at each point a E X and there is a continuous function

a on X x X vanishing on ßx with
f( y)=f(x)+(y-x)!,(x)+(y-x)a.(x ,y) (x, y EX).

!>ROOF. The implication (i) ==> (ii) is given by the double limit theorem, which
we recall: Let Xo be a dense subset 01a topological space X, Y a metric space,
and f a continuous map Xo -+ Y such that for each x E X

Z E Xo and Z -+ x implies I(z) has a limit g(x) E Y.

Then the extension g : X -+ Y is continuous. (More generally, the conclusion is
valid when the target space Y is a regular space, i.e., a topological space in which
every point has a fundamental system of neighborhoods consisting of closed sets.)

The implication (ii) ==> (i) is obvious.
Finally, if cI>f has a continuous extension Ci>, it has a unique one by the density

of X x X - ßx in X x X. Since we can write

f(y) = f(x) + (y - x)cI>1(x , y )

= f(x) + (y - x)f'(x) + (y - x) [,cI>f(x , y) - f'(x~],

it is obvious that (ii) {:}(iii) .

.
a (x ,y )

•
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Definition. We shall say that f is strictly differentiable on X - notation f E

Si (X) or even f E Si - when the conditions ofProposition 2 are satisfied.

When fE Si, f'(x) = <I>(x, x) is continuous and fE Cl, but strict differentia­
bility is a stronger condition, justifying a specific notation. Strict differentiability
furnishes coherent limited expansions, and if

M = sup l<I>f(x, y)1 = sup I<I>(x , y)1 < 00,
x'!-y x,y

we have

If(x) - f(y)1 :::: Mix - yl·

1.2. Granulations

The theorem of the preceding section is particularly interesting when the field K
is locally compact, namely when it is afinite extension of Qp. Let us come back
to the usual notation for this case:

K ~ R ~ P = x R, k = R/P = Fq •

If r E IK x I,every ball B::;r(a) is a disjoint union of q open balls Bi = B<r(ai) =
B::;9r(ai) (with e = Irr I < 1) and any set containing q distinct points Xi E B::;r(a)
with

contains at most one point in each Bi, hence exactly one point in each Bi .

Proposition. Let K be afinite extension of Qp and f: n ~ K be an isometry
where Q is some compact open subset of K . Then f maps the balls contained
in Q onto balls of K.

PROOE If B::Aa) is a ball contained in n, it is clear that

f(B::;r(a)) c B::;r(b) (b = f(a)) .

There remains to prove the surjectivity f(B::;r(a)) = Hy(b). But if we take a
partition of Hy(a) consisting of smaller disjoint balls, say B; = B::;e(ai) with
E = Irr Iv r , the images x, = f (ai) of chosen points ai E B; form a system of q v

points in B::;r(f(a)) with

IXi-Xjl=lai-ajl>E (i#j).

Hence the image f(B::;r(a)) contains a point in each smaller ball of the partition
of f(B::;r(a)) into qV balls of radius E = Irrlvr :::: r (j ::: 0). This shows that
the image of B::;r(a) by f meets all closed balls of positive radius. Hence this
image f(B::;r(a)) is dense in B::;r(f(a)). Since it is compact, it is closed, and the
proposition is established. •
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Definition. A granulation 01an open compact set Q C K is a finite partition 01
Q into balls B~r(ai)ofthe same radius r > O.

Sinee two balls BI, B2 having a eommon point satisfy either BI C Bz or Bz C
BI, two granulations are always eomparable : One is finer than the other. Every
ball of the coarser one is a disjoint union of some power qV of balls of the finer
one. Now observe that qV == 1 (mod p - 1), so that the numbers of balls in
the two granulations differ only by a multiple of p - 1. This number of balls is
well-defined modulo p - 1.

Definition. For any open compact set Q in afinite extension K 01 Qp, we define
the type r(Q) E Z/(p - I)Z 01 Q to be the dass mod(p - 1) ofthe number 01
balls in any granulation 01 Q .

For example, the type of Zp is p == 1 and the type of Z; is p - 1 == O.
It is obvious that the type is additive for disjoint unions :

r(Q U Q') = r(Q) + r(Q') E Z/(p - I)Z.

Consequently, to eompute the type of any open eompaet set Q, it is enough to
know the eardinality of any partition of Q into balls (allowing unequal radii). The
following theorem summarizes the preceding eomments .

Theorem. Let Q be an open compact subset 01afinite extension K 01 Qp and
1 an injective strictly differentiable map Q -+ K. lf I' vanishes nowhere, then
Q and I(Q) have the same type.

!>ROOF. From 1 E SI(a) and I'(a) =1= 0 we infer that there is a neighborhood V
(for example an open ball) of a in Q sueh that any ball in V is transformed by 1
into a ball of I(V). •

Corollary. Let P > 2, and I :Zp -+ Z; be an injective strictly differentiable
map with nowhere vanishing I'. Then 1 is not surjective. •

1.3. Second-Order Dijferentiability

With the same notation as in (1.1) , we define

~ I( ) - <1>1(x , z) - <l>/(Y, z)
'Vz X , Y, z -

x-y

when x, y, and z are distinet. Sinee we ean also write

~ I( ) - I(x) + I(y) + I(z)'Vz X , Y, z - ,
(x - y)(x - z) (y - x)(y - z) (z - x)(z - y)

this funetion <1>21 is symmetrie in x, y , and z.
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Definition. We say that a function f is twice strictly differentiable at a point
a E X - and denote this property by f E S2(a) - ifet>d(x, y, z) tends to a
limit as (x, y, z) ~ (a , a, a), x , y, and Z remaining distinct.

Proposition 1. If f E S2(a), then f E SI(a).

?ROOF. Let us take two pairs (x, y) and (z, t) E X x X - ßx in the vicinity of
(a, a) and estimate the difference

et>f(x, y) - et>f(z, t) = et>f(x, y) - et>f(z, y) + et>f(z, y) - et>f(z, t)

= (x - z)et>d(x, z, y) + (y - t)et>d(y , t, z).

If we assurne f E S2(a), then et>d will remain bounded in a neighborhood of
(a , a, a), say Iet>d I ::::: M, when the three variables of et>d are elose enough to
a. In particular if x, y, z, and t are near enough to a, we have

Iet>f(x, y) - et>f(z, r)] ::::: M maxt]r - z], Iy - tl),

a quantity that tends to zero when (x , y) and (z, t) tend to (a, a) . Since the target of
et>f is a complete space, the Cauchy criterion is valid and shows that this function
et>f has a limit as (x, y) ~ (a, a) . •

As in (1.1) (Proposition 2), the double limit theorem shows that the following
two properties are equivalent:

(i) fE S2(a)foralla EX.
(ii) The function et>2f, initially defined only on triples with distinct entries, admits

a continuous extension 10 X x X xX.

Weshall say that the function fis twice strictly differentiable - notation f E S2(X)
or even f E S2 - when these conditions are satisfied.

Proposition 2. If f E S2, then !' E SI.

?ROOF. We have to prove that the difference quotients

et>(f')(x, y) = f'(x) - f'(y)
x- y

have a continuous extensi?n across the diagonal of X x X. By assumption, there
is a continuous function et>2 that extends et>2f to X x X xX, and we have

et>f(x, z) - et>f(y, z) = (x - y) . q)2(X, y, z).

In this expression we let Z ~ x. We know that et>f(x, z) tends to !,(x) and

f'(x) - et>f(y, x) = (x - y) . q)2(X, y, x).
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Since the order ofthe variables in cl>f, cl>2f, and 4>2 is irrelevant, we can write

f'(x) = cl>f(x, y) + (x - y). 4>2(X, x, y),

and interchanging x and y,

ri» = cl>f(y, x) + (y - x)· 4>2(y, y, x).

Subtracting these expressions, we obtain

I I - -f (x) - f (y) = (x - y)[cI>2(X, x, y) + cl>2(X, y, y)],

cl>f'(x, y) = 4>2(X, x, y) + 4>2(X, y, y).

This shows that cl>f' admits a continuous extension to X x X: f' E S1.Moreover,

f"(a) = (f')'(a) = cl>f'(a, a) = 24>2(a, a, a). •

(x, y, z distinct),

1.4. Limited Expansions ofthe Second Order

It is also possible to characterize the second-order differentiability by means of
limited expansions (this will not be used later and may be skipped).

Proposition. In order for afunction f to be in the dass S2, it is necessary anti
sufficient that it admits a limited expansion

f(x) = f(y) + (x - y) . a(y) + (x - y)2ß(x, y),

where a anti ß are two continuous functions.

PROOF. (a) Suppose first that f E S2 C S1 . In the formula

'" f( )- cl>f(x,z)-cI>f(y,z)
"'2 x, y, Z -

x-y

we can let z -+ y. In the limit, we get

- cl>f(x, y) - 4> f(y, y) cl>f(x, y) - f'(y)
cl>d(x, y, y) = = (x =I y),

x-y x-y

narnely

cl>f(x, y) = f'(y) + (x - y)4>d(x, y, y).

Coming back to the definition of cl>f, we have

f(x) - f(y) = (x - y)f'(y) + (x - y)24>d(x, y, y).

This gives an expansion of the desired form with

a = t' and ß(x, y) = 4>d(x, y, y).
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(b) Conversely, let us postulate the existence of a limited expansion as in the
statement of the proposition; hence

ct>f(x, y) = a(y) + (x - y)ß(x, y ) (x i= y).

If x, y , and z are distinet, we have

ct>f(x, z) = a(z) + (x - z)ß(x, z),

ct>f(y, z) = a(z) + (y - z)ß(y, z),

whenee by subtraetion (and division by x - y),

x-z z-y
ct>2f(x, y , z) = --ß(x, z) + --ß(y, z)

x-y x - y

= )..ß(x, z) + JLß(y, z)

(where ).. + JL = 1). Let us ehoose a point a i= x and subtraet the same quantity
ß(x, a) = ().. + JL)ß(x, a) from both members:

ct>2f(x, y, z) - ß(x, a) = )..[ß(x, z) - ß(x, a)] + JL[ß(y, z) - ß(x , a)].

It is clear that

y ~ a and z ~ a ==} JL ~ 0 and ct>2f(x, y, z) ~ ß(x, a)

(observe that 1)..1 = 1 as soon as maxtjz - zr], Iy- al) < Ix - al). When x, y, and
z ~ a (while remaining distinet), we even see that ct>2f(x, y, z) ~ ß(a , a): In
the region U: max (Ix - z], Iy - zl) ~ [x - YI, in whieh IJLI and 1)..1 are less than
or equal to 1 we have

1ct>2f(x, y, z) - ß(a, a)1 <

max(Iß(x, z) - ß(x, a)l, Iß(y, z) - ß(x , a)l, Iß(x, a) - ß(a, a)l).

In this region ct>2f(x, y, z) ~ ß(a, a) (x , y, and z distinet ~ a) . Since ct>2f is
symmetrie in its three variables, we ean estimate the differenee

1ct>2f(x, y , z) - ß(a , a)1

by first permuting the variables in order to bring them into the region in whieh the
preeeding estimates have been made. _

Caution. A funetion f on Zp ean have a derivative I ' E Si without being twiee
strictly differentiable, namely with f f/ S2. One ean think of a funetion f with
vanishing derivative at eaeh point, henee with f' == 0 E S2, but that is not strietly
differentiable at a point : We have given an example of sueh a funetion, loeally
constant outside the origin, in (1.1).
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1.5. Differentiability ofMahler Series

Let f be a continuous function on Zp and choose Y E Zp. We can write the Mahler
expansion ofthe continuous function x Ho fex + y) as

fex + y) = L Ck(Y)(X) with Ck(Y) = (Vk f)(y) ~ O.
k::::O k

Theorem. Let f be a continuousfunction on Zp. Then f is differentiable at Y
precisely when

I(Vkf)(y)jkl ~ 0 (k ~ 00).

In this case f'(y) = Lk::::l (_I)k-l(Vkf)(y)j k.

PROOF. Replacing f by its translate x Ho fex + y) we see that it is enough to
prove the theorem when y = O. Now, since Co = f(O), we have

fex) - f(O) = L Ck (X) = L Ck (x - 1).
x k::::l x k k:::l k k - 1

If Ick! k I~ 0 (when k ~ 00), the Mahler series

represents a continuous function of y E Zp . In particular, f'(0) exists and

f'(O) = ge-I) = L ( -1 ) Ck = L(-I)k-l Ck .
k::::l k - 1 k k::::l k

Conversely, if f is differentiable at the origin, the function g defined by g(O) =
!,(O) and g(x) = (f(x) - f(O»jx for x i= 0 is continuous on Zp and possesses a
Mahler expansion

g(x) = LYk (X) (where Yk = Vkg(O) ~ 0).
k::::O k

Wededuce

fex) - f(O) = xg(x) = LYkX(x) .
k :::O k

But
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Hence we can write

fex) = f(O) + xg(x)

= Co +f; Yk ((k + l)(k: 1) +kG))

= Co + Lk(Yk-l +-o
k~l

By uniqueness of the Mahler coefficients of f, we deduce Ck = k(Yk + Yk-:d
(k ~ 1) and in particular ci] k = Yk+ Yk-l ~ 0 (k ~ (0). •

Comment. For any integer k ~ 1 we have Ikl = p-v(k) ~ 1/k, or equivalently,
1/lkl ::::k.Hencelcdkl ::::klckl,andtheconditionklckl ~ Oimplieslck/kl ~ O.
This stronger condition will imply strict differentiability of the Mahler series.

Let us first give a statement concerning Mahler series of Lipschitz functions.

Definition. Afunction f :X ~ K (as in (1.1)) is Lipschitz when there exists
a constant M with

If(x) - f(y)1 :::: Mix - yl (x, Y EX).

Since the smallest bound M is

lI<1>fll: = sup I<l>f(x , Y)I,
x#y

Lipschitz functions are also characterized by IcI>fl bounded. We shall denote by
Lip(Zp) the subspace ofC(Zp) consisting ofLipschitz functions. By definition,

SI(Zp) C Lip(Zp) C C(Zp).

Proposition. A function f = Lk~O Ck~) E C(Zp) is Lipschit; precisely when
{klcklh~o is bounded; namely

IcI>fl bounded <==} the sequence klckl is bounded in R~o.

The proof of this proposition is based on the following lemma.

Lemma. For k ~ I and pi :::: k < pHI, we have

Comment. More precisely, when k is in the quoted interval, its expansion in base
p has the form

k = ko+ klP + ...+ kipi (0:::: k, < p, ki =1= 0)
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(j + 1 digits), and wecall k.: theintegerko+klp+ " .+ki_1pi-1 < pi (at most
j digits). Then

and the statement of the lemma can be written uniformly for all integers k:

This lemma shows that Ix - yl < Ipil = p-i implies I(~) - ml < 1. For
example, if y = x + ph for some h > j,

This is the ph-periodicity ofthe binomial functions (IV.1.3)

already exploited in the proof of the Mahler theorem.

PRooF OF THE LEMMA. The formal identity (1 + ry+y = (l + rY(l + T)Y leads
to the well-known relation

(
X +Y) = L (x) (Y)

k i+i=k i j

(first for positive integers x and Y but also by density and continuity for p-adic
integers x and y). Write then

(X) = (X - y+ y) = L (X -:- y) (~) = (Y) + L (X -:- Y) ( ~ .).
k k i+i=k I J k l~i~k I k I

Thus

(X) _ (Y) = L (X -:- Y) ( Y.) = L X-:- Y(X . Y- I)( Y.),
k k l~i~k I k - I l~i~k I I - 1 k - I

and it only remains to estimate
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It is clear that for pj ~ k < pj+I, the minimum in question is attained for i = p j
with li \ = Ipj I = p-t. The lemma folIows . •

Remark, A slightly less precise inequality, narnely

IG) -G)Is k . Ix- YI ,

would be sufficient for our study of SI functions.

PRooF OF THE Paorosmox. Let us write the difference quotients

cI>f(x + h , x) = fex + h) - fex) = .!. :~::~>k ((X + h) _ (X))
h h k~1 k k

= .!. LCk (L (X) (h) _(X))
h k~1 i+j=k i j k

=L Ck L (~) ( h .)
k~1 h O;:::i<k I k - I

for h I- o.We observe that

uniformly in i (and fixed h I- 0). The double farnily

Ck (X) ( h) Ck (X) ( h - 1 )
h i k-i =k-i i k-i-l

is thus summable in any order, and in particular, it is equal to a double series over
the indices i ~ 0 and j = k - i-I ~ O.Replacing h by Y + I, we obtain

cI>f(x + Y + I , x) = L C~+j+1 (~) (~) (y I- -1).
'">01+1 '11,1_

Firstly, the ultrarnetric inequality gives

IC'+'+IIlcI>f(x + y + I, x)1 ~ sup _~_1_ ,
i,j~O 1 + 1

and hence

IC'+'+II1lcI>f11 = sup lcI>f(x +Y + I , x)\ ~ sup _~_1_ .
x ,y#-I i , j ~O 1 + 1
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In fact, the preceding expansion is a false Mahler series in y because it is not
valid for all values of y E Z. Nevertheless, it holds for all (x, y) E N x N, and
this proves that the coefficients are given by the finite differences on the integers .
Hence secondly,

IC~+j+1 Is sup lcI>fl = llcI>fll (~ 00)
] + 1 x,yyf-I

and

sup IC~+j+ll ~ llcI>fII·
i,j"~O ] + 1

Altogether, we have

sup IC~+j+l I= llcI>fll (~oo) .
i,i?O ] + 1

In particular, considering only the subset of indices (i, j) for which i + j + 1 = n,

On the left we have

Icnl sup 1/lil = Icnl . p' (pS ~ n < ps+I).
i~n

Call Kn the highest power of p that is less than or equal to n. The preceding
considerations prove that

ICi+i +1 11lcI>f11 = sup -.-- = sup Knlcnl.
i,i?O ] + 1 n?1

Since Kn ~ n < pKn , the proposition folIows. •

•
Corollary 1. Let f E Lip (Zp) and f = L c; (;.) its Mahler expansion. Then

1lcI>f11 = sup Knlcnl < 00.
n?l

The number 11 cI>f 11 does not define a norm on the vector space Lip (Zp) because
cI>f vanishes for constant functions: It is only a seminorm. In order to have a norm,
we take

IIflli = sup(lf(O)I, llcI>fll)·

Since f(O) = Co, we define in an ad hoc way the value KO = 1 in order to have

IIflli = sup Knlcnl·
n?O
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Corollary 2. Let f E Lip (Zp) and Sf its indefinite sum. Then Sf E Lip (Zp)
and

IIfliI s IISfliI S plifliI.

?ROOF. We have

IIfIlI = sup Knlanl,
n:;:O

IISfliI = sup Kn lan- t1
n:;:1

by Corollary 2 in (IV.3.5). Now observe that

whence the assertion.

Corollary 3. The map

"" (.) (cn
)f = L.,; Cn t-+-

n:;:O n Kn n:;:O

•

is an isomorphism between the normed spaces (Lip(Zp), 1I.liI) and [00, The
functions

1 and KnG) (n ~ 1)

correspond to the "canonical basis" of [00 .

Here, Kn (highest power of p that is less than or equal to n) is considered as an
element of Z p: Its absolute value is IKn I = 1/Kn E R >o.

?ROOF. Any f E C(Zp) is given by a Mahler series

When f is Lipschitz, we write this series

with

Cor. I
IIfliI = sup(lf(O)I, lI<1>fll) = sup Kn lcnl = sup Icn/Knl;

n:;:O n:;:O

hence the result. •
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1.6. Strict Differentiability 01Mahler Series

Theorem. Fora continuousfunction I = Lk:::OCk(i) E C(Zp), we have

!>ROOF. We have

<P/(x, y) = ~Ck (C) -G))/ (x - y),

and thanks to the lemma (in its weak form),

If kick! ~ 0, <PI is a continuous function as a sum of a unifonnly convergent
series with continuous tenns: The polynomial G) - min x and y vanishes identi­

cally on the diagonal x = y and is divisible by x - y, whence ((z) - m) /(x - y)
is also a polynomial function. _

It is possible to prove conversely

Corollary. Let I E S'(Zp) and SI its indefinite sum. Then SI E S'(Zp). •

With the preceding results, it is easy to construct examples of continuous func­
tions on Zp exhibiting various behaviors (as far as differentiability is concerned).

Example 1. Let the Mahler coefficients Ck of a continuous function I be

so that

{

p i

Ck = ° if k = pi,

if k is not apower of p,

Icdkl takes alternatively values 0 and 1.

Hence Icdkl does not tend to 0, thereby proving that I is not differentiable at the
origin. But <PI is bounded, since klckl (taking values 0 and 1 only) is bounded.

Example 2. As in the preceding example, but with

if k = pl ,

if k is not apower of p.
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Then

Ick!kl takes alternatively values 0 and Ipj I 4- 0,

so that f is differentiable at the origin. Here Ick!kl = klckl and f E Si.

2. Restricted Formal Power Series

2.1. A Completion ofthe Polynomial Algebra

Recall that in this chapter K denotes a complete extension of Qp. A formal power
series with coefficients in a subring R of the field K is a sequence (an)n~O of
elements of R. However, when we use the product

(an)n~O . (bn)n~o = (cn)n~O with Cn = L a.b, (n 2: 0)
i+j=n

we prefer the series representation feX) = Ln>OanXn instead of (an)n~O . The set
of formal power series is a ring and an R-algebra denoted by R[[X]] . Recall that
the formal power series ring with integral coefficients has already been considered
in (1.4.8); we shall come back to a more systematic study of formal power series
rings in (VI. I ). The particular formal power series having coefficients an -+ 0 are
called restricted formal power series, or more simply restricted (power) series.
The restricted formal power series with coefficients in K form a vector subspace
of K[[X]] denoted by K {X} and isomorphic to the Banach space co(K) (lV.4.I).
This subspace is a completion of the polynomial space for the Gauss norm - sup
norm on the coefficients -

K[X] C K {X} C K[[X]].

We still call Gauss norm the extension

IIf(X)1I := sup lanl = max lanl
n~O n~O

(f(X) = LanXn E K{X}) .
n~O

Lemma. For two restricted power series fand g, we have

IIfgll ~ IIflillgll·

!>ROOF. Let feX) = Ln>o anXn, g(X) = Ln>o bnXn be two polynomials. Their
product h = fg is the polynomial heX) = Ln>O cnX n having coefficients Cn =
Li+j=n aib]. Since Icnl ~ maxi+j=n laillbjl ~-lIflillgll,

IIfgll = max Icnl ~ 1If11l1gl1 (f, gE K[X]).
n~O

Hence multiplication is (uniformly) continuous in K[X] and extends continuously
to the completion K {X} with the same inequality. •
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Hence K {X} is a ring and a Banaeh algebra . This is the Tate algebra in one
variable over K.

As usual , we denote by A the maximal subring of K, M the maximal ideal of
A, and k = AlMthe residue field of K. The unit ball A{X} C K {X} is a subring,
since

1If11 ~ 1, IIgll .s 1 ==> IIfgll .s 1.

From this it follows that the reduction (IVA.3) of the Banach space K {X}, the
quotient of its closed unit ball by its open unit ball , is the polynomial ring over the
residue field

A{X}IM{X} = k[X].

Let IxI < 1 (x in K or K' : complete extension of K) and f = Ln>o anXn a re­
stricted formal power series. Then lanxnI --+ 0 (n --+ 00), so that f (x)~ Ln>oanx n

converges and f defines a funct ion on the unit ball of K (or K ') -

f : A --+ K : x 1-+ L anx n.
n,::O

The sup norm of this function satisfies

IIf11cb(A,K)= sup If(x)1 ~ sup lanl = IIf11K/X} .
A n,::O

In particular, the series Ln>oanx n converges uniformlyon the unit ball A, and f
defines a eontinuous function on this ball . The linear map

K {X} --+ Cb(A; K) : L anXn
1-+ f

n'::O

is a contracting map of Banach spaces.

Example. Let K = Qp and consider the polynomial (restricted formal power
series) X - XP of norm 1 in Qp{X}. Since xr == x (mod p) for a11 x E Zp , we
have Ix P -xl ~ Ipl = IIp when XE Zp and the norm ofthe continuous function
x 1-+ xt' - x on Zp is IIp < 1.

Theorem. lf the residue field k of K is infinite, the canonieal embedding
K {X} --+ Cb(A ; K) is isometrie :

sup If(x)1 = IIf11K/X}.
xeA

PROOF. If f = 0, then 11 f 11 = 0 and there is nothing to prove. Otherwise, we can
replace f by ffa; where lan I = 11 fII · Thus we may assume that 11 fII = 1. In this
case the image of fE A{X} in the quotient is a nonzero polynornial

fE A{X}IM{X} = k[X),
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and since the residue field k is infinite, we can find a E P with f(a) #- O. Taking
any a E A x C K x with residue cIass tx in k x, we have

lai = 1 and If(a)1 = 1,

whence SUPlxl:::l If(x)1 = maxlxl:::;l If(x)1 = maxlxl=l If(x)1 = 1 = IIf11. •

Theprecedingproofshowsmore: For fE K {X}, we have sup, Ifl = max., Ifl
in spite of the fact that the unit ball A is generally not compact. Moreover, the
maximum of If(x)1 (lxi ~ 1) is attained at a point x with [x] = 1.

Recall that we denote by A p the maximal subring of Cp (cIosed unit ball) and
by M p the maximal ideal of Ap (open unit ball) .

Corollary. We have

sup lanI = sup 12:::anx nI= max IL anx
nI'

n~O XEAp xeAp

and this maximum is attained on A; = Ap - M p, which is the unit sphere
IxI = 1 in Cp ' The canonical embedding

is isometric. •
2.2. Numerical Evaluation 0/Products

Let f(X) = Ln>o a.X" and g(X) = Ln>o bnXn be two restricted power series .
Their formal product is the power series -

h(X) = L cnXn,

n~O

where

cn = L aibn-i (n 2: 0) .
O:::;i:::;n

As we have seen in the previous section , it is again a restricted power series .

Theorem. Let f(X), g(X) E K {X} be two restricted power series and let h(X)
be their formal product. Then h(X) E K{X}, and the evaluation ofthisformal
product can be made according to the usual product

h(x) = f(x)g(x) (jx] ~ I).

PROOF. Replacing anxn by an and similarly bnxn by bn, we see that it is suffi­
cient to prove the statement for x = 1. With Cn = LO:::;i:::;n aibn-i we have to
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prove
if Ln:::oan and Ln:::obn converge, then Ln:::oCn converges and

Beeause multiplieation is eontinuous,

.La; . .Lbj - .La; . .Lbj -+ 0 (N -+ (0).
;:::0 n» ;:::;N j:::;N

Let us show now that

Choose Ne large enough to ensure

Now the differenee

is the sum ofthe terms a.b, eorresponding to pairs (i, j) in the square 0:::: i, j :::: N
above the diagonal, namely with i + j > N . The eontribution of these terms is
less than or equal to sC if Cis an upper bound for the eoeffieients and N 2: 2Ne

beeause at least one index i or j will be greater than or equal to Ne. This proves
the theorem. •

Observe that the classical result eoneeming absolutely convergent series eannot
be applied here, sinee we only assume lanI -+ 0 and Ibn I -+ 0 (but L lanI andlor
L Ibn Imay diverge). On the other hand, due to the ultrametrie inequality, it is now
easier to estimate tails of sums!

Corollary. The canonical map K {X} -+ Cb(A; K) is a norm-decreasing ho­
momorphism of K-algebras. •

This isomorphism is isometrie when the residue field k of K is infinite (and also
when IK x I is dense in R:::o, as we shall see later (VI.1.4». The identifieation of a
restrieted formal power series f(X) with the funetion f that it defines on the unit
ball A will often be made.

2.3. Equicontinuity ofRestricted Formal Power Series

Let us still identify K {X} with a normed subspaee of Cb(Ap; Cp)' With A =
B:::;l (K) as usual ,

sup If(x)1 :::: IIf11KIXI := sup lanl = sup If(x)1 (f = .L a.X" E K {X}).
xeA n:::O xeAp
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Proposition 1. The unit ball in K{X} is unijonnly equicontinuous. More pre­
cisely, K{X} C Lip(A)and lI<1>fII ~ 1If111 ~ IIf11for fE K{X}. Inparticular;

If (x + h) - f(x)1 s Ihillfli ijlxl s 1and Ihl s 1.

PRooF. Write f = L anXn, so that

f(x) - f(y) = I>n(Xn - yn) = (x - y) I>n(Xn-1+ ...+ yn-I).
n~O n~1

If [x] ~ 1 and Iyl ~ I, the ultrametric inequa1itygives Ixn - I + ...+ yn-II ~ I,
and the result folIows. •

In a simi1arvein, let us derive the following inequa1ities.

Proposition 2. If f E K {X}, then

If(x + y) - f(x) - f(y) + f(O)1 ~ 1If11 . Ixyl (lxi ~ I, Iyl ~ 1).

Ifmoreover f is odd, then

If (x + y ) - f(x) - f(y) 1~ 1If11 . Ixy(x + y)1 (lxi ~ I , lyl ~ 1).

PROOF. With the same notation as before,

f(x + y) - f(x) - f(y) + f(O) = Lan«x + y)n - x n _ yn)) ,
n~2

whence the result, since each term (x + y)n - x n - yn is divisible by xy. When f
is odd,

f(x + y) - f(x) - f(y) = L an«x + yt - x n _ yn)).
n odd ~O

On1ythe terms with n odd and greater than or equa1 to 3 remain in the sum, and
for these

(x + yt - x n - yn = xy(x + Y)Pn(x)

for some integral polynomials Pn E Z[X) . Hence 11 Pn 11 s 1. •
Remark. Although it is uniformly equicontinuous, the unit ball of Cp{X} is not
precompact in Cb(Ap ; Cp ) : The Ascoli theorem is not applicable, since Ap is not
locally compact. For example, the infinite sequence (xn)n~O satisfies

IIXn-Xmll=l (ni-m)

and hence contains no convergent subsequence . However, if we consider the re­
striction of these continuous functions to the (compact) unit ball R of a finite
extension K of Qp, the preceding sequence admits a convergent subsequence,
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namely ix« )m>O, where q is the cardinality of the residue field of K . In fact, the
subsequence cipn!) converges uniformlyon every unit ball B=:;I(O; K), provided
that K has finite residue degree over Qp (111.4.4).

2.4. DifferentiabilityofPower Series

The formal derivation operator f f-+ f' is continuous and contracting on K {X}

simply since InanI ::::: lanI~ 0 and

IIf'lI = sup Inani::::: sup lanl = IIf11.

We are interested in strict differentiability; hence we look at the differential
quotients

cI>f(x, y) = fex) - f(y) (x:/= y).
x-y

When f E K {X}, Proposition 1 of (2.3) shows that

cI>f(X, Y) = I>n L Xn-1-iyi
n2:1 O::Si=:;n-1

is a formal power series in two variables and coefflcients tending to zero. Thus
cI>f has a continuous extension to A x A that is a sum of a uniformly convergent
power series (in two variables). The value on the diagonal is

cI>f(X, X) = LnanXn-l .
n2:1

This proves the following result.

Theorem 1. Let f E K {X} . Then f defines a strictly differentiablefunction on
the unit ball A of K : fE SI(A). The derivative of fis given by the restricted
formal power series

t' = cI>fL~ = LnanXn-1
E K{X}.

n2:1

It is easy to give more precise estimates for the convergence:

cI>f(x, y) - Lnan~n-l = Lan(Xn - yn)j(x - y) - Lnan~n-l
n2:1 n2:1 n2:1

= Lan(Xn-1+ .. . + yn-l _ n~n-l) ~ 0
n2:1

when (x, y) ~ (~ , ~) . In fact,

(x n-l +...+ yn-l _ n~n-l) = L (x iyi _ ~n-l) ,

i+j=n-l

•
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and by (2.3),

Ixiyj _~n-ll = Ixiyj _~i~jl

~ max(lxillyj _~jl, lxi _~ill~jl)

~ rnax (Iy - ~I, Ix- ~I) (x, y, ~ E A).

We have obtained

I<l>f(x, y) - f'(nl ~ 1If11 .maxtjy - H Ix- ~I).

Theorem 2. A restricted formal power series f = L anX n defines a twice
strictly differentiablefunction on the unit ball A of K: f E S2(A).

PROOF. As we have seen in the proof of the preceding theorem,

<l>f(x,y) = I>n L xiyj =aj +a2(x+y)+ "',
n~l i+j=n-l

and hence, for distinct x, y, z,

'" f( ) - <l>f(x, z) - <l>f(y, z)
'!'2 x, y, Z -

x-y

Since lan I~ 0, this series converges uniformlyon A x A x A and represents a
continuous extension of ep2f . •

Generalization. Let us just indicate here that differentiability of restricted power
series is not lirnited to order two. In fact, one can define higher-order difference
quotients inductively by

(xo i= xI>. The expressions <l>kf are symmetric in their k + 1 variables, and an
easy computation shows that

<l>kf(xo, Xl,"" Xk) = L
i

Taking fex) = x N we obtain

<l>kf(xo, Xl, . . . ,Xk) =



240 5. Differentiation

a sum of all homogeneous monomials of total degree N - k. In this case <I>k f has
an obvious extension to the diagonal (all x, = X):

<I> f( ) = N-k • # { monomials of degree N - k }
k x, x, .. . , X X in k + 1 variables

= (N)XN- k = (xN)(k).
k k!

The equality <l>d(x,x, . . . ,x) = f(k)(x)lkl remains true by linearity when f is
a polynomial or even a restricted series. These functions are of dass Sk on A.

2.5. Vector-Valued Restricted Series

Let E be an ultrametric Banach space over K. A restricted vector series (with
coefficients in E) is a formal power series

f(X) = I>n X n,
n":O

where an E E, lIan 11 ~ O. We can still define the Gauss norm of such a restricted
series f by

IIfll := sup lIanll·
n,,:O

Hence the normed space of restricted vector series (with coefficients in E) is a
Banach space isometrie to coCE). If the indetenninate X is replaced by a variable
X E A C K, the restricted series Ln>o anXn gives rise to a continuous vector­
valued function f :A ~ E , which wecan write as f(x) = Ln>oxnan (not that
it matters, but we may prefer to write scalar multiplications on the left), for which

sup IIf(x)1I ~ sup 11an 11 = IIf11 ·
lxi:;:) n,,:O

That is, the linear map co(E) ~ Cb(A, E) is continuous and contracting.

Proposition. When the residue field k of K is infinite, the canonical map
co(E) ~ Cb(A, E) is an isometry.

PROOF. Assume IIfll = c > 0 and look at the A-module B<c(E): Its quotient
E = B<c(E)1 B<c(E) is a vector space over k = AlM. The ~estricted series f
with c~fficients in B:;:c(E) has a polynomial image 1 = LQ;;Xn having at least
one nonzero coefficient, since IIfll = c. We can choose a k-linear form cp on
E such that cp(Q;;) =1= 0 for such a coefficient . The scalar polynomial cp 0 1 =
L anXn = L cp(a,,)Xn is not identically zero and there is an element a E P such- -that sp 0 f(a) =1= O. A fortiori f(a) =1= 0 and IIf(a)1I = c for every a E A, a in the
coset a (mod M). •



3. The Mean Value Theorem 241

3. The Mean Value Theorem

3.1. The p-adic Valuation 01a Factorial

Since the fonnula for the p-adic order of n! willplay an essential role, we review
it.

Lemma. Let n ::: 1 be an integer and let Sp(n) be the sum 01the digits 01n in
base p. Then the p-adic order 01n! is given by

, n - Sp(n)
ordp(n.) = .

p-I

PROOF. We have to compute

ordp(n!) = L ordp(k).
l ::;k::;n

Let us fix an integer k ::: n say with order ordp(k) = v and write its expansion in
base p:

k = kcp" + ...+ktpt (v::: i, k; =I- 0).

Then

and hence

Sp(k - 1) = v(p - I) + Sp(k) - 1.

Equivalently,

1
v = ordp(k) = --(1 + Sp(k - 1) - Sp(k» .

p-l

Summing over all values of k ::: n we obtain a telescoping sum

1 1
ordp(n !) = - - L (1 + Sp{k - 1) - Sp(k» = --(n - Sp(n» . •

p - 1 l::;k ::;n p - 1

ALTERNATNE PROOF. A more traditional way of obtaining the same fonnula goes
as follows . The number of integers k with fixed v = ordp(k) that appear in the
product n! is equal to the number of multiples of pV that are not multiples ofr: 1

(and are less than or equal to n), namely

[;v] - [p~+l ],
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where [x] denotes the integral part of the real number x. Hence

ordp(n!) = ~ v ([;v]- [p~+' ])

= [~] + [;2]+ [;3]+ ... = fu [;j l
Let us write n in base p as n = no + tu p + n2p2 + (a finite sum). Then

[~] =n,+n2P+ n3p2+ ,

[;2] = n2 + n3P + n4p2 + ,

Hence

Summing all these, we obtain

n + ordp(n!) = Sp(n) + p ordp(n!),

n - Sp(n) = (p - 1) ordp(n!)

and the result folIows . •
3.2. First Form 01the Theorem

As already recalled in (2.1) the field K is assumed to be a complete extension of
Qp (e.g., Cp or Qp). Even for polynornial functions f, the following form of the
mean value theorem,

If(h) - f(O)1 ::: Ihl . 1If'lI

does not hold without restrietion. Recall that for polynomials f (or more generally
for restricted power series), we use the sup norm on the coefficients (Gauss norm).
If the residue field of K is infinite, this norm coincides with the sup norm of Ifl
on the unit ball of K (2.1).
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Forexample, if f(t) = t", wehave f'(t) = pt p - l ; hence IIf'lI = Ipl = l/p < 1.
And with h = 1,

1 = IfO) - f(O)1 > Ihl·llf'lI = l/p.

However, we show below that there is a universal bound (depending on the prime
p but not on the restricted series f) such that the mean value theorem holds for
Ihl :::: rp ' The preceding example can be used to discover the limitation in size of
the increment h. In order to have

If(h) - f(O) I :::: Ihl· IIf'lI

in this particular case, we must have

IhIP :::: Ihlllf'lI = Ihllpl,

whence the restriction Ihl :::: Ipll/(p-l).
Let us recall that we have introduced a special notation (11.4.4)for this absolute

value:

rp := Ipll/(p-l) , Ipl:::: rp < 1.

It will play an important part from now on. Observe that

rz = 4, rp > * (p odd prime),

and also rp /' 1 when the prime p increases (whereas Ip I = 1/p ~ 0).

Theorem. Let f(X) E K {X} be a restricted power series and also denote by
f the correspondingjunction t t-+ f(t) = Ln>o ant n on the unit ball A of K.
Then -

If(t + h) - f(t)1 :::: Ihl . IIf'lI

forall t, h e K with [r] :::: land Ihl :::: rp = Ipll/(p-l).

FIRST PROOF. (1) Let us establish first the result for a polynomial f . The Taylor
formula permits us to compute the difference f(t + h) - f(t) as

Dkf(t) hk- l
f(t + h) - f(t) = I>k . -- = h L - .tr:' f'(t),

k~l k! k~l k!

so that

I
hk- l lItl:::: 1 ==> If(t + h) - f(t)1 :::: Ihl sup - IIDk-1 f'lI .

k~l k!

Since

"Dfll = IIf'lI = sup Ikakl :::: sup lakl = 1If1l,
k~l k~O
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we see that IID 11 ::: 1, IIDk ll -s 1 (k::: 1). In particular, 11 Dk-l 1'11 s 11/'11 and

k 1 k-s-co11 D - 1'11 ::: sup lanI ----+ 0 ( = 0 for k > deg f).
n~k

The result will be proved if we can show that Ihk- 1/ k! 1 ::: 1 (for aIl k ::: 1). This
condition for k = p requires Ihlp- 1 ::: Ipl, i.e., Ihl ::: rp. When it is satisfied, we
have

Ihlk-1 ::: Ipl(k-l)/(p-l) s Ik!l,

simply since

k - S (k) k - 1
ordp(k!) = P::: __.

p-l p-l

(2) Consider now the general case of a restricted series I(t) = Lk>O aktk.
Without loss of generality we mayassume I/(t + h) - l(t)1 #- 0, hence I not
constant. Consider the polynomiaIs In (t) = Lk::;n aktk . We have

111 - In 11 = sup Jakl ---+ 0
k>n

as weIl as

11 In 11 = sup Jakl = IIf11,
k~n

1I/~1I = sup II kakll = 11/'11
k::;n

for aIl large n. Take t and h as in the first part. The convergence

In{t + h) - In(t) ---+ r«+ h) - I(t) i= 0

implies Iln(t + h) - In{t)1 = I/(t + h) - l(t)1 for aIl large n. Hence, using such
a large value of the integer n, and using the result for polynomials, we have

I/(t + h) - l(t)1 = I/n(t + h) - In (t)1::: Ihl . 1I/~1I = Ihl . 11/'11· •

SECOND PROOF. Let us observe that

so that the operator D k
/ k! transforms polynomials with integer coefficients into

polynomials with integer coefficients: 11 tr /k! 11 s 1, 11 Dk 11 s Ik! I ---+ O. Better
still: Ifg is any restricted series, it is obvious that 11 D k (g)/ k! 11 ---+ 0, since the first
k coefficients of g are destroyed by the operator D k (while the other coefficients
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of g are multiplied by integers under the effect of the operator D k / k !) . Coming
back to the expression

hk- I Dk-I/'(t)
I(t+h)-/(t)=hL-'-~-

k::I k (k - I)!

we see that the mean value theorem will be proved if we show Ihk - 1/k I .::: 1. For
k = p this condition requires Ih l .::: IpII/(p-1) = rp as before. When it is satisfied,
take an integer k, put v = ordp(k), and write k = pVm ~ p" , We have

The exponent is

pV- 1 v I
/-L = --1 - v = (1 + P + ...+ p - ) - v ~ 0,

p-

and the proof is completed.

Remark. Let E be an ultrametric Banach space over K and

•

a restricted power series with coejjicients in E. Then we can view 1 as the vector­
valued function

on the unit ball A of K (2.5). Then the mean value theorem immediately fumishes

II/(t + h) - l(t)1I .::: Ihl . 111'11

for all t , h E K such that Itl .::: 1 and Ihl .::: rp = IpII/(p-l). In fact, simply replace
in the above proof lakl by lIakil, I/(t)1 by II/(t)lI, etc. whenever necessary.

3.3. Application to Classical Estimates

Let us apply the mean value theorem (3.2) to the polynomials I(t) = (1 + iv:

(n ~ 1). Since /,(t) = pn(1 + t)pn_ I , we have 11/'11 = Ipnl and hence

1(1 + t)pn - l] .::: Itl ·lpnl for Itl .::: rp.

Recall that the fundamental inequality (III.4.3) in its second form gives

1(1 + t)pn - 11 .::: It l . (max (Itl, IpDt ,
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hence the same inequality only when [r] ::: Ipl. Since

1/p = Ipl ::: rp < 1

with strict inequalities for all p ~ 3, the meanvalue estimate is sharper for odd
primes (in the indicated region).

