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CHROMATIC REDSHIFT

JOHN ROGNES

Abstract. Notes for the author’s MSRI lecture in January 2014.

1. Introduction

Consider a commutative ring R, with sum and product operations. The category
of representations of R inherits a commutative rig structure, given by direct sum
and tensor product. In other words, the category Mod(R) of R-modules inherits a
bipermutative structure. Continuing, one can consider the categorical representa-
tions of Mod(R), and these in turn form a 2-categoryMod(Mod(R)), with a ring-like
structure. Iterating, one can consider an n-category of higher representations, for
each n ≥ 1.

All of these constructions can take place within the limiting context of structured
ring spectra, or commutative S-algebras. From the category of (finite cell) mod-
ules over a commutative S-algebra B we can distill a new commutative S-algebra,
the algebraic K-theory spectrum K(B). Continuing, one can form K(K(B)), etc.
When B = HR is the Eilenberg–MacLane spectrum of an ordinary ring, the n-fold
algebraic K-theory K(n)(B) is extracted from the n-category of higher representa-
tions, as above. In this sense, n-fold iterated algebraic K-theory has something to
do with n-categories.

From this point of view it is surprising that n-fold iterated algebraic K-theory
also has something to do with formal group laws of height n, i.e., one-dimensional
commutative formal group laws F in characteristic p where the series expansion
[p]F (x) for the multiplication-by-p map starts with a unit times xpn

. This is essen-
tially a statement about the formal coproduct on K(n)(B)∗(CP∞) that comes from
the product on CP∞. Hesselholt–Madsen asked about the chromatic filtration of
iterated topological cyclic homology in [HM97, p. 61], but could almost as well have
asked about the chromatic filtration of iterated algebraic K-theory.

In a strong form, this connection implies that the algebraic K-theory of a struc-
tured ring spectrum related to formal group laws of height n will be related to
formal group laws of height n + 1. In terms of the periodic families of stable ho-
motopy theory, if the homotopy of B is vn-periodic but not vn+1-periodic, then
frequently K(B) is vn+1-periodic but not vn+2-periodic.

Since the (fundamental) period |vn+1| = 2pn+1 − 2 of vn+1-periodicity is longer
than the period |vn| = 2pn − 2 of vn-periodicity, we think of this phenomenon
as an increase, or lengthening, of wavelengths. This is what we informally call a
“redshift”. In a related fashion, the vn+1-periodic phenomena are usually hidden or
nested behind the vn-periodic ones, hence more subtle and difficult to detect. Again
this corresponds informally to less energetic light, propagating at lower frequencies.
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2 JOHN ROGNES

The height filtration is also related to the sequence of Hopf subalgebras

0 ⊂ · · · ⊂ E (n) = E(Q0, . . . , Qn) ⊂ . . .

of the Steenrod algebra A , and their annihilating subalgebras

A∗ ⊃ · · · ⊃ (A //E (n))∗ = P (ξ̄k | k ≥ 1)⊗ E(τ̄k | k ≥ n+ 1) ⊃ . . . .

The latter nested sequence of A∗-comodule subalgebras are invariant under the
Dyer–Lashof operations that arise from thinking of the dual Steenrod algebra A∗

as H∗(H), where H = HFp is a commutative structured ring spectrum.

2. Redshift in the K-theory of rings

We start with examples of chromatic redshift in the algebraicK-theory of discrete
rings.

Let k be a finite field of characteristic p, with algebraic closure k̄. Quillen
proved [Qui72, §11] that Hi(BGL(k̄);Fp) = 0 for i > 0, so that K(k̄)p ≃ HZp.
Furthermore, he deduced that π∗K(k)p ∼= π∗K(k̄)hGk

p for ∗ ≥ 0, where the absolute

Galois group Gk acts continuously on K(k̄), so K(k)p ≃ HZp. Multiplication
by p acts injectively on π∗K(k̄)p, hence also on π∗K(k)p. Think of p as a lift of
p = v0 ∈ π∗BP , where BP is the Brown–Peterson ring spectrum with π∗BP =
Z(p)[vn | n ≥ 1].

