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Abstract

We introduce the notion of a Galois extension of commutative S-algebras (FEo,
ring spectra), often localized with respect to a fixed homology theory. There are
numerous examples, including some involving Eilenberg-Mac Lane spectra of com-
mutative rings, real and complex topological K-theory, Lubin—Tate spectra and
cochain S-algebras. We establish the main theorem of Galois theory in this gen-
erality. Its proof involves the notions of separable and étale extensions of commu-
tative S-algebras, and the Goerss—Hopkins—Miller theory for E., mapping spaces.
We show that the global sphere spectrum S is separably closed, using Minkowski’s
discriminant theorem, and we estimate the separable closure of its localization with
respect to each of the Morava K-theories. We also define Hopf—-Galois extensions
of commutative S-algebras, and study the complex cobordism spectrum MU as a
common integral model for all of the local Lubin-Tate Galois extensions.

Received by the editor February 8, 2005.
2000 Mathematics Subject Classification. 13B05, 13B40, 55N15, 55N22, 55P43, 55P60.
Key words and phrases. Galois theory, commutative S-algebra.
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CHAPTER 1

Introduction

The present paper is motivated by (1) the “brave new rings” paradigm coined
by Friedhelm Waldhausen, that structured ring spectra are an unavoidable gener-
alization of discrete rings, with arithmetic properties captured by their algebraic
K-theory, (2) the presumption that algebraic K-theory will satisfy an extended
form of the étale- and Galois descent foreseen by Dan Quillen, and (3) the algebro-
geometric perspective promulgated by Jack Morava, on how the height-stratified
moduli space of formal group laws influences stable homotopy theory, by way of
complex cobordism theory.

We here develop the arithmetic notion of a Galois extension of structured ring
spectra, viewed geometrically as an algebraic form of a regular covering space, by
always working intrinsically in a category of spectra, rather than at the naive level of
coefficient groups. The result is a framework that well accommodates much recent
work in stable homotopy theory. We hope that this study will eventually lead to
a conceptual understanding of objects like the algebraic K-theory of the sphere
spectrum, which by Waldhausen’s stable parametrized h-cobordism theorem bears
on such seemingly unrelated geometric objects as the diffeomorphism groups of
manifolds, in much the same way that we now understand the algebraic K-theory
spectrum of the ring of integers.

Let E be any spectrum and G a finite group. We say that a map A — B of
E-local commutative S-algebras is an E-local G-Galois extension if G acts on B
through commutative A-algebra maps in such a way that the two canonical maps

i: A— B'G

and
h: BAaB— ][] B
G
induce isomorphisms in F,-homology (Definition 4.1.3). When E = S this means
that the maps i and h are weak equivalences, and we may talk of a global G-Galois
extension. In more detail, the map 7 is the standard inclusion into the homotopy
fixed points for the G-action on B and h is given in symbols by h(b; A b2) = {g —
b1 - g(b2)}. To make the definition homotopy invariant we also assume that A is a
cofibrant commutative S-algebra and that B is a cofibrant commutative A-algebra.
There are many interesting examples of such “brave new” Galois extensions.

ExAMPLES 1.1.

(a) The Eilenberg—Mac Lane functor R — HR takes each G-Galois extension
R — T of commutative rings to a global G-Galois extension HR — HT of commu-
tative S-algebras (Proposition 4.2.1).
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4 1. INTRODUCTION

(b) The complexification map KO — KU from real to complex topological
K-theory is a global Z/2-Galois extension (Proposition 5.3.1).

(¢) For each rational prime p and natural number n the profinite extended
Morava stabilizer group G,, = S,, ¥ Gal acts on the even periodic Lubin—Tate
spectrum E,, with mo(E,) = W(Fpn)[[u1,...,un_1]], so that Lg,,)S — E, is a
K (n)-local pro-G,-Galois extension (see Notation 3.2.2 and Theorem 5.4.4(d)).

(d) For most regular covering spaces Y — X the map of cochain HF,-algebras
F(X4,HF,) — F(Yy, HF,) is a Galois extension (Proposition 5.6.3(a)).

A map A — B of commutative S-algebras will be said to be faithful if for each
A-module N with N A4 B ~ x we have N ~ % (Definition 4.3.1). The map A — B
is separable if the multiplication map pu: B Ay B — B admits a bimodule section
up to homotopy (Definition 9.1.1). A commutative S-algebra B is connected, in the
sense of algebraic geometry, if its space of idempotents £(B) is weakly equivalent
to the two-point space {0,1} (Definition 10.2.1). There are analogous definitions
in each F-local context.

In commutative ring theory each Galois extension is faithful, but it remains an
open problem to decide whether each Galois extension of commutative S-algebras
is faithful (Question 4.3.6). Rather conveniently, a commutative S-algebra B is
connected if and only if the ring m(B) is connected (Proposition 10.2.2).

Here is our version of the Main Theorem of Galois theory for commutative S-
algebras. The first two parts (a) and (b) of the theorem are obtained by specializing
Theorem 7.2.3 and Proposition 9.1.4 to the case of a finite, discrete Galois group G.
The recovery in (c) of the Galois group is Theorem 11.1.1. The converse part (d)
is the less general part of Theorem 11.2.2.

THEOREM 1.2. Let A — B be a faithful E-local G-Galois extension.

(a) For each subgroup K C G the map C = B" — B is a faithful E-local
K -Galois extension, with A — C' separable.

(b) For each normal subgroup K C G the map A — C = B"K is a faithful
E-local G/K-Galois extension.

If furthermore B is connected, then:

(¢) The Galois group G is weakly equivalent to the mapping space C4(B, B) of
commutative A-algebra self-maps of B.

(d) For each factorization A — C — B of the G-Galois extension, with A — C
separable and C — B faithful, there is a subgroup K C G such that C ~ B"X qs
an A-algebra over B.

In other words, for a faithful E-local G-Galois extension A — B with B con-
nected there is a bijective contravariant Galois correspondence K « C = B"X be-
tween the subgroups of G and the weak equivalence classes of separable A-algebras
mapping faithfully to B. The inverse correspondence takes C to K = moCc (B, B).

The main theorem fully describes the intermediate extensions in a G-Galois
extension A — B, but what about the further extensions of B? We say that
a connected E-local commutative S-algebra A is separably closed if there are no
connected E-local G-Galois extensions A — B for non-trivial groups G (Defini-
tion 10.3.1). The following fundamental example is a consequence of Minkowski’s
discriminant theorem in number theory, and is proved as Theorem 10.3.3.

THEOREM 1.3. The global sphere spectrum S is separably closed.
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1. INTRODUCTION 5

The absence of localization is crucial for this result. At the other extreme the
Morava K (n)-local category is maximally localized, for each p and n. Here the
Lubin-Tate spectrum E,, admits a K (n)-local pro-nZ-Galois extension E,, — EnT
with

wo(EL) = W(E)[[ur, -, un1]]

given by adjoining all roots of unity of order prime to p (§5.4.6). We expect
that each further G-Galois extension E]" — B of such a Landweber exact even
periodic spectrum must again be Landweber exact and even periodic, and such
that mo(E2") — mo(B) will be a G-Galois extension of commutative rings. But
W(F,)[[u1,---,un_1]] is separably closed as a commutative ring, so such a 7y(B)
cannot be connected, and B the cannot be connected for non-trivial groups G.
Therefore we expect:

CONJECTURE 1.4. The extension E}'" of the Lubin-Tate spectrum E,, is K(n)-
locally separably closed. In particular, the Galois group Gy =S, X Z of L n)S —
E" s the K(n)-local absolute Galois group of the K(n)-local sphere spectrum
Lkmn)S.

Partial results supporting this conjecture have been obtained by Andy Baker
and Birgit Richter [BRO5b], for global Galois extensions that are furthermore
assumed to be faithful and abelian.

The substantial supply of pro-Galois extensions in the K(n)-local category,
like Lg(n)S — Enp, is not available in the F(n)-local category (see §5.5.4). This
draws extra attention to the non-smashing Bousfield localizations, and thus to
the distinction between the whole category of modules over Ly ,)S and its full
subcategory of K (n)-local modules. A study of the sphere spectrum as an algebro-
geometric scheme- or stack-like object, that only involves smashing localizations
or only treats the whole module categories over the various Bousfield localizations,
does thus not capture these very interesting examples of regular geometric covering
spaces.

There are structured ring spectrum replacements for Kahler differentials, called
topological Hochschild homology (= THH, see Section 9.2) and topological André-
Quillen homology (= TAQ, see Section 9.4), in the context of associative and com-
mutative S-algebras, respectively. These need not be K (n)-local when applied to
K (n)-local S-algebras (see Example 9.2.3). Therefore the notions of (formally) étale
extensions of associative or commutative S-algebras will again give a richer theory
when considered within the K (n)-local subcategory, rather than in the whole mod-
ule category over Ly (,)S. Thus also a study of the algebraic geometry of the sphere
spectrum with respect to the étale topology will become more substantial by tak-
ing these Bousfield local subcategories into account. This phenomenon differs from
that which is familiar in discrete algebraic geometry, since there all localizations
are, indeed, smashing.

It therefore appears to be better to think of the algebraic geometry of the
sphere spectrum as the “S-algebraic stack” of all Bousfield F-local subcategories
Mg g of spectra, for varying spectra E, rather than the “S-algebraic scheme” of
the Bousfield E-local S-algebras LpS themselves. The former stack maps to the
stack of module categories of the latter scheme, but it is the former that carries the
most interesting closed symmetric monoidal structures. See Definition 3.2.1 for the
notations used here, and Section 3.2, Chapter 9 and Section 12.2 for more on these
S-algebro-geometric ideas.
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6 1. INTRODUCTION

The (mono-)chromatic localizations Lx(,)S of the sphere are of course even
more drastic than the p-localizations S, so that many of the principal examples
studied in this paper are of an even more local nature than e.g. local number fields.
But the arithmetic properties of a global number field can usefully be studied by
adelic means, in terms of the system of local number fields that can be obtained from
it by the various completions that are available. We are therefore also interested
in finding global models for the system of naturally occurring K (n)-local Galois
extensions of Ly (,)S, for varying p and n.

The obvious candidate, given Quillen’s discovery of the relation of formal group
law theory to complex cobordism, is the unit map S — MU to the complex cobor-
dism spectrum. The following statement is proved in Corollary 9.6.6, Proposi-
tion 12.2.1 and the discussion surrounding diagram (12.2.6). In the second part,
S[BU] is the commutative Hopf S-algebra $°°BU,.. In summary, MU is very close
to such a global model, up to formal thickenings by Henselian maps. This makes
the author inclined to think of S — MU as a kind of (large) ramified global Galois
extension, with S[BU] playing the part of the functional dual of its imaginary Ga-
lois group. To make good sense of this, we introduce the notion of a Hopf-Galois
extension of commutative S-algebras in Section 12.1.

THEOREM 1.5. For each prime p and integer n > 1 the K(n)-local pro-G,,-
Galois extension Lg S — E, factors as the composite of the following maps of
commutative S-algebras

LS — LMY MU % E(n) — E,.

Here the first map admits the global model S — MU, by Bousfield K (n)-localization
in the category of S-modules and K (n)-nilpotent completion in the category of MU -
modules, respectively. The second map q is a formal thickening, or more precisely,
symmetrically (and possibly commutatively) Henselian. The third map is a finite
Galois extension (and can be avoided by passing to the even periodic version MUP
of MU and adjoining some roots of unity).

Furthermore, the global model S — MU is an S[BU|-Hopf-Galois extension of
commutative S-algebras, with coaction 3: MU — MU A S[BU] given by the Thom
diagonal. For each element g € G, its Galois action on E,, can be directly recovered
from this S[BU]-coaction, up to the adjunction of some roots of unity.

Here are some more detailed references into the body of the paper.

Chapter 2 contains a review of the basic Galois theory for fields and for commu-
tative rings, together with some algebraic facts that we will need for our examples.
We also make a comparison with the theory of regular covering spaces, for the
benefit of the topologically minded reader.

As hinted at above, we sometimes consider more general Galois groups G than
finite (and profinite) groups. For the initial theory, all that is required is that
the unreduced suspension spectrum S[G] = LpX®™G, admits a good Spanier—
Whitehead dual in the E-local stable homotopy category, i.e., that G is stably
dualizable (Definition 3.4.1). We review the basic properties of stably dualizable
groups and their actions on spectra in Chapter 3, referring to the author’s compan-
ion paper [Rog08] for most proofs. This chapter also contains a discussion of the
various categories of E-local S-modules and (commutative) S-algebras in which we
work.
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1. INTRODUCTION 7

The precise Definition 4.1.3 of a Galois extension of commutative S-algebras is
given in Chapter 4, followed by a discussion showing that the Eilenberg-Mac Lane
embedding from commutative rings preserves and detects Galois extensions (Propo-
sition 4.2.1). We also consider the elementary properties of faithful modules over
structured ring spectra, flatness being implicit in our homotopy invariant work. We
shall often make use of how various algebro-geometric properties of S-algebras are
preserved by base change, or are detected by suitable forms of faithful base change.

Chapter 5 is devoted to the many examples of Galois extensions mentioned
above, including all the intermediate K (n)-local Galois extensions between Ly (n)S
and the maximal unramified extension E7" of E,,. We also go through the K(1)-
local case of the Lubin-Tate extensions in much detail, making explicit the close
analogy with the classification of abelian extensions of the p-adic and rational fields
@, and Q. Finally we extend the example of cochain algebras of regular covering
spaces to cochain algebras of principal G-bundles P — X, for stably dualizable
groups G.

Chapter 6 develops the formal consequences of the Galois conditions on A — B,
including the basic fact that B is a dualizable A-module (Proposition 6.2.1), two
useful alternate characterizations of (faithful) Galois extensions (Propositions 6.3.1
and 6.3.2), and two further characterizations of faithfulness (Proposition 6.3.3 and
Lemma 6.5.4). These let us prove in Chapter 7 that faithful Galois extensions are
preserved by arbitrary base change (Lemma 7.1.1) and are detected by faithful and
dualizable base change (Lemma 7.1.4(b)). From these results, in turn, the “forward”
part of the Galois correspondence (Theorem 7.2.3) follows rather formally, saying
that for a faithful G-Galois extension A — B the homotopy fixed point spectra
C = B"K give rise to K-Galois extensions C — B for subgroups K C G, and to
G/ K-Galois extensions A — C when K is normal.

When this much of the Galois correspondence has been established, we can
make sense of the notion of a pro-Galois extension, which we do somewhat infor-
mally in Section 8.1.

The “converse” part of the Galois correspondence (Theorem 11.2.2) relies on
the possibility of recovering the Galois group G in a G-Galois extension A — B from
the space C4(B, B) of commutative A-algebra self-maps B — B, or more generally,
to recover the subgroup K from the mapping space Cc(B, B), when C = B"¥ is
a fixed S-algebra of B (Proposition 11.2.1). This is achieved in Chapter 11, but
relies on three preceding developments.

First of all, we use the commutative form of the Hopkins—Miller theory, as de-
veloped by Paul Goerss and Mike Hopkins [GHO4], to study such mapping spaces.
We use an extension of their work, from dealing with spaces of E, ring spectrum
maps, or commutative S-algebra maps, to spaces of commutative A-algebra maps.
This is discussed in Section 10.1, where we also touch on the consequences for this
theory of working E-locally. The main computational tool is the Goerss—Hopkins
spectral sequence (10.1.4), whose FE3-term involves suitable André-Quillen cohomol-
ogy groups, which fortunately vanish in all relevant cases for the Galois extensions
that we consider.

Second, the recovery of the Galois group G from C4(B, B) only has a chance,
judging from the discrete algebraic case, when B is connected in the geometric
sense that it has no non-trivial idempotents. For a commutative S-algebra B there
is a space £(B) of idempotents, which in turn is a commutative B-algebra mapping
space of the sort that can be studied by the Goerss—Hopkins spectral sequence.
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8 1. INTRODUCTION

So in Section 10.2 we treat connectivity in this geometric sense for commutative
S-algebras, reaching a convenient algebraic criterion in Proposition 10.2.2. This
also lets us define separably closed commutative S-algebras in Section 10.3.

Thirdly, not all commutative A-algebras C' mapping faithfully to B occur in
the Galois correspondence as fixed S-algebras C' = B"X. As in the discrete alge-
braic case, the characteristic property is that C' must be separable over A, and in
Section 9.1 we develop the basic theory of separable extensions of S-algebras. As
further generalizations of separable maps we have the étale maps, which we discuss
in three related contexts in Sections 9.2 through 9.4, leading to the notions of sym-
metrically (=thh-)étale, smashing and (commutatively) étale maps of S-algebras,
respectively.

Topological Hochschild homology THH controls the Kéhler differentials in the
associative setting, while topological André—Quillen homology TAQ takes on the
same role in the purely commutative setting. Our discussion here relies heavily
on the work of Maria Basterra [Bas99] and Andrej Lazarev [LaOl1]. There is
much conceptual overlap between the triviality of the topological André-Quillen
homology spectrum TAQ(B/A) for (formally) étale maps A — B, and the vanishing
of the Goerss—Hopkins André—Quillen cohomology groups DSB*T(B;“(B), Q!B) for
finite Galois extensions A — B, but the direct connection is not as well understood
as might be desired.

The remainder of the text is concerned with the interpretation of S — MU as
a Hopf-Galois extension that provides an integral model, up to Henselian maps,
for all of the Lubin-Tate extensions L ,)S — E,. Thus we consider square-zero
extensions, singular extensions and Henselian maps as various forms of infinitesimal
and formal thickenings in Section 9.5. We then obtain a good supply of relevant
examples in Section 9.6, using work of Baker and Lazarev on I-adic towers. We
have already cited Corollary 9.6.6 as relevant for part of Theorem 1.5.

The idea of Hopf—Galois extensions is to replace the action by the Galois
group G on a commutative A-algebra B by a coaction by the functional dual
DG, = F(G4,S) of the Galois group, which is a commutative Hopf S-algebra.
In the algebraic situation such coactions have been useful, e.g. to classify insepara-
ble Galois extensions of fields [Cha71]. In the absence of an actual Galois group
the condition that i: A — B"% is a weak equivalence must be rewritten, by using
a cosimplicial resolution for the coaction (the Hopf cobar complex) in place of the
homotopy fixed points. This rewriting can naturally go through a second cosim-
plicial resolution associated to A — B, which we know as the Amitsur complex.
We discuss the Amitsur complex in Section 8.2, so as to have the accompanying
notion of (nilpotent) completion of A along B available in Chapters 9 and 10, and
give the definitions of the Hopf cobar complex and of Hopf-Galois extensions in
Section 12.1.

To conclude the paper, in Section 12.2 we go through some of the details of how
the inseparable extension S — MU is an S[BU]-Hopf-Galois extension, and how
the Hopkins—Miller theory and the Lubin—Tate deformation theory work together to
show that the global S[BU]-coaction on MU captures the Morava stabilizer group
action on E,,, at all primes p and chromatic heights n.
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CHAPTER 2
Galois extensions in algebra

2.1. Galois extensions of fields

We first recall the basics about Galois extensions of fields. Let G be a finite
group acting effectively (only the unit element acts as the identity) from the left
by automorphisms on a field E, and let F = EY be the fixed subfield. Let

j: E(G) — Homp(E, E)

be the canonical associative ring homomorphism taking e; g to the homomorphism
es — €1 - g(eq), from the twisted group ring of G over E to the F-module endomor-
phisms of E. Then j is an isomorphism, for by Dedekind’s lemma j is injective,
and dimp(F) equals the order of G, so j is also surjective by a dimension count.
See [Dr95, App.] for elementary proofs. Let

h: Eep E— []E
G
be the canonical commutative ring homomorphism taking e; ® e to the sequence
{g — e1-g(e2)}, from the tensor product of two copies of E over F to the prod-
uct of G copies of E. Then also h is an isomorphism, for it is the E-module
dual of j, by way of the identifications Homg(F ®f E,FE) = Homp(E, E) and
Homg([[; E, E) = E(G) (using that G is finite).

2.2. Regular covering spaces

There is a parallel geometric theory of regular (= normal) covering spaces
[Sp66, 2.6.7], [Ha02, 1.39]. Let G be a finite discrete group acting from the
right on a compact Hausdorff space Y. Let X = Y/G be the orbit space, and let
7:Y — X be the orbit projection. There is a canonical map

E:YXxG—-Y xxY

to the fiber product of 7 with itself, taking (y,g) to (y,y - g). This map is always
surjective, by the definition of X as an orbit space, and it is injective if and only if G
acts freely on Y. So £ is a homeomorphism if and only if Y — X is a regular covering
space, with G as its group of deck transformations, acting freely and transitively on
each fiber. In general, the possible failure of £ to be injective measures the extent
to which G does not act freely on Y, which in turn can be interpreted as a measure
of to what extent Y is ramified as a cover of X. The theory of Riemann surfaces
provides numerous examples of the latter phenomenon.

Dually, let R = C(X) and T = C(Y) be the rings of continuous (real or
complex) functions on X and Y, respectively. As usual the points of X can be
recovered as the maximal ideals in R, and similarly for Y. The group G acts from

10
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2.3. GALOIS EXTENSIONS OF COMMUTATIVE RINGS 11

the left on T, by the formula g(t) = g *xt: y — t(y - g), and the natural map
R — T dual to 7 identifies R with the invariant ring T¢, by the isomorphism
C(Y)% 2 C(Y/G). The map £ above is dual to the canonical homomorphism

h:T®RT—>HT
G

taking ¢t; ® t2 to the function g — t; - g(¢2), considered as an element in the product
[IcT. Then £ is a homeomorphism if and only if h is an isomorphism, by the
categorical anti-equivalence between compact Hausdorff spaces and their function
rings. The surjectivity of £ ensures that h is always injective, and in general the
possible failure of & to be surjective measures the extent of ramification in ¥ — X.

For a moment, let us also consider the more general case of a principal G-bundle
m: P — X for a compact Hausdorff topological group G. The map £: P x G —
P xx P is a homeomorphism, now with respect to the given topology on G. Let
R =C(X), T =C(P) and H = C(G). Then H is a commutative Hopf algebra
with coproduct ¥: H — H ® H, if the map H — C(G x G) dual to the group
multiplication G x G — G factors through the canonical map H ® H — C(G x G).
Likewise H coacts on T from the right by 8: T — T ® H, if the map T — C(P x G)
induced by the group action P x G — P factors through T® H — C(P x G). These
factorizations can always be achieved by using suitably completed tensor products,
but we wish to refer to the algebraic tensor products here. Then the freeness of the
group action on P is expressed by saying that the composite map

hTorT L TorTeoH L2 To H
is an isomorphism. We shall return to this dualized context in Chapter 12 on
Hopf-Galois extensions.

2.3. Galois extensions of commutative rings

Generalizing the two examples above, for finite Galois groups, Auslander and
Goldman [AG60, App.] gave a definition of Galois extensions of commutative
rings as part of their study of separable algebras over such rings. Chase, Harrison
and Rosenberg [CHR65, §1] found several other equivalent definitions, and devel-
oped the Galois theory for commutative rings to also encompass the fundamental
Galois correspondence. We now recall their basic results.

Let R — T be a homomorphism of commutative rings, making T a commutative
R-algebra, and let G be a finite group acting on 7" from the left through R-algebra
homomorphisms. Let

i: R—T%
be the inclusion into the fixed ring, let

h:T®RT—>HT
G

be the commutative ring homomorphism that takes ¢; ® ¢t to the sequence {g —
t1-g(t2)}, and let

j: T(G) — Hompg(T,T)
be the associative ring homomorphism that takes ¢;g to the R-module homomor-
phism ty — t; - g(t2). We give [, T the pointwise product (tg), - (t;)g = (t4ty)g
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12 2. GALOIS EXTENSIONS IN ALGEBRA

and T(G) the twisted product t1g; - t2gs = t191(t2)g192, using the left G-action
(91,t2) = ga1(t2) on T.

DEFINITION 2.3.1. Let G act on T over R, as above. We say that R — T is a
G-Galois extension of commutative rings if bothi: R — T% and h: T®rT — [[ T
are isomorphisms.

Here we are following Greither [Gre92, 0.1.5]. Auslander and Goldman
[AG60, p. 396] instead took the condition below on %, j and T to be the defining
property, but Chase, Harrison and Rosenberg [CHR65, 1.3| proved that the two
definitions are equivalent.

ProproSITION 2.3.2. Let G act on T over R, as above. Then R — T is a
G-Galois extension if and only if both i: R — TC and j: T{(G) — Hompg(T,T) are
isomorphisms and T is a finitely generated projective R-module.

The condition that 4 is an isomorphism means that we can speak of R as the
fized ring of T. The homomorphism h measures to what extent the extension
R — T is ramified, and Galois extensions are required to be unramified. The
injectivity of j is a form of Dedekind’s lemma, and ensures that the action by G is
effective.

EXAMPLE 2.3.3. If K — L is a G-Galois extension of number fields, then the
corresponding extension R = Oxg — O = T of rings of integers is a G-Galois
extension of commutative rings if and only if KX — L is unramified as an extension
of number fields [AB59]. More generally, if ¥ is a set of prime ideals in Ok, and
Y’ the set of primes in O, above those in X, then the extension Og sy, — Op s of
rings of X-integers is G-Galois if and only if ¥ contains all the primes that ramify
in L/K [Gre92, 0.4.1]. Here Ok » is defined as the ring of elements z € K that
have non-negative valuation v, (z) > 0 for all prime ideals p ¢ . Thus O — Op,
becomes a G-Galois extension precisely upon localizing away from (= inverting)
the ramified primes.

To see this, note that if 7' = R{¢1,...,t,} is a free R-module of rank n, then
T®grT is a free T-module on the generators 1 ®tq,...,1®1t,, and h is represented
as a T-module homomorphism by the square matrix A = (g(¢;))q,; of rank n, with
g€ Gandi=1,...,n. The discriminant of T/R is d = det(A)?, by definition, and
the prime ideals in Ok that ramify in L/K are precisely the prime ideals dividing
the discriminant. So h is an isomorphism if and only if det(A) and d are units
in R, or equivalently, if there are no ramified primes. A local version of the same
argument works when 7' is not free over R.

Here are some further basic properties of Galois extensions of commutative
rings, which will be relevant to our discussion.

ProproSITION 2.3.4. Let R — T be a G-Galois extension. Then:

(a) T is faithfully flat as an R-module, i.e., the functor (—) Qg T preserves and
detects (=reflects) exact sequences.

(b) The trace map tr: T — R (takingt € T to 3 . 9(t) € TC = R) is a split
surjective R-module homomorphism.

(c) T is invertible as an R|G]-module, i.e., a finitely generated projective R|G]-
module of constant rank 1.
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For proofs, see e.g. [Gre92, 0.1.9], (Gre92, 0.1.10] and [Gre92, 0.6.1]. Be-

ware that part (b) does not extend well to the topological setting, as Example 6.4.4
demonstrates.
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CHAPTER 3

Closed categories of structured module spectra

3.1. Structured spectra

We now adapt these ideas to the context of “brave new rings,” i.e., of com-
mutative S-algebras. These can in Chapters 2-9 and 12 be interpreted as the
commutative monoids in either one of the popular symmetric monoidal categories
of structured spectra, such as the S-modules of Elmendorf, Kriz, Mandell and May
[EKMM97], the symmetric spectra in simplicial sets of Hovey, Shipley and Smith
[HSS00], symmetric spectra in topological spaces or orthogonal spectra of Man-
dell, May, Schwede and Shipley [MMSSO01] or the simplicial functors of Segal and
Lydakis [Ly98], according to the reader’s needs or preferences.

However, in Chapters 10 and 11 we make use of the Goerss—Hopkins obstruc-
tion theory for F., mapping spaces [GHO4], which presumes that one works in a
category of spectra that satisfies Axioms 1.1 and 1.4 in op. cit. In particular, this
theory is needed for the proof of parts (c) and (d) of our Theorem 1.2, and for
Theorem 1.3. It is known that S-modules, symmetric spectra formed in topological
spaces and orthogonal spectra all satisfy the required axioms, by [GHO04, 1.5]. To
be concrete, and to have a convenient source for the more technical references, we
shall work with the S-modules of Peter May et al.

Let S be the sphere spectrum, and let Mg be the category of S-modules.
Among other things, it is a topological category with all limits and colimits and all
topological tensors and cotensors. A map f: X — Y of S-modules is called a weak
equivalence if the induced homomorphism 7, (f): m.(X) — 7. (Y") of stable homo-
topy groups is an isomorphism. The category Dg obtained from Mg by inverting
the weak equivalences is called the stable homotopy category, and is equivalent to
the homotopy category of spectra constructed by Boardman [Vo70].

The smash product X A'Y and function object F(X,Y) make Mg a closed
symmetric monoidal category, with S as the unit object. For each topological
space T the topological tensor X A Ty equals the smash product X A S[T], and
the topological cotensor YT = F(T,,Y) equals the function spectrum F(S[T],Y),
where S[T'] = ¥°°T denotes the unreduced suspension S-module on 7.

An (associative) S-algebra A is a monoid in Mg, i.e., an S-module A equipped
with a unit map n: S — A and a unital and associative multiplication p: AANA — A.
A commutative S-algebra A is a commutative monoid in Mg, i.e., one such that
the multiplication p is also commutative. We write Ag and Cg for the categories of
S-algebras and commutative S-algebras, respectively. More generally, for a commu-
tative S-algebra A we write M4, A4 and C4 for the categories of A-modules, asso-
ciative A-algebras and commutative A-algebras, respectively [EKMM97, VIIL.1].

14
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3.2. LOCALIZED CATEGORIES 15

3.2. Localized categories

Our first examples of Galois extensions of structured ring spectra will be maps
A — B of commutative S-algebras, with a finite group G acting on B through A-
algebra maps, such that there are weak equivalences i: A ~ B"¢ and h: BAy B ~
[Iz B. The formal definition appears in Section 4.1 below. However, there are
interesting examples that only appear as Galois extensions to the eyes of weaker
invariants than the stable homotopy groups m.(—). More precisely, for a fixed
homology theory E.(—) we shall allow ourselves to work in the E-local stable
homotopy category, where have arranged that each map f: X — Y such that
E.(f): Ex(X) — E.(Y) is an isomorphism, is in fact a weak equivalence. In
particular, we will encounter situations where we only have that E,.(:) and E.(h)
are isomorphisms, in which case we shall interpret A — B as an E-local G-Galois
extension.

Note the close analogy between the E-local theory and the case (Example 2.3.3)
of rings of integers localized away from some set of primes. Doug Ravenel’s influ-
ential treatise on the chromatic filtration of stable homotopy theory [Ra84, §5],
brings emphasis to the tower of cases when E = E(n), the n-th Johnson-Wilson
spectrum. To us, the most interesting case is when E = K (n) is the n-th Morava
K-theory spectrum. The K (n)-local stable homotopy category is studied in de-
tail in [HSt99, §§7—8|, and captures the n-th layer, or stratum, in the chromatic
filtration.

DEFINITION 3.2.1. Let E be a fixed S-module, with associated homology the-
ory X — E.(X) = m.(EAX). By definition, an S-module Z is said to be E-acyclic
if EAZ ~ %, and an S-module Y is said to be E-local if F(Z,Y) ~ x for each
E-acyclic S-module Z. Let Mgg C Mg be the full subcategory of E-local S-
modules. A map f: X — Y of E-local S-modules is a weak equivalence if and only
if it is an E-equivalence, i.e., if E,(f) is an isomorphism.

There is a Bousfield localization functor Lg: Mg — Mgg C Mg [Bo79],
[EKMM97, VIII.1.6], and an accompanying natural F.-equivalence X — LgX
for each S-module X. We may assume that this F,-equivalence is the identity
when X is already E-local, so that the localization functor Lg is idempotent. The
homotopy category Dgs g of Mg g is the E-local stable homotopy category.

More generally, for a commutative S-algebra A we let M4 g C M4 be the full
subcategory of E-local A-modules, with homotopy category D4 g. To be precise,
there is an A-module F 4 F of the homotopy type of AAE, and a localization functor
Lﬁ?AE: My — My g, with respect to F4E in the category of A-modules, which
amounts to E-localization at the level of the underlying S-modules [EKMM97,
VIII.1.7]. We shall allow ourselves to simply denote this functor by Lg.

NOTATION 3.2.2. We write
L,X = LgmX

for the Bousfield localization of X with respect to the Johnson—Wilson spectrum
E(n) [JWT73], with m,E(n) = Z)[vs, ..., vn—1,vF!], for each non-negative inte-
ger n, and

Lg@n)X
for the Bousfield localization of X with respect to the Morava K-theory spectrum
K (n) [JWT5], with 7, K (n) = F,[vE!], for each natural number n.
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16 3. CLOSED CATEGORIES OF STRUCTURED MODULE SPECTRA

We will reserve the symbol L for the Bousfield nilpotent completion recalled
in Definition 8.2.2, and shall therefore not use this notation for the functor Ly,
unlike e.g. [HSt99].