1 -------------------------------------

o 1 r=lxl

An application of the mean value theorem

With the Newton polygon method (VI.l.6) we shall be able to compute more
explicitly these absolute values 10 + iv: - I], Let us simply observe now that
this absolute value vanishes when (1 + t)po = 1, namely when 1 + t E I-Lp". The
smallest Itl for which this occurs is 1 + t E I-Lp, and as we have seen in (II.4.4),
this implies [r] = Ipll/(p-l) = rp •

Let us give another application to binomial coefficients. Define successively two
polynomials g and 1 (having integral coefficients) by

(1 + X)P = 1+ p : g(X) + XP,

I(t) = (1 + tg(X) + XP)n,

so that

1(0) = (1 + XP)n,

I(p) = (1 + x)pn.

Here we consider I: Qp ~ E, where E C Qp[X] denotes the finite-dimensional
subspace consisting of polynomials of degree less than or equal to np. The mean
value theorem (vector form) leads to an estimate of the norm of
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Since lIf'II ::'S Inl, we have IIf(p) - f(O)II ::'S Inpl and in particular, looking atthe
coefficient of X pk

(ppnk) -_- (nk) (mod npZp ) .

On the other hand, when j is not divisible by p , the coefficient of X j satisfies

(n;) == 0 (mod npZp ) .

This last congruence was obvious apriori, since

(np) np (np - 1). = -:- . E npZp •
J J J - 1

3.4. Second Form of the Theorem

Let us give a closely related form of the mean value theorem for series converging
in M C A C K . Assume that f(t) = Lk>Oaktk converges whenever Itl < 1.
More precisely, let us assume that the coefficients ak E K satisfy

lakirk -+ 0 for all positive real numbers r < 1.

The variable t itself can be taken in the field K or any extension of this field, e.g .,
in C p. When r E M p we can considerthe restricted series Ir E Cp{X} defined by

f,(X) = I>k<kXk.
k:::O

If Itl < 1 we have f(t) = f,(tj<) as SOOn as the element r E M p is chosen such
that Itl ::'S ITI < 1. Obviously :

f'(t) = f;(tjT) and
r

sup If'(t)1 = IIf;II.
Itl:::I,1 ITI

The mean value theorem for the restricted series f, now gives

Equivalently,

If(t + h) - f(t)1 ::'S Ihl· sup If'(t)l·
ItI::: [r ]

All this is valid whenever Ih j r I ::'S rp for some T E M p • We can find such a T E M p

exactly when Ihl < rp • Let us summarize this result in the case K = C p , using
the notation

Ilgl/<l := sup Ig(t)1 (::'S 00).
Itl<1
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Theorem. Let fE Cp[[X]] be aformal power series that converges in the open
unit ball M p • Assume that IIf'II<1 < 00. Then we have

If(t + h) - f(t)1 ~ Ihl . IIf'II<1

forall tE M p and Ihl < rp • •
In this case, the mean value theorem holds in M p for increments h e Cp satisfy­

ing Ih l < rp (notice the strict inequality). Examples ofthis situation are given by
power series f E Zp[[X]] (or more generally in A[[X]]): IIf'II<1 ~ 1. Take for
instance f = Lk>O X k = 1/(1- X). For all lr] < 1 we have If(t +h) - f(t)1 =
Ihl/I(1 - t)(1 - t -=- h)1 = Ihl (t, h E M p), simply since 11 - r] = 11 - t - hl = 1
the strongestwins! Here If'(t)1 = 1/ll-tI2 = 1 and IIf'II<1 = 1.

3.5. A Fixed-PointTheorem

Theorem. Let K be afinite extension ofQp, R = B~I(K) its closed unit ball,
and f E K {T} a restrictedformal power series with 11 fII ~ 1. Assume

IIf'lI < 1 and inf If(x) - x] ~ rp = Ipll/(p-I) .
xeR

Then f has afixed point in R.

PROOF. The function f defines a continuous map from the unit ball R of K into
itself. Since IKxl is discrete in R>o (we are assuming that the field K is afinite
extension ofQp), thereis a point xj E R with If(xo)-xol ::::; "»:Defineinductively
Xn+1 = f(xn) for n ::: O. By the mean value theorem,

IXn+1 - xnl = If(xn) - f(Xn-I)1

~ IXn - xn-II . IIf'lI ~ IXn - xn-II,

and we see by induction that Ixn+1 - XnI ~ rp (n ::: 0). If Xn = Xn-I for one
positive n, we are done . Otherwise, IXn - xn-I I :1= 0 for all positive integers, and
as before,

IXn+1 - xnl = If(xn) - f(Xn-I)1

~ IXn - xn- I1 . IIf'lI < IXn - xn-d ~ rp.

The strictly decreasing sequence IXn+1 - X n I in the discrete subgroup IK x I c R>o
has to tend to 0: (xn ) is a Cauchy sequence. The limit of this sequence is a fixed
point of f in R. •

Comment. To show that the hypotheses are necessary, let us consider the function
f(T) = TP + 1 E Qp[T] C Qp{T}. We have

f'(T) = pTP-I, IIf'lI = ~ ~ rp < 1.
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This function I has no fixed point in the unit ball Zp of Qp. In fact,

I(x}-x =xp -x+ 1 == 1 (mod p) (x E Zp)

so that infxezp I/(x} - x] = 1, and the second assumption of the theorem is not
satisfied . (However, x p - x +1 = 0 certainly has a root in a suitable finite extension
of Qp, and I has a fixed point in the unit ball of such an extension.)

3.6. Second-Order Estimates

Let us keep the notation of the general mean value theorem (3.2).

Theorem. We have

I/(t + h} - I(t} - I'(t}hl ~ Ih2/21 . 11/"11

whenever t, h E K satisfy [r] ~ 1 and

Ihl ~ 1.J21 if p = 2, Ihl ~ Ipll/(p-2) if pis an odd prime.

?ROOF. As in (3.2), it is enough to prove this theorem for polynomials. Let us write
the Taylor series of I at the point t:

I(t + h} - I(t} - I'(t}h =L hk
• D k I(t}/ k!

k?:2

hk - 2

= h2 L - .Dk
-

21"(t }
k?:2 k!

2 hk - 2 D k - 2 I"
= h fu k(k - l} . (k _ 2)! (t).

As in the proof of the mean value theorem (3.2) we have

11

D
k

-
2

/ " 11(k _ 2)! .s 111"11 (k 2: 2), and

(I) For p i= 2 it only remains to prove

11

Dk-2I" 11 ~ 0 (k ~ oo).
(k - 2)!

I
hk-2 I

k(k _ I} ~ 1 (k 2: 2).

For k = p this requires Ihp- 2
1 ~ Ipl, which is the condition given in the theorem.

When it is satisfied, if v = ordp(k} 2: 1, we have k 2: pV and Ik - 11 = 1, whence
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with an exponent

pV _ 2 pV_1
e=----v>---v>O

p-2 -p-1 -

(the linear fractional transformation x t-+ pV_
x increases when x < p - verti-p-x -

cal asymptote - since for x = 0 it takes a va1ue pv-l ::: 1 above the horizontal
asymptote). In the case v = ordp(k - 1) ::: 1, we have k ::: p" + 1, and the
preceding estimates are satisfied. Finally, when ordp(k - 1) = ordp(k) = 0, we
have /k(k - 1)I = 1, and the proof is complete.

(2) In the case p = 2, we take a factor h2/2 in front of the above Taylor
expansion, and it only remains to prove

I
hk-2 I

k(k - 1)/2 ~ 1
(k ::: 2)

for Ihl ~ 1.J21. For k = 4 this already requires Ih2/21 ~ 1, which fumishes
the restriction Ih l ~ 1.J21. Conversely, assume that this condition is satisfied. For
v = ord2(k) ::: 1,

k ::: 2v and Ik(k - 1)/21 = /2Iv-
1

,

whence

I
hk-2 I Ih12v

-
2

< -- < 1212V- ' - 1- (v- l ) = 121e .
k(k - 1)/2 - 121 v - 1 -

Since we are assuming v ::: 1, the exponent e is equa1 to 2v- 1 - v ::: O. One can
treat the case v = ord2(k - 1) ::: 1 in a similar way. _

Comment. The condition on the absolute value ofthe increment /hl is less restric­
tive for p = 2, but the inequa1ity is also weaker in this case, since the denominator
2 in Ih2/21is important (it is irrelevant for odd primes p).

Corollary. Let K be afinite extension ofQp, R its ring ofintegers with maximal
ideal P. For n E N (or even n E Zp), we have

(1 + x)n == 1 + nx (mod pnxR)

as soon as xE 2pR.

PRooF. We take f(T) = (1 + T)n , so that

f "(T) = n(n - 1)(1 + T)n-2 (n::: 2),

111"11 = In(n - 1)1 (n::: 0) .
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For [x] s Ipl l/(p-2 ) (resp. ~ 1.J21 if p = 2) we have

1(1 + xt -I-nxl ~ 1~21 '1If"1I ~ Inxl·I~I ·

Since Ix121 ~ Ipl when x E 2pR, the preceding inequality fumishes the expected
statement. •

This corollary gives the fourth form of the fundamental inequality, mentioned
in (IIIA.3) .

4. The Exponential and Logarithm

4.1. Convergence 01the Defining Series

Theorem. The series Lk>1(-ll-1xk1k converges precisely when Ix I < 1.
The series Lk~Oxklk! converges precisely when lxi< r p = Ipll/(p-l).

!'ROOF. Since Ikl = 1 for all integers k prime to p , in order to have convergence
of the first series, the condition Ixk1kl ~ 0 implies [x] « 1. Conversely, when
lxi< I,

For the second series

I~: 1= Ixlklpl-ordp(k!) = Iplkoordpx-ordp(k!),

we use (3.1) for the p-adic valuation of factorials. The exponent is

(
1 ) Sp(k)

k ordp(x) - -- +--.
p-I p -I

Since Sp(k) = 1 when k = p! (j 2: 0) is apower of p , we have

k (ordp(X) - _1_) ~ 00,
p-I

and this happens precisely when ordp(x) - P~l > 0, namely when

1
ordp(x) > --, [x] « Ipll/(p-l )

p -I

as asserted. •
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By analogy with the classical case, we shall write

xk
log(l +x) = L(-ll-1

- ,

k~l k

xk

eX = exp(x) = L -
k~O k!

for the sums of these series whenever they converge. Strictly speaking, we should
mention the dependence on the prime p and, for example, write logp(l + x) and
expp(x).

Comments. (I) In the p-adic domain, the exponential function is not an entire
function: The convergence of the exponential series is limited by the radius rp:

rz = t and 1; < rp < 1 (p odd prime),

which we have already encountered as a limitation for the increments in the mean
value theorem (3.2) and (3.4). A heuristic explanation for this apparent coinci­
dence is fumished by the Taylor series, when expressed in terms of the differential
operator D = d j dx. Quite formally, we have

hk tr f(x)
f(x + h) = L = exp(hD)(f)(x).

k~O k!

On polynomial functions, or more generally on restricted power series , we have
seen that IIDII = I , so that the series for exp(hD) converges for Ihl < rp (as
we have just seen) . However, observe that the first form (3.2) of the mean value
theoremholds even up to Ihl :::: rp • In the classical case, the exponential is an entire
function, and there is no limitation for the size of the increments in the mean value
theorem.

(2) Since lxi< r p < 1 is required for convergence of the exponential, there
is no number e = exp(l) defined in Qp. For p 2: 3, however, rp > Ijp = Ipl,
and exp(p) is well-defined by the series: One could select a definition of a number
e = ep as a pth root of exp(p). Similarly, when p = 2 one could define e as fourth
root of exp(4). However, there is no canonical choice for these roots.

(3) The series defining the functions log and exp have rational coefficients.
Hence for each complete extension L of Qp,

XE B<I(L) ==} 10g(1 + x) E L,

xE B<rp(L) ==} ~ = exp(x) E L.

4.2. Properties 0/the Exponential and Logarithm

Proposition 1. For Ix I < r p we have

Ilog(l +x)] = [x], Iexp(x)1 = I, I1 - exp(x)1 = IxI.
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PROOF. For k ::: 1 we have Sp(k) ::: 1 and hence ordp(k!) ~ (k - 1)/(p - 1). We
infer

k-I k 1Ikl ::: Ik!1::: Iplp-I = rp- ,

Ixk /kl ~ Ixk /k!1 ~ (lxl/rpi-1 'Ixl < [x] « 1

for k ::: 2 and 0 < IxI < ri- Hence the absolute values of the terms in the series

x k

1+ x + L - = exp(x),
k~2 k!

x k

x + L(-ll-1
- = log(l +x)

k~2 k

are strictly smaller than the first ones. By the ultrametric character of the absolute
value, the strongest (we underline it!) wins:

exp(x) =1+ x +L '" ==> Iexptx)] = 1,
k~2

exp(x) - 1 = :!.+L " .==> Iexp(x) - 11 = [x],
k~2

log(l + x) =:!.+L'" ==> Ilog(l +x)] = [x]
k~2

if lxi< rp • •

Corollary. The only zero of log(l + x) in the ball IxI < rp is x = O. •

In fact, we shall prove a stronger result:

X 1-7 log(l + x) is injective in the ball B<rp '

Proposition 2. For two indeterminates X and Y, we have thefollowingformal
identities:

exp(X + Y) = exp(X) . exp(y),

logexp(X) = X,

explog(l + X) = 1+ X.

PRooF. The first identity is easily obtained if we observe that the product of two
monomials Xi /i! and yi /j! is

Xiyi = (i + j) Xiyi .
i!j! i (i+j)!
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Grouping the tenns with i + j = n leads to a sum (X + Y)n [n) . Let us turn to the
second identity. In the series log(l +X) = Ln>1 anXn we would like to substitute
X = eY - 1 = blY + b2y 2 + ... (bI = l).-We have to expand the following
expression and group the powers of Y:

L an (bI Y + b2y 2+ ..r = L Cny n.
n~1 n~1

Here are the first coefficients:

CI = aib«, C2 = alb2+a2bf , C3 = a lb3 + a2 . 2b lb2 +a3bi·
More generally, we see that

Cn = aib; +a2(· · ·) +...+ an-I (...) + anb~.

For 2 ::: j ::: n -1 the coefficient of aj is a polynomial in b l , • • • , bn- I with integral
coefficients (of total degree j) . The problem is to evaluate the polynomials Cn at
the rational values

1
bn = - (n::: 1).

n!

The result of this computation is known: Identical computations are classically
made for the substitution of the real-valued power series x = eY - 1 in the real­
valued log(l + x) (convergent for lxi< 1). But it is established in any calculus
course that the result is 10g(eY ) = y. Hence all evaluations of the polynomials Cn

vanish for n ::: 2, and the expected formula is proved. The third identity is treated
similarly. _

Remark, The preceding proof is surprising: It relies on real analysis for a purely
formal result that is applied to p-adic series. It was our purpose to deal with the
exponential and logarithm function in an elementary way - before treating power
series systematically - and thus we had to give an ad hoc proof for this inversion.
But a more systematic treatment of formal power series will give us an opportunity
to present an independent proof of this property with no reference to real analysis
(VI.1).

Proposition 3. For lxi< rp and Iyl < rp we have

exp(x + y) = exp(x) . exp(y),

logexp(x) = x,

explog(l + x) = 1+ x .

PRooF. Observe first that if an and bn -+ 0, then the family (anbm)n.m~O is sum­
mable. In particular, its sum is independent of the way terms are grouped before
summing. Hence the first identity holds as soon as the variables x and y are in the
domain of convergence of the p-adic exponential

exp(x) . exp(y) = exp(x + y).
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Let us check the second identity : We have to show that it is legitimate to substitute
a value x E C p' IxI < rp in the formal identity

X = log eX = log(l + e(X» ,

where

Xn

e(X) = L - = eX
- 1.

n;::l n!

The substitution in the sum can be made by addition of two contributions:

x ~ [~(_;:-I e(x)"L +[1 (_:-1 e(X)"'L
In the firstfinite sum, the substitution can obviously be made in each term accord­
ing to

(

2 )nn X n
e(X) Ix=x = x + 21 + ... = e(x)

Since le(x)1 = [x] « rp < 1, we have

(_ l)n- lL e(xt ~ log(l + e(x» = log eX

n~N n
(N ~ 00) .

The proof of the second identity will be completed if we show that the second
contribution is arbitrarily small (for large N). But when [x] « rp ' each monomial
appearing in the computation of e(x) satisfies lxi / i !I < rp (because i 2: 1),
and each monomial appearing in the computation of e(xr has an absolute value
less than r; .All individual monomials appearing in the evaluation of the second
contribution Lm>N •.• have an absolute value smaller than

I
(_l)m-ll m

sup rp '
m>N m

Since the power series for the logarithm converges, it is possible to choose N large
enough to ensure that all lI/m ir; (m > N) are arbitrarily small and that the same
holds for their sum (independently of the groupings made to compute it). Again,
the verification of the third identity is similar. _

Corollary. (a) The exponential map defines an isometriehomomorphism

exp : B<rp ~ B<r/1) = 1+ B<rp C C; .

(h) The homomorphism log : 1 +M, ~ Cp is surjeetive.

PROOE (a) The fact that the exponential map is injective in its domain of definition
results from the equality log e' = x . Better still, the exponential is an isometry:

I~ - eYI = leYllex
-

y
- 11 = lex

-
y

- 11 = [x - yl·
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The inverse of the isometry

is the restrietion of the logarithm to the ball B<r/l) C 1 +M p • In particular, we
have

10g(1 + x)(1 + y) = 10g(1 +x) + 10g(1 + y) (x, y E B<rp ) '

But the power series

f(x, y) = log(l +x)(l + y) -log(1 + x) -log(1 + y) = L amnxmyn
n,m?;:O

converges for lxi< 1 and lyl < 1. Since

a
m

+
n
f Im!n!amn = = 0,

amxany (x,y)=(O,O)

we conclude that the logarithm is a homomorphism in its ball of convergence:

10g(1 +x)(l + y) = log(l + x) + log(l + y) (x, Y E B<l)'

(b) If x E Cp , choose a sufficiently large integer n in order to ensure that
Ipnxl < rp • Hence

pnX = log exp v"x, X = log ~

for a pnth root ~ E 1 + M p of exp p" X E I + M p (1lI.4.5).

.. ' ..... 1+8<r

- i

The unit ball in es

•
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Theorem. The logarithm defines a homomorphism log: 1+ M; ~ C p • Its
kernet is the subgroup t-Lpoo, Its restrietion to I + B <rp is an isometry (hence
injective).

PRooF. There only remains to establish the statement concerning the kernet of the
logarithm. Let x = I + tEl +M p be in this kernel. We know that x P• ~ I
(whenn ~ oo)(IIIA.5: Proposition 2). Taken large enough so that Ix P• -li < r p •

Since xP" is still in the kerneI, we now have x P• = I by the corollary of the first
proposition. •

4.3. Derivative ofthe Exponentialand Logarithm

The exponential and logarithm are strictly differentiable functions in their disk of
convergence (204), and

, kxk- I Xk- I

[expx] = L -k-'- = L (k _ 1)' = expx,
k:::1 • k:::1 •

kx k - I 1
[log(1 +x)]' = L(-I)k-I-

k
- =L(-ll-l xk- 1 =--.

~I ~I I+x

Proposition. Let t E M p • Then, the derivative of

X Ho (1 + tY : Zp ~ Cp

at the origin is 10g(1 + t).

PROOF. By definition, we have a Mahler expansion

(1 + tY = Ltk(X) (x E Zp),
k:::O k

since t E M p C C p • We deduce

(1 + .r - 1= L tk(X) = L ~ (X - 1) .tk,
k:::1 k k:::1 k k - 1

(1 + tY - 1 = .L (X - 1) t
k,

X k:::1 k - 1 k

(1 + tY -1 -log(1 + t) = L ((x -1) _ (-ll- l ) t
k

•

X k:::2 k - I k
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When [r] < 1 we know that t k j k -+ 0, whereas

(
X - 1) -+ (-ll-1 when x -+ 0 (k ~ 1).
k-l

This proves that

(1 + tY - 1
---- -+ 10g(1 + t) (x -+ 0 in Zp)

x

unifonnly in ton any disk B<r C Cp ofradius r < 1.

Comment. We can write

(djdx)x=o (1 + t)X = 10g(1 + t),

•

where the derivative is the limit of difference quotients taken with respect to
increments in Zp. When 10g(1 + t) 1= 0 and Ihl is small enough, we have

1

(1 + ti - 11
h = Ilog(1 + t)l ·

This provides an improvement of the second form of the fundamental inequalities
(111.4.3), in the region rp < It I < 1. But [Iogt l + t)/ is arbitrarily large in this
region, since log: 1 + M p -+ Cp is surjective (4.2).

4.4. Continuation 01the Exponential

It is natural to try to construct a homomorphism

f : c, -+ C;
extending the exponential defined above by aseries expansion. Ifsuch an extension
exists, when x E C p we can choose a high power pn of p so that p"x E B<rp (the
exponent n depends on x) and then

In other words, f(x) has to be a pnth root of exp pnx in the algebraically closed
field Cp- This can be done in a coherent way, thus furnishing a continuation of the
exponential homomorphism.

Proposition. There is a continuous homomorphism Exp : C; -+ 1 + M p ex­
tending the exponential mapping, originally defined only on the ball B« rp C Cp'

PROOE Recall that 1 + Mp is a divisible group (IIIA.5), and divisible groups
are injective Z-modules (lilA.1), and hence enjoy an extension property for
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homomorphisms defined over subgroups. We can use this for the homomorphism

exp : B<rp ---+ 1 + B<rp C 1+ M p ,

since its target is the divisible group 1 + Mp- •
For this corollary, only the p-divisibility of 1 + Mp is used.
The usefulness of the extensions Exp is limited by the fact that none are canon­

icaI. However, since the logarithm is defined on the image of any extension, the
composite log oExp : C p -+ Cp has a meaning.Ifx E Cp' let us choose an integer
n such that pnx E B<rp ' and consider the following equalities:

pn log oExp(x) = logtExp x )po = 10g(Exp(pnx)

= log(exp(pn x » = pnx .

Consequently, log oExp(x) = x . We have obtained the following result.

Corollary. The log : 1 + M p -+ Cp is inverse to all extensions

and any such extension is injective. •
Let us summarize the construction in a diagram of homomorphisms (of abelian

groups):

Exp log
Cp ---+ 1+ M; ---+ C,

U U U
exp log

B<rp ---+ 1 + B<rp ---+ B<rp •

Both composite arrows are identities.

4.5. Continuation 0/ the Logarithm

Proposition. There is a unique function f : C; -+ C; having the properties

(1) fis a homomorphism: f(xy) = f(x) + f(y),
(2) The restriction of f to 1 + M p = B<l(l) coincides with the logarithm

defined by its series expansion,
(3) f(p) = 0 (normalizat ion).

!'ROOF. Let us start with the uniqueness statement. By (IIIA.2), the subgroups
pQ j-L(p) and 1+Mp generate C; . Hence it is enough to see that the given conditions

imply that f vanishes on pQu ,This is obvious on the subgroup u, since the field C p

(of characteristic 0) has no additive torsion . On the other hand, if x E pQ, there will
be an equation x a = pb (with some integers a and b). Hence af(x) = bf(p) = 0
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by the normalization condition, and fex) = 0 as expected. For the existence
part, it is enough to define f trivially by 0 on pQ /L observing that this definition
is coherent with the logarithm on the interseetion pQ/L n (l + Mp ) = /Lpoo.

But the subgroup /LpOO is precisely the kernel of the logarithm series (Theorem
in (4.2)). •

The preceding continuation of the log function is called the Iwasawa logarithm
and is denoted by Log.

Theorem. The Iwasawa logarithm has the following properties:

(1) It is locally analytic: In the neighborhood ofany a =1= 0

(_1)k-l (X -a a)k
Log x =Loga+ .L:---

k:::l k

(2) For x E Z;,
1 " (1 - xp-1i

Logx=--~
1 - P k:::l k

(3) Foranycompletesubfield K ofCp, Log(K X
) c K .

(4) For every continuous automorphism a ofCp,

Log (x") = (Log x)" .

!'ROOF. (1) When a =1= 0 let us simply write x = a(1 + (x - a)ja) and

(
x-a)Log x = Log a + log 1 + -a- ,

so that the asserted expansion folIows.
(2) If x E Z;, we have x p- 1 == 1 (mod p) and

1 1
Log x = --Log (x p

-
1) = --log (1 + (x p - 1 -1)) .

p-l p-l

The series expansion is applicable to the last term and fumishes the announced
expression.

(3) If K ::> A ::> M and x E K X
, let us write

x = pr . S . u (r E Q, s E /L(p), u E 1+M),

so that Log x = log u. Hence we can find integers n and m with xn = p":», where
v E 1 + M, and hence n Logx = Logv. Since x n E K, we have v E K . Now,
the coefficients of the series defining the logarithm are rational and K is complete:
log v E K, and finally Log x = (log v)jn E K .
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(4) Under the stated eonditions, we ean eonsider the homomorphism

f : C; ~ Cp , X t-+ a- l Logtx").

We know that Ixu I = [xI by uniqueness of extensions of absolute values first on
Cl; (II.3.3) and then also on C p by eontinuity. Sinee the eoeffieients oflog(l +x)
are rational numbers , the second eondition of the proposition is verified by f .
Henee f satisfies the three eharaeteristie properties of the Iwasawa logarithm: It
must eoineide with it. •

Comments. (1) The produet of the subgroups f.J- p OO and I+B-crp is a direet produet,
since the interseetion of these subgroups is trivial. But this produet is not equal
to 1 + Mp- Indeed, the logarithm of an element in the produet is in the ball

B<rp'

whereas log(l + M p ) = Cp • A different way of seeing this eonsists in observing
that

1 =f. ~ = 1+~ E f.J-poo ==> I~I = IpII/<p(pf) ~ rp

(~ of order pi) (11.4.4). Taking x = 1+ r e I + B<rp' henee Itl < IH we have

~x = 1 + ~ + t + ~t with I~tl < min <IH Itl).

Now

has a very partieular form. It is clear that we are not obtaining all elements of
1+Mp in this form (in Mp the p-adie order is an arbitrary positive rational
number) .

(2) The rationality property of the logarithm shows that for every finite extension
K of Qp the logarithm fumishes an isometrie isomorphism

log: 1 + B<rp(K) .=+ B<r/K) .

In partieular,

log: 1+ pZp .=+ pZp (~Zp) (p odd prime),

log : I + 4Z2 .=+ 4Z2 (~Z2).

In general, with the eonventional notation

K::) R::) P =rrR,
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the multiplicative subgroup 1 + P still contains its torsion subgroup (p-torsion)
as a direct factor. Let m be the largest integer such that K has a pmth root of
unity: This torsion subgroup is J.L p"; it is cyclic. One can show that there is an
isomorphism

1+ P .; Z/pmZ x R.

This results from the structure theorem for finitely generated Zp-modules: The
ranks of the multiplicative Zp-modules

1+ P, 1+ B<r/K) C 1+ P

are the same, since the quotient is finite, cyclic of order s" (cf. A. Weil: Basic
Number Theory). These results do not extend to infinite extensions of Qp contained
in Cp •

(3) Let us still consider afinite extension K of Qp in c; When P = B~rp(K),

both cases

J.Lp C 1 + P and J.Lp et. 1 + P

can occur. For example, for p = 3, consider as in (HA.?) the two quadratic
extensions K 1 = Q3(.J=3) and K2 = Q3(J3). Since the field Q(.J=3) contains
a 6th root of unity (the ring of integers of this field is a hexagonal lattice in
the complex field) and since yCT E Q3(-v"3,.J=}) = K, . K2, we see that
J.L4 C K 1 • K2 and necessarily

On the other hand , the order of J.L(3) n (K1 . K2) is #(k X) = 3/ - 1, hence of the
form 2, 8, 26, . . ., and the presence of a fourth root ofunity implies that this order
is greater than or equal to 8. In particular, K, =I K2• Since Q(.J=3) = Q(~3) we
see that ~3 E K 1 but ~3 f/. K2. Nevertheless, quite generally,

J.Lpoo(K) = J.Lpoo n K (C (1 + M p) n K = 1 + P) .

If P = n R , then J.Lpoo(K)C 1+B:::!tr!(Cp), so that the order of J.Lpoo(K) is a divisor
of the order of

which is known, since the absolute values I~ - 11 for ~ E J.Lpoo are given by
(III.4.2).
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(4) Here is a diagram summing up the general situation:

(1)
log

<---+ 1 + B <rp ---+ B <r+--- p

n n exp n
log

Jkp <---+ 1 + B::;;rp ---+ B ::;;rp

n n n

I+Mp
log

C pJkpoo <---+ ---+
+---

n n Exp n

pQ . Jk <---+ C X
Log

p ---+ C p.

The lines consist of short exact sequences, split by the choice of a section Exp
of log. Observe that the subgroup pQ . Jk is well-defined, independently from the
choice of a copy of pQ c C; .

Note. The possibility of extending the exponential to the whole of C, had already
been shown by M.-C. Sarmant(-Durix) in her doctoral thesis. We have followed
the method of the book by W. Schikhof.

5. The Volkenbom Integral

5.1. Definition via Riemann Sums

Let K be a complete extension of Qp. We are going to define J f dx for certain
functions f : Zp ~ K. Unfortunately, Corollary 3 in (lV.3.5) shows that one
cannot define nontrivial translation-invariant linear forms on C(Zp). Let us recall
this result (notation fl(x) = f(x + 1)).

Lemma. If cp : C(Zp) ~ K is linear and translation-invariant, i.e.,

then cp = O.

cp(f)) = cp(f)forall fE C(Zp) ,

•
Observe that we can define translation-invariant linear forms on FIc(Zp), the

space of locally constant functions on Zp (IV.2.1). Indeed, we can construct such a
linear form with cp(1) = 1.Translation invariance imposes the same value 1/P for
the characteristic functions ofthe cosets of pZp. More generally, this translation­
invariant linear form should take the same value 1/pn for the characteristic func­
tions ofthe cosets pnzp • These functions have sup norm 1 but

)cp(f)1 = I;n I = pn is arbitrarily large.
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This shows that this linear form is not continuous. Equivalently, we can define the
p-adic "volume" of the balls B~IP"I(j) in Zp to be

m(B~lpnl(j)) = ;n E Qp .

The next construction works for differentiable functions - at least (Sf)'(O) should
exist - and is not translation-invariant. It is convenient to deal with strictly dif­
ferentiable functions f E Sl(Zp).

Let us start with the expressions

representing Riemann sums for f. The integral of f over Zp will be defined as the
limit (n -+ 00) of these sums, when it exists. The indefinite sum F of a function
f has been defined in (IV.1.5) in order to have VF = f (F(O) = 0):

F = Sf = l~f : F(k) = L f(j) ·
O~j<k

Hence we have

(since F(O) = 0), and we see that the limit exists if Fis differentiable at the origin.
When the function f has Mahler coefficients Cn , we know that the coefficients

of Sf are simply shifted, and the differentiability of Sf at the origin is equivalent
to the requirement

Icn-tlnl -+ 0 (n -+ 00)

(Theorem 1 in (1.5)). This is the case if fE Sl(Zp).

Definition. The Volkenborn integral ofafunction f E Sl(Zp) is by definition

1f(x)dx = lim ~ " f(j) = (Sf)'(O).
n.....oo pn L...Jz; O~j <p"

If f = cis a constant, then fz f(x) dx = c. Here is a main property of this
p

integral.

Proposition 1. (a) For f E Sl(Zp) we have

[ f(x)dx s p IIflb.
Jzp
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(b) lf In ~ I in Si, namely IIln - IIIt ~ 0, then

[ In(x)dx ~ [ I(x)dx.
lzp lzp

PROOF. By definition,

[,( j(x)dxI~ 1(5j)'(O)1" 115jlll = sup(II<1>5jll.15j(O)l).

so that (a) follows frorn Corollary 2 in (1.5):

IIS/IIt ~ pli! 11 I ·

(b) is a consequence of (a).

Recall that we use the notation VI for a discrete gradient of a function I:

V I(x) = I(x + 1) - I(x).

Proposition 2. For I E SI(Zp) we have

1V I(x)dx = 1'(0).
zp

PROOF. By definition,

[ VI(x)dx = (SV /)'(0) = (f - 1(0»'(0) = 1'(0),
lzp

since SV I = I - 1(0) (Proposition 2 of (IV.1.5)).

•

•
5.2. Computation via Mahler Series

The indefinite sum of a binomial function (~) is the next one SC;) = (';~J This
observation makes it easy to compute the Volkenbom integral of a function I E Si
of which the Mahler expansion is known.

Proposition. Let Lk~O Ck~) be the Mahler series 01 a strictly differentiable
function I E Si . Then

i f(x)dx = L (-llck/(k + 1).
zp k~O
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PROOF. Since fn = Lk~n Ck(t) tends to f in 1I.lb, we can simply integrate term
by term:

1 f(x)dx = L Ck 1(~)dX .
Zp k~O Zp

Now,

and

( x ) x (X -1)
k+l =k+l k

implies

( x )' 1 (X - 1) I (-I) (-ll
k + I (0) = l~ k + 1 k = k + 1 k = k + I

(one can also apply directly Theorem 1 in (1.5) to the function Si) . •
Example. Let us fix t E M; C Cp , namely [r] < I, and consider the function
f = ft defined by

f(x) = (1 +tY = L tk(X).
k~O k

Then

1
(_I)ktk 1

(1 +tYdx = L = -log(1 +t) (= 1 fort = 0).
~ k~ k+I t

5.3. Integrals and Shift

A few more formulas for the Volkenbom integral will be useful. Recall that the
translation operators Tx have been defined in (IV.5.I) by

Txf(t)=f(x+t).

In particular, for T = TI = E (unit translation), t f = fl. Let us also denote by D
the differentiation operator, V the finite difference operator, and S the indefinite
sum. Obviously, D commutes with translations and consequently also with V =
T - id.

Proposition 1. Let Po : f f-+ f(O)·I be theprojectionofSI(Zp)onto constants.
Then the following relations hold:
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(a) Sr = r S - Po.
(b) DS commutes with alt translations rx.
(c) SD = DS - PoDS.

PROOF. By definition, for integers n ~ 1,

S(rf)(n) = L rf(j) = L f(j + I)
O~j<n O~j<n

= L f(i) = Sf(n + 1) - f(O) = rSf(n) - f(O),
O<i~n

which proves Sr = r S - Po(by density ofthe integers n ~ 1 in Zp and continuity
of the functions in question). On the other hand , differentiation of the function
Sx f = t Sf - f(O) leads to D'Stf = DrSf = r DSf. Moreover, recall that
VSf = f but SV f = f - f(O) (IV.1.5). In other words,

VS = id, SV = id - Po.

Weinfer

SD = SDVS = SV DS = DS - PoDS.

The proposition is proved .

Proposition 2. Let fE Sl(Zp). Then

(a) r rxf(t)dt = (Sf)'(x),
Jz p

(b) S(f')(x) = r f(x + t)dt - r f(t)dt .
Jzp Jz p

PROOF. Start with the definition Jz f(t) dt = (Sf)'(O) . Hence
p

r f(t + l)dt = 1rf(t)dt = (Srf)'(O) = DSrf(O)
Jzp z;

= r DSf(O) = DSf(l) = (Sf)'(l).

•

The first formula (a) for a positive integer x = n follows by iteration, and for any
x E Zp by continuity and density (altematively, one can do the same calculations
with rx in place of r), Recall now Proposition 2 of (5.1),

r V f(t)dt = f'(O) ,
Jz p

and use a translation

r V f(t +x)dt = f '(x).
Jz p
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Frorn this, it is obvious that S(/,)(n) = /,(0) + ...+ f'(n - 1) can be expressed
as a telescoping surn

S(f')(n) = [ f(t +n)dt - [ f(t)dt Cl =5 nE N),
Jzp Jzp

and by continuity and density ofthe positive integers n in Zp,

S(f')(x) = [ f(t +x)dt - i f(t)dt (x E Zp) .
Jzp z,

Writing f ' = g, we can choose any primitive G E SI(Zp) of g and write

S(g)(x) = [ G(x+t)dt- [ G(t)dt .
Jzp Jzp

•

Of course, two different primitives of a function g rnay differ by any function h

having h' == O.

Proposition 3. Let fE S2(Zp) C SI(Zp) and dejine F(x) = fz fex + t)dt.
p

Then F E Si (Zp) and

F'(x) = i f'(x + t)dt .
Zp

!>ROOF. By Proposition 2 of (1.3),

f E S2(Zp) => I' E SI(Zp),

so that

G(x) = [ f'(x+t)dt
Jzp

defines a function G E SI(Zp). Moreover, by Proposition 2 (a),

[ f'(x + t)dt = (Sf')'(x) = (DSD!)(x) ,
Jzp

which proves G = DSDf. Now by the first proposition SD = DS - PoDS and

G = D(DS - PoDS)f = DDSf = (S!)" = F' ,

because F = (S!)' .

Proposition 4. Let er denote the involution (1.1.2) x 1-* - 1 - x of Zp. Then

[ (f 0 er) dx = [ f dx,
Jzp Jzp

•
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!'ROOF. We have seen that

( 1 dx = (S/)'(O) = lim S/(h).
Jz h~O h

p

Let us take h = - pn (n -+ 00). Hence

(S/)'(O) = lim S/(-pn) = lim -S/(-pn).
n......oo _ pn n~oo pn

But by the Corollary 4 in (IV.3.5),

whence the result (S/)'(O) = (S(f 0 er»' (0).

Corollary If1 is an odd function ; then

( 1 dx = _ 1'(0) .
Jzp 2

!'ROOF. Quite generally, using Proposition 2 in (5.1) and Proposition 4, we have

1'(0) = { (f(x + I) - I(x» dx = i (f(-x) - I(x» dx .
Jzp zp

Now, if 1 is odd, we obtain the announced result

•

1 '(0) = { -2/(x)dx.
Jzp

5.4. Relation to Bemoulli Numbers

In (5.2), we have proved

{ (I + tY dx = .!. log(! + t)
Jz tp

•

for [r] < I, t E C p • Let us now choose Itl < rp and define s = log(! + t), so that

t = e' - I, [r] = Itl < rp •

The preceding formula now reads
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Classical Definition. The Bemoulli numbers are the rational numbers bk de­
fined by the following generating function:

t t k

e1 _ 1 = L bkki·
k~O .

Here are the first few values :

and,

b l b - 1 b 5 b _ 691
6 = 42' 8 - -30' 10 = 66' 12 - -2730 '

Since we can also write e1X = Lk>O tkxk/k! with a convergence in Sl(Zp), we
can integrate term by term (Proposition 1 in (5.1))

and identify the coefficients

Observe that by definition bk E Q, and these integrals are independent of the prime
p used tocompute them! Also , Ibkl ::: pllxk 111 = p (still by Proposition 1 in (5.1)),
namely Ipbkl ::: 1, i.e., pbi. E Zp nQ. In (5.5) we shall give a more precise result.

Proposition. The Volkenbom integral of a restricted series f = Ln>o anxn

exists and can be computed term by term: -

•
Here, the bn are the Bemoulli numbers, and using fz f(x)dx = - f '(0)/2 for

p

the odd functions fex) = x 2k+1 (Corollary at the end of (5.3)), we obtain

b, = -4, b2k+1 = 0 (k::: 1).

Classical Definition. The Bernoulli polynomials Bk are defined by the follow­
ing generating function:
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I hope that no eonfusion will arise between the Bernoulli and the Bell polyno­
mials (also denoted by B; in (IV.6.3»: The eontext should always explieitly speeify
whieh ones are under eonsideration!

Obviously, bk = Bk(O). Conversely, the definition

leads to an explieit expression of the Bernoulli polynomials (with Bernoulli num­
bers as eoefficients):

xi
Bn(x) = n! L bk - .-, - ,

j+k=n l ·k.

Thus B; is a monie polynomial of degree n (equal to its index). This expansion
is symbolieally written " Bn(x ) = (b + x)" :" the binomial formula leads to the
correet expression, provided that we interpret bk as the kth Bernoulli number bi:

Here are a few values:

Bo(x) = 1, BJ(x) = x - t, Bz(x) = x Z
- x +~ .

Returning to the Volkenborn integral, we have

L Bk(x) ~~ = e tx [ e ty dy = [ et(y+x) dy.
k;::O • Jzp Jzp

Identifieation of the eoeffieients leads to the p -adie expression of the Bernoulli
polynomials

The formula (5.3)

r V fex + y)dy = f'(x)
Jzp

for f = x k leads to

r (x + y + II dy - r (x + yl dy = kxk
-

J
,lzp Jzp
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namely

In particular, Bk(l) = Bk(O)for k 2: 2, and these polynomials may be extended by
l-periodicity on R. We obtain the continuous periodic functions x 1--+ Bk(X - [x])
(k 2: 2) on the realline (as usual, [xl denotes the integral part of areal number x
so that 0 ~ x - [xl< I).

On the other hand, we can expand (y + x + l )" = L (~) (y + x)k and hence
rewrite

(n + I)x
n = (x

n+1
)' = i L r: I)(X +y/ dy

z, k~n

= (n + I)Bn(x) + L (n; 1) Bk(X).
k~n-l

This gives a recurrence relation for the computation of these monic polynomials:

In particular, for x = 0 and n 2: I,

1 "" (n + 1) "" ( n )bk
bn = Bn(O) =--- L.- bk = - L.- -.

n + 1 k~n-l k k~n-l k - 1 k

Another relation for the Bemoulli polynomials is easily obtained from the fact that
the integrals of fand of f 0 aare the same (Proposition 4 in (5.3» :

Bk(l-X) = [ (y+ I-x/dy
lzp

= [ (-I-y+l-x/dy
lzp

=(-l/i (y+x/dy=(-I)kBk(x).
Zp

5.5. Sums ofPowers

The above formula VBk(x) = kx';"; with SV = id - Po, leads to Bk(x) - bk =
kS(Xk-1) . Replacing k by k + 1, we obtain



5. The VolkenbomIntegral 273

This gives an explicit formula for the sums of powers :

k 1 (k + 1) "X
k
+

1

Sex ) = -- L ,bk+l_jXJ +--
k + 1 I< "<k ] k + 1_J_

( k) x! xH I

= bi» + L ' bH I - j --:- +--,
Z< "<k ] - 1 ] k + 1_J_

Here are a few explicit expressions for these sums of powers :

Sk(n) = L i k = S(xk)lx=n (k 2: 1),
1:9<n

SI(n) = tn(n - 1),

Sz(n) = ~n(n - 1)(2n - 1),

S3(n) = inz(n - 1)z,

SC) 151413 I
4 n = sn - in + 3n - 3ön,

s() _ 1 6 15+54 IZ
5 n - (;n - in TIn - TIn ,

(Observethatfork = 0, S(xo) = BI(x)-bl = x gives asumofpowers L i<n iO=
n, which is correct if the summation is extended over the indices 0 :::: i < n and
xO is the constant 1, including 0° = 1.) In the Archimedean theory, the main term
is xH I I(k + 1): It gives the primitive of x k , namely the area below the graph of
t t-+ t k between the values 0 and x . Here the main term will turn out to be bi».