For a separably closed field F̄ of characteristic 6= p (including 0), Lichtenbaum
conjectured that πtK(F̄ )p is Zp for t ≥ 0 even and 0 for t odd. This was proved by

Suslin [Sus84, Cor. 3.13], and implies that K(F̄ )p ≃ kup and L̂1K(F̄ ) ≃ KUp. Here
ku is the connective cover of the complex topological K-theory ring spectrum KU ,
and L̂n = LK(n) denotes Bousfield localization [Bou79] with respect to the Morava
K-theory ring spectrum K(n). Multiplication by the Bott element u ∈ π2kup acts
bijectively on π∗K(F̄ )p, for ∗ ≥ 0.

Let F be a number field, with a ring of S-integers A.

A // F

Z //

OO

Z[1/p] // Q

OO

Quillen conjectured [Qui75, §9] that there is a spectral sequence

E2
s,t = H−s

ét (SpecA;Zp(t/2)) =⇒ πs+tK(A)p

converging in total degrees ≥ 1. Here H∗

ét(−) denotes étale cohomology, which is
only well-behaved if 1/p ∈ A, and Zp(t/2) ∼= πtK(F̄ )p. For A = F this means
that π∗K(F )p ∼= π∗K(F̄ )hGF

p for ∗ ≥ 1, where GF is the absolute Galois group.
The general case requires the more elaborate framework of étale homotopy types.
Passing to mod p homotopy, a lift β ∈ π2p−2(S/p) of u

p−1 ∈ π2p−2(ku;Z/p) would
act bijectively on π∗(K(A);Z/p), for ∗ ≥ 1. Think of β = v1 as a lift of v1 ∈
π∗(BP ;Z/p).

Thomason [Tho85, Thm. 4.1] proved Quillen’s conjecture, up to the localization
given by inverting β. In particular, π∗(K(F );Z/p)[1/β] ∼= π∗(K(F̄ )hGF ;Z/p) for
∗ ≥ 2. It remained to show that π∗(K(A);Z/p) → π∗(K(A);Z/p)[1/β] is an iso-
morphism for ∗ ≥ 2. Waldhausen [Wal84, p. 193] noted that this amounts to asking
that K(A) → L1K(A) is a p-adic equivalence, in sufficiently high degrees. Here
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Ln = LE(n) denotes Bousfield localization with respect to the Johnson–Wilson ring
spectrum E(n), or equivalently with respect to BP [1/vn].

Using topological cyclic homology, Hesselholt–Madsen [HM03, Thm. A] con-
firmed Quillen’s conjecture for valuation rings in local number fields, after spe-
cial cases were treated by Bökstedt–Madsen [BM94], [BM95] and Rognes [Rog99],
[Rog99b].

Finally, Voevodsky’s proof [Voe03], [Voe11] of the Milnor and Bloch–Kato con-
jectures confirmed Quillen’s conjecture for rings of integers in global number fields.

3. Redshift in the K-theory of ring spectra

We continue with examples of chromatic redshift in the context of algebraic
K-theory of structured ring spectra.

Let L = E(1) be the Adams summand of KU(p), and ℓ = BP 〈1〉 its connective
cover. Using topological cyclic homology, Ausoni–Rognes [AR02, Thm. 0.4] com-
puted V (1)∗K(ℓp), and Ausoni [Aus10, Thm. 1.1] computed V (1)∗K(kup), where
p ≥ 5 and V (1) = S/(p, v1) is the Smith-Toda spectrum of chromatic type 2.
Using a localization sequence of Blumberg–Mandell [BM08, p. 157], this also cal-
culates V (1)∗K(Lp) and V (1)∗K(KUp). In each case, a lift v2 ∈ π2p2−2V (1) of
v2 ∈ V (1)∗BP acts bijectively on the answer V (1)∗K(B), for ∗ ≥ 2p− 2.