The smash product X AY of two E-local S-modules will in general not be E-
local, although this is the case when Lg is a so-called smashing localization, i.e., one
that commutes with direct limits [Ra84, 1.28]. The Johnson-Wilson spectra E =
E(n) provide interesting examples of smashing localizations L, = Lg,), [Ra92,
7.5.6], while localization L,y with respect to the Morava K-theories F = K(n)
is not smashing [HSt99, 8.1|. Likewise, the unit S for the smash product is rarely
FE-local. So in order to work with S-algebras and related constructions internally
within Mg g, we first perform each construction as usual in Mg, and then apply
the Bousfield localization functor Lg.

DEFINITION 3.2.3. We implicitly give Mg g all colimits, topological tensors,
smash products and a unit object by applying Bousfield localization to the construc-
tions in Mg. So colim;ec; X; means Lg(colim;er X;), X AY means Lg(X AY), S
means LgS and S[T] means LgX°°T,. All limits, topological cotensors and func-
tion objects formed from E-local S-modules are already E-local, so no Bousfield
localization is required in these cases. With these conventions, Mg g is a topo-
logical closed symmetric monoidal category with all limits and colimits. The same
considerations apply for M4 g.

There is a natural map L X ALgY — Lg(X AY), making Lg a lax monoidal
functor, so that LgS is always a commutative S-algebra. When E is smashing,
the category Mg g of E-local S-modules is equivalent (at the level of homotopy
categories) to the category My s of LgS-modules, so the study of E-local S-
modules is a special case of the study of modules over a general commutative S-
algebra A = LgS. However, when E is not smashing, as is the case for £ = K(n),
the two homotopy categories are not equivalent, and we shall need to consider the
more general notion.

When E = §, every S-module is E-local and Mg g = Mg, etc., so the E-local
context specializes to the “global”, unlocalized situation. For brevity, we shall often
simply refer to the F-local S-modules as S-modules, or even as spectra, but except
where we explicitly assume that £ = S, the discussion is intended to encompass
also the general E-local case.

REMARK 3.2.4. By analogy with algebraic geometry, we may heuristically wish
to view A-modules M as suitable sheaves M™ over some geometric “structure
space” Spec A. This structure space would come with a Zariski topology, with
open subspaces Ua g C Spec A corresponding to the various localization functors
Lg on the category of A-modules, in such a way that the restriction of the sheaf
M~ over Spec A to the subspace Us g would be the sheaf (LpM)™ corresponding
to the E-local A-module Lg M. For smashing F this would precisely amount to an
L A-module, so that Ug g could be identified with the structure space Spec LgA.

However, for non-smashing E the condition of being an E-local A-module is
strictly stronger than being an LgA-module. Therefore, the geometric structure on
Spec A is not simply that of an “S-algebra’ed space” carrying the (commutative)
S-algebra LA over Uy g, by analogy with the ringed spaces of algebraic geometry.
If we wish to allow non-smashing localizations E to correspond to Zariski opens,
then the geometric structure must also capture the additional restriction it is for
an LgA-module to be an E-local A-module. This exhibits a difference compared to
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3.3. DUALIZABLE SPECTRA 17

the situation in commutative algebra, where localization at an ideal commutes with
direct limits, and behaves as a smashing localization, while completions behave
more like non-smashing localizations. It does not seem to be so common to do
commutative algebra in such implicitly completed situations, however.

A continuation of this analogy would be to consider other Grothendieck-type
topologies on Spec A, with coverings built from E-local Galois extensions Lg A — B
(Definition 4.1.3) or more general étale extensions (Definition 9.4.1), subject to a
combined faithfulness condition (Definition 4.3.1). In the unlocalized cases, such a
(big) étale site on the opposite category of Cg, and associated small étale sites on the
opposite category of each C4, have been developed by Bertrand Toén and Gabriele
Vezzosi [TV05, §5.2]. However, the rich source of K(n)-local Galois extensions of
L n)S discussed in Section 5.4 provides, by Lemma 9.4.4, an equally rich supply
of K(n)-local étale maps from Lg(,)S. It appears, by extension from the case
n = 1 discussed in Section 5.5, that these are not globally étale maps, in which
case the étale topology proposed in [T'VO05] will be too coarse to encompass these
examples. The author therefore thinks that a finer étale site, taking non-smashing
localizations like L ) into account, would lead to a stronger and more interesting
theory.

3.3. Dualizable spectra

In each closed symmetric monoidal category there is a canonical natural map
vi: F(X,)Y)NZ - F(X,YAZ).

It is right adjoint to a map e Al: X AF(X,Y)AZ — Y A Z, where the adjunction
counit e: X A F(X,Y) — Y is left adjoint to the identity map on F(X,Y).

Dold and Puppe [DP80] say that an object X is strongly dualizable if the
canonical map v: F(X,Y)AZ — F(X,Y A Z) is an isomorphism for all Y and Z.
Lewis, May and Steinberger [LMS86, II1.1.1] say that a spectrum X is finite if it
is strongly dualizable in the stable homotopy category, i.e., if the map v is a weak
equivalence. We shall instead follow Hovey and Strickland [HSt99, 1.5(d)] and
briefly call such spectra dualizable. By [LMS86, II1.1.3(ii)] it suffices to verify
this condition in the special case when Y = S and Z = X, so we take this simpler
criterion as our definition.

DEFINITION 3.3.1. Let DX = F(X,S) be the functional dual of X. We say
that X is dualizable if the canonical map v: DX A X — F(X, X) is a weak equiv-
alence. More generally, for an (implicitly E-local) module M over a commutative
S-algebra A, let DaM = F4(M, A) be the functional dual, and say that M is a
dualizable A-module if the canonical map v: DaM Ay M — Fus(M, M) is a weak
equivalence.

LEMMA 3.3.2. (a) If X or Z is dualizable, then the canonical mapv: F(X,Y)A
Z — F(X,Y N Z) is a weak equivalence.

(b) If X is dualizable, then DX is also dualizable and the canonical map p: X —
DDX is a weak equivalence.

(c) The dualizable spectra generate a thick subcategory, i.e., they are closed
under passage to weakly equivalent objects, retracts, mapping cones and (de-)sus-
pensions.
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18 3. CLOSED CATEGORIES OF STRUCTURED MODULE SPECTRA

Here p: X — DDX = F(F(X,S),S) is right adjoint to F(X,S)A X — S,
which is obtained by twisting the adjunction counit ¢: X A F(X,S) — S. For
proofs, see [LMS86, II1.1.2 and II1.1.3]. We sometimes also use v to label the
conjugate map Y A F(X,Z) — F(X,Y A Z). The corresponding results hold for
E-local A-modules, by the same formal proofs.

In the unlocalized setting E = S, the following converse to Lemma 3.3.2(c) is
one justification for the term “finite”.

PROPOSITION 3.3.3. Let A be commutative S-algebra. A global A-module M
is dualizable in M4 = My s if and only if it is weakly equivalent to a retract of
a finite cell A-module. When A is connective, this is in turn equivalent to being a
retract of a finite CW A-module spectrum.

The proof [EKMM97, IT1.7.9] uses in an essential way that stable homotopy
X — m(X) = [A, X]2 commutes with coproducts, which amounts to A being small
in the homotopy category D4 of A-modules. This fails in some E-local contexts.
For example, the K (n)-local sphere spectrum L ,,)S is not small in the K (n)-local
category [HSt99, 8.1], and consequently m.(X) is not a homology theory on this
category. So in general there will be more dualizable E-local A-modules than the
semi-finite ones, i.e., the retracts of the finite cell LgA-modules. In this paper we
shall prefer to focus on the notion of dualizability, rather than on being semi-finite,
principally because of Proposition 6.2.1 and (counter-)Example 6.2.2 below.

3.4. Stably dualizable groups

For our basic theory of G-Galois extensions of commutative S-algebras the
group action by G appears through the module action by its suspension spectrum
S[G] = LEX*G, and the finiteness condition on G only enters through the prop-
erty that S[G] is a dualizable spectrum. We then say that G is an E-locally stably
dualizable group. Only when we turn to properties related to separability will it be
relevant that G is discrete, and then usually finite. So we shall develop the basic
theory in the greater generality of stably dualizable topological groups G.

DEFINITION 3.4.1. A topological group G is E-locally stably dualizable if its
suspension spectrum S[G] = LgX>°Gy is dualizable in Mg g. Writing DG4 =
F(G4, LgS) for its functional dual, the condition is that the canonical map

v: DG, A S[G] — F(S[G], S[G])
is a weak equivalence in the E-local category.

EXAMPLES 3.4.2. (a) Each compact Lie group G admits the structure of a
finite CW complex, so S[G] is a finite cell spectrum and G is stably dualizable, for
each F.

(b) The Eilenberg—Mac Lane spaces G = K(Z/p, q) are loop spaces and thus
admit models as topological groups. They have infinite mod p homology for each
g > 1, so S[G] is never dualizable in Mg by Proposition 3.3.3. However, the Morava
K-homology K(n).K(Z/p,q) is finitely generated over K(n). by a calculation of
Ravenel and Wilson [RaW80, 9.2], so G = K(Z/p, q) is in fact K (n)-locally stably
dualizable by [HSt99, 8.6]. We are curious to see if these and similar topological
Galois groups play any significant role in the K (n)-local Galois theory.
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3.5. The dualizing spectrum

The weak equivalence S[G] = \/;S — [[oS = DG, for a finite group G
generalizes to an FE-local self-duality of the suspension spectrum S[G], when G
is an E-locally stably dualizable group. The self-duality holds up to a twist by
a so-called dualizing spectrum S%?¢. When G is a compact Lie group this is the
suspension spectrum on the one-point compactification of the adjoint representation
adG of G, thus the notation, and so $%¥¢ = S for G finite. John Klein [K101, §1]
introduced dualizing spectra S%4C for arbitrary topological groups, and Tilman
Bauer [Bau04, 4.1] established the twisted self-duality of S[G] in the p-complete
category, when G is a p-compact group in the sense of Bill Dwyer and Clarence
Wilkerson [DW94]. In [Rog08] we have extended these results to all E-locally
stably dualizable groups, as we now review.

DEFINITION 3.5.1. Let G be an E-locally stably dualizable group. The group
multiplication provides the suspension spectrum S[G] = LgX>*°G4 with mutually
commuting left and right G-actions. We define the dualizing spectrum S*?¢ to be
the G-homotopy fixed point spectrum

§94G — S[G)"C = F(EG,, S|G])¢

of S[G], formed with respect to the right G-action [Rog08, 2.5.1]. Here EG =
B(x,G,G) is the standard free, contractible right G-space. The remaining left
action on S[G] induces a left G-action on S%C.

When G is finite, there is a natural weak equivalence
§99¢ = S[G)"¢ ~ DGE ~ S.

Here the last equivalence involves the collapsing homotopy equivalence c: EG — *,
which is a G-equivariant map, but not a G-equivariant homotopy equivalence. For
general stably dualizable groups G, the dualizing spectrum is indeed dualizable
and smash invertible [Rog08, 3.2.3 and 3.3.4], so smashing with 524G induces
an equivalence of derived categories.

The left G-action on S[G] functorially dualizes to a right G-action on DG,
with associated module action map a: DG4 A S[G] — DG,. The diagonal map
on G induces a coproduct ¥: S|G] — S[G] A S[G], using [EKMM97, II.1.2].
These combine to a shear map

sh: DG4 A S[G] “2% DG, A S[G] A S[G] 225 DG4 A S[G,
which is equivariant with respect to each of three mutually commuting G-actions
[Rog08, 3.1.2] and is a weak equivalence [Rog08, 3.1.3]. Taking homotopy fixed
points with respect to the right action of G on S[G] in the source and the diagonal
right action on DG4 and S[G] in the target induces a natural Poincaré duality
equivalence [Rog08, 3.1.4]

(3.5.2) DG, A S*¢ = 5(@).

This identification uses the stable dualizability of G, and expresses the twisted self-
duality of S[G]. The weak equivalence is equivariant with respect to both a left and
a right G-action. The left G-action is by the inverse of the right action on DG,
the standard left action on S%¥¢ and the standard left action on S[G]. The right
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20 3. CLOSED CATEGORIES OF STRUCTURED MODULE SPECTRA

G-action is by the inverse of the left action on DG, the trivial action on S*¥¢ and
the standard right action on S[G].

3.6. The norm map

Let X be any E-local S-module with left G-action, and equip it with the trivial
right G-action. The smash product X A S[G] then has a diagonal left G-action, and
a right G-action that only affects S[G]. Consider forming homotopy orbits (—)ng
with respect to the left action and forming homotopy fixed points (—)"¢ with
respect to the right action, in either order. There is then a canonical colimit/limit
exchange map

K2 ((X AS[G) " )ne — (X A S[GDre)"C -
The source of  receives a weak equivalence from (X A S%4%), s (this uses the stable
dualizability of G; see the proof of Lemma 6.4.2), and the target of x maps by a
weak equivalence to X" (this is easy). The composite of these three maps is the
(homotopy) norm map [Rog08, 5.2.2]

(3.6.1) N: (X A S%C%), 6 — XhE

If X = WAGy =W A S[G] for some spectrum W with left G-action, with G
acting in the standard way on S[G], then the norm map for X is a weak equivalence
[Rog08, 5.2.5]. That reference only discusses the case when G acts trivially on W,
but in general there is an equivariant shearing equivalence (: wA g +— g(w)Ag from
W A S[G] with G acting only on S[G] to W A S[G] with the diagonal G-action.
We can define the G-Tate construction X* to be the cofiber of the norm map

(X/\Sadc)h(; ﬁ) XhG . XtG.

Then X'¢ ~ x if and only if N is a weak equivalence, which in turn holds if and
only if the exchange map & is a weak equivalence. From this point of view X*C is
the obstruction to the commutation of the G-homotopy orbit and the G-homotopy
fixed point constructions, when applied to X A S[G].
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CHAPTER 4

Galois extensions in topology

4.1. Galois extensions of E-local commutative S-algebras

Fix an S-module E, and consider the categories Mg g and Cs g of E-local
S-modules and E-local commutative S-algebras, respectively. These are full sub-
categories of the topological (closed) model categories Mg and Cg, respectively, as
explained in [EKMM97, VII.4].

The reader may, if preferred, alternatively work with the “convenient” S-model
structures of Jeff Smith and Brooke Shipley [Sh04], but this will not be necessary.
There is another F-local model structure on Mg, with F,-equivalences as the weak
equivalences and the E-local S-modules as the fibrant objects, see [EKMM97,
VIIIL.1], but there does not seem to be such an E-local model structure available
in the case of Cg.

Let A — B be a map of E-local commutative S-algebras, making B a commu-
tative A-algebra, and let G be an E-locally stably dualizable group acting contin-
uously on B from the left through commutative A-algebra maps. For example, G
can be a finite discrete group.

Suppose that A is cofibrant as a commutative S-algebra, and that B is cofi-
brant as a commutative A-algebra. The commutative A-algebra B tends not to be
cofibrant as an A-module, but the smash product functor B A4 (—) is still homo-
topically meaningful when applied to (other) cofibrant commutative A-algebras, as
explained in [EKMM97, VII.6].

Let

(4.1.1) i: A— BM¢

be the map to the homotopy fixed point S-algebra B"¢ = F(EG,,B)® that is
right adjoint to the composite G-equivariant map A A EGy — A — B, collapsing
the contractible free G-space EG to a point. Let

(4.1.2) h: BAs B — F(G4,B)

be the canonical map to the product (cotensor) S-algebra F'(G., B) that is right
adjoint to the composite map B A4 BA Gy — B Asg B — B, induced by the
action BAG+ = G, AN B — B of G on B, followed by the A-algebra multiplication
BAsB— Bin B.

We consider B A4 B and F(G4, B) as B-modules by the multiplication in the
first (left hand) copy of B in B A4 B, and in the target of F(G,B). Then h is a
map of B-modules. The group G acts from the left on the second (right hand) copy
of B in B Aa B, and by right multiplication in the source of F(G4, B). Then h is
also a G-equivariant map. These B- and G-actions clearly commute, and combine
to a left module action by the group S-algebra B[G].

21
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22 4. GALOIS EXTENSIONS IN TOPOLOGY

Here is our key definition, which assumes that E, A, B and G are as above,
and uses the maps ¢ and h just introduced. We introduce the related map j in
Section 6.1.

DEFINITION 4.1.3. We say that A — B is an E-local G-Galois extension of
commutative S-algebras if the two canonical maps i: A — B"¢ = F(EG,,B)®
and h: BA4 B — F(G4,B), formed in the category of E-local S-modules, are
both weak equivalences.

The assumption that A and B are E-local ensures that B"® and F(G,, B) are
E-local, without any implicit localization. But B A4 B formed in S-modules needs
not be F-local, unless F is smashing. The condition that h is a weak equivalence in
M g amounts to asking that the corresponding map BAg B — F(G, B) formed
in Mg is an E,-equivalence, i.e., that F.(h) is an isomorphism.

LEMMA 4.1.4. Subject to the cofibrancy conditions, the notion of an E-local

G-Galois extension A — B is invariant under changes up to weak equivalence in
A, B and the stabilized group S[G] = LEX°G+..

Proor. By [EKMM97, VIIL.6.7] the cofibrancy conditions ensure that the
constructions A, B"®, BA4 B and F(G, B) preserve weak equivalences in A and
B, whether implicitly E-localized or not.

The natural F.-equivalences ¥°G4 — S[G] and E*°EG; — S[EG] induce a
(not implicitly localized) map

Fsi6)(S[EG), B) — Fseg, (8°EG,B) = F(EG,,B)°,

which is a weak equivalence when B is E-local. Thus the construction B"“ also
preserves weak equivalences in S[G].

Thus the E-local Galois conditions, that G is stably dualizable and the maps 4
and h are weak equivalences, are invariant under changes in A, B or G that amount
to E-local weak equivalences of A, B and S[G]. O

When E = S, so there is no implicit F-localization, we may simply say that
A — B is a G-Galois extension, or for emphasis, that A — B is a global G-
Galois extension. However, most of the time we are implicitly working F-locally,
for a general spectrum FE, but omit to mention this at every turn. Hopefully no
confusion will arise.

When G is discrete, we often prefer to write the target F(G4, B) of h as [ [ B.
When G is finite and discrete, we say that A — B is a finite Galois extension.

4.2. The Eilenberg—Mac Lane embedding

The Eilenberg-Mac Lane functor H, which to a commutative ring R associates
a commutative S-algebra HR with m,HR = R concentrated in degree 0, embeds
the category of commutative rings into the category of commutative S-algebras.
The two notions of Galois extension are compatible under this embedding. For this
to make sense, we must assume that G is finite and that £ = S.

PROPOSITION 4.2.1. Let R — T be a homomorphism of commutative rings,
and let G be a finite group acting on T through R-algebra homomorphisms. Then
R — T is a G-Galois extension of commutative rings if and only if the induced map
HR — HT is a global G-Galois extension of commutative S-algebras.
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4.3. FAITHFUL EXTENSIONS 23

PROOF. Suppose first that R — T is G-Galois. Then T is a finitely generated
projective R-module by Proposition 2.3.2, hence flat, so Torf(T, T) =0 for s # 0.
Furthermore, T' is finitely generated projective (of constant rank 1) as an R[G]-
module, by Proposition 2.3.4(c). There is an isomorphism of left R[G]-modules
R[G] = Hompg(R|G], R), since G is finite, so Extjg(R, R[G]) = Exty(R,R) =0
for s # 0. Therefore Extyg)(R,T) = 0 for s # 0, by the finite additivity of Ext in
its second argument.

It follows that the homotopy fixed point spectral sequence

E2, = H*(G;mHT) = Extl-{[s('it( R,T) = my . (HT"C)

derived from [EKMM97, IV.4.3], and the Kiinneth spectral sequence
E?, = Torf,(T,T) = ms+(HT Aprg HT)

of [EKMM97, IV.4.2], both collapse to the origin s = ¢t = 0. So (HT)"¢ ~
H(T®) = HR and HT Agr HT ~ HT ®p T) = H([[5T) ~ [Io HT are both
weak equivalences. Thus HR — HT is a G-Galois extension of commutative S-
algebras.

Conversely, suppose that HR — HT is G-Galois. Then by the same spectral
sequences T¢ = my(HT"Y) = n0HR = Rand T ®r T = no(HT Agg HT) =
wo([lg HT) = [[ T, so R — T is a G-Galois extension of commutative rings. [

4.3. Faithful extensions

Galois extensions of commutative rings are always faithfully flat, and it will
be convenient to consider the corresponding property for structured ring spectra.
It remains an open problem whether Galois extensions of commutative S-algebras
are in fact always faithful, but we shall verify that this is the case in most of our
examples, with the possible exception of some cases in Section 5.6.

DEFINITION 4.3.1. Let A be a commutative S-algebra. An A-module M is
faithful if for each A-module N with N A4 M ~ % we have N ~ x. An A-algebra B,
or G-Galois extension A — B, is said to be faithful if B is faithful as an A-module.

A set of A-algebras {A — B;}; is a faithful cover of A if for each A-module
N with N Ay B; ~ * for every i we have N ~ %. In particular, a single faithful
A-algebra B covers A in this sense.

By the following lemma, this corresponds well to the algebraic notion of a faith-
fully flat module [Gre92, 0.1.7]. Flatness (cofibrancy) is implicit in our homotopy
invariant work, so we only refer to the faithfulness in our terminology.

LEMMA 4.3.2. Let M be a faithful A-module.

(a) A map f: X =Y of A-modules is a weak equivalence if and only if f A
1: X AaM —Y Ap M is a weak equivalence.

(b) A diagram of A-modules X Ly s Z, with a preferred null-homotopy of
gf, is a cofiber sequence if and only if X Na M — Y ANg M — Z ANa M, with the
associated null-homotopy of gf A1, is a cofiber sequence.

PrOOF. (a) Consider the mapping cone C of f.
(b) Consider the induced map Cy — Z. O
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24 4. GALOIS EXTENSIONS IN TOPOLOGY

Faithful modules and extensions are preserved under base change, and are
detected by faithful base change.

LEMMA 4.3.3. Let A — B be a map of commutative S-algebras and M a
faithful A-module. Then B Ag M is a faithful B-module.

PRrOOF. Let N be a B-module such that NAg(BAg M) ~ %. Then NAg M ~
%, 80 N ~ * since M is faithful over A. O

LEMMA 4.3.4. Let A — B be a faithful map of commutative S-algebras and
M an A-module such that B Ay M is a faithful B-module. Then M is a faithful
A-module.

PRrROOF. Let N be an A-module such that N Aq M ~ *. Then (N Aa B) Ap
(BAAMYXNAysBAaM=(NAsM)NgB~x%,80 NAsgB>~xsince BAy M
is faithful over B, and thus N =~ x since B is faithful over A. O

LEMMA 4.3.5. For each G-Galois extension R — T of commutative rings, the
induced G-Galois extension HR — HT of commutative S-algebras is faithful.

ProOF. Recall that T is faithfully flat over R by Proposition 2.3.4(a). For each
HR-module N we have 7.(N Aggp HT) = 7.(N) ®gr T, by the Kiinneth spectral
sequence

E2, = Torf (m(N),T) = mss(N Aur HT)
and the flatness of T. Therefore N Agr HT ~ x implies 7.(N) g T' = 0, which in
turn implies that 7, (/N) = 0 by the faithfulness of 7. Thus N ~ « and HR — HT
is faithful. t

QUESTION 4.3.6. Is every E-local G-Galois extension A — B of commutative
S-algebras faithful?

By Corollary 6.3.4 (or Lemma 6.4.3) the answer is yes when the order of G is
invertible in mp(A4), but in some sense this is the less interesting case.

In the case E = K(n), it is very easy [HSt99, 7.6] to be faithful over A =
Lgm)S.

LEMMA 4.3.7. In the K(n)-local category, every non-trivial S-module is faith-
ful over Ly (n)S.

ProoF. Let M and N be K(n)-local spectra, considered as modules over
Ly (n)S. From the Kiinneth formula

K(n)«(M ALy s N) = K(n)u(M) @k (n). K(1n)«(N)

it follows that if Lg(n)(M ALy (,,s N) = * then K(n).(M) =0 or K(n).(N) =0,
since K(n), is a graded field. So if M is non-trivial, we must have N ~ %. Thus
such an M is faithful. O

Licensed to Univ of Rochester. Prepared on Mon Jun 12 12:34:38 EDT 2023for download from IP 128.151.13.220.



CHAPTER 5
Examples of Galois extensions

In this chapter we catalog a variety of examples of Galois extensions, some
global and some local, as indicated by the section headings.

5.1. Trivial extensions

Let E be any S-module and work E-locally. For each cofibrant commutative
S-algebra A and stably dualizable group G there is a trivial G-Galois extension
from A to B = F(G4, A), given by the parametrized diagonal map

n#: A — F(G4, A)

that is functionally dual to the collapse map 7: G — {e}. Here G acts from the
left on F(G,,A) by right multiplication in the source. More precisely, B is a
functorial cofibrant replacement of F(G4, A) in the category of commutative A-
algebras, which inherits the G-action by functoriality of the cofibrant replacement.
When G is discrete we can write this extension as A: A — ], A.

It is clear that i: A — B"Y = F(G,,A)"C is a weak equivalence, since
(G4)hg ~ {e}+,and that h: BAyB = F(G4, A)ANyF(G4+,A) = F(GL NGy, A) =
F(G4, B) is a weak equivalence, since G is stably dualizable.

The trivial G-Galois extension admits an A-module retraction F'(G4,A) — A
functionally dual to the inclusion {e} — G,son#: A — F(G,, A) is always faithful.

For any G-Galois extension A — B, there is an induced G-Galois extension
B = BAs A — BAyg B (see Proposition 6.2.1 and Lemma 7.1.3 below), and the
map h: B Aag B — F(G,, B) exhibits an equivalence between this self-induced
extension and the trivial G-Galois extension 7#: B — F(G, B).

5.2. Eilenberg—Mac Lane spectra

Let E = S. By Proposition 4.2.1 and Lemma 4.3.5, for each finite G-Galois
extension R — T of commutative rings the induced map of Eilenberg—Mac Lane
commutative S-algebras HR — HT is a faithful G-Galois extension. Proposi-
tion 4.2.1 also contains a converse to this statement.

5.3. Real and complex topological K-theory

Let F =S, and let KO and KU be the real and complex topological K-theory
spectra, respectively. Their connective versions ko and ku can be realized as the
commutative S-algebras associated to the bipermutative topological categories of
finite dimensional real and complex inner product spaces, respectively [May77, VI
and VII|. The periodic commutative S-algebras KO and KU are obtained from
these by Bousfield localization, in the ko- or ku-module categories, by [EKMM97,
VIII.4.3].

25
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26 5. EXAMPLES OF GALOIS EXTENSIONS

The complexification functor from real to complex inner product spaces defines
maps c: ko — ku and ¢: KO — KU of commutative S-algebras, and complex
conjugation at the categorical level defines a ko-algebra self map ¢: ku — ku and
a KO-algebra self map t: KU — KU. Another name for ¢ is the Adams operation
y~1. Complex conjugation is an involution, so ¢* = 1 is the identity in both cases.
We therefore have an action by G = {e, t} = Z/2 on KU through KO-algebra maps,
and can make functorial cofibrant replacements to keep this property, while making
KO cofibrant as a commutative S-algebra and KU cofibrant as a commutative KO-
algebra.

ProrosiTION 5.3.1. The complexification map c: KO — KU is a faithful
Z/2-Galois extension, i.e., a global quadratic extension.

See also Example 6.4.4 for more about this extension.

PROOF. The claim that i: KO — KU"/? is a weak equivalence is well-known
to follow from [At66]. We outline a proof in terms of the homotopy fixed point
spectral sequence

EZ, = H*(2)2;mKU) = mou (KUY
Here m, KU = Z[u*!] with |u| = 2, t € Z/2 acts by t(u) = —u and
B2, = 7o, *?](20)

with a € E2,, = HY(Z/2;Z{u}) = Z/2. A computation with the Adams e-
invariant shows that ¢ takes the generator n € m KO to a class represented by
a € EX,, s0n® =0 € m3KO implies that a® € E?;3 is a boundary. The only
possibility for this is that d®(u?) = a3, leaving

EX, = EX = Zla,b,u™]/(2a, 0%, ab, b* = 4u*).

This abutment is isomorphic to 7. KO, and the graded ring structure implies that
7, (%) is indeed an isomorphism.

To show that h: KU Axo KU — [], /2 KU is a weak equivalence, we use the
Bott periodicity cofiber sequence

(5.3.2) KO L KO <% KU 2 v2KO

of KO-modules and module maps, up to an implicit weak equivalence between
the homotopy cofiber of ¢ and 2K 0. It is the spectrum level version of the
homotopy equivalence Q(U/O) ~ Zx BU, and is sometimes stated as an equivalence
KU ~ KOAG,. Here n is given by smashing with the stable Hopf map n: S* — SO,
and 3 is characterized by 8 o 8 ~ ¥2r: $2KU — L2K0O, where §: S2KU — KU
is the Bott equivalence and r: KU — KO is the realification map. We could write
0=%o0 ﬂ“l in Dko.

Inducing (5.3.2) up along ¢: KO — KU, we obtain the upper row in the
following map of horizontal cofiber sequences

(5.3.3) KU Axo KO 2% KU Ago KU 2% KU A ko S2KO
=~ ih Elﬁ
KU [z, KU 2 KU
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5.4. THE MORAVA CHANGE-OF-RINGS THEOREM 27

of KU-modules and module maps, up to another implicit identification of the ho-
motopy cofiber of A with KU. Here h is the canonical map, A is the diagonal
inclusion (so the lower row contains the trivial Z/2-Galois extension of KU), (3 is
the Bott equivalence KU Axo L2K0O = $2KU — KU, and the difference map ¢
is the difference of the two projections from [, /2 KU, indexed by the elements of
{e,t} = Z/2, written multiplicatively.

The left hand square commutes strictly, since Z/2 acts on KU through KO-
algebra maps. To see that the right hand square commutes up to KU-module
homotopy, it suffices to prove this after precomposing with the weak equivalence
IAB: KUAkgoX2KU — KU Ago KU. To show that the two resulting K U-module
maps KU Ao ?KU — KU are homotopic, it suffices by adjunction to show that
the restricted KO-module maps Y?KU — KU are homotopic. This is then the
computation

BoXicoXir=§oho(cAp)
in Dk o, which follows directly from doh = p—po (L At) = pu(L A (1 —1t)) and the
well-known relations cor =1+t and BoX?(1+¢t) = (1 —t) oS

Finally, c: KO — KU is faithful. For if N is a KO-module such that N Ako
KU =~ %, then applying N Axo (—) to (5.3.2) gives a cofiber sequence

YN L N — NAgo KU — ¥2N .

The assumption that N Ago KU =~ x implies that n: ¥N — N is a weak equiv-
alence. But 7 is also nilpotent, since n* = 0 € m4(S), so we must have N ~ .
Therefore KU is faithful over KO. O

The use of nilpotency in this argument may be suggestive of what could in gen-
eral be required to answer Question 4.3.6. We note that the maps i: ko — kuh%/?
and h: ku Ago ku — [, /2 ku both fail to be weak equivalences. The homotopy
cofiber of i is \/; o X% HZ/2, and the homotopy cofiber of h is HZ, as is easily
seen by adapting the arguments above. So i: ko — ku is not Galois.

5.4. The Morava change-of-rings theorem

In this section we fix a rational prime p and a natural number n, and work
locally with respect to the n-th p-primary Morava K-theory K(n). The work of
Devinatz and Hopkins [DHO4] reinterprets the Morava change-of-rings theorem
[Mo85, 0.3.3] as giving a weak equivalence

LK(n)S = E?ZG" .

We will regard this as a fundamentally important example of a K(n)-local pro-
Galois extension Lk (,)S — E, of commutative S-algebras. See Definition 8.1.1 for
the precise notion of a pro-Galois extension, which makes most sense after some of
the basic Galois theory has been developed in Chapter 7.

5.4.1. The Lubin—Tate spectra.
Recall that E, is the n-th p-primary even periodic Lubin—-Tate spectrum, for
which

7o(En) = W(Fpn)[[u1, ..., un—1]]
(W(—) denotes the ring of p-typical Witt vectors) and 7. (E,) = mo(E,)[u*!]. Re-
lated theories were studied by Morava [Mo79], Rudjak [Ru75] and Baker-Wiirgler

Licensed to Univ of Rochester. Prepared on Mon Jun 12 12:34:38 EDT 2023for download from IP 128.151.13.220.
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[BW89], but in this precise form they seem to have been first considered by Hop-
kins and Miller [HG94], [Re98].

The height n Honda formal group law I',, is defined over F,, and is characterized
by its p-series [p],(z) = z?". Its Lubin-Tate deformation I, over F,n is the uni-
versal formal group law over a complete local ring with residue field an extension
of Fy», whose reduction to the residue field equals the corresponding extension of
I',,. In this case the universal complete local ring equals 7o (E,, ), with maximal ideal
(pyu1,...,un—1) and residue field Fyn. The Lubin-Tate spectrum E, is (at first)
the K (n)-local complex oriented commutative ring spectrum that represents the re-
sulting Landweber exact homology theory (E,)«(X) = m(Ey) @, (mv)y MUL(X).