Proposition. When p is an odd prime, the sums 01kth powers satisfy

while

Sk(2) = 1 == 2bk (mod kZz) (k 2: 1).

!>ROOF. We have pbo = p, pb, = -pI2, which are both in Zp (even if p = 2),
We already know (5.4) that pb k E Zp (k 2: 0) (this also follows by induction, as
the next argument shows) . Since

( k) p! pHI
Sk(p)=pbk+ L '-I bk+l-j~+k+l

Z~j~k ] ]

(
k - 1) pj-Z pk

= pb; + pk L '_2 pbk+I-j '(' _ 1) + pk k(k + 1)'
Z~j~k ] ] ]
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we have to show that

(
k - 1) pj-2 pk

L 0 _ 2 pbk+l - j O( 0-1) + k(k + 1) E Zp.
2~j~k ] ] ]

But the pbH I- j are in Zp for j ~ 2, and for p ~ 3

j - S (j) j - 1
ordpj(j -1)::: ordpj! = P::: -- < j-l

p-l p-l

o 10 ..L Z F 2imp ies j(j_I) E p. or p = ,

ord- j(j - 1) = max(ordü, ord2(j - 1)) ::: j - 1

with equality for j = 2. This explains the lass of one power of 2.

Corollary. For any prime p, b2n E Qn p-IZp (n ~ 1).

•
•

Remarks, (I) For p = 2 and odd k ~ 3, the eorresponding BemouIIi number is
zero : The eongruenee Sk(2) = 1 == 0 = 2bk holds mod kZ2, not mod 2kZ2. For
even k = 2n ~ 2, the same eongruenee forees b2n to have an even denominator.

(2) For p = 3 and even k = 2n ~ 2, the eongruenee S2n(3) == 3b2n (mod 3Z3)
leads to 3b2n == 1 + 22n = 1 + 4n (mod 3Z3), and 3 appears in the denominator
of bz«. By the preeeding remark, the faetor 6 appears in the denominator of aII b2n
(n ~ 1).

(3) The property pbz« E Zp (all primes p) means that the denominator of bz« is
a produet of distinet primes (eaeh prime oeeurring at most onee). We have a more
preeise result.

Theorem (Clausen-von Staudt), The denominator of the Bernoulli number
bi« is the product ofthe primes l such that l - 1 divides 2n. More precisely,

1
b2n = - L - +m2n (m2n E Z).

c prime: i-ll2n l

!>ROOF. Let us start with the eongruenee pb2n == S2n(p) (mod pZp)o Now, it is
easy to eompute a sum LO~j<p l mod p: This is a sum over the field F p. Put

Sk = (Sk(P) mod p) E F p :

For eaeh 0 ::f:. u E Fp we have

Sk = L xk = L(xul = uk L xk = ukst.
xeFp xeFp x eFp

whenee
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If k is not a multiple of p - I, we can choose U E F; such that uk =F 1 (because
F; is cyclic), and in this case we see that Sk = 0, namely Sk(P) == 0 (mod p).
On the other hand, if P - 1 I k, then

Sk = L x k = L 1 = p - I = -1 E Fp (k 2: 1).
xEFp O#xEFp

This information can be gathered together in the following form:

Letting the prime p vary (an exception!) , we obtain

1
bk+ L l E Q n n z, = Z.

l prime: l-llk p prime

5.6. Bernoulli Polynomials as an Appell System

In (5.3) we have proved

f'(X) = r Vf(y+x)dy .
Jzp

In the case of BernoulIi polynomials , this gives

•

Hence (BÜk~O is an Appell system of polynomials . In particular, it satisfies the
modified binomial identity for Sheffer systems (N.6.1). We can derive it immedi­
ately in our context:

Bn(x + y) = r (t + x +Yl dt
Jzp

= r L (~)(t + xlyn-k dt
Jzp O::;k::;n

= L (~)Bk(X)yn-k .
O::;k::;n

In umbral notation, we can write symbolically

Bn(x + y) = "(B(x ) +Yl ,"

which generalizes (5.4) Bn(y) = "(b + y)", " since Bn(O) = bn. Let us give the
relation between this system and composition operators. Let U be the operator on
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K[X] defined by

U(p)(x) = [ p(y + x)dy.lzp
It is obvious that this operator U cornmutes with the unit translation E = Tl = T,

hence (IV.5.3) with all translations:

TU(p)(X) = U(p)(x + I) = [ p(y +x + I)dy = U(Tp)(X).lzp

By definition U(xk ) = Bk. and the system of Bernoulli polynomials is a Sheffer
sequence (IV.6.1) . Moreover, as we have seen in (IV.6.2), V = eD - 1. We deduce

V(Up)(x) = [ (p(y + x + I) - p(y + x)) dy (~) p'(x),
lzp

D
(eD -1)Up = Dp, Up = -D--P.

e -I

This is the expression of the composition operator U as a formal power series in
the derivation D (IV.5.3).

EXERCISES FOR CHAPTER 5

A. Classical rerninder. Let I, g , h : R -+ R denote the functions defined by

{

x2 sin(l/x) if x # 0,
I(x) = 0 if - 0

1 X - ,

and g = 1 + x /2, h = 1 - x 2•

(a) Prove that 1 is differentiable at every point with 1'(0) = 0, but 1 is not strictly
differentiable at the origin 1 rt SI(O) and I' is not continuous.

(b) Prove that g is differentiable at every point with g'(O) = !, but there is no neigh­
borhood of the origin in which g is increasing.

(c) Prove that h is differentiable at every point with h'(O) = 0 and there are infinitely
many points in every neighborhhood of the origin at which h has a relative maxi­
mum.

B. Classical rerninder (continued) . Let 1 be a real-valued function defined in the neigh­
borhood of a point a ER. Assume that 1 E Sl(a) and I'(a) > O. Show that there is a
neighborhood V of a such that the restriction of 1 to V is an increasing function and
in particular is injective.

1. Discuss the continuity and differentiability at the origin of the following functions on
Zp:



Exercises for Chapter 5 277

2. Prove that the function Sp introduced in (V.3.1) - sum of digits in base p - satisfies

Sp(m + n) = Sp(m) + Sp(n) _ (p _ I)Ordp(m: n).

Sp(m - n) = Sp(m) - Sp(n) + (p - 1) ordj, (:).

3. Let f : Zp -+ Qp be defined by

{
p" if [x] = I.pnl = 1;"

fex) = 0 if - 0 P
1 X - •

Then f is locally constant outside the origin, and limx~o If(x)/xl = 1. By refining the
preceding definition, construet a function g that is locally constant outside the origin,
also differentiable at the origin with g' (0) = I.

4. Check that [logt1+ x) I :::: r p when IxI = r p ' But show that [logt1+ x) I is variable on
the sphere [x] = rp .

(a) Fm: which values of x E Cp do the following series converge?

x 3 x 2n+1
sinx = x - - +...= ~)_l)n _

3! n:;:O (2n + I) !'

x 2 x 2n
COSX = 1- - + ...=L(-l)n_-.

2! n:;:O (2n)!

(h) In the disk of convergenee, prove that

sin2 x + cos2 x = I,

sinx eosy + eosx siny = sin(x + y) ,

cosx cos y - sinx siny = cos(x + y) .

Compute the derivative of the functions sin and cos.
(e) Choose a square root i of -1 in Cp and prove that

cosx + i sinx = eix (i E Cp, i2 = -1).

(d) Check the estimates (give their domain of validity)

Isin x] = [x], Icosx] = 1, Icosx - 11 =?

6. Prove that when t E Mp,x ~ (I +tY is differentiable at the origin ofCp: To compute
the limit of differential quotients for x -+ 0 (in Cp not only in Zp), use the expression
(l + tY = exp(x log(l + t)) valid for small ]r].

7. The Chebyshev polynomials (ofthe first kind) can be defined by the classical formulas
Tn(cosB) = cosnB (n 2: 0) . Observe that Tmn(x) = Tm(Tn(x». When p is an odd
prime, prove that

Tp(x) == x P (mod p)
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and with the mean value theorem, show that

Tnp(x) == Tn(x P) (mod pnZp(x»

(what can you say about the case P = 2?).

8. Let us say that a polynomial fex) E Zp[x] is an nth pseudo-power when f'(X) E

nZp[x] .
(a) Show that the following polynomials are nth pseudo-powers: x" , f(x)n U any

polynomial), Tn (Chebyshev polynomial ofthe first kind; cf. previous exercise).
(h) Using the mean value theorem, prove that if fis an nth pseudo-power, then

a == b (mod pZp) =} f(a) == feh) (mod pnZp) .

(e) Suppose Un>n:::.O is a sequence of polynomials with deg fn = n and satisfying the
congruences

fpn(x) == fn(x P) (mod pnZp).

Show that fn is an nth pseudo-power. Deduce that form E N ,a E Zp , thesequence
fmp' has a limit for v ~ 00.

9. Define a sequence of polynomials inductively by the conditions

PO = I , Pn = primitive of Pn-l such that 11

Pn(x)dx = 0 (n 2: 1).

The first one is PI (x) = x - ~.
(a) Prove that Pn(x) = Bn(x)/n! , where Bn(x) denotes the nth Bernoulli polynomial.
(h) Prove that Pn(l) = Pn(O) (n # 1) and compute the Fourier series expansions of

the l-periodic functions fn extending Pn ho.n.

e'hrimx

fn(x) = - L (2 . )n (n 2: 1).
m;lO tt t m

For even n = 2k 2: 2 there is absolute convergence, and

2 1 2
h.k(O) = - (2 ')2k L 2f = - (2 ')2k {(2k) .

n t m:;::1 m it:

10. For any prime p, prove the following congruence for the Bernoulli numbers :

2n(hpn - bn) == 0 (mod pnZp) (n 2: 1).

(Hint. Use the congruence jpn == l" (mod pnZp) (exercise 8), hence a similar con­
gruence for the sums of powers Spn(P) and Sp(p), and conclude by Proposit ion in
(5.5).)

11. For each m 2: 1, show that the numerator of

22 23 2n

2+-+-+·· ·+ -
2 3 n

is divisible by 2m when n is large enough.
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(a) Check the preceding assertion experimentally for a few values of n ~ 2.
(b) Prove the general statement by consideration of the logarithm 1 + M2 --+ C2 and

the expansion oflog(l - 2) = 10g(-1) = O.

12. Show that all continuous homomorphisms ! : Z; --+ Q; have the following form :

!(su) = sVux (s E J.tp-t, u E 1+ pZp)

for some v E Z/(p - l)Z and x E Zp .

13. Prove that an infinite product ITn>o(l + an), where all an =F -1, converges for any
sequence (an)n::O converging to 0 in Cp .

(Hint. Use Ilog(l + an)1 = lanI if lanI is smalI.)

14. Let I be an ordered set, (EdiEI a family of sets (or groups , rings ,... ), and let lfIij
E j --+ Ei be maps (resp . homomorphisms,. .. ) given for i < j EI, subject to the
transitivity conditions

lfIij = 1fIif. 0 lfIij : E j --+ Ei --+ Ei (i < f. < j).

Assume that I contains a countable cofinal sequence S : io < i I < . . . and consider
the projective system (Ein' lfIi.+I,i.)n ::O with projective limit ~SEi, Show that if T

is another countable cofinal sequence in land lim T Ei is similarly defined , there is a
+-

canonical isomorphism lim s Ei :;:: lim T Ei (use the universal property of projective
+- +-

limits) . Provided that I has a countab1ecofinal subset, we may define lim Ei by choosing
+-

such a sequence Sand putting lim Ei := lim s Ei , For example, let A be the maximal
+- +-

subring of a complete ultrametric field K and consider the ideals

Ir = B:;:r(K) C A (0 < r < I).

Establish the following isomorphism:

A{X}~ lim (A/Ir)(X)
+-

(limit when r \. 0) .



6
Analytic Functions and Elements

A powerful method for defining functions is provided by power series (we have
seen two examples in Chapter V: exp and log). This method is here developed
systematically, and we come back to a more thorough study of formal power
series. As is classically known, uniform limits of polynomials in a complex disk
lead to analytic functions.

Another class of special functions is supplied by rational functions, namely
quotients of polynomials: The simplest being the linear fractional transformations.
We also study them in this chapter, especially since their uniform limits in the
p-adic domain lead to the "analytic elements" in the sense of Krasner. Indeed, in
ultrametric analysis, the sole consideration ofballs is not sufficient and in particular
not adapted to analytic continuation.

In this chapter thejield K will stilldenote a complete extension of Qp in Cp (or in
Qp) often with dense valuation. The results that also require K to be algebraically
closed will be simply formulatedfor thejield C p (they are also validfor Qp).

1. Power Series

1.1. Formal Power Series

Formal power series have already appeared repeatedly (with integral coefficients
in (1.4.8), with coefficients in a field in (IY.S), (Y.2)). We now study them more
systematically.

Let A =f:. {O} be a commutative ring with a unit element 1. The formal power
series ring A[[X]] consists of sequences (an)n:::O of elements of A, with addition
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and multiplication respectively defined by

(an)n:::O + (bn)n:::o = (an + bn)n:::o,

(an)n:::O . (bn)n:::o = ( ~ aibn-i) .
O:9~n n:::O

Instead of the sequence notation (an)n:::O we shall prefer to use the notation f =
f(X) = Ln>o anXn for a formal power series. The formal power series ring
A[[X]] contains the polynomial ring A[X], and since I E A, we have X" E

A[[X]] (n ~ 0) .
Let us show that this formal power series ring constitutes a completion of the

polynomial ring .

Definition. Let f(X) = Ln:::o anXn be a nonzero power series. Its order is the

integer

co = w(f) = min{n E N : an =f. O}.

This order is the index of the first nonzero coefficient of f(X). We shall also
adopt the convention w(O) = 00 with the usual rules

00 ~ n , 00 + n = n + 00 = 00 (n ~ 0).

The following relation is then obvious:

w(f + g) ~ min(w(f), w(g)),

with an equal sign if the orders are different . Moreover,

w(xn f) = n + w(f)

shows that

{f(X) : w(f) ~ n} = X" A[[X]]

is the principal ideal generated by K" in the formal power series ring. Since

A[[X]]jX nA[[X]] = A[X]j(Xn),

we also have

A[[X]] = lim A[[X]]jX" A[[X]] = lim A[X]j(Xn)
<-- <--

(with obvious identifications), and the ring A [[ X]] appears as a completion of the
ring A[X] for the metrizable topology admitting the ideals (X") as a fundamental
system of neighborhoods of O.

When the ring A has no zero divisor, we have, moreover,

w(fg) = w(f) + w(g).
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Taking f = g weinferw(f2) = 2w(f)andw(r) = n w(f) (n 2: 0) byinduction.
In particular, we see that if A is an integral domain, so is the formal power series
ring A[[X]]. If we iterate the construction, A[[X]][[Y]] = A[[X, Yll is also an
integral domain. We have obtained the following result.

Lemma. Let A be an integral domain and n a positive integer. Then the formal
power series ring A[[X1, . .. , Xnll is also an integral domain. _

Definition. The formal derivation D of the ring A[[X]] is the additive map
defined by

It satisfies

D(fg) = D(f)g + f D(g) (f, g E A[[X]]).

Since ker D ~ A, we see in particular that

D(af) = aD(f) (a E A , f E A[[X]]),

namely, the derivation D is A-linear. Since

w(D(f» 2: w(f) - I,

it is also continuous for the previously defined topology.
If we iterate this derivation D we obtain

and since the product of k consecutive integers is divisible by k!, we can define

":'Dk : x» ~ (n)xn- k

k! k

even when the ring A does not contain inverses of the integral multiples of 1. Hence
we define an A -linear map

:! D k
: A[[X]] -+ A[[X]]

correspondingly. In spite of the fact that a formal power series does not define a
function, we also use the notation f(O) for the constant coefficient ao of f . Then
if f(X) = Ln:::o anX n, we have

1 k
ak = k! D (f)(0) (k 2: 0).
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1.2. Convergent Power Series

Since we are assurning that the field K is complete, an ultrametric series con­
verges when its general term tends to O. If r ::: 0 denotes areal number such that
lanIrn~ 0, then Ln>o anxnconverges (at least) for IxI ::: r ,and we get a function
B:::;r(O) ~ K . -

Definition. The radius of convergence 0/ apower series / = Ln>o anXn

having coefficients in the field K is the extended real number 0 ::: ri ::: 00

definedby

Altematively, we can consider the values of r ::: 0 for which (IanIrn) is bounded:

sup {r ::: 0 : lanIrn~ O} ::: sup {r ::: 0 : (IanIrn) bounded},

and conversely,

(Ianlrn) bounded ==} lanlsn~ 0 (s < r)

proves the other inequality, so that

rI = sup {r ::: 0 : (IanIrn) bounded}.

It is possible to compute this radius of convergence as in the classical complex
case by means of Hadamard 's formula .

Proposition 1. The radius 0/convergence 0/ / = Ln~o anXn is

I 1
rl = . 1 n = . l/n ·

hmn~o lan I / hm SUPn_oo lan I

?ROOF. Define rf by the Hadamard formula. If IxI > rI (this can happen only if
rI < oo!), we have

lim sup Ixllad/k = lxi· lim sup lad/k = lxi · ..!..- > 1.
~oo~ ~oo~ ~

Hence the decreasing sequence sUPk>n [xIlak 11/ k is greater than 1, and for infinitely
many values of k ::: 0 we have lakllxlk > 1, namely, the general term akxk ofthe
series does not tend to zero: The series L akxk diverges. Conversely, if Ix I < rI
(this can happen only if rI > O!)we can choose [x] « r < rI' and from

lim suprlakl l
/
k = r · lim sup lakl l / k < 1

n_oo k~n n-OO k~n

we infer that for some large N

sup rlakl l
/
k < 1.

k~N
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Hence laklrk < 1 for all k 2: N and

This shows that the general term of the series L akxk tends to zero, and the series
converges. •

The letter x will here be used for a variable element of B<rj' while the capital
X denotes the indeterminate. When rI = 0, the power series converges only for
x = O. Hence we shall mainly be interested in power series f for which rI > O.

Definition. A convergent power series is a formal power series f with rI > O.

Comments. (1) Let f(X) E K[[X]] be a convergent power series. If K' C Qp is
a complete extension of K, then f can be evaluated at any point x E B<r/K').
The convergent power series f(X) defines in this way a continuous function (still
denoted by f)

because it is a uniform limit of continuous polynomial functions

I» : x 1-+ L anx n.

O::;n::;N

Usually, we shall simply write the condition IxI < rI' assuming implicitly that the
element x is taken in K, Cp, or even Qp.

(2) If rI > 1, f is a restricted series, and by Theorem 1 in (V.2.4), it is strictly
differentiable, with a derivative given by numerical evaluation ofthe formal deriva­
tive: f'(x) = (Df)(x) (lxi ::s 1). A similar result holds for any convergent power
series : If Ixol < rl' then the restricted power series g(X) = f(xoX) has the
preceding property, and we conclude that

f'(x) = (Df)(x) (lxi< rl)'

(3) Observe that a radius of convergence rI > 0 does not necessarily belong to
IKxl. IfO < "r rt IKxl, then the sphere [x] = rl is empty: B::;rj = B<rr These
subtleties disappear when we take x in the universal field Qp, since IQp I = R~o.

Either the series converges at all points of the sphere {x E Qp : [x] = rl} or it
diverges at all points of this sphere.

Examples. (1) The radius of convergence of the series Ln>o X" is rI = 1. This
series diverges at all points of the sphere Ix I = 1, since its general term does not
tend to O.
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(2) More generally, any series f = Ln>O anXn E Zp[[X]] has a radius of
convergence rJ ::: 1. Interesting examples are supplied by the expansions

fa(X) =L (a)xn
E Zp[[X]]

n~O n

for fixed a E Zp. We also denote by (1 + x)a the formal power series fa(X).
(3) When aseries Ln>O anXn converges on the sphere [x] = 1, it is a restricted

series (V.2) and rJ ::: 1. Here is an example with rJ = 1. Consider Ln>O p" X p' ,
which obviously converges when [x] = 1. Since Ipnll/P" = Ipln/p' -+ 1, we have
rJ = 1 by Hadamard's formula.

(4) The radius of convergence of aseries can be 1 even when the coefficients
are unbounded or when lanI -+ 00. The series Ln>O X p" / pn illustrates this pos­
sibility. As in the previous example rJ = 1, since -

This series converges only if IxI < 1: It obviously diverges if [x I = 1.

Proposition 2. Let fand g be two convergent power series. Their product
f g (computed formally) is a convergent power series, and more precisely, the
radius ofconvergence of fg is greater than or equal to min(rJ' rg ) . Moreover,
the numerical evaluation ofthe power series f g can be made according to the
usual rule

(fg)(x) = f(x)g(x) (lx] « min(rJ' rg».

PROOF. All statements are consequences of (V.2.2). •
Corollary 1. Let r > O. The set of power series f = L anXn such that
lanIrn -+ 0 is a ring, andfor each x E B~r the evaluation map f ~ f (x) is a
homomorphism ofthis ring into the base field K. •

Corollary 2. For any polynomial I, the radius ofconvergence ofthe composite
fog is ::: r, and

(f 0 g)(x) = f(g(x» (lx] « rg ) .

PROOF. If [x] « rg , taking f = g in the preceding proposition, we obtain g2(x) =
g(x)2 and by induction gn(x) = g(x)n (n ::: 0). Taking linear combinations of
these equalities, we deduce

(f 0 g)(x) = f(g(x» (lx] « rg )

for any polynomial f . •
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The possibility of evaluating a composition fog according to the same rule
will be established for general power series in (1.5).

Proposition 3. The radiusofconvergenceoff = Ln>o anXn anti ofitsderiva­

tive Df = Ln:::1 nanXn-1 are the same: rf = rot- -

PROOF. Let us prove this proposition when the field is either an extension ofQp or
an extension of R with the normalized absolute value. We know that

~ ::: In I ::: n (n E N)

and also

n±l/n~ 1 (n ~ (0).

This proves

limn ....oolnanll/(n-I) = limn ....oolnanll/n = limn....oolanll/n,

which concludes the proof. •
Although fand Df always have the same radius of convergence, their behaviors

on the sphere IxI = rf may differ. For example, the radius of convergence of the
series f = Ln>o x p' is rf = 1. This series diverges on the unit sphere, but the
derivative Df ~ Ln:::o pnxp'-I converges at all points ofthe unit sphere.

Example. The series

log(l + X) = I:(-lt-1xrr«.
n:::1

have the same radius of convergence, since the second one is the derivative of the
first. Obviously, the radius of convergence of the second one is r = 1; hence the
radius of convergence of the logarithmic series is also 1 (compare with (V.4.1» .
Direct inspection (V.4.1) shows that the series 10g(1+ X) diverges when [x ] = I,
while the series feX) = exp X diverges on the sphere [x ] = rp.

1.3. Formal Substitutions

In this section we study the composition of power series feX), g(X) E K[[X)).
In order to be able to substitute X = g(Y) in the power series feX) , it is essential
to assurne that the order of g(X) is positive. This assumption is represented by any
of the following equivalent notations:

weg) ~ I, g(O) = 0, g(X) E XK[[X)) .
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f(g(Y» = I,>n(g(Y)t = L:>n y n

n~O n~O

is well-defined, since the family (an (g( y»n)n~O is summable: The determination of
any coefficient Cn involves the computation of at most a finite number of am(g(Y)r
(m ::: n) and their coefficients of index at most n in each of them. We thus define
the composite power series by

(f 0 g)(Y) = I>nyn E K[[Y]].
n~O

The substitution X = g(Y) fumishes a homomorphism

feX) t-+ (f 0 g)(Y) = f(g(y» : K[[X]] -+ K[[Y]]

sending I to land continuous for the metrizable topology having the ideals
X k K[[X]] as fundamental neighborhoods of 0, since

w(f) 2: k ==} w(f 0 g) 2: k .

For a fixed power series g of positive order, the identity of formal power series

(f1!2) 0 g = (fl 0 g)(!2 0 g)

is easily verified. Hence f2 0 g = (f 0 g)2, and by induction

t" 0 g = (f 0 gt (n 2: 1).

Observe that the exponents are relative to multiplication and not to composition.
Iteration of composition is represented by

go(2) = g 0 g, go(n) = g 0 go . . . 0 g .
'-.,-'

n factors

Also distinguish the multiplication identity f = 1 (constant formal power series)
and the composition identity g = X = id:

foX = f, X 0 g = g (f E K[[X]], gE X K[[X))) .

For example xo(n) 0 f = f , but X" 0 f = I" (n 2: 0).

Proposition. Let g and h be two formal power series with positive order. Then
for any formal power series f we have

(f 0 g) 0 h = f 0 (g 0 h).

PROOE Both sides arewell-defined.They areequal when feX) = X", since fog =
gn in this case (the observation made just before the proposition is relevant) . Hence
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the statement of the proposition is true by linearity for any polynomial f .Finally,
in the general case let f(X) = Ln;:;o anXn. Then

(f 0 g) 0 h = (Langn) 0 h = Lan(gn 0 h)
n;:;O n;:;O

= Lan(goht = fo(goh) .
n;:;O

•

Theorem 1. Let f(X) = Ln>oanXn be aformal power series. The following
properties are equivalent: -

(i) 3 g E K[[X]] with g(O) = 0 and (f 0 g)(X) = X.
(ii) ao = f(O) = 0 and al = f'(O) i= O.

When they are satisfied, there is a unique formal power series g as required by
(i), and this formal power series also satisfies (g 0 f)(X) = X.

!'ROOF. (i) :::} (ii) If g(X) = Lm>1 bmXm, then the identity (f 0 g)(X) = X can
be written more explicitly as -

L ang(Xt = ao +alblX + X 2
( • • •) = X.

n;:;O

In particular, ao = 0 and al bl = 1; hence al i= O.
(ii) :::} (i) The equality (f 0 g)(X) = X requires that albl = 1 and that the

coefficient of X" in alg(X) + ...+ ang(x)n vanishes (for n ~ 2) (indeed, the
coefficient of X" in amg(X)ffl, whenever m > n, vanishes) . This coefficient of X"
is determined by an expression

with known polynomials Pn having integral coefficients (not that it matters, but
these polynomials are linear in the first variables aj; cf. (VA.2». The hypothesis
al i= 0 E K makes it possible to choose iteratively the coefficients bn according to

These choices fumish the required inverse formal power series g .
Finally, if f satisfies (ii) and g is chosen as in (i) , then bo = 0 and b1 =

I/al i= 0, so that we may apply (i) to g and choose a formal power series h with
(g 0 h )(X) = X. The associativity of composition shows that

h(X) = (f 0 g) 0 h(X) = f 0 (g 0 h)(X) = f(X).
'-v-' ---...--

id id

This proves go f(X) = g 0 h(X) = X. •
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We still need a formula for the formal derivative of a composition. The identity

D(f g) = (Df) g + f Dg (f, gE KUX]])

is weIl-known and easy to check. In particular, if f = g, we see that D(g2) =
2g Dg . By induction

D(gn) = ngn-I Dg (g E KUX]]) (n 2: 1)

and by linearity

D(f 0 g)(Y) = Df(X) Dg(Y) = Df(g(Y)) Dg(Y)

for all polynomials f E K[X] .

Theorem 2 (Chain Rule). Let fand g be two formal power series with
g(O) = O. Then the formal derivative of fog is given by

D(f 0 g)(Y) = Df(X) Dg(Y) = Df(g(Y)) Dg(Y).

PRooF. Fix the power series g and let f vary in KUX]]. Then

w(f) 2: k~ w(f 0 g) 2: k~ w(D(f 0 g)) 2: k - 1

as weIl as

w(f) 2: k~ w(Df) 2: k - 1~ w [Df(g(y)) Dg(y)] 2: k - 1.

The identity D(f 0 g)(Y) = Df(g(Y)) Dg(Y), valid on the dense subspace of
polynomials f E K[X], extends by continuity to f E KUX)) . •

Application. Let us come back to the formal power series

eX = 1+ X + iiX 2 + ... = L n::,:O ~X"

of order 0 and

log(l + X) = X - tX2 ± . .. = Ln::':1 (-Irl
X"

of order 1. Their formal derivatives are respectively

D(ex ) = 0 + 1+ X + iiX 2+ ... = eX
,

1
D(log(1 + X)) = 1- X + X 2=F .. . = L(_l)n-I Xn- I = --.

n::,:1 1+ X

For the composition, let us introduce here the formal power series of order 1

e(X) = eX -1 = Ln::':l ~xn, De(X) = D(ex ) = eX •
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The composite

log(ex) = log(l + e(X» = X + L Ck X k

k:::2

is well-defined, and its formal derivative is

Comparison of these two expansions gives

o= kCk E Q, Ck = 0 tk >: 2),

and this proves

log(ex ) = log(1 + e(X» = X.

The formal power series e(X) is the inverse for composition oflog(1 + X): By the
last assertion of Theorem I we also have e(X) 0 log(l + X) = X, namely

exp o log(l + X) - I = X,

or equivalently

e1og(l+X) = 1 + X.

1.4. The Growth Modulus

Let f be a nonzero convergent power series with coefficients in the fieId K. For
lxi< r/ we have fex) = Ln:::o anxn and hence

If(x)1 S max lanxnl·
n:::O

Although the sphere IxI = r is not compact, f is bounded on this sphere:

If(x)1 S lamlrm (lxi = r),

for some m ::: O. Let us say that a monomial /amxmI is dominant on a sphere
IxI = r ( < r/ ) when

In this case, this monomial is responsible for the absolute value of f,

which is constant on the sphere. When r is small enough, there is always a dominant
monomial: If m = wU) is the order of f, we have If(x)1 = lamxml for all
sufficiently small values of [r].
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Definitions. (l) The growth modulus 01a convergent power series 1 is defined
by

so that r t-+ M r1 is a positive increasing real function on the interval
[O,rl) e R

(2) We say that r E [0, rI) is a regular radius for 1 if the equality M,1 =
lanIrn holds for one index n = n(r) :::: °only. The monomial ia; Irn or anxn is
called the dominant monomialjor that radius.

(3) When there are (at least) two distinct indices i t= j such that Mrf =
lai Ir i = laj [r-', we say that r is a critical radius and the monomials lai Iri = M;1
are called competing monomials.

By definition

I/(x)1 s Mr(f) if lxi = r < rr.

and this inequality is an equality I/(x)1 = Mr(f) for all regular radii r, Ifao t= 0,
then r = °is regular and I/ (x )1= laol for small IxI. The positive critical radii
satisfy r i- j = lajlad E IKxl : They are roots of absolute values of elements of
K. A critical radius of apower series with coefficients in K is the absolute value
of an algebraic element (over K).

When the coefficients an E K are given, it is easy to sketch the curves r t-+ lan\rn

(n :::: 0) and their upper bound M,1 on the given interval. This upper bound is a
continuous convex curve. Let us show that it is continuously differentiable except
at a discrete set of points of the interval [0, rI).

Mrf( = If(x)l)

o r' r"

The growth modulus: r t-+ M; f

r=lxl
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Classical Lemma. Let Cn ~ 0 and 0 < R :5 00 be such that for every r < R,
cnrn -+ 0 (as n -+ 00). Then

r ~ M(r) = sup cnrn = max cnrn
n~O n~O

is a continuous convexfunction on the interval I = [0, R) that is smooth except
on a discrete subset 1:1 = {r' < r'' < r'" < . . .} C I . Between two consecutive
values 011:1, M coincides with a single monomial cmrm.

!>ROOF. Let 0 < r < R. Since c.r" -+ 0 (n -+ 00), there is an integer m ~ 0 with

If N > m and 0 < s < r, then

Hence only finitely many monomials, namely those for which N < m, can compete
with cmsm for s < r . The critical radii s < rare among the finite set of solutions
of

j-i Ci
S = - (0:5 i < j :5 m).

Cj

The set 1:1 is either finite - possibly empty - or consists ofan increasing sequence
converging to R. •

This proves that a nonzero convergent power series I has only finitely many
critical radii smaller than any given value r < rfand the set of regular radii of I
is dense in [0, rf ).

In the following commutative diagram, we denote by 'E the union of the critical
spheres in the open convergence ball of I and by [0, rf )reg the subset consisting
of regular values .

t 1·1 t 1·1 t 1·/

Examples. (1) The power series Ln>oxn = 1/(1 - x) and Ln>oXn/n! = e"
have no critical radius . This is obviousfor the first one, and follows-from the proof
of Proposition 1 (V.4.2) for the second one (this can also be seen as a consequence
of the fact that the exponential has no zero (2.2» . On the other hand, if the set
{Ian Ir;} is unbounded on the realline, then there exists a sequence of critical radii
r, /' rf (exercise).
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(2) If fis a restrieted power series, then MI(f) is the Gauss norm of f. This
suggests that the maps f t--+ Mr(f) are norms on a suitable subspaee of K[[X]]
depending on the value r > O. This is indeed the ease.

Proposition 1. When IK x I is dense in R>o and f E K [X], the Gauss norm of
fand the sup norm ofthefunction defined by f on the unit ball A ofK coincide.

In other words (cf. (V.2.1», the eanonical homomorphism

K {Xl ~ C(A; K)

is an isometrie embedding.

!>ROOF. The Gauss norm of fis Md, and the inequality

sup If(x)1 :::: Md
Ixl~1

holds in general. With our assumption, we ean ehoose a sequenee xn E K with
IXn I regular and IXn I )'I 1; henee we have

I

Md = supMrf :5 sup If(x)l.
r/I xeA •

Proposition 2. When r > 0 is fixed, f t--+ Mr(f) is an ultrametric norm on
the subspace consisting of formal power series f(X) = L anXn such that
lanlrn~ O(n ~ 00). Thisnormismultiplicative, i.e., Mr(fg) = Mr(f)Mr(g)
when f and g belong to this subspace.

!>ROOF. If f :f:0, then one an at least is nonzero, and Mr(f) 2: lanIrn > 0, sinee
r > O. Hence M; is a norm on the subspace considered. Moreover, the equality

is true ifr is a regular radius for f, g, and fg , sinee it is the eommon value (V.2.2)

Ifg(x)1 = If(x)/lg(x)1 (lxi = r, x E Qp).

The general result follows by density of regular values and eontinuity of the maps

•
In the classical ease, a eomplex funetion with an infinite radius of eonvergenee

is an entire function . The only entire functions that are bounded on C are the
constants. This is the theorem of Liouville. There is an analogous result in p-adie
analysis.
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Theorem. Let the powerseries f E K [[X]] have infinite radius ofconvergence.
If the function If I is bounded on K and IK x I is dense, then f is a constant.
More generally, iflf(x)1 ~ ClxlN for some C > 0, NE N, and all x E K with
lxi:::: c, then f is a polynomial ofdegree less than or equal to N.

!>ROOF. It will suffice to prove the second, more general, statement. Write fex) =
L anxn as usual. We have

n! N
lanlr ~ Mrf = If(x)hxl=r ~ Cr ,

provided that r :::: cis a regular radius of f. By the lemma and since IKx I is dense
in R>o, this happens at least for a sequence of values rj = Ixj I -+ 00, x j E K,

lanl s Crf-n.

Letting j -+ 00, we get an = 0 for all n > N. This proves that f is a polynomial
of degree at most N, as claimed. •

There are many entire functions that are bounded on Qp,just as there are many
entire functions bounded on R (e.g., polynomials in sinx and cosx).

1.5. Substitution 0/ Convergent Power Series

Let feX) = Ln>o «x», g(X) = Lm>! bmXm be two convergent power series
with g(O) = O. Tbe formal power series(f 0 g)(X) = Lk>O CkXk will turn out to
be convergent, too, and we intend to prove the validity ofthe numerical evaluation

Cf 0 g)(x) = f(g(x»,

L::CkXk = L::an (~m;::!bmxm)n
k;::O n;::O

when [x] is suitably smalI.
In order to be able to substitute the value X = g(x) in the formal power series

feX), it is necessary to assume that this is smalI: Ig(x)1 < rf will do. But even
if g(x) = 0, namely, x on a critical sphere of g, [x ] might be too big to allow
substitution in fog . Recall that critical spheres occur when several monomials
are ofcompeting size .The circumstance g(x) = 0 does not prevent a few individual
monomials to be large, and thus have an influence after rearrangement of these
terms . On the other hand, the power series fog converges in abalI, and it would
be unreasonable to expect to be able to take advantage of the single fact that "g(x)
smalI," i.e., x close to a root of g, and hence x on a critical sphere of g, while
sup Igl on this critical sphere is Mr(g) (r = lxi).This explains the reason for the
hypotheses made in the following theorem.

Theorem. Let fand g be two convergent power series with g(O) = O. If
lxi< rg and M1xl(g) < rt - then rf og> lxi and the numerical evaluation ofthe
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composite fog can be made according to

(f 0 g)(x) = f(g(x)) .

PRoOF. Assurne that x E K (or Qp) satisfies the assumptions and define r = [x].
Then recall that if feX) = Ln>o anxn and g(Y) = Ln» bnyn, the formal power
series (f 0 g)(Y) = Lk>O Cky k is obtained by grouping equal powers in the
expansion of Ln;::o ang(y)n (this is a double series). Define the polynomials

fN(X) = L anXn.

O~n~N

The substitution

(fN 0 g)(x) = fN(g(X))

is valid if lxi< rg by Corollary 2 of Proposition in (1.2). Let y = g(x). Since
lyl = Ig(x)1 ::: Mr(g) < rl' we have fN(Y) --+ f(y), and here is a diagram
sumrning up the situation :

-+ f(g(x)) (N --+ (0)

~ polynomial case for fN (1.2)

Introduce

?

(fN 0 g)(x) ~ (f 0 g)(x) (N --+ (0) .

(fN 0 g)(Y) = L C~(N)yk,
k;::O

«f - fN)og)(Y) = LcZ(N)yk ,
k>N

so that the coefficients Ck of fog are

Ck = «N) + cz(N), Ck = «N) (k::: N).

Recall that

(f 0 g)(Y) - (fN 0 g)(Y) = L ang(Y)n = L cZ(N)yk

n s-N k s-N

is obtained by grouping the monomials having the same degree. Any monomial
of g(Y)n is a sum of products of n monomials of g(Y). When we evaluate it at a
point y with M1ylg = p, the ultrametric inequality shows that its absolute value is
less than or equal to p", This is where we use the assumption Mr(g) < r I in its
full force: Choose y E C p with

I

(a) [x] = r < lyl <:: r g , so that g(y) is well-defined,,
(b) Ig(y)1 ::: M1ylg = P <:: rr, so that f(g(y)) is well-defined
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(this is possible by continuity of t 1--7 M,g and Mr(g) < rf). Gur previous
observation gives

Ic;(N)ll ~ sup lanlpn -+ 0 (N -+ 00)
ns-N

because p < r r -This shows that the sequence (Ckyk)k;::O lies in the closure ofthe set
of sequences (ck(N)/)k;::O (N ::: I). But for each N, the sequence ck(N)yk -+ 0
(k -+ 00) and the space Co of sequences tending to 0 is complete (lV.4.I). This
proves

and also

(f 0 g)(y) - (fN 0 g)(y) -+ O.

Example. Take K = Qp and consider the formal power series

•

'" n I!(X) = LX =--,
n;::O I - X

g(Y)=Y-YP.

Take a root ~ E f.tp-l . Then g(~) = 0, so that ! (g(~» = ! (0) = I is well-defined.
But rfog = I, and the power series of ! 0 g is not convergent on the unit sphere,
so that (f 0 g)(n is not defined. Here for r = I~ I = I, Mr(g) = I is not less than
rf = I, and the substitution is not allowed (cf. exercises for the case p = 2). This
example also shows that for fields K having a discrete valuation, the condition on
balls g(B<r(K» C B<r/ is not sufficient to allow substitution: If (1 < r < p),
Y E Zp = B<r(O; Qp), we have y == yP (mod pZp) hence Iy - yPI ~ Ipl < 1
and thus g(B<r(Qp» = g(B~1 (Qp» C B<l . But although ! converges in the
open unit ball, we cannot find apower series representing the composite ! 0 g in
the ball B~l, since the rational function

1- Y + yP

has poles at the roots of 1 - Y+yP = O. These poles are located on the unit sphere
of a finite extension of Qp, and no power series can represent this rational function
on the sphere r = 1 (cf. exercises).

Another quite interesting example where the composition (f 0 g )(x) is well­
defined but different from !(g(x» will appear in (VIL2A).

Application. As proved in (1.3), the formal power series !(X) = log(l + X) and
g(X) = e(X) = exp X-I are inverses of each other. By (1.5),
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since M1xl(e(·)) = [x] and [x] = r < rp < rlog = 1. Similarly,

explog(l +x) = 1 +x (]x] « rp ) ,

since M1xl(log(1 + .)) = [x] for [x] = r < rp, and rp is the radius of convergence
of the exponential. This is a second , independent, proof of the fact that exp and
log are inverse isometries in the open ball B<rp(K) (Proposition 2 in (V.4.2)).

1.6. The Valuation Polygon and its Dual

The study of

M, = Mr(f) = sup /anIrn
n::::O

is best made using logarithms. We shall use Greek letters for these logarithms:

p = logr < Pt = log rj ,

an = log lanl,
f-Lp = log M r = sup (np + an) .

n::::O

It is convenient to choose the log to the base p in order to have log p = 1 and

The function f-Lp is a convexfunction as the sup envelope ofaffine linear functions.
It is a piecewise linear function, since the critical radi i (and their logarithms) occur
on a discrete subset. Its opposite

-f-Lp = inf'(v, - np)
n::::O

is a concave function , When IxI = r = p'' is a regular radius, we have

-f-Lp = ordpf(x).

Definition. The function

P t-+ h p := inf'(v, -np) (-00 < p < Pt),
n ::::O

or its graph, is the valuation polygon ofthe power se ries f.

(a) Let a,x' be the dominant monomial between two consecutive critical radii,
say'r < r < r' . Then

hp = -f-Lp = inf'(u, - np) = Vi - ip
n::::O
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is affine linear in the corresponding interval

'p = log r < p < p' = logr'.

This gives a side of the valuation polygon. The valuation polygon, or the graph of
p 1--+ h p := infn~o(Vn - np), is the boundary of the convex intersection of lower
half-planes determined by the lines of equations

The slope of b.~ is -n, and this line passes through the point (0, vn ) . The segment
of .1.; above the interval ['p, p'] is a portion of the boundary - a side - of this
convex region.