The results are compatible with the existence of a spectral sequence

E2
s,t = H−s

mot(SpecB;Fp2(t/2)) =⇒ V (1)s+tK(B)

for suitable “ℓp-algebras of S-integers” B, converging in sufficiently high total de-
grees. Here H∗

mot(−) refers to a hypothetical form of motivic cohomology for com-
mutative structured ring spectra, and Fp2(t/2) ∼= V (1)tE2 where E2 is the K(2)-
local Lubin–Tate ring spectrum with π∗E2 = WFp2 [[u1]][u].

The appearance of the field Fp2 is needed to account for the sign in Ausoni’s
relation bp−1 = −v2 in V (1)∗K(kup), since if b is represented by αup+1 and v2 by

up2
−1 then αp−1 = −1, which cannot be satisfied for α ∈ Fp.

4. An analogue of the Lichtenbaum–Quillen conjectures

Consider a Galois extension Lp[1/p] → M , like in [Rog08, §4]. By an ℓp-algebra
of integers in M we mean a connected (only trivial idempotents) commutative ℓp-
algebra B, with a structure map to M , such that B is semi-finite (retract of a finite
cell module), or perhaps dualizable, as an ℓp-module:

Ω1

B //

OO

M

ℓp

OO

// Lp
// Lp[1/p]

G

OO

Jp

OO
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For S-integers we may allow localizations that invert p or v1. Let Ω1 be the p-
completed homotopy colimit of all such B, i.e., the ℓp-algebraic integers.

By analogy with Quillen’s conjecture/Voevodsky’s theorem we predict that v2
acts bijectively on V (1)∗K(B), for ∗ ≫ 0. By analogy with Lichtenbaum’s conjec-
ture/Suslin’s theorem, we predict that V (1)∗K(Ω1) ∼= V (1)∗E2, in all sufficiently

high degrees, and that L̂2K(Ω1) ≃ E2.
In the case when B → Ω1 is an unramified G-Galois extension, the hypothet-

ical motivic cohomology would reduce to group cohomology, and V (1)∗K(B) ∼=
V (1)∗K(Ω1)

hG for ∗ ≫ 0. The general case would require a more elaborate con-
struction than the familiar homotopy fixed points. Even establishing the existence
of a ring spectrum map K(ku) → E2 seems to be an open problem.

Similarly, for n ≥ 1 let En be the K(n)-local Lubin–Tate ring spectrum, and
let en be its connective cover, so that En = en[1/u]. Consider Galois extensions
En[1/p] → M and connected commutative en-algebras B, with a structure map to
M , such that B is semi-finite as an en-module:

Ωn

B //

OO

M

en

OO

// En
// En[1/p]

OO

L̂nS

OO

Let Ωn be the p-completed homotopy colimit of all such B, i.e., the en-algebraic
integers.

Let F be a finite p-local spectrum admitting a vn+1 self map v : ΣdF → F ,

cf. Hopkins–Smith [HS98, Def. 8]. The finite localization functor Lf
n+1, which anni-

hilates all finite E(n+1)-acyclic spectra [Mil92, Thm. 4], is a smashing localization

such that F∗L
f
n+1X

∼= F∗X [1/v] for all spectra X .
I stated something like the following at Schloß Ringberg in January 1999 and in

Oberwolfach in September 2000:

Conjecture 4.1. Let B → Ωn and (F, v) be as above.
(a) Multiplication by v acts bijectively on F∗K(B) for ∗ ≫ 0, and K(B) →

Lf
n+1K(B) is a p-adic equivalence in sufficiently high degrees.

(b) There are isomorphisms F∗K(Ωn) ∼= F∗En+1 for ∗ ≫ 0, and L̂n+1K(Ωn) ≃
En+1.

The cases n = −1 and n = 0 correspond to Quillen’s results and the proven
Lichtenbaum–Quillen conjectures, respectively.