More generally, we can consider I',, as a formal group law over the algebraic
closure F, of F,. Its universal deformation is then defined over the complete local
ring

mo(ELT) = WE)[[us, . ., )

and there is a similar K (n)-local complex oriented commutative ring spectrum E"
with 7, (E"") = mo(E™)[u*!]. The superscript “nr” is short for “non ramifiée”,
indicating that W(IF‘,,) is the p-adic completion of the maximal unramified extension
colimy W(F,s) of W(F,,) = Z,. (The infinite product defining p-typical Witt vectors

only commutes with the colimit over f after completion.)

5.4.2. The extended Morava stabilizer group.

The profinite Morava stabilizer group S,, = Aut(T',/Fp») of automorphisms
defined over F,» of the formal group law I',, (see [Ra86, §A2.2, §6.2]), and the
finite Galois group Gal = Gal(IF,» /F,) = Z/n of the extension F,, C Fyn, both act
on the universal deformation I’ n, and thus on 7.(FE,), by the universal property.
These actions combine to one by the profinite semi-direct product G,, = S,, x Gal.
By the Hopkins—Miller [Re98] and Goerss—Hopkins theory [GHO04, §7] the ring
spectrum E,, admits the structure of a commutative S-algebra, up to a contractible
choice. Furthermore, the extended Morava stabilizer group G,, acts on F,, through
commutative S-algebra maps, again up to contractible choice. However, these
actions through commutative S-algebras do not take into account the profinite
topology on G,,, but rather treat G,, as a discrete group.

It is known by recent work of Daniel G. Davis [Da06], that the profinite group
G, acts continuously on E,, in the category of K(n)-local S-modules, but only when
FE,, is reconsidered as a pro-object of discrete G,,-module spectra, where the terms
have coefficient groups of the form m.(E,)/I; for a suitable descending sequence
of ideals {Ij}r with (N, Ir = 0. Presently, this kind of limit presentation is not
available in the context of commutative S-algebras. Hopkins has suggested that a
weaker form of structured commutativity, in terms of pro-spectra, may instead be
available.

More generally, the Morava stabilizer group S,, and the absolute Galois group
Gal(F,/F,) = Z (the Priifer ring) of F,, both act on the universal deformation of T',,
over the algebraic closure ]Fp, and thus on 7, (E]’") by the universal property. These
combine to an action by the profinite group

G =S, x7Z.

Note that the (conjugation) action by Z on S, factors through the quotient 7 —
Z/n = Gal, since all the automorphisms of the height n Honda formal group law
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are already defined over F,» [Ra86, A2.2.20(a)]. The Goerss-Hopkins theory
cited above again implies that E]'" is a commutative S-algebra, and the extended
Morava stabilizer group G;" acts on E]" through commutative S-algebra maps, up
to contractible choices.

5.4.3. Intermediate S-algebras.

In the Galois theory for fields, the intermediate fields F C E C F correspond
bijectively (via E = (F)X and K = Gg) to the closed subgroups K C G of
the absolute Galois group with the Krull topology, and the finite field extensions
F C FE correspond to the open subgroups U C G. Note that in this topology, the
open subgroups are exactly the closed subgroups of finite index. Furthermore, G
acts continuously on F' with the discrete topology, so F is the union over the open
subgroups U of the fixed fields (F)U.

By analogy, it is desirable to construct intermediate K (n)-local commutative
S-algebras EME for every closed subgroup K C G, in the profinite topology. If
E,, were a discrete G,-module spectrum, this could be done by the usual definition
EMK = F(EK,, E,)¥, and indeed, for finite (and thus discrete) subgroups K C G,
the restricted K-action is continuous, F, is a discrete K-module spectrum and
EME can well be defined in this way. The maximal finite subgroups M C G,, were
classified by Hewett [He95, 1.3, 1.4]. When M is unique up to conjugacy, E"
is known as the n-th higher real K-theory spectrum FEO,, of Hopkins and Miller.
Such uniqueness holds for p odd when n = (p— 1)k with k prime to p, and for p = 2
when n = 2k with k£ an odd natural number, by loc. cit.

However, as recalled in the previous subsection, the spectrum E,, is not itself
a discrete G,-spectrum, but only an inverse limit of such, i.e., a pro-discrete G,,-
spectrum. The homotopy invariant way to form homotopy fixed points of such
objects is to take the ordinary continuous homotopy fixed points for the profinite
group acting discretely at each stage in the limit system, and then to pass to the
homotopy limit, if desired. Note that the formation of continuous homotopy fixed
points for profinite groups acting on discrete modules involves a colimit indexed
over the finite quotients of the profinite group, and does therefore not generally
commute with limits. This procedure describes the approach of [Da06], but it
only exhibits the homotopy fixed point spectrum E/®» as a module spectrum, and
not as an algebra spectrum, precisely because we do not know how to realize F,, as
a pro-object of G, -discrete associative or commutative S-algebras.

Devinatz and Hopkins circumvent this problem by defining E"®~, and more
generally E'Y for each open subgroup U C G,, in a “synthetic” way [DHO4,
Thm. 1], as the totalization of a suitably rigidified cosimplicial diagram, to obtain
a K(n)-local commutative S-algebra of the desired homotopy type. In particular,
EMen ~ Ly(n)S. (See Section 8.2 for further discussion of the kind of cosimplicial
diagram involved, namely the Amitsur complex.) For closed subgroups K C G,
they then define [DHO04, Thm. 2]

Ep™ = Ly (n)(colim E,7)

where {U;}52, is a fixed descending sequence of open normal subgroups in G,, with
ﬂ?io U; = {e}, and the colimit is the homotopy colimit in commutative S-algebras.
For finite subgroups K C G,, the synthetic construction agrees [DH04, Thm. 3]
with the “natural” definition of E*¢ as F(EK 4, E,)¥
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Ethan Devinatz [De05] then proceeds to compare the commutative S-algebras
EM and EM for closed subgroups K and H of G, with H normal in K. There
is a well-defined action by the quotient group K/H on E" through commutative
S-algebra maps, in the K(n)-local category [De05, §3].

THEOREM 5.4.4 (DEVINATZ-HOPKINS). (a) For each pair of closed subgroups
H c K C G, = S, x Gal with H normal and of finite index in K, the map
EME — EM s o K(n)-local K/H-Galois extension.
(b) In particular, for each finite subgroup K C G,, the map EM¢ — E, is a
K (n)-local K-Galois extension.
(c) Likewise, for each open mormal subgroup U C G, (necessarily of finite
index) the map
Ly(n)S — EMN
is a K(n)-local G,,/U-Galois extension.
(d) A choice of a descending sequence {U;}; of open normal subgroups of G,
with (), U; = {e}, exhibits
Lkn)yS — En

as a K(n)-local pro-G,-Galois extension, in view of the weak equivalence

Ly¢(ny(colim E'V) = E,, .

PRrOOF. (a) Let A = E" B = EM and G = K/H (which is finite and
discrete). By [De05, Prop. 2.3, Thm. 3.1 and Thm. A.1] the homotopy
fixed point spectral sequence for 7, (B"“) agrees with a strongly convergent K (n).,-
local Adams spectral sequence converging to m.(A). So i: A — B"C is a weak
equivalence. By [De05, Cor. 3.9] the natural map h: Lk ) (BAsB) — F(G4, B)
induces an isomorphism on homotopy groups.

Parts (b) and (c) are special cases of (a). Part (d) is contained in [DHO04,
Thm. 3(i)]. O

It would be nice to extend the statement of this theorem to the case when H
is normal and closed, but not necessarily of finite index, in K.

For n = 2 and p = 2, the Morava stabilizer group S, is the group of units in
the maximal order in the quaternion algebra Q3{1,i,7, k}, and its maximal finite
subgroup is the binary tetrahedral group A4 = Qg Z/3 of order 24, containing the
quaternion group Qs = {£1, +i, +j, £k} and the 16 other elements (+1+i+j+k)/2.
See [CF67, pp. 137-138], [Ra86, 6.3.27]. The maximal finite subgroup of G
is Gug = Ay x Z)2, and EO, = ENYs is the K (2)-localization of the connective
spectrum eoy with H*(eoq;Fy) = A//As as a module over the Steenrod algebra,
which is related to the topological modular forms spectrum ¢mf [Hop02, §3.5].

PROPOSITION 5.4.5. At p = 2, the natural map EOy — E3 is a K(2)-local
faithful G4g = Ay x Z/2-Galois extension.

PROOF. This follows from Theorem 5.4.4(b) above and Proposition 5.4.9(b)
below, but we would also like to indicate a direct proof of faithfulness, using results
of Hopkins and Mahowald [HM98]. There is a finite CW spectrum C., obtained
as the mapping cone of a map

7:250,,/\0,,—>C,7/\C’V,
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such that H*(C,;F2) & DA(1) = A(2)//E(2) is the “double” of A(1) = (Sq*, Sq?).
The spectrum C,, and the self-map 7 can be obtained by a construction analogous
to that of the spectrum A; and the map v;: X2Y — Y in [DM81, pp. 619-620],
but replacing all the real projective spaces occurring there by complex projective
spaces. Furthermore, there is a weak equivalence eo; A C., ~ BP(2) that realizes
the isomorphism A//A(2) ® A(2)//E(2) = A//E(2) = H*(BP(2);F,). Applying
K (2)-localization yields
EO; NC, ~ E(2),

in the notation of 5.4.7, using that BP(2) — vy;'BP(2) = FE(2) is a K(2).-
equivalence. Since 7, v and + are all nilpotent (for n € m1(S) and v € 73(S) this is
well-known; for 7 it can be deduced from the Devinatz—Hopkins—Smith nilpotence
theorem [DHS88, Cor. 2]), it follows as in the proof of Proposition 5.3.1 that

— e~

EO; — E(2) is faithful. And F(2) — Es is faithful by the elementary Proposi-
tion 5.4.9(a).

Eg}al i E2

——

EO; — E(2)

5.4.6. Adjoining roots of unity.
Including the maximal unramified extensions into this picture, we have the
following diagram of K (n)-local extensions. The groups label Galois (or pro-Galois)

extensions.
2
Gal 7
E$ > E, —=— E;"
T %
EO, G, |S» S

L (n)S —=2> EfiSn > (E7r)fin
~_
Z
The maximal extension Ly n,)S — E" is K(n)-locally pro-G},"-Galois.

The Z-extension along the bottom is that obtained by adjoining all roots of
unity of order prime to p to the p-complete commutative S-algebra L (,)S. We
might write E"S" = Ly () S(upn—1) and (E27)"" = Lg(n)S(koo,p), Where fim
denotes the group of m-th order roots of unity and oo, = colimyy, pwm denotes
the group of all roots of unity of order prime to p. Note that in the latter case,
the infinite colimit of spectra must be implicitly K (n)-completed. Similarly, E, =
Evcz;al(l‘p"—1> and E7" = Esal(ﬂoo,p)-

The process of adjoining m-th roots of unity makes sense when applied to a
p-local commutative S-algebra A, for p t m, following Roland Schwénzl, Rainer
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Vogt and Waldhausen [SVW99], since A(y,,) can be obtained from the group
A-algebra A[C,,] = A A Cp,y of the cyclic group of order m by localizing with
respect to a p-locally defined idempotent. Likewise, adjoining an m-th root of
unity to a p-complete commutative S-algebra A, for m = p/ — 1, can be achieved
by localizing with respect to a further idempotent. The situation is analogous to
how Q, ®g Q(im) splits as a product of copies of Qp(gm), when m = p/ — 1. For
more on the process of adjoining roots of unity to S-algebras, see [La03, 3.4] in
the associative case and [BRO7, 2.2.5 and 2.2.8] in the commutative case.

These observations may justify thinking of the projection d: G} = S,, 7 —7
as the degree map of a K (n)-local class field theory for structured ring spectra
[Ne99, §IV .4].

5.4.7. Faithfulness.

Let E(n) = Lg(n)E(n) be the K(n)-localization of the Johnson-Wilson spec-
trum E(n) from 3.2.2, called Morava E-theory in [HSt99]. By [BW89, 4.1] or
[HSt99, §1.1, 5.2] it has coefficients

—

T E(n) = Zylv, . .., vn-1, vfl]?n ,
where I, = (p,v1,...,Un—1). The spectrum E(n) was proved to be an associative

S-algebra in [Bak91], and is in fact a commutative S-algebra by the homotopy
fixed point description in Proposition 5.4.9(a) below.
THEOREM 5.4.8 (HOVEY-STRICKLAND). Ly (,)S is contained in the thick sub-

—

category of K(n)-local spectra generated by E(n), so E(n) is a faithful Ly )S-
module in the K(n)-local category.

PrOOF. The first claim is contained in the proof of [HSt99, 8.9], which relies
heavily on the construction by Jeff Smith of a suitable finite p-local spectrum X, as
explained in [Ra92, §8.3]. The second claim follows from the first, but also much
more easily from Lemma 4.3.7. a

PROPOSITION 5.4.9. (a) The K(n)-local Galois extension 17(;) — E,, and the
K (n)-local pro-Galois extension Lk (,)S — E, are both faithful.

(b) For each pair of closed subgroups H C K C G, with H normal and of
finite index in K, the K(n)-local K/H-Galois extension EM< — EM s faithful.

ProoOF. (a) There is a finite subgroup Fy. of S, such that for K = F;. x Gal

—

we have F(n) ~ EM¢. In more detail, S, contains the unit group W(F,=)* [Ra86,
A2.2.17], whose torsion subgroup reduces isomorphically to F7-. For an element
of finite order w € W(Fp»)*, with mod p reduction & € F., the linear formal
power series g(z) = @z defines an automorphism of T',, i.e., an element g € S,
which acts on m(E,) by g(u) = wu and g(uug) = wP uuy, for 1 < k < n by
[DH95, 3.3, 4.4], leaving v, = u!™?" and v, = u'=P"yy, invariant. Thus T ES? =
Zp[[ut, - - - un—1]][ut!] and 7. EME is the I,,-adic completion of m. E(n).
Then for any spectrum X,

(B)Y(X) = m By 0 s B@)Y ()
with 7, F,, a free module of rank |K| = (p"—1)n over W*E/(\n). Here we are using the

—

notation (En)Y(X) = T« Lk n)(En A X), and similarly for E(n), of [HSt99, 8.3].
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It follows easily from this formula that E(n) — E, is faithful in the K(n)-local
category.
In combination with 5.4.8 this shows that the composite extension Ly y)S —
E(n) — E, is faithful, but Lemma 4.3.7 provides a much easier argument.

(b) The second result follows by faithful base change along ¢: Lk (S — En.
There is a commutative diagram (for H and K as in the statement)

E:LLH —_— LK(n)(En N E,’:H)

o] fins

1
E',’fK ——>A¢ LK(n)(En AN EZ'K)

]

LgnyS E,

where the squares are pushouts in the category of K(n)-local commutative S-
algebras. By the Morava change-of-rings theorem and [DHO04, Thm. 1(iii)],

TuLi(n)(En A EM) = Map(G,/H, 7. E,)

and
T Lk (n)(En A EM¥) 2 Map(G, /K, 7. Ey) .

See also the proof of Theorem 7.2.3 below. Here Map denotes the unbased contin-
uous maps with respect to the profinite topologies on G,,/H, G, /K and 7. E, (in
each degree). Note that K/H is a finite group acting freely on the Hausdorff space
G, /H, with orbit space G, /K, so n: G,/H — G, /K is a regular K/H-covering
space. We claim that it admits a continuous section o: G,/K — G,/H, so that
there is a homeomorphism K/H x G,,/K — G, /H, and

Map(G,/H, 7. E,) & H Map(G, /K, n.E,).
K/H

Thus m, L (n)(En A E) is a free module of rank |K/H| over 7, L (n)(En A EMC),
so that L) (E, A EM) is faithful over Ly (n)(En A EMS). The map 1A ¢ is
obtained by base change from ¢, which is faithful by (a), and is therefore faithful
by Lemma 4.3.3, so ¢: EME — EM s faithful by Lemma 4.3.4.

It remains to verify the claim. Let {U;}32, be a descending sequence of open
normal subgroups of G,,, with trivial intersection as above. Then U;H is normal
of finite index in U; K, K/H surjects to U; K/U; H and there is a regular covering
space m;: G, /U;H — G, /U;K, for each i. We have the following commutative
diagram for i < j:

L l

L

Gn/K — Gp/U;K ——= G, JU;K
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Since K/H is finite, the surjections U; K/U;H — U;K/U;H are isomorphisms for
all sufficiently large i and j, say for ¢, j > 49, and then 7; is the pullback of m; along
Gn/U;K — G, /U;K. Thus any choice of section o; to m; pulls back to a section o
of 7;, so that the composite maps G,,/K — G,/U;K — G, /U;H are compatible
for all ¢ > ig. Their limit defines the continuous section o: G, /K — G,,/H. O

5.5. The K(1)-local case

When n = 1, the discussion in Section 5.4 reduces to more classical statements
about variants of topological K-theory, which we now make explicit, together with
a comparison to the even more classical arithmetic theory of abelian extensions of

Qp and Q.

5.5.1. p-complete topological K-theory.
Mod p complex topological K-theory, with m.(KU/p) = F,[u*!], splits as

p—2
KU/p~\/ £*K(1)

i=0
where m, K (1) = F,[vi']. Bousfield K (1)-localization equals Bousfield KU/p-
localization, which in turn equals Bousfield KU-localization followed by p-adic
completion: Lg1yX = Lxy/pX = (LxuX); [Bo79, 2.11}.

The height 1 Honda formal group law over F,, is isomorphic to the multiplicative
one: R
Gm(z,y) =z +y+ay,

its universal deformation I'y is isomorphic to the multiplicative formal group law
over Zp, and the Lubin-Tate spectrum F; is weakly equivalent to p-completed com-
plex topological K-theory KU, with m.(KU,') = Zp[utl]. The Morava stabilizer
group G; = S; is the group of p-adic units Zj;, with its profinite topology, and
k € Z;, acts on the commutative S-algebra K Uzﬁ\ by the p-adic Adams operation

k.
vk KU — KUP.
On homotopy, ¥*(u) = ku.

5.5.2. Subalgebras.

The homotopy fixed point spectrum E"¢r = (K U;\)hZ; is the p-complete (non-
connective) image-of-J spectrum Ly 1)S = JPA, defined for p = 2 by the fiber
sequence

J3 — KOy —— KO%
and for p odd by the fiber sequence

Y-

J) — KU} X% KU

for r a topological generator of Z;. These identifications of the p-completed KU-
localization of S with J;\ are basically due to Mark Mahowald and Haynes Miller
[Bo79, 4.2], respectively. (Adams-Baird and Ravenel went on to identify the
p-local KU-localization of S, see [Bo79, 4.3].)

The Morava stabilizer group S; = Zj is isomorphic to the Galois group of
the maximal (totally ramified) p-cyclotomic extension Q, C Qp(fpe), so the clas-
sification of intermediate commutative S-algebras J, — C — KU,' of the form
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C=(K Uz/,\)hK for K closed in Zj is identical to the classification of intermediate
fields Q, C E C Qp(up). In this way J — KU, provides a K(1)-local “real-
ization” of the K (0)-local extension Q, — Qp(pps). There are similar K (n)-local
realizations of the form Ly, S — EM< when K is the kernel of the determi-
nant/abelianization homomorphism G,, — G% — Z; [Ra86, 6.2.6(b)].

When p = 2, Z5 = Zy x Z/2, where Zy = 1 + 4Z5 is open of index 2, and
Z]2 = {1} C Zj is closed. There are three different subgroups of index 2, namely
the topologically generated subgroups (3), (5) and (—1,9). The first of these corre-
sponds to the complex image-of-J spectrum JU4 = (KU$)"*®) given by the fiber
sequence

A A ¥P-1 A
JUy — KUy —— KU, ,

and there is a K(1)-local (quadratic) Z/2-Galois extension c: J5 — JUS', which is
compatible with the complexification map ¢: K05 — KUJ'. See Example 6.2.2 for
more on this quadratic extension. The closed subgroup Z/2 of Z3 corresponds to
2-complete real K-theory: (KU4)"/2 ~ KOj.

When pis odd, Zj, & Z, xF}, is pro-cyclic. Let r € Z;, be a topological generator,
chosen to be a natural number. Then Z; has a unique open subgroup (r") of index n,
for each integer n of the form n = p°d with e > 0 and d | p — 1. In addition, it
has the closed subgroups that appear as subgroups of F;. In particular, Z; has
an open subgroup Z, = 1 + pZ, of index (p — 1), and a closed subgroup F; C Zj.
The latter corresponds to the p-complete Adams summand L) = (K UPA)MF; with
m(Ly) = Zy[vi"]. There are K(1)-local F;-Galois extensions J) — (KU))h%»
and L) — KU). Let us write Fy"" = (KU}')™™ for the homotopy fixed point
spectrum of 9", which is equivalent to the homotopy fiber of )" — 1. Then there
is a K(1)-local Z/n-Galois extension

Ty = Py — Fy"

for each integer n = p°d with d | p — 1, as above.

5.5.3. Extensions.
Incorporating the roots of unity of order prime to p, we have the following
diagram

KU —2 o KU (ptoo.p)

. GI” .
Z, zZ,
7

Jz/,\ —_— Jlﬁ\(,uoo,p)

with E7" = KU] (jco,p). Here the maximal Galois group G7" = Zj, x 7 is abelian,
since Z acts trivially on S; = Zy. It provides a K (1)-local realization of the Galois
group of the maximal abelian extension Q, — Qp(ftc0)-

It also appears to be possible to fit the various rational primes together, so as to
obtain KU-local realizations of the abelian extensions of the rational field Q itself.
The Galois group G = Z* of the maximal abelian extension Q — Q(o0) contains
the Galois group of Q, — Qp(itec) as the decomposition group D, of the prime
ideal (p). Let Z, = Q(poo)P? be the corresponding decomposition field [Ne99,
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1.9.2].
G/D D
Q . Zp — Q(.uoo) .
After base change along Q — Q, there are weak product splittings [Ne99, II.8.3]
!
QP®QZ g1—[ QP and QP®QQNOO H Qpﬂoo ,
G/D, G/D,

i.e., as colimits of the products over the finite quotients of

G/Dy =177 /( = ([[z)/

L#£p

In the latter profinite quotient, the unit of Z maps diagonally to the class of p in
each Zj. Hence G = G’&b is realized as the Galois group of

G/D,

&’ H/ Qp(ﬂoo) y

G/Dp G/Dp

Qp

where the first map is a (pro-)trivial Galois extension.
We can realize the same groups in the K(1)-local category, by the two pro-

Galois extensions
o Z8 0T 2 T B
G/Dy G/D,
Here the first is the implicitly K (1)-localized colimit of the trivial Galois extensions
of J). indexed over the finite quotients of G/D,.
For brevity, let B, = []¢;, p, ET". Then J3* — By, is a K(1)-local realization of
fhe maximal abelian extension of Q. It seems plausible to find arithmetic pullback

sqluares
LiwS ——T1, 70 T —I,B
LOS——>L0HPJ£ LOB__)LOH;)BP

of commutative S-algebras, so as to get an integral KU-local realization Ly S — B
of the same Galois group. It would be wonderful if analogous (non-abelian) K (n)-
local constructions for n > 2 turn out to detect more of the absolute Galois group
of @, in G.", or of the absolute Galois group of Q. The paper [Mo05] may be
relevant.

5.5.4. p-local topological K-theory.

The p-local complex K-theory spectrum KU, is also a commutative S-algebra,
and admits an action by the Adams operation 9" and its powers through commuta-
tive S-algebra maps [BR05a, 9.2]. However, in this case the E(1)-local extension

h(r) h(r™)
KU(p) KU(p)

is not a Z/n-Galois extension. It even fails to be one rationally, i.e., K(0)-locally.
For

m (KUY ™) © Q= Bo(m)
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is an exterior algebra over Q on one generator, and Eg(¢,) — Eg(() is an iso-
morphism, so {e}-Galois, but not Z/n-Galois. In spite of the relatively rich source
of K (n)-local Galois extensions, there are ramification phenomena that frequently
enter when several chromatic strata are involved.

The idempotent operation (p — 1)~! EkeF; Y* on KU} that defines the p-

complete Adams summand L;,\ is in fact p-locally defined [Ad69, p. 85], so as to
split off the p-local Adams summand L) in

p—2
KU(p) ~ \/ ZzlL(p) .
1=0

However, the p-adic Adams operations 1* of finite order, for k in the torsion sub-
group F; C Zy, are not defined over Z,), since ¥*(u) = ku on homotopy. Therefore
the extension L,y — KU(;) only becomes Galois after p-adic completion. This pro-
vides an example of an E(1)-local étale extension (in the sense of Section 9.4) that
does not extend to a Galois extension. Again, this is an instance of K (0)-local ram-
ification of the E(1)-local prolongation of a, by definition unramified, K (1)-local
Galois extension. These examples are meant as partial justification for the last
paragraph of Remark 3.2.4.

5.6. Cochain S-algebras

Let G be a topological group and consider a principal G-bundle 7: P — X.
Fix a rational prime p and let A = F(X, HF,) and B = F(Py, HF,) be the mod p
cochain HF,-algebras on X and P, respectively. Note that m,(A4) = H *(X:F,)
and m,(B) = H *(P;F,). We think of A and 3 as models for the singular cochain
algebras C*(X;F,) and C*(P;F,), in conformance with [DGI06, §3]. The direct
relation between the differential graded E'. structure on C*(X:F,) and the com-
mutative S-algebra structure on A = F(X,.HF,) seems not to have been made
explicit, however.

The projection 7 induces a map of commutative HIF,-algebras A — B. the
right action of G on P induces a left action of G on B through commutative A-
algebra maps, and the weak equivalence P xg EG — X makes its cochain dual
i: A— F((PxgEG)4, HF,) = B"C a weak equivalence. We now investigate when
h: BAs B — F(G4, B) is a weak equivalence.

The Kinneth spectral sequence

(5.6.1) E?, = Tory Y (7.(B), m.(B)) = 744(B A4 B)

can be derived from the skeleton filtration of the (simplicial) two-sided bar con-
struction
BH¥» (B, A,B): [q — BAA™MAB
with all smash products formed over HF, [EKMM97, IV.7.7]. Dually, let
QP,X,P):[q]—» PxXIxP

be the (cosimplicial) two-sided cobar construction, with totalization equal to the
fiber product P x x P. There is a natural simplicial map

A: BH¥»(B, A, B) — F(Q(P, X, P), HF,)

Licensed to Univ of Rochester. Prepared on Mon Jun 12 12:34:38 EDT 2023for download from IP 128.151.13.220.



38 5. EXAMPLES OF GALOIS EXTENSIONS

which is a degreewise weak equivalence by the Kiinneth formula in mod p cohomol-
ogy, under the assumption that H,(X;F,) and H,(P;F,) are finite in each degree.
So the Kiinneth spectral sequence equals the one obtained by applying mod p
cohomology to the cobar construction, i.e., the mod p Eilenberg-Moore spectral
sequence

(5.6.2) E2, =Torl, ™) (H*(P;F,), H*(P;F,)) = H™*9(P xx P;F,)

[EM66]. By [DwT74], [Sh96, 3.1], the Eilenberg-Moore spectral sequence con-
verges strongly if, for example, m(G) is finite, X is path-connected, and m(X)
acts nilpotently on H,(G;F,). The Kiinneth spectral sequence is always strongly
convergent, so this comparison implies that the upper horizontal map in

BAaB—"—F((Pxx P)y, HF,)

| N
F(G4,B) —— F((P x G)4, HF,)
is a weak equivalence. The right hand vertical map is induced by the homeomor-
phism £: P x G — P xXx P, hence is an isomorphism, as is the lower horizontal

map. Therefore these hypotheses ensure that the left hand vertical map h is a weak
equivalence.

PROPOSITION 5.6.3. Let G be a stably dualizable group and P — X a principal
G-bundle.

(a) Suppose that mo(G) is finite, X is path-connected, 7 (X) acts nilpotently
on H.(G;F,), and that H.(X;F,) and H.(P;F,) are finite in each degree. Then
the map of cochain HFy,-algebras

F(X,,HF,) — F(Py, HF,)

is a G-Galois extension.
(b) In particular, when G is a finite discrete group acting nilpotently on F,[G]
(this includes all finite p-groups), then there is a G-Galois extension

F(BG4,HF,) — F(EG4, HF,) ~ HF,
that exhibits HF, as a Galois extension by each such group.
A similar argument applies for the map of rational cochain algebras
F(X4, HQ) — F(P;, HQ),

when H*(X;Q) and H*(P;Q) are finite dimensional over Q in each degree.

For each natural number n the Morava K-theory spectrum K(n) admits un-
countably many associative S-algebra structures [Rob89, 2.5], none of which are
strictly commutative (cf. Lemma 5.6.4). Therefore

F(Xy, K(n)) — F(Py, K(n))

is at best a kind of non-commutative G-Galois extension. As a further complication,
the convergence of the K(n)-based Eilenberg-Moore spectral sequence, analogous
to (5.6.2), is not yet well understood.

LEMMA 5.6.4. K(n) does not admit the structure of a commutative S-algebra.
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5.6. COCHAIN S-ALGEBRAS 39

PROOF. Suppose that K(n) is a commutative S-algebra. Then so is its connec-
tive cover k(n), and there is a 1-connected commutative S-algebra map u: k(n) —
HF,. Then u,: H.(k(n);F,) — H.(HFp,;F,) is an injective algebra homomor-
phism, that commutes with the Dyer-Lashof operations on both sides [BMMS86,
IIT1.2.3]. The target equals the dual Steenrod algebra A, = E(x7% | k > 0)QP(x&x |
k > 1), and the image of u. contains x7,—_1, but not x7,. This contradicts the op-
eration ka(XTk) = XTg+1 in Ay, in the case k = n—1. O
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CHAPTER 6
Dualizability and alternate characterizations

6.1. Extended equivalences

Let A — B be a map of E-local commutative S-algebras, and let G be a
topological group acting from the left on B through A-algebra maps, say by o: G A
B — B. For example, A — B could be a G-Galois extension.

The twisted group S-algebra B(G) is defined to be B A G (implicitly E-
localized, like B[G]), with the multiplication B(G) A B(G) — B{(G) obtained from
the composite map

G, AB 2L G AGLAB XS GLAB2BAG,
and the multiplications on B and G. As usual, A is the diagonal map. The map
A — B and the unit inclusion {e} — G induce a central map n: A — B(G),
which makes B(G) an associative A-algebra. Likewise, the endomorphism algebra
F4(B, B) of B over A is an associative A-algebra with respect to the composition
pairing.
Let

(6.1.1) j: B{(G) — F4(B, B)

be the canonical map of A-algebras that is right adjoint to the composite map

BAG. A B 2% BAsB-S B,

induced by the (A-linear) action of G on B and the multiplication on B. Note that
B(G) and F4(B, B) are left B-modules, with respect to the action on the target
in the latter case, and that 7 is a map of B-modules. There is also a diagonal left
action by G on B A G and on the target in Fi4(B, B), and j is G-equivariant with
respect to these actions. These B- and G-actions do not commute, but combine to
a left module action by B(G).

For a map f of spectra, we will write fz and f# for various maps induced by
left and right composition with f, respectively.

LEMMA 6.1.2. Let A — B be a map of commutative S-algebras, and let G be
a stably dualizable group acting on B through A-algebra maps, such that h: B Aa
B — F(G4,B) is a weak equivalence. For example, A — B could be o G-Galois
extension. Then:

(a) For each B-module M there is a natural weak equivalence

hayr: MAg B — F(Gy, M).
(b) The canonical map
j: B(G) — Fa(B, B)
40
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6.2. DUALIZABILITY 41

1s a weak equivalence.
(c) For each B-module M there is a natural weak equivalence

VIvE M/\G+—->FA(B,M).

PROOF. (a) By definition, hjs is the composite map

M AsB=2MApBAsB 2 MAg F(Gy,B) % F(G., M),

which is a weak equivalence because h is a weak equivalence and G is stably dual-
izable.

(b) This is the special case of (c) below when M = B.

(c) By definition, jas is right adjoint to the composite map M AG, Aq B —
M Ag B — M induced by the group action of G on B and the module action of B
on M. We can factor jjs in the stable homotopy category as the following chain of
weak equivalences:

M AG, 2% M ADDG, % F(DG,, M) = Fg(B A DG4, M)

# #
& Fp(F(Gy,B), M) 5 Fg(BAs B,M) = Fa(B,M).
Here the map h* makes sense because A is a map of B-modules, and similarly for

v#. Algebraically, mAg lifts over v# to the map f — f(g)-min Fg(F(G,, B), M),
which h# takes to jar(m A g). O

LEMMA 6.1.3. Let A — B be a G-Galois extension. For each B-module M the
canonical map

Vi M Ag B" — (M Ap B)PC

is a weak equivalence.

PROOF. The weak equivalence M Aq A = M — F(G,, M)*C factors as the
composite

. ’ hG
M Ag A M A, BRS 2 (M Ag BYRS M p(a, M)he

where ¢ and hjp; are weak equivalences by hypothesis and the previous lemma,
respectively. The G-equivariance of hys, needed to make sense of RR¢, follows like
that of h. O

6.2. Dualizability

For each G-Galois extension R — T of commutative rings, T is a finitely
generated projective R-module. The following is the analogous statement for E-
local commutative S-algebras.