(h) If the dominant monomial just beyond the critical radius r' is a j Xj , then
i < j are the extreme indices for competition of the monomials

la;lr'i = la j lr ' j ,

(r,)j-i = la;/aj I = p-v;+Vj,

v · - v·
p' = log r' = _1_. --.' •

] -I

(c) From the definition hp = infn~o(Vn - np) (-00 < p < Pf ) we infer succes­
sively

hp ~ Vn - np (p, n 2: 0),

hp +np :s Vn (p, n::=: 0),

sup(h p + np) ~ Vn (n 2: 0).
p

The function

n 1--+ sup(h p + np)
p

is a piecewise linear convex function whose graph gives the boundary of the convex
intersection of upper half-planes containing all points P; = (n , vn ) . The line of
equation

has slope p and passes through the point (0, h p) . This gives a method for computing
hp = -J1,p for ajixed value of p. The value Vn - np is geometrically the height
above the origin of a straight line of slope p going through the point Pn = (n , vn ) .

One can draw the graph of the function n 1--+ ordpan of an integer variable ­
consisting of the points Pn - and look for the lowest line of slope p going through
these points. The height above the origin of this lowest line gives the value hp •

Letting now the slope p vary, this construction fumishes the desired convex hull
of the points Pn (or of the graph of n 1--+ Vn = ord; an).
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critical slope
;'

;'
;'

;'
;'

;' --
- --;lope p

o i j n

The Newton polygon: convex envelope of the Pn

Definition. The function

n 1-+ suptv, +np) (-00 < P < PI),
p

or its graph, is the Newton polygon ofthe power series f.

The Newton polygon is the boundary of the sup convex envelope of the points
Pn = (n, vn ) (n 2: 0).

A few conventions are useful at this point . When a coefficient an vanishes, its
valuation Vn = 00, and the corresponding point Pn is at infinity above all other
ones. For example, the Newton polygon has a first vertical side at m = ord(l),
least integer m with am :/; o.If f is a polynomial, it also has a last vertical side at
n = deg (I) (since all Pn 's are at 00 when n > deg 1).

The two polygons constructed are duals of each other. The sides of one cor­
respond to vertices of the other. For example, a side of the Newton polygon cor­
responds precisely to a slope of a lowest contact line going through two distinct
points Pn • This situation occurs when two monomials have competing maximal
absolute values, namely when this slope P is the logarithm ofa critical radius: The
valuation polygon has avertex, and the graph of r 1-+ M, f exhibits an angle at
the corresponding value of the radius r , More forrnally, from

h p = inf(vn -np) (p < PI)
n:::O

we infer

hp ~ Vn - np (p < PI' n 2: 0)

with equality for at least one index n. Equivalently,

hp + np ~ Vn

sup (hp + np) ~ Vn
p

(p < PI , n 2: 0),

(n 2: 0) .
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Duality of the Newton polygon and the valuation polygon

The affine lines

D.. p : t 1-+ hp + tp,

which are below all Pn , have a sup that is the Newton polygon. Dually, the affine
lines

D..: :p 1-+ -(np + an) = Vn - np

have an inf that is the valuation polygon.
This notion of duality is developed in CONVEXITI THEORY. It has numerous appli­

cations:

differential geometry (contact transformations),
variational calculus, classical mechanics, . .. .

Aigorithm. Here is an efficient procedure to find the critical radii of apower
series feX) = Ln>o a.X" , Let Vn := ord; an and plot the points P; = (n, vn).
Determine the convex envelope of this set of points (and of Poo = (0,00». The
vertices of this convex envelope correspond to dominant monomials, those respon­
sible for Ifl = M, between two critical radii, and endpoints of sides correspond
to competing monomials (responsible for a critical radius) with extremal indices.
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If Pi and Pj (i < j) are two endpoints of a side of the Newton polygon, the slope
p' of this side

, Vj - Vi ,
P = -.-. = log r

] - I

corresponds to the critical radius r' for which the two monomials aix! and aj X j

are the extreme competing monomials la;l(r') i = lajl(r')j,

For p /' p', the point Pi is the only contact point of the line .ßp ofslope p defining
the Newton polygon

hp = Vi - ip (p /' p').

For p \. p' , the point Pj plays a similar role :

hp = Vj - jp (p \. p').

Example 1. Consider an Eisenstein polynomial (IIA.2)

feX) = xn + an_IXn- 1 + ... + an E Z[X],

where p I ai (0 :::: i < n) and an is not divisible by p2. These assumptions mean
that

ordpao = 1, ordpai 2: 1 (l:::: i < n) ,

so that the Newton polygon of f can bedrawn (see the figure) .

•

012

•

•

critical slope p = - 1/0
critical radius: r =P'' =IP lila

n

The Newton polygon of an Eisenstein polynomial
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Example 2. Let us treat the case of the power series

j(X) = log(1 + X) = Ln:::1 <-lr1 x» ,
Wehave

and

n
0 1 3 4 5 6 7 8

p1 p3

•

-1 ,~~:::-----------i

-3 ·········r·························· ·---

slope : _1/(p3 _p2)

The Newton polygon of the logarithm

The vertiees of the Newton polygon are the points

PI = (1,0), Pp = (p, -1), Pp2 = (p2, -2), Pp3 = (p3, -3), . .. .

The sueeessive slopes of the sides are

-1 -1
--> --->
P -1 p2 - P

They eorrespond to eritieal radii

-1
--::-----::- > . . .
p3 _ p2 (-+ 0).

I _ I _ I

P- p-' < p h < p ~ < . . . (-+ 1 ),

and we reeognize the sequenee

rp = Ipl p:, < r~ = r;/p < r; = r;/p2 < .. . (-+ 1 ).

Between two eonseeutive eritieal radii, the absolute value of the logarithm eoin­
eides with the absolute value of the dominant monomial. We already know that

Ilog(1 + .r)] = [x] (0 ~ [x] « rp ) ,
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- the isometry domain of log (inverted by exp) - and see further that

rp< Ilog(1 +x)1 =Ix; 1= plxJP < pr p (rp < [r] < r~) ,

where r~ = r~/P is the next critical radius . Quite generally,

pi- I rp < [Iogtl +x)1 = I;;1= pilxlpi < pi rp

for

Here we see how [Iogt l + x)1 increases: We already knew by (VAA) that it can
be arbitrarily large, since log: 1+M p ---+ Cp is surjective. On the other hand, the
zeros of log( 1+x) can occur only when Ix I is equal to a critical radius. This gives
an independent proof of (IIAA) for the estimates of I~ - 11 when ~ E J.-L poc.

1.7. Laurent Series

Let us show how the preceding considerations extend to Laurent series . Let

00

f = L anX n = L anXn

neZ -00

be such aseries with coefficients in the field K . Thus we consider this series as a
sum of two formal power series

f = t: +r: =L anX
n +L anXn

n<O n::::O

with r E K[[X]] as before, and f- = Ln<o anXn E K[[X- I )] has zero con­
stantterm. Convergencerequires [x] « ri = rj+ = l/limn.....oo /an II / n forthe first

one and similarly Ix-li< l/Iimn..... oo la- n II/n for the second one. Let us define

- -I· I II/nrI := lmn .....oo a_n

and let us assume ri < ri,so that we have a comrnon open annulus of convergence
Ti < lxi< ri and hence a continuous (strictly differentiable) function - still
denoted by f - in this annulus of K (or in any complete extension of K).

The absolute value of this function f is bounded on a sphere [x] = r (where
- +)TI<r<rl ,

If(x)1 ~ sup lanlrn (lxi = r),
-oo <n <OO

and is even constant on this sphere, provided that a single monomial dominates
all the others. In this case we say that it is a regular radius. We again define the
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growth modulus of f,

Md = Mr(f) := sup lanlrn (ri < r < ri),
-oo<n <oo

as a positive real function on the interval (ri ' ri) c R. A critical radius r is a

value ri < r < ri such that for two monomials (at least)

Mrf = la;lr i = lajlr j (-00 < i < j < 00).

The critical radii make up a discrete subset of the interval (ri, ri), and regular
radii are dense in this interval.

The growth modulus r 1-+ M, f of a Laurent series is a convex function but
is not necessarily increasing. Taking the log to the base p, define p = log r,
fLpf = log Mv]' , Then

p 1-+ hp = fLpf (log rj' < p < logri)

is a concave piecewise linear function (inf envelope of affine linear ones). It is the
valuation polygon of the Laurent series f. All these facts are established exactly
as in the case of power series.

Laurent series can also be multiplied in a common annulus of convergence. Let
us indeed start with the case of Laurent polynomials. If

q = LbnXn E K[X, X-I],
finite

then their product is the polynomial pq = L cnX n having coefficients

Cn = L aib], Icnl:::: sup lakb/I (n E Z) .
k+/=n k+/=n

With the Gauss norms of p and q (sup norms on the coefficients) we have

Jcnl:::: IIpll . IIqll (n E Z)

and consequently

The product operation is (uniformly) continuous: It extends continuously to the
completion K {X, X-I} with the same inequality. This completion consists of
Laurent series L-oo<n<ooa.X", where lan I ---+ 0 for both limits n ---+ 00 and
n ---+ -00: These are called restricted Laurent series.

In particular, the powers of a restricted Laurent series are again restricted Laurent
series, and if f E K {X, X-I}, then x mr E K{X, X-I} for all mEZ and nE N.
Moregenerally,iffisaconvergentLaurentseriesandrj < lai< ri,theng(X) =
f(aX) is in K {X, X-I}, and the same results are established for convergent Laurent
series instead of restricted ones.
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2. Zeros of Power Series

2.1. Finiteness ofZeros on Spheres

Let K be a complete extension of Qp (in Cp or Qp),

K JA J M, A/M = k: residue field .

Select a nonzero convergent power series f(X) = Ln>o anXn E K[[X]]: rl > O.
If f(a) = 0 for some a E K X

, lai< rI, then r = lallS a critical radius: Indeed,

If(a)1 = 0< MTf := sup /anlr n
=1= 0

n~O

(cf. (1.4) : r = 0 is critical precisely when ao = f(O) = 0).
We have already obtained an illustration of this fact in the study (1.6) of

Ilog{1 +x)I for lxI < I: the zeros oflog occur on the critical spheres, centered at
1, containing pth-power roots of unity (V.4.2).

Proposition. Let f E A {X} be a restricted power series. Let a E A. Then there
is a formal power series g such that

f(X) = f(a) + (X - a)g(X).

Moreover, gE A{X} and r, 2: rr

PRooF. Replace f by fl(X) = f(aX), and hence fl E A{X} (if lai< I we even
have rj, = rl/lal > I) . Hence we only have to consider the typical casea = 1. We
write f = Ln>o anXn (an E A , lanI~ 0), and we have to find g = Ln>o bnXn

~th - -

f(X) = f(1) + (X - l)g(X).

Comparing coefficients, we find the conditions

ao = f(1) - bo, an = bn- I - bn (n 2: 1),

or bo = f(l) - ao = Li>Oai, bn = bn- I - an' By induction we see that

bn = I>i E A (n 2: 0).
;>n

Hence Ibn I~ 0 and g E A{X}, as desired. Ifrl = 1, we are done. Ifrl > I, take
any r > 1, r < rI, so that lai Iri ~ O. Hence there is a constant c > 0 such that

ladri ~ c, lad ~ cfr' (i 2: 0).
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Since the sequence (lbnlrn)n?;O is bounded, rg 2: r, Letting r increase to rf, we
see that rg 2: sUP1<r<rj r = rf (compare with Theorem 1 in (V.2A». •

Theorem (Strassman). A nonzero restrictedpower series fE A{X} has only
finitely many zeros in A.

PROOF. (1) Zeros on the unit sphere. Assurne f = Ln?;oanXn -# 0 and define

JL := rnin{n : lanl = sup lad} :::: v := sup{n : lanl = sup lad},
i i

so that JL :::: v. If JL = v, then f has no zero on the unit sphere. We are going to
show more precisely that f has at most v - JL zeros (counting multiplicities) on
the unit sphere. Suppose v 2: 1 and f(a) = 0 for some a E A x, namely laI = 1.
Write

f=(X-a)g, gEA{X}.

By the definition of the extreme indices JL and v, when we reduce the coefficients
modM,

j(X) = (X - ä)g(X) E k[X],

we find that

deg j = 1 +deg g, w(j) = w(g),

since Ci ::1= 0 (w denotes the order as in (1.1): first index of a nonzero coefficient),

This proves that

vg - JLg = (v - JL) - 1 < v - JL.

But any zero b ::1= a of fis also a zero of g:

0= f(b) = (b - a)g(b) => g(b) = O.

For example, if v = JL + 1, we arrive at vg = JLg, so that g cannot vanish on A x.

In this case, f has only one zero in A x, and v - JL = 1. If v > JL + 1, we can
repeat the procedure for g . In this way, we see that after at most v - JL steps, the
last function h E A{X} obtained will satisfy Vh = JLh, hence will not vanish on
the unit sphere A x . This process leads to a factorization

f = P . h, P polynomial, h E A{X},

and h does not vanish on A x •

(2) Zeros in M . If f(a) = 0 for some a E M, name1y lai < 1, consider
fa(X) = f(aX), for which rfa = rtllal > rf 2: 1. By the first step,fa has a finite
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number of zeros on the unit sphere: f has a finite number of zeros on the critical
sphere ofradius r = [zz] , Since f has only finitely many critical radii r < I, the
conclusion folIows. •

The proofhas shown more precisely that the number of zeros of f in A (counting
multiplicities) is bounded by the telescoping sum ofdifferences v - J.L ofexponents
of critical monomials (corresponding to the critical radii less than I). Hence we
have obtained the following result.

Corollary. Let f = Ln>o anXn E K[[X]] be a nonzero convergent power
series and assume that r .< rJ is a critical radius of f. Let also

J.L = min {n : lanlrn = M,f} < v = max {n : lanlrn = M,f}

be the extreme indices ofthe monomials ofmaximal absolute value. Then, count­
ing multiplicities,

f hasat most v - J.L zeros in S,(K),
f has at most v zeros in the closed ball B~,(K),
f hasat most J.L zeros in the open ball B<,(K).

Remark, With the previous notation we have

!Iai< Isi< for r - e < s < r,
Msf=

lavlsv for r < s < r + e

for small enough e > O. Taking logarithms (to the base p),

•

fora /' p,

fora ~ p,

and v - J.L appears as a difference of slopes of the valuation polygon at the corre­
sponding vertex.

2.2. Existence ojZeros

We keep the same notation as in the preceding seetion.

Theorem 1. Let K be a complete and aigebraically cIosed extension of Qp and
f = L anXn E K[[X]) a nonzero convergent power series. If f has a critical
radius r < rJ' then f has a zero on the critical sphere ofradius r in K. More
precisely, if J.L < v are the extreme indices for which lanIrn = M, f , then f has
exactly v - J.L zeros (counting multiplicities) on the critical sphere [x] = r of
K : There is a polynomial P E K[X] ofdegree v - J.L and a convergent power
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series g e K[[X]] with

1= P . g, rg ::: rj, g does not vanish on Sr(K) .

PROOF. The result is trivial if r = 0, so we assume r > 0 from now on. Recall that
lalLlr lL = la"lr", r"-IL = laIL/a,, 1 e IKxl . Since K is algebraically elosed, there
is an element a e K with lai = r . Replace I by la(X) = l(aX) having r = 1
as critical radius. This converts I into aseries having a radius of convergence
rj. = rj/lal > 1, and in particular, la e K{X} . We can sirnilarly replace I by
the multiple f ia; and assume lalLl = la,,1 = Mrl = 1 (and a" = 1). To sum up,
it is sufficient to study the normalized situation

r = 1 < rj is a critical radius of I e A{X} C K{X},

lalL I = la,,1 = Md = 1, lanl ~ 1 (n::: 0),

lan I < 1 for n < f.L and also for n > v.

We are going to show that (counting multiplicities)

I has precisely v - f.L zeros on the critical sphere Sr(K) .

For [x ] =f. 1 elose to 1, the absolute value of I(x) is given by

if lxi? 1

if [x] -, 1

say 1 - e < !xI < 1,

say 1 < [x] « 1 + e.

(The first estimate is valid when [x] is larger than the largest critical radius less
than 1, and sirnilarly, the second one is valid when [x] is smaller than the smallest
critical radius greater than 1.)

First step : Truncation. For any index r > 0 define the polynornial P; = Ln<y anxn

(of degree ~ r) and the remainder gy = Ln> yanxn. We have I = P; +gy, and
if r ::: v, then

M1gy = max lanl < 1 = M11 = MIPy,n>y

By continuity of the functions r t-+ Mrgy and r t-+ M, I we infer

I
L: anxnl ~ Mrgy < Mrl (lxi = r eloseto 1).
n>y

If r is regular for both gy and I (which is the case if r =f. 1 is elose to 1), we have

Igy(x)1= Mrgy < Md = I/(x)1 (jr] = r =f. 1, r elose to 1).

Consequently, if r ::: v , then

I/(x) ! = IPy(x ) + gy(x)1 = IPy(x)!
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for the same values of [x] = r. Choose r :::: v, so that a r :f:. 0: deg Pr = r. Since
K is algebraically closed, we can factorize this polynomial:

Pr(X) = a r n(X - ~).
~

More precisely, consider the partition of these roots into three subsets,

A = Ar roots ~ with I~I < 1,

A' = A~ roots ~ with I~I > 1,

ß = ß r roots ~ with I~I = 1.

Here is a table of the absolute values Ix- H depending on ~ and IxIclose to 1:

lxi? 1

lxi = 1

[x] ~ 1

A : I~I < 1

[x]

[x]

ß : I~I = 1

1

Ix-~I

[x]

A' : I~I > 1

I~I

I~I

I~I

In the middle column, we see that when IxI crosses the value 1, then Ix - ~ I
(~ E ß) varies from 1 to IxI. The number of roots ~ E ß - taking multiplicities
into account - is responsible for the variation of growth of IPr I. We have

IPr(x)1 = larlnIx-~In Ix-~InIx- ~I
A t> A'

(the factors ofthis product are repeated as many times as the respective multiplic­
ities require). Considering separately the cases [x] « 1 and [x] > 1, we have

(1)

(where multiplicities are taken into account in the exponents - the same notational
abuse is made below). Recall (*)

l'a", llxl'" = lxi'" for [x] = r ? 1,
1!(x)1 = MT! =

la"lIxl" = [x]" for [x] = r ~ 1.

Comparing the first lines of (1) and (2), we infer

t-t=#A, larlnl~I=1.
N

(2)
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Observe that if T > v, then la~ I < 1, so that N is not empty! Comparing now the
second lines, we get

o:= #I::!. = v - J.L

independently from the index of truncation T (recall that this takes into account
the multiplicities of the roots I~ I = 1 occurring in P~ and is thus greater than or
equal to the cardinality ofthis set ofroots). Since la~1 TIN I~I = 1, we can now
write

IP~(x)1 = nix - ~I for [x] = 1,
6.

(3)

namely, the absolute value of P~(x) on the critical (unit) sphere is the product of
the distances of x to the roots ~ EI::!..

Second step: Convergence. Let us compare two successive truncations: if P~ =1= f,
then there is T' > T with

By the first step, the roots of the polynomial P~, on the unit sphere constitute a set
N having the same number of elements (counting multiplicities) 0 = v - J.L as I::!.,
and

IP~,(x)1 = nix - ~'I for [x] = 1.
1).'

In particular, if we take a root ~ E I::!. of P~, we have

n I~ - ~ 'I = IP~'(~)I = IP~,(~) - P~(~)I = la~'~~'1 = la~'I·
6.'

Hence for one root r E ß' at least, we have

When f is not a polynomial, we can consider the infinite sequence of successive
truncations of I, which are polynomials of degrees equal to their index

T < TI = T' < T2 = TI! <

Their sets of roots on the unit sphere

I::!.o = S; ßI = s' , ß2, .. . C {x E K : [x] = I}

have the same cardinality o. Let us choose and fix a root ~ = ~o E I::!.o. We have
seen that we can choose a root ~I E ßI such that
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and then a root ~2 E D.2 such that

1~2 - ~II ~ la'21 1
/
0

, etc.

Since lan I -+ 0, this construction fumishes a Cauchy sequence (~i )i~O on the unit
sphere of the complete field K . Let us call ~oo its limit. By construction,

I(~m) = L ai~~,
i> fm

1/(~m)1 = IL ai~~I~ ~ax lad -+ 0,
. l >Tm
' >Tm

I(~oo) = I( lim ~m) = lim I(~m) = O.
m~oo m-4-00

This proves the existence of a root a = ~oo of 1 in the unit sphere of K. Writing
1 = (X - a)g , if v - J-t > 1, we can repeat the construction of a root of g.
Eventually, we arrive at the precise statement of the theorem. •

For example, if a convergent power series 1 E Cp[[X]] has no zero in the open
ball B<rf of Cp , then it has no critical radius . This is the case for I(X) = eX , as
was mentioned in (1.4) (before the Liouville theorem).

Corollary. Let 1 E K[[X]] be a convergent power series having no zero in
some closed ball [x I ~ r « rf) 01 K". Then 1/1 is given by a convergent
power series with ru] 2: r. If1 has no zero in an open ball [x] < r' (~ rf) 01
K", then 1/1 is given bya convergent power series with ru] 2: r' ,

PRoOF. Let 1 = Ln>oanXn. Since ao = 1(0) =1= 0, we may replace 1 by 1/1(0)
and assume ao = I.-Define g = Ln>1 a.X", so that I = 1 + g, r g = rf. The
formal power series 1/1 E 1 + XK[[X]] is obtained by formal substitution (1.3)

1 1
f = 1+ Y 0 g(X),

since w(g) 2: 1. For the estimate of the radius of convergence of this power series,
we may replace K by K" , and hence assume that K is algebraically closed. By the
theorem, 1 has no critical radius less than or equal to r, and if 1 = Ln>o anXn,
then laol > lanlrn foralln 2: 1.This shows thatMrg = maxn~1 lanlrn < iäol = 1.
Numerical evaluation ofthe above compos ition (1.5) is valid when

which is the case for IxI ~ r, since

The same reference (1.5) also proves that rur > r . The second statement is
obtained by letting r ./ r', •
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When K is not algebraieally cIosed, we ean still give the following faetorization
result (in the following statement, JL and v have the same meaning as before).

Theorem 2. Let K be a complete extension 0/ Qp in Qp and / E K[[X]] a
nonzero convergentpower series.

(a) If /(a) = O/or some a E Qp, lai< rf, then ais algebraic over K.
(b) Ifr = I is a critical radius 0/ / , then there is a factorization

/ = cP . Q. g1, cE K X
, P , Q E A[X] monic polynomials,

P 0/degree v - JL, IP(O)I = 1, Q 0/degree JL, Q == XiL (mod M),
g1 E 1+ XM{X} (rg ::: rf) has no zero in the closed unit ball
0/ K" . These conditions characterize uniquely this factorizaiion.

!'ROOF. (a) If / has a zero a on the sphere [xI = r in C p (or Q p), then r is a eritical
radius, and the preeeding theorem shows that / has v - JL roots in Qp (eounting
multiplieities). If a is a K -automorphism of Qp , it is eontinuous and isometrie
(111.3.2):

Henee a has a finite number of eonjugates eontained in the finite set of roots of
/ on the sphere [x ] = r of Qp. By Galois theory, this proves that a is algebraie
over K. The same argument shows that the produet P = fh(X -~) E Ka[X]
extended over all roots of / having absolute value r (all multiplieities eounted)
has eoeffieients fixed by all K -automorphisms of K" and henee eoeffieients in K.
This is a monie polynomial P E K[X] of degree v - u ,

(b) Define P = TI~(X -~) E K[X], the produet over all roots of / having
absolute value r = 1 (taking into aeeount multiplicities), Hence P is a monie
polynomial of degree v - JL, and P(O) = ± TI~ is a unit . Let similarly Q =
TI~(X -~) E Ka[X] be the produet eorresponding to the roots of / in the open
unit ball ls] < 1, i.e., ~ E M. Then Q is a monie polynomial of degree JL having
its eoefficients in M exeept for the leading one. As before, Galois theory shows
that Q E. K[X] . Now, / = P Qg with a eonvergent power series s.rg ::: rf > 1,
having no zero in the cIosed unit ball of K", henee no critieal radius. If g =
Ln>o b,x', we have Ibo I > Ibix i I for all i > 1, IxI ~ 1, sinee there is no eritieal
radius in the unit ball. Hence Ibol > Ibi!, and taking c = bo #- 0, we see that
(bi ~ 0 sinee rg > 1)

T = cPQgt. g1 = I + L(b;/c)X i E 1+ XM{X} .
i >O

For uniqueness, observe that in a faetorization / = c P . Q . g1 with g1 E

1+XM{X} (rg ::: rf), henee g1 having no zero in the closed unit ball of K" ,
the polynomial c P Q is a multiple of the produet of the linear faetors correspond­
ing to the roots of / in the cIosed unit ball (eounting multiplieities). If the degree
of P Q is v, this monie polynomial is the product TI~(X -~) E Ka[X] extended
over all roots I~I ~ 1. If P = TI~(X -~) is a produet extended over a subset of
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roots, the condition IP(O)I = IO~ ~I = 1 implies that the factors correspond to
roots I~ I = 1. The degree of P being v - f-L by assumption, this product contains all
the linear factors of f corresponding to the roots on the unit sphere. Consequently,
Q is the product of the linear factors of f corresponding to the roots in the open
unit ball. _

Remarks, (I) Under the assumptions of (b), if f has its coefficients in A, and
not all in M, then the constant c is a unit, and by reduction mod M, the equality
f = CPQgl leads to j = cPQii = cPXJ1., since ii = 1. Since P is a monic
polynomial of degree v - f-L with constant term P(O) E A x, P(O) =1= 0, we
recognize the significance of /L and v as the extreme indices of monomials of
maximal absolute value for [xI = 1. In the normalized form a" = I; hence c= 1.

(2) This theorem is aversion of the Weierstrass preparation theorem, which was
initially proved for rings of germs of holomorphic functions in several complex
variables. It has now several formulations in purely algebraic terms.

2.3. Entire Functions

Definition. An entire function is a junction f given by a formal power series
f E K [[X)) having infinite radius ofconvergence: rf = 00.

Before studying the entire functions more closely, let us prove the following
elementary result,

Lemma. For any sequence (an)n:::O in a complete ultrametric field K with
an -+ 1,theproducts PN := On<N an convergetoalimitdenotedby On>O an =
O~o an· More generally, if(an)n:::O is a sequence ofK -valuedfunctionsdefined
on some set S, and ifan -+ I uniformlyon S, the partial products PN converge
uniformly to On:::O an'

PRooF. By assumption lan I = 1 for large n. Hence the partial products remain
bounded, say IPNI .s C (N ::: 0). By definition,

PN+l - PN = (aN - I)PN,

IPN+l - PNI ::::: ClaN - 11 -+ 0 (N -+ 00).

This proves that the sequence of partial products PN is a Cauchy sequence. It
converges in the complete field K. The second statement follows immediately
from the first one. _

The exponential is an example of a function with no zero :

eX
• e-x = eO = 1 =} e' =1= 0

(this is true for the complex exponential and for the p-adic exponential: Only the
homomorphism property is used!). Although it is an example of an entire function
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in complex analysis, the finite radius of convergence of the p-adic exponential
prevents this function from being entire in this context. In fact, any entire function
having no zero in complex analysis is of the form f(z) = eg(z) for some entire
function g , but the only entire functions in p-adie analysis having no zero in an
algebraically closed field are the constants . This leads to an easy determination
of entire functions in p-adie analysis. The main results are contained in the next
statement.

Theorem. Let f E K[[X]] be a formal power series with rf = 00.

(a) If f does not vanish in K", then f is a nonzero constant.
(b) If f has only finitely many zeros in K", then it is a polynomial.
(c) IfO =1= f E Cp[[X]], thefollowing conditions are equivalent:

(i) f has infinitely many zeros.
(ii) f has a sequence ofcritical radii ~ 00.

(iii) The growth of Ifl is not bounded by a polynomial in [x],
(iv) f is given bya convergent infinite product

f(x) = Cx'" · 0 (1 - x/~) the product taken over nonzero
roots of f , counting multiplicities, and m = ordof.

PROOE (a) If f does not vanish, then ao = f(O) =1= 0 and If(x)1 = laol whenever
[xI is smaller than the first eritical radius . Since f does not vanish, there is no
eritical radius ; hence all an = 0 for n 2: 1. This proves that f = ao is constant.

(b) After division of f by the monie polynomial having the same roots as f,
we are brought back to the first case.

(c) The equivalenee (i) {:::=} (ii) is a eonsequence of the finiteness of zeros on
each critical sphere . The equivalence (ii) {:::=} (iii) is Liouville's theorem (1.4).
Finally, (iv) ==* (i) is clear, and we now show (ii) ==* (iv). By assumption f =1= 0,
and if its order is m 2: 0, we can write

f(x) = L a.x" = Cxm(1 +L a~xn)
n~m n~l

with C = am (and a~ = am+n/am). Without loss of generality we may now assurne
that f is given by an expansion f(x) = 1 + Ln>! anx n. In this ease If(x)1 = 1
for small x, namely for IxI < ro (ro denoting the first critieal radius of f) . Just
beyond this critieal radius, we shall have If(x)1 = IxlN if there are preeisely N
zeros (eounting multiplicities) of fon the critical sphere [x] = ro. Let us write

f(x) = po(x), f!(x), po(x) = TI (1-~) .
1~I=ro . !(n=o ~

The same procedure can obviously be iterated on eaeh successive critieal sphere
and furnishes a factorization

f(x) = Pn(x) , fn+!(x), Pn(x) = TI (1 - ~) .
1 ~I:::rn . !(~)=o ~
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This construction makes it obvious that for fixed x, the terms (1 - x/~) of the
product tend to 1 and this convergence is uniform in x in a ball B~R (provided
that R < 00). This is the infinite product representation of f . It also shows that
for each given sequence (~i) with I~;/ -+ 00 there is an entire funct ion having the
~i 's as zeros (with correct multiplicities, and no other root) : The corresponding
infinite product converges uniformly on all bounded sets (its general term tends
to 1 uniformly on bounded sets). Observe finally that if an infinite product ofthe
form n(I - x / ~)v has the same zeros (;6 0) as apower series f, the quotient

f(x) /fl(l-x/~t=g(x)

has no further zero x ;6 O. This function has no positive critical radius and can
only be a monomial emxm, m being the multiplicity of the zero at the origin . This
concludes the proof of the theorem. •

2.4. Rolle's Theorem

Rolle's theorem for differentiable functions of a real variable is valid for scalar
functions only. Here it is:

lf f : [a, b] -+ R (a < b) is eontinuous and differentiable on
the open interval (a, b), then there exists a < e < b with

f '(e) = f(b) - f(a).
b-a

The mean value theorem with an intermediate point follows from it. The preceding
equality can be written f(b) - f(a) = (b - a)!'(e) or with a = t, b = t + h,
e = t + eh , as a limited expansion ofthe first order:

f(t +h) = f(t) + h . r« + eh) (0< e < 1).

We give here the p-adic versions. Let us start with an easy observation.

Proposition . Let f E K[[X]] be a eonvergent power series. For ~ E K with
I~I < rr. there is a unique eonvergent f~ E K[[X]] with f(x) = f~(x -~)

for smal11xl. Moreover, f~ has the same radius of eonvergenee as I. and the
preeeding equality holdsfor lxi< rl.

If f = Ln~O anXn, this means that we can expand around ~ ,

I>nx n = L>n(~)(X - ir.
n~O n~O

with no gain (no loss either) in convergence: Ix I < r I {::::::::} Ix - ~ I < r I.

PROOF. For a polynomial f E A[X], this is the Taylor formula for the expansion
around the point ~ E A :

LanXn = Lan(X - ~ +~t = Lan(~)(X - ~t = f~(X - ~),
n~d n~d n~d
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with a polynomial It; E A[X] . This proves that sUPn lan(~)1 s 1 when sup, lanI ::s
I, so that 1 1-+ It; diminishes the Gauss norms. The same is true for the eonverse
isomorphism. We eonclude that

1 1-+ It; : K[X] ~ K[X] is isometrie .

This isometry has a unique isometrie extension to the eompletion K {X} : We still
denote it by 1 1-+ It;. Now, if1 E K [[X]] has rI > 0, we may apply the preeeding
result to any g = l(aX) where a E K", lai< rl' sinee gE Ka{X} in this ease.
This shows that the radius of eonvergenee of It; is greater than or equal to rI,
but as before, the inverse isometry proves the eonverse inequality and nothing is
~~ .

Theorem. Let 1 E Cp[[X]] have convergence radiusrl > 1. Then

(a) if 1 hastwo distinctzerosa '# b in B:::l satisfying la - bl ::s rp,

then I' has a zero in B:::l;
(b) if 1 has two distinctzerosa '# b in B<l satisfying la - bl < rp ,

then I' has a zero in B<I.

PROOF. By the preeeding proposition, we ean replaee 1 by its expansion eentered
at the point b, Thus, we may assume a '# b = 0, lai ::s r p (resp . lai< r p ):

I(X) = Ln>' anxn and al '#°(otherwise, 1'(0) = 0, and we are done). We ean
also assume tbat lai = rc is the smallest positive eritieal radius . Henee there is an
integer n > 1 such that

whenee

( n-I)resp. < rp •

If v = ordpn, say n = prm, m prime to p, we have

n - 1 prm - 1 pV - 1 v-I
--- >--=p +·· ·+p+l>v
p-I- p-I - p-I -

(with equality only for m = 1 and v = I: n = p). Henee

so that lat! ::: Inanland lat! = Inan Irm- I for some r' ::s 1. Recalling that rf' =
rI > I, we see that the power series I' admits a eritieal radius r' ::: I. By (2.2) f'
has a zero in the closed unit ball. In the ease (b), lat! < Inan I proves r' < I, and
the zero is in the open unit ball. •
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Example. Let f = x!' - px and choose a root pl/(p-l) E C p. The zeros of f are
oand J1-p-l . pl/(p-l). Hence two distinct roots are at a distance rp. The zeros of
f' are also the zeros of I'/ p = x p-1 - 1, i.e., the elements of J1-p-l on the unit
sphere.

Corollary. Let f E Cp[[X]] with rf > 1. For each pair ofpoints a, b E A p

such that la - b l ::: rp» there is a point ~ E A p such that

f(b) - f(a) = (b - a)f'(~) .

lfa, b E M p and ja - bl < rp• there is a point ~ E M p such that

f(b) - f(a) = (b - a)f'(~).

PRooF. As in the classical case, consider the function

f(a) f(x) f(b)
fIJ(x) = a x b

1 1 I

which vanishes at x = a and x = b. Its derivative

f(a) f'(x) f(b)
fIJ'(x) = alb

101

vanishes in Ap (resp. M p ) . •

2.5. The Maximum Principle

The preceding theory concerning critical radii - and particularly the existence of
zeros on critical spheres - has important consequences for the study of power
series.

Proposition. Let r < rf be a critical radius of f E Cp[[X]]. Then Ifl takes
all values between 0 and Mrf in ICpl. More precisely,for each y E C p with
lyl < Mrf. there is a solution x E C p ofthe equation f(x) = y with [x] = r,
lf IyI = M, f. the same equation also hasa root ofabsolute value r, provided
that Iy- f(O)1 = M;t.

PROOF. Consider the formal power series

f(X) - y = (ao - y) + L anXn (ao = f(O» .
n2':;1

If Iyl < Msf , then f - y has the same dominant monomials as J, and r is
still a critical radius of J - y: This function vanishes on the corresponding sphere.
If Iyl = M, J, the assumption made ensures that the formal power series
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f - y = (ao - y) + Ln>1 anXn also admits the critical radius r and hence van­
ishes on the corresponding critical sphere of C p. This proves that

Mrf = sup If(x)1 = sup If(x)1 = max If(x)1
Ixl<r Ixl:::r Ixl=r

when r is critical.

Corollary. Let r < rl . Then

Mrf = sup If(x)1 = sup If (x)l.
Ixl<r Ixl:::r

Moreover, ifr E IC;I is a rational power of p, then

Mrf = max If(x)1= max If(x)l .
Ixl:::r Ixl=r

PRooF. For every r < rI,

implies that

sup If(x)1 :::: sup If(x)1 :::: u.].
Ixl<r Ixl:::r

Conversely, we can find a sequence (xn ) in Cp such that:

Ixnl = Tn is regular for all n and rn /' r.

Hence

implies that

sup If(x)1 ::: sup If(xn)1 = Mrf.
Ixl<r n

•

Finally, if r is regular, If(x)1 = Mrfis constant on the sphere [x] = r, while if r
is critical, M, f = maxlxl=r If(x)1 follows from the proposition. •

2.6. Extension to Laurent Series

Instead of Taylor series, we can work with convergent Laurent series

00

f = L Qn x n E K[[X, X-I]]
-00

as in (1.7). Existence ofzeros on critical spheres rj < [x] = r < rj is ensured,
provided that the field K is algebraically closed (typically, if K = Cp ) .
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For example, let r be a critical radius of I. As in (2.5), an equation I (x) = y E

C; will have a solution x E C; with [x] = r, provided that

either lyl < Mrl or lyl = Mrl and Iy - aol = Mvf .

This shows that

sup I/ (x)1= max I/(x)1 = Mrl Vj < r < ri)·
Ixl<r Ixl=r

In the case of a Laurent series I ,the function r ~ M; I is not necessarily increas­
ing, but it is always a convex function on the interval (ri, ri). A consequence of
this observation is the maximum principle for annuli:

If ri < rl s r2 < ri tr, E IK x 1), then

sUPr,:::lxl:::r2 I/(x)1 = maxr,::: lxl:::r2 I/(x)1 = max (Mr, I , Mr2f) ·

We have also seen that

p = logr ~ J1- p l = 10gMri

is a convex function on the interval (log ri , log ri) (cf. (1.7)). Let us show that it
is - as in complex analysis - a formal consequence of the maximum principle
for all functions x rnf" (m E Z, n E N) (given by convergent Laurent series by
(1.7)) in annuli ri < rl :s r i < ri-

Hadamard's Three-Cirele Theorem. Assume that I E K[[X, X-I]] is a
convergent Laurent se ries, so that I is also a function defined on an annu­
lus r : < lx i < r+ 01 K. Then

p = logr ~ J1- p l = 10gMr! = logmax I/(x)1
Ix l=r

is a convex function.

PROOF. Let (r " < rl < r < rz < r+), Mi = MrJ, so that

by the maximum principle. Apply this inequality to x rnr (m E Z , n ~ 0),

and taking nth roots

rn/nM (rn /nM rn/nM)r r :s max r l I , r2 2 .

If K = Cp , we can choose the rational number a = mfn such that rf MI = rl M2
(if K = Qp or C, we can take a sequence ofrational numbers mkfnk converging
to the real root a of rf MI = rl M2). With this choice for a (using continuity if
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K = Q p or C), we can write

raMr ~ rfMI = r~M2 = (rfMd' (r~M2Y

if s + t = 1. Since P = log r is a convex combination of the Pi = log r., we can
choose s ::: 0, t ::: 0 with s +t = 1 and r = rf . r~. With this choice r" = rfs . r2t

,

and the obtained inequality simplifies into

Mr s Mf .M~.

With J-tp = log M; and J-ti = log Mi (i = 1,2), we now get the announced
convexity property

J-tp ~ sti; + tJ-t2 (p = SPI + tPz)· •
Definition. Let f be a Laurent series with rl = O. We say that the origin is an
isolated singularity. Three cases can occur:

(1) fis a Taylor series (an = Ofor all n < 0):
The origin is a removable singularity.

(2) f has finitely many coefficients an i= 0 for n < 0:
The origin is a pole.

(3) f has infinitely many coefficients an i= 0 for n < 0:
The origin is an essential singularity.

If the origin is a pole of f, its order is the smallest integer m ::: 0 such that
x m f is a Taylor series (has a removable singularity at the origin). In the case of an
essential singularity, the analogue of a classical result of Picard is valid.

Proposition. Let f have an essential singularity (at the origin). Then there are
infinitely many critical radii r, '\. 0, andfor each 8 > 0, Y E C p, the equation
f(x) = y has infinitely many solutions 0< [x] « 8. •

Proposition. Let f be a Laurent series with rl = 0 and rj = 00. Then

(a) if f has no zero in C;. fis a single monomial;
(b) if f has only finitely many zeros in C;,

then f is a polynomial in X and X-I;
(c) f is given bya Weierstrass product

f(X) = CXm
• n~l~l(1- X/~y, . n~I<I(1- ~/XYf

extended over the roots ~ of f = 0,
v~ denoting the multiplicity ofthe root ~. •

Example: Theta Functions. Choose an element q E C; with 0 < lql < 1.
Consider the product
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which converges in the annulus 0< [r] = r < 00. Obviously,

1 X
8 1(q- X) = --. 8 1(X).

q

Ifwe define more generally 8 a(X) = 8 1(a- 1X) (a E C;), then we have

X
8 a(q-l X) = -- . 8 a(X).

aq

Products of such theta functions satisfy functional equations of the form

These functions are used for the construction of the Tate elliptic curves .

3. Rational Functions

Functions defined by convergent power series expansions are defined in a ball.
Unfortunately, as we have seen in (2.4), it is impossible to obtain an analytic
extension of such a function by looking at the expansions at different points of
the ball of convergence: The radius of convergence does not change, so the ball of
convergence is the same . Any point of a ball is a center of the ball, and there is no
way of defining "points near the edge."

On the other hand, we like to consider rational functions (quotients of poly­
nomial functions) as analyt ic functions outside their set of poles (zeros of their
denominators). These functions can be expanded in power series in each ball con­
taining none of their poles . More generally, uniform limits of rational funct ions
will playa role similar to the analytic functions in complex analys is: They are the
"analytic elements" introduced by Krasner.

3.1. Linear Fractional Transformations

A linear fractional transformation is a rational function

ax+b
x 1-+ f(x) = -­

cx-s- d

where ad - bc ::j:. O.The coefficients are taken from a field K ,and a linear fract ional
transfonnation defines a map

f : KU [oo} -+ KU {oo}.

The space KU [oo} = pl(K) is the projective line over K : Its elements are the
homogeneous lines in K 2, represented by quotients

x
- = [x : yJ = dass ofpairs proportional to (x , y) .
Y
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When e = 0 (a and d =1= 0), we get an affine linear map

ab, I I

X f-+ "dx + "d = a x +b (a =1= 0).

When e =1= 0,

ax + b I [ ( ad) I ]fex) =-- = - a + b - - .
cx s-d e e x+d/e

Typical examples of linear fractional transformations are

(a) translations x f-+ x +b,
(b) dilatations (or homotheties ) x f-+ ax,
(e) inversion x f-+ L]«,

The preceding formula shows that these particular linear fractional transformations
generate the group of aIl linear fractional transformations.