5. The cyclotomic trace map

We can detect chromatic redshift in algebraic K-theory using the cyclotomic
trace map to topological cyclic homology, or one of its variants.
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The topological Hochschild homology THH(B) of a commutative S-algebra B
is an S1-equivariant spectrum whose underlying spectrum with S1-action can be
constructed as B ⊗ S1, where ⊗ refers to the tensored structure of commutative
S-algebras over spaces. Let

THH(B)hS
1

= F (ES1
+,THH(B))S

1

be the S1-homotopy fixed points of THH(B), and let

THH(B)tS
1

= [ẼS1 ∧ F (ES1
+,THH(B))]S

1

be its S1-Tate construction, also denoted tS1 THH(B)S
1

or Ĥ(S1,THH(B)). Here

ES1 is a free contractible S1-space, and ẼS1 is the mapping cone of the collapse
map ES1

+ → S0. Homotopy fixed point spectra model group cohomology, and the
Tate construction models Tate cohomology.

Think of B as a ring spectrum of functions on a brave new scheme X . Then
B∧· · ·∧B is the ring of functions on X×· · ·×X , so THH(B) plays the role of the

ring of functions on the free loop space Map(S1, X) = ΛX , and THH(B)hS
1

is like
the ring of functions on the Borel construction ES1

+∧S1 ΛX . The Tate construction
is a periodicized version of the Borel construction.

There is a natural trace map

K(B) −→ THH(B)

that factors through the fixed point spectra THH(B)Cr for all finite subgroups
Cr ⊂ S1. In particular, there is a limiting map

K(B) −→ TF (B; p) = holim
n

THH(B)Cpn .

Continuing with the canonical map from fixed points to homotopy fixed points, the
target of

holim
n

THH(B)Cpn −→ holim
n

THH(B)hCpn

is p-adically equivalent to THH(B)hS
1

. The cyclotomic structure of THH(B) gives
a similar map

holim
n

THH(B)Cpn −→ holim
n

THH(B)tCpn+1

whose target is p-adically equivalent to THH(B)tS
1

.
The topological Hochschild construction itself does not introduce a redshift, since

THH(B) is a commutative B-algebra. However, in all the computations made so
far, any vn+1-periodicity that is seen in the algebraic K-theory K(B) has already

been visible in the S1-Tate construction THH(B)tS
1

.
Furthermore, it is possible to see in homological terms where the redshift arises,

in terms of these S1-equivariant constructions.

6. Circle-equivariant redshift

The algebra H∗(en) appears to be unwieldy for n ≥ 2, but there is a map
BP 〈n〉 → en of (not necessarily commutative) S-algebras, covering the usual map
E(n) → En, and the augmentation BP 〈n〉 → H induces an identification

H∗(BP 〈n〉) ∼= P (ξ̄k | k ≥ 1)⊗ E(τ̄k | k ≥ n+ 1)

of subalgebras of the dual Steenrod algebra

A∗ = P (ξ̄k | k ≥ 1)⊗ E(τ̄k | k ≥ 0) .
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Forgetting some structure, we can therefore think of the homology H∗(B) of a
commutative en-algebra B as a commutative H∗(BP 〈n〉)-algebra. This makes the
Adams spectral sequence

Es,t
2 (B) = Exts,t

A∗

(Fp, H∗(B)) =⇒ πt−s(B
∧

p )

an algebra over the Adams spectral sequence

Es,t
2 = Exts,t

A∗

(Fp, H∗(BP 〈n〉)) =⇒ πt−s(BP 〈n〉∧p )

which collapses at the E2-term

E∗,∗
2 = P (v0, . . . , vn)

and converges to the homotopy

π∗BP 〈n〉∧p
∼= Zp[v1, . . . , vn] .