PROPOSITION 6.2.1. Let A — B be a G-Galois extension. Then B is a dual-
izable A-module.
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42 6. DUALIZABILITY AND ALTERNATE CHARACTERIZATIONS

ProOF. We must show that the canonical map v: DaBA4 B — F4(B,B) is a
weak equivalence. To keep the different B’s apart, we observe more generally that
for each B-module M there is a commutative diagram

M Ap Fa(B,A) ——~——> F4(B, M A4 A)
1Ny ™
M Ap Fy(B, B"¢) ——~—— F4(B, M N4 B"S)
o~ Vi
M Ay Fy(B, B)"6 ——~—— F,(B,M A4 B)"¢
1A JhinaB
M Ap (BAG)E ————— (M Ay BAGL)MC
1IAN N

M Aa (BAGy ASHCY,c —> (M A B AGy AS¥C),q

where v/, is a weak equivalence by Lemma 6.1.3, the maps induced by i: A — B"®
are weak equivalences by hypothesis, the maps involving j are well-defined by the
G-equivariance of j (and jyma,B), and are weak equivalences by Lemma 6.1.2, and
finally the norm maps N from (3.6.1) are weak equivalences because the spectra
with G-action in question have the form W A G4, with G acting freely on itself
[Rog08, 5.2.5]. Thus all maps in this diagram are weak equivalences.

The special case when M = B then verifies that B is dualizable over A. O

In the global case E = § it follows from Propositions 3.3.3 and 6.2.1 that
in any G-Galois extension A — B, B is a semi-finite A-module, i.e., it is weakly
equivalent to a retract of a finite cell A-module. For example, by Proposition 5.3.1
the complexification map KO — KU is a global quadratic extension, and indeed,
KU ~ KO A Cy, is a finite 2-cell KO-module. However, in the localized cases
the following counterexample shows that dualizability is probably the best one can
hope for.

EXAMPLE 6.2.2. Let p = 2, recall that Lx)S = J3, and consider the K (1)-
local quadratic Galois extension c¢: J§' — JUS from 5.5.2. We claim that JUJ' is
not a semi-finite J4'-module, even if it is a dualizable J§-module, in the K (1)-local
category. There is a diagram of horizontal and vertical fiber sequences:

A A ¥’-1 A
Jp — > KO} KO,
R
JUp ——> KU KU}
L
$2(3— 13 _
y2x, — > $2K0) -0 VY segop
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6.2. DUALIZABILITY 43

The factor 37! in the lower row comes from the appearance of the inverse of the
Bott equivalence 3: X2KU — KU in the connecting map d, and the relation
¥ B = kByk. By definition, following [HMS94, 2.6], but using real K-theory, X3
is the homotopy fiber of 371¢% — 1: KO) — KO%.

We can compute the zero-th E; = KU4'-cohomology of the spectra in the upper
left hand square, as modules over the group S; = Z3 of stable Adams operations,
with k € Z3 acting by *. First, EY(KUS) = Z[[Z3]] (see also Example 8.1.4),
and the remaining modules are the following quotients:

Ly <— L2[[Z5/(-1)]]

Zo[[Z5/ (3)]] =——— Z2[1Z3]]

Here (3) C Z% is the subgroup topologically generated by 3. The map c* takes
EY(JUL) = Zs[[Z5/(3)]] =2 Zo{1,47 1} to EY(J4') = Zy{1} by mapping both 1 and
¥~ to the generator. Thus E9(X2X3) = ker(c*) = Zy{1 — ¢!} is such that 3
acts as the identity, but ¥~ acts by reversing the sign.

We claim that there is no semi-finite spectrum with this Morava module, i.e.,
this E;-cohomology as an S;-module. For each finite cell spectrum X the Atiyah—
Hirzebruch spectral sequence

ES' = H3(X;7_(Fy)) = EiTH(X)

is strongly convergent. After rationalization (inverting 2) it collapses at the Ej-
term, yielding the Chern character isomorphism

ch: E(X)[27] = €D H*(X;Q2)
i€z

in degree zero. Here the i-th summand appears as the eigenspace of weight i, where
¥* acts by multiplication by k° for each k € Z%. By naturality, there is also such an
eigenspace decomposition of EY(X)[27!] for each semi-finite J4'-module X. (For
general spectra X, the Atiyah—Hirzebruch spectral sequence needs not converge.)

Now note that E9(X2X3)[271] & Q; has ¢ acting as the identity, and !
acting by sign, which means that it should lie both in the weight 0 eigenspace

and in an eigenspace of odd weight. This contradicts the possibility that ¥2X3 is
semi-finite. It follows that also JUJ' cannot be K (1)-locally semi-finite.

Dualizable modules are preserved under base change, and are detected by faith-
ful and dualizable base change.

LEMMA 6.2.3. Let A — B be a map of commutative S-algebras and M a
dualizable A-module. Then B Ay M is a dualizable B-module.

PrOOF. We must verify that the canonical map
v: F(BAAM,B)Ag (BAa M) — Fg(BAs M,BAs M)
is a weak equivalence. It factors as the composite

Fg(BAa M,B)Ap (BAg M) Fo(M,B)Ag M
Y Fa(M,B Ag M) = Fg(B Aa M,BAs M),
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44 6. DUALIZABILITY AND ALTERNATE CHARACTERIZATIONS

where the middle map is a weak equivalence by Lemma 3.3.2(a), since M is a
dualizable A-module. a

LEMMA 6.2.4. Let A — B be a faithful map of commutative S-algebras, with
B dualizable over A, and let M be an A-module such that B ANy M is a dualizable
B-module. Then M is a dualizable A-module.

PrOOF. We must verify that v: Fa(M, A)AaM — F4(M, M) is a weak equiv-
alence. It suffices to show that the map 1 A v in the commutative square below is
a weak equivalence, since B is assumed to be faithful over A.

B Aa FaA(M,A) Ag M =22 B Ay Fu(M, M)

FA(M,B)/\AM FA(M,B/\AM)

Here the lower horizontal map is isomorphic to
v: FB(B Aa M,B) AB (B Na M) — FB(B Aa M,B Ay M),

which is a weak equivalence because B A4 M is assumed to be dualizable over B.
The vertical maps are weak equivalences because B is dualizable over A, in view of
Lemma 3.3.2(a). Therefore the upper horizontal map 1 A v is also a weak equiva-
lence. (]

COROLLARY 6.2.5. If A is a commutative S-algebra and G is a stably dualizable
group, so S[G] is dualizable over S, then A[G] is dualizable over A.

Conversely, if A is a faithful commutative S-algebra, with A dualizable over S,
and G is a topological group such that A[G] is dualizable over A, then G is stably
dualizable.

The following lemma gives the same conclusion as Lemma 6.1.3, but under
different hypotheses, and will be often used.

LEMMA 6.2.6. Let A — B be a map of commutative S-algebras, let G be a
topological group acting on B through A-algebra maps, and let M be a dualizable
A-module. Then the canonical map

V': M Aa B"Y — (M A4 B)RC
is a weak equivalence.
PROOF. In the commutative diagram

pAL

M Ay BhG DaDaM Ay B¢ —2— F,(DsM, B"G)

/| ! 5
A1)RC hG

(M Ag B)hc(p—> (DaDAM Ap B)"G —— F4(DsM, B)"¢

the horizontal maps derived from v and p are weak equivalences because M is
dualizable over A, and the right hand vertical map is an isomorphism. Thus the
left hand vertical map v/ is a weak equivalence. O

Licensed to Univ of Rochester. Prepared on Mon Jun 12 12:34:38 EDT 2023for download from IP 128.151.13.220.



6.3. ALTERNATE CHARACTERIZATIONS 45

6.3. Alternate characterizations

The following alternate characterization of Galois extensions corresponds to the
Auslander—-Goldman definition. Compare Proposition 2.3.2. Implicit cofibrancy
and localization at some S-module FE is to be understood.

PROPOSITION 6.3.1. Let A — B be a map of commutative S-algebras, and let
G be a stably dualizable group acting on B through A-algebra maps. Then A — B
is a G-Galois extension if and only if both i: A — B"¢ and j: B(G) — Fa(B, B)
are weak equivalences and B is a dualizable A-module.

PRrROOF. Lemma 6.1.2(b) and Proposition 6.2.1 establish one implication. For
the converse, suppose that ¢ and j are weak equivalences and that B is dualizable
over A. We must show that h: BA4B — F(G4, B) is a weak equivalence. Again, to
keep the B’s apart we shall observe that for each B-module M the map h,; factors
in the stable homotopy category as the following chain of weak equivalences:

M A B 2% M Ajy DADAB % Fa(DaB, M) = Fg(DAB Ay B, M)
o #
&— Fp(Fa(B, B),M) “— Fg(B(G),M) = F(G4,M).

Algebraically, the forward image of m Ab lifts over v# to f — f(b)-m, which maps
by j# to har(m Ab) = {g — g(b) -m}. The hypotheses that B is dualizable over A
and j is a weak equivalence thus imply that hj; is a weak equivalence. The special
case M = B lets us conclude that A — B is G-Galois. O

In the presence of faithfulness we have a third characterization of Galois exten-
sions. See also Propositions 8.2.8 and 12.1.8.

PROPOSITION 6.3.2. Let A — B be a map of commutative S-algebras, and let
G be a stably dualizable group acting on B through A-algebra maps. Then A — B
is a faithful G-Galois extension if and only if h: B Ay B — F(G,B) is a weak
equivalence and B is faithful and dualizable as an A-module.

PROOF. Proposition 6.2.1 provides one implication. For the converse, suppose
that h is a weak equivalence and that B is dualizable and faithful over A. We must
show that i: A — B"C is a weak equivalence, and by faithfulness it suffices to show
that 1Ai: B~ BAg4 A — BA B"C is a weak equivalence. In the stable homotopy
category we can identify this map with the chain of weak equivalences

~ hG V/
B = F(G4,B)"¢ &~ (B, B)'C & B Ay B

Here v/ is a weak equivalence by Lemma 6.2.6, because B is dualizable over A. We
are viewing h as a G-equivariant map with respect to the left G-actions specified
in Section 4.1. 0

Here is a characterization of faithfulness in terms of the norm map.

PRrROPOSITION 6.3.3. A G-Galois extension A — B is faithful if and only if the
norm map N: (B A S%9C) ¢ — B"C is a weak equivalence, or equivalently, if the
Tate construction BC is contractible.
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PROOF. If the norm map is a weak equivalence, and Z is an A-module so that
ZNAaB~x then Z ~ Z Ny B" ~ Z Ny (BASC) 0 = (ZAg BASYE) g =~ *.
Thus A — B is faithful.

For the converse, consider B A4 (—) applied to the norm map, appearing as the
left hand vertical map in the following commutative diagram.

= hAl
B Aa (B A SO, —=> (B As B A S°46),6 " (F(G,, B) A 57156

MNi | lN

’ hG
BAyBM ——Y > (BAyB)'C i F(G,,B)"C

The map v/’ is a weak equivalence because B is dualizable over A, by Lemma 6.2.6.
The upper and lower right hand horizontal maps are weak equivalences since h is
G-equivariant and a weak equivalence.

The right hand vertical map is the norm map for the spectrum with G-action
F(G4, B). In the source,

(F(Gy,B) A S8 ~ (BADGy A S hg ~ (BAS[G)he ~ B

by the stable dualizability of G and the Poincaré duality equivalence (3.5.2). In
the target, F(G,,B)"® ~ B. A direct inspection (inducing up from the case
B = S, where it suffices to check on my) verifies that these identifications are
compatible under the norm map. Therefore the right hand vertical map N is a weak
equivalence, and so the norm map for B must be a weak equivalence, assuming that
B is faithful over A.

The second equivalence is obvious from the definition of B*C as the homotopy
cofiber of the norm map. 0

COROLLARY 6.3.4. Any finite G-Galois extension A — B is faithful if the
order |G} of G is invertible in mo(B).

PROOF. Under these hypotheses 7, (Bpg) = m.(B)/G, 7. (B"¢) = 7, (B)¢ and
the composite
m.(B) = m.(B)/G =% . (B)C — m.(B)

is multiplication by |G|, so the norm map N must induce an isomorphism in ho-
motopy. O

The same conclusion, under different hypotheses (allowing ramification) ap-
pears in Lemma 6.4.3.

6.4. The trace map and self-duality

In this section we work principally in the derived category, i.e., in the stable
homotopy category Da k.

Let A — B be a map of E-local commutative S-algebras, and let G be a stably
dualizable group acting on B through A-algebra maps. Suppose that i: A — B"C
is a weak equivalence.
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6.4. THE TRACE MAP AND SELF-DUALITY 47

DEFINITION 6.4.1. The trace map tr: BA S — Ain D4 g is defined by the
natural chain of maps

B/\SadG n (B/\SadG)h _) BhG A,
where in denotes the inclusion induced by G C EG, and the wrong-way map i is a
weak equivalence.

SadG

When G is finite, the dualizing spectrum S can of course be ignored.

LEMMA 6.4.2. The trace map tr: B A S®¥C — A equals the composite map

BASYC — B A S[GC 2 (B A S[G)HE LV, gha i 4

~ ~

where o : B A S[G] — B is the right action derived from a: G4 A B — B by way
of the group inverse.

PROOF. The canonical map v: B A §%¢ — (B A S[G))*® can be identified
with the chain of weak equivalences

BAS“Y = F(Gy, BASUONE E— % (B A DG, ASHEHE =, (B A S[G)HC
using that G is stably dualizable and the (right G-equivariant) Poincaré duality
equivalence (3.5.2). In particular, v itself is a weak equivalence.

The claim is then clear from the commutative diagram

B A 8246 ———= (B A S[G)"Y ——— (B A S[G))*C

zni zni (im)he l %

(B A %) 2% (B A SIG)*)ne — > (B A S[G]ae)"C —> BH

where & is the canonical hocolim/holim exchange map and the bottom row defines
the norm map N, as in [Rog08, 5.2.2]. The right hand triangle uses that the
homotopy orbits (B A S[G])ne are formed with respect to the diagonal left G-
action, so the identification with B extends the right action map «'. Algebraically,
bAgin B A S[G] is identified with g=1b A e in the homotopy orbits, which maps to
o'(bAg) =g tbin B. O

LEMMA 6.4.3. When G is finite the composite B 'y A— Bis homotopic to
the sum over all g € G of the group action maps g: B — B, and the composite
A — B 5 A is homotopic to the map multiplying by the order |G| of G.

Thus, if |G| is tnvertible in mo(A) then tr is a split surjective map of A-modules,
up to homotopy, and B is a faithful A-module. In particular, every G-Galois ex-
tension A — B with |G| invertible in mo(A) is faithful.

PrRoOOF. When G is finite, the composite B Y A — B can be expressed by
continuing the factorization in Lemma 6.4.2 with the map B"® — B that forgets
homotopy invariance, and therefore factors as

B2, Bas[e] % B,
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where A: S — S[G] ~ ], S is the diagonal map. Clearly this is the sum over the
elements g € G of the group action maps g: B — B, up to homotopy.

On the other hand, the composite A — B 7, Alis the map of G-homotopy fixed
points induced by the same composite displayed above. Since the action of each
group element is homotopic to the identity when restricted to the homotopy fixed
points, their sum equals multiplication by the group order |G|, up to homotopy. O

EXAMPLE 6.4.4. In the Z/2-Galois extension c¢: KO — KU the trace map tr
is homotopic to the realification map r: KU — KO, as a KO-module map, and
therefore also as an S-module map. For ¢#: Dgo(KU, KO) — Dko(KO,KO) is
injective, and both tr o ¢ and 7 o ¢ are homotopic to the multiplication by 2 map
KO — KO, by Lemma 6.4.3.

To justify the claim just made, that c# is injective, we use the equivalence
KU ~ KO A C,, and adjunction to identify ¢# with i# in the exact sequence

j#

1 (KO0) s my(K0) 25 (€, KO 5 mo(KO)

induced by the cofiber sequence S° = Cy 2,82 2, 81 Here i# is injective because
n# is well-known to be surjective.

In particular, the trace map tr = r: KU — KO is not split surjective up
to homotopy (it is not even surjective on homotopy groups), so the analog of the
algebraic Proposition 2.3.4(b) does not hold in topology.

Recall from Section 3.6 the shearing equivalence ¢: B A S[G] — B A S[G] that
takes the left action on S[G] to the diagonal left action on B and S[G].

DEFINITION 6.4.5. The trace pairing B Ag B A S*C — A in Dy, g is defined
as the composite

B A4 B A SG HAL A gadG I 4

The discriminant map g 4: BAS*C — DaB in Dy g is defined as the composite

BAS®G = B /\S[G}"G -, (B A S[G])hG i) (B A S[G])hc

‘hG i
2 FA(B,B)"¢ = Fy(B, B"®) < F4(B,A) = D4sB.

Here j is G-equivariant with respect to the left G-action from Section 6.1.

We define Picg = Picg(.S) in Definition 6.5.1 below to be the group of weak
equivalence classes of E-locally smash invertible spectra. The dualizing spectrum
S24G is one such [Rog08, 3.3.4]. By the Picg-graded homotopy groups m.(Y) of
a spectrum Y we mean the collection of groups 7x(Y) = [X,Y], where X ranges
through Picg. See [HSt99, 14.1]. This includes the ordinary stable homotopy
groups as the cases X = S™, n € Z, as well as the possibly exceptional case
X = SadG.

LEMMA 6.4.6. The trace pairing B Ag B A S%C — A is left adjoint to the
discriminant map 0gya: B A S%CG _ DsB. Thus 0p/4 18 in fact a map in Dp g,
and represents a Picg-graded class in m.D4(B).
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PrROOF. The first claim is a chase of definitions. The multiplications by B in
the two copies of B in the source of the trace pairing get equalized by u, so the
adjoint (weak) map 9,4 commutes with the obvious B-module actions on BAS®dC
and DyB. Od

PROPOSITION 6.4.7. If A — B is a G-Galois extension, then the discriminant
map 0g/a: B A 529G _, DB is a weak equivalence. In particular, B is self-dual
as an A-module, up to an invertible shift by S®9C.

PrROOF. When A — B is G-Galois, j: B A G4 — F4(B, B) is a weak equiv-
alence by Lemma 6.1.2(b), so the discriminant map is defined as a composite of
weak equivalences. O

In general, we think of the discriminant map 0,4 as a measure of the extent to
which A — B is ramified. When it is an equivalence, we think of the trace pairing
as a perfect pairing.

6.5. Smash invertible modules

The K (n)-local Picard group Pic,, = Pick(n)(S) was introduced in [HMS94].
Here is a slight generalization.

DEFINITION 6.5.1. Let A be a commutative S-algebra, and work locally with
respect to the fixed spectrum E. An A-module M is smash invertible if there exists
an A-module N such that N A4 M ~ A as (implicitly E-local) A-modules.

Let Picg(A) be the class of weak equivalence classes of E-locally smash in-
vertible A-modules. When Picg(A) is a set we call it the E-local Picard group of
A, with the group structure induced by the (implicitly E-local) smash product of
A-modules.

The following proof of the analog of Proposition 2.3.4(c) is close to one found
by Andy Baker and Birgit Richter in the case of a finite abelian group G.

PROPOSITION 6.5.2. Let A — B be a faithful abelian G-Galois extension, i.e.,

one with G an (E-locally stably dualizable) abelian group. Then B is smash invert-
ible as an A[G]-module.

PRrROOF. We consider B as an A[G]-module by way of the given left G-action.
The smash inverse of B over A[G] will be its functional dual

D z1)(B) = Faiq)(B, A[G])
in the category M 4(g),g- There is a natural counit map
e: Faig)(B, A[G]) Aajq) B — A[G],

that is left adjoint to the identity map on Fu;g)(B, A[G]) in the category of A[G]-
modules. In symbols, €: fAz — f(x). The claim is that € is a weak equivalence. By
assumption B is faithful over A, so it suffices to verify that € becomes an equivalence
after inducing up along A — B. We factor the resulting map 1 A€ as

B Aa Faig)(B, A[G)) Aajg) B~ Fajg)(B, B[G]) Aaig) B
= FB[G](B Na B,B[GD NBqG] (B A4 B) N B[G] .
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50 6. DUALIZABILITY AND ALTERNATE CHARACTERIZATIONS

Here v/ is a weak equivalence because B is dualizable over A (cf. Lemma 6.2.6), the
middle isomorphism is a composite of two standard adjunctions, and €; is a counit
of the same sort as €, now in the category of B[G]-modules. We have left to prove
that €; is a weak equivalence.

There is a chain of left B[G]-module maps

(6.5.3) (B Aa B)AS®C 2L p(G,, B) A S%4C
&2 BA DG, A 86 =, BIG) S B[G,
each of which is a weak equivalence. Here h is a weak equivalence because A — B is
G-Galois, v is a weak equivalence because G is stably dualizable, and the unnamed
weak equivalence is the identity on B smashed with the Poincaré duality equivalence
from (3.5.2). The latter is left G-equivariant with respect to the inverse of the right
G-action mentioned in Section 3.5, i.e., with respect to the left action on DG given
by right multiplication in the source, the trivial action on S%¥, and the inverse
of the standard right action on B[G]. The map x is induced by the group inverse
in G, and takes the inverse of the standard right action on B[G] to the standard
left action on B[G].
(When G is finite, the chain simplifies to

BAaB 5 F(Gy, B) & BIG] % B[G],

where & is the usual inclusion and weak equivalence B[G] = \/, B — [[ B =
F(G4+,B). Again, the right hand B[G] has the standard left B[G]-module struc-
ture.)

By [Rog08, 3.3.4, 3.2.3] the dualizing spectrum S%I¢ is smash invertible
(in the E-local stable homotopy category), with smash inverse its functional dual
S§~4G = (DG )na. It follows that the counit map €; for the B[G]-module BA4 B
is the composite of a weak equivalence and the counit map e, for (B A4 B) A S%4C,
Furthermore, it follows by naturality with respect to the chain (6.5.3) of B[G]-
module weak equivalences that the counit map e, is related by a chain of weak
equivalences to the counit map

€3: Fpg)(B[G], B[G]) Ap(g) B[G] — B[G],

for B[G] considered as a left B[G]-module in the standard way. The latter map €3
is obviously an isomorphism. O

So each (implicitly E-local) abelian G-Galois extension A — B exhibits B as
a possibly interesting element in the Picard group Picg(A[G)).

The following converse to Proposition 6.5.2 does not require that G is abelian,
but for abelian G it follows that the smash invertibility of B over A[G] is equivalent
to B being faithful over A.

LEMMA 6.5.4. Let A — B be a (not necessarily abelian) G-Galois extension.
If B is smash invertible as an A|G]-module, i.e., if there exists an A[G]-module C
and a weak equivalence B A gig) C ~ A[G] of A-modules, then B is faithful over A.

ProOOF. If N Ay B ~ % then N[G] = N Aag A[G] o~ N/\AB/\A[G] C ~ %, and
N is a retract of N[G], so N ~ . O
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CHAPTER 7
Galois theory 1

We continue to work locally with respect to some S-module F.

7.1. Base change for Galois extensions

Faithful G-Galois extensions A — C are preserved by base change along arbi-
trary maps A — B,

C——=BAyu C
A B

and all Galois extensions are preserved by dualizable base change. Conversely,
(faithful) Galois extensions are detected by faithful and dualizable base change.
We do not know whether these dualizability hypotheses are necessary.

LEMMA 7.1.1. Let A — B be a map of commutative S-algebras and A — C a
faithful G-Galois extension. Then B — B A4 C is a faithful G-Galois extension.

PrOOF. The action by G on C through A-algebra maps extends uniquely to
an action on B A4 C through B-algebra maps, taking g: C — C to 1Ag: BAsC —
B A4 C on the point set level, for g € G. The group G remains stably dualizable,
irrespective of whether it is being regarded as acting on C or B A4 C.

We show that B — B A4 C is a faithful G-Galois extension by appealing to
Proposition 6.3.2. We know that C' is a dualizable A-module by Proposition 6.2.1,
and it is faithful by hypothesis. Therefore B A4 C is a dualizable and faithful B-
module by the base change lemmas 6.2.3 and 4.3.3. It remains to verify that the
canonical map h: (BA4C)Ag (BAsC) — F(G4,B A4 C) is a weak equivalence.
It is the lower horizontal map in the commutative square

(7.1.2) BAAC Ay C—2 o~ BAsF(G,,C)

gl l
(BAAC)Ag (BAAC) —L> F(G4,BAAC),
where the upper horizontal map 1 A h is a weak equivalence because A — C is
G-Galois, and the right hand vertical map v is a weak equivalence because G is

stably dualizable. This verifies the hypotheses of Proposition 6.3.2, so B — BA4C
is a faithful G-Galois extension. ]

LEMMA 7.1.3. Let A — B be a map of commutative S-algebras, with B dual-
1zable over A, and let A — C be a G-Galois extension. Then B — B A4 C is a
G-Galois extension.

51
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52 7. GALOIS THEORY I

PrOOF. The group G is stably dualizable, acts on B A4 C' through B-algebra
maps, and makes the canonical map h: (BA4 C)Ap (BAsC) — F(G1,BAN4sC)
a weak equivalence, just as in the previous proof. In order to verify the conditions
in Definition 4.1.3 of a G-Galois extension, it remains to show that the canonical
map i: B — (B Aq C)"C is a weak equivalence. But B2 B A4 A~ B Ay ChC| so
we can identify i with v/: B Aq C"¢ — (B Ax C)*G, which is a weak equivalence
by Lemma 6.2.6 because B is dualizable over A. |

LEMMA 7.1.4. Let A — B and A — C be maps of commutative S-algebras,
with B a faithful and dualizable A-module, and let G be a stably dualizable group
acting on C through A-algebra maps.

(a) If B — B Aa C is a G-Galois extension, then A — C is a G-Galois
extension.

(b) If B — B A4 C is a faithful G-Galois extension, then A — C' is a faithful
G-Galois extension.

PROOF. We must verify that the two maps i: A — C"¢ and h: C Ay C —
F(G4,C) are weak equivalences. For the first map we factor the weak equivalence
i: B — (B Aa C)"C for the G-Galois extension B & B Ag A — B Ay C as the
composite

BAs AL BA,ChE Y (B AL O)C .

Here the right hand map v/ is a weak equivalence because B is dualizable over A,
by Lemma 6.2.6. Therefore the left hand map 1 A is a weak equivalence, and so
i: A — C"C is a weak equivalence because B is faithful over A.

For the second map we use the commutative square (7.1.2) again. The right
hand vertical map v is a weak equivalence because G is stably dualizable, and the
lower horizontal map h is a weak equivalence because B — B A4 C' is assumed
to be G-Galois. So the upper horizontal map 1 A h is a weak equivalence, and so
h: CAaC — F(G4,C) is a weak equivalence because B is faithful over A.

Finally, if B — B A4 C is faithful, then we know that A — C' is faithful by
Lemma 4.3.4. g

7.2. Fixed S-algebras

Let G be a stably dualizable group and let A — B be a G-Galois extension.
We consider the sub-extensions that occur as the homotopy fixed points C' = B"X
for suitable subgroups K of G.

DEFINITION 7.2.1. Let K C G be a topological subgroup. We say that K is an
allowable subgroup if (a) K is stably dualizable, (b) the collapse map ¢: Gx g EK —
G/K induces a stable equivalence

S|G xx EK] = S[G/K],

and (c) as a continuous map of spaces, the projection 7: G — G/K admits a section
up to homotopy.

We consider two allowable subgroups K and K’ to be equivalent if K C K’ and
S[K] — S[K'] is a weak equivalence, or more generally, if K and K’ are related by
a chain of such (elementary) equivalences. We say that K is an allowable normal
subgroup if, furthermore, K is a normal subgroup of G.
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It follows immediately from (c) above that the orbit space G/K is stably du-
alizable, since S[G/K] is a retract up to homotopy of S[G], and that there is a
homotopy equivalence G ~ K x G/K compatible with the obvious projections 7
and pro to G/K. If K is an allowable normal subgroup then G/K is a stably
dualizable group.

EXAMPLE 7.2.2. When G is discrete the allowable subgroups of G are just the
subgroups of G in the usual sense, for then G is a disjoint union of free K-orbits,
so c: G xg EK — G/K is already a weak equivalence, and there is no difficulty in
finding a continuous section to 7: G — G/K.

For A — B a G-Galois extension and K C G an allowable subgroup, we can
form the following maps of commutative A-algebras

F(EG,,B)¢ — F(EG,,B)¥ — F(EG,,B).

In view of the natural weak equivalences A — F(EG,, B)® and F(EG4,B) — B,
we will keep the notation simple by writing the maps above as

A— B" . B,

So to be precise, we interpret B as F(EG., B), which then admits a K-action
through B"K-algebra maps. Likewise, if K is normal in G then B¢ admits a
G/K-action through B"“-algebra maps, which in turn are A-algebra maps. An
implicit cofibrant replacement is also necessary at this stage.

Here is the forward part of the Galois correspondence for E-local commutative
S-algebras.

THEOREM 7.2.3. Let A — B be a faithful G-Galois extension and K C G any
allowable subgroup. Then C = BMS — B is a faithful K-Galois extension.

If furthermore K C G is an allowable normal subgroup, then A — C =
a faithful G/ K-Galois extension.

ProOOF. We shall detect that C — B (resp. A — C) is faithfully Galois by
applying Lemma 7.1.4 to the case of faithful and dualizable base change along
C — B A C (resp. A — B). Here B is faithful and dualizable as an A-module by
hypothesis and Proposition 6.2.1, so BA4C is faithful and dualizable as a C-module
by Lemma 4.3.3 and Lemma 6.2.3. In the commutative diagram

BhE g

(7.2.4) B——>BAsB—2>F(Gy,B) <—— F(G4,B)

R -

C——> BAAC — F(G,, B)'S <<~ F(G/K,, B)

] T [

A B = B = B

the left hand squares are base change pushouts in the category of commutative
S-algebras.

The middle horizontal maps are weak equivalences. For h is a weak equivalence
by the assumption that A — B is G-Galois. The map h': BA4 C = B Ay B"S —
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F(G, B)" factors as a composite weak equivalence

’ hK
B A4 B"E 5 (B Ay BPE 2 PGy, BME

using that B is dualizable over A (and Lemma 6.2.6) and that h is a weak equiv-
alence. Here K acts from the left on B A4 B and F(G., B) by restriction of the
actions by G, i.e., on the second copy of B in B A4 B and by right multiplication
in the source in F(G4, B), so in particular h is K-equivariant.

Likewise, the right hand horizontal maps are weak equivalences. For c¢* is the
composite map

F(G/K,,B) % F((G4)nk,B) 2 F(G4, B)"™

functionally dual to the collapse map ¢: (G4 )pix = (G xx EK); — G/K,, which
is a stable equivalence by part (b) of the hypothesis that K is allowable.

Therefore, the induced extension B Ay C — B A4 B is weakly equivalent
to the map n#: F(G/K,,B) — F(G4,B) functionally dual to the projection
m: G — G/K. By part (c) of the hypothesis that K is allowable there is a weak
equivalence

F(G4,B) ~ F((K x G/K), B) ® F(K,,F(G/K4,B)),

compatible with the commutative S-algebra maps 7# and prjé from F(G/K, B),
so that 7% is indeed weakly equivalent to the trivial K-Galois extension (Sec-
tion 5.1) of F(G/K ., B). In particular, BA4 C — B A4 B is faithfully K-Galois,
and so by the faithful and dualizable detection result Lemma 7.1.4 it follows that
C — B is faithfully K-Galois.

If furthermore K is normal in G, then the induced extension B — B A4 C
is weakly equivalent to the map n#: B — F(G/K,, B) functionally dual to the
collapse map 7m: G/K — {e}, i.e., to the trivial G/K-Galois extension of B. So
B — B A4 C is faithfully G/K-Galois, and by Lemma 7.1.4 we can conclude that
A — C is faithfully G/K-Galois. O

The following lemma will be applied in Section 9.1, when we discuss separable
extensions.

LEMMA 7.2.5. Let A — B be a faithful G-Galois extension and K C G an
allowable subgroup. Then C = B"X s faithful and dualizable over A, and the
canonical map k: BM< A4 BMS — (B Ag BYMEXEK) s g weak equivalence.

Proor. It is formal that A — C is faithful when the composite A — C — B
is faithful. For if N € M4 has NA4C ~xthen NA4 B2 NAsCAc B~ %, s0
N ~ %,

The extension A — B is faithful with B dualizable over A by Proposition 6.2.1,
and BAy C ~ F(G/K,,B) as in (7.2.4) is dualizable over B, since S[G/K] is
assumed to be a retract up to homotopy of S[G] and therefore is dualizable over S.
Thus C is dualizable over A by Lemma 6.2.4.

The map « factors as the composite of two weak equivalences

BMK A, BME v, (B Aa BhK)hK

(V/)hK
_—
jad

(B Aa B)h(KXK)
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derived from Lemma 6.2.6, where the first uses that C = B"¥ (on the right hand

side of the smash product) is dualizable over A, and the second uses that B (on
the left hand side of the smash product) is dualizable over A. O
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CHAPTER 8

Pro-Galois extensions and the Amitsur complex

We continue to let E be a fixed S-module and to work entirely in the F-local
category.