A good description of linear fractional transformations is supplied by 2 x 2
matrices: To each such invertible matrix we associate the linear fractional trans­
formation having for coefficients the entries of the matrix

g= (:
b~ ax +b
d

r----+ f g(x) = --.
ex+d

Composition of linear fractional transformations corresponds to matrix multipli­
cation: The above correspondence is a homomorphism from the group Gh(K) of
invertible 2 x 2 matrices with entries in K to the group of automorphisms of the
projective line p I (K ) = KU {oo}. The kernelofthis homomorphism consists of

the nonzero multiples of the identity matrix 1z (scalar matrices) (~ ~) = a . /z

(a =1= 0), namely the center of Gh(K). Hence there is an isomorphism

PGlz(K) = Gh(K)/(K X /z).2). Aut(PI(K)) .

Here are representative matrices for the three types of linear fractional transfor­
mations listed above:

(a) The matrix (~ ~) produces the translation x f-+ x + b.

(b) The matrix (~ ~) produces the dilatation (or homothety) x f-+ ax ,

(e) The matrix (~ ~) produces the inversion x f-+ s]».

Proposition. Let K be an ultrametrie fleld. Then the image ofa ball ofK under
a linear fraetional transformation is either a ball or the eomplement ofa ball.
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PROOF. Affine linear transformations send an open (resp. dressed) ball to an open
(resp. dressed) ball. The formula

f(x) = ax +b = ~ [a + (b _ adle) I ]
ex +d e x +d/e

(when e i= 0) shows that a linear fractional transformation that is not an affine
linear map is nevertheless composed of such transformations and of an inversion.
It is thus sufficient to prove the statement for the inversion . Consider, for example,
the ball B<r(a) and its image B' by inversion . If the origin belongs to B<r(a),
then this ball coincides with B<r = B<r(O) and its inverse is the set defined by
[x] .» l/r, i.e., the complement ofthe ball Bs.I/r(a). Otherwise, lai 2: r, and for
xE B<r(a),

[x - a\ < r, [x] = la + (x - a)1 = lai,

so that

1

1 1 1 la - x 1 la - xI r
~-~ = ~ =~<laI2 ·

This proves that the image ofthe ball B<r(a) under inversion is contained in the
ball B<r/lalz(l/a). Since the same argument shows that the image under inversion
of the second ball must be contained in the first one, we conclude that the inversion
is a bijection between these balls. A completely similar proofholds for closed balls
insteadofopen ones (altematively, onecan use therelation Bs.r(a) = ns>r B<s(a)
between closed and open balls.) Hence we have

f(B<r(a» = B<r/lalz(l/a) if lai 2: r,

f(Bs.r(a» = Bs.r/1a1z(l/a) if lai> r,

f({x : Ix - al = rl) = {y : Iy - I/al = r/laI 2
} if lai> r. •

The image of a ball is called a generalized ball: A complement of a ball of K is
identified to a ball of pi (K) containing the point at infinity; note, however, that in
general two such generalized balls satisfy no inclusion relation. The analogy with
the classieal complex case is striking. Indeed, recall that in C a linear fractional
transformation preserves the farnily of generalized circles (circles and straight
lines) and the farnily of generalized disks (disks, half planes, and complements of
disks) .

3.2. Rational Functions

Let us review a few elementary algebraic facts conceming rational functions having
coefficients in an algebraieally closedfield K . Let f E K (x) be a rational function
and write f = g / h with two relatively prime polynomials g and h, h being
monie . We say that f is regular at the point a E K if h(a) i= O. In this case,
f(a) = g(a)/ h(a) is well-defined, and the numerator of the function f - f(a)
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vanishes, and hence is divisible by x - a. This shows that if I is regular at a, we
can write

I = I(a) + (x - a)f(I)(x), f(1) rational, regular at a .

Iterating this construction for f(1), we obtain a second-order lirnited expansion of
I .By induction, we see that for any integer m ~ 1,

1= ao +al(x - a) +...+am_l(x - a)m-I + (x - a)mf(m),

where f(m) is rational, regular at the point a.
We say that I#-O has a pole oforder m > 0 if the denominator h has a zero

of order m at the point a (hence g(a) #- 0, since gis prime to h). In this case, we
write h(x) = (x - a)mhl(x), hl(a) #- 0; hence

g 1
1= = 11,

(x - a~hl (x - a)m

g
11 = h; regular at a.

If we write the above expansion for 11, we obtain

1 ( ml m1'\1= aO+al(x-a)+ · ··+am_l(x-a) - +(x-a) I}
(x -a)m

ao al am-l - (1)-
= (x - a)m + (x - a~-1 +...+ x _ a + I = Pa X _ a + I

with a polynornial Pa of degree m and zero constant term. The rational function

( 1) ao am-IPa -- = + .. .+--
x - a (x - a)m x - a

is the principalpart of I at the pole a. It is uniquely characterized by the properties

{

Pa is a polynornial with zero constant term,

I - Pa (_1_) is regular at a .
x-a

The order of I#-O at the point a E K is by definition

ordal = ordag - ordah E Z.

This integer is positive if I (is regular and) vanishes at a, negative = -m if I has
a pole of order m at a.

Consider the finite set {ai} = {a E K : h(a) = O} of poles of I = gJ h and

the respective principal parts Pi (x~a; )of I ·Then I - Li Pi (x~ai ) is a rational

function that is regular everywhere: It is a polynomial, and we have obtained the
decomposition
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One way to obtain this decomposition is to start with the Euclidean division algo­
rithm for polynomials,

Then

g g\
f = h = h + Poo (Poo E K[x]).

If degg 2: degh, then deg Poo = degg - degh; otherwise, Poo = O. The well­
known partial fractions expansion for the first term leads to

x" (a E K, m > 0, n 2: 0)
(x -ayn'

generate the K-vector space K(x). Since they are also independent, they make a
vector space basis of K(x).

If K is a valuedfield, we have

The particular rational functions

1

Ipa (x~a)l-+ 0 (Ixl-+ 00),

Ipa (x ~a)l-+ 00 (Ixl-+ a).

With the previous notation

fex) = L Pa (~) + Poo(X),
h(a)=O X a
\ y ,

->Olxl->oo

we see that

If(x)1 -+ 0 when [x] -+ 00

If(x)1 is bounded when [x] -+ 00

If(x)1 -+ 00 when [x ] -+ 00

Poo(x) = 0,

Poo(X) is constant,

deg Poo(X) > o.
Let us now specialize to K = C p, algebraically closed and complete. We can use
the binomial series expansion : For a =f:. 0, m 2: 1,

1 1 ( x)-m
(x -a)m = (-a)m 1--;;

= "(_I)m+n(-m)~ (Ir] « la I)
L.... n am+n
n~O
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(a Taylor series),

1 = x~ .(1- _xa)-m
(x -a)m

(a Laurent series) . In particular, in any region rl < IxI < rz containing no pole of
f, we can choose the first type of expansion for the principal parts corresponding
to poles lai I ::: ri and the second type for the principal parts corresponding to
poles lai I :::: rl . We obtain Laurent series expansions (1.7) (and (2.6» .

Proposition. Let f E Cp(x) be a nonzero rationalfunetion and {ai} its set of
poles. Then f admits three types ofLaurent series expansions:

(a) L-m<n<oo anx n (0 < [x] « min{lad : a, =1= O}),
(b) L _oo-::n<ooanxn (maxl lo.} : lad:::: r} < lxi< min{lad : lad> r}),
(e) L-oo<n<Nanxn (lxi> max{lad})·

?ROOF. In the first case (a), if f has a pole at the origin, then m is its order. Let us
consider only the case (b) . Ifr > 0 is fixed, group the principal parts corresponding
to poles in the closed ball IxI :::: r. For each individual monomial in these principal
parts, a multiple of some 1/(x - ai)m , choose the Laurent expansion that converges
for [x I > lai I. Any linear combination of these expansions converges at least for
[x] .» maxllo.] : lad:::: r}. Group similarly the principal parts corresponding to
the poles lai I > r , and choose the Taylor series for the corresponding monomials
1/(x - a i)m : Their linear combination converges at least for [x] < min{lad :
lai I > r} . Adding these two contributions, we get a Laurent series as announced .
Observe that since a Laurent series defines a continuous sum in its open annulus
of convergence, this region cannot contain a pole of the sum, whence the precise
estimate for the radii limiting its region of convergence. •

3.3. The Growth Modulus for Rational Functions

Let us say that a radius r > 0 is regular for a rational function f = g/ h E Cp(x)
(g and h relatively prime polynomials) when it is regular for both g and h, hence
when g and h do not vanish on the sphere [x] = r of Cp • Hence, when lxi = r is
regular for f = g/ h,

Ig(x)1 = Mrg, Ih(x)1 = Mrh,
Mrg

and If(x)1 = -.
Mrh

Lemma. Let f = g/h E Cp( x) and define iif := Mrg/Mrhfor real r > O.
This expression is well-defined independentlyfrom the particular representation

of f as a fraetion g / h, and r 1-+ ii f is eontinuous on R>o. For eaeh regular
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~

r > 0, If(x)1 = Ms] on!!2e sphere [x] = r. In each region where f has a
Laurent series expansion, M; f coincides with the growth modulus as defined
in (2.6).

first for the regular values r (of g, h, gl, and hi, i.e., of the product ghglh),
and hence also for all values r > 0 by continuity. This proves that Mrg f Mrh =
MrgI!Mrhl ' The other assertions ofthe lemma are obvious. •

Considering the previous results, we shall simply denote by M, f = Mrg f Mrh
the growth modulus of a rational function f = gf h.

M, «(x-l)/(x-p)

p=3

o l/p 1
pole zero

Growth modulus for a linear fractional transformation

r

Observe that for a nonzero rational function f, M r f > 0 for r > O. When a radius
r > 0 is not regular for the rational function f = g f h, we say that it is a critical
radius : f has some poles and/or zeros on the sphere IxI = r. Denote as before by
{ai} the poles of fand introduce its set {ßj} of zeros.

Theorem. Let f = gf h e. Cp(x) be a rationalfunction. Then we have:

(a) If f is regular at the origin, then r t-+ M, f is
convex increasing on the interval 0 ~ r ~ min{lad}.

(b) If f has no pole in the region rl < [x] « rz. then
r t-+ M, f is convex in the interval rl ~ r ~ rz-

(c) Ifdegg < degh, then r t-+ M,f isdecreasingforr 2: max{/ad}.
(d) If(x)1 = Mrf = crdegg-deghfor [x] = r > max{lad, Ißjll.
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PROOF. (a) and (b) follow from the lemma and (1.4). For (c) and (d), observe
that for any polynomial P of degree d, MrP = ladlrd when r is bigger than the
absolute value of all roots of P . Apply this to P = h to obtain (c), and to both g
and h to obtain (d). •

Example. Consider the rational function

x
I(x) = I _ x 2 E Cp(x),

which has a simple zero at the origin and two poles on the unit sphere. For [x] « 1
we have 11 - x21 = 1, while 11 - x 2

1 = Ixl2 for [x ] » 1. Hence

{
lx i

I/(x)1 =
I/lxi

if [x] « 1,

if lx i> 1,

if r :s 1,

if r 2:: 1.

Proposition 1. Let 1= g/ h E Cp(x) be a rationalfunction and let Sr be the
sphere {x : [x ] = r} ofradius r > O. Then:

(a) If I has no pole on Sr, then I/(x)1.sMd (x E Sr).
(b) 111 has no zero an Sn then I/(x)1 2:: Md (x E Sr).

PROOF. (a) Ifa critical sphere Sr (r > 0) contains no pole of I, its denominator does
not vanish on this sphere and r is a regular value for the denominator: Ih(x) I = Mrh
is constant on Sn

I/(x)1 = I~:~I :s ~~ = Md (jr] = r) .

(b) Replace I by 1/1· •
If I has a zero ß E Sn then by continuity, III takes arbitrarily small values in

a neighborhood B<s(ß) of ß. Such a neighborhood is contained in the sphere Sr
as soon as e :s IßI. Hence III takes arbitrarily small values on the sphere Sr. The
same holds for 1/1 if I has a pole CL E Sr. If I has both zeros and poles in Sr, this
shows that III takes arbitrarily small and large values on this sphere . This will be
made more precise in the next propositions.

Proposition 2. Let 1= g/ h E Cp(x), Sr as before and consideran open ball
D = B<r(a) ofmaximal radius in the sphere Sr (hence lai = r). If I has no
pole in D, then

Mrl = sup I/(x)1 := IIf11D.
xeD

PROOF. For s > r = la i, the spheres Ss and Ss(a) = {x : Ix - al = s} coincide .
Hence Msl = Ms.al (growth modulus with respect to the center a): This is
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obvious for regular values of sand by continuity also for all values s ~ r . This
proves

Since f is regular in the ball D, its growth modulus Mt ,af (with respect to the
center a) is an increasing function of t < r , By the maximum principle (2.5) for
balls,

Mt.af = sup /f(x)1 (t < r) ,
!x-al::::t

and by continuity ofthe function t t-+ Mt.af,

Mr.af = sup Mt.af = sup sup If(x)1
t -cr t -cr Ix-al::::r

= sup If(x)1 = IIf IlD .
Ix-al<r

•

Observe that since we work with the field Cp , having an infinite residue field,
a sphere Sr of positive radius is a disjoint union of infinitely many open balls of
maximal radius r, so that it is always possible 10 choose a ball D = B<r(a) without
pole of f as in Proposition 2.

Proposition 3. Let f = g/ h E Cp(x) be a rational function , Sr as before.
Then :

(a) If f has no pole on Sr, then Md = SUPjxl=r If(x)l·
(b) If f has no zero on Sn then Mrf = inf'xl=r If(x)l .
(c) If f has both zeros and poles on Sr, then

If(x)1 assumes all values of ICpl on x E Sr.

PROOF. Observe that if f has no pole and no zero in Sn then r is regular and
If(x)1 = M, f is constant on Sr. Now (a) follows from Propositions 1 and 2. For
(b), replace f by l/f and apply the previous result.

(c) Choose a pole tx E Sr and a zero ß E Sr with

(minimum taken over the zeros ßj and poles a, in Sr). Then

Ms.af = Ms.ßf (s > 8),

since the spheres of radius s > 8 and centers a (resp. ß) coincide. By continuity,

Now, for each y E C p, lyl < M, f - y has a critical radius r < 8 and f(x) = Y
has a solution x E B<IJ(ß) C Sr. Similarly, for each Y E C p, Iyl > M, f(x) = Y
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has a solution x E B<0 (a) C Sr (consider 1Jf). Finally, as in (2.6), f also assumes
some values y = fex) where Iyl = M. •

3.4. Rational Mittag-Leffler Decompositions

Recall that we denote the complement of a set B C C p by BC = Cp - B.

Proposition 1. Let 0 =f:. f = gJh E Cp(x). Assume deg g < deg hand that
f has all its poles in a ball B = B<ufor some a > O. Then for any subset D
disjointfrom B, IIf11D :5 IIf11Bc = Muf· If D = B<u(a) is a maximal open
ball in the sphere IxI = a , then

IIf11D = IIf11Bc = Muf.

PROOF. Since f has all its poles a, in B, we have ap = maxi laiI < a and

On the other hand, since degg < degh, the growth modulus Mrf decreases for
r 2: ap ,

If(x)1 :5 Muf (lxi 2: o ),

and for D C BC we have

Taking a sequence Xn E BC with regular r; = IXnI~ a , so that If (xn)1 = MFn f /'
Muf, we see that IIf11Bc 2: sUPn If(xn)1 = Muf. Finally, if D = B<u(a) is a
maximal open ball in the sphere IxI = a , then Proposition 2 of (3.3) shows that
IIf11D = Mu f, since f has no pole on [x] = a . •

Observation. The last step of the preceding proof, 11 f 11 D = M o f, requires only
that we find a sequence (xn) in D with regular rn = IXn - al/' o , so that

If(xn)1 = Mrn,af -7 Mu.af = M; I,

IIfliD 2: sup If(xn)1 2: lim If(xn)1 = Muf·

This will be essential for generalizations (cf. Proposition 2 in (4.2».

If f = gJ h E Cp(x) is arational function anda > 0, wecan group the principal
parts corresponding to the poles a, of f in the open ball B = B<u:

fB(X) = " Pi (_1_) .
L...J x -a'

la;l<u I
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We can apply Proposition 1 to [», since this function has all its poles in B. The
growth modulus MrfB is decreasing for r ~ o :

IIfBIlD = supl!B(x)1 s MufB (D C Be).
xeD

Proposition 2. Let f E Cp(x) be a rational function and let fB be the sum
of the principal parts of f corresponding to its poles in B = B<u. If D is a
maximal open ball B<u(a) in the sphere [x] = a and D contains no pole oft.
then

IIfBIlD = MufB ~ Muf = IIfIlD.

PROOF. We may assume fB =1= 0 and let us introduce fo := f - fn E Cp(x),
which is regular in B (but may have poles in the sphere IxI = o ), Hence

r t---+ Mrfo is increasing (may be constant) for r ~ a ,

On the other hand, M; fB decreases (strictly) beyond

ap := maxf]«] : a is a pole of f in B} < a,

There is at most one crossing point ofMr fo and Mr!B in the interval (ap» o ). Hence
Mrfo =1= MrfB with at most one exception r e (ap , o ). For all regular values (all
except finitely many), these M, represent absolute values of the corresponding
functions where in a sum, the strongest wins :

Taking an increasing sequence of regular values r n / a , we conclude that

Finally, by Proposition 2 of (3.3) we have M; fB = IIfB IID, Mu f = IIf11D . •

Let us go one step further and group the poles of f in a finite number of balls.

Theorem. Let Bi = B<u;(ai) (l ~ i ~ i) be afinite set ofdisjoint open balls
in the closed ball B~r and define D = B9 - Ul < i <e Bi. Let f E Cp(x) be
a rationalfunction regular in D, 1; = fs, the sumofthe principal parts of f
corresponding to its poles in Bi (l ~ i ~ i). In the canonical decomposition

f=fo+ L 1;= L 1;,
l ~i~e O~i~e

where fo is regular in B~r . we have

IIf11D = max IIfdID.
o~i~e
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PROOF. As in (3.3) (Proposition 2) we can select open balls Dj of maximal radius
(Ti on the spheres Ix - a i I = (Ti (1 ~ i ~ l) and containing no pole of I .

Mittag-Leffler decomposition of a rational function

By Proposition 1, the inclusions D, C D c Bi lead to the same sup norms

1I/i1ID; = IlfiliD = IlfiIlB[ (= Mu;,a;fi)·

By Proposition 2, we have llfi IID; ~ IIf11D; (i ::: 1), hence

IlfiliD = IlfiIlD; .s II/I1D; ~ IIf11D (l s i .s l).

Now the competitivity principle (11.1.2) in 1-10 - L I< i<l fi = 0 shows that we
have --

II/I1D = max 11 Iill D·
O~i~l

Note that for the regular part 10 of I in B~r we have

1I/0llD = sup I/o(x)1 = max I/ o(x)1= sup I/o(x)1
Ixl~r Ixl=r Ix-bl<r

•

for any Ibl = r . On the other hand, if deg g < deg h, I = g / h ~ 0 (IxI~ 00),
we find that 10 = 0, so that we also have

IIf11D = sup 1I/i1ID
I~j~l

for the unbounded domain D = C p - UI<i<l Bi.
Let us introduce the following notation fOf any subset D of Cp :

R(D): ring ofrational functions having no pole in D ,
Ro(D) C R(D): subring defined by I/(x)1 ~ 0 when [x]~ 00 .
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For any open ball Band any D disjoint from B, we can look at

The first map is the restrietion I 1-+ liD (injective as soon as D is infinite), while
the second is I 1-+ !B (principal part of I in B). Tbis second map is surjective
and admits a section IB 1-+ IB ID also given by restrietion. If a rational function is
regular on D U Band on BC

, i.e., regular everywhere, then it is a polynomiaI. If
moreover it tends to 0 (when [x] -+ 00), then it is 0:

R(D U B) n Ro(BC
) = {O}.

Hence the preceding sequence is a short exact sequence: It splits

1= 10 + !B ++ (fo, IB) : R(D) ~ R(D UB) $ Ro(BC
) .

More generally, with the notation and assumptions of the theorem,

is a split short exact sequence (the case i = I is as in the previous example) . The
seetion of I 1-+ (fi)l~i~l furnishing the splitting is (fi)l~i~l 1-+ Ll<i<l filD'
Indeed , the difference I - Ll<i<l IdD extends to the regular 10 E R(B~r). All
these maps are linear and contracting; hence

R(D) ~ R(B~r) $ EB Ro(Bf)
l~i~l

is an isomorphism of the normed space R(D) with a direct sum of normed spaces
over Cp (lV.4.I).

3.5. Rational Motzkin Factorizattons

It is easy to give a product decomposition for rational functions quite similar to
the sum decomposition given in the preceding seetion. Let B C Cp be an open
ball and 1= g/ h E Cp(x) a rational function having all its zeros and poles in B:

S = {a E C p : g(a)h(a) = O} C B.

Hence I = c Ilaes(x - a)I-'a (/La E Z, CE C;). Choose b in Band write

(

X a)I-'a1= c(x - b)L.I-'a n = = c(x - b)L.I-'ah(x).
aeS x b

Observe that

Ix - a/ = I ( d: B)
Ix - bl X'F'
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More precisely,

x-a b-a
--=1+--,
x-b x-b

This gives a factorization

Ib-al-- < 1 (x r/:. B) ,
x-b

In(: =:)~a -11 < 1.
aES Bc

I(x) = C(X - b)mh(x),

where

m = (number of zeros - number of poles) of I in B,

and

IIh - IIiBc < 1, h(x) ~ 1 (lxi ~ (0).

If we take another center b in B, we shall have

with

_ (X-b)mh= --_ h .
x-b

In particular, we see that c and m are independent of the choice of center of B (but
h depends on this choice) . The integer m is called index 01 I relative to the ball
B. Asymptotically,

I(x) ,.., c(x - b)m (].r] ~ (0).

We can formulate a more general result when the zeros are located in a finite union
of balls. Let r > 0 and let

Bj = B<uj(bj ) C B~T (1 Si S l)

be a finite set of disjoint open balls contained in B~T (0 < a, S r, Ibi! Sr).
Consider the domain

D=B~T- U s;
I~j~l

The next three propositions concem rational functions I that are units in the ring
R(D): Neither I nor 1/1 has poles in D, i.e., I has neither zero nor pole in D.

Proposition 1. Any fE R(D)X can be uniquely factorized as

1= 10' n /; (Motzkin factorization i,
I~j~l
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where 10 E R(B:srY and for 1 < i :::: e

li = (x - bi)mi h, E R(Bf)x, IIh i - 111 BI < 1, hi(x) -+ 1 (lxi -+ (0).

PRooF. The only possibility consists in collecting the zeros and poles of I in Bi
and defining li as the product of the corresponding factors (x - a)Jla (a E Bi,
J.ta E Z positive for zeros and negative for poles of f). With 10 = f/ TII <i <l li
all requirements are satisfied. - - •

As before, the difference m, between the number of zeros and poles of I in Bi
(taking multiplicities into account) is the index 01 I with respect to Bi. With any
choice of center b, of Bi, the Motzkin factor /; of I relative to Bi satisfies

I/h i-lI/D=11 l i -111 ::::11 /; -111 <1.(x - bi)ffli D (x - b,)mi B~,

Proposition 2. Assume 1/ I - 11/ D < l. Then I has as many zeros as poles in
each ball Bi C tr.

PRooF. The assumption implies I/(x) - I] < I for all x E D, hence I/(x)1 = I
is constant in D. Consider a ball Bi and consider the growth modulus centered
at b, E Bi . Without loss of genera1ity, we may assume i = 1, b, = 0, since b,
is also a center of the ball B:,:;r. Since D contains a maximal open ball D) of the
sphere [x] = al := a having no pole of 1- 1 (in fact infinitely many such balls),
Proposition 2 of (3.3) shows that

M a (f - 1) = 11 I - 111 D, :::: 11 I - 111 D < 1.

. ..

Motzkin factorization of a rational function
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By continuity of the growth modulus, we have Mt(f - 1) < 1 for all t close to a .
For regular values of t < a close to a we have

I/(x) - 11 = Mt(f - 1) < 1 ==::} I/(x)1 = 1 (lxi = t).

Hence Mt I = 1 for t /' a . But our study of Laurent series has shown (3.3) that
for t < a close to o , Mt I = tm , where m is the difference between the number
of zeros and poles of I in BI. Hence m = 0, as asserted. _

Under the assumptions ofthe preceding proposition, if I has some zeros in Bi,
it also has some poles in this ball, and we can look at the principal part PiI of I
in Bi (3.4).

Proposition 3. 11 11 I - 111 D < 1, then the principal part Pd 01 I relative to
the ball Bi and the Motzkin factor f; = hi defined in Proposition 1 are related
by

IIPdllD = II/i - IIiD (l s i s l) .

PROOF. Let S denote the set of zeros and poles of I, and let I = 10 - TI I < i<l l i be
the Motzkin factorization of I. By Proposition 2, we have - -

(

X a )J-La
f; = n x ~ b. = n (x - a)J-La := 1+ Wi-

«esce, I aEsnBi

Hence Wi = f; - I is a rational function that is regular outside Bi and tends to 0
when lxi ---+ 00: wi is a sum ofprincipal parts ofpoles in Bi. Moreover,

IIwillD ~ IIwillBj < 1.

Similarly,/o = c(1 + WO), and replacing I by I/c (hence 10 by lo/c) we may
assurne c = 1. Let us compare the additive and multiplicative decompositions

I=Po/+ L Pd= Il (I+Wj)=(l+Wi) ' n(l+Wj)
I~i~l O~j~l j#i

'-....--'
I+1/Ii regular in Bi

with lI1fJi 11 D < 1. Hence

and the principal part PiI of I relative to the ball Bi is also the principal part of
to, (l + 1fJi):

By the rational Mittag-Leffler theorem (3.4),
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and in (*) the first tenn is dominant:

IIPi/IID = II wi ll D= lIfi - 111D' •
3.6. Multiplicative Norms on K (X)

When r > 0 is fixed, the growth modulus Mr(f) (1.4) defines an absolute value, in
other words a multiplicative nonn, on the field K (X) of rational functions having
coefficients in an extension K of Qp . Other nonns of the same type are obtained
if we consider a E K and consider the growth modu1us centered at the point a:
For a rational function f regular at a, having apower series expansion

f(x) = L::an(a)(x -at (Ix -al< rj),
n:::O

Mr.a(f) := SUp lan(a)lrn (r < rj)'
n:::O

When IKI is dense in R:::o, the maximum principle (2.5) shows that

Mr.af = sup If(x)1 = sup If(x)1 (f E K[X]);
Ix-al <r Ix-al::;r

hence Mr.af = IIf11B is the sup nonn on the ball B = B::;r(a) when f is a
polynomiaI. Since a multiplicative nonn on K(X) is completely determined by its
values on K[X], we deduce that the following properties are equivalent:

(i) Mr.a = Mr.b; (ii) B::;r(a) = B::;r(b); (iii) la - bl :::: r.

When the field K is algebraically closed, a multiplicative nonn is completely
determined by its values on linear functions. As we have seen, for a linear function

X - ~ = (a -~)+ (X - a)

we have

Mr.a(X -~) = sup(l~ - al , r) (r ~ 0).

When ~ varies in K we have Mr.a(X -~) ~ rand hence

inf Mra(X -~) ~ r.
I;EK •

In fact, this inequality is an equality: Take ~ E K with I~ - al :::: r.

Proposition. Let K be an algebraically closed, spherically complete extension
ofQp. Then any absolute value 1/1 on thefield ofrationalfunctions K(X) that
extends the absolute value of K is ofthe form Mr.afor some a E K and r > O.

PROOE By (11.1.6), the absolute value 1/1 is ultrametric. We are looking for a ball
B = B::;r(a) leading to

1/I(X -~) = Mr.a(X -~) = IIX - ~IIB (~E K).
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Let us consider

r = inf 1ft(X - ~) .
~eK

(1) If this is aminimum, take a E K such that 1ft(X - a) = r. Then

r :s 1ft(X -~) :s sup(1ft(X - a), 1ft(a - ~)) .
--....--~

=r =I~-al

If I~ - al =f. r, this is an equality

1ft(X -~) = sup(r, I~ - aD = Mr,a(X - ~).

If I~ - al = r, the preceding inequality gives

r :s 1ft(X -~) :s sup(r, r) = r;

hence 1ft(X - ~) = r = sup(r, I~ - aD = Mr.a(X - ~). This proves 1ft = Mr,a.
(2) In general, take a sequence

As we have seen ,

r :s 1ft(X -~) :s sup(1ft(X - an), 1ft(an -~)) = Mr. ,a.(X - n
'--...--' "'-.---'

=r. =1~-a.1

Hence

If 1ft(X -~) > r , then 1ft(X - ~) > rn for alllarge n, and by (1),

r < 1ft(X -~) = sup(rn, I~ - anD = Mr. ,a.(X -~) (n 2: N)

proves that

1ft(X - ~) = lim inf Mr.,a. (X - ~) .
n->oo

Ifthere is a~ E K with 1ft (X -~) = r, we are brought back to the firstcase already
treated .

(3) Let us study liminfn->ooM,•.a.(X - n Consider the inequality

rn+1 = 1ft(X - an+l) :s sup(rn, lan+l - anD = Mr.,a.(X - an+l)'

If rn =f. \an+l - anl, then rn+l = sup(rn, lan+l - anD 2: rn. Since we suppose
on the contrary rn+l < rn, there is a competition rn = lan+l - anl. Define the
sequence of balls Bn = B:sr•(an) (n 2: 0). We have just proved that

Bn+1 C s, (n 2: 0).
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Since the field K is spherically complete by assumption,

and any element a in this interseetion is a possible center ofthe ball B = B:::;r(a):

This concludes the proof.

4. Analytic Elements

•

Since analytic continuation cannot be achieved by means of Taylor expansions in
p-adic analysis (cf. (1.2», another procedure has to be devised. It was Krasner's
idea to mimic the Runge theorem of complex analysis: A holomorphic function
f defined in a domain D of the complex plane C can be uniforrnly approximated
by means ofrational functions . More precisely, for each compact subset C c D,
choose A = {aihel with one point in each connected component of the comple­
ment of C in the Riemann sphere. Then f can be uniforrnly approximated on C
by rational functions having all their poles in the set A.

We shall adopt this point of view here, and we start by a discussion of the
domains of C p in which the idea of Krasner can be carried out. For simplicity, we
shalllimit ourselves to bounded analytic elements.

4.1. Enveloping Balls and Infraconnected Sets

Let D be any nonempty subset ofthe field Cp • Its diameter is defined by

8 = 8(D) = sup Ix - Yl = sup Ix - al .::: 00 (a E D).
x,yeD xeD

The closed ball

is called the enveloping ball of D (if D is unbounded - i.e., 8 = 00 - we take
BD = Cp ) . It is the intersection of all closed balls containing D and hence the
smallest closed ball containing D . When D is closed and bounded,

a E C; - D =:} r = d(a, D) = inf la - x] » 0,
xeD

and the open ball B<r(a) is a maximal open ball in the complement of D. Each
maximal open ball of BD - Dis called a hole of D. The preceding observations
show that any closed bounded subset D has a representation

D = BD - UBi, where BD = D UUBi
i i

with (possibly infinitely many) holes Bi = B<ri(ai).
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Examples. (1) Let D = B<l be the open unit ball. Then BD = B~l, and the holes
of D are all the open balls B<l(a) contained in the unit sphere (lai = 1).

(2) IfO < r f/; ICpl, we have B<r(a) = B~r(a), and this set coincides with its
enveloping ball (it has no hole).

We shall be interested in a special class of closed bounded subsets.

Definition. A subset D C C p is calledinfraconnected if its diameter 0 is positive
anti for each a E D

{Ix - a l : XE D} is dense in [0,0) c R~o.

In other words, D is infraconnected when for all pairs of distinct points a i=
b E D, all annuli

meet D. In particular, if Dis infraconnected, it has infinitely many elements.

Infraconnected sets

Lemma. Let D be an infraconnected set. Thenfor each CE Cp•

Ie = {Ix - c] : x E D}

is dense in an interval of R

PRooF. (1) If c = a E D , by definition {Ix - al : x E D} is dense in the interval
[0,0) , where 0 is the diameter of D.
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(2) If c ~ Dis at a distance r ~ 8 of D, we have to prove

I e = {Ix - c] : x E D} is dense in the interval [r,8] .

There is nothing to prove if r = 8. Otherwise, choose a E D with [c - al < 8.
Since 8 = sUPbeD la - bl, we can choose b E D with [c - al < la - bl ::s 8.
Hence

r ~ [c - al < la - bl = [c - bl ~ 8

(make a picture I). The annuli of inner radius rl > la - c] having center a or
c coincide. If we select any outer radius rz > rI. rz < [c - bl = [c - al, the
corresponding annulus meets D, since this subset is infraconnected.

(3) Finally, if Dis bounded and c E Cp is not in the enveloping ball of D, D is
contained in the sphere Ix - c] = d(c , D) > 8 centered at c and Ie is an interval
reduced to a point . •

Examples. (1) Let 0 < rl < r2 < 00. Then the annulus rl < Ix - al < rz is
infraconnected. But the complement of this annulus is not infraconnected. The
complement of a sphere in a ball is infraconnected. For example, the subset [x] '#
1/p of the unit ball B:<:I is infraconnected.

(2) The compact subset Zp C Cp is not infraconnected.
(3) Let (Bi)l~i~l be a finite family of disjoint open balls contained in B~I . Then

D=B~I- U Bi
I~i~l

is infraconnected, and the holes of D are the open balls Bi (a more general cIass
of examples will be given below).

Proposition. Let (Bi ) i:::O be a sequence 0/disjoint open balls contained in the
closed unit ball B~I. If the sequence of radi i ri tends to 0, then

D = B~I - UBi
i :::O

is an infraconnected set. Its enveloping ball is BD = B~I .

PROOF. Let us recall the following fact (systematically used in the proof):

Any nonempty sphere 0/ radius 0 < p ~ 1 is a union 0/ infinitely
many open balls 0/equal radii ~ p.

Let us order the radii of the balls Bi in strictly decreasing order

r' > r" > r'" > . . . \. o.
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By assumption, there are only finitely many balls Bi of any given radius in this
sequence. There exists an open ball B' C B:::;l of radius r' and disjoint from
the finite number of balls Bn having radius greater than or equal to r'. In this
ball B' we can find an open ball B" of radius r" disjoint from the finite number
of balls Bn having radius greater than or equal to r" (and < r ') , etc. We can
construct a sequence of clopen balls B' ::> B" ::> B"'::> ... having radii (diameter)
approaching O. Since the field Cp is complete, the interseetion B' n B" n B'" .. . is
a common point and is not in the union ofthe sequence (Bik::=.o. This construction
shows that B:::;l - UBi is nonempty and has infinitely many points. The proof
that it is infraconnected follows from the observation that at each step of the
above construction, we can choose the ball B(i) in any given nonempty sphere of
prescribed radius > r(i) . •

4.2. Analytic Elements

As in (3.4), let R(D) denote the ring ofrational functions having no pole in D :

R(D) = {f = gj h : g, h E Cp[X], h having no zero in D} .

Definition. Let D be a closed subset of Cp • A function f : D ~ C; is an
analytic element if it is a uniform limit of a sequence of rational functions
t, E R(D).

The analytic elements on D make up a vector space H(D), which is a uniform
completion of R(D). However, note that in general an f E R(D) can be an
unbounded function on D, so that R(D) is not ametrie space. Let us start with the
important case where it is ametrie space (in (4.3) we shall show how to treat the
other case) .

Proposition 1. When D C Cp is a closed and bounded subset, each f E R(D)
is bounded on D, and H(D) is the closure ofR(D) in the Banach algebra Cb(D)
for the sup norm.

PROOF. Recall (3.2) : The functions

1
(n :::: 0, a 1. D, m :::: 1)

constitute a basis ofthe vector space R(D). When D is bounded, the functions x n

(n :::: 0) are bounded on D. Moreover, when Dis closed and a 1. D, the distance
infx ED Ix - al is positive, so that the functions Ij(x - a)m (m 2: 1) are also
bounded on D . This proves that all rational functions having no pole on D define
bounded continuous functions D ~ Cp , and the same is true for the analytic
elements (IV.2.l). Since the closure of a subalgebra of Cb(D) is also a subalgebra,
the statement folIows. •
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Corollary. The product 01two analytic elements on a closed and bounded set
D is an analytic element. •

We can now generalize Proposition 1 in (3.4) for infraconnected sets.

Proposition 2. Let D C Cp be a closed, bounded, and infraconnected set.
Assume 0 E BD and let 0 :::: deO, D) s r :::: 8(D). Then

u.r : IIf11D (f E R(D)).

If the sphere [x] = r meets D, we have, more precisely,

u.r : IIf11s,nD :::: IIf11D (f E R(D)).

!'ROOF. Let 0' = deO, D), 8 = 8(D), so that {lx}: x E D} is dense in the interval
[0',8]. If I E R(D), let us show that there exists a sequence Xn E D with

so that

First case : D does not meet the sphere Sr = {]xI = r}. Since D is infraconnected
and r E {IxI : x E D}, we can find points Xn E D with IXn I ---+ r monotonically.
All except finitely many (that we may discard) are regular, and we have finished
in this case.

Second case : There is a point a E D n Sr (observe that in this case D C Sr may
well happen for r = /) !). We have Ms,al = Msl for s > r, since the spheres
of radius s and respective centers a or 0 coincide. By continuity we also have
Mr,aI = MrI · By density of the values Ix - a I (x E D infraconnected) in the
interval [0,8] we can find a sequence X n E D such that IXn - al = rn is regular
for I (with respect to the center a), rn /' r : IXnI = lai = r , Hence Xn E Sr n D,

I/(xn)1 ---+ Mr.al = Mrl,

IIf11s,nD ~ sup I/(xn)1 ~ u.].
n

The proof is complete. •
Corollary. Let CE BD where Dis a closed bounded infraconnected set, and r
in the interval Jc := closure ol{lx - c] : x E D}. Then the growth modulus Mr,c
(centered at the point c) has a continuous extension to R(D). More precisely,
I r+ Mr,cl is a contracting map

IMr,cf - Mr,cgl :::: Mr,c(f - g) :::: 111 - gliD (f, g E R(D)).
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PRooF. Take a sequence (xn ) as in the proof ofthe above proposition (working for
both fand g) and let n -+ 00 in the inequality

•
Definition. Let D be closed, bounded, and infraconnected:

cE BD, er = d(c, D) :::: r :::: 8(D).

The growth modulus MT,c is defined on H(D) by continuous extension of

f Ho MT,cf : R(D) -+ R~o.

For fixed rand c, the growth modulus is a seminorm on H (D).Beware of the fact
that for complicated infraconnected sets D there can be nonzero analytic elements
f on D with MT,cf = 0: This can happen only when r is an extremity of the
interval [er, 8]. For this more specialized topic involving a discussion of T -filters,
we refer to the recent book by A. Escassut.

4.3. Back to the Tate Algebra

Apower series f (x) = Ln>o anx n with 0 < rI < 00 does not necessarily define
an analytic element on B<~. If it does, this sum is bounded on the closed and
bounded ball B <Tf (Proposition I in (4.2» . In the typical case rl = I, ifthe lanl
are unbounded, there are infinitely many critical radii less than I, and the sum
is unbounded : It is not an analytic element on B <I = M p • When the Jan I are
bounded, both cases can happen. The series Ln>o x n = 1/(1 - x ) has bounded
lanl (= I) and is an analytic element on M p (indeed a rational function with a
single pole at I rt M p ) . It is more difficult to give an example of apower series
with bounded coefficients that is not an analytic element on M p (a criterion will
be given in (4.6». When lan I -+ 0, the sum f is a uniform limit of polynomials
(partial sums) on A p , and we get an analytic element on the closed unit ball. This
simple observation shows that a convergent power series defines analytic elements
on all balls B~T (r < r I)'

Theorem. The space H(Ap) ofanalytic elements on the closed unit ball coin­
eides with the Tate algebra Cp{x} with its norm:for f = .Ln~o anxn,

IIfIl = sup If(x)1 = sup lanl.
Ixl ~1 n~O

PRooF. When lai> I the series expansion (3.2)

1 I ( x)-m (-rn) x
n

- -- I - - - (_l)m+n --
(x - a )m - (-a)m a - ~ n am+n
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converges for IxI < laland a fortiori for IxI :s I: Its coefficients tend to 0:

!
(_ l )m+n (-rn) I 1

an+m n :s laln+m ~ 0 (n ~ (0).

This shows that the space of rational functions without a pole on Ap is a subspace of
the Banach algebra Cp{x}. This subspace contains the dense subspace consisting
of the polynomials

Cp[x] C R(Ap) C Cp{x},

and the closure is H(Ap) = Cp{x}. •
To be able to speak of analytic elements on the complement of a ball (which is

unbounded) we now approach the case of unbounded domains D, and hence R(D)
is not ametrie space. Let us introduce the vector subspaces

Rb(D) := {f E R(D) : 1 bounded on D},

consisting ofthe rational functions 1 = gJ h, degg :s deg h, having no pole in D,

Ro(D) := {f E R(D) : 1 ~ 0 (lx] ~ oo)} C Rb(D)

consisting of the rational functions 1 = gJ h, deg g < deg h, having no pole in D.
The Euclidean division algorithm shows more precisely that

R(D) = Ro(D) EEl Cp[x]

= Ro(D) EEl C, EEl xCp[x].--....-..
=Rb(D)

A fundamental system of neighborhoods of an 10 in R(D) is given by

Ve(fo) = (f E R(D) : sup I/(x) - 10(x)1< s] (s > 0).
;tED

In particular, if 10 is bounded, then Ve(fo) C Rb(D), namely :

Ve(fo) n xCp[x] = {O} .

This proves that the topology induced by uniform convergence on xCp[x] is the
discrete one:

By completion we get

R(D) = Rb(D) EEl
'-...-'

nonned space

H(D) = Hb(D) EEl----­Banachspace

xCp[x]
'-..---'

unifonnlydiscrete

xCp[x]
'-..---'

unifonnlydiscrete
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We can also write

H(D) = Ho(D) $ C p $ xCp[x]

and group the last two factors

H(D) = Ho(D) $ Cp[x],

but the uniform structure on the last factor is not the discrete one.
When D is unbounded, we shall only use bounded analytic elements and thus

work in the Banach algebra Hb(D) = Ho(D) $ Cp • We note that Ho(D) is a
(maximal) ideal in this algebra with quotient Hb(D)/Ho(D) ~ C, (a field) .

Let us now treat explicitly the case of the complement of open balls.