The Bökstedt spectral sequence

E2
s,t(B) = HHs(H∗(B))t =⇒ Hs+t(THH(B))

is then an algebra spectral sequence over

E2
∗,∗ = HH∗(H∗(BP 〈n〉)) ∼= H∗(BP 〈n〉)⊗ E(σξ̄k | k ≥ 1)⊗ Γ(στ̄k | k ≥ n+ 1)

converging to H∗(THH(BP 〈n〉)). Here σ denotes the suspension operator, coming
from the S1-action on THH, and Γ(x) = Fp{γjx | j ≥ 0} denotes the divided power
algebra on x.

The Dyer–Lashof operations Qpk

(τ̄k) = τ̄k+1 in A∗ (coming from the commuta-
tive S-algebra structure on H), imply multiplicative extensions (στ̄k)

p = στ̄k+1, for
k ≥ n+1, which in turn imply that the Bockstein images β(στ̄k+1) = σξ̄k+1 vanish
in the abutment. This argument, see Ausoni [Aus05, Lem. 5.3], implies differentials

dp−1(γjστ̄k)
.
= σξ̄k+1 · γj−pστ̄k

for all j ≥ p, which leave

Ep
∗,∗ = E∞

∗,∗
∼= H∗(BP 〈n〉)⊗ E(σξ̄1, . . . , σξ̄n+1)⊗ Pp(στ̄k | k ≥ n+ 1)

converging to

H∗(THH(BP 〈n〉)) ∼= H∗(BP 〈n〉)⊗ E(σξ̄1, . . . , σξ̄n+1)⊗ P (στ̄n+1) .

This will still have trivial vn+1-periodic homotopy, but note how building in a circle
action gives rise to the class στ̄n+1.

The homological Tate spectral sequence

E2
s,t(B) = Ĥ−s(S1;Ht(THH(B))) =⇒ Hc

s+t(THH(B)tS
1

)

converges to a limit that we call the continuous homology of THH(B)tS
1

. It is an
algebra spectral sequence over

E2
∗,∗ = Ĥ−∗(S1;H∗(THH(BP 〈n〉))) ∼= P (t±1)⊗H∗(THH(BP 〈n〉))

converging to Hc
∗(THH(BP 〈n〉)tS

1

). Here

d2(ti · x) = ti+1 · σx

for all x, which leaves

E3
∗,∗ = P (t±1)⊗ P (ξ̄p1 , . . . , ξ̄

p
n+1, ξ̄k | k ≥ n+ 2)

⊗ E(τ ′k | k ≥ n+ 2)⊗ E(ξ̄p−1
1 σξ̄1, . . . , ξ̄

p−1
n+1σξ̄n+1)
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where τ ′k = τ̄k − τ̄k−1(στ̄k−1)
p−1 for each k ≥ n + 2. Note that τ̄n+1 supports a

nontrivial d2-differential to t · στ̄n+1, and does not survive to the E∞-term, while
the τ ′k for k ≥ n+ 2 are d2-cycles, due to the known multiplicative extension.

This spectral sequence often collapses at this stage [BR05, Prop. 6.1], and there
can be A∗-comodule extensions that combine pn+1 shifted copies of

P (ξ̄p1 , . . . , ξ̄
p
n+1, ξ̄k | k ≥ n+ 2)⊗ E(τ ′k | k ≥ n+ 2)

to a copy of P (ξ̄k | k ≥ 1)⊗E(τ ′k | k ≥ n+2) ∼= H∗(BP 〈n+1〉). The PhD theses of
Sverre Lunøe–Nielsen [LNR12], [LNR11] and Knut Berg (to appear) address these
questions. Note the transition from H∗(BP 〈n〉) to H∗(BP 〈n+1〉), with non-trivial

vn+1-periodic homotopy groups. The typical result is that Hc
∗(THH(B)tS

1

) is an

algebra over Hc
∗(THH(BP 〈n〉)tS

1

), which has an associated graded of the form

P (t±pn+1

)⊗H∗(BP 〈n+ 1〉)⊗ E(ν1, . . . , νn+1)

where νk is a t-power multiple of ξ̄p−1
k σξ̄k, but that there is room for further A∗-

comodule extensions.
This implies that the inverse limit Adams spectral sequence

Es,t
2 (B) = Exts,t

A∗

(Fp, H
c
∗(THH(B)tS

1

)) =⇒ πt−s THH(B)tS
1

p

is an algebra over the Adams spectral sequence

Es,t
2 = Exts,t

A∗

(Fp, H
c
∗(THH(BP 〈n〉)tS

1

)) =⇒ πt−s THH(BP 〈n〉)tS
1

p

which contains factors like

Ext∗,∗
A∗

(Fp, H∗(BP 〈n+ 1〉)) ∼= P (v0, . . . , vn, vn+1) .