8.1. Pro-Galois extensions

DEFINITION 8.1.1. Let A be an E-local cofibrant commutative S-algebra, and
consider a directed system of E-local finite G,-Galois extensions A — B, such
that B, — Bg is a cofibration of commutative A-algebras for each a < 3. Suppose
further that each A — B, is an E-local sub-Galois extension of A — Bg, so/such

that there is a preferred surjection Gg — G, with kernel Kz, and a natural weak

equivalence B, ~ BZK“G. Let B = colim, B,, where the colimit is formed in

Ca,E, and let G = lim, G, with the (profinite) limit topology. Then, by definition,
A — B is an E-local pro-G-Galois extension.

More generally, one might consider a directed system of (E-local) Galois exten-
sions with stably dualizable (rather than finite) Galois groups G, arranging that
each normal subgroup K, is stably dualizable. We prefer to wait for some relevant
examples before discussing the analog of the Krull topology on the resulting limit
group G, but compatibility with the “natural topology” on E-local Hom-sets (see
[HPS97, §4.4] and [HSt99, §11]) is certainly desirable.

For each « the weak equivalence h,: By Aa By — F(Ga+, Ba) extends by
Lemma 6.1.2(a) to a weak equivalence hy p: B Ag By — F(Gy4, B). The colimit
of these over « is a weak equivalence

(8.1.2) h: BAsy B — F(G+,B)),

where by definition F((G4,B)) = colimy F(G44,B) is the “continuous” map-
ping spectrum with respect to the Krull topology, and colim, B A4 B, = B Aa
colim,, B, = B A4 B, since pushout with B commutes with colimits in the category
of commutative A-algebras.

Likewise, for each o the weak equivalence j,: Bo(Ga) — Fa(Ba, Ba) extends
by Lemma 6.1.2(c) to a weak equivalence jo g: B{(G,) — Fa(Ba, B). The limit of
these over a is a weak equivalence

(8.1.3) j: B(G) — Fa(B,B),

where by definition B{(G)) = lim, B(G,) is the “completed” twisted group A-
algebra, and lim, Fs(Bq, B) & F4(colim, By, B) = Fa(B, B).

EXAMPLE 8.1.4. In the case of the K (n)-local pro-G,-Galois extension
LgmyS — En
56
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these weak equivalences induce the isomorphism
®: E,) (Ey,) 2 Map(G,, m.(E,))

that is implicit in [Mo85] and explicit in [St00, Thm. 12] and [Hov04, 4.11],
and the isomorphism

from [St00, p. 1029] and [Hov04, 5.1]. The appearance of the continuous map-
ping space and the completed twisted group ring corresponds to the spectrum level
colimits and limits above, combined with the I,-adic completion at the level of
homotopy groups induced by the implicit K (n)-localization [HSt99, 7.10(e)].

The pro-Galois formalism thus accounts for the first steps in a proof of Gross—
Hopkins duality [HG94], following [St00]. The next step would be to study the
K (n)-local functional dual of E,, as the continuous homotopy fixed point spectrum

Li(nyDEy = F(Ep, Lic(n)S) =~ F(En, En)"®r o (B, (Gy)))"Cn,

but here technical issues related to the continuous cohomology of profinite groups
arise, which are equivalent to those handled by Strickland.

8.2. The Amitsur complex

As usual, let A be a cofibrant commutative S-algebra and B a cofibrant com-
mutative A-algebra.

DEFINITION 8.2.1. The (additive) Amitsur complez [Amb9, §5], [KO74,
§11.2] is the cosimplicial commutative A-algebra

C.(B/A): [q] — B®a [q] =BA4g---Na B

((q + 1) copies of B), coaugmented by A — B = C%(B/A). Here B ®4 [q] refers to
the tensored structure in C4 g, and the cosimplicial structure is derived from the
functoriality of this construction. In particular, the i-th coface map is induced by
smashing with A — B after the ¢ first copies of B, and the j-th codegeneracy map
is induced by smashing with B A4 B — B after the j first copies of B.

Let the completion of A along B be the totalization A% = Tot C*(B/A) of this
cosimplicial resolution. Here, and everywhere, an implicit fibrant replacement is
needed to make the totalization homotopy invariant. The coaugmentation induces
a natural completion map 7: A — A} of commutative A-algebras.

Gunnar Carlsson has considered this form of completion in his work on the
descent problem for the algebraic K-theory of fields [Ca:d, §3], and Bendersky—
Thompson have considered an unstable analog in [BTQ00|. It compares perfectly
with Bousfield’s B-nilpotent completion [Bo79, §5|, as extended from spectra to
the context of A-modules.

DEFINITION 8.2.2. The canonical B-based Adams resolution of A, formed in
the category of A-modules, is the diagram below, inductively defined from Dy = A
by letting Ds1 be the homotopy fiber of the natural map Dy = AA4 Dy — BAa D,
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for all s > 0.
A 1D1 /7D2 /1...
e s P
I P
B B Ayq Dy B A4 Do

Continuing, K is defined to be the homotopy cofiber of the composite map Ds — A,
and the B-nilpotent completion of A in A-modules is the homotopy limit LA =
holim, K.

LEMMA 8.2.3. The completion A% of A along B is weakly equivalent to the
Bousfield B-nilpotent completion ﬁgA of A formed in A-modules.

PROOF. One proof uses Bousfield’s paper [Bo03] on cosimplicial resolutions.
The functor I'(M) = B A4 M defines a triple, or monad, on M4, and A —
C*(B/A) is the corresponding triple resolution of A [Bo03, §7]. The B-module
spectra define a class G of injective models in D4, whose G-completion is the B-
nilpotent completion in A-modules, by [Bo79, 5.8] and [Bo03, 5.7]. It agrees
with the totalization of the triple resolution by [Bo03, 6.5], which by definition is
the completion of A along B, in the sense above.

A more computational proof follows the unstable case of [BK73, §3—5], es-
pecially 5.3. There is an “iterated boundary isomorphism” from the Ei-term of
the Bousfield-Kan spectral sequence associated to the Tot-tower of the cosimplicial
spectrum C*®(B/A), to the Ej-term of the Adams spectral sequence associated to
the tower of derived spectra {Ds}s. The isomorphisms persist, with a shift in index-
ing, upon passage to the tower of cofibers { K;}s. Since Totqo C*(B/A) = B ~ Kj,
it follows that the homotopy limits A% and ﬁgA are also weakly equivalent. [

More generally, for each functor F' from commutative A-algebras to a cate-
gory of spaces or spectra, like the units functor U = GL;, the Amitsur complex
C*(B/A; F) is the cosimplicial object [q] — F(B ®4 [q]). It is natural to consider
the colimit of its totalization, as B ranges over a class of A-algebras. When F' is
the identity functor, this is the completion defined above. When A — B is Galois,
or ranges through all Galois extensions, we obtain forms of Amitsur cohomology
[Am59] and Galois cohomology [CHR65, §5]. Note that if Spec B is thought
of as a covering of Spec A, then Spec(B A4 B) counsists of the covering of Spec A
by double intersections, or fiber products, from the first covering, and likewise for
SpecC4(B/A) and (g + 1)-fold intersections. We are therefore recovering a form
of Cech cohomology. In general, the appropriate context for what classes of exten-
sions A — B to consider is that of a Grothendieck model topology on the category of
commutative A-algebras, or a model site. We simply refer to [TV05] for a detailed
exposition on this matter.

The following is a form of faithfully projective descent.

LEMMA 8.2.4. If B is faithful and dualizable over A, then n: A — A} is a
weak equivalence, i.e., A is complete along B.

PROOF. It suffices to prove that 1An: BA4 A — BA4 A} is a weak equivalence.
Here B Ay Ay ~ Fa(DaB,Tot C*(B/A)) = Tot FAa(DaB,C*(B/A)) ~ Tot B Aa
C*(B/A), and

BAaC*(B/A): [q] = BAa(B®alq]) 2 B®alql+
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admits a cosimplicial contraction to B, so 1 A n is indeed a weak equivalence. [

Let G be a topological group acting from the left on an S-module M, and let
EG,. = B(G,G,): [¢] = Map([q], G) = GI**
be the usual free contractible simplicial left G-space.

DEFINITION 8.2.5. The (group) cobar complez for G acting on M is the cosim-
plicial S-module

C*(G; M) = F(EGey, M)C: [q] — F(GI, M)® = F(GL,M).
Its totalization is the homotopy fixed point spectrum M"¢ = Tot C*(G; M).

Here the standard identification F(GL', M)¢ = F(GY, M) takes the left G-
map f: G3_+1 — M to the map ¢: G4 — M that satisfies

f(g0,---,99) = g0 - ¢([g5 "1l - - - 19;21.94))
d([hal .. hg]) = Flesha,.. . hy .. k)

(adapted as needed to make sense when the target is a spectrum).
In the presence of a left G-action on B through commutative A-algebra maps,
these two cosimplicial constructions can be compared.

DEFINITION 8.2.6. There is a natural map of cosimplicial commutative A-
algebras h*: C*(B/A) — C*(G; B) given in codegree ¢ by the map
h?: BAa---Aa B — F(GT', B)® = F(G%, B)
given symbolically by

bO/\"'/\bq s (f (QO,H'ygq) '_’QO(bO)'~'-'gq(bq))
= (¢: [ha]...|hg) > bo - ha(b1) - ...~ (h1...Rg)(bg)) .
On totalizations, h* induces a natural map of commutative A-algebras h': A} —
Bhe,

In codegree 1, we can recognize h': BAs B — F(G, B) as the canonical map
h from (4.1.2). It is not hard to give a formal definition of h? as the right adjoint
of a G-equivariant map B ® 4 [¢] A Map([q], G)+ — B.

LEMMA 8.2.7. Let G be a stably dualizable group acting on B through A-algebra
maps, and suppose that h: BAg B — F(G4, B) is a weak equivalence. Then h*® is
a codegreewise weak equivalence that induces a weak equivalence h': Ay — BMG,

PrOOF. In each codegree g, the map h? factors as a composite of weak equiv-
alences of the form

BMi A, F(GY,B) = BMUD A, F(G), BAa B)
=, BMUED A F(G), F(G4, B)) = BME-D a4 F(GYHY, B)

with j = 0,...,9 — 1 and i + j = ¢q. Here the first map is a weak equivalence
because G, and thus G7, is stably dualizable, and the second map is a weak equiv-
alence because h: BA4 B — F(G., B) is assumed to be one. The claim follows by
induction. =

The following is close to Proposition 6.3.2. See also Proposition 12.1.8.
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PROPOSITION 8.2.8. Let G be a stably dualizable group acting on B through
commutative A-algebra maps, and suppose that h: B Ay B — F(G4, B) is a weak
equivalence. Then A — B is G-Galois if and only if A is complete along B

PROOF. We have i = h’ o1, with h/ a weak equivalence, so i: A — B"C is a
weak equivalence if and only if n: A — A% is a weak equivalence. O
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CHAPTER 9

Separable and étale extensions

We now address structured ring spectrum analogs of the unique lifting prop-
erties in covering spaces, continuing to work implicitly in some FE-local category.
Throughout, we let A be a cofibrant commutative S-algebra and B a cofibrant
associative or cofibrant commutative A-algebra. (There appear to be interesting
intermediate theories of E,, A-ring spectra for 1 < n < oo, in the operadic sense,
but we shall focus on the extreme cases of E; = A, A-ring spectra, i.e., associative
A-algebras, and E,, A-ring spectra, i.e., commutative A-algebras.)

Our main observations are that G-Galois extensions A — B with G discrete
are necessarily separable and dualizable, hence symmetrically étale (= thh-étale)
and étale (= tag-étale). In most cases of current interest, including £ = S and
E = K(n) for 0 < n < oo, a discrete group G is stably dualizable if and only if it
is finite.

9.1. Separable extensions

The algebraic definition [KO74, p. 74] of a separable extension of commutative
rings can be adapted to stable homotopy theory as follows.

DEFINITION 9.1.1. We say that A — B is separable if the A-algebra multipli-
cation map pu: BA4 B°? — B, considered as a map in the stable homotopy category
Dpna,Bor of B-bimodules relative to A, admits a section o: B — B A4 B°P. Equiv-
alently, there is a map o: B’ — B A4 B°P of B-bimodules relative to A, such that
the composite uo: B’ — B is a weak equivalence.

Here B°P is B with the opposite A-algebra multiplication yy: BA4 B = B Ay
B — B. It equals B precisely when B is commutative. Since B will rarely be
cofibrant as a B-bimodule relative to A, it is only reasonable to ask for the existence
of a bimodule section o in the stable homotopy category. The condition for A — B
to be separable only involves the bimodule structure on B, so it is quite accessible
to verification by calculation. For example, it is equivalent to the condition that
the algebra multiplication p induces a surjection

py: THHS (B, B As B?) — THHY (B, B)

of zero-th topological Hochschild cohomology groups. See [La01, 9.3] for a spectral
sequence computing the latter in many cases.

LEMMA 9.1.2. Let A — B be a G-Galois extension, with G a discrete group.
Then A — B is separable.

61
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62 9. SEPARABLE AND ETALE EXTENSIONS

PRrROOF. Let d: Gy — {e}+ be the continuous (Kronecker delta) map given
by d(e) = e (the unit element in G) and d(g) = * (the base point) for g # e. Its
functional dual

ine =d?: B = F({e},,B) — F(G4,B)
and the canonical weak equivalence h define the required weak B-bimodule section
o =h"1o1in, to i, as a morphism in the stable homotopy category.

(9.1.3) B-Z>BAasB—t>pB

)
iMNe PTe
Il B
O

PROPOSITION 9.1.4. Let A — B be a faithful G-Galois extension, with G a
discrete group and K C G any subgroup. Then A — C = B"K is separable.

ProOF. By Example 7.2.2, any subgroup K of G is allowable. We are therefore
in the situation of Lemma 7.2.5.

The map h: BAs B — [[4 B is (K x K)-equivariant with respect to the action
(k1,k2)-(by Aby) = k1(b1) Ak2(by) in the source, and the action that takes a sequence
{g — ¢(g)} to the sequence {g — k; (#(kT*gk2))} in the target. There are maps

8= ]]I5
K G K

functionally dual to a characteristic map dx: G4+ — K (taking G\ K to the base
point) and the inclusion K C G4, whose composite is the identity. We give ][], B
the (K x K)-action that takes {k — ¢(k)} to {k = ki(p(k; 'kk))}, so that ing
and pry are (K x K)-equivariant. The weak equivalence B — ([, B)" induces a
natural weak equivalence B — (T, B)*E>*X) that makes the following diagram

commute:
BhK - — - — - > BMK p, BhK — "> phK
BhME — — — — > (B Ay B)h(KxK) — > phK

([T B850 55 ([T B)HICH0 T2 ([T, B (<10

The vertical map « is a weak equivalence by Lemma 7.2.5, and the maps hx and
Pri40ing 4 are obtained from weak equivalences by passage to (K x K)-homotopy
fixed points, so a little diagram chase shows that u: B A4 BPK — B"K does
indeed admit a weak bimodule section. O

REMARK 9.1.5. It is easy to see that separable extensions are preserved by
base change. To detect separable extensions by faithful base change will require
some additional hypotheses, as in [KO7T4, I11.2.2].

Licensed to Univ of Rochester. Prepared on Mon Jun 12 12:34:38 EDT 2023for download from IP 128.151.13.220.



9.2. SYMMETRICALLY ETALE EXTENSIONS 63

9.2. Symmetrically étale extensions

The topological Hochschild homology THHA(B) of B relative to A is the geo-
metric realization of a simplicial A-module

BEB/\ABgB/\AB/\ABg"-

with the smash product of (g + 1) copies of B in degree q. See  EKMM97, 1X.2].
Alternatively, THH#(B) can be computed in the stable homotopy category as

Tor® 5" (B, B) = BAL,  pen B.

In the case A = S, we will often write THH (B) for THH®(B), which agrees with
the topological Hochschild homology introduced by Marcel Bokstedt [BHM93].
The inclusion of 0-simplices defines a natural map (: B — THH#(B). When B
is commutative, THH“(B) can be expressed in terms of the topologically tensored
structure on C4 as B ®4 S*.

It is also possible to define THH“ (B) for non-commutative A, by analogy with
the definition of Hochschild homology over a non-commutative ground ring [Lo98,
1.2.11], but we have found no occasion to make use of this more general definition.

DEFINITION 9.2.1. We say that A — B is formally symmetrically étale (= for-
mally thh-étale) if the map ¢: B — THH#(B) is a weak equivalence. If furthermore
B is dualizable as an A-module, then we say that A — B is symmetrically étale (=
thh-étale).

REMARK 9.2.2. This definition of an (symmetrically) étale map does not quite
conform to the algebraic case, in that it may be too restrictive to ask that B is
dualizable as an A-module. Instead, it is likely to be more appropriate to only
impose the dualizability condition locally with respect to some Zariski open cover
of Spec A. This may be taken to mean that for some set of (smashing, Bousfield)
localization functors {Lg, }:, such that the collection {A — Lg,A}; is a faithful
cover in the sense of Definition 4.3.1, each localization Lg,B is dualizable as an
Lg, A-module. The author is undecided about exactly which localization functors to
allow. However, for Galois extensions the stronger (global) dualizability hypothesis
will always be satisfied, and this may permit us to leave the issue open.

ExXAMPLE 9.2.3. Note that Definition 9.2.1 implicitly takes place in an E-local
category. By McClure-Staffeldt [MS93, 5.1] at odd primes p, and Angeltveit—
Rognes [AnRO05, 8.10] at p = 2, the inclusion (: £ — THH(¢) is a K(1)-local
equivalence, where ¢ = BP(1) is the p-local connective Adams summand of topo-
logical K-theory, so S — ¢ is K(1)-locally formally symmetrically étale. It also
follows that the localization of this map, J;' = Lk 1)S — Lxa)l = Ly is K(1)-
locally formally symmetrically étale. Here L;\ is the p-complete periodic Adams
summand, as in 5.5.2.

These maps are not K (1)-locally symmetrically étale, because L, is not du-
alizable as a J;'-module. More globally, S — Lp fails to be E(1)-locally formally
symmetrically étale. For by [MS93, 8.1], THH(L;) ~ L, V Lo(XLy), so ¢ has a
rationally non-trivial cofiber.

Similarly, ¢: ku — THH(ku) is a K(1)-homology equivalence by Christian
Ausoni’s calculation [Au05, 6.5] for p odd, and [AnR, 8.10] again for p = 2, so the
map S — ku to connective topological K-theory, and its K (1)-localization Jzﬁ\ —
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KUy, are K (1)-locally formally symmetrically étale. The map L, — KU\ is K(1)-
locally F;-Galois, as noted in 5.5.2, so by Lemma 9.2.6 below L, — KU, is K(1)-
locally symmetrically étale. In other words, ¢: ku — THH®(ku) and ¢: K Uy —

THH (K U}) are K (1)-local equivalences.

The terminology “thh-étale” is that of Randy McCarthy and Vahagn Minasian
[MMO03, 3.2], except that for brevity they suppress the distinction between the
formal and non-formal cases. The author’s lengthier term “symmetrically étale”
was motivated by the following definitions and result.

DEFINITION 9.2.4. Let M be a B-bimodule relative to A, i.e., a B A4 B°P-
module. The space of associative A-algebra derivations of B with values in M is
defined to be the derived mapping space

ADer (B, M) := (A4/B)(B, BV M)

in the topological model category of associative A-algebras over B, where pry: BV
M — B is the square-zero A-algebra extension of B with fiber M. We say that a
B-bimodule relative to A is symmetric if it has the form u'N for some B-module
N, i.e., if the bimodule action is obtained by composing with the A-algebra multi-
plication map u: B A4 B°? — B.

PROPOSITION 9.2.5. A — B is formally symmetrically €tale if and only if the

space of associative derivations ADer (B, M) is contractible for each symmetric
B-bimodule M.

PROOF. Let Q2,4 be a cofibrant replacement of the homotopy fiber of u: BA4
B°? — B in the category of B-bimodules relative to A. There is a cofiber sequence

B Apanpor Q54 — B > THHA(B)

and for each B-module N, with associated symmetric B-bimodule M = u'N, there
is an adjunction equivalence

MB/\ABop(QB/A,M) ~ MB(B ABA 4 BoP QB/A,N) .
Furthermore, there is an equivalence (for each B A4 B°P-module M)
ADerA(B,M) = (.AA/B)(B,B \/M) ~ MB/\ABOP(QB/A7M)

obtained by Lazarev [La0l, 2.2]. So ( is an equivalence if and only if B Apa , gor
Qp/a ~ *, which is equivalent to ADer4 (B, M) ~ Mp(B Apa,Ber p/a, N) being
contractible for each symmetric B-bimodule M = yu'N.

In the E-local context, this argument shows that F,(¢) is an isomorphism if and
only if ADer4(B, M) =~ * for each E-local symmetric B-module M. For A4 /B
is a full subcategory of A4/B, and likewise for the homotopy categories. ]

LEMMA 9.2.6. Fach separable extension A — B of commutative S-algebras is
formally symmetrically étale. In particular, each G-Galois extension A — B with
G discrete is symmetrically étale.
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PROOF. By assumption there is a bimodule section o so that the composite
B % BAaB? & B is homotopic to the identity. Smashing with B over B A4 B°P
tells us that the composite

THHA(B) 2L B  THHA(B)

is an equivalence. Furthermore, there is a retraction p: THHA(B) — B given in
simplicial degree q by the iterated multiplication map p{?: BA4 --- Ay B — B,
since we are assuming that B is commutative. Therefore ¢ admits a right and a
left inverse, up to homotopy, and is therefore a weak equivalence.

When A — B is G-Galois with G discrete, we showed in Lemma 9.1.2 that
A — B is separable and in Proposition 6.2.1 that B is a dualizable A-module. The
above argument then implies that A — B is symmetrically étale. ]

9.3. Smashing maps

Maps A — B having the corresponding property to the conclusion of Propo-
sition 9.2.5 for associative derivations into arbitrary (not necessarily symmetric)
B-bimodules relative to A, also have a familiar characterization. This material is
not needed for our Galois theory, but nicely illustrates the relation of smashing
localizations (and Zariski open sub-objects) to étale and symmetrically étale maps.

DEFINITION 9.3.1. We say that A — B is smashing if the algebra multiplica-
tion map p: B Ag B°? — B is a weak equivalence.

In view of the following proposition, smashing maps could also be called for-
mally associatively étale extensions.

PROPOSITION 9.3.2. A — B is smashing if and only if ADer (B, M) is con-
tractible for each B-bimodule M relative to A.

PrOOF. This is immediate from the equivalence
ADerA(B,M) jad MB/\ABOP(QB/A7M)
from [La01], since A — B is smashing if and only if p/4 ~ *. a
The terminology is explained by the following result, one part of which the
author learned from Mark Hovey.

ProroSITION 9.3.3. A — B is smashing if and only if LM = BAs M defines
a smashing Bousfield localization functor on My, in which case B = LA. In
particular, B will be a commutative A-algebra.

PRrOOF. Let BA(—) be the homotopy functor on M, defined by BA(M) =
7.(B Aa M). The natural map M — B A M is a B2-equivalence, since A — B is
smashing, and B A4 M is BA-local by the prototypical ring spectrum argument of
Adams [Ad71]: if BA4 Z ~ * then any map f: Z — B Ag M factors as

Z—BAZ 2L BABALM MY BAAM

and is therefore null-homotopic. So LM = BA 4 M defines a (Bousfield) localization
functor L on My.
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Conversely, a smashing localization functor L on M 4 produces an associative
A-algebra B = LA, by [EKMM97, VIII.2.1], such that LM ~ B A4 M (since L
is assumed to be smashing). The idempotency of L then ensures that the multipli-
cation map B A4 B°? — B is a weak equivalence. O

LEMMA 9.3.4. FEach smashing map A — LA is separable, hence formally sym-
metrically étale.

PRrOOF. If A — B = LA is smashing, then u: BA 4 B°? — B is an equivalence.
It therefore admits a bimodule section ¢ up to homotopy, so A — B is separable.[]

In general, LA is not dualizable as an A-module, as easy algebraic examples
illustrate (Z C Z,)). Instead, the local dualizability of Remark 9.2.2 is more
appropriate.

9.4. Etale extensions

We keep on working implicitly in an E-local category, now with B a cofibrant
commutative A-algebra.

For a map A — B of commutative S-algebras, the topological André-Quillen
homology TAQ(B/A) is defined in [Bas99, 4.1] as

TAQ(B/A) := (LQp)(RIg)(B A} B),

i.e., as the B-module of (left derived) indecomposables in the non-unital B-algebra
given by the (right derived) augmentation ideal in the augmented B-algebra defined
by the (left derived) smash product B AL B, augmented over B by the A-algebra
multiplication p.

DEFINITION 9.4.1. Let A — B be a map of commutative S-algebras. We
say that A — B is formally étale (= formally tag-étale) if TAQ(B/A) is weakly
equivalent to x. If furthermore B is dualizable as an A-module, then we say that
A — B is étale (= tag-étale).

Like in Remark 9.2.2, the condition that B is dualizable over A is likely to be
stronger than necessary for B to qualify as étale over A, and should eventually be
replaced with a local condition over each subobject in an open cover of A. The
apologetic discussion from the associative/symmetric case applies in the same way
here.

The terminology is justified by the following definition and result from [Bas99].
The vanishing of TAQ(B/A) gives a unique infinitesimal lifting property, up to
contractible choice, for geometric maps into the affine covering represented (in the
opposite category) by a formally étale map A — B.

B
N
N
N
N

N
—BVM

s —

Compare [Mil80, 1.3.22].
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DEFINITION 9.4.2. Let A — B be a map of commutative S-algebras and let M
be a B-module. The space of commutative A-algebra derivations of B with values
in M is defined to be the derived mapping space

CDer (B, M) := (Ca/B)(B, BV M)

in the topological model category of commutative A-algebras over B, where pry: BV
M — B is the square-zero extension of B with fiber M.

PRrROPOSITION 9.4.3. A map A — B of commutative S-algebras is formally
étale if and only if CDer o(B, M) is contractible for each B-module M.

PRrROOF. There is an equivalence
CDerys(B,M) = (Ca/B)(B,BV M)~ Mg(TAQ(B/A), M)

for each B-module M, by [Bas99, 3.2]. By considering the universal example
M = TAQ(B/A), we conclude that TAQ(B/A) ~ x if and only if CDer4(B, M) ~ *
for each B-module M. In the implicitly local context only E-local M occur, so we
can conclude that TAQ(B/A) is E-acyclic, i.e., E-locally weakly equivalent to x.0J

For a finite commutative R-algebra T, the two conditions T = HHE(T) and
D.(T/R) = AQ.(T/R) = 0 are logically equivalent [Gro67, 18.3.1(ii)], where
HHE denotes Hochschild homology and D, = AQ. denotes André-Quillen homo-
logy. In the context of commutative S-algebras this is only true subject to a con-
nectivity hypothesis [Min03, 2.8], due to a convergence issue in the analog of the
Quillen spectral sequence from André—Quillen homology to Hochschild homology.
However, one implication (from symmetrically étale to étale) does not depend on
the connectivity hypothesis stated there. In other words, if (: B — THH*(B) is
a weak equivalence, then TAQ(B/A) ~ . We discuss a proof below, based on
[BMa05].

There is a counterexample to the opposite implication, due to Mike Mandell,
which is discussed in [MMO03, 3.5]. For n > 2 let X = K(Z/p,n) be an Eilenberg—
Mac Lane space and let B = F(X., HF,) be its mod p cochain HF,-algebra, with
m«(B) = H *(K(Z/p,n);Fp). Then HF, — B is formally étale, but not symmet-
rically (=thh-)étale. So, any converse statement deducing that an étale map is
symmetrically étale must contain additional hypotheses to exclude this example.

LEMMA 9.4.4. Each (formally) symmetrically étale extension A — B of com-
mutative S-algebras is (formally) étale. In particular, each G-Galois extension
A — B with G discrete is étale, and each smashing localization A — LA = B is
formally étale.

PROOF. Recall that THHA(B) ~ B ®4 S' as commutative A-algebras. Here
®4 denotes the tensored structure on C4 over unbased topological spaces. To
describe the commutative B-algebra structure on THH“(B) in similar terms, and
to relate it to the B-module TAQ(B/A), we will need a tensored structure over
based topological spaces. This makes sense when we replace C4 by the pointed
category Cp/B of commutative B-algebras augmented over B. There is then a
(reduced) tensor structure (—)®pX on Cg/B over based topological spaces X,
with

(Cp/B)(C®pX,C") = Map, (X, (Cs/B)(C,C")),
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where Map, denotes the base-point preserving mapping space. It follows that
(C®pX)®BY = C®p(X AY). The unbased and based tensored structures are
related by C®pX = BA¢(C®pX) and CopT = CRp(T} ), for unbased spaces T
There is a pointed model structure on Cg /B, and the associated Quillen suspen-
sion functor E is given on cofibrant objects by the reduced tensor E(C) = C®pS!
with the based circle. For each n > 0 we can form the n-fold iterated suspension

E"(C) = C®pS"

in Cg/B, so that E(E"(C)) = E""!(C), and these objects assemble to a sequen-
tial suspension spectrum E°°(C), in this category. By [BMa05, Thm. 3], the
homotopy category of such spectra, up to stable equivalence, is equivalent to the
homotopy category Dp of B-modules, up to weak equivalence.

Base change along A — B takes B to BA 4 B, which is a cofibrant commutative
B-algebra, augmented over B by the multiplication map u: BAsB — B. Hereafter,
write C = B A4 B for brevity. By [BMa05, Thm. 4], the cited equivalence
takes E°°(C) to the topological André-Quillen homology spectrum TAQ(B/A). So
E®(C) is stably trivial if and only if TAQ(B/A) ~ , i.e., if and only if A — B is
formally étale.

On the other hand,

E(C) = C®pS' ~ B Ac THH (C) = THH*(B),

now as commutative B-algebras. So E(C) is weakly trivial, i.e., weakly equivalent
to the base point B in Cg/B, if and only if (: B — THH“(B) is a weak equivalence.

The proof of the lemma is now straightforward. If A — B is formally symmet-
rically étale, then E(C) is weakly trivial, and therefore so is each of its suspensions
E"(C) = E" }(E(C)) for n > 1. Thus the suspension spectrum E>(C) is stably
trivial (in a very strong sense), and so TAQ(B/A) is weakly equivalent to the trivial
B-module. a

In the notation of the above proof: C = B A4 B is weakly trivial in Cg/B if
and only if A — B is smashing, E(C) = THH”(B) is weakly trivial if and only if
A — B is formally symmetrically étale, and E*(C) is stably trivial if and only if
A — B is formally étale.

9.5. Henselian maps

By definition, an étale map A — B has the unique lifting property up to
contractible choice for each square-zero extension of commutative A-algebras B V
M — B, and satisfies a finiteness condition. In this chapter we conversely ask
which extensions D — C' of commutative A-algebras are such that each étale map
A — B, with B mapping to C, has this homotopy unique lifting property with
respect to D — C.

B——C
T \ T
AN
AN
{
A——=D
We shall refer to such D — C as Henselian maps. Section 9.6 will exhibit some
interesting examples of Henselian maps.
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In the opposite category to that of commutative A-algebras, of affine algebro-
geometric objects in a homotopy-theoretic sense [TV05, §5.1], we can view the
square-zero extensions as infinitesimal thickenings of a special kind, forming a gen-
erating class of acyclic cofibrations. The étale extensions then correspond to smooth
and unramified covering maps, and constitute a class of fibrations characterized by
their right lifting property with respect to these generating acyclic cofibrations,
together with a finiteness hypothesis. The Henselian maps, in turn characterized
by their left lifting property with respect to these fibrations, then form a class
of thickenings that contains all composites of the generating acyclic cofibrations
of the theory, i.e., all infinitesimal thickenings, but which also encompasses many
other maps. By comparison, in the algebraic context Hensel’s lemma applies to a
complete local ring mapping to its residue field, but also to many other cases.

For a fixed commutative S-algebra A, this discussion could take place as above
in the context of commutative A-algebras, with maps from (tag-)étale extensions
A — B, but also in the alternate context of associative A-algebras, with maps
from symmetrically (= thh-)étale extensions. To be concrete we shall focus on the
commutative case, although all of the formal arguments carry over to the associative
category and extensions by symmetric bimodules.

Throughout this section we continue to work E-locally, and let A be a cofibrant
commutative S-algebra, B — C' a map of commutative A-algebras and M any C-
module. We sometimes consider M as a B-module by pull-back along B — C.
We always make the cofibrant and fibrant replacements required for homotopy
invariance, implicitly.

LEMMA 9.5.1. The square-zero extension BNV M — B is the pull-back in C4
of the square-zero extension CV M — C along B — C,

B—>B C

\\\
N ~
T \\ ?\\\ Tprl
EN N

A—=BVM—CVM

so there is a weak equivalence
(Ca/B)(B,BV M) ~ (C4/C)(B,CV M).

In particular, both of these spaces are contractible whenever A — B is formally
étale.

PrOOF. The pullback along B — C of a fibrant replacement for CVM — C'is
a fibrant replacement for BV M — B, and forming mapping spaces from a cofibrant
replacement for B in C4 has a left adjoint given by the tensored structure, hence
commutes with pullbacks and other limits. So the homotopy fiber at the identity
of B of C4(B,BV M) — Ca(B, B) is weakly equivalent to the homotopy fiber at
B — Cof C4(B,CV M) — Cs(B,C). a

LEMMA 9.5.2. The commutative diagram

B C

Z
NN
~ pr1
\* >
EN
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yields a homotopy fiber sequence
(Ca/CV M)(B,C)— (Ca/C)(B,C) — (C4/C)(B,CV M)

for which the middle space is contractible. In particular, all three spaces are con-
tractible whenever A — B is formally étale.