Proposition. The bounded analytic elements on Cp - M p = {IxI :::: 1} are the
formal restricted power series in I/x:

PROOF. The inversion x Ho y = I/x transforms bounded rational functions having
no pole in lxi:::: 1 into rational functions having no pole in lyl :::: 1,

and the completion is

by the preceding theorem. •
The comments made prior to the proposition prove that the analytic elements

on {IxI :::: I} are given by Laurent series having only finitely many nonzero terms
anx n with n > 0:

More generally, if B = B<r(a) is an open ball, then

and

is the subspace consisting of the formal power series

f(x) = I>n/(X -at such that lanl/rn~ 0 (n ~ (0).
n:::O
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Similarly,

is the subspace consisting of the formal power series

f(x) = I>n/(X - at such that lanl/rn -+ 0 (n -+ (0).
n~1

4.4. The Amice-Fresnel Theorem

Let B = 1 +Mp C Cp be the open ball of radius 1 and center 1. We are going to
give a useful description ofthe space Ho(ßC) of generalized principal parts relative
to the hole B: These are the analytic elements in the complement of B that tend
to zero at infinity. By (4.3) we know that these analytic elements f E Ho(BC

) are
given by restricted power series in 1/(x - 1) with zero constant tenn:

1
f(x) = ~ Am (x _ 1)m+1 (IAmI -+ 0)

and

IIfline = MI ,I! = sup /Aml.
m~O

Let us expand each tenn (x - 1)-m-1 according to the binomial fonnula

" (-m -1)(x _1)-m-1 = (_1)m+1 L..J n (_x)n .

n~O

Recall the elementary identity (_I)n (-";.-1) = (_1)m (-:,-1) e.g., if m > n, then

(_l
t(-m

- 1) = (-lt (-m - 1)· · · ( - m - n) . m(m -1) · · ·(n + 1)
n n! (n+l) ·· ·(m-l)m

(n + 1)(n + 2)·· · m(m + 1) . . . (m +n)
=

m!

(
- n -1)= (_1)m m

(similar computations are valid when n 2: m). Grouping tenns, we see that the
coefficient of x n in f(x) is

Define sp : Zp -+ C; by the unifonnly convergent series

" (-X -1)cp(x) = - L..J Am
m~O m
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(thisisaMahlerseriesiny = -x-l (N.2.3)) .Theinequality lIepllzp ::: max i)"ml is
obvious, and conversely, since Am is a linear combination with integral coefficients
of ep(-1), . .. , ep(-m - 1), we also have

(recall Theorem I in (N.2.4) for Mahler series). This proves that

lIepllzp = sup IAml = IIf11Be.
m~O

By definition, ep is a continuous extension of n ~ an to Zp. Reversing the opera­
tions, we have proved the following result ofY. Amice and J. Fresnel.

Theorem. Let I = Ln>o anxn E Cp[[x]] be a convergent power series with
rf ~ 1 and denote by B-the open ball 1+ M p • Then the following properties
are equivalent:

(i) The sequence n ~ an hasa continuous extension ep : Zp ~ Cp.
(ii) I is the restrietion 01an analytic element 01 Ho(ßC).

4.5. The p-adic Mittag-LefflerTheorem

For a simple region D = By - Ul<i<t Bi where the Bi = B<C1/(ai) are disjoint
open balls in B::,ro namely holes ofV-(notations and assumptions of (3.4)) , the
rational Mittag-LeffIer theorem leads by completion to a simple decomposition of
analytic elements in D :

H(D) .z; H(B::,r) (f) E9 Ho(Bf).
l::,i::,t

Explicitly, this means that each f E H(D) can be uniquely written as

f = 10 +L fi (/0 E H(B::,r); li E Ho(Bf), 1 ::: i s l),
i

namely with generalizedprincipalparts fi ofI, regular outside Bi, or equivalently,
having all their singularities in the hole Bi of D . If we choose a center ai in the hole
Bi, such a generalized principal part fi E Ho(Bf) is given by a Laurent expansion
(Corollary in (4.3))

"'" anfi(x) = L...J ( _ .)n '
n~l X a,

Let us turn to a closed, bounded, and infraconnected domain D c C p •

Proposition. Let D be closed, bounded, and infraconnected, f E R(D). Let
also B = B<C1 be a hole 01 D. lf IB denotes the sum 01 the principal parts
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attached to the poles 01I in B, and 10 =1- IB, then

IIIBIID s MalB ::: Mal::: IIf11D,

II/I1D = max(IIIBIID , 1I/0IlD).

PRooF. If I E R(D) is a rational function without a pole in D, B = B<a is a hole
of D, and fs is the sum ofthe principal parts of I corresponding to its poles in B,
then we have 1= [» +10with a regular 10 E R(D U B) , IB(X) ~ 0 (x ~ 00),
and

11 fs 11 D s Ma IB by (3.4) Proposition I ,

MaIB .s MaI by (3.4) Proposition 2,

u.s s IIf11D by (4.2) Proposition 2.

This proves IIIB IID ::: IIf11D, and the competitivity principle (II .1.2) in

1- IB - 10 = 0

leads to

IIf11D = max(IIIBIID , 1I/0IlD)·

This means that we have an isomorphism

•

of normed spaces.
Let now (Bi)iel be the family of holes of D, so that BD = DU Ul Bi is the

enveloping ball of D. We also have a split short exact sequence

res ffio~ R(BD)~ R(D) ~ W Ro(Bf) ~ 0
i

with linear contracting maps of normed spaces. The surjective map is I t-+ (fi )iel,

where li denotes the sum of the principal parts of I at its poles in Bi: When
I E R(D) is given, finitely many fi are nonzero. The map

(fihl t-+ L lilD : E9 Ro(Bf) ~ R(D)
i i

is a splitting: I - Li fi ID is the restrietion of a rational 10 E R(BD) and I(x) =
lo(x) + Li li(X) (x E D). The central term is the normed direct sum of the
extreme ones, and

R(D)~ R(BD) $ E9 Ro(Bf)
i

is an isometry of normed spaces . By completion, we obtain the following general
result.
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Theorem. Let D be a closed, bounded, infraeonneeted set, (Bi )ieI its family of
holes. Then there is a Banaeh direet sum deeomposition

Eaeh fE H(D) ean be uniquely expressed as a sum

f = fo +L: fi , IIfIlD = maxt] fo 11 , sup llfi 11),
ieI i

where

fo is an analytie element on the enveloping ball of D,
fi are analytie elements on Bf with fi(x) -+ 0 (x -+ (0),

llfill = IlfiIlB[ = IlfiliD -+ O(i -+ (0). •

In particular, in the summable family (fi)ieI of generalized principal parts of
an analytic element f E H(D), at most countably many fi are nonzero (lV.4.I).

4.6. The Christol-Robba Theorem

A formal power series f = Ln>o anxn E Cp[[x]] having bounded coefficients
converges at least for IxI < I: rf ~ I but it does not always define an analytic
element on the open ball M p. Let us determine the space H(M p) of analytic
elements on this ball.

Since H(M p) C H(By ) for all r < 1, it follows that any fE H(M p ) is given
by apower series Ln>oanXn such that lanlrn -+ 0 (n -+ (0) for all r < 1, hence
by apower series having a radius of convergence rf ~ 1. On the other hand, M p

is closed and bounded; hence H(M p) C Cb(M p) (Proposition 1 in (4.2».

Lemma. The subspaee ofCp[[x]] eonsisting ofthe convergent power series f
having a radius of convergence rf ~ land a bounded sum in M p eoincides
with the spaee loo offormal power series having bounded eoefficients: The
map

(ank:o 1-+ L:anXn loo -+ Cp[[x]] n Cb(M p)
n:,:O

is an isometrie isomorphism.

PRooF. If (an)n:,:O is a bounded sequence,

If(x)1 = lL:anxnl s sup lanl (lx] « I) ,
n:,:O n:,:O
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henee 11/11 ~ sUPn>O lan l with the sup norm of Ion M p • Conversely, assume that
the power series :E"n>O anxn eonverges for IxI < 1 and has a bounded sum in this
ball. For a regular IxT= r < 1 we have

Taking a sequenee ofregular r /' 1, we infer lan I ~ 11 fII (n 2: 0), and eonsequently

sUPn~O lan I s 11 fII· •

The preeeding proof works for any field K having a dense valuation: Compare
with (V.2.1), where the residue field k was assumed to be infinite.

The lemma shows that we have an isometrie embedding

The following theorem eharaeterizes the image: It gives a eriterion for a formal
power series with bounded eoeffieients to define an analytie element I E H (Mp).

Theorem (Christol-Robba). Let I = Ln>o anxn E Cp[[x]] be a formal
power series with bounded coefficients. Define Pv = pV(pV - 1) (v 2: 1). Then
I defines an analytic element on M p precisely when the following condition
(CR) holds:

For each s > 0 there exist v and N 2: 0
such that lan+pv - anI ~ e (n 2: N).

PRooF. The proof is based on the Mittag -Leffler theorem (4.5) for the bounded and
closed infraeonneeted set

D = M, = B~l - U B<l(t) C BD = B~l = A p •

{E/l(p)

The condition is necessary. Let us write the Mittag-Leffler deeomposition of the
spaee of analytie elements H(Mp ) on the open unit ball as

with a sum parametrized by s E f.L(p) . The spaee H(Ap) is the Tate algebra with
normal basis (Xi)i~O, and Ho«s +Mpn has normal basis l/(x - t)m+l (m 2: 0).
This proves that the family of funetions

n 1
x , 1 (n 2: 0, S E f.L(p), m 2: 0)

(x - t)m+

eonstitutes a normal basis of H(Mp ) . Let us show that eaeh basis element satisfies
the eondition given in the theorem. This is obvious for the powers x n (n 2: 0). On
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the other hand, the rational function

1
j(x) = (x _ om+l (~E J.L(p), m :::: 0)

(having a pole at the point ~ ~ Mp ) can be expanded according to the binomial
fonnula

by the elementary identity on binomial coefficients recalled in (4.4). We have
obtained

Let us estimate the difference between two coefficients as in the condition (CR):

(-1-n- p ) (-1 -n)v~-n-pv _ c: =
m m

Now, since since p; is a multiple of pV - 1 and ~pv_l = 1, we have ~-pv = 1
for v large enough (depending on O. On the other hand, x t-+ e;) is uniformly
continuous on Zp, so that, unifonnly in n,

(-1-n- p) (-1 -n)m v - m is small if Pv is small in Zp,

which is the case for large v, since Pv is a multiple of p":

cn [(-1 -~ - Pv)~-pv _(-lm-n)] =

cn[(-l-~-Pv)_(-lm-n)] ~e (v::::v~).

Finally, the conclusion will be reached as soon as we observe that (CR) character­
izes a cLosed subspace of [ 00. Let (än ) be a sequence in the closure ofthe space
satisfying (CR). Ife > 0 is given, we can first find a sequence (an) satisfying (CR)
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and with län - an 1 ::; e (n 2: 0). Then

län+pv -änl::; max(län+Pv -an+pvl , lan+pv -anl, lan -änD

::; max(e, lan+pv - anD.

This is less than or equal to e when n and v are large enough, by assumption on
the sequence (an) ' Hence (än) still satisfies (CR).

The condition is sufficient. Fix a positive integer N and consider the rational
function

~ a xn

()
L

n + L..JN~n<N+pv ns» X = anx
l-xPv

n<N

having all its poles in the set of roots of unity (on the unit sphere). We have

f(x) - gN(X) = L anxn

n?N

The numerator is

LN<n<N+Pv anXn

1 < xe-

= L anx
n

- x Pv L anx
n

- L anx
n

n?N n?N N~n<N+pv

= L anx
n
-xPv LanX

n = L(an+Pv -an)x
n+Pv.

n?N+pv n?N n?N

We have obtained

~ (a - a )xn+Pv
f( ) ()

L..Jn>N n+pv n
X r s» X = ,

l-xPv

and since 11 - x PvI = 1 for lxi< 1, we have

If(x) - gN(x)1 = IL (a n+Pv - an)xn+Pvl .s sup lan+pv - anl (lx] « 1).
n?N n?N

With the postulated condition, IIf - gNIl ::; e. This proves that f is a uniform
limit on IxI < 1 of rational functions gN having no pole in this ball. •

Examples. Here are three power series with bounded coefficients (hence a
bounded sum in lxi< 1) that do not define an analytic element on M p :

• Ln>O x p' (follows from the Christol-Robba condition),
• exprrx (Irr] = rp ) (exercise),
• (l + x )l l m (m > 1 not multiple of p) (book by A. Escassut).
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Analytic elements

Formal Sequences
power series Cp[[x]] (an)n;>:o nCp

n~O

power series !im sup lan11/ n :::: 1
converging in (rf ::: I)

[x] « 1

power series (an)n;>:o
boundedin bounded loo

lxi< 1 sequence

analytic H(Mp) Christol-Robba
elements in condition

[x] « 1 (4.6)

analytic H(Ap) = Cp{x} an -+ 0 Co
elements in (n -+ 00)

lxi:::: 1

polynomials Cp[x] an =1= 0 for C(N)p
finitely many n's

4.7. Analyticity ofMahler Series

Theorem. Let f : Zp ~ Cp be a continuousfunction with Mahler series

f(x) = L ck(x) .
k:::O k

Then f is the restriction ofan analytic element i « Cp{X} iff Icklk!1 ~ o.

PRooF. Consider the triangular change of basis of the spaee of polynomials given
by

where the eoeffieients are positive integers: Stirling numbers of the first kind.
Conversely,

where the eoeffieients are positive integers: Stirling numbers of the seeond kind.
Henee if f = Ln anxn = Lk bk (X)k is a polynomial, we have sUPn lanl =
sUPk /bkl, and this isometry (an) t-+ (bk) extends to an isometrie embedding ofthe
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completion

Cp{x} ---+ C(Zp;Cp),

LanX
n

Ho- Lbk(x)k = LCk(~) '
n~ ~O k~

where bk = ci]k !. The assertion follows. •
Corollary. Ifthe Mahler coefficients Ck ofa continuousfunction f satisfy ICk I :::
cr k (k ~ ko) for some c > 0 and r < rp, then f is the restriction ofan analytic
element j on the closed unit ball A p of C p.

PRooF. Under the assumption, !cd k!1 ::: c r k /lk!l . Since the general term of the
exponential series ex tends to 0 when [x] = r < rp, we have rk/lk!1 -+ o. The
conclusion follows by the Theorem in (4.3). •

Example. Choose and fix an element t E Cp with [r] < rp • According to the
preceding corollary, the Mahler series

f(x) =L tk(X)
k:::O k

is the restrietion of an analytic element j E H(A p) = Cp{x} . I claim that the
analytic element in question is

PROOF. The assumption [z] < rp indeed implies (Proposition 1 in (VA.2))

110g(1 + r)] = Itl < Tp »

so that the series expansion

" (x 10g(1 + t))n
ft(x) = L...J

n:::O n!

converges for [xI ::: 1. Now, for integers m ~ 0,

" (m 10g(1 + t))n
fl(m) = L...J ,

n:::O n.

= e m 1og(1+t) = (e!og(1+t)r = (1 + t)m = f(m)

(we have used the identities eX+Y = e'eY; hence emx = (e')m and e1og(1+t
) = 1+t) .

By continuity and density,

ft(x) = f(x) = j(x) (x E Zp) .
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Since j - fl is given by apower series expansion, it vanishes identically in its
convergence disk (a nonzero power series expansion has a discrete sequence of
critical radii with finitely many zeros on each critical sphere). •

Since

f(x) = L tk
( ; ) = (1 +tl (x E Zp),

k~O

it is also clear that for larger values of t E M p C Cp we can still define (1 + tY:
for smaller values of x E C p • Recall that

pi-
I rp < Ilog(l +t)1 = I;; I= pilW

j
< pi rp

for

(cf. (1.6». Hence

and it is enough to assurne Ix I < 1j p! to have a convergent series expansion for

(l + t y: = e" 10g(1+t).

Still,forltl-:::r~/pjandlx-nl < ljpi,wecandefine

(1 + tl = (l + tt . (1 + ty-n = (1 + tt . e(x-n)log(l+I) .

For these values of the parameter t E Cp , the function x t-+ (l + tY: is a locally
analytic function defined in the neighborhood

Vi = U B<I/pi(a) = z; + BI/pi
aeZp

Remark, The identity

ex1og(l+I) = (1 + tl

leads to
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hence to

Identifying the coefficients of x" we get the well-known classical identity

[lOg(~7 t)]n = ~(_l)k-n [~J ~~,

where the coefficients are again the Stirling numbers of the first kind.

4.8. The Motzkin Theorem

Let D be a closed, bounded, and infraconnected set, / E H(D)X an invertible
analytic element on D . Assume that B = B<u(a) is a hole of D (maximal open
ball in the complement of D). A Motzkin factorization of / relative to the hole B
is a product decomposition / = gj(B), where

(1) g E H(D U B)X ,
(2) j(B) = (x - a)mh (m E Z, h E H(Bcy),

hex) -+ 1 (x -+ 00), and IIh - II1BC< 1.

Remarks. (1) We have seen in (4.3) that an analytic element on BC admits a
convergent Laurent series expansion. If it is not zero, we can write it as

L aAx - a/ = am(x - a)m . hex).
j~m

Here hex) = 1 + bi/ex - a) + ... (ambl = am-I, . . .) is invertible if it does
not vanish on BC

, i.e., if it has no critical radius greater than or equal to a . Since
hex) - 1 -+ 0 (x -+ 00), Mrh (r ~ u) decreases, Mrh '\i 0 (r -+ 00), and

° I

IIh - II1Bc = Mra(h - 1) = max IbJol/rJ <: 1.
• j~ 1

(2) When 11 / - 111 D < 1, then / is invertible . In fact, since D is closed and
bounded, H(D) is a closed subalgebra (Banach subalgebra) of Cb(D) (4.2). Hence
the geometrie series expansion

1 1 " nt : 1_(1_f)=L(1-f)
n~O

converges (in norm) in H(D). More generally, if / E H(D) and lIf - /(a)1I <
1/(a)1 for some a E D, then /I/(a) (hence also f) is invertible.

(3) The existence of a Motzkin factorization (with respect to a hole B = B<u)
requires Mu / > 0: The growth modulus function is multiplicative:

Mu/ = Mug · MuU(B)) > O.

This condition is also sufficient, as we are going to prove.



358 6. Analytic Functions and Elements

Theorem. Let D be a closed, bounded, and infraconnected set, B = B<u a
hole of D. Then each f E H(D) satisfying IIf - II1D < 1 admits a unique
Motzkin factorization (with index m = 0)

f=g ·h, IIh-lI1Bc<l, h(x)-+I(x-+oo).

PRooF. Let (fn)n ?:.O be a sequence of R(D) converging uniformly to f . Since

IIfn - II1D ~ max(lIfn - f llD, IIf -II1D) < 1

for large n, we can disregard the first few values of n and assume 11 fn - 111 D < 1
for all n. By the rational Motzkin factorization result (3.5) we can write

fn = gn . h« (h n = (fn)(B) -+ 1).

Now set P(f) = [s , the principal part of a rational function f with respect
to the hole B (as in the Mittag-Leffler decomposition) and Q(f) = j(B) the
Motzkin factor of f relative to the same hole. Obviously, P(f) = P(f - 1) and
Q(fnlfm) = Qfnl Qfm (the Motzkin factorization of rational functions is simply
obtained by gathering the linear terms corresponding to the zeros and poles in B).
The norm estimate in (3.5) for the function fnlfm leads to

By the proposition in (4.5),

IIhnlhm -II1D = IIP(fnlfm)IID = IIP(fnlfm -l)IID

.s Mu (f
n~ fm ) s 11 fn ~ fm L .

Hence we have

.s Mu (fn ~fm)

and by multiplicativity of the growth modulus

Mu(hn - hm) MU(fn - fm)
-----<_---:'-_-'--

u,«; Mufm

But since Ifm - 11< 1, we have Ifml = 1 (on D) and Mufm = 1. The same is
true for hm and f. We have obtained

which proves the uniform convergence of the singular (Motzkin) factors hn to
h E H(BC) . Since IIh - II1Bc < 1, we even have h E H(BC)x. Moreover, we have
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a uniform convergence

1 1 c
- -+ - E R(B) (n -+ (0),
hn h

which implies a convergence

In I
gn = - -+ - <s

hn h

in R(D). The maximum principle on the ball Band Proposition 2 in (4.2) give

hence

IIgn - gm IIDuB ::: I/gn - gm IID -+ 0

when m, n -+ 00, so that B« -+ g E R(D U B). Since

1 hn h 1
-=--+-=-
s; In I g

uniformly (first on D, but also on DU B by the maximum principle), the function
gis a unit of R(D U B) and does not vanish in DU B.

Let us prove uniqueness. If 1= g\h\ = gzhz are two decompositions, then

g\ . !!2.. = 1
gz hz

is a Motzkin factorization of I = 1, and it is sufficient to prove the uniqueness in
this simple case. Assume that gh = I is a Motzkin factorization and choose

s» -+ g (gn E R(D U B) X), hn -+ h (hn E R(BCr).

Then the inequality (*) for the rational functions n; and 1 gives

This proves hn -+ 1 (n -+ (0), h = limn- H Xl hn = 1, and g = 1.

EXERCISES FOR CHAPTER 6

•

1. (a) Show that K[X][[Y]] =1= K[[Y]][X] (consider Li<i x ' Yi).
(b) Give adescription of the fraction field K«X» of K[[X]] using Laurent series of

order » -00.

2. Using the definition of the product of formal power series prove the identity

D(fg) = g Df + f Dg (f, gE KUX]])

for the formal derivative of a product.
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3. (a) Let f, g E K[[X]] be two convergent power series with g(O) = O. Assume that
the value group IK x I is dense in R>o. Prove that the numerical evaluation result
(f 0 g)(x) = f (g(x)) is valid in the ball IxI ::: r of K, provided that r < rg and
g(B:sr) C B<rr

(b) Show that the radius of convergence of a composite fog satisfies

and Mr(f 0 g) = MMrg(f) .

4. Let f(X) E K[[X]] be a convergent power series and fix a E K, lai< rl ' Let
X = a + Y and f(X) = f(a + Y) = fa(Y) (this substitution g(Y) = a + Y is not a
substitution offormal power series of the type considered in the theory, since w(g) = 0).
Show that the following double series is summable when X is replaced by an element
XEK ,lxl<rl:

Reorder its terms to obtain another proof of the proposition in (VI.2.4) :

I
f(a) + Df(a)Y + 2! DZf(a)Y Z + ....

Deduce that the radius of convergence of g is at least equal to rI . Interchanging the roles
of f and g, conclude that rI = rs- [By contrast to the classical case, it is impossible to
obtain an analytic continuation of f using a Taylor series centered at a different point.]

5. Let p be an odd prime. There is a sequence (an)n:::O in C p with

z.~J < lan I < t. (n 2: 0).

What is the radius of convergence of the power series f = Ln>O an X'"] Show that the
sphere lxi = rl in C p is ernpty (the corresponding closed an-d open balls coincide).
What can one say ofthe convergence of fon the sphere [x] = rl in Qp?

6. Take K = Qp and consider the formal power series

"n If(X) = LX = I _ X'
n:::O

g(y)=Y-YP.

Find the power series representing the composite fog , which is the rational function

I-X +XP

when p = 2. In this case, the two roots ~, TI of I - X + X Z = 0 are easily deterrnined.
Give the power series expansion of (I - X + XZ)-l explicitly using the partial fraction
decomposition

lab
-I---X-+-X""'"z = -X---~ + -X---TI .

The coefficients of the corresponding power series are periodic mod 6.
(Hint. Note that ~ and TI are 6th roots of unity.)
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7. Show that

sinx
tanx = -- <lxi< rp),

cosx

x 3 x 5

arctanx = x -"3 +"5 T ' " <lxi< 1),

are inverse functions for IxI < rp ' L. van Hamme has suggested the following extension.
Choose i E Cp with i 2 = -1 and use the Iwasawa logarithm to define

I 1 + ix
arctanx = -Log-- (x::J:. ±i).

2i 1 - ix

Using
1 + ix I-ix

2i(arctanx - arctana) = Log--.- - Log--.-
1+w 1 -r l ä

prove that if a point a E Cp is selected, then arctanx is given by aseries expansion
valid in the ball

Ix - al < mint]« - il, la + ii).

Prove that

arctan 1 = 0, !im arctanx = 0.
Ix1""'00

8. (a) Let I(X) = Ln>OanXn be a convergent power series and assurne that the set
{ Ian Irr} is unbounded. Prove that there exists an infinite sequence of critical radii

ri /' rr
(b) Let (an)n:::o be a sequence in C p with

laal < lad< . .. < lanl < . . . < 1.

Prove that the formal power serie s I(X) = Ln>OanX" defines a bounded function
in IxI < rI with infinitely many critical radii cönverging to rI .

9. Prove that for any ultrametric field K , I + XK[[X]] is a multip!icative group, and for
r > 0,

is a multiplicative subgroup of I + XK[[X]] .
(Hint. For r = I, the subgroup GI is simply 1 + XA[[X)) ; use dilatations to get the
general statement.)

10. Prove the Liouville theorem in the case K has a discrete valuation but an infinite residue
field.

11. (a) Show that r > 0 is a regular radius for ft , 12, .. . , In iff it is regular for ft 12 . .. In.
(b) Let I, g E K[[X]] be two convergent power series . Assurne I(xn) = g(xn) for a

convergentsequencex; --+ Xoo (xn ::J:. Xoo for all n ~ 0), where Ixoo I < min(rI , rg ) .

Show that I = g.
(c) Formulate and prove a statement analogou s to (b) for Laurent series .
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12. Let K = Qp(J.l-p""')' This is a totally ramified extension of Qp, and IK x I is dense (the
residue field of K is Fp) . Give an example of a polynornial f for whieh IIfliGauss =
sUPx:s! If(x)1 is not a maximum.

13. Let f denote the Taylor series at the origin of

X4+(p2_I)X2_ p2

l-pX

What is the eanonieal faetorization f = c P Qg! (Theorem 2 in VI.2.2) of this formal
power series? Draw the Newton polygon of f .

14. Show that the formal power series Ln>! pn!X" defines an entire funetion. What is the
loeation of its zeros? Give the form ofan infinite produet that represents this funetion.

15. Give the Laurent expansions of the rational funetion

x
(x - I)(x - p)

valid in the region IxI > 1. Same question for the region 1/P < IxI < 1.

16. Let f (X) = Ln>O anK" be a formal power series with eoefficients lanI ~ 1. Consider
the map g : M p :'" {Ol -4- Cp - Ap defined by y = g(x) = fex) + I/x. Prove that g
is bijective.
(Hint. To show that g is surjective, proceed as folIows . For given y with lyl > 1
we are looking for a solution x of x = y-!(l + xf(x». Show that the sequenee
defined induetively by Xo = 0, xn+! = y-!(l + xnf(xn» is a Cauehy sequenee with
Ixnl = I/Iyl < 1, and henee it eonverges in the open unit ball M p .)

17. What are the eritieal radii ofthe polynornial

x n+! + x n + . . . + x 2 + ~x + 1 (n ~ I)?p

How many roots are there on eaeh eritical sphere?

18. Let f : R >o -4- R>o be a C2-funetion and define log f(r) = rp(p), where p = log r .
Show that rp may be eonvex even when f is not eonvex (eonsider f(r) = ..(i).
(a) Consider the funetions fa(r) = r" (a E R) and diseuss the eonvexity of fa and

the eorresponding rpa .
(h) Prove r 2!"(r)/f(r) = rp"(p) +rp'(p)(rp'(p) - 1) and deduee that if rp is eonvex and

rp' does not take values in (0, 1), then f is eonvex.

19. What is the Newton polygon ofthe polynomial

(a) Compute the absolute value of the zeros of this polynomial.
(h) Faetorize the polynornial and eompare with the result obtained in (a) .

20. (a) Show that the logarithm log : 1 + By p -4- B:srp is surjective, More preeisely,
show that for eaeh lyl = rp there are exaetly p preimages Xi with lxii = rp and
log(l + Xi) = y (but if ly l < rp , there are only p - 1 preimages).

(h) Draw the valuation polygon ofthe formal power series oflog(l + X).
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21. What are the Newton polygons ofthe Chebyshev polynomials T3 . T6. T9 (any prime p)
(cf. exercises for Chapter V). Same question for Tl. Tp• Tp2 • • • • • Tpn .

22. Let f = g/ h E Cp(x) be a rational function . Assurne that f has a zero and a pole on
a sphere lxi = r . Show that Ifl assurnes all values (in pQ = IC; I) on this sphere .

23. Generalize the mean value theorem (as given in (2.4» to the case of a parametrized
curve t 1-* (f(t), g(t) , h(t» by considering the determinant

f(a)

4>(t) = g(a)

h(a)

f(t) f(b)

g(t) g(b) •

h(t) h(b)

which vanishes for the two values t = a and t = b.

24. (a) Draw the graph of the growth modulus Mr f of the following rational functions :

I-X
I +X · (~)n

I+X

I-Xn

I +xm

Can one guess the location of the zeros and poles of a rational function by the sole
observation ofthe graph of Mrf? Sketch the graph ofthe growth modulus Mr,lf.
centered at the point I. for the same functions.

(b) Draw the graph of the growth modulus Mr f of

25. Give the principal parts Pf of the rational functions

x 2 +x + I
f= 2 •

x

at the origin. Take (1 > land consider a region D := {(1 ::: IxI ::: r} . Compare 11 Pf 11 D

and IIf - IIID ·

26. With the notation of (3.5). let f = c Daes(x - a )'1.«. Prove that the principal part
Pi (f' / f) with respect to some ball Bi is fr / f;. where f; is the Motzkin factor of f

relative to Bi . If lIf - 111 D < I. use (3.4) and prove 11 f'll D = maxO:;:i:;:l 11 fr 11 D .

27. Fix r > 0 and choose C E Qp - Cp • Then

is a multiplicative norm on Cp(X). If 8 = dist (c, Cp). show that

inf Mr,c(X - a) = 8.
aeCp

In particular, the general inequality infaeCp Mr,c(X - a) ::: r can be astriet inequality .

28. Show that the union of two infraconnected subsets having a nonempty intersection is
infraconnected.
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29. The subsets of Cp

B~I/E(O) n {Ix - al ~ s : for all a E Qp}

are infraconnected. What are their enveloping balls? What are their holes? Conclude
that Cp -Qp is a union of an increasing sequence ofbounded infraconnected sets, each
of them having finitely many holes.

30. (a) Let B be a dressed ball and D a closed and bounded subset of Cp so that

II/I1B = IIf11D for all polynomials f.

Prove that D C B and B = BD is the enveloping ball of D.
(b) Let D be closed and bounded. Prove II/I1BD = II/I1D for 1 E H(BD)'

(Hint. Choose g E R(BD) such that 111 - gllBD < II/I1D.)

31. Let D = B~r - UI<i<l Bi and B C D any nonempty open ball. Show that the
restriction map H(D) -:".-H(B) is injective.
(Hint. Use the Mittag-Leffler decomposition to show that each 1 E H(D) is described
by apower series expansion in Band hence has isolated zeros ifnonzero.)

32. The simple domains ofthe form D = B~r - UI<i<l Bi can be patched together. For
example, if the hole BI of D has radius rl. showiliät any DI = B~rl - UI~j~ll Bj
has a nonempty intersection with D and the union D U DI is again a simple domain of
the same form.

33. Choose a sequence rn /' 1 (rn< 1) and let Sn = {lxi = rn}. Show that

D = B<I - USn C c,
n

is infraconnected. Moreover, if B C D is any nonempty open open ball. show that the
restriction map H(D) ~ H(B) is injective.
(Motzkin calls analytic a set D having this property. If D' = DU B<I(1). it can be
shown that the restriction H(D') ~ H(B<I(1) is not injective; hence D' is not an
analytic set; this is again the phenomenon of T -filters.)

34. Find domains ofuniform convergence for the following sequences of rational functions:

x n x n

I - x n • 1 - x 2n •

x 2n

1-xn

35. Let 0 < e < 1 and D = {x E Cp : [x] ~ [1 - e, 1 + el}. Consider the sequence of
functions

1
In(x) = -- E R(D).

1-xn

This sequence converges in H(D): The limit 1 =F 0 is a zero divisor (a nontrivial
idempotent). Conclude that for any D E Cp having at least two points, and which is
not infraconnected, H(D) is not an integral domain.
(Hint. Choose a =F b E D and an annulus {O < rr < Ix - al < rz < Ib - al} that
does not meet D and use a sequence similar to the one above. It can be shown that
infraconnectedness is also a sufficient condition for H(D) to be an integral domain.)
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36. Show that the series L n>O pn I(x - n) converges for x e C p - Zp and that it defines
an analytic element on the subsets Dn = {x e C p : Ix- al ::: I/n Va e Zp} .

37. Show that the series

converges for x rt {O} U pN and defines an analytic element in the complement De of
any (finite) union ofballs ofthe form Un~O B<e(pn) (8) 0).

38. Show that the exponential is not an analytic element on its convergence ball.
(Hint. Let tt be a root of X p- l + p = 0, so that the convergence ball of I(X) = e7rX

is 1. Then use the Christol-Robba criterion (VI.4.6).)

39. Let Pv = pV(pV - 1) and CPv(x) = 1 - x P-. Check the following assertions:
(a) CPv(x) - 0 (v _ 00) for any [x ] = 1.
(b) ICPv(x)1 = 1, if lxi< 1, MI (CPv) = 1.
(c) SUPlxj=1 ICPv(x)1 = 1.

40. (a) Let D C Cp be closed, bounded, and infraconnected. Assume I e H(D) and
111 - II1D < 1. Prove that log I e H(D).

(b) Ir I e R(D)X, 111 - II1D < 1, and I = TIi li is the Motzkin factorization of
I (with respect to a finite family of open balls Bi as in (3.5)), show that log I =
Li log li is the Mittag-Leffler decomposition of log I.

41. Let 0 < r < 1 and (an)n~l a sequence on the unit sphere with lan - am I = 1 whenever
n =I m. Define

Choose a sequence An _ 0 and consider the rational functions

An
gn(x) = 1 +--.

x -an

Show that IIgn - II1B~ ::: IAnl/r - O. Conclude that TIn>1 gn converges uniformly

on D, x2 TIn>1 Bn e H(DY , but the sequence IN = x2 TI~<n<N gn is not uniformly
convergent on D. - -
(Hint. Observe that IN+I - IN is not bounded on D due to the presence ofthe unbounded
factor x2 .)



7
Special Functions, Congruences

The applications given in this chapter concern congruences.
They rely on the first two sections of the preceding chapter (convergence

of power series, growth modulus, critical radii). The more technical notion of
analytic element developed in the last two sections of Chapter VI is not used
here.

1. The Gamma Function r p

The special functions of classical analysis are defined by a variety of methods : se­
ries expansions, differential equations, parametric integrals, functional equations,
etc. We have seen in (VA) that the power series method is well adapted to the
definition of the exponential and logarithm in a suitable ball of Cp'

Here is another method adapted to p-adic analysis. Let f be a classical function
defined on someinterval [a, (0) C R with rational values f(n) E Q on the integers
n 2: a , we may look for a continuous function Zp --* Cp extending n H- f(n).
By the density of Zn [a, (0) in Zp, there is at most one such interpolation. Of
course, this possibility requires arithmetic properties of the sequence of values
f(n) and the method works only in particular cases. A suitable modification of
the function n H- n! will lead to an analogue of the classical gamma function.
Another successful example ofthis method (not treated here) is the Riemann zeta
function, using its values at the negative integers.

To simplify our considerations, we assume first that the prime p is odd: p 2: 3.
The case p = 2 is treated later in (1.7).
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1.1. Definition

The function n f-+ n! cannot be extended by continuity On Zp, Indeed, let us look
for a continuous function

f : z; ---+ Qp

satisfying f(n) = nf(n - I) for an integers n :::: 1. By continuity and density the
same relation will hold for all n E Zp, Iterating it, we get

f(n) = n(n - I)(n - 2)· .. pm f(pm - I)

for an integers n > p'", where p'" is a fixed power of p. Since f is continuous
on the compact space Zp , it is bounded and there is a constant C > 0 such that
If(x)1 ~ C (x E Zp). The preceding factorization also shows that

If(n)1 ~ Iplm . C

for all integers n > p'" , But these integers make up a dense subset of Zp ; hence

Since the integer m :::: 1 is arbitrary, the only possibility is 11 flloo = O. (The single
consideration ofthe case m = 1 is sufficient: Taking C = IIflloo we get IIf1100 ~
Ipillflloo, (1-11p) 11 flloo ~ 0.) The only continuous function f on Zp satisfying
the functional equation f(n) = nf(n - 1) for an integers n :::: 1 is f = O.

The trouble obviously comes from the multiples of p in the factorial n! : Let us
omit them and consider a restrictedfactorial n!*

n!* := n j.
l:,:i=:;n , pfj

The key to the construction of the p-adic gamma function lies in a generalization
of the classical Wilson congruence

(p - I)! == -1 mod p .

Proposition. Let a and v :::: 1 be two integers. Then

n j == -1 (mod pV) .
a =:; j <a+p",pfj

PROOE The integers a ~ j < a + p V make up a complete set of representatives
of the quotient ZIpVZ. Those that are not multiples of p represent the invertible
elements, namely the elements of the unit group G = (ZI p vZy. Grouping each
element g E G with its inverse g-l we obtain compensations in the product except
when g = g-l. But
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In the ring Zj pVZ we can write

g2 = 1 {:::=:} g2 - 1 = 0 {:::=:} (g - 1)(g + 1) = O.

The elements in question are g = ± 1, or both g - 1 and g + 1 are zero divisors .
The second case corresponds to

p divides both g - 1 and g + 1.

Obviously, this second case can happen only when p divides 2 = (g +1) - (g - 1),
i.e., p = 2. Since we are considering only the case p odd, this does not occur, and
the proposition is proved. _

The proposition implies that the products

f(n) := (_I)n fl j (n 2: 2)
l::: j <n. pfj

satisfy f(a) == f(a + pV) (mod p"). More generally, they also satisfy

f(a) == f(a + mp'") (mod pV) (m E N).

The function a t-+ f(a) : N - {O, I} -+ Z is uniformly continuous for the p -adic
topology, hence has a unique continuous extension Zp -+ Zp.

Definition. The Morita p-adic gamma function is the continuous function

that extends

f(n) := (_l)n fl j (n 2: 2).
l:::j<n , pfj

Observe that by construction, this p-adic gamma function takes its values in the
dopen subset Z; of Zp ,

Since its definition depends on the prime p, this function is denoted by r r- (But
as with the functions log and exp, we might simply denote it by r when the prime
pis fixed and there is no risk of confusion.)

1.2. Basic Properties

Wehave

r p(2) = 1, r p(3) = -2,

I
n! if n odd, n S p - 1,

r p(n + 1) =
-n! if n even, n S p - 1.
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From the definition it also follows that I'p(n) E Z; is given by

(_1)n+ln! (-1)n+l n l
I'p(n + 1) = TI k = [n/p]lp[n/p)

l~kp~n P

when the integer n is greater than or equal to 2. Still, by its definition, we have

{
-nr (n)

I' (n + 1) = p
p -rp(n)

and by continuity, more generally,

if n is not multiple of p,

if n is multiple of p,

{
-xr (x)

I' (x + 1) = p
p -rp(x)

It is convenient to introduce a function hp :

ifx E Z;,
if XE pZp .

{
- x

hp(x) =
-1

ifx E Z; (lx I = 1),

if x E pZp (lxi< 1),

in order to be able to write the functional equation

This functional equation can be used backwards 10 compute the values I'p(I) and
I'p(O)from I'p(2) = 1. In particular, we check that I'p(O) = 1. This nonnalization
also follows by continuity: By the proposition in (1.1) (with a = 0),

rp(pn) = - rr j == +1 (mod pn) ;
I ~j<I"' , pU

hence I'pep") -+ 1 as n -+ 00.

Theorem. For an odd prime p, the p-adic gammafunction I'p : Zp -+ Qp is
continuous. Its image is contained in Z;.Moreover:

(1) I'p(O) = 1, I'p(I) = -1, I'p(2) = 1,
rp(n + 1) = (_1)n+ln! (l ~ n < p).

(2) Irp(x)1 = 1.
(3) Irp(x) - I'p(Y)1 ~ Ix - YI, Irp(x) - 11 ~ [x],
(4) r p(x + 1) = hp(x)rp(x).
(5) I'p(x) . I'p(I - x) = (_I)R(x),

where R(x) E {l, 2, . . . , p} , R(x) == x (mod p).

As we shall see in (1.7), the property (3) has to be suitably modified for p = 2.
The exponent in (5) is also different in this case.
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?ROOF. (3) follows from f(a + mpV) == I'(c) (mod pV) (a E Z, mE N) by conti­
nuity.

There only remains to prove (5). Put f(x) = r p(x)· r p(1 - x ). We have

f(x + I) = hp(x)fp(x) · r p(-x),

and since r p(-x) = r p(I - x)/ hp(-x),

f(x + 1) = s(x)· f(x), s(x) = hp(x)/ hp(·-x).

Now,

{

- I
s(x) =

+1

Take for x an integer n and iterate,

if [x] = 1,

if [x] « 1.

f(n + 1) =s(n)· f(n) = .. . = (-1)#f(I),

with an exponent # equal to the number of integers j :s n prime to p . Since the
number of integers j :s n divisible by p is [n/p], this exponent # is n - [n/p].
Hence

f(n + 1) = r p(n + 1) . r p(-n) = (-Ir-ln/pj . r p(1)fp(O)= (-Ir+I-ln/p).

~

-I

To find the forrnula given in (5), let us take x = m = n + 1 (integer), whence
I-m = -n and

r p(m) . r p(I - m) = r p(n + 1) . r p(-n) = (_l)n+I-[n/p).

With the expansion of the integer n in base p,

n = no + ni p + ... = no+ p [~J

we infer

Since we assurne p odd - hence p - 1 even - this proves that n - [n / p] has the
same parity as no:

(_l)n+I-ln/pj = (_l)no+l.

Sincem = n+l == no+l (mod p)andno+I is inthe correctrange I l , 2, . .. , p},
we have R(m) = no + 1, and the forrnula is proved for integral values x = m of
the variable. By density and continuity, it remains true for all x E Zp. •
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Comment. The classical I'-function satisfies the Legendre relation

1T
r(z)r(1- Z) = -.-,

Slß1TZ

which implies for z = !

Hence we can say that in Qp, an analogue of the number 1T could be taken as
I'p(!)2 =(-1 )(p+1)/2. In particular, if p == 1 (mod 4), I'p(!) = .J=Tis a canon­
ical square root of -1 in Qp. This canonical imaginary unit can be identified easily.
In the case p == 1 (mod 4), the Wilson congruence

(
p - 1) 2

(p - I)! == -2- ! ==-1 (mod p)

shows that ( ?)! mod pis a square root of -1. Since (p + 1)/2 ==! (mod p),

the point (3) of the above theorem gives

r p(!) == r p (p; 1) = (-lip+ I)/2 (p ~ I} == _ (p ~ I} (mod p) .