Due to the exterior factors E(ν1, . . . , νn+1) there is room for differentials that might
truncate the periodic vn+1-action visible above, but empirically this does not hap-
pen. A theory that explains the general picture is, however, currently lacking.

7. Beyond elliptic cohomology

Do K(tmf) and THH(tmf)tS
1

detect v3-periodic families? Work in progress for
p = 2 with Bruner (2008).

8. Waldhausen’s localization tower

The chromatic localization functors (Ln and) L̂n and the finite localizations
functors Lf

n fit in a diagram of commutative structured ring spectra

En KUp

L̂nS

Gn

OO

Jp

Z
×

p

OO

HQ

S(p)
// . . . // Lf

nS //

OO

Lf
n−1S

// . . . // Lf
1S

//

OO

Lf
0S

≃

OO
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where Lf
nS → LnS is an equivalence for n ≤ 1, but probably not for n ≥ 2, accord-

ing to the wisdom concerning Ravenel’s telescope conjecture [MRS01]. Applying
algebraic K-theory to the lower row one gets a telescopic localization tower

K(S(p)) −→ . . . −→ K(Lf
nS) −→ K(Lf

n−1S) −→ . . . −→ K(L1S) −→ K(Q)

similar to that of [Wal84, p. 174], interpolating between the geometrically significant
algebraicK-theory of spaces on the left hand side, and the arithmetically significant
algebraic K-theory of number fields on the right hand side. Waldhausen worked
with Ln, and explicitly assumed that it is a finite localization functor, but we
can work with Lf

n instead. This ensures that each finite cell Lf
nS-module is Lf

n-
equivalent to a finite cell S-module, as can be proved by induction on the number
of Lf

nS-cells.
Let C0 be the category of finite p-local spectra, and let wnC0 be the subcategory

of E(n)∗-equivalences, or equivalently of Lf
n-equivalences, for n ≥ 0. Let Cn =

C
wn−1

0 denote the full subcategory ofE(n−1)∗-acyclic spectra, i.e., the finite spectra
of type ≥ n, for n ≥ 1. Then K(C0, wn) ≃ K(Lf

nS), and Waldhausen’s localization

theorem [Wal84, §3] recognizes the homotopy fiber of K(Lf
nS) → K(Lf

n−1S) as
K(Cn, wn), i.e., the algebraic K-theory of finite spectra of type ≥ n, with respect
to the E(n)∗-equivalences. We get a homotopy fiber sequence

K(Cn, wn) −→ K(Lf
nS) −→ K(Lf

n−1S) .

Let K sm
n be the category of small K(n)-local spectra, and let K ′

n be the full
subcategory of K(n)-localizations of finite spectra of type ≥ n. Hovey–Strickland
[HS99, Thm. 8.5] show that the inclusion K ′

n ⊂ K sm
n is an idempotent completion,

so the induced map K(K ′
n) → K(K sm

n ) induces an isomorphism on πi for each

i ≥ 1. The localization functors Ln and L̂n agree on Cn, hence induce an equivalence
K(Cn, wn) ≃ K(K ′

n). Thus we have a map

K(Cn, wn) −→ K(K sm
n ) ,

which induces a πi-isomorphism for each i ≥ 1. We view K sm
n as a category of

suitably small L̂nS-modules.
Let E df

n be the category of En-module spectra that have degreewise finite homo-

topy groups. Base change along the K(n)-local pro-Gn-Galois extension L̂nS → En

takes K sm
n to E df

n , and conversely [HS99, Cor. 12.16], so it is plausible that a Galois
descent comparison map