PRrROOF. After replacing first pry and then in; by fibrations, the mapping spaces
in C4 from a cofibrant replacement for B to these fibrations sit in two fibrations p
and ¢, whose composite poi is also a fibration. The fibers of the i, poi and p above
B — C then form the desired fiber sequence. O

The following definition is the commutative analog of that in [La01, 3.3].

DEFINITION 9.5.3. A map 7: D — C of commutative A-algebras is a singular
extension if there is an A-linear derivation of C' with values in M, i.e., a commuta-
tive A-algebra map d: C — C'V M over C, and a homotopy pull-back square

c—tscvMm

D———C
of commutative A-algebras.

For example, the square-zero extension CVE ™! M — C is the singular extension
pulled back from the trivial derivation d = in;: C' — C'VM. So the class of singular
extensions contains the class of square-zero extensions.

LEMMA 9.5.4. For each singular extension w: D — C the commutative dia-

gram

d
—C—CVM
N~

~
\\Tl' ~ _ iny

\ ~ 8

D C

& —>

induces a weak equivalence
(Ca/C)(B,D) ~ (Ca/CV M)(B,C).

In particular, both of these spaces are contractible whenever A — B is formally
étale.

PROOF. The first part of the proof is like that of Lemma 9.5.1. The second
claim follows by using the definition of formally étale maps to deduce that both
mapping spaces are contractible for all formally étale maps A — B, in the special
case when 7: D = C VX "'M — C is the square-zero extension pulled back from
the trivial derivation d = in;: C' — C vV M. The right hand mapping space does
not depend on the particular singular extension, so it follows from the first claim
applied to a general singular extension 7: D — C that also the left hand mapping
space is contractible for arbitrary singular extensions D — C and formally étale
maps A — B. ]

In view of [Gro67, 18.5.5] or [Mil80, 1.4.2(d)] we can make the following
definition.
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DEFINITION 9.5.5. Let D — C be a map of commutative S-algebras. We say
that D — C'is Henselian if for each étale map A — B, with B and D commutative
A-algebras over C,

_.__>C

B
N
N
N
N\
A

[ D
the derived mapping space
(Ca/C)(B,D) ~ %
is contractible, i.e., if A — B has the unique lifting property up to contractible
choice with respect to D — C.

If D is a commutative S-algebra and C is an associative D-algebra, we say
that D — C is symmetrically (= thh-)Henselian if for each symmetrically (= thh-
)étale map A — B, in a diagram as above, the associative A-algebra mapping space
(Aa/C)(B, D) is contractible.

By the following lemma it suffices (in the commutative case) to verify the
homotopy unique lifting property for the étale maps A — B with A = D. For
A — B étale implies D — B A4 D étale by the base change formula TAQ(B A4
D/D) ~TAQ(B/A) Aa D [Bas99, 4.6] and Lemma 6.2.3.

LEMMA 9.5.6. Let B — C and D — C be maps of commutative A-algebras,
with pushout B ANg D — C. The commutative diagram

B——=BAsD—C

\\\ \\
I B N
~ N

S <A

A D———=D

induces a weak equivalence

(Ca/C)(B,D) =~ (Cp/C)(BAaD,D).
PrOOF. Dual to the proof of Lemma 9.5.1. O

PRrROPOSITION 9.5.7. The class of Henselian maps D — C' contains the square-
zero extensions CV M — C and the singular extensions m: D — C. It is closed
under weak equivalences, compositions, retracts and filtered homotopy limits (for
diagrams of maps to a fized C).

PROOF. The first claims follow from Lemma 9.5.4 and the remark that square-
zero extensions are trivial examples of singular extensions. The closure claims
are clear, perhaps except for the the last one. If a — (D, — C) is a diagram
of Henselian maps to C, then let D = holim, D,. For each étale map A — B
(mapping to D — C' as above) there is a weak equivalence

(C4/C)(B, D) = holim(C4/C)(B, Da) = *,

since each D, — C is Henselian and the limit category is assumed to be filtering.lJ

In fact, the Henselian maps that we will encounter in the following section are
sequential homotopy limits of towers of singular extensions, and thus of a rather

Licensed to Univ of Rochester. Prepared on Mon Jun 12 12:34:38 EDT 2023for download from IP 128.151.13.220.



72 9. SEPARABLE AND ETALE EXTENSIONS

special form. If desired, the reader can view them as the residue maps of complete
local rings, and refer to them as formal thickenings, rather than as general Henselian
maps.

9.6. [-adic towers

In this section we let R be a commutative S-algebra and R/I an R-ring spec-
trum, i.e., an R-module with homotopy unital and homotopy associative maps
R — R/I and R/I Ag R/I — R/I. Define the R-module I by the cofiber sequence
I - R— R/I, and let

I®) =T Ag--- ARl
(s copies of I) be its s-fold smash power over R, for each s > 1. Define the R-
module R/I®®) by the cofiber sequence I®) — R — R/I®). There is then a tower
of R-modules

(9.6.1) RH-.-—>R/[(3)_)...,.,>R/I

that Baker and Lazarev [BLO1, §4] refer to as the external I-adic tower.

Angeltveit [An:t, Cor. 3.7] recently showed that when R is even graded,
i.e., the homotopy ring m.(R) is concentrated in even degrees, and R/I is a regular
quotient, i.e., m.(I) is an ideal in 7, (R) that can be generated by a regular sequence,
then each R-ring spectrum multiplication on R/I can be rigidified to an associative
R-algebra structure.

Given that R/I is an associative R-algebra, Lazarev [La01, 7.1] proved earlier
on that the whole I-adic tower can be given the structure of a tower of associative
R-algebras, and that each cofiber sequence

[(S)/I(S+1) N R/[(S+1) N R/I(S)

is a singular extension of associative R-algebras.

It remains an open problem to decide when the diagram (9.6.1) can be realized
as a tower of commutative R-algebras, and whether each map R/Is*Y) — R/I(%)
can be taken to be a singular extension in the commutative context. See [La04,
4.5] for a remark on a similar problem for square-zero extensions.

The homotopy limit

LE, R= holim R/I®

of the I-adic tower is the Bousfield R/I-nilpotent completion of R, formed in the
category of R-modules (or R-algebras), which we introduced in Definition 8.2.2. Tt
is in general not the same as the Bousfield R/I-localization of R, formed in the
category of R-modules, which we denote by L% 1R

However, Baker and Lazarev [BLO1, 6.3] use an internal I-adic tower to prove
that when R is even graded and R/I is a homotopy commutative regular quotient
R-algebra, then the R/I-nilpotent completion has the expected homotopy ring

7r*JA;IP%/IR = W*(R)Q*(I) ‘

If the regular sequence generating . (I) is finite, then they also show that the R/I-
localization and the R/I-nilpotent completion of R, both formed in R-modules, do
in fact agree

Lg/,R ~ fig/,R,
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but we shall most be interested in cases when the regular ideal 7, (I) is not finitely
generated.

Proposition 9.5.7 therefore has the following consequence, which admits some
fairly obvious algebraically localized generalizations that we shall also make use of.

PROPOSITION 9.6.2 (BAKER-LAZAREV). Let R be an even graded commuta-
tive S-algebra, and R/I a homotopy commutative regular quotient R-algebra. Then
the limiting map

LY, R= holim R/I® — R/I

is symmetrically (=thh-)Henselian, and induces the canonical surjection
T (R)). 1y = me(R) (1)

of homotopy rings. In particular, if m.(R) is already m.(I)-adically complete, so
that R ~ Lg/IR, then R — R/I is symmetrically Henselian. a

We now claim that the complex cobordism spectrum MU can be viewed as
a/gk)bal model, up to Henselian maps, of each of the commutative S-algebras
E(n) = Lk E(n) that occur as fixed S-algebras in the p-primary K(n)-local
pro-Galois extensions Lk S — E, — E;". So, even if there is ramification
between the expected maximal unramified Galois extensions (covering spaces) over
the different chromatic strata, reflected in the changing pro-Galois groups G,, and
GJ'" for varying n and p, these can all be compensated for by appropriate Henselian
maps (formal thickenings), and unified into one global model, namely MU.

For the sphere spectrum S, the chromatic stratification we have in mind is
first branched over the rational primes p, and then S, is filtered by the Bousfield
localizations L,S = Lgmy)S for each n > 0. The associated (Zariski) stack has
the category Mg g(n) of E(n)-local S-modules over the n-th open subobject in
the filtration, and the n-th monochromatic category of E(n)-local E(n—1)-acyclic
S-modules over the n-th half-open stratum. The latter category is equivalent to
the category Mg k(n) of K(n)-local S-modules, at least in the sense that their
homotopy categories are equivalent [HSt99, 6.19].

The latter K (n)-local module category is in turn equivalent to the category
of K(n)-local Ly ,yS-modules, and we propose to understand it better by way
of Galois descent from the related categories Mp g (n) of K(n)-local B-modules,
for the various K(n)-local Galois extensions Lk (,)S — B. The limiting case of
pro-Galois descent from K (n)-local modules over B = E}'", or over the separable
closure B = E,, (cf. Section 10.3), can optimistically be hoped to be particularly
transparent.

This decomposition of the sphere spectrum, appearing in the lower row in
the diagram below, can be paralleled for MU by applying the same localization
functors in spectra. However, the proposition above indicates that it may be more
appropriate to nilpotently complete MU, in the category of MU-modules. In other
words, we are led to focus attention on the upper row, rather than the middle row,

Licensed to Univ of Rochester. Prepared on Mon Jun 12 12:34:38 EDT 2023for download from IP 128.151.13.220.



74 9. SEPARABLE AND ETALE EXTENSIONS

in the following commutative diagram.

(9.6.3) MU — Ly MU —— L MU

T

MU — LE(n)MU —_— LK(n)MU

]

S —— LE(n)S —_— LK(n)S

In the middle column we have Lg,,)S ~ L E(n)S, since every E(n)-local spectrum
is E(n)-nilpotent [HSa99, 5.3]. However, in the right hand column Lg,)S #

L K(n)S, since K (n)-localization is not smashing [Ra92, 8.2.4] and [HSt99, 8.1].

The coefficient rings of the various localizations and nilpotent completions of
MU occurring in the diagram above are mostly understood. See [Ra92, 8.1.1]
for Ta L g(n) MU (or rather, its BP-version). Let J, C TI'*MU(p) be the kernel of
the ring homomorphism 7, MU, — m.E(n), i.e., the regular ideal generated by
the kernel of w, M Up) — m«BP and the infinitely many classes vy for kK > n. Let
I, = (p,v1,...,vn-1), also considered as an ideal in 7, MU, so that the sum of
ideals I, 4+ Jy is the kernel of the ring homomorphism 7, MU(,) — 7K (n). Then

W*LK(n)MU = W*MU(T,) [U;I]?n

by [HSt99, 7.10(e)]. By [HSa99, Thm. B], Lk ,)BP splits as the K(n)-

localization of an explicit countable wedge sum of suspensions of E(n). It follows
that Ly n,)MU splits in a similar way.

By Proposition 9.6.2, applied to R = MU, [v,;'] and R/I = E(n), we find
that ]:J%I(Z)M U~LE /1R — E(n) is symmetrically Henselian, with

W*IAL%’I(Z)MU =m MU v '], -

By the same proposition applied to R = MU, [v,, '] and R/I = K(n), at least for
p # 2 to ensure that K (n) is homotopy commutative, we also find that Ii%gl)M U~
Iig 1 — K(n) is symmetrically Henselian, with

(9.6.4) m LY GyMU = m MU [ 17, 4, -

This differs from the K (n)-localization of MU in S-modules by the additional
completion along J,.

This K (n)-nilpotently complete part, in MU-modules, of the global commuta-
tive S-algebra MU, can now be related by a symmetrically Henselian map to the

—

extension Lk (,)S — E(n), which is closely related to the K (n)-locally pro-Galois
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extension Ly (n)S — E,.

(9.6.5) E,—=— MV E,

— ~7? 2
E(n) — > LYy E(n)
~ - 9

LgmMU — LYV MU

LK(n)S EE— LK(n)S
Here the horizontal map m = LgmyE(n) — I:%gl)E(n), and its analog for
E,,, are both plausibly weak equivalences. For instance, the corresponding map of
nilpotent completions of MU induces completion along J,, at the level of homotopy

groups, and ml?(?) and 7, F, are already J,-adically complete in a trivial way.
We shall now apply Proposition 9.6.2 with R = L%gl yMU. Formula (9.6.4)
exhibits R as an even graded commutative S-algebra. Considering J, as an ideal

in 7R, it is still generated by a regular sequence and (m.R)/J, = 71'*.5(;). So
we can form R/I ~ FE(n) as a homotopy commutative regular quotient R-algebra.
Then 7.(I) = J,, and m.(R) is J,-adically complete, so by the last clause of
Proposition 9.6.2 the map q: R — R/I, labeled q in the diagram (9.6.5) above, is
symmetrically Henselian.

COROLLARY 9.6.6. Each K(n)-local pro-Galois extension Ly (n)S — En fac-
tors as the composite map of commutative S-algebras

LS — LM, MU % E(n) — En,

where the first map admits the global model S — MU, the second map is symmet-
rically (= thh-)Henselian, and the third map is a K(n)-local pro-Galois extension.
In other words, each K (n)-local stratum of S is related by a chain of pro-Galois

—

covers Lygn)S — En L?(-;) to a formal thickening q: I:%gl)MU — E(n) of the
corresponding K (n)-nilpotently complete stratum of MU, formed in MU -modules.

We shall argue in Section 12.2 that there is a Hopf-Galois structure on this
global model S — MU that also encapsulates all the known Galois symmetries
over Ly »)S, at least up to the adjunction of roots of unity, i.e., up to the passage

e~

from E(n) to E, (or to E*"). The question remains whether ¢ is (commutatively)
Henselian, which would follow if the diagram (9.6.1) could be realized by singular
extensions of commutative S-algebras.

After this discussion of K (n)-localization and K (n)-nilpotent completion in
MU-modules, we make some remarks on the chromatic filtration in MU-modules.
The study of the chromatic filtration and the monochromatic category of S-modules
relies on the basic fact [JY80, 0.1] that E(n).(X) = 0 implies E(n—1).(X) for
S-modules X, so that there is a natural map Lgn)X — Lgxn-1)X. The analogous
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claim in the context of MU-modules is false, i.e., that E(n)MY(X) = 0 implies
E(n—1)MU(X) = 0, as the easy example X = MU, /(vy) illustrates. Thus there
is no natural map L%I(Z)X — L%’I(Z_I)X.

For brevity, let K[0,n] = K(0) V---V K(n). It is well-known that Lg{on =
LEg(ny in the category of S-modules [Ra84, 2.1(d)]. For any MU-module X it is
obvious that K[0,n]MV(X) = 0 implies K[0,n—1]MV(X) = 0, so that there is a
natural map L%[g’n]X — LAK/’[gjn_l]X . Therefore the example above shows that the
two localization functors L%[[oj,n] and L%I([{L) in MU-modules cannot be equivalent.

We therefore think that it will be more appropriate to filter the category of
MU-modules by the essential images

MU MU
Mpu D -+ D Myt kom) 2 MuUkjon-1) 2 -+

of the Bousfield localization functors L%[g’n], i.e., the full subcategories of K0, n]-

local M U-modules, within M U-modules, or the corresponding essential images
S MU MU
Mupu D - D Mg ko) 2 Mumukon—1] 2 -

of the nilpotent completion functors ﬁ%[g n]’ i.e., the full subcategories of K|[0,n]-
nilpotently complete M U-modules, within M U-modules. Then we can consider the
MU-chromatic towers

X = = L X = Ly X — -

and A R
X == L X = LG X — ..

for each MU-module X. We then suspect that L%[gm1 is a smashing localization,
and that there is an equivalence of homotopy categories between the n-th monochro-
matic category of MU-modules and the K (n)-local category of MU-modules, like
that of [HSt99, 6.19], but we have not verified this expectation. To be precise, the

monochromatic category in question has objects the MU-modules that are LAK’I[[({’n]—
local and L%g’n_lj—acyclic. The K (n)-local category has objects the MU-modules
that are LAK/I(({L -local.

The thrust of Corollary 9.6.6 is now that the chromatic filtration on S-modules
is related to a chromatic filtration on MU-modules, by a chain of pro-Galois ex-
tensions and Henselian maps with geometric content. The chromatic filtration on
MU-modules is likely to be much easier to understand algebraically, in terms of the
theory of formal group laws. Taken together, these two points of view may clarify
the chromatic filtration on S-modules.
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CHAPTER 10

Mapping spaces of commutative S-algebras

We turn to the computation of the mapping space C4(B, B) for a G-Galois
extension A — B, and related mapping spaces of commutative S-algebras, using the
Hopkins—Miller obstruction theory in the commutative form presented by Goerss
and Hopkins [GHO4]. For the more restricted problem of the classification of
commutative S-algebra structures, the related obstruction theory of Alan Robinson
[Rob03] is also relevant.

10.1. Obstruction theory

Let A be a cofibrant commutative S-algebra and let E be an S-module. We
shall need an extension of the Goerss—-Hopkins theory to the context of (simplicial
algebras over simplicial operads in) the category M4 g of E-local A-modules. The
base change to A-modules is harmless, but in working E-locally we may loose the
identification of the dualizable A-modules with the (homotopy retracts of) finite cell
A-modules, recalled in Proposition 3.3.3 above. It seems clear that only the formal
properties of dualizable modules are important to the Goerss—Hopkins theory, so
that the whole extension can be carried through in full generality. However, for
our specific purposes the only dualizable A-modules we must consider will in fact
be finite cell A-modules, so we do not actually need to carry the generalization
through.

Next, consider a fixed (cofibrant, E-local) commutative A-algebra B. The
Goerss—Hopkins spectral sequence [GHO04, Thm. 4.3 and Thm. 4.5] for the
computation of the homotopy groups of commutative A-algebra mapping spaces
like C4(C, B), for various commutative A-algebras C, is based on working with
a fixed homology theory given by a commutative A-algebra that they call E, but
which we will take to be B. In particular, the target B in the mapping space is then
equivalent to its completion along the given homology theory (cf. Definition 8.2.1),
as required for the convergence of the spectral sequence.

This commutative A-algebra B is required to satisfy the so-called Adams con-
ditions [Ad69, p. 28], [GHO4, Def. 3.1], which in our notation asks that B is
weakly equivalent to a homotopy colimit of finite cell A-module spectra B, satis-
fying two conditions. For our purposes it will suffice that B itself satisfies the two
conditions, i.e., that there is only a trivial colimit system. The conditions are then:

ADAMS CONDITIONS 10.1.1. The commutative A-algebra B is weakly equiva-
lent to a finite cell A-module, such that

(a) BA(D4B) is finitely generated and projective as a B,-module.

(b) For each B-module M the Kiinneth map

[DaB, M) — Homp, (B (DaB), M.).
7
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is an isomorphism.

In the E-local situation we expect that it suffices to assume that B is a du-
alizable A-module, but in our applications the stronger finite cell hypothesis will
always be satisfied.

LEMMA 10.1.2. The Adams conditions (a) and (b) are satisfied when A — B
is an F-local G-Galois extension, with G a finite discrete group.

PROOF. From Lemma 6.1.2 we know that j: B(G) — Fa(B,B) is a weak
equivalence, and that hps: BAg M — F(G4, M) is a weak equivalence for each B-
module M. By Proposition 6.2.1, B is dualizable over A, so BAxDaB ~ F4(B, B).
So BA(DaB) = 1.F4(B,B) = B,(G) is a finitely generated free B,-module, and
BAM = [D4B, M2 is isomorphic to

Homp, (B/(DaB), M.) = Homp, (B.(G), M) = [[ M. = m.F(G4, M).
G

A diagram chase verifies that the Kiinneth map equals the composite of this chain
of isomorphisms. O

The more general situation, with G an indiscrete stably dualizable group, will
lead to much more complicated spectral sequence calculations, which we will not
try to address here.

Goerss and Hopkins proceed to consider an Fs- or resolution model structure on
spectra, which is suitably generated by a class P of finite cellular spectra. This class
is required to satisfy a list of conditions [GHO04, Def. 3.2.(1)—(5)]. Following the
proof of [BRO7, 2.2.4], by Baker and Richter, we take P to be the smallest set of
dualizable A-modules that contains A and B, and is closed under (de-)suspensions
and finite wedge sums. This immediately takes care of conditions (3) and (4).

LEMMA 10.1.3. The resolution model category conditions, listed in [GHO4,
Def. 3.2.(1)—(5)], are satisfied when A — B is a finite E-local G-Galois extension.

PrROOF. (1) BA(X) is a finite sum of shifted copies of BA(A) = B. and
BA(B) = [1¢ Bx, for each A-module X € P, hence is projective as a B,-module.
(2) DaB is represented in P, since B is self-dual as an A-module by Proposi-
tion 6.4.7. (5) The Kiinneth map

(X, M]2# — Homp, (BA(X), My).

is an isomorphism for all B-module spectra M when X = D4B, by the Adams
condition (b), and trivially for X = A, so the same follows for all X € P by
passage to (de-)suspensions and finite wedge sums. a

To sum up, a finite Galois extension A — B satisfies the Adams conditions and
has an associated resolution model structure on A-modules, as required by [GHO04,
§3], whenever B is weakly equivalent to a finite cell A-module. It seems likely that
the cited theory also extends to cover all finite Galois extensions, by replacing all
references to finite cell objects by dualizable objects. However, in the following
applications we shall always make use of the identification

CA(C,B) = CB(B ANa C, B)
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and only apply the Goerss—Hopkins spectral sequence in the case of commutative
B-algebra maps to B. This is the very special case of Lemmas 10.1.2 and 10.1.3
when A = B and G is the trivial group, in which case B is certainly a finite cell
A-module. So we are only using the straightforward extension of [GHO4] to a
more general (cofibrant, commutative) ground S-algebra, namely B. Note also
that BE(B A4 C) = BA(C), so the two equivalent mapping spaces above will have
the same associated spectral sequences, which we now review.

Goerss and Hopkins define André—Quillen cohomology groups D* of algebras
and modules over a simplicially resolved E-operad [GHO04, (4.1)], as non-abelian
right derived functors of algebra derivations. They then construct a convergent
spectral sequence of Bousfield-Kan type [GHO04, Thm. 4.5], which in our notation
appears as

(10.1.4) Eyt = m_,Ca(C, B)
(based at a given commutative A-algebra map C — B), with Fy-term
Ey° = Algp (B(C), B.)

and

Ey' = Dy r(BX(C),Q'B.)
for t > 0. Here Q!B, is the t-th desuspension of the module B,. As usual for
Bousfield-Kan spectral sequences, this spectral sequence is concentrated in the
wedge-shaped region 0 < s < ¢.

The subscript B, T refers to a (Reedy cofibrant, etc.) simplicial E., operad T
that resolves the commutative algebra operad in the sense of [GH04, Thm. 2.1],
and B,T is the associated simplicial F, operad in the category of B.-modules.
The Goerss—Hopkins André—Quillen cohomology groups D? are the right derived
functors of derivations of B,T-algebras in B,-modules, in the sense of Quillen’s
homotopical algebra. As surveyed by Basterra and Richter [BasR04, 2.6], these
groups D? do not depend on the choice of resolving simplicial F, operad T, and
agree with the André-Quillen cohomology groups AQjg_ defined by Mandell in
[Man03, 1.1] for E,, simplicial B,-algebras. These do in turn agree with the
André-Quillen cohomology groups AQj, g defined by Mandell for F differential
graded B,-algebras [Man03, 1.8|, and with Basterra’s topological André-Quillen
cohomology groups TAQ® of the Eilenberg-Mac Lane spectra associated to these
algebras and modules [Man03, §7]. By the comparison result of Basterra and
McCarthy [BMc02, 4.2], these are finally isomorphic to the I'-cohomology groups
HT* of Robinson and Sarah Whitehouse [RoW02], when BA(C) is projective over
B,, or more generally, when BA(C) is flat over B, and the universal coefficient
spectral sequence from homology to cohomology collapses. So in these cases the
Goerss—Hopkins groups can be rewritten as

Dy +(BA(C),9'B.) = HT*~{(BA(C)|B.; B.).

It is not quite obvious from the above references that this chain of identifica-
tions preserves the internal t-grading of these cohomology groups, since this grading
could be lost by the passage through Eilenberg—Mac Lane spectra. However, Birgit
Richter has checked that both gradings are indeed respected, up to the sign indi-
cated above. In our applications all of these cohomology groups will in fact be zero,
so the finer point about the internal grading is not so important.
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80 10. MAPPING SPACES OF COMMUTATIVE S-ALGEBRAS

If BA(C) is an étale commutative B,-algebra (thus flat over B,), then by
[RoW02, 6.8(3)] all I-homology and I'-cohomology groups of BA(C) over B, are
zero, so by the sequence of comparison results above (and the universal coefficient
spectral sequence for TAQ), all the Goerss—Hopkins André—Quillen cohomology
groups D% 7(B£(C), Q¢ B,) vanish. Therefore one can conclude:

COROLLARY 10.1.5. Let C — B be a map of commutative A-algebras. If
BA(C) is étale over B, then the Goerss-Hopkins spectral sequence for

7.C4(C, B) 2 ,C5(B A4 C, B)

collapses to the origin at the Eq-term, so C4(C, B) is homotopy discrete (each path
component is weakly contractible) with

m0Ca(C, B) = Algg (B(C), B.) .

10.2. Idempotents and connected S-algebras

The converse part of the Galois correspondence, begun in Theorem 7.2.3, should
intrinsically characterize the intermediate extensions A — C — B that occur as
K-fixed S-algebras C = B"¥ by allowable subgroups K C G. Already in the
algebraic case of a G-Galois extension R — T of discrete rings there are additional
complications (compared to the field case) when T admits non-trivial idempotents,
i.e., when the spectrum of T is not connected in the sense of algebraic geometry.
See [Mag74] for a general treatment of these complications. We do not expect
that these issues are so central to the extension of the theory from discrete rings to
S-algebras, so we prefer to focus on the analog of the situation when T is connected.

We can identify the idempotents of a commutative ring 7 with the non-unital
T-algebra endomorphisms T' — T, taking an idempotent e (with e2 = e) to the
homomorphism ¢ — et. The forgetful functor from T-algebras to non-unital 7T-
algebras has a left adjoint, taking a non-unital T-algebra N to T' & N, with the
multiplication (t1,m1) - (t2,n2) = (tite,t1n2 + nits + ning) and unit (1,0). In
particular, we can identify the set of idempotents E(T) = {e € T | €2 = e} with
the set of T-algebra maps

E(T) = Alg (T&T,T).

Here T @ T =2 T'x]/(x? — x) is finitely generated and free as a T-module. It is étale
as a commutative T-algebra by [Mil80, 1.3.4], since (z? — z)’ = 2z — 1 is its own
multiplicative inverse in T'[z]/(z? — z).

This leads us to the following definitions.

DEFINITION 10.2.1. Let B be a {cofibrant) commutative S-algebra. Let the
space of idempotents
E(B) = Ng(B,B)
be the mapping space of non-unital commutative B-algebra [Bas99, §1] endomor-
phisms B — B. We say that B is connected if the map {0,1} — £(B) taking 0
and 1 to the constant map and the identity map B — B, respectively, is a weak
equivalence.

We shall not have need to do so, but if we wanted to express that the spec-
trum B has the property that m,(B) = 0 for all *x < 0, we would say that B

Licensed to Univ of Rochester. Prepared on Mon Jun 12 12:34:38 EDT 2023for download from IP 128.151.13.220.



10.2. IDEMPOTENTS AND CONNECTED S-ALGEBRAS 81

is 0-connected, reserving the term “connected” for the algebro-geometric interpre-
tation just introduced. A spectrum B with 7.(B) = 0 for * < 0 will be called
(—1)-connected or connective.

There is a homeomorphism

£(B)=Cp(BV B, B),

where BV B is defined as the split commutative S-algebra extension of B with fiber
the underlying non-unital commutative S-algebra of B. Its unit B — BV B is the
inclusion on the first wedge summand, and its multiplication is the composite

(BVB)Ag (BVB)~BV(BVBVB) L. BVB

where V folds the last three wedge summands together.

PROPOSITION 10.2.2. Let B be any commutative S-algebra. The space of idem-
potents E(B) is homotopy discrete, with mo€(B) & E(m(B)). In particular, the
commutative S-algebra B is connected if and only if the commutative ring mo(B) is
connected.

PROOF. We compute the homotopy groups of £(B) = Cg(BV B, B) by means
of the Goerss—Hopkins spectral sequence (10.1.4), in the almost degenerate case
when A = B and C = BV B. Here A — B is of course a G-Galois extension, in the
trivial case G = 1, so our discussion in Section 10.1 justifies the use of this spectral
sequence. It specializes to

E)t = m,_,E(B)
with
Ey° = Algg (B. & B., B.) = E(B.)
and
B3 = Djy 1(B. & B.,Q'B.)

for t > 0. Here B, ® B, = B.[z]/(2? —z) is étale over B, so all the André-Quillen
cohomology groups D* = HT'® vanish [RoW02, 6.8(3)], and we deduce that £(B)
is homotopy discrete, with mo&(B) = FE(B,) equal to the set of idempotents in the
graded ring B,, which of course are the same as the idempotents in the ring mo(B).
In short, we have applied Corollary 10.1.5. |

The following argument, explained by Neil Strickland, shows that the above
definition of connectedness for structured ring spectra is equivalent to another def-
inition originally proposed by the author. We say that an S-algebra B is trivial if
it is weakly contractible, i.e., if m.(B) = B, = 0, and non-trivial otherwise.

LEMMA 10.2.3. A non-trivial commutative S-algebra B is either connected, or
weakly equivalent to a product By X By of non-trivial commutative B-algebras, but
not both.

Proor. If B is non-trivial and not connected then there exists an idempotent
e € mo(B) different from 0 and 1. Let f; and fo: B — B be B-module maps
inducing multiplication by e and 1 — e on 7, (B), respectively. (These could also be
taken to be non-unital commutative B-algebra maps by the previous proposition.)
For i = 1,2 let B[f; "] be the mapping telescope for the iterated self-map f;, and
let

_ 1B
Bi = LB[ffllB
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be the Bousfield B[fi_l]—localization of B in the category of B-modules. Then there
are commutative B-algebra maps B — B; and B — B inducing isomorphisms
em(B) = m(B1) and (1 — e)m(B) = m.(B2), of nontrivial groups, and their
product B — B; X Bj is the asserted weak equivalence.

Conversely, if B ~ B; x By as commutative B-algebras (or even just as ring
spectra), with By and By non-trivial, then m(B) is not connected as a commutative
ring, so B is not connected as a commutative S-algebra. d

10.3. Separable closure

The following terminology presumes, in some sense, that each finite separable
extension can be embedded in a finite Galois extension, i.e., a kind of normal closure.
We will not prove this in our context, but keep the terminology, nonetheless.

DEFINITION 10.3.1. Let A be a connected commutative S-algebra. We say
that A is separably closed if there are no G-Galois extensions A — B with G finite
and non-trivial and B connected, i.e., if each finite G-Galois extension A — B has
G = {e} or B not connected.

A separable closure of A is a pro-G 4-Galois extension A — A such that A is
connected and separably closed. The pro-finite Galois group G 4 of A over A is the
absolute Galois group of A.

The existence of a separable closure follows from Zorn’s lemma. However, we
have not yet proved that two separable closures of A are weakly equivalent, so
talking of “the” absolute Galois group is also a bit presumptive.

By Minkowski’s theorem on the discriminant [Ne99, II1.2.17], for every num-
ber field K different from Q the inclusion Z — Op is ramified at one or more primes.
In particular, there are no Galois extensions Z — O other than the identity. The
following inference appears to be well-known.

PROPOSITION 10.3.2. The only connected Galois extension of the integers is
Z itself, so Z = 7 is separably closed.

PROOF. Let Z — T be a G-Galois extension of commutative rings, so T is a
finitely generated free Z-module. Then Q — Q ® T is also a G-Galois extension, so
Q®T =], K; is a product of number fields [KO74, I1I1.4.1]. Then T is contained
in the integral closure of Z in Q ® T', which is a product [], Ok, of number rings.
The condition T ® T = [[,T and an index count imply, in combination, that
T =[], Ok, and that each Ok, is unramified over Z. By Minkowski’s theorem,
this only happens when each K; = Q, so T' =[] Z. If T is connected, this implies
that G is the trivial group and that T = Z. d

In other words, to have interesting Galois extensions of Z one must localize
away from one or more primes. We have the following analog in the context of
commutative S-algebras. The examples in Section 5.4 demonstrate that after lo-
calization there are indeed interesting examples of (local) Galois extensions of S.

THEOREM 10.3.3. The only (glob~al, finite) connected Galois extension of the
sphere spectrum S is S itself, so S = S is separably closed.