1.3. The Gauss Multiplication Formula

The classical gamma function satisfies the identity

n r (z + ~) = (21T)(m-I)/2m(l-2mz)/2 . r(mz) (m:::: 2),
O~J<m

which is the Gauss multiplication formula. It is remarkable that I'p satisfies a
similar relation.

Proposition. Let m :::: 1 be an integer prime to p. Then

n r p (x + ~) = Cm . ml-R(mx). (mP-I)s(mx) . r p(mx),
O~J <m

where

Cm= Il rp(~) ,
O~J<m

R(y) E {l, . .. , p}, R(y) == y mod p,

R(y) - Y
s(y) = E Zp .

P
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PRooF. Let

f(x)=fm(x)= Il rp(x+~),
O~}<m

G(x) = Gm(x) = f(x)/ r p(mx) .

We have to compute the Gaussian factor G(x). Start with

1
G(x + I/m) = r ( 1 n r,« + i/m)

p mx + ) l~j ::sm

1 r (x + 1) n= . p rp(x+i/m)
hp(mx)fp(mx) r p(x) O::Sj <m

hp(x)
= h )G(x).

p(mx

Consider the locally constant function

hp(x) {-x/(-mx) = I/m
A(X) = =

hp(mx) -1/(-1) = 1

(since (m, p) = 1). This multiplier is useful to compute the successive values

G(l/m) = A(O) . G(O),

G(2jm) = A(O)A(l/m). G(O), .. .

GU/m) = TI A(i/m)· G(O).
O~j<j

Since (m , p) = 1, we have

TI A(i/m) = (ljm)#
O~i<j

with an exponent

# = #{i prime to p, 0 < i < j}

=i-I-[i;Il

Let us find a convenient form for this exponent. Start with the p-adic expansion
of the integer i-I:

[ i -1]i-I = U - 1)0 + p -p- ,

[i -1]
i=~+p -p-,

=:R(j )
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where R(j) == j (mod p) is in the correct range {l, ... , p}. This proves

[j-l] [j-l]j - 1 - -p- = R(j) - 1+ (p - 1) -p- ,

and hence

Tl )"'(i/m) = m1-R(j)(mP-1y(j)
o:::,i<j

with

[
j -1]s(j)=- -p- =

j - R(j)

p

an expression that admits a continuous extension to Zp

R(x) - x
s(x) = (x E Zp).

P

We have proved

G(j/m) = Tl )...(i/m)· G(O)
O:::'i< j

and

G(x) = m1-R(mx)(mP-1)s(mx) . G(O)

for integral x = j / m (j = mx > 0 multiple ofm) . By continuity, the last formula
will also hold for all x E Zp . This proves the expected formula

Tl fp(x + j/m) = Sm . m l - R(mX)(mP- l y (mx)f p(mx )
O:::. j<m

with Sm = G(O).

Finally, let us observe that Sm = G(O) is always a fourth root of unity.

•

Lemma. We have s~ = 1. Infact, s;. = 1 except when p == I (mod 4) and
m is even, in which case s;. = -1.

PROOF. When m is odd,

Sm = fp(~) . .. fp(m,;;-l)

since I'p(O)= 1. Now we can group pairs
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(by the analogue of the Legendre relation). In this case Em = ±1. Assurne now m
even. The same grouping leaves the middle term r p(4) solitary:

Em = ±r p(4), E~ = r p(4f.

As we have seen in (1.2), r p(4)2 = -1 when p == 1 (mod 4), so that Em is a
square root of -1 and

Em = G(O) = Tl r p(~)
O~j<m

is a root of unity of order 4.

1.4. The Mahler Expansion

If f is a continuous function on Zp, it can be represented by a Mahler series

•

We have shown (Comment 2 in (N.1.l)) that these coefficients are linked to the
values of f by the identity of formal power series

Xk Xn

:~::>k- = e-x . L f(n)-.
k~O k! n~O n!

Proposition. Let r p(x + 1) = Lk~O akobe the Mahler series ofrp - Then its
coefficients satisfy the following identity:

"" k+l x
k

1 - x
P

( X
P)

L..J(-I) ak- = -- exp x + - .
k~O k! 1 - x P

!>ROOF. Let us compute e-xtp(x), where tp(x) = Ln>o r p(n + l)xn[nt . For
this purpose, we make a partial summation over the cosets mod p:

x mp+j

tp(x)= L I:rp(mp+j+l) . "
O~j<pm~O (mp + J).

Here, we can use

(_l)n+l n !
rp(n + I) = [nlp]!p[n/ p)

for n = mp + j, [nlp] = m and get

rp(mp + j + I) = (_l)mp+j +1 . (mp + j)! .
mi p"
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We obtain

xmp+i
<p(x) = ""' ""'(-1rrj+1--L.. L.. mtp'"

O~i<p m~O •

(
p)m 1+1 X . .

= L(-l)mp - -, L (-l)J xJ
m~O p m. O~i<p

(
- X)P)= -exp -- L (-l)ixi

P O~i<p

= _ exp (-X )P) 1 - (-x )P .
P l-(-x)

Finally,

(
(-X)P) 1 - (-x)P ""' x

k
e-x<p(x) = -exp -x +-- = L..ak-,

p 1 - (-x) k~O k!

whence the desired fonnula.

1.5. The Power Series Expansion 0/ log Fp

We shall use the following fonnula (V.5.3) for the Volkenbom integral:

S(f')(X) = 1[f(x + y) - f(y)]dy (x E Zp)
zp

with the function

{

XL Og X -x if Ir] = 1,
f(x)= 0 if ]»] < 1,

I { Log x if IxI = 1
f (x) = 0 if [x] « 1

= Loghp(x).

•

Here, Log denotes the Iwasawa logarithm (VA.5) : It vanishes on roots ofunity, so
thatLog (-x) = Log x. This implies that the function f is odd, so that fz f (t) dt =0

p

(Corollary ofProposition 4 in (V.5.3)), a fact that we are going to use presently. On
the other hand h p still denotes the function occurring in the functional equation

I'p(x + 1) = hp(x)rp(x);

hence

\7Log fp(x) = Log I'p(x + 1) - Log fp(x) = Loghp(x) .
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Since SV f = f - f(O) and Log r p(O) = Log 1 = 0, we infer

Log r p(x) = S Log hp(x).

The above forrnula for the Volkenborn integral with f' = Log hp is now

Log rp(x) = S(Loghp)(x) = S(f')(x) = { fex + y)dy
Jz p

= { [(x + y)Log(x + y) - (x + y)] dy .Jzxp
For the computations, we come back to

Log (x + y) = Logy +Log(l +x/y),

and Log(l + x/y) = log(l + x/y) is given by the series expansion if Ix/YI < I
(e.g., xE pZp and Iyl = 1). Since (1.2) Irp(x) - 11::: [x], we also have

since Ipxl < rp •

Theorem. For xE pZp, we have

Log r p(x) = Ao x - L Am x 2m+1,
m;::l 2m(2m + 1)

where

Ao = { Logt dt ,Jzxp
Am = { t-2m dt (m 2: 1).Jzxp

The radius ofconvergence of the power series is 1, and this provides a contin ­
uation of Log r p in the open unit ball M p C C p.

PROOF. The preliminary considerations already prove that

Logrp(x) = {x [(X + y)Logy - x - y + (x + y) L(_1)n-l :nn] dy ,
Jzp n;::l y

which is equal to

x { Logydy+ { (yLogy-y)dy+ { (-x+(x+Y)L"-) dy .
Jz; Jz; Jz;
--..-- ' v '

= '-0 =0: previous comment
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Here is the elementary eomputation for the series appearing under the integral
sign:

x n x n+1 x n
(x + y) "(-lt-l - = "(_l)n-l- +"(-lt-I - -

L...J nyn L...J ny" L...J nyn-I
n;::1 n;::1 n;::1

xn+1 (_l)n-1x n+1
= "(_l)n-I_+ x-,,---

L...J ny" L...J (n + 1)yn
n;::1 n;::1

(1 1) x n+1

=x+L(-lt-1 --- -
n;::1 n n + 1 yn

1 x n+1

= X + L(_l)n-1 . . -.
n;::1 n(n + 1) yn

Now, for odd n :::: I, the funetion equal to 0 on pZp and to Ijyn on Z; is odd
with a vanishing derivative at the origin. This shows that fzx y-n dy = 0 for odd

p

n :::: 1 (Corollary at the end of (V.5.3». There remain only the even terms

Logrp(x) = Aox - L Am x 2m+1
m;::1 2m(2m + 1)

with Ao = fz xLog t dt, and Am = fzx t-2m dt (m:::: 1) as asserted . We ean de-
p p

duee an estimate of these eoeffieients. If In denotes the funetion equal to 0 on pZp

and to x-Zn on Z;, we have 11 In 11 1 = 1 (cf. (Y.1.5», as follows from

(lx] = lyl = 1),

/

y Zn _ x Zn I
1<I>ln(x,y)l= =lyZn-I+ .. ·+ xZn- II:::::l (lx/=lyl=I) .

x-y

This proves IAnl::::: P (Proposition 1 in (V.5.1» and PAn E Zp (n :::: 1). The iso­
metrie property ofthe logarithm on 1+ pZp makes it easy to prove that the norm
11 .111 (V.1.5) ofthe funetion equal to 0 on pZp and to Log on units is 1: This proves
IAol ::::: p also. But we ean prove a more preeise result direetly (cf. below). We have
seen (Proposition 3 in (VI.1.2» that the radius of eonvergenee of apower series
I is the same as the one for its derivative f' and henee also for I". Let us apply
it to

I(x) = Aox - L An x Zn+1
n;::1 2n(2n + 1)
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and

f"(x) = - :~::>.nX2n-l.
n~l

Since the coefficients An are bounded, we infer rI" ::: 1. Finally, rI" .:::: 1 comes
from the fact that IAn 1 fr 0: We show this in the next lemma. •

Recall that the Bemoulli numbers (V.5.4) are given by the Volkenbom integral

Lemma. For n > 1 we have An == b2n (mod Zp). Moreover; IAol < I anti
IAn 1 = p for all integers n ::: 1, such that 2n is a multiple of p - 1.

!>ROOF. (1) We have

, r~(O),
Ao = (log r p) (x) lx=o = r p(O) = r /0),

and since we have seen in (1.2) that r p(pn) == 1 (mod pn) we infer

whence

r' (0) = lim r p(pn) - r p(O) E Z
p n~oo pn p

and IAol s 1.
(2) The units of the ring Zjpmz are represented by the integers 0 .:::: j < pm

that are prime to p. The involution u ~ u-1 on these units shows

L r': == L i"
l~i<pm, pti l~i<pm, pti

(mod p'").

Dividing by p'" and letting m -+ 00, we obtain by definition (V.5.1) (adapted to a
function vanishing outside Z;)

(3) Start with
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Let us compute explicitly the second integral:

1 t2n dt = lim ~ " i"n.....oo pn LJ
pZp I:;;j<p" . pli

= 2. .p2n [ t2n dt = p2n- Ib2n.
P Jz p

(Observe that this computation proves that in the Volkenborn integral over pZp
we could have replaced fonnally t by ps with d(ps) = Iplds = (Ijp)ds!) We
have obtained

[ t2n dt = [ t 2n dt _ p2n-I [ s2nds
Jz; Jzp Jzp

= (1 - p2n-I)b2n == b2n (mod Zp) (n 2: I).

The last assertion of the lemma follows now from the Clausen-von Staudt theorem
(V.5.5). •

The lemma and hence also the theorem are completely proved. Let us summarize
two fonnulas that follow immediately from the theorem (and its proof).

Corollary. We have

r: (x) 1
-p- = Log (x + t)dt,
r p(x) z;

(Log rp)"(x) = [ _I_ d t.Jz; x + t

PRooF. Everything follows from the previous proof and Proposition 3 of (V.5.3)
(justification of derivation under the integral sign) . Observe that the expansion

1 1 1 1 " n x
n

x+t = t' (I+xjt) = t ~(-I) r;
can be integrated tennwise:

[ _I_ dt = L(-l)nxn [ t-n-Idt .
Jz; x + t n:::O Jz;

Since the integrals of odd functions (with zero derivative at the origin vanish by
the corollary of Proposition 4 in (V.5.3», there remain only the even powers of t
(corresponding to odd powers of x):

1 1 "2m-I--dt = - LJAmX ,
Z; x + t m:::l

Am = [ t-2m dt .Jzxp
This confinns our previous expression for the coefficients ofLog I'r- •
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1.6. The Kazandzidis Congruences

We have already given in (V.3.3) some eongruenees for the binomial eoeffieients

(~~) == G) (mod pnZp).

It turns out that these eongruenees hold modulo higher powers of p.

Theorem (Kazandzidis). For all primes p ::: 5 we have

For p = 3 the samecongruence holds only mod 32nk(n - k)(~)Z3 (namely one
power of 3fewer).

The form of these eongruenees suggests that we should prove (when p ::: 5)

It is clear that the left-hand side is a p-adie unit, and L. van Hamme had already
observed that it ean be expressed in terms of r p (or in terms of a p-adie beta
funetion) as folIows:

(~~) / G) = r p(~~~~:~Pl) (k + 1 = n).

The Kazandzidis eongruenee states that this unit belongs to a multiplieative sub­
group 1+ przp C Z; withapreciselydeterminedintegerr > O.Thepreeedingunit
ean be studied by means of the logarithm: We have indeed proved Ilog ~ I = I~ - 11
if I~ - 11 < T p- On the other hand, we also have Irp(x) - 11 :5 [x] , proving, for
example,

r p(px) E 1+ pZp (x E Zp).

Sinee we are assuming p ::: 3 we have Ip l < rp , and the isometrie property of
the logarithm is valid for ~ = rp(px), resp. ~ = rp(py) and ~ = rp(px + py)
(x, Y E Zp). Henee

I

rp(px + py) 11 11 rp(px + py)/
r p(px)fp(py) - = og r p(px)fp(py)

Let us introduee the restrieted power series (all its eoeffieients are in pZp as we
shall see)

fex) = log r (px) = Aopx - L An p2n+lx2n+l.
p n~l 2n(2n + 1)
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This is an odd function (this is also a consequence of the Legendre relation, which
implies r p(px) . r p(- px) = 1). We now have

I
r (px + py) I

log r ~px)fp(PY) = Ij(x + y) - j(x) - j(y)l·

As we have seen in (V.2.2), the linear term of j(x +y) - j(x) - j(y) disappears,
and Ij (x + y) - j(x) - j(y)1 ~ c . Ixy(x + y)l, where the constant C is the
sup of the absolute value of the coefficients (of index n 2: 3) of j. Here, we need
to examine carefully these coefficients. The Kazandzidis congruences will follow
from the next theorem. _

Theorem. Let j(x) = log r p(px) (x E Zp). Then

(a) j is given bya restricted series having all its coefficients in pZp,
(b) Ij(x + y ) - j(x) - j(y)1~ Ip3xy(x + y)l .

PROOF. Let us start with

j(x) = AOPX - L An p2n+lX2n+l.
n?;1 2n(2n + 1)

(a) The radius of convergence of j is p > I (this function is obtained by a dilatation
x ~ px from the function considered in (1.5» and hence the series for j(x) is a
restricted power series. We can write

2n-l

j(x) = AOPX - p ~PAn. 2n~n + l)x
2n

+
1

•

We have seen that Ao E Zp and pAn E Zp (n 2: 1). It is enough to observe that

p2n-l
2n(2n + 1) E Zp (n 2: 1).

This is obvious for n = 1 and n = 2 and follows from the lemma below for n 2: 3.
(b) Let us repeat the expression for j(x + y) - j(x) - j(y) in the following

form:

Al 3 3 3 3 A2 5 5 5 5
- 2 .3 P «x + y) - x - y ) - 4.5 P «x + y) - x - y ) - .. . .

The leading term in this expression of j(x + y) - j(x) - j(y) is

2
A
\ p3 . 3(x

2y
+xl) == i p3xy(x + y) = 2/ 3 P3xy(x + y) mod Zp.

When the prime p is greater than 3, this term is in p3xy(X + y)Zp, whereas it is
only in 32xy(x + y)Z3 when p = 3. The next term is treated similarly:

14~25P5XY(X + y)(*)/ s14~45P5XY(X + y)1 = 14.512 •6 P5XY(x + y)l ·
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When p = 3 there is a faetor 34 making this term smaller than the first one. When
p = 5 there is still a faetor 53 of the same size as in the first term. When p > 5 the
faetor pS makes this term strietly smaller than the first one. The subsequent terms
are treated in the next lemma. •

Lemma. For n 2: 3 we have I
2n-3 Ip < 1

2n(2n + 1) - .

PROOF. Let us estimate the p-adie order of the fraetion:

2n - 3 - ord, 2n(2n + 1) 2: 2n - 3 - ord; (2n + I)!

= 2n _ 3 _ 2n + 1 - Sp(2n + 1)
p-l

2n+l-1
>2n-3-----
- p-l

2n
> 2n - 3 - - = n - 3 > O.- 2 - •

1.7. About r 2

Let us show here how the Morita gamma funet ion is defined for the prime p = 2.

Preliminary comment. Let G be a finite abelian group written additively and let

s=s(G)=Lg·
ge G

In this sum the pairs {g , -g} eonsisting of two distinct elements eontribute 0 to
the sum, and we see that

s= L s-
g=-g

But g = -g is equivalent to 2g = 0, and

H = {g E G : 2g = O} c G

is a subgroup of G, isomorphie to a produet of eyclie groups of order 2: H is of
type (2, 2, .. . , 2). Moreover, we have seen that s(G) = s(H). Now, the sum s(H )
is obviously invariant under any automorphism of the group H : The only ease
where s(H) ean be nonzero is thus

H eyclie with two elements,

in whieh ease s(H) = 1 is the nontrivial element of this group. Equivalently, s =I 0
pree isely when the 2-Sylow subgroup of G is eyclie and not trivial.
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Proposition. For v ~ 3 the kernet ofthe homomorphism

is a cyclicgroup C(2V
-

z)oforder'c'r? generatedby the dass of5, and (Zj2VZ) X
is isomorphie to the direet produet ofC(2v- z) and {±1}.

!>ROOF. Since the order of (Zj2VZ)X is 2v- l , the kernel of the homomorphism
onto (Zj4Z)X ~ {±1} has order 2v- z. We shall prove that this kernel contains an
element x of order 2v- z. Take x = 1 + 4t (obviously in the kemel) and use the
fourth form ofthe fundamental inequality (III.4.3) (Corollary at the end of (V.3.6»

(l + t t == 1+ nt (mod pnt R)

for n = 2k and p = 2. Replacing t by 4t (t E R) we obtain

(l + 4t)Zk == 1+ 2k4t (mod 2 · 2k
• 4R),

(1 + 4t)Zk == 1 + 2k+2t (mod 2k+3R).

The element 1+4t has order2v
-

z precisely (and is a generator ofthe kernel) when
(l + 4t)ZV-3 ;f= 1 (mod 2V

) :

(l +4tpV-3 == 1 +2v- It ;f= 1 (mod 2v R).

As appears now, this will be the case exactly when t is odd, ItI = 1. This proves
that the class of an integer x = 1 + 4t is a generator of C(2v-z) precisely when
x ;f= 1 (mod 8) and x = 5 = 1 + 4 is an eligible candidate! •

Corollary The produet ofalt units ofZj2VZ is

l(v=l), -1(v=2), 1(v~3).

!>ROOF. This follows from the preliminary observation, since

(Zj2Z)X ~ {l}, (Zj4Z)X ~ {±1},

whereas if v ~ 3, then

is a product of two nontrivial cyclic groups.

Now let us consider the following sequence :

f(l) = 1, f(n) = TI j (n ~ 2).
I::::;j<n, j odd

Hence f(2) = 1 and

f(2n + I) = f(2n) (n ~ 1).

•
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Since f(n) is odd for all n 2: I, we infer (for the 2-adic absolute value!)

If(n)1 = 1, If(m) - f(n)1 :::: 121= 4 (n, m 2: 1).

For n = 2V we have

f(1) = 1, f(2) = 1, f(4) = 3 == -1 (mod 4)

and then

f(2 V
) =

As in (1.1) we infer

n j == +1 (mod 2V
) (v 2: 3).

1::;j<2 V , j odd

If(n + 2
V

) - f(n)1 = f(n) ( n j - 1) s 12v I (v 2: 3)
n::;j<n+2V

, j odd

and more generally

If(m) - f(n)1 :::: Im - n l (m, n 2: 1, Im - nl :::: t).
This proves that the function f is uniformly continuous, and hence has a unique
extension to Z2 -+ Z; = 1+ 2Z2, which we still denote by f :

If(x) - f(y)1 :::: Ix - yl (Ix - yl :::: t)·
Since f(2V

) == 1 mod 2v (v 2: 3) we deduce f(O) = 1.

Lemma. We have If(x + 4) - f(x)1 = 4 (x E Z2).

PRooF. Since the image of f is contained in 1+2Z2 of diameter 4,we have quite

generally If(x) - f(y)1 :::: 4.The relation

f(2n + 2) = (2n + l)f(2n) = 2nf(2n) + f(2n)

shows that

If(2n + 2) - f(2n)1 = 12nf(2n)1= 12nl rs 12/ = 4)·
Similarly,

f(2n + 4) - f(2n) == f(2n) . 1 ·3 - f(2n) == -2f(2n) (mod 4),

If(2n + 4) - f(2n)1 = 12f(2n)1 = 121 (= 4)·
Since we also have

f«2n + 1) + 4) - f(2n + 1) = f(2n + 4) - f(2n) ,

we may conclude that If(x + 4) - f(x)1 = 121 = 4 (x E Z2) . •
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In order to have

for all primes (including p = 2), we decide to change the sign of f(n) when n is
odd . Thus we define

r 2(n ) = (-ltf(n)=(-lt n j (n:::2).
l~j<n.j odd

The formula (Definition (1.1»

rp(n) = (- l t Il j (n:::2)
l~j<n.ptj

holds now for all primes p. By definition, we have

{

f(x) if x E 2Z2,
r 2(x ) =

-f(x) ifxE 1+2~.

Consequently, when x and y are in the same coset mod 2,

and this shows that

1f2(X) - r 2(y)1 = If(x) - f(y)1 (x =: y (mod 2»,

so that the inequalities obtained for f are still valid for r 2.
Observe that we have

where l: ifx EI +2Z2 (lxi = 1),
h2(x ) =

-1 if XE 2Z2 (lx] « 1),

in comp1ete simi1arity with the odd-prime case (1.2) .

2. The Artin-Hasse Exponential

The exponential series has a radius of convergence rp < 1 because its coefficients
an = 1/n! have increasing powers of p in the denominator. It turns out that the
Artin- Hasse power series

exp (x + ~xP + fzx
P2

+ . . -) = L anxn

n;::O
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has p-integral coefficients: an E Q n Zp, As a consequence, this power series has
a radius of convergence equal to 1. Dwork has used this power series for the
construction of pth roots ofunity in Cp (similar to the construction of nth roots of
unity in C). The Dieudonne-Dwork criterion explains the integrality property of
the Artin-Hasse power series, and Hazewinkel has found a deep generalization of
this phenomenon, We shall present only the initial aspects of these theories.

2.1. Definition and Basic Properties

Let us start by reviewing a couple of elementary formulas concerning the Möbius
function. Recall that for an integer n ::: 1 this function is defined by J.L(l) = 1 and

/-L(n) = 0 if n is divisible by a square k2 > I,
/-L(PI P2 ... Pm) = (_l)m if the Pi are distinct primes.

Lemma. We have

L /-L(d) = 0,
dln

L I/-L(d) I = 2k (n > I),
dln

where k is the number ofdistinct prime divisors of n.

!>ROOF. In fact, if n = p~1 . " p~t and d I n is a divisor with /-L(d) #- 0, then d is a
product of a subset of primes Pi, and quite explicitly,

L J.L(d) = 1+ L /-L(Pi) + L /-L(PiPi) + . . .
d ln i i.]

= I-k+ G) _..·+(-Il

= L(-li(~) = (I-li = O.
O:;:i:;:k I

Similarly,

L //-L(d)1 = 1+ L 1/-L(Pi)/ + L 1/-L(PiPi)1 + ... = (1 + 1/ = 2k
• •

dln i i.]

Proposition. We have identities offormal power series

~ /-L(n) n
LJ ---log(I-x ) = X,

n;::l n

andfor each prime P

L
n;::l , p tn

/-L(n) nIl 2
---Iog(l-x )=X+-XP+-XP + ... .

n P p 2
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PROOF. Recall that
1 t m

-log(1- t) = log-- = L -.
1- t m~1 m

Hence
~~) x~L --log(l-xn

) = L ~(n) L-
n~1 n n~1 m~1 nm

xN

= LN L ~(n) = x
N~1 nlN

by the first identity of the lemma. Sirnilarly,

~~) ~mL --log(1-xn
) = L ~(n) L-

n~l . ptn n n~l. ptn m~1 nm

x N

= LN L ~(n).
N~1 niN. ptn

The conditions n I N and n prime to p amount to n I Nr: where v = ordpN
(also denoted by pV 11 N). The corresponding sum vanishes (still by the first
identity ofthe lemma) except if Np-v = 1, namely N = pV(v ~ 0):

~(n) n "'" x
N

1 1 2L ---log(1-x)= L.J -=x+-xP+
2x

P + .... •
n~l . ptn n N=p" N P P

Corollary. We have formal power series identities:

exp(x) = n(1 - xn)-Jl.(n)/n,

n~1

exp (x + i;x p + ; 2XP2 +.. -) = n (1 - xn)-Jl. (n)/n. •

n~l . ptn

Definition. The Artin-Hasse exponential is the formal power series defined by

Ep(x) = exp (x + i;x p + -;rx
P2 + ..-) = 1+x + ....

Since log and exp are inverse power series for composition (VI.1), we have

1 1 2

log Ep(x) = x + -xP + -xP +" ',
P p2

and by the corollary,

Ep(x) = n (1 - xnrJl.(n)/n

n~l . ptn

is an identity of formal power series.
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2.2. Integrality of the Artin-Hasse exponential

The power series exP
I p = 1 + x p / p + ... converges at least for IxI < rp » since

Ix p / pi:::: Ix I for IxI :::: rp ' Consider the product of the two power series

x P
eX=1+x+ ···+-+· · ·

p!

Its first coefficients are

PI x P
and eX

p = 1+ - + ....
p

x P x
p

-
i

( 1 1)exp x . exp - = 1 + x + ...+ + x P - + - + ....
p (p -1)! p! p

The coefficient of x p is

1+ (p - 1)!

p!

A miracle happens: The numerator is divisible by p - Wilson's theorem - so
that the whole fraction is in Zp. More is true: All the coefficients in the product

x P x P2 x P1 x P1

expx . exp - . exp -2 . .. = nexp - . = expL -.
p P j ? O pJ j ? O pJ

are p-integral, hence in Zp. As a consequence, this power series converges for
[x] « 1.

The radius of convergence of the power series

1 1 2
h(x) = x + -xP + -xP + ...

P p2

is the same as for its derivative (Proposition 3 in (VI.1.2)) :

h'(x) = 1+xp- i +XP2
_

i +" ',
name1y rh = rv = 1. The critical radii and the growth modulus of h are the same
as for the logarithm log(l + x): Both series have the same dominant monomials.
In particular, E p(x) = exp h(x) is well-defined, it converges at least for Ix I < rp'
and

Ilog Ep(x)1 = Ih(x)1 = lxi (lxi< rp)'

(But Ihl is unbounded in the open unit ball M, C C p.) This proves that Ep(x) =
exph(x) is well-defined in the ball lxi < I p-

Theorem. The coefficients of the Artin-Hasse power series E p are p-integral
rational numbers, so that Ep(x) E 1+ xZp[[x]]. Moreover, the radius ofcon­
vergence ofthis power series is rs, = 1,and

IEp(x)1 = 1, IEp(x) - 11 = [x] (lx] « 1).



2. The Artin-Hasse Exponential 389

PRüOE When p does not divide n, -p,(n)jn is equal to Oorto ±ljn: The binomial
series expansion of (1 - xn)-/L(n)/n has its coefficients in Zp, and hence converges
for Ix I < 1 (at least). The infinite product has coefficients in Z p too . It also converges
in the ball [x] < 1 by the lemma in (VI.2.3). This proves Ep(x) EI +xZp[[x]] , and
in particular r = re, ~ 1. Let us show that this radius of convergence is precisely
1. For this purpose, let us prove the identity of formal power series

Ep(xP) = Ep(x)Ep({x) " , Ep({P-'x)

where { is a primitive pth root of unity: { =f:. 1 = {p . The exponent in the product
is indeed

(1 + {+.:. + {P-')x + p ÜxP + ; 2XP2 + .. -),

=0

whence the identity. Now, each power series E p({ ix) has the same radius of
convergence r = rEp ' while the radius of convergence of Ep(xP) is r'/p . By
Proposition 2 in (VI .l.2), we obtain

r'/p ~ min(r, r, . . . , r) = r ,

namely r ~ r", This proves r ::: 1.' Now let

Ep(x) - 1 = x +L anxn (an E Zp).
n:::2

Hence we have

lanxnl ::: Ixln ::: Ix l2 < [x] (lxi< 1, n ~ 2),

and IEp(x) - 11 = [x] (Ix] « 1) since the strongest wins .

As we have already observed, the coefficient of xt' in the expansion of

,r+xP/p = eX • eXP/ p

•

is p-integral. Let us show that this product fumishes a transition between exp and
Ep» with an intermediate radius of convergence (a quantitative way of saying that it
has fewer powers of p in the denominators of its coefficients than the exponential).

Proposition. Theradiusofconvergenceofthepowerseries fex) = ex+x P/ p is

r f = r~2P-,)/p2,

hence r p < rf < 1. We have

lexp(x+-J;xp)I=1 (lxi <rf)·

lor r = 00, but look at exercise 9.
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PROOF. (l) As formal power series , we have

P/ '"" xpiEp(x) = eX+x r . exp~ - . ,
">2 pii_

and conversely,

e-"+XP/p = Ep(x) . exp (- L XP;) .
i~2 P

To prove that this product converges beyond IxI = rp and get an estimate of its
radius of convergence, it is sufficient to show that the radius of convergence of its
second factor is greater than rp (Proposition 2 in (VI.I.2». To get an estimate of
the radius of convergence of

exp (-L x
P

; )

i~2 P

we use (VI. 1.5). First, let us recaII that

MT L x
P
; = 1-;1 r

P2 for 0::::; r .s r~/p2 = r;
i~2 p P

(the dominant monomial of the log series in the interval r~ ::: r ::::; r; is x P2
/ p 2:

Since the preceding monomials are absent in Li~2 xpl / p! , the first one is domi­
nant up tor;) . Thenumerical substitution of g(x) = Li";?2 x PJ

/ p i in f(x) = exp x
is aIIowed when

The second condition is

2 2 I 2 2+ I ~ 2 1IxlP /Ip I< Ip!p-I , Ixl P < Ipl p-I = Ipl p-I = r/- ,
namely

Since

1. < 1. (2 _1.) = 2Pit < 2p < 1
P P P P pr- ,

we see that

r < r (2p-l )/p2 < 1
Pp'

and the numerical evaluation is valid in the region considered above. The radius of
convergence ofthe composite is at least r~2P-t )/p2 > r p - In its ball of convergence,
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all factors in

eX+XP/p = Ep(x)· nexp (_ x
P;)

j?2 p

have absolute value equal to I, hence 1~+xP/PI = I (lxi < T~2P-l)/P\
(2) To simplify the notation, let

. 1
P = radius of convergence of -,

Ep

P2 = radius of convergence of exp ( ;:) ,

P3 = radius of convergence of exp (L x
P
; ) •

j?3 P

Since IEp(x) - 11 = [x] for lxi< 1, we have p 2: 1. More precisely, 1/Ep(x) =
Ep(-x) if pis odd, proves that p = 1 in this case. Now, let us write

( P2) 1 (Pi)exp -~ = -- . f(x) . exp L ~ .
P Ep(x) j?3 pi

This shows that

P2 2: min(p, Tf, P3)

(Proposition 2 in (Vl .1.2», and since P2 < P3 < 1 :::: p, we infer that P2 2: Tf . •

2.3. The Dieudonne-Dwork Criterion

Another proof of the p-integrality of the coefficients of the Artin-Hasse power
series will now be given.

Let k be a field of characteristic p . The identity xt' = x in k characterizes its
prime field F p- In the polynornial ring k[x] , the identity f(x)P = f(x P) charac ­
terizes polynomials f having coefficients in the prime field. For a polynornial f
with integral coefficients, the congruence f(x)P == f(x P) (mod p) means that

f(x)P - f(x P) E pZ[x],

anditshouldthereforebewriuenmorepreciselyasf(x)P == f(x P) (mod pZ[X]).
For polynomials f with rational coefficients, it turns out that the same congruence
characterizes the integrality of its coefficients . This principle also holds for power
series . The extent to which the operations

first raising x to the power p and then applying I,
first computing f(x) and then raising to the pth power

lead to sirnilar results, is a measure of the integral ity of the coefficients of f . A
precise formulation of this principle can now be given.
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Theorem (Dieudonne-Dwork). Let fex) E 1 + xQp[[x]] be afonnal power
series. Then the following conditions are equivalent:

(i) The coefficients of f are in Zp.
(U) f(x)P /f(x P) E 1+ pxZp[[x]] .

PROOF. (i) :::} (U) If fex) E 1 +xZp[[x]], then f(x)P == f(x P) (modp). Both
series belong to 1+ xZp[[x]], and f(x P) E 1+ xZp[[x]] is invertible, so that (U)
follows.

(ii):::} (i) Let us write fex) = Li2:0 a.x' (ao = I , a, E Qp) and assurne

f(x)P = f(x P) (I + p ?= bjX
j)

(b j E Zp).
J2:1

We have ao = 1 and al =b, E Zp . Let us assurne by induction that a, E Zp for
i < n and let us compare the coefficients of x n in both members of (*). The
coefficient of x n in the left-hand side is the same as in

The nonwritten monomials are products ailai2 .. . aipxil+i2+oo+ip having at least
two distinct indices i j . It is enough to determine them mod Zp , and for this reason ,
all monomials not containing an will play no explicit role, since - by the induction
assumption - they have coefficients in Zp . The only monomials containing an

that are of interest for us have a single factor anxn and all other factors ao = 1 (all
other monomials containing an lead to powers x m ,m > n). Hence we find that the
coefficient of x n in the left-hand side of (*) is

af + pa; + terms in pZp.
'--v--'
ifi p=n

With the convention an/ p = 0 when n is not divisible by p (i.e., n]p not an integer),
we may write this coefficient as

a:/p + pa.; + terms in pZp.

The right-hand side of (*) is

and the coefficient of x n in this expression is

an/ p + terms in pZp.

Since n]p < n, the induction hypothesis shows that an/p E Zp, and hence a:/p ==
an/p (mod pZp). By comparison we infer pa; E pZp and an E Zp . •
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Application. Consider, for example, the Artin-Hasse power series E p - As formal
power series we have the following identities :

Hence

E (x)P
_P- = e'" E 1+ pxZp[[x]],
Ep(x P)

as we are just going to show. In other words, the p-integrality of the coefficients
ofthe Artin-Hasse power series follows from the Dieudonne-Dwork criterion and
the following observation.

Proposition. We have

ePX E 1+ pxZp[[x]]

and even

ePX E 1+ pxZp{x} (p an odd prime).

PROOF. For n 2: 1 we have

pn n - Sp(n)
ord - = n - --"'-'--'-

p n! p-I

n-I p-Z 1
>n---=--·n+-- 2: I,
- p -I p-I p -I

hence the first result. For p = Zthere remains only ord- (zn / n!) 2: 1 with equality
precisely when Sz(n) = I, namely when n = ZVis apower of Z. For p 2: 3 we
see that

pn p-Z
ordp , 2: -- . n -+ 00 (n -+ 00) ,

n. p-I

and the second result folIows. •

2.4. The Dwork Exponential

The roots of'the equation x-l-x"[p = oare 0, as weIl as theroots ofxp - 1+p = O.
All the roots rr of x p -

1 + p = 0 have the same absolute value Irr I = rp. Since the
radius of convergence of exp(x + xt' / p) is greater than r p ' we may evaluate this
power series on any such root n . But crude substitution of n in x + xr / p gives 0,
and eO = 1 is not the correct result for ex+x P

/ p IX=1r ! In fact, the condition given in



394 7. Special Functions, Congruences

(VI.1.5) for numerical substitution is not satisfied, since

Mlrrl (x + X;)= r» = rexp'

In the classical, complex case, all roots of unity are special values of the expo­
nential. It turns out that pth roots of unity can also be constructed analytically by
means of a generalized exponential. Recall that if 1 '1= ~ E /Lp, then I~ - 11 = rp

(11.4.4).

Proposition (Dwork) . Choose a root tt ofthe equation x p - 1 + p = 0 and let
~rr denote the result of the substitution ex+xP/p Ix=rr' Then ~rr E /Lp is the pth
root ofunity such that

PROOF. (1) We have

eX+xP/p = I + x + x 2(. . .) == I + x (mod x 2) (x indeterminate).

Let us show that we also have

ex+xP/Plx=rr == 1+ tt (mod Jr2).

The sup norm of the function ex+xP/p on its ball of convergence is 1, hence the
coefficients an of its power series expansion ex+xP/p = Ln~o anxn satisfy

7 n
/anlrp ::: 1 (n ~ 0)

(Lemma in (VI.4.6» . Hence

The exponent of rp is

np2-2np+n =n(P-1)2
p2 p

We want to show that lanJrn1< IJr 1 (n ~ 2). This is certainly the case when
(Tin> 1. When p ~ 5, we have (Tin ~ ~n > I for all n ~ 2 and
we are done. When p = 3, we have (T )2n = ~n > 1 for all n ~ 3. We have

to estimate a3. But the coefficients an of exp(x + tx3) are the same as those of
the Artin-Hasse power series for n ::: 8, hence are 3-integers, and the conclus ion
folIows. When p = 2, we have (P;l in = in > 1 for all n ~ 5. We have to
estimate the coefficients an für n ::: 4. But (exercise)

ex+X 2
/
2

1 = 1 + tt + Jr2 + ~Jr3 + 2..Jr4 + " ',
x=rr=-2 3 12
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and since iJl'2 = 1 (is a 2-integer!), fz.Jl'4 == 0 (mod Jl'2) as we desired to show.
(2) As formal power series, we have

In detail, let qJ denote the polynomial qJ(x) = x" , Then qJ 0 exp(x) = exp px as
formal power series, and hence with h(x) = x + x!' / p

(exp(x + x P/ p»P = qJ 0 exp(x + x P/ p) = qJ 0 (exp oh)(x)

= (qJ 0 exp) 0 h(x) = exp(ph(x»

(since qJ is a polynomial, no condition on the orderofexp oh is required in Corollary
2 of Proposition 2 (VI.1.2» . Since IJl'PI = IpJl'1 = Ipirp < r p, the numerical
evaluation of both exponentials is obtained by substitution (VI.1.5):

•
Let us renormalize the situation. Choose a root tt of x p- 1 + p = 0; hence

1Jl'1 = rp • Substitute x = n y, so that e7CY converges whenever lyl < 1. The same
substitution in exp(x + x P/ p) leads to apower series

(
Jl'pYP)exp tty + -p- = exp (Jl'y - Jl'yP) = exp zrfy - yP)

converging at least for

[zry] < r~2P-l)/p2, Iyl < r~2P-l)/p2-1.

The exponent of rP is

2p - 1 2p - 1 _ p2
---1= =

p2 p2

(p-1f
p2

The power series exp zrty - yP) converges at least for

hence its radius of convergence is greater than or equal to p(P_l)/(p
2)

> 1.

Definition. When Jl' is a root ofx p-1+ P = 0 in Q~, the Dwork series is the
formal power series

E1C(x) = exp(Jl'(x - x P» E Qp(Jl')[[x]].

The radius of convergence of the Dwork series is p(p_l)/(p
2)

> 1.
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Hence ElT = fog, where f(x) = ex andg(x) = iT(x -xP)has order 1 (sufficient
to enable substitution). We shall be interested in the special values taken by this
power series when its exponent vanishes:

x P - x = 0 <==> x = 0 or XE JLp-l.

As we have seen,

is a generator of JL p.

Theorem (Dwork). Let tt be a root ofxt"? + p = O. Then K = Qp(iT) is a
Galois extension of Qp. It is totally and tamely ramified ofdegree p - 1, and
K = Qp(JLp). More precisely:

(a) The field K contains a unique pth root ofunity ~lT E JL p such that

~lT == 1 + tt (mod iT2
) .

(b) The series ElT(x) has a radius ofconvergence p(P_I)/p2 > 1.
(c) For every a E Qp with aP = a we have

so that ElT(l) = ~lT.

PROOF. Nearly everything has already been proved. Observe that X p - I + P is an
Eisenstein polynomial relative to the prime p and hence is irreducible over Qp
(II.4.2). If n and n' are two roots of this polynomial, then (iT'/iT)p-1 = 1, hence
iT'/iT E JLp-1 C Qp. Thus the splitting field of X p- I + P over Qp is obtained
by adding a single root tt of this polynomial to Qp. This proves that K is totally
ramified of degree p - lover Qp and hence tamely ramified. The uniqueness of a
pth root of unity ~lT == 1+iT (mod iT 2) follows from the simple observation that the
distance between pth roots of unity is rp (Example 2 in (11.4.2), and also (II.4.4»:
Two distinct pth roots of unity are not congruent mod iT 2• The other statements of
the theorem follow easily from previous observations. •

Comments (1) If 1 i= ~ E Cp is aroot ofunity oforder p, we have seen in (II.4.4)
that ~ = ~ - 1 is a root of

x p
-

1 + pxt. ..) + P = 0,

and hence I~I = rp = Ipll/(p-I) . We are now considering roots iT of the simpler
equation

x p
-

I + P = o.
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Since Jr and ~ have the same absolute value, ~ = JrU for some U with lul = 1:

s - 1 = JrU, S = 1+ JrU E JLp C Cp •

IfaP- 1 = 1, say a == k (mod p) with 1 :::: k < P (namely k = ao is the first digit
in the p-adic expansion of a), then both Err(a) and Err(ll are pth roots of unity
congruent to 1 + kit (mod J(2), and the theorem implies

(2) The Dwork power series is a kind of exponential map: Err(O) = 1 and

{
p } s;

JLp-l Ca : a = a --+ JLp

Fx C Fp p

(3) Let f ~ 1 and EI(x) = exp tt (x - X pi ), so that Err (x) = E; (x). Then

E!(x) = exprrtx -xPI)

2 1-1 I
= expJr(x - x P) . exp zrtx" - x P ) . .. expJr(xP - x P )

1-1
= Err (x)Err(xP) ... Err(x P )

converges at least when each factor converges. The most restrictive condition is
given by the last one: Convergence of Err(xP

I- I
) occurs if

I pi-li (p_l)/p2
x < P ,

With q = n', we see that the radius of convergence of EI is p(p-l)/(pq) > 1.