K(K sm
n ) −→ K(E df

n )hGn

is close to an equivalence. Finally, K(E df
n ) is related to the algebraic K-theory of

En and its various localizations. For n = 1 we have E1 = KUp, and K(E df
1 ) is

the algebraic K-theory of p-nilpotent finite cell KUp-modules, which sits [Bar13,
Prop. 11.15] in a homotopy fiber sequence

K(E df
1 ) −→ K(KUp) −→ K(KUp[1/p]) .

In general, this fiber sequence is replaced by an n-dimensional cubical diagram.

Note that the transfer map K(KU/p) → K(E df
1 ) associated to KUp → KU/p is

far from an equivalence, by the calculations of [AR12, Cor. 1.3], so there does not
appear to be any easy way to describe the algebraic K-theory of degreewise finite
En-modules in terms of dévissage, cf. [Wal84, p. 188].



CHROMATIC REDSHIFT 9

K(E df
n ) // K(En)

K(Cn, wn)

&&▼
▼

▼

▼

▼

▼

▼

▼

▼

▼

// K(K sm
n )

Gn

OO

. . . // K(Lf
nS) // K(Lf

n−1S)
// . . .

Conjecture 4.1 about the structure of the algebraic K-theory of En (and various
localizations) is therefore also a statement about K(E df

n ), and conjecturally about
K(K sm

n ), which rather precisely measures the difference between K(Lf
nS) and

K(Lf
n−1S).

9. The spherical case

Calculations of TC(S; p), K(Z) and TC(Z; p) were assembled to a calculation
of K(S) at p = 2 in [Rog02] and at odd regular primes in [Rog03]. These results
describe the cohomology of K(S) as an A -module in all degrees (up to an extension
in the odd case), and lead to Adams spectral sequence calculations in a finite range
of degrees.

The algebraic K-groups of S are at least as complicated as those of its stable
homotopy groups. The complex cobordism spectrum MU has turned out to be a
convenient halfway house

S −→ MU −→ H

between homology and homotopy. The Thom equivalence MU ∧MU ≃ MU∧BU+

makes S → MU a Hopf–Galois extension [Rog08, §12], and the cosimplicial Amitsur
resolution

[q] 7−→ MU ∧MU∧q

of S is equivalent to the cobar resolution [q] 7−→ MU ∧ BU q
+ for the S[BU ] =

Σ∞(BU+)-comodule algebra MU . Applying algebraic K-theory, an analogue of
Quillen’s conjecture would predict that K(S) is well approximated by the totaliza-
tion of the cosimplicial spectrum

[q] 7−→ K(MU ∧MU∧q)

rewriteable as [q] 7−→ K(MU ∧ BU q
+). If, by analogy with the Galois case, there

are compatible maps K(MU ∧ BU q
+) → K(MU) ∧ BU q

+, then this might in turn
be approximated by the totalization of the cobar resolution [q] 7−→ K(MU)∧BU q

+

for an S[BU ]-comodule algebra structure on K(MU).
Conceivably, this leads to a more conceptual understanding of π∗K(S) in terms of

π∗K(MU) and Hopf–Galois descent, by analogy with the Adams–Novikov spectral
sequence description of π∗S in terms of π∗MU and its H∗(BU)-coaction. This
has been a motivating factor for the study of K(MU), advertised in [BR05] and
[Rog09], and pursued in [LNR11].
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10. Higher redshift

For a Lie group G of rank k, consider (B⊗G)hG or something like (B⊗G)tG. If
B is vn-periodic but not vn+1-periodic, then apparently (B⊗G)tG is vn+k-periodic.
Tested for B = H and G = T k for small k, as well as for G = SO(3) and G = S3.
Work in progress (Rognes, 2008–2011) and in Torleif Veen’s PhD thesis (2013).
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