ProOF. Let S — B be any finite G-Galois extension of global, i.e., unlocal-
ized, commutative S-algebras (Definition 4.1.3). Then B is a dualizable S-module
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(Proposition 6.2.1), hence of the homotopy type of (a retract of) a finite CW spec-
trum (Proposition 3.3.3). Thus H.(B) = H.(B;Z) is finitely generated in each
degree, and non-trivial only in finitely many degrees.

Let k be minimal such that Hy(B) # 0 and let £ be maximal such that H,(B) #
0. The condition B A B ~ [[, B implies that k = ¢ = 0. For if k& < 0 then
Hy(B) ® Hy(B) is isomorphic to Hax(B A B) = ], Hak(B) = 0, which contradicts
Hi(B) # 0 and finitely generated. If £ > 0 then H,(B) ® H,(B) injects into
Hy(B A B) = ], Hae(B) = 0, which again contradicts Hy(B) # 0 and finitely
generated. Thus H,(B) = T is concentrated in degree 0.

By the Hurewicz theorem, B is a connective spectrum with mo(B) & Hy(B) =
T. The Kiinneth formula then implies that T ® T = [, T and Tor?(T,T) = 0, so
the unit map Z — T makes T a free abelian Z-module of rank equal to the order
of G. In particular, T is a faithfully flat Z-module.

The result of inducing B up along the Hurewicz map S — HZ has homotopy
m«(HZ N B) = H.(B) = T concentrated in degree 0, so there is a pushout square

B——HT

]

S—— HZ

of commutative S-algebras. By a variation on the proof of Lemma 7.1.1, we shall
now show that HZ — HT is G-Galois.

The map HT Apz HT — [[5 HT is induced up from the weak equivalence
B AB — [[g B, cf. diagram (7.1.2), and is therefore a weak equivalence. Next,
S — B is dualizable, so HZ — HT is dualizable (Lemma 6.2.3). Finally, T is
faithfully flat over Z and so HT is faithful over HZ by the proof of Lemma 4.3.5.
Thus HZ — HT is a faithful G-Galois extension (Proposition 6.3.2).

From Proposition 4.2.1 we deduce that Z — T is a G-Galois extension of
commutative rings. By the classical theorem of Minkowski, this is only possible if
G = {e} is the trivial group or T is not connected. And mo(B) = T, so either G is
trivial or B is not connected (Proposition 10.2.2). Thus S is separably closed. O

Note that we did not have to (possibly) restrict attention to faithful G-Galois
extensions S — B in this proof.

QUESTION 10.3.4. Can the absolute Galois group G 4, or its maximal abelian
quotient G‘j‘b, be expressed in terms of arithmetic invariants of A, such as its alge-
braic K-theory K(A)? This would constitute a form of class field theory for com-
mutative S-algebras. The author expects that there is a better hope for a simple
answer in the maximally localized category of K (n)-local commutative S-algebras,
than for general commutative S-algebras.

QUESTION 10.3.5. If an E-local commutative S-algebra A is an even periodic
Landweber exact spectrum, and A — B is a finite E-local G-Galois extension, does
it then follow that B is also an even periodic Landweber exact spectrum, and that
mo(A) — mo(B) is a G-Galois extension of commutative rings?

In the case of E = K(n) and A = E?'", for which mo(A) = W(F,)[[u1,. .., un—1]]
is separably closed, there are no non-trivial such algebraic extensions to a connected
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ring mo(B), so it would follow that EI" is K (n)-locally separably closed. In par-
ticular, E]" would be the K(n)-local separable closure of Lk ,)S, with absolute
Galois group G} ='S,, % 7. This amounts to Conjecture 1.4 in the introduction.

Baker and Richter [BRO5b] have partial results in this direction, in the global
category. They are able to show that E]" does not admit any non-trivial connected
faithful abelian G-Galois extensions. So E"" = E® is the maximal global faithful
abelian extension of F,,.
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CHAPTER 11

Galois theory II

As before, we are implicitly working E-locally, for some spectrum E.

11.1. Recovering the Galois group

The space of commutative A-algebra endomorphisms of B in a G-Galois exten-
sion A — B can be rewritten as

CA(B,B) = Cp(B A4 B, B) ~ Cs(F (G4, B), B),

in view of the weak equivalence h: B Ay B — F(G4,B). When G is finite and
discrete, and B admits no non-trivial idempotents, we can compute the homotopy
groups of this mapping space by the Goerss—Hopkins spectral sequence.

When G is not discrete, these spectral sequence computations appear to be
much harder, and we will not attempt them. We are therefore principally working
in the context of the separable/étale extensions from Chapter 9.

THEOREM 11.1.1. Let A — B be a finite G-Galois extension of commutative
S-algebras, with B connected. Then the natural map

G — C4(B, B),

gwing the action of G on B through commutative A-algebra maps, is a weak equiv-
alence. In particular, C4(B, B) is a homotopy discrete grouplike monoid, so each
commutative A-algebra endomorphism of B is an automorphism, up to a con-
tractible choice.

PrOOF. This time we compute the homotopy groups of

Ca(B,B)~cs(][ B, B)
G

by means of (10.1.4), once again in the almost degenerate case when A = B and
C = F(G4,B) =[], B. The E>-term has

Ey° = Algp (][ B..B.) =G
G

since B, = m.(B) is connected in the graded sense, or equivalently, mo(B) has no
non-trivial idempotents. The remainder of the Fs-term is

Ey* =Dy +(]] B 2'B.) =0,
G

since HG B, is étale over B,. We are therefore in the collapsing situation of Corol-
lary 10.1.5, and C4(B, B) ~ G follows. O

85
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The extension to profinite pro-Galois extensions is straightforward.

PRrROPOSITION 11.1.2. Let A — B = colim, B, be a pro-G-Galois extension,
with each A — By a finite G,-Galois extension and G = lim, G,. Suppose that
B is connected. Then Ca(B, B) is homotopy discrete, and the natural map G —
moCa(B, B) is a group isomorphism.

Proor. Using (8.1.2), we rewrite the commutative A-algebra mapping space
as
CA(B,B) = CB(B A4 B,B)
~ Cp(colim F(Gy4, B), B) ~ holim Cg(F(Ga+, B), B) .

By the finite case, each Cg(F(Gq+, B), B) is homotopy discrete with

7CB(F(Gay, B), B) = Algg ([ B+, B.) = Ga,
Ga

when B is connected. So C4(B,B) ~ holim, G, is homotopy discrete, with
m0Ca(B, B) 2 limy G4 = G. a

11.2. The brave new Galois correspondence

We now turn to the converse part of the Galois correspondence. The proper
role of the separability condition in the following result was found in a conversation
with Birgit Richter.

PROPOSITION 11.2.1. Let A — B be a G-Galois extension, with B connected
and G finite and discrete, and let

A—-C—B

be a factorization of this map through a separable commutative A-algebra C. Then
Cc (B, B) is homotopy discrete, and the natural map Co(B, B) — C4(B, B) identi-
fies K = ngCo (B, B) with a subgroup of G = moCa(B, B). Furthermore, the action
of Cc(B, B) ~ K on B induces a weak equivalence

h:B/\cB—>HB.
K

PRrROOF. By assumption A — C' is separable, so there are maps
' LonCHC

of C-bimodules relative to A such that uo: C’ — C' is a weak equivalence. Inducing
these maps and modules up along C — B, both as left and right modules, we get
maps
B/\Cc//\cBl)B/\ABi)B/\cB

of B-bimodules relative to A, such that the composite is a weak equivalence. We
consider CA4C as a commutative C-algebra via the left unit C =2 CA4A — CA5C,
and similarly for B A4 B over B. Then p is a map of commutative C-algebras and
[t is a map of commutative B-algebras.
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At the level of homotopy groups, we get a diagram
BY(B) = BX(B) £ BY(B)

of BA(B)-module homomorphisms, whose composite is the identity. Furthermore,
i is a B,-algebra homomorphism. It follows from the BZA(B)-linearity of the
homomorphism &, that it is also a B,-algebra homomorphism. For if z,y € B¢ (B)
then 7,2 € BA(B) acts on y through multiplication by its image [i..> = = and on
7.y € BA(B) by multiplication by .z. The BA(B)-linearity of &, now provides
the left hand equality below:

Gu - TxY = 4 (fs042 - Y) = 0u(T - y) .

Thus 6. is a B.-algebra homomorphism, so that B (B) is a retract of BA(B), both
in the category of BA(B)-modules and, more importantly to us, in the category of
commutative B,-algebras.

Recall that B2(B) =[] B, since A — B is G-Galois. Here [], B. = @, B.
is a finitely generated free B.-module, since G is finite, so the retraction above
implies that BC (B) is a finitely generated projective B,-module. We may therefore
once more consider the Goerss—Hopkins spectral sequence (10.1.4), now for the
mapping space

Cc(B,B) = Cg(BAc B,B).
The Ej-term has
E;" = D 1(B(B),Q'B.)
for t > 0. The commutative B,-algebra retraction fi,: BA(B) — BS(B) induces a
split injection from each of these cohomology groups to

B.7(BX(B),Q'B.),

which we saw was zero in the proof of Theorem 11.1.1, since BZ(B) = [], B
is étale over B,. We therefore have Eg’t = 0 away from the origin, also in the
Goerss—Hopkins spectral sequence for m;_Cc (B, B).

Thus Cc (B, B) is homotopy discrete, in the sense that each path component is
weakly contractible, with set of path components

K = mCc(B, B) & Algg (B (B), B.).
The B,-algebra retraction fi. induces a split injection from this set to
Algp (BX(B),B.) =G

It is clear that the natural map Cc(B, B) — Ca(B, B), viewing a map B — B of
commutative C-algebras as a map of commutative A-algebras, is a monoid map
with respect to the composition of maps. Therefore the injection K — G identifies
K as a sub-monoid of G. But G is a finite group, so K is in fact a subgroup of G.
This completes the proof of the first claims of the proposition.

The tautological action by Co(B, B) on B through commutative C-algebra
maps can be converted to an action by K on a commutative C-algebra B’ weakly
equivalent to B. We hereafter implicitly make this replacement, so as to have K
acting directly on B over C, and turn to the proof of the final claim.

The composite .fi.: BA(B) — BZ(B) is an idempotent B.-algebra map.
Under the isomorphism BA(B) = [], B. it corresponds to an idempotent B,-
algebra endomorphism of [[ B«. Since B, is connected, it must be the retraction
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of [[ B« onto the subalgebra [[ ., Bs, for some subset K’ C G (containing e € G).
Thus BY(B) =[] Bs, which implies

K = Algg (BS(B), B,) = Alg ([[ B.,B.) = K'.
Kl

Thus K = K’ as subsets of G, and the weak equivalence B A4 B ~ [[ B retracts
to a weak equivalence

h:B/\CB—>HB.
K

It is quite clearly given by the action of K on B through commutative C-algebra
maps, as in (4.1.2). O

This leads us to the converse part of the Galois correspondence for FE-local
commutative S-algebras, in the case of finite, faithful Galois extensions.

THEOREM 11.2.2. Let A — B be a G-Galois extension, with B connected and
G finite and discrete. Furthermore, let

A—-C—B

be a factorization of this map through a separable commutative A-algebra C such
that C — B is faithful, and let K = 7oCc(B,B) C G.

If A — B is faithful, or more generally, if B is dualizable over C, then C ~ B¢
as commutative C-algebras, and C' — B is a faithful K-Galois extension.

Proor. We first prove that A — B faithful implies that B is dualizable over
C.

By hypothesis, A — C' is separable, so the multiplication map p and its weak
section 0 make C a retract up to homotopy of C Ay C, as a C' Ay C-module.
Therefore p makes C' a dualizable C' A4 C-module, by Lemma 3.3.2(c). Similarly,
for each g € G the twisted multiplication map

wlng):ChaC—C

and its weak section (1 A g~1)o make C' a dualizable C A4 C-module. Inducing up
along C' — B, Lemma 6.2.3 implies that each map BA4C — B, given algebraically
as bAc b-g(c), makes B a dualizable B A4 C-module. By Lemma 3.3.2(c) again,
it follows that the natural map BA4C — BAs B makes BAyB~][[,B~\.B
a dualizable B A 4 C-module. By Proposition 6.2.1 and hypothesis, B is dualizable
and faithful over A, so by Lemma 6.2.3 and Lemma 4.3.3 we know that B Ay C
is faithful and dualizable over C. Thus by Lemma 6.2.4 it follows that the natural
map C — B makes B a dualizable C-module.

By Proposition 11.2.1, K = moCc(B,B) C G acts on (a weakly equivalent
replacement for) B through C-algebra maps, so that h: BA¢c B — [[( B is a
weak equivalence. By hypothesis (and the argument above), C — B is faithful
and dualizable. Then by Proposition 6.3.2 the natural map i: C — B"K is a weak
equivalence, and so C' — B is a faithful K-Galois extension. a
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CHAPTER 12
Hopf—Galois extensions in topology

In this final chapter we work globally, i.e., not implicitly localized at any spec-
trum (other than at F = §).

12.1. Hopf—Galois extensions of commutative S-algebras

Let A — B be a G-Galois extension of commutative S-algebras, with G stably
dualizable, as usual. The right adjoint &: B — F(G4, B) of the group action
map a: G A B — B can be lifted up to homotopy through the weak equivalence
vy: BADG,. — F(G4,B), to amap 8: B — BADG.. The group multiplication
G x G — @G induces a functionally dual map DG, — D(G x G),, which likewise
can be lifted up to homotopy through the weak equivalence A: DG4 A DG —
D(G x G)4 to a coproduct ¥: DGy — DG4 A DG... We shall require rigid forms
of these structure maps.

DEFINITION 12.1.1. A commutative Hopf S-algebra is a cofibrant commutative
S-algebra H equipped with a counit e: H — S and a coassociative and counital
coproduct ¥: H — H Ag H, in the category of commutative S-algebras.

Note that we are not assuming that the coproduct 1 is (strictly) cocommu-
tative, nor that it admits a strict antipode/conjugation x: H — H. This would
severely limit the number of interesting examples.

ExAMPLE 12.1.2. Let X be an infinite loop space. The E, structure on X
makes S[X] = S A X, an E. ring spectrum. The diagonal map A: X — X x X
and X — x induce a coproduct ¥: S[X] — S[X x X] & S[X] A S[X] and counit
e: S[X] — S, which altogether can be rigidified to make H ~ S[X] a commutative
Hopf S-algebra. The rigidification takes the coassociative and counital coproduct
and counit on S[X] to a corresponding co-A., structure on H, which in turn can
be rigidified to strictly coassociative and counital operations, by working entirely
within commutative S-algebras. It is in general not possible to make a similar
rigidification of co-E,, structures, within commutative S-algebras.

DEFINITION 12.1.3. Let A be a cofibrant commutative S-algebra, let B be a
cofibrant commutative A-algebra and let H be a commutative Hopf S-algebra. We
say that H coacts on B over A if there is a coassociative and counital map

8:B—BANH
of commutative A-algebras. In this situation, let
h: BAsB— BAH
be the composite map (p A 1)(1 A 8) of commutative B-algebras.

89
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DEFINITION 12.1.4. The (Hopf) cobar complexz C*(H; B), for H coacting on
B over A, is the cosimplicial commutative A-algebra with

CYH;By=BAHA---NH

(q copies of H) in codegree q. The coface maps are dg = A1, d; = 1M ApALINI—D)
for 0 < i < g and dy = 1" An, where n: S — H is the unit map. The codegeneracy
maps involve the counit e: H — S. Let C(H; B) = Tot C*(H; B) be its totalization.
The algebra unit A — B induces a coaugmentation A — C*(H; B), and a map

i:A— C(H;B).

DEFINITION 12.1.5. A map A — B of commutative S-algebras is an H-Hopf-
Galois extension if H is a commutative Hopf S-algebra that coacts on B over A, so
that the mapsi: A — C(H; B) and h: BA4 B — BAH are both weak equivalences.

Note that there is no finiteness/dualizability condition on H in this definition.
See [Chi00] for a recent text on Hopf-Galois extensions in the algebraic setting.

EXAMPLE 12.1.6. Let G be a stably dualizable topological group. The weak
coproduct on DGy = F(G4,S), derived from the group multiplication, can be
rigidified to give H ~ DG, the structure of a commutative Hopf S-algebra. If
G acts on B over A, then the weak coaction of DG, on B can be rigidified to
a coaction of H on B over A. Then the (Hopf) cobar complex C*(H; B) maps
by a degreewise weak equivalence to the (group) cobar complex C*(G; B) from
Definition 8.2.5. In codegree q it is weakly equivalent to the composite natural map

B/\DG+/\~-/\DG+%B/\DG‘_’F—;»DGZL/\B%F(G?HB).

On totalizations, we obtain a weak equivalence C(H; B) ~ B"“. In this case, the
definition of an H-Hopf-Galois extension A — B generalizes that of a G-Galois
extension A — B, since i: A — B"C factors as

AL C(H;B) = B |
and h: BAg B — ][], B factors as
BAsBBAH S F(Gy,B).

Recall the Amitsur complex C*(B/A) from Definition 8.2.1.

DEFINITION 12.1.7. There is a natural map of cosimplicial commutative A-
algebras h*: C*(B/A) — C*(H; B) given in codegree g by the map
hi: BApBAgy---ANaB—>BANHAN---ANH
that is the composite of the maps
BMaG+) A g o BAaG=1) A\ (B Ay B) A HN
1NE=D ARALN

BMUD A (BAH)AHN 2= Bhai A gAOHD

for j=0,...,4—1and i + j = ¢. Upon totalization, it induces a map h': A} —
C(H; B) of commutative A-algebras.

The diagram chase needed to verify that h® indeed is cosimplicial uses the strict
coassociativity and counitality of the Hopf S-algebra structure on H.
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PROPOSITION 12.1.8. Suppose that H coacts on B over A, as above, and that
h: BAsa B — B A H is a weak equivalence. Then h': Ay — C(H;B) is a weak
equivalence. As a consequence, A — B is an H-Hopf-Galois extension if and only
if A is complete along B.

PROOF. The cosimplicial map h® is a weak equivalence in each codegree, so
the induced map of totalizations b’ is a weak equivalence. Therefore the composite
i = h’ on, of the two maps

AL Ay oW B),

is a weak equivalence if and only if 7 is one. O

12.2. Complex cobordism

Let A = S be the sphere spectrum, B = MU the complex cobordism spec-
trum and H = S[BU] = ¥*°BU, the unreduced suspension spectrum of BU.
Bott’s infinite loop space structure on BU makes H a commutative S-algebra, and
the diagonal map A: BU — BU x BU induces the Hopf coproduct v: S[BU| —
S[BU] A S[BU]. The Thom diagonal

8: MU — MU A BU,
defines a coaction by S[BU] on MU over S. The induced map
h: MU ANMU — MU N BU,

is the weak equivalence known as the Thom isomorphism. The Bousfield-Kan
spectral sequence associated to the cosimplicial commutative S-algebra C*(MU/S)
is the Adams—Novikov spectral sequence

E3' = Extyy. pp (MU, MU,) = m_4(S) .
The convergence of this spectral sequence is the assertion that the coaugmentation
i: S — Spyy = TotC*(MU/S)

is a weak equivalence. In view of Proposition 12.1.8 we can summarize these facts
as follows:

PRrROPOSITION 12.2.1. The unit map S — MU is an S[BU]-Hopf-Galois ex-
tension of commutative S-algebras. O

REMARK 12.2.2. There is no topological group G such that S — MU is a
G-Galois extension, but S[BU] is taking on the role of its functional dual DG, as
in Example 12.1.6. So the commutative Hopf S-algebra S[BU] is trying to be the
ring of functions on the non-existent Galois group of MU over S. Note that there
is no bimodule section to the multiplication map pu: MU A MU — MU, since the
left and right units np,ngr: MU, — MU,MU are really different, so S — MU is
not separable in the sense of Section 9.1.
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REMARK 12.2.3. There are similar S[X]-Hopf-Galois extensions S — Th(~)
to the Thom spectrum induced by any infinite loop map v: X — BGL4(S). For
example, there is such an extension S — MUP to the even periodic version MU P
of MU, which is the Thom spectrum of the tautological virtual bundle over X =
Z x BU = Q%°ku. More generally, for any commutative S-algebra R and infinite
loop map : X — BGL;(R) there is an R-based Thom spectrum Thf*(v), i.e., a y-
twisted form of R[X] = RA X, and an R[X]-Hopf-Galois extension R — ThE(y).

REMARK 12.2.4. The extension S — MU is known not to be faithful, since
by [Ra84, §3] or [Ra92, 7.4.2] MU,(cY) = 0 for every finite complex Y with
trivial rational cohomology. Here ¢Y denotes the Brown—Comenetz dual of Y.
This faithlessness leaves the telescope conjecture [Ra84, 10.5] or [Ra92, 7.5.5]
a significant chance to be false. Recall that if F/(n) is a finite complex of type n
(with a v,-self map), and T'(n) = v, ! F(n) its mapping telescope, the conjecture is
that the natural map \: T(n) — L, F(n) is a weak equivalence. After inducing up
to MU, 1AX: MU AT(n) — MU A L,F(n) is an equivalence, by the localization
theorem v, !MU A F(n) ~ L,MU A F(n) [Ra92, 7.5.2]. Positive information
about the faithfulness of Galois- or Hopf—Galois extensions (Question 4.3.6) might
conceivably reflect back on this conjecture.

To conclude this paper, we wish to discuss how the Hopf-Galois extension
S — MU provides a global, integral object whose p-primary K (n)-localization
and nilpotent completion Ly (,)S — ﬁ%(%)M U governs the pro-Galois extensions
Lk (n)S — Ey, for each rational prime p and integer n > 0.

t

(12.2.5) MU Ly MU E,
S{BU]T T /
S LS

This suggests that S — MU is a kind of near-maximal ramified Galois extension,
and that its weak Galois group (“weak” in the analytic sense that it is only realized
through its functional dual DG, = S[BU] that coacts on MU) is a kind of near-
absolute ramified Galois group of the sphere. More precisely, the maximal extension
may be the one obtained from the even periodic theory MUP by tensoring with
the ring Og of algebraic integers.

Even if S — MU does not admit many Galois automorphisms, the Hopf coac-
tion 8: MU — MU A BU. still determines the Galois action of each element
g € G, on E,. By the Hopkins-Miller theory, each commutative S-algebra map
g: E, — E, is uniquely determined by the underlying map of (commutative) ring
spectra, so it is the description of the latter that we shall review.

Recall from 5.4.2 that I',, is the Honda formal group law over F,» and T, its
universal deformation, defined over mo(E,). By the Lubin-Tate theorem [LT66,
3.1], each automorphism g € S,, C G,, of T',, determines a unique pair (¢, §), where
¢: To(En) — mo(Ey) is a ring automorphism and §: I', — ¢.I', is an isomorphism
of formal group laws over 7y (E,), whose expansion §(z) € mo(E,)[[z]] & E2(CP>)
reduces modulo (p,uy,...,un—1) to the expansion g(z) € Fyn[[z]] of g. Then ¢ =
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mo(g), when g is considered as a self-map of F,,. Furthermore,
§(z) € EX(CP>®) 2 Homg,, (En«(CP™®), E,.)
~ Algy  (En.(BU), En.) C EY(BU)

corresponds to a unique map of ring spectra §: S[BU| — E,, . Let t: MU — E,
be the usual complex orientation, corresponding to the graded version of I',. Then
the following diagram commutes up to homotopy:

(12.2.6) MU —2~ MU A BU,

tl lu(t/\é)

The composite g ot = u(t A §)5 determines g, in view of t*: E*(E,) — EX(MU)
being nearly injective. Only the Galois autom(n‘/_p\hisms in Gal C G,, are missing,
but these may be ignored if we are focusing on F(n), or can be detected by passing
to MUP and adjoining some roots of unity.

By analogy, for number fields K C L and primes p € Ok, a factorization
pOr = PT-...- P leads to a splitting of completions K, — LOx K, =[], Ly,. If
the field extension K — L is G-Galois, then each local extension K, — Ly, is Gp,-
Galois, where G, C G is the decomposition group of 93;, and G acts transitively on
the finite set of primes over p. Thus when the global extension K — L is localized
(i.e., completed), it splits as a product of smaller local extensions, in a way that
depends on the place of localization.

(12.2.7) L Lok Ky > Ly,
Gﬁﬂi
K Ky

In the algebraic case of a pro-Galois extension K — K there is a profinite set of
places over each prime p, still forming a single orbit for the action by the absolute
Galois group Gg.

In the topological setting of S — MU there is likewise a single orbit of chro-
matic primes of MU over the one of S that corresponds to the localization functor
Lk ny on Mg, namely those corresponding to the nilpotent completion functors
IA/%(% on My, for all the various possible complex orientations MU — K(n). In
the absence of a real Galois group of automorphisms of MU these do not form a geo-
metric orbit of places, but the next-best thing is available, namely the S-algebraic
coaction by S[BU] via the Thom diagonal, a sub-coaction of which indeed links the
various complex orientations of K (n) into one “weak” orbit.

Jack Morava [Mo05] has developed this Galois theoretic perspective on the
stable homotopy category further.
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Abstract

We extend the duality theory for topological groups from the classical theory for
compact Lie groups, via the topological study by J. R. Klein and the p-complete
study for p-compact groups by T. Bauer, to a general duality theory for stably
dualizable groups in the E-local stable homotopy category, for any spectrum E.
The principal new examples occur in the K (n)-local category, where the Eilenberg-
Mac Lane spaces G = K(Z/p, q) are stably dualizable and nontrivial for 0 < g < n.

We show how to associate to each E-locally stably dualizable group G a sta-
bly defined representation sphere S%?C, called the dualizing spectrum, which is
dualizable and invertible in the E-local category. Each stably dualizable group is
Atiyah-Poincaré self-dual in the E-local category, up to a shift by S%?G. There are
dimension-shifting norm- and transfer maps for spectra with G-action, again with
a shift given by S24¢. The stably dualizable group G also admits a kind of framed
bordism class [G] € m.(LgS), in degree dimg(G) = [S*C] of the Picg-graded
homotopy groups of the E-localized sphere spectrum.
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CHAPTER 1

Introduction

1.1. The symmetry groups of stable homotopy theory

Compact Lie groups occur naturally as the symmetry groups of geometric ob-
jects, e.g. as the isometry groups of Riemannian manifolds [MS39]. Such geometric
objects can usefully be viewed as equivariant objects, i.e., as a spaces with an action
by a Lie group. The homotopy theory of such equivariant spaces is quite well ap-
proximated by the corresponding stable equivariant homotopy theory, which in its
strong “genuine” form relies, already in its construction, on the good representation
theory for actions by Lie groups on finite-dimensional vector spaces.

As a first example of a useful stable result, consider the Adams equivalence
Y/G ~ (X7%CY)C of [LMS86, I1.7]. Here Y is any free G-spectrum, adG denotes
the adjoint representation of G on its Lie algebra and £~*¥CY is the stably defined
desuspension of Y with respect to this G-representation.

As a second example, Atiyah duality [At61] asserts that if M is a smooth
closed manifold with stable normal bundle v, the functional (Spanier-Whitehead)
dual DM, = F(M,,S) of M, is equivalent to the Thom spectrum Th(v | M).
When M = G is a compact Lie group, and thus parallelizable, we can write this as
a stable Poincaré duality equivalence DG, ~ Th(e™" | G) = X7"2>°(G4). But G
acts on itself both from the left and the right, and the bi-equivariant form of this
equivalence takes the more precise form

DG, A S8%C ~ $°(Gy)

where G acts by conjugation from the left on the one-point compactification S2¢¢
of the adjoint representation and trivially from the right. See Theorem 3.1.4 below.

As a third example, the left-invariant framing of an n-dimensional compact Lie
group G gives it an associated stably framed cobordism class [G] in Q" = 7,(S),
the n-th stable stem. For example [S'] = n € 71(S) realizes the stable class of the
Hopf fibration n: S — S2. It is of interest to see which stable homotopy classes
actually occur in this way [Os82].

The formulation of these three results may appear to require that G admits a
geometric representation theory, with tangent spaces, adjoint representations, etc.,
but in fact much less is required, and that is the main thrust of the present article.

1.2. Algebraic localizations and completions

Homotopy-theoretically, the main properties of compact Lie groups are (i) that
they are compact manifolds, hence admit the structure of a finite CW complex, and
(ii) that they are topological groups, hence are homotopy equivalent to loop spaces.
Browder [Brd61, 7.9] showed that all finite H-spaces are Poincaré complexes,
and recently Bauer, Kitchloo, Notbohm and Pedersen [BKNP04] showed that all
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102 1. INTRODUCTION

finite loop spaces indeed are homotopy equivalent to manifolds. However, there are
examples of finite loop spaces that are not even rationally equivalent to Lie groups
[ABGPO04].

A standard method in homotopy theory, and a key ingredient in [BKINPO04],
is the possibility to study homotopy types locally, say by Bousfield localization
with respect to a homology theory [Bo75], [Bo79], or completion in the sense of
Bousfield and Kan [BK72|. For later generalization, we recall that the Bousfield—
Kan p-completion functor is derived from a monad (Fp(—), i, ), where X +— F,,(X)
is a particular endofunctor on spaces with 7.F,(X) = H.(X ;Fp), equipped with
suitable associative and unital natural transformations px : (Fp o Fp)(X) — Fp(X)
and 7x: X — F,(X). For each space X the monad generates a cosimplicial space

[q] = (Fpo---oFp)(X)

(the (g+1)-fold iterate of the endofunctor), whose totalization defines the Bousfield—
Kan p-completion of X, see [BK72, §I.4], which we denote by X,'. We say that
X is p-complete when the natural map X — X,f is a weak equivalence. Each space
F,(X) is a product of mod p Eilenberg-Mac Lane spaces, i.e., the spaces in the Q-
spectrum of the mod p Eilenberg-Mac Lane spectrum HIF,, and X{,\ is constructed
as a limit of such spaces.

In the Bousfield-Kan p-complete category, the local incarnations of finite loop
spaces are the p-compact groups of Dwyer and Wilkerson [DW94]. These are the
topological groups G with finite mod p homology H.(G;F,) and p-adically complete
classifying space BG ~ BGQ. Dwyer and Wilkerson consider loop spaces instead
of topological groups, but any loop space is equivalent to a topological group, and
conversely, so there is no real distinction. We shall prefer to work with topological
groups G and their classifying spaces BG, rather than with loop spaces Y and
their deloopings Y, since we shall make extensive use of group actions by G, which
would involve operad actions or coherence theory to formulate for loop spaces.

We think of a connected compact Lie group G as a geometric, integrally defined
object, which can be analyzed one rational prime p at a time by way of its homotopy-
theoretic, locally defined p-compact pieces, namely the p-compact groups Q(BG);:
obtained by p-completing the classifying space BG at p and looping. In this case,
the fact that the loop space of (BG), still has finite mod p homology follows
from the convergence of the mod p Eilenberg-Moore spectral sequence [Dw74].
In addition to these geometric examples, there are also other “exotic” p-compact
groups that only exist locally, without the global origin of a compact Lie group,
such as the Dwyer-Wilkerson 2-compact group DI(4), for which H*(BDI(4);F2)
realizes the ring of rank 4 Dickson invariants [DW93]. There is no compact Lie
group with this cohomology algebra.

In his Ph.D. thesis, T. Bauer [Ba04] showed that for each p-compact group G
one can produce a p-complete stable replacement for the adjoint representation
sphere S%IC | for the purposes of p-complete stable homotopy theory. It suffices to
work G-equivariantly in the “naive” sense, where the objects are spectra equipped
with a G-action, and the (weak) equivalences are G-equivariant maps that are
stable equivalences in the underlying non-equivariant category. Bauer showed that
for a p-compact group G, analogous results to the Adams equivalence and the
Atiyah—Poincaré duality equivalences above hold, with S?4C reinterpreted as the
dualizing spectrum (G )"¢ = F(EG,,Y*G,)% of W. Dwyer (unpublished)
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1.3. CHROMATIC LOCALIZATIONS AND COMPLETIONS 103

and J. R. Klein [K101], but formed in the p-complete category. Bauer also showed
that a p-compact group G has the analogue of a framed bordism class [G] in 7.(S])).
For example, the Sullivan spheres (see Example 2.4.4) are examples of p-compact
groups for p odd, and their framed bordism classes represent the generators ay €
sz_;;(sz/)\). We shall generalize the constructions and results of Bauer to other,
topologically defined, local categories.

1.3. Chromatic localizations and completions

In stable homotopy theory it is well-known, following Ravenel [Ra84], that for
each prime p it is possible to interpolate in infinitely many “chromatic” stages be-
tween the algebraically p-local and rational situations, through a tower of Bousfield
localizations with respect to the homology theories represented by the Johnson-
Wilson spectra E(n), for n > 0. Furthermore, one can isolate the individual strata
of this filtration by way of the Bousfield localization with respect to the Morava K-
theory spectra K (n), for n > 1. In a precise sense, these K (n)-local strata are the
finest non-trivial localizations possible [HSt99, 7.5]. We therefore have the possi-
bility of analyzing the stable images of compact Lie groups, or p-compact groups, in
even finer detail than that offered by the algebraic localizations, by working in the
p-primary K (n)-local category for one prime p and one natural number n, thereby
focusing only on the “p-primary v,-periodic” parts of their homotopy theory.

The topological groups G that have the finiteness property that K (n).(G) is fi-
nite in each degree will be called K (n)-locally stably dualizable groups. Among these
we can single out the K (n)-compact groups as those whose classifying space BG
is a K (n)-complete space, in the sense of Bendersky, Curtis and Miller [BCM78|
and [BT00, §2], which will be recalled in Section 2.4 below. These are the precise
analogues, to the eyes of Morava K-theory, of the p-compact groups, to the eyes
of mod p homology. However, the real work in this paper applies to all stably
dualizable groups. There are examples of even more “exotic” K(n)-locally sta-
bly dualizable groups than the p-compact ones, that only exist K (n)-locally for
some n. The simplest, abelian, instances of this are provided by the Eilenberg—
Mac Lane spaces G = K(m,q), e.g. for m = Z/p, 0 < ¢ < n [RaW80, 9.2], which
for ¢ > 1 have infinite mod p homology and thus are never p-compact.

In this paper we generalize the duality theory of Lie groups and of p-compact
groups by Klein and Bauer, to show that also for a K(n)-locally stably dualizable
group G, the dualizing spectrum

86 = L (m)(E2G4)"¢

formed in the K (n)-local stable category has the properties that make it a stable
substitute for the adjoint representation sphere of a compact Lie group. Here the
G-homotopy fixed points are formed with respect to the standard right G-action
on ¥®°G .. The dualizing spectrum S is a dualizable and invertible spectrum in
the K (n)-local category, cf. Theorem 3.3.4, which means that it has an equivalence
class
[S*1€] € Picg (n)

in the K (n)-local Picard group [HMS94]. In particular, suspending (smashing) by
524G s an invertible self-equivalence of the K(n)-local category. The K (n)-local
smash inverse of $%4C is its functional dual §~%4¢ = DS*CG = F(S“dG,LK(n)S).
See Propositions 2.5.7 and 3.2.3.
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We show that there is a natural norm map
N: (X AS%)6 — XMC

for any spectrum X with G-action, which is a K (n)-local equivalence under slightly
different conditions on X than those of the Adams equivalence. Up to rewriting, it
is the canonical colim/lim exchange map for the G-homotopy orbit and G-homotopy
fixed point constructions on X A X*°G.. See Theorem 5.2.5. We also show that
there is an (implicitly K (n)-local) natural Atiyah—Poincaré duality equivalence

DG, A 86 ~ 3G,

which is G-equivariant from both the left and the right. See Theorem 3.1.4. Finally,
we combine the norm map N: BG%¢ = (§%¢),~ — Sh¢ = D(BG,) for X = S
with a bottom cell inclusion i: S*¢ — BG?4¢ and the projection p: S*¢ — S to
obtain a natural map

pNi: §49¢ . 5|
representing a homotopy class

[G] € mu(LK(n)S)

in the Picg(n)-graded homotopy groups of the K(n)-local sphere spectrum. See
Definition 5.4.1. We informally think of this as the K(n)-locally framed bordism
class of G.

The results discussed up to now hold in a uniform manner in the E-local stable
category, for each fixed spectrum FE and suitably defined F-locally stably dualizable
groups. The terminology is chosen so that G is F-locally stably dualizable precisely
when its suspension spectrum 3*°G, is dualizable in the E-local stable category.
See Definition 2.3.1. This is the generality in which the main body of the paper is
written.

In Chapter 4 we develop calculational tools to study E-locally stably dualizable
groups, mostly particular to the most local case E = K(n). The group structure
on G makes H = K(n).(G) a graded Frobenius algebra over R = K(n), (Propo-
sition 4.2.4), for the R-dual H* = K(n)*(G) is a free graded H-module of rank 1.
There is a strongly convergent homological spectral sequence of Eilenberg-Moore
type

EZ, = Tor,(R, H*) = K(n)~(*t1)(g%I%)
(Proposition 4.1.1). It collapses at the E?-term to the line s = 0, and its dual
identifies K (n).(S%4%) with the H*-comodule primitives Py-(H) = Homy (H*, R)
in Homgr(H*,R) 2 H = K(n).«(G) (Theorem 4.2.6). For example, when G =
K(Z/p,n) is viewed as a K(n)-locally stably dualizable group, it follows that
[G]: 899¢ — S is an equivalence in the K(n)-local category (Example 5.4.6), so
that the Atiyah—Poincaré duality equivalence takes the untwisted form

1.4. Applications

It is conceivable that more invertible spectra in the K (n)-local category can
be constructed in the form S for K (n)-locally stably dualizable groups G, than
just the localized integer sphere spectra L K(H)EdS for d € Z. There are no such
examples in the p-complete setting, but the K (n)-local Picard group is more subtle.
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Likewise, it is conceivable that the associated homotopy classes [G] € T. (L (n)S)
can realize more homotopy classes than those that appear from Lie groups and
p-compact groups. However, so far we have mostly studied the abelian examples of
K (n)-locally stably dualizable groups given by Eilenberg—Mac Lane spaces, where
this added potential is not realized. We think of these abelian groups as playing
the role analogous to tori in the theory of compact Lie groups, and hope to develop
a richer supply of non-abelian examples in joint work with Bauer, cf. Remark 2.4.8.

This work was simultaneously motivated by the author’s formulation [Rog08]
of Galois theory of E-local commutative S-algebras. If A — B is an E-local G-
Galois extension there is a useful norm equivalence N: (B A §%4%), ¢ — B"® | with
A ~ B"G. For finite groups G this follows as in [K101], but the natural generality
for the theory appears to be to allow topological Galois groups G that are E-locally
stably dualizable, as considered here. The constructions in Chapters 3 and 5 of the
present paper then find applications in the cited Galois theory.
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CHAPTER 2
The dualizing spectrum

2.1. The FE-local stable category

As our basic model for spectra we shall take the bicomplete, bitensored closed
symmetric monoidal category Mg of S-modules from [EKMM97]. The symmetric
monoidal pairing is the smash product X AY, the unit object is the sphere spec-
trum S, and the internal function object is the mapping spectrum F(X,Y’). We
write DX = F(X,S) for the functional dual. For a based topological space T we
write X AT = X AX®°T and F(T,X) = F(X°°T, X) for the resulting bitensors.

Let E be any S-module. It induces the (generalized, reduced) homology theory
E, that takes an S-module X to the graded abelian group E,(X) = m.(EAX). A
map f: X — Y of S-modules is said to be an E-equivalence if the induced homo-
morphism f,: E.(X) — E.(Y) is an isomorphism, and an S-module Z is E-local
if for each E-equivalence f: X — Y the induced homomorphism f#: [Y, Z], —
[X, Z]. is an isomorphism.

Let Mg, g be the full subcategory of Mg of E-local S-modules. There is a
Bousfield localization functor Lg: Mg — Mg g [Bo79], [EKMM97, Ch. VIII]
that comes equipped with a natural F-equivalence X — LgX for each S-module
X (with LgX E-local). Let Dg = hMgs be the homotopy category of Mg, i.e., the
stable category, and let Dg p = hMg, g be the homotopy category of Mg g, i.e., the
E-local stable category. It is a stable homotopy category in the sense of [HPS97,
1.2.2]. The induced E-localization functor Lg: Dg — Dg g is left adjoint to the
forgetful functor Dg g — Dg.

The E-local category Mg g inherits the structure of a bicomplete, bitensored
closed symmetric monoidal category from Mg by applying Lg to each construction
formed in Mg. The symmetric monoidal pairing takes X and Y to Lg(X AY),
and the unit object is the FE-local sphere spectrum LgS. The internal function
object F(X,Y) is already E-local when Y is E-local, hence does not change when
E-localized. In a similar fashion the (limits and) colimits in Mg g are obtained
from those formed in Mg by applying the E-localization functor, and likewise for
tensors (and cotensors).

ExAMPLE 2.1.1. We may take F = S, in which case every spectrum is S-local,
Mg s = Mg and the S-local stable category is the whole stable category.

EXAMPLE 2.1.2. For a fixed rational prime p and number 0 < n < co we may
take £ = E(n), the n-th p-primary Johnson—Wilson spectrum, with

E(n)s = Zy[vi, .- vn, vyt

n

When n = 0, E(0) = HQ is the rational Eilenberg-Mac Lane spectrum and FE-
equivalence means rational equivalence. In each case L, = Lp(,) is a smashing
localization, L, S is a commutative S-algebra and the F(n)-local category L, =

106
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2.2. DUALIZABLE SPECTRA 107

Ms, E(n), as studied in [HSt99), is equivalent to the category Mz, s of L, S-modules.
In this case the forgetful functor M5 g(n) — Mg preserves the symmetric monoidal
pairing, but not the unit object.

ExXAMPLE 2.1.3. For each prime p and number 0 < n < oo we may alter-
natively take £ = K(n), the n-th p-primary Morava K-theory spectrum. When
n =0, K(0) = E(0) = HQ, as discussed above. When 0 < n < o0,

K(n)w = Fplvn, vy

n

is a graded field, and X,, = Dg g (n) is the K(n)-local stable category, again studied
in [HSt99]. When n = oo, K(co) = HF, and Mg gr, is the category of HF-local
S-modules. For a connective spectrum X, HFp-localization amounts to algebraic
p-completion. For 0 < n < oo the forgetful functor to Mg neither preserves the
symmetric monoidal pairing nor the unit object.

CONVENTION 2.1.4. Hereafter we shall work entirely within the E-local cat-
egory Mg . We refer to the objects of Mg g as E-local S-modules, or simply as
spectra. For brevity we shall write X AY for the smash product Lg(X AY), S
for the sphere spectrum LgS and F(X,Y) for the function spectrum LgpF(X,Y)
within this category. The same applies to the functional dual DX, limits, colimits,
tensors and cotensors, all of which then take values in Mg g.

2.2. Dualizable spectra

Following Dold and Puppe [DP80], Lewis, May and Steinberger [LMS86,
IT1.1] observe that in any closed symmetric monoidal category there are natural
canonical maps p: X - DDX,v: F(X,2Y)ANZ - F(X, YA Z)and A: F(X,Y) A
F(Z,W)— F(XAZY ANW). We follow Hovey and Strickland [HSt99, 1.5] and
say that a spectrum X is E-locally dualizable if the canonical map

viDXANX - F(X,X)

(in the special case X = Z, Y = S) is an equivalence in Mg g. When the spectrum
E is clear from the context, we simply say that X is dualizable. Lewis et al. then
show [LMS86, I11.1.2, 1.3]:

LEMMA 2.2.1.

(1) The canonical map p: X — DDX is an equivalence if X is dualizable.

(2) The canonical map v: F(X,YYNZ — F(X,Y A Z) is an equivalence if X
or Z is dualizable.

(3) The smash product map A: F(X, YYANF(Z,W) - F(XNZ, Y ANW) is an
equivalence if X and Z are dualizable, or if X is dualizable and Y = S.

It follows that the function spectrum F'(X,Y) and smash product X AY are
dualizable when X and Y are dualizable. In particular, DX is dualizable when X
is dualizable.

ExXAMPLE 2.2.2. For F = S, a spectrum X is dualizable if and only if it is
stably equivalent to a finite CW spectrum, i.e., if and only if X ~ Y*°X¢K for
some finite CW complex K and integer d € Z. See e.g. [May96, XVI.7.4] for a
proof, although the non-equivariant result must be older.
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EXAMPLE 2.2.3. For E = K(n) with 0 < n < oo, Hovey and Strickland
[HSt99, 8.6] show that a K(n)-local S-module X is dualizable if and only if
K(n).(X) is a finitely generated K (n).-module. Note that this includes the cases
n = 0 with K(0) = HQ and n = oo with K(o0) = HF,. In each case K(n), is a
graded field, so K (n).(X) will automatically be free.

LEMMA 2.2.4. If a spectrum X is HF,-locally dualizable then Ly ny X is K(n)-
locally dualizable for each 0 < n < co.

Proor. The Atiyah-Hirzebruch spectral sequence
72, = Hy(X;m K (n)) = K (n)ss(X)

shows that if H,(X;F,) is a (totally) finite F,-module, then K(n),(X) is a finitely
generated K (n),.-module for each 0 < n < oo. O

REMARK 2.2.5. More generally, for natural numbers n < m it is not true that a
K (m)-locally dualizable spectrum X must be K (n)-locally dualizable. The lemma
above would correspond to the case m = co. The case X = K(n) provides an easy
counterexample, with K(m).(K(n)) = 0 and K(n).(K(n)) infinitely generated over
K(n).. However, we are principally interested in unreduced suspension spectra
X = ¥°°T,, in which case the issue is: Does K(m).(T) being finite in each degree
imply that K (n).(T) is finite in each degree, for a topological space T? Replacing
“finite in each degree” by “trivial” in this statement, it becomes a theorem of
Bousfield [Bo99, 1.1}, with a different proof under a finite type hypothesis by
Wilson [Wi99, 1.1]. It is not clear to the author whether either of these proofs
can be adapted to resolve the stronger question.

2.3. Stably dualizable groups

Let G be a topological group. We write S[G] = SAGy = LgX>*G for the E-
localization of the unreduced suspension spectrum on G, and DG, = F(S[G],S) =
F(G4, LgX>S%) for its functional dual. We may always suppose that G is cofi-
brantly based and of the homotopy type of a based CW-complex.

DEeFINITION 2.3.1. A topological group G is E-locally stably dualizable if
S[G] = LG4
is dualizable in Mg g.

LEMMA 2.3.2. The product G = Gy x Gy of two E-locally stably dualizable
groups is again E-locally stably dualizable.

Proor. If S[G1] and S[G5] are dualizable, then so is S[G] & S[G1] A S[G2], as
remarked after Lemma 2.2.1. O

The examples of Section 2.2 carry over as follows. When FE is clear from the
context, we omit to say “E-locally”.

ExAMPLE 2.3.3. If E = S, then G is a stably dualizable group if and only if
G is stably equivalent to a finite CW complex, up to an integer suspension. So
each compact Lie group G is stably dualizable, since G itself is then a finite CW
complex.
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EXAMPLE 2.3.4. For E = HF,, a topological group G is stably dualizable if
and only if H,(G;F,) is a (totally) finite F,-module.

EXaMPLE 2.3.5. For E = K(n), a topological group G is stably dualizable if
and only if K(n).(G) is a finitely generated K(n).-module. By the calculations of
Ravenel and Wilson [RaW80, 11.1] for p odd, and [JW85, Appendix] for p = 2,
each Eilenberg-Mac Lane space G = K(m,q) = B%r for 7 a finite abelian group
is a stably dualizable group. More generally, by [HRW98, 1.1] any topological
group G with only finitely many nonzero homotopy groups, each of which is a finite
abelian p-group, has finite K (n)-homology, hence is stably dualizable.

REMARK 2.3.6. By Lemma 2.2.4, compact Lie groups or p-compact groups pro-
vide examples of K (n)-locally stably dualizable groups, since they have finite mod p
homology, and therefore have finite Morava K-theory. The Eilenberg—Mac Lane
space examples above, for ¢ > 1, do not arise in this fashion, since they have infi-
nite mod p homology. By Example 2.3.4 they do not extend to stably dualizable
groups in the p-complete or integral category.

Building on Remark 2.2.5, if it turns out that K(m).(G) being finite over
K (m), implies that K(n).(G) is finite over K(n)., for topological groups G and
natural numbers n < m, then each K (m)-locally stably dualizable group will also
be a K(n)-locally stably dualizable group. By [B0o99, 1.1], each K(m)-equivalence
G1 — G5 is also a K (n)-equivalence, so there will then be a “chromatic” tower of
K (n)-equivalence classes of K (n)-locally stably dualizable groups, for 1 < n < co,
with maps from the set at height m to the set at height n, for all n < m.

2.4. FE-compact groups

The material in this section is included to enable a more precise comparison
with the Dwyer—-Wilkerson theory of p-compact groups, but is not needed elsewhere
in the paper.

Suppose that the spectrum F is in fact an S-algebra [EKMM97|. This includes
all the examples E = HR for rings R, E = S, F = E(n) and E = K(n) considered
above, although the S-algebra structure on e.g. K(n) is not at all unique. We
now consider a version of Bousfield-Kan p-completion for the homology theory
represented by E, following [BCM78] and [BT00, §2|. Let Q°FE denote the
underlying infinite loop space of E, so that ¥ is left adjoint to 2°°. The following
terminology extends that of [BK72, §1.5].

DEFINITION 2.4.1. (a) Let E(X) = Q*°(E A £*°X) define an endofunctor of
based topological spaces, with m,E(X) = E,(X) for all * > 0. The S-algebra
multiplication u: E A E — E and the adjunction counit X*°Q*°FE — FE induce
a natural transformation px: (E o E)(X) = E(E(X)) — E(X). The S-algebra
unit n: S — F and the adjunction unit X — Q(X) = Q°X*°X induce a natural
transformation 7nx : X — F(X). These make (E(—), &,n) a monad.

(b) For each space X, the E-completion Xp = Tot E(X)® is defined as the

totalization of the cosimplicial space
[9) = E(X)?=(Eo---0E)(X)

(the (¢ + 1)-fold iterate of the endofunctor E(—)), with coface and codegeneracy
maps induced by p and 7, respectively. There is a natural map X — Xp. We say
that X is F-complete if this map is a weak equivalence.
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(c) Each space E(X)? is E-local, so X5 is E-local and there is a canonical
factorization X — LgX — X4 through the Bousfield localization to the comple-
tion. We say that X is E-good if X — X, is an E-equivalence, or equivalently, if
LgX ~ X§.

DEFINITION 2.4.2. An E-compact group is an E-locally stably dualizable group
G whose classifying space BG ~ (BG)% is E-complete.

ExXAMPLE 2.4.3. If E = S, then S-completion equals HZ-completion {Ca91,
I1.3], so nilpotent spaces are S-complete. A connected compact Lie group G has
simply-connected, thus nilpotent, classifying space BG, so such a group G is also
an S-compact group.

ExAMPLE 2.4.4. If E = HF,, HF,-completion equals p-completion, so a topo-
logical group G is HF,-compact if and only if G ~ QBG is a p-compact group in
the sense of Dwyer and Wilkerson [DW94].

The loop space Q(BG);,\ of the p-completed classifying space of a connected
compact Lie group provides some examples of a p-compact group, but there are
also exotic examples, such as (i) the p-compact Sullivan sphere

(S*P7%)) = Q(EW xw BA))

for p odd, with A = BZ,, BA = K(Z,,2) and W = (Z/p)* acting on A through
multiplication by the p-adic roots of unity, and (ii) the 2-compact Dwyer—Wilkerson
group DI(4) [DW93]. With the exception of (S%)} these only exist locally, in the
sense that they do not extend to integrally defined stably dualizable groups.

ExAMPLE 2.4.5. For ¢ > n and 7 a finite abelian group the Eilenberg—Mac-
Lane spaces G = K(m,q) have K(n).(BG) = K(n). by [RaW80, 11.1], hence
these can never be nontrivial K (n)-compact groups. When 0 < g < n and 7 is a
finite abelian p-group it is known that BG = K(m,q + 1) is K(n)-local by [Bo82,
7.4], so if these classifying spaces are also K (n)-good, then the Eilenberg—-Mac Lane
spaces K(m,q) are K(n)-compact groups.

REMARK 2.4.6. It is to be expected that connected compact Lie groups, p-
compact groups or the more exotic K(n)-locally stably dualizable groups of Ex-
ample 2.3.5 provide examples of K (n)-compact groups through K (n)-completion
at the level of classifying spaces. However, it is not clear in what generality the
natural map

G — QB G)?((n)
is a K(n)-equivalence. There is a K(n)-based Eilenberg—Moore spectral sequence
[JO99]

(2.4.7) Ey' =Tory,, . vy (K(n)*, K (n)") = K(n)**(QY),

(Y)
where Tor® = ﬂ,s are the left derived functors of the completed tensor product,
but too little is known about its convergence. Certainly the space Y should be
K (n)-local for this to have a chance, but by analogy with the mod p case, it is more
plausible that the correct condition is that Y should be K(n)-complete. Since a
K (n)-complete space is a limit of spaces of the form Q*°(K{(n) AT), it may suffice
to verify convergence for such spaces, or for the individual spaces Y = K(n) of

the Q-spectrum of K(n), for g > 0.
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Bauer has made some progress in this direction. So if (i) G is a K(n)-locally
stably dualizable group, (ii) BG is K(n)-good, (iii) K (n)*(BG) is a finitely gener-
ated power series ring over K (n)*, or more generally, 'f&’;;(n)*(BG)(K(n)*, K(n)*)
is finite over K(n)*, and (iv) the K'(n)-based Eilenberg—Moore spectral sequence for
Y = (BG)j ) converges, then it follows that QY = Q(BG)Q((M is a K (n)-compact
group.

REMARK 2.4.8. The examples that are abelian topological groups can be ex-
pected to play a similar role to that of tori in the theory of compact Lie groups.
For non-abelian examples it is natural to look to finite Postnikov systems, as in
[HRW98], or to looped completed Borel constructions of the form

where A is an abelian topological group, such as A = K(, q), the Weyl group W is
a finite group acting on A from the left, EW xy BA = B(W x A) is the classifying
space of the semi-direct product W x A and (~)Q<(n) denotes the K (n)-completion
of spaces. To analyze the K(n)-homology of G it is again necessary to study the
convergence properties of the K (n)-based Eilenberg—Moore spectral sequence in the

path-loop fibration of Y = B(W x A)?((n).

REMARK 2.4.9. In his Master’s thesis, Hakon Schad Bergsaker [Be05, 6.6]
has shown that for A = K(Z,,n) and W = (Z/p)* acting through multiplication
by the p-adic roots of unity, the construction above produces a loop space (or
topological group) G with the Morava K-theory of a (2m — 1)-sphere, for m =
(p™ — 1)/ ged(p — 1,n), under the assumption that the appropriate K (n)-based
Eilenberg—Moore spectral sequence (2.4.7) converges. Conversely, he shows [Be05,
4.15] that for each prime p and height n there are only finitely many m for which
G = LK(n)SQ'”“l can be a K(n)-locally stably dualizable group, assuming the
existence of a map t: BZ/p — BG with nontrivial K(n)*(t).

2.5. The dualizing and inverse dualizing spectra

Let EG = B(x,G,G) be the usual free, contractible right G-space. Let X be
a spectrum with right G-action, and let Y be a spectrum with left G-action. We
define the G-homotopy fixed points of X to be

X" = F(EG,, X)¢
and the G-homotopy orbits of Y to be
YhG = EG+ /\G’ Y .

In all cases G acts on EG from the right. These constructions only involve naive
G-equivariant spectra, or spectra with G-action, in the sense that no deloopings
with respect to non-trivial G-representations are involved. Each G-equivariant map
X7 — X5 that is an equivalence induces an equivalence X {lG — X;LG of homotopy
fixed points, and similarly for homotopy orbits.

DEFINITION 2.5.1. Let G be an E-locally stably dualizable group. The group
multiplication provides the suspension spectrum S[G] = LX>°G . with mutually
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commuting standard left and right G-actions. We define the dualizing spectrum
S29G of G to be the G-homotopy fixed point spectrum

Se4G = S[GQ)"C = F(EG,, S|G])¢

of S[G], formed with respect to the standard right G-action. The standard left
action on S[G] induces a left G-action on Se4¢.

REMARK 2.5.2. A discrete group G of type F'P (e.g. the classifying space BG
is finitely dominated) is called a duality group if H*(G;Z[G]) is concentrated in a
single degree n and torsion free. The G-module D = H"(G;Z[G]) is then called
the dualizing module of G, cf. [Brn82, VIII.10]. The spectrum level construction
above is analogous to this algebraic notion, and was previously considered for topo-
logical groups by Dwyer and by Klein [K101, §1], and for p-compact groups by
Bauer [Ba04, 4.1]. However, in algebra the focus is on G with a finiteness condi-
tion on BG, whereas in the topological cases G itself satisfies a finiteness condition.
Klein writes Dg and Bauer writes S for the dualizing spectrum of G. We use D
for the functional dual and S for the sphere spectrum, so we prefer to write Se4C
instead, in view of the compact Lie group example recalled immediately below. Our
construction differs a tiny bit from that of Dwyer and Klein, due to our implicit
E-localization.

EXAMPLES 2.5.3. (a) When G is a finite group, there is a canonical equivalence
S[G] = SAG, ~ F(G4,S), so S[G]"Y ~ F(G4,S)"¢ = F(EG,,S) ~ S is
naturally equivalent to the sphere spectrum.

(b) More generally, when G is a compact Lie group Klein [K101, 10.1] shows
that the dualizing spectrum S%C is equivalent as a spectrum with left G-action
to the suspension spectrum of the representation sphere associated to the adjoint
representation adG of G, i.e., the left conjugation action of G on its tangent space
T.G at the identity.

(c) In the case of a p-compact group G, Bauer [Ba04] shows that 5% ~ (§9)/
for some integer d = dim,, G called the p-dimension of G, and that S¢¢ takes over
the role of the representation sphere in the duality theory in that context. The
present paper extends some of Bauer’s work to the E-local stable category.

LEMMA 2.5.4. When G is abelian, the left G-action on S*C is homotopically
trivial, in the sense that it extends over the inclusion G C EG to an action by the
contractible topological group EG.

PrROOF. When G is abelian, the left and right G-actions on S[G| agree. In
S§4CG — P(EG,S[G])¢ the right action on S[G] is equal to the right action on
EG,, which in the commutative case factors as

EG+ AN G+ C EG+ AN EG+ — EG+ D

REMARK 2.5.5. It can be inconvenient to study the E-homology of S%4¢ di-
rectly from its definition as a homotopy fixed point spectrum. We shall soon see
that this dualizing spectrum is the functional dual of another spectrum S—24¢
which we call the inverse dualizing spectrum, and which admits a computation-
ally more convenient construction as a homotopy orbit spectrum. Once we know
that these two spectra are indeed dualizable, and mutually dual, this provides a
convenient route to E-homological calculations.
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DEFINITION 2.5.6. Let G be a stably dualizable group. The left and right
G-actions on S[G] induce standard right and left G-actions on its functional dual
DG, = F(S[G], S), respectively, by acting in the source of the mapping spectrum.
We define the inverse dualizing spectrum S~ of G to be the G-homotopy orbit
spectrum

§adG — (DGy)hg = EG4 Ng DG
of DG, formed with respect to the standard left G-action. These left and right

actions commute, so the standard right action on DG induces a right G-action on
S—adG.

PROPOSITION 2.5.7. There is a natural equivalence
SadG ~ DS_adG

between the dualizing spectrum and the functional dual of the inverse dualizing
spectrum, as spectra with left G-action.

PRrROOF. The canonical equivalence p: S[G] — DDG, = F(DG4,S) induces
an equivalence p"“ of G-homotopy fixed points, from S%4¢ to

F(DG,,8)" = F(EG,,F(DG.,S))° =~ F(EG, A¢ DG4, S) = DS™*¢ O
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CHAPTER 3
Duality theory

3.1. Poincaré duality

Let G be a stably dualizable group. The topological group structure on G
makes S[G] a cocommutative Hopf S-algebra, with product ¢: S[G] A S[G] —
S[G], unit n: S — S[G], coproduct ¥: S[G] — S[G] A S[G], counit €: S[G] — S
and conjugation (antipode) x: S[G] — S[G], induced by the group multiplication
m: G x G — G, unit inclusion {e} — G, diagonal map A: G — G x G, collapse
map G — {e} and group inverse i: G — G, respectively.

The product ¢ and unit 7 makes S[G] an E-local S-algebra in Mg g, while
the coproduct, counit and conjugation need only be defined in the E-local stable
category Dg g.

The standard right G-action on DG makes DG a right S[G]-module. The
module action is given by the map

a: DG, A S[G] — DG,

that in symbols takes Az to Exz: y — &(xy). Inspired by [Ba04, §4.3], we consider
the following shearing equivalence. Its definition is simpler than that considered by
Bauer, but the key idea is the same.

DEFINITION 3.1.1. Let the shear map sh: DG4 A S[G] — DG4 A S[G] be the
composite map

sh: DG4 A S[G] “2% DG, A S[G] A S[G] <25 DG4 A S[G].
Algebraically, sh: E Az +— Y (§ xx') Az” where Y(z) => 2’ Az”.

The standard left and right G-actions on S|G] (and DG, ) can be converted
into right and left G-actions on S[G] (and DG.), respectively, by way of the group
inverse i: G — G. We refer to these non-standard actions as actions through
inverses. For example, the left G-action through inverses on DG is given by the
composite map

S[G] A DG -5 DG4 A S[G] =% DG4 AS[G] % DG,
where v: X AY — Y A X denotes the canonical twist map. Algebraically, this
action takes (z,€) to & x x(z): y — &(x(2)y).
LEMMA 3.1.2. The shear map sh is equivariant with respect to each of the
following three mutually commuting G-actions:
(1) The first, left G-action given by the action through inverses on DG, and

the standard action on S[G] in the source, and the standard action on S[G]
in the target;

114
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(2) The second, right G-action given by the action through inverses on DG4
in the source, and the action through inverses on DG in the target;
(3) The third, right G-action given by the standard action on S[G] in the source
and by the standard actions on DG, and S[G] in the target.
Each action is trivial on the remaining smash factors.

PROOF. In each case this is clear by inspection. g

LEMMA 3.1.3. The shear map sh is an equivalence, with homotopy inverse
given by the composite map

1A 1AXAL anl

DG AS|G] —= DG4 AS[G]AS[G] —=— DG AS[GIAS|G] —> DG+ AS[G].

Proor. This is an easy diagram chase, using coassociativity of ¢, the fact that
« is a right S[G]-module action with respect to the product ¢ on S[G], the Hopf
conjugation identities p(x A 1)1 ~ ne ~ ¢(1 A x)4, counitality for ¢ and unitality
for a. (]

THEOREM 3.1.4. Let G be a stably dualizable group. There is a natural equiv-
alence

DGy A S*¢ = §[q).
It is equivariant with respect to the first, left G-action through inverses on DG,
the standard left action on S%C and the standard left action on S[G)]. It is also

equivariant with respect to the second, right G-action through inverses on DG, the
trivial action on S*C and the standard right action on S[G].

PROOF. The shear equivalence sh: DG4 A S[G] — DG A S[G] induces a
natural equivalence

(sh)"¢: (DG4 A S[G)'E = (DG4 A S[G])"C

of G-homotopy fixed points with respect to the third, right G-action. Note that
this action is different in the source and in the target of sh.
There is a natural equivalence to the source of (sh)"C:

DG4 A 8%C = DG, AS[GI"Y = (DG4 A S[GDME .
To see that this map is an equivalence, consider the commutative square
DG4 A S[G]hc —> (DG4 A S[G))RC
F(G+,S[G"?) — F(G., S[G])"? .

The vertical maps are equivalences, because S[G] is dualizable and passage to ho-
motopy fixed points respects equivalences. Hence the upper horizontal map is also
an equivalence.

There is also a (composite) natural equivalence from the target of (sh)"¢:

(DG4 A S[G)C = F(GL, SIG)"C = 9[q).
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The left hand map is an equivalence because S[G] is dualizable, by the same argu-
ment as above. The right hand map is the composite equivalence

F(G,S|[G)"C =2 F(EG, NG, S[G))° = F(EG,, S|G]) = S[G].

Here the middle isomorphism uses that G acts freely on G+ in the source.
The composite of these three natural equivalences is the desired natural equiv-
alence DG, A S — S[G]. The equivariance statements follow by inspection. [J

REMARK 3.1.5. We call DG, A S%C ~ S[G] the Poincaré duality equivalence.
It shows how S[G] is functionally self-dual, up to a shift by the dualizing spectrum.
See also Remark 3.3.5. The equivariance statements in the theorem express the

standard left and trivial right G-actions on S??C in terms of the more familiar
G-actions on DG, and S[G].

LEMMA 3.1.6. Let G1 and G2 be stably dualizable groups. There is a natural

equivalence
Sadcl A SadG2 ~ Sad(G1 xG2)

of spectra with standard left (and trivial right) (G1 x G2)-actions.

ProoF. The Poincaré duality equivalences for G, G5 and (G; x G2) compose
to an equivalence

DGy A SU9 A DGy A S92 ~ S[G] A S[Go)]
~ S[G1 X Gz] ~ D(Gl X Gz)+ N Sad(G’;ng) .

It is equivariant with respect to the first, left (G1 x Gz)-action that involves the
standard left action on S#4C1, §adG2 g §ed(G1xG2) aq well as with respect to the
second, right (G x G2)-action through inverses on DG ADGyy and D(G1 xGa) 4.
Taking homotopy fixed points with respect to the second, right action we obtain
the desired equivalence, which is equivariant with respect to the first, left action.[J

REMARK 3.1.7. A similar relation S?4¢ ~ §adH A §adQ ig Jikely to hold for an
extension 1 - H — G — @ — 1 of stably dualizable groups, cf. [K101, Thm. C],
but for simplicity we omit the then necessary discussion of how to promote S¢#
to a spectrum with G-action, etc.

3.2. Inverse Poincaré duality
The aim of this section is to establish an inverse Poincaré equivalence
S[G)AS~C ~ DG, .

The initial idea is to functionally dualize the construction of the shear map in Sec-
tion 3.1, and to apply homotopy orbits in place of homotopy fixed points. Following
Milnor and