Ep (Artin-Hasse) Et (Dwork)

f eX ex+!f L xpi e"(x-x9 ) (q =pi)exp · >O ~J_ pl

I 7 e=!
TI Tp = IplP-T Tp P P9

Radii of convergence of some exponential series
(listed in increasing order)

2.5. Gauss Sums

Sums of roots of unity play an important role in number theory. Let us show how
they can be used to prove that any quadratic extension of the rational field Q is
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contained in a cyclotomic one, i.e., in an extension generated by roots of unity. It
is enough to show that the quadratic extensions Q(.jP) (p prime) are contained
in a cycIotornic extension of Q.

Let us choose a root of unity I; of prime order p 2: 3 in an algebraically cIosed
field K of characteristic O. For example, take K = C and I; = e1Jri / p • Then the
sum of roots of unity

s, = L (!!-) 1;"
O<1I<P \P

is the simplest exarnple of a Gauss sum: Here - as in (1.6.6) - (~) = ± 1 denotes

the quadratic residue symbol of Legendre.

Proposition 1. FOT an odd prime p, we have S; = ±p.

PROOF. The square of the sum Sp is

S; = L (!!-) (~) 1;"+1' = L (V/L) 1;"+1'.

O<1I,I'<P \P P O<1I,I'<P P

For fixed /L =f:. 0, v /L goes through all nonzero cIasses mod p, and we can replace
v by v /L in the double sum:

We consider separately the terms with v = P - I :

~ (~I) 1;0 = (p _ I) (~I)
and for v =f:. p - 1

Recall that

L 1;1'(11+1) = L ;;1'(11+1) -I = -1.
Jl'ftO 0:;;1'< P

'---"
=0 because 11+1#0
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Hence

S~ = (p - I) (-I) - L (!!-)
P v;=- l \P

= p(-Ijp) - (-I) - L (!!-)
P v..,-l \P

\ J

= p(-Ijp)-

The announced fonnula is proved.

L (!!-)
o<v<p \P
""-,..-0'

=0

•
Corollary 1. For a prime p ~ 3, the complex absolute value 0/Sp is

ISpie =.;p. •
CoroUary 2. For a prime p ~ 3, the quadratic extension Q(../P) is contained
in the cyclotomic jield Q(~, .J=i). •

Observe that if p = 2, we have (1 +.J=Ti = 2.J=T, so that../2 E Q(..1=T)
and the quadratic extension Q(../2) is also contained in a cyclotomic one.

Comment. A theorem of Kronecker asserts that any Galois extension of the ra­
tional field Q with abelian Galois group is contained in a cyclotomic one. This is
a deeper theorem, which has been widely generalized, and belongs now to dass
jield theory.

The general form of Gauss sums in a field K containing a pth root of unity ~ is
obtained as folIows. The map v t-+ ~ v, F p ~ K x is a group homomorphism:

~v+1l = ~v . ~Il.

The map v t-+ (*), F; ~ K X is a group homomorphism:

extended by (%) = O. Replace ZjpZ = Fp by a finite field Fq (where q = pI is

apower of p) and let more generally 1{! and X be two group homomorphisms

1{f : Fq ~ K X and X : F; ~ K X extended by x(0) = O.

According to tradition , we shall say that 1{! is an additive character of F, and X a
multiplicative character of Fq . By definition, the Gauss sum attached to this pair
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of characters is the sum

ot«. X) = L o/(V)X(V) = L o/(V)X(V).
veFq veF;

In the next section we give the p-adic absolute value of Gauss sums . Now, let us
show how to determine all additive characters of a finite field.

Proposition 2. Let G be a group and K a field. Any set ofdistinct homomor­
phisms G ~ K X is linearly independent in the K-vector space offunctions
G~K.

PRooF. Since linear independence of any family is a property of its finite subsets,
it is enough to prove that all finite sets of distinct homomorphisms are linearly
independent. We argue by induction on the number of homomorphisms o/i. Since
homomorphisms are nonzero maps, the independence assertion is true for one ho­
momorphism. Assurne that n - 1 distinct homomorphisms are always independent
and consider n distinct homomorphisms o/i (l :::: i :::: n). Starting from a linear
dependence relation

O!lo/l(X) + ...+ O!n o/n (x) = 0 (x E G, a, E K),

we multiply it by the value o/I(a) (for some a E G):

On the other hand, we may replace x byax in the first equality, and since o/i(ax) =
o/i(a)o/i(x), we obtain

If we subtract the two relations obtained, the first term disappears, and we get a
shorter relation:

By the induction assumption, all the coefficients of this new relation vanish . If we
choose a E G such that o/I(a) -o/n(a) # 0 (this is possible since 0/1 # o/n),
we see that O!n = O. Using the induction assumption again, we get a, = 0
(l::::i<n). •

Proposition 3. Let F be a finite field and r : F ~ K x a nontrivial additive
character. Then any other additive character 0/ has the form o/(x) = r(ax) for
somea E F.

PROOF. The identity

r(a(x + y)) = r(ax + ay) = r(ax)r(ay)
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shows that for any a E F, ra(x) := r(ax) defines an additive character. Now,
a t-+ ra is a homomorphism

ra+b(x) = r({a + b)x) = r(ax + bx) = r(ax)r(bx) = ra(x)rb(x).

It is injective, since r is a nontrivial character:

ra(x) = 1 (x E F) ==> a = O.

The additive characters (ra)aeF constitute a basis of the F -vector space of functions
F ~ K x . Any additive character must be in this farnily by Proposition 1. •

As a consequence, we observe that the Gauss sums G(1fr, X) can be computed
easily from G(r, X):

ci». X) = G(ra, X) = L r(ax)x(x) .
xeFX

If we assume a :/: 0 and replace x by a- I x in the sum, then we obtain

oi«.X) = L r(aa-1x)x(a -1x) = L r(x)x(a-I)x(x) = x(a-I)G(r, X) ·
xeFX xeFX

2.6. The Gross-KoblitzFonnula

Let us choose a primitive pth root of unity ~p in C p and let K = Qp(~p). Then
I~p -1 / = rp, and ~p - 1 is a generator ofthe maximal ideal P of Re K . As we
have seen in (2.4), there is a generator n of P uniquely characterized by

rrP-
1 = -p, n == ~p - 1 (mod (~p - 1i).

Conversely, if we choose a root st E Cp of rrP - 1 = - p, the field K = Qp(rr) is
a Galois extension (2.3) of Qp, it contains all roots of unity of order p, and the
Dwork series fumishes E".(1) = ~P' the unique root ofunity of order p satisfying

~p == 1+ rr (mod rr2
) .

Since an additive character of the field F p is uniquely determined by its value
1fr(1) E /Lp, we choose the nontrivial additive character

1fr(1) =~". , 1fr(v) =~: (v E F p).

We can now consider Gauss sums of the form

G(x, 1fr) = L X(x)~: (X(O) = 0),
xeFp

where X is a multiplicative character of F p with values in K. More precisely, the
values of X are roots of unity having order dividing p - 1 (and 0):

G(x, 1fr) E Q(/Lp, /Lp-I) = Q(/Lp(p-l).



402 7. Special Functions, Congruences

We shall consider Gauss sums of the form

L w(x)-ay,(x) = L w(x)-a~: (w(O) = 0),
O;exeFp xeFp

where w(x) E {Lp-l denotes the unique root of unity in K having reduction x in
the residue field RjP of K «1104.3) and (III.4A)). Here, the integer a only counts
mod p - 1: It is better to take a E P~l ZjZ and set

Ga = - L w(X)-(p-l)a~: (w(O) = 0).
xeFp

A reason for the choice of sign is that we now have Go = 1:

L ~; = 0 ==} L ~; = -1.
O~vep Oevep

It is remarkable that these Gauss sums are linked to the Morita p -adic gamma
function: When a = aj(p - 1) (0 ~ a < p - 1) we have explicitly

Ga = 1l'arp (_a_) .
p-l

This is a particular case of the Gross-Koblitz formula. Since the values of r p are
units of Zp, the preceding formula gives the exact order of Ga, and

IGal = 11l'Ia= r; = Iplp~l .

Conversely, this case ofthe Gross-Koblitz formula shows that

r, (p ~ 1) E Q(1l',{Lp(p-I)),

and this is an algebraic value, since ttp-l = - p .
There is a more general formula. Let a E Z(p) = Q n Zp be a rational number

with denominator N prime to p and choose a sufficiently high power q = pf of
p so that the extension Fq of degree f of its prime field contains a root of unity of
order N. We shall work in the tamely rarnified extension

having rarnification index e = p - 1, residue degree f, and hence degree n = ef
over Qp. Considering a E /iZjZ C q~l ZjZ, we choose a representation

ao~ (a) = -- < 1
q-l

of a and write the p-adic expansion of the numerator:

a=ao+alP+ · ··+af_lpf-1 <q-l <q=pf .
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Let Sp(a) = LO:':J<f aj denote the sum of digits of aas in (V.3.1) and introduce
the integers a(i) having the p-adic expansions obtained by cyclic pennutations
from the expansion of a = a(O) :

a(l) = ar-i + aop + + af_2pf-l,

a(2) = ar-z +af-IP + + af_3pf- l
,

aU-I) = al + a2P + a3p2 +...+aopf-I.

On the other hand, if the nontrivial additive character l/! of the prime field F p is
chosen as before, the composite of l/! with the trace

p I-I
Tr :Fq-+Fp, X 1--+ x+x + ···+xP

is a nontrivial additive character of Fq (the trace is nontrivial, since the extension
Fq /Fp is separable: All extensions of finite fields are separable). Then we have
the following general fonnula.

Theorem (Gross-Koblitz). Let 0 ~ (X = _a_ < 1.The value ofthe Gausssum
q-l

Ga is explicitly given by

(
aU) )

G a = - L w(x)-al/!(Tr(x)) = JrSp(a) n r, ---=1 .
O;=xEFq O:=j<f q

3. The Hazewinkel Theorem and Honda Congruences

3.1. Additive Version ofthe Dieudonne-Dwork Quotient

The power series

f) "'I pl Ip 1 2
(x = ~ piX = X + Jjx + prxP + ...

j?~O

•

does not have coefficients in Zp (powers of p appear in the denominators). How­
ever, its exponential- the Artin-Hasse power series - has p -integral coefficients.
This phenomenon will now be studied more cIosely. Observe that

I 2 I 3
f(x P) = x P + -xP + -;;'[xp + ...p p

so that

f(x P)
f(x)- -- =x

p

has integral coefficients! Let us introduce the operator

f{x P)
Hpf(x) = fex) - -­

p
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on formal power series. We have an identity of formal power series:

exp pHpf(x) = exp (pf(x) - f(x P))

(exp f(x))P
=

exp f(x P)

The expression Hpf is an additive version of the Dieudonne-Dwork quotient
q>(x)P jrp(x P) (2.3), and we shall formulate criteria for p-integrality of some formal
power series in terms of Hp .

Proposition. Let f denote the formal power series f(x) = log(l + x). Then

H2/(x) = L (x n - x 2n)jn
E Z(2)[[x]],

n odd

Hpf(x) = L (_l)n-Ixnjn E Z(p)[[x]] (p an oddprime).
n~l, ptn

Hence for all primes p, Hp(1og(1 + x)) has p-integral coefficients.

PROOF. We have

1 1 n I xr"
- log(l + x P) = - L (-1) - - .
p p n~1 n

If the prime p is odd, we have (_1)n = (-1 )pn, and the announced result follows
in this case . When p = 2, let us write explicitly

x n xn

log(l + x) = L - - L -,
nodd n neven n

and

xn x 2m

H2(10g(l +x)) = L - - L (l +(_l)m-l)_
n odd n n=2m even 2m

= L x
n

_ L x
2m

•

n odd n m odd m

As announced, all coefficients are in Z(2)'

3.2. The Hasewinkel Maps

Let us consider the following setting : Either

A = Z(p)[t] C B = Q[t]

•
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or

and a is the Q-linear map (resp. Qp-linear map)

o : B ~ B, a(t) = Laiti 1--+ a(t P) = LaitPi

extended to

a; : B[[x]] ~ B[[x]], L ai(t)xi
1--+ L ai(tp)xi,

i~O i~O

letting a act on the coefficients only. Note that (a*f)(xn ) = a*(f(xn»,so that we
may unambiguously write this term a*f(xn

) .

Definition. Any map Hp : B[[x]] ~ B[[x]] ofthe form

f 1--+ Hpf = f(x) - ~ L a;f(xp\

p J

where I C N* = {I, 2, .. .} is a subset of indices, will be calied a Hazewinkel
map.

In the next three propositions, Hp denotes a Hazewinkel map.

Proposition 1. Let f = Lm:::\ fmxm E B[[x]], so that f(O) = O. Then

Hpf E A[[x]] ==> mfm E A (m::: 1).

?ROOF. The coefficients of Hpf = L hmxm E A[[x]] are given by

1" -hm = fm - - L...J a' fm/pi E A
P J

with the convention fm/pi = 0 if i > ordp(m), namely if m / pi is not an integer.
This series of identities starts with b« = fm E A when (m , p) = 1. We proceed
by induction on the order v of m, the case v = 0 having just been treated. When
pi m, wehave

m" -mi« - - L...J a' fm/p' = mhm E mA,
p J

SO that

m,, - " -\ -(mf.; == - L...J o' fm/p i = L...J r: a'
p J J

and hence mfm E Aas expected.

; fm/p' )
~

EA by induction

(mod mA)

•
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Remark. When f = L fmx m E B[[x]] and Hpf E A[[x]] , we can write fm =
am/rn with coefficients am E A, and the formal power series f is a logarithrnic
series

Proposition 2. Let g = Lm>! gmxm and h = Lm>! hmx m be rwo formal
power series with zero constant term. Then -

PRooF. By definition,

Hp(g 0 h) = g 0 h _..!. L a~(g 0 h)(xp\

p J

while

1 '" .Hp(g )(h) = g(h) - - L..J a~g(hP').
p J

The first terms are the same and cancel by subtraction. Using the obvious relation

a~(g 0 h) = a~(g) 0 a~(h)

and the expansion g = Lm~! gmxm we get the announced result.

In the special case I = {I} (a single term in the index set 1),

•

and we recover the additive version (3.1) of the Dieudonne-Dwork quotient in
the case of constant coefficients (cf. generalization in (3.3) below). The following
conditions are equ ivalent:

(i) fm - (l/p)afm/p E A .
(ii) am - aam/p E rnA.

(iii) am == aam/p (mod rnA).
(iv) am(t) == am/petp) (mod pVA[t]) (v = ord; rn).

Definition. A sequence (am)m~! in A = Z(p)[t] is a p-Honda sequence when it
satisfies the following Honda congruences:
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In particular, a sequence (am)m:::1 in Z(p) is a p-Honda sequence when

am == am/p (mod mZ(p)) when pi m .

The paragraph preceding the definition proves the following result.

Proposition 3. For aformal power series fex) = Lm>1 amxmIm E B[[x]]
we have the equivalences -

1
(i) Hpf = fex) - -a*f(xP) has its coefficients in A C B,

p
(U) (am)m :::1 is a p-Honda sequence in A.

Proposition 4. Let A be a ring, [ an ideal of A containing a prime p , and x
and y two elements of A satisfying x == y (mod r) for some integer r 2: 1.
Then

PROOF. (1) Let us write x = y + z with ZEr . Hence

x" = (y + z)" = yP + zp( · · ·) + zP

with

zpt; ..) E zl er· [ = r +1

and

zP E t " C [2r C r»,

This establishes the case m = p (v = 1) ofthe lemma.
(2) The case m = pV is treated by induction on v, the basic step v Mo v + I

being analogous to the first case already treated. Hence

x p' == yP' (mod l)r+v (t 2: 0).

(3) Finally, if we raise a congruence to the power l = m]r" . it is preserved: If
x' == y' (mod [)S, say x' = y' + z' with z' E [ S, then

(X') l = (y'l + z'(.. .) E (y')l + I" , •
This proposition shows that the sequence «(1+X)m)m:::1 is a p-Honda sequence

for any prime p. Let us state it explicitly.

Corollary. Let m 2: 1 be an integer divisible by p. If v 2: I denotes its p-adic
order, then
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?ROOF. Observe that (1 +x)P == 1+xP (mod p) and apply the proposition. _

3.3. The Hazewinkel Theorem

The particular form of the Hazewinkel theorem that we are going to state and prove
has been specifically studied by various authors :

Barsky, Cartier, van Hamme, Honda, ... , Zuber

(neither exhaustive nor chronological. . . but in alphabetical order!) . It has many
applications.Let us first give the Dieudonne-Dwork theorem (2.3) in a more general
form.

Theorem (Dieudonne-Dwork). Let f(x) E 1+xQp[t][[x]] beafonnalpower
series. Then the following conditions are equivalent:

(i) The coefficients of f are in Zp[t].
(ii) f(x)P jcrd(xP) E 1+ pxZp[t][[x]].

?ROOF. As in (2.3): Only observe at the end of the implication (ii) => (i) that the
coefficient of xn in the left-hand side is now

and in the right-hand side

The conclusion folIows. _

If we know apriori that the coefficients of f are rational, namely

f(x) E 1+ xQ[t][[x]],

we get equivalent statements:

(i) The coefficients of f are in Z(P)[t],
(ii) f(x)P jcr*f(x P) E 1 + pxZ(p)[t][[x]]

simply since Zp n Q = Z(p). Let us come back to the notation of (3.2) :

either A = Z(p)[t] C B = Q[t] or A = Zp[t] C B = Qp[t]

and
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is extended to

o; : B[[x]] --+ B[[x]], L ai(t)xi
1-+ L ai(tp)xi

i::::O i::::O

by letting a act on the coefficients only.

Theorem. For a formal power series fex) = .Em>! amxmIm E B[[x]] we
have equivalent statements: -

1
(i) Hpf = fex) - -u*f(xP) has its coefficients in A C B.

P
(ii) qJ = e! has coefficients in A.

?ROOF. (i)::::}(ii) Assurne that fex) = .Em>! fmxm = .Em>! amxmIm satisfies
(i). By Proposition 3 in (3.2), (am) is a p-Honda sequence. TI1en Hp(f) has coeffi­
cients in A and by the proposition in (2.3), exp pHp(f) has p -integral coefficients

exp pHp(f) = (exp f)P I expu*f(xP) = (exp f)P [a; exp f(x P)

= qJ(x)PIU*qJ(xP) E 1+ pxZ(p)[t][[x]].

By the general form of the Dieudonne-Dwork criterion,

qJ(x) = exp(f) E 1+ xA[[x]]

has p-integral coefficients.
The proof ofthe converse (ii) ::::} (i) is based on Proposition 4 in (3.2). Assurne

that tp = exp(f) has p-integral coefficients. Write

fex) = logexp(f(x» = log(l + (e!(x) - 1» = g(h(x»,

namely f = go h with g(x) = log(l + x) and hex) = e!(x) - 1. Proposition 2 in
(3.2) can be applied to this composition:

By (3.1) Hp(g) has p-integral coefficients and by assumption, h has p-integral
coefficients . There only remains to consider the second term, where g has constant
coefficients (independent of t)

a' gm = gm = ±llm.

Now, for all formal power series h E A[[x]] having p-integral coefficients, we
have
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As Proposition 4 of (3.2) shows, this congruence is improved when raised to a
powerm:

This proves

h(xlm - u~h(xpi)m E pmA[[x]],

and the p-integrality of the remaining sum folIows. •
3.4. Applications to Classical Sequences

Proposition (Beukers). Let M be a d x d matrix with integer coefficients.
Define an = Tr(Mn). Thenfor any prime p, (an)n:::1 is a p-Honda sequence

am == am/p (mod mZ(p)) if p I m,

PROOF. We have to prove that ef has coefficients in A = Z(p) where f(x) =
Lm:::1 amxmIm. This logarithmic generating function is easily evaluated:

x
m

(Mmx
m)

f(x) = L (TrMm) - = Tr L--
m:::1 m m:::1 m

= Tr (-log(1- Mx)).

Hence

exp f(x) = expTrlog(1 - Mx)-I = det exp log ((1 - Mxrl)

= det(l - Mxrl = 1/ det(1 - Mx)

has its coefficients in A.

Corollary 1. The Lucas sequence

io = 2, il = 1, in+1 = in + ln-I (n 2: 1),

is a p-Honda sequence for any prime p.

•

PROOF. Let M = (~ b) E Mz(Z). The characteristic polynomial of M is

x Z - x-I, hence M Z - M - 1= °(Hamilton-Cayley). We deduce

Mn+Z = M n+1+ Mn (n 2: 0).

Since Tr lz = 2, Tr M = 1, this proves that in = Tr Mn is the Lucas sequence. •

Corollary 2. The Perrin sequence

ao = 3, al = 0, az = 2, an+z = an + an-I (n 2: 1),

is a p-Honda sequencefor any prime p .
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PRooF. Let M = (~ ~ ~) E M3(Z). The characteristic polynomial of M is
010

-x3 + X + 1, hence M3 - M - I = 0 (Hamilton-Cayley). We deduce

Since Tr Is = 3, Tr M = 0, and Tr M 2 = 2, this proves that an = Tr Mn is the
Perrin sequence. •

3.5. Applications to Legendre Polynomials

Let (Pn)n~O denote the sequence of Legendre polynomials. This sequence can be
defined by its generating function

I ~ n- = L.J Pn(t)x ,
R n~O

where R 2 = 1 - 2xt + x 2
• Recall that these polynomials Pn(t) E Q[t] satisfy

deg P; = n, Pn(l) = I (n::: 0).

They can be computed according to the Rodrigues formula

This formula shows that the coefficients of P; are rational numbers with denomi­
nators powers of2. More precisely, the coefficients of P; belong to (lj2n)Z. They
are p-integral for all odd primes p .

The following generating functions are weIl known (they can be checked by
differentiation with respect to x):

~ x m x-t+R
L.J Pm- l (t ) - = log ,
m~l m 1- t

xm 2L Pm(t)- = log .
m~l m 1- tx + R

Hence

(~ xm) x -t+R
exp L...J Pm- l (t) - = ,

m~l m 1- t

(
xm) 2exp L Pm(t)- = ,

m~l m 1- tx + R
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and for each odd prime p, we get two p-Honda sequences. Explicitly,

pi m ==> Pm-I(t) == P(m/p)-l(t P) (mod mZ(p)[t]),

p Im==> Pm(t) == Pm/p(tP) (mod mZ(p)[t]).

For example, to check that

x-t+R
-I---t- E Z(p)[t][[x]],

write

x - t + R x-I 1 - x ( 1 - t ) 1/2
---=1+--+-- 1+2x---

1 - t 1 - t 1 - t (1 - x)2

I-x
=1+-

I_-t
(-I+A

= 1+ _1_-_x L (1/2) (1- tr 2nxn,
1 - t n~1 n (1 - x)2n

so that the denominator 1 - t disappears: All coefficients are in Z[~, t] C Z(p)[t].
The integrality verification for the other generating function is similar and therefore
left as an exercise. _

The change of variable t = 1 +2. clears the powers of 2 in the denominators,
and congruences mod 2 (or mod 4) can also be established,

3.6. Applications to Appell Systems 0/Polynomials

Let (An(t))n~o be an Appell family (IV.6.1) in Zp[t]: A~ = nAn_1 (n ~ 1). The
following result generalizes the corollary of Proposition 4 in (3.2).

Theorem (Zuber). For an Appell family (An(t))n~o in Zp[t) , the following
conditions are equivalent:

(i) There exists a E Zp such that
An(a) == An/p(a) (mod nZp) (n ~ I, p In).

(ii) There exists a E Zp such that (An(a»n~1 is a Honda sequence
An(a) == An/p(a P) (mod nZp) (n ~ I, p In) .

(iii) (An)n~1 is a Honda sequence ofpolynomials
An(t) == An/p(tP) (mod nZp[t]) (n ~ 1, pi n).

!>ROOF. (i) {} (ii) by the p-adic mean value theorem (V.3.2),

I n
An/p = -A(n/p)-I

p
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Hence

and the equivalence folIows.
(iii) :::} (ii) is obvious.
(i):::} (iii) This uses (3.3): It is enough to show that

has p-integral coefficients, namely qk(t) E Zp[t].
(1) Let us compute the partial derivative 818t ofthe defining equation (*) :

orequivalently (using A~ = nAn-I),

LAn_IXn. Lqmxm = Lq~xk.
n~1 m~O k~O

This gives

q~ = L An-Iqm = AOqk-1 + Alqk-2 + ...+ Ak-I· (l)
n+m=k.n~1

(2) Let us compute the partial derivative 8/8x ofthe defining equation (*) :

"A n-I " "k k-I~ nX . exp~ . .. = ~ qkX
n~1 k~1

or equivalently,

L Anxn-I . L qmxm = L kqkx k- I.

n~1 m~O k~1

This gives

kq; = L Anqm (k ~ 1),
n+m=k.n~1

and

(k - 1)qk-1 =
n+m=k-I .n~1

(3) Comparing (l) with (I I),

q~ = AOqk-1 + (k - 1)qk-l = (k + Ao - 1)qk-1 (k ~ 1).
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Iteration leads to

q; = (k + Ao - l)(k + Ao - 2)qk-2, . . . ,

qy) = (k + Ao - 1)(k + Ao - 2)· ·· (k + Ao -l)qk_l (1:::::, l :::::. k) .

Now, the Taylor formula is

Since Ao E Zp, all binomial coefficients are in Zp. Moreover, by assumption, all
qn(a) E Zp, since (An(a»n~l is a p-Honda sequence. We conclude that the poly­
nomials qk(t) have p-integral coefficients. •

EXERCISES FOR CHAPTER 7

1. For f , gE Q[x], prove that

(cf. Exercise 29 in Chapter I).

2. Let p be an odd prime. Show that the closure ofthe set of pairs (n , n l") in Zp x Zp is
the union of two graphs .
(Hint . Consider the graphs of ±rp.)

3. Find the limit lim,.....oor p(pn). More precisely, can you evaluate

4. Prove the congruence

by induction on the integer k ~ O.

5. More on the gamma function r2.
(a) Check the fonnula

(-lf(2[n/2])!
r2(n) = (2[n/21[n/2] 1) (n ~ I).

(b) Prove r2(n + 1)r2(-n) = (_I)!+[(n+l)/21 (n ~ I).

(c) Let m ~ I be an odd integer. Prove TIO::;k <m r2(k/m) = ±l.

6. For any prime p and 0 ~ a < p , show that
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has a continuous extension to Zp given by

Prove the follow ing generalization. Let q = pi (f :::: 1) be a fixed power of p, and
o::: a < q . Show that

m ~ (_ I)(q - l)m (a + qm ) !
1=!.( _ p)p-t mm !

admit s a cont inuous extension Zp --* Qp given by

x ~ ( _ l) /+a( _ p)ordpa! fl r p([a//] + p i-i x + I).

O~i <1

(Hint. Write a telescopic product with nO = a + qm , n f = m

(a +qm)!

m!

nf-I!

nf!

(al + pn z)!

nz!

(af -I + pm)!

m!

Observe that when the prime p is odd, q - I is even and (_l)(q- l)m = +1: Hence this
sign is relevant only if p = 2, in which case it is (m) = (_ l)m.)

7. With 1l'p- 1 = -p, prove

e7LX
E 1 + 1l'xZp[1l'][[x]] .

n " n n - S (n) S (n) 1
(Hint. Forn > l ,ordp - =-- - p = - p- > --.)

- n ! p- l p-l p-I- p-l

8. Compute the first coefficients of the Artin -Hasse exponen tial Ep for p = 2, 3 (and 5).
In particular, show that

Ez(X ) = 1+ X + X Z + t X3 + t X4 + X 5( • • •) ,

E3(X) = 1+ X + X Z + ~X3 + i4X4 + X5(. . .).

Compute the first coefficients ofthe Dwork exponential for p = 2, 3 (and 5).

9. Here is another proof of the fact that the radius of convergence r of the Artin -Hasse
exponential Ep is smaller than or equal to 1.
(a) Show that ifthis radius r were grcaterthan I , then the unit sphere would be acritical

sphere of E p, and E p would have a zero a =F 1 on this sphere.
(b) Use the identity

(where ~ is a primit ive pth root of unity : ~ =F 1 = ~ P) to show that E p would have
infinitely many zeros on the unit sphere , thus contradicting (VI.2.l).
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(c) When p i= 2, give another proof of re, ::: 1 based on the identity

E~(x)/Ep(x) = LxPL 1
.

i ?O

(Hint. Use Propositions 2 and 3 in (VI.1.2), as weil as 1/ Ep(x) = Ep(-x) to show
that rue, = rEp .)

10. When rrP- 1 = -p and tty = x, then we have e7C (Y- Y
P) = tr+x P/ p. Find the corre­

sponding general expression for e7r(y-yq) (q = pi , f ~ 1) in terms of x = n y .

11. Prove the following relations for the coefficients of Dwork's exponential e7C(x - x
q

) =

Ln?O Anx
n

nAn = tt An-l (1 ::: n < q), nAn = rr(An-l - qAn-q ) (n ~ q).

(Hint . Differentiate the above generating function .)

12. For 0 < tx = a/(p - 1) < 1 let Ga denote the Gauss sum - L {-a E7C ( { ) . Use the
Gross-Koblitz formula to prove GaGl-a = ±p.

13. Let X be a nontrivial multiplicative character F; -+ C X
, and consider the Gauss sum

G(X) = L X(v){v

vEF:

(where { i= 1 is a pth root ofunity in C). Show that the complex absolute value ofthis
Gauss sum is

IG(x)lc = .;p.
(Hint . Prove G(X)G(X) = p exactly as in the proofofProposition 1 in (VII.2.5). There,
the Legendre symbol was a multiplicative character X such that X i= 1 = X2• But here,
X2 may be nontriv ial.)

14. Let X : F; -+ C X be a nontrivial , complex-valued, multiplicative character ofFp . As
in the previous exercise , we considerthe Gauss sums G(X): IG(x)lc = .;p. Show that

the only case when G(X) = e.;p for some root ofunity e, happens when X = (~).

(Hint . Let co : F; -+ C C X denote an injective homomorphism, considered as a
cornplex-valued, multiplicative character of Fp (analogous to the Teichmüller char­
acter (IIIAA)). Show that any nontrivial multiplicative character X : F; -+ C X can be

written uniquely X = w-a (l ::: a ::: p - 2). If G(w-a )2/ pis a root of unity, use the
Gross-Koblitz formula to show that a = 9 .)

15. Check the following formulas by differentiat ion with respect to x

" x
m

x -t +RL.. Pm-l(t)- = log ,
m?l m 1 - t

x m 2
L Pm(t)- = log .
m?l m 1 - tx + R
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16. Let (Bn>n:::.o denote the sequence of the Bemoulli polynomials. If pis an odd prime,
prove the following congruences:

For p = 2, prove that a single power of 2 is lost, i.e.,

(Hint. Use (Chapter V, Exercise 10) and (VII.3.6) for the Appell sequence ßn(t) =
2pBn (t ) E Zp[t] .)
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Qp Z; :> 1 + pZp index 2 JLp-l 3
P odd prime index p-l inZ;

Field:> B::;l :> B<1 Residue field Nonzero 1.1 Properties

Qp :> z, :> pZp Fp pz locally compact
!Z { ef = dimQp K < 00K:>R:>P=1rR Fq (q = pt) 11rlz = r' locally compact

Q~ :> AD :> MD kD =F~ =Fpoo pQ { algebraically closed
not locally compact

c, :> A p:> M p ~ =Fpoo pQ { algebraically closed
complete

a, :> Ao :> Mo
ko

R>o
{ algebraically closed

uncountable spherically complete
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Umbral calculus

Delta
operator
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of polynomials
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Related
sequences
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Appell sequences
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Sheffer sequences
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Analytic elements

Formal
power series
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converging in
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boundedin
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Ep (Artin-Hasse) E! (Dwork)

f ~ ex+!f L xpi e,,(x-xq
) (q = pi)exp ">0~J_ pi

1 7 ld
rl rp = Ipl? r» ppq



Basic Principles of Ultrametric
Analysis in an Abelian Group

(1) The strongest wins

[x] » lyl =} Ix + yl = IxI.

(2) Equilibrium: All triangles are isoseeles (or equilateral )

a +b+c = 0, [c] « Ibl =} lai = Ibl.

(3) Competitivity

al + a2 + ...+ an = 0 =}

there is i#- j such that lad = lajl = max jakl.

(4) A dream realized

(an)n:::O is a Cauchy sequence~ dta.; an+l) ~ o.
(5) Another dream come true (in a complete group)

Ln:::o an converges~ an ~ o.
When Ln:::oan converges, Ln:::o lan I may diverge, but

ILanl s sup lanl = max lanl
n:::O

and the infinite version of (3) is valid.
(6) Stationarity ofthe absolute value

an ~ a #- 0 =} there is N with lanl = lal/or n 2: N.



Conventions, Notation, Terminology

We use the abbreviations ,
iff " if and only if," := "equal by definition," == nontriv ial equality.
• is the "end of proof" (or "absence of proof") sign .
In a statement: (I), (ii), . . . always denote equivalent properties.
In the table of contents, an asterisk * before a section indicates that it will not be used later

and may be ornitted in a first reading .

Set Theory

P(E) power set of E : Set of subsets of E ; 0 : Empty set.
A C B means "x E A ==> x E B" hence: AcE {:=:} A E P(E).

(certain authors denote this inclusion by ~).

When AC B CE, B - A = B \ Adenotes the complement of A in B,
E - A = ACis the complement of a subset ACE.

A subset of E having only one element is a singleton set: x E E ==> {x} E P(E).
U:Disjoint union symbol, partition of a set.
EI : Set of families (or functions) I ~ E.
E(l) : Set of familie s I ~ E having components equal to the base point

of E (the neutral element in a group G, the 0 in a ring A . . . )
except f or finitely many indices.

Let f : E ~ F, x t-+ fex) be a map. Then
fis injective when x =1= y ==> fex) =1= f(y) , namely f is one-to-one,
or equivalently when fex) = f(y) ==> x = y,
fis surj ective when f(E) = F (namely f is onto),
f is bijective when it is one-to-one and onto.
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The characteristic function of a subset ACE is the function

{
I if XE A,

gl(x) = glA(X) = 0
if x!f. A .

Fundamental Sets of Numbers

N = {O, 1,2, . . . , n , ... } C Z c Q c R c C, N* = {I, 2, .. . , n, . ..}= N>o.
When pE {2, 3, 5, 7,11 , . ..} is a prime, Fp = ZlpZ.
p In means p divides n, ptn means p does not divide n,

pV 11 n means that p" is the highest power of p dividing n,
R>o = {x ER : x > O}, R:;:o = {x ER: x ~ O} , [a, b) : interval a ::::: x < b.
Z(p) = {alb: a E Z, b ~ 1, b prime to p} C Q,
Z[I/p]={apv:aEZ, VEZ}CQ.
When a > 0 and S C R, aS = las : SES} C R >o, e.g., pZ C pQ C R>o.
[x] E Z integral part of x ER: [x] ::::: x < [x] + 1.
(x) fractional part ofx ER: x = [x] + (x) .
gcd: Greatest common divisor ; lern: Least common multiple.
äij : Kronecker symbol (= 1 ifi = i, = 0 otherwise).

Groups, Rings and Modules

A x: Multiplicative group of units (i.e., invertible elements) in a ring A.
A[X]: Polynomial ring in one indetenninate X and coefficients in the ring A,

a monic polynomial fis a polynomial having leading coefficient 1:
X" + an_IXn-1 + ...+ ao if deg f = n.

A[[X]]: Formal power series ring.
A{X}: Restricted power series over a valued ring A

(Chapter V: Power series with coefficients - 0) A[X] C A{X} C A[[X]] .
An integral domain is a commutative ring A =1= {O} having no zero divisor.
K = Frac A: Fraction field of an integral domain A. In particular,

K(X) = Frac A[X] : Rational fractions,
K((X» = Frac A[[X]] (:J K(X»: Formal Laurent series ring .

A [1/q ]: Partial fraction ring corresponding to denominators in {l, q , q2, .. .},
where q is not a zero divisor in the ring A.

If G is an abelian group , then {g E G : gn = e for some integer n ~ I}
is the torsion subgroup of G: In particular,
Jl(A) denotes the group of roots of unity in a commutative ring A,

Jl = Jl(C X
) = Jlpoo x Jl(p) , where

Jlp oo : pth-power roots ofunity (p-Sylow subgroup of Jl),

Jl(p) : Roots of unity having order prime to p,
Jln(A) = {x E A : x n = I}: nth roots of unity in the ring A.

A pair ofhomomorphisms A ~ B ~ Cis exact when f(A) = ker g.
A short exact sequence (SES) is an exact pair with

f injective and g surjective ; hence Cis a quotient of B by f(A) ~ A,

written 0 _ A ~ B ~ C - 0 for additive groups
(replace 0 by 1 for multiplicative groups).
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Fields, Extensions

Characteristic of a field K : Either 0 or the prime p such that p . IK = 0 E K,
in which case the prime field Fp is contained in K.

For each prime p, the group F; is cyclic; when the prime p is odd, the squares in F; make

up a subgroup of index two , kernel of the Legendre symbol (~) = ± 1.

In a field (or a ring) of characteristic p we have (x + y)P =x P + y" ,
KU: Aigebraic closure of a field K ; when K = KU is algebraically closed of characteristic

0, J-Ln(K) is cyclic and isomorphie to Z/nZ.
pi (K) = K U {oo} denotes the projective line over the field K .

Topology, Metric Spaces

The closure of a subset A C X (X being a topological space) is denoted by A.
A Hausdorffspace is a topological space X in which for every pair of distinct points, it is

possible to find disjoint neighborhoods ofthese points: Equivalently, the diagonal ßx is
closed in the product X x X.

The diameter of a sub set A C X with respect to ametrie d is

diam(A) = 8(X) = SUPx,yEA d(x, y) ~ 00.

We say that A is bounded when diam(A) < 00.

The distance ofa point x E X to a subset AC Xis d(x, A) = infuEA d(x, a),

d(x , A) =0 <===> XE A.

The balls in ametrie space (X, d) are denoted by

B:::r(a) = B:::r(a; X) = {x EX : d(x , a) ~ r} : closed (dressed) ball,

B<r(a) = B<r(a; X) = {x EX: d(x , a) < r} : open (stripped) ball.

For a ball with center a equal to the base point (the neutral element in a group, the 0 element
in a ring), the notation will be just B:::r , B<r .

The sphere of radius r > 0 and center a in the metric space (X, d) is

Sr(a) = {x EX : d(x , a) = r} = B:::r(a) - B<r(a).

Ametrie space is separable if it has a countable dense subset.
C(X ; K): Space of continuous functions X -+ K , or simply C(X) when K is understood;

Cb(X ; K): Subspace consisting ofthe bounded continuous functions (when K is a valued
field). The sup norm of a bounded function is

IIfll = IIfllx = sup If(x)1 Cf E Cb(X ; K».
XEX
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absolute value 11.1.3
- over Q 11.2.1

algebraic variety 1.6.1
Amice-Fresnel theorem VL4.4
analyt ic element VI.4 .2
Appell sequence IV.6.1
Actin-Hasse exponential VII .2.1

B

Baire space 111.1.4
balanced subset ILA.6
balls (stripped and dressed) 11.1.1
Banach space (ultrametric -) IV.4.1
basic system of polynomials IV.S.2
Bell (numbers and polynomials) IY.6.3
Bell-Carlitz polynomials (IV, exercise 19)
Bernoulli (numbers and polynomials) V.5.4
Beukers proposition VII.3.4
binomial identities IY.S.2

- polynomial IY.I .I

c

Cantor set 1.2.2
carry (operations in basi s p) 1.1.2
Chebyshev polynomials (V, exercise 7)
Christol-Robba theorem VL4.6
Clausen-von Staudt theorem V.5.S
clopen set 11.1.1
commutant (bicommutant) IV.5.3

composition operator IV.5.3
continuity of roots of equations III.I .S
continuous retraction LA.6
convexity (and duality) VI.1.4
covering of circle LA.I
critical radius VI. 1.4
cyclotomic polynomial (- units) 11.4.2

D

delta operator IV.5.I
diagonal (in a Cartesian product) 1.3.3
Dieudonne-Dwork criterion VII .2.2, VII.3.3
differential quotient (higher order-) V.2.4
divisible group 111.4.1
dominant (monomial) VI.1.4
dressed ball 1I.1.1
duality (convexity theory) VI.l .6
Dwork series VII .2.3

E

Eisenstein (irreducibility criterion)
11.4.2

- polynomial 11.4.2
entire function VI.2 .3
enveloping ball Bv VL4.l
equivalent absolute values 11.1.7

- norms 11.3.1 , III.3.2
Euclidean model 1.2.5
extension of absolute values

- existence 11.3.4
- uniqueness 11.3.3
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F K

Fibonacci numbers (IV, exercise 20)
filters III.A.l
finiteness (extensions of Qp of given degree)

III.1.6
formal power series 1.4.8, IV.5, Vl.l
fractal subset 1.2.3
fractional part (x) 1.504
fundamental inequalities IIIA .3

G

gamma function r p (Morita) VII .1.I
Gaussian 2-adic numbers IIA.5
Gauss multiplication formula for r p

VII.1.3
-norm V.2.1

generalized absolute value 11.2.2
- ball V1.3.1
- over Q II.2A
- Taylor expansion IV.5.2

Gould polynomials (IV, exercise 21)
granulation, type of - V.l.2
growth modulus VI.1A, V1.3.3

H

Haar measure II.A.l
Hahn-Banach theorem (p-adic) IVA.7
Hadamard formula (radius of convergence)

VI.1.2
- three-circle theorem VI.2.6

Hazewinkel maps VII.3 .2
- theorem VII.3.3

Hensel's lemma 1.6.4, II.1.5
hexagonal field (3-adic numbers) 11.4.6
Honda sequence (and congruences)

VII.3.2
homothety (= dilatation) 1.5.6, V1.3.1

I

IFS (iterated function system) 1.2.5
indecomposable compact space I.A.6
indefinite sum IV.1.5
Ingleton theorem IVA.7
index with respect to a hole VI.3 .5
infinite product VI.2.3
infraconnected set V1.4.1
injective Z-module IIIA.l
p-integer 1.504
integral part (p-adic) [xl 1.504
inverse system (= projective system) 1.4.2
involution a 1.1.2
irreducibility criterion (Eisenstein) 1104.2
isolated singularity V1.2.6
Iwasawa logarithm Log VA.5

Kazandzidis congruences VII.1 .6
Krasner's lemma III.l.5, III.3.2

L

Legendre polynomials VII.3.5
- relation for r p VII.1.2
- quadratic residue symbol 1.6.6

length of an expansion in basis p IV.3.2
- of a word 1.204

linear fractional transformation V1.3.1
Liouville theorem Vl.lA
Lipschitz function V.1.5
locally analytic function V1.4.7
locally constant function IV.3.1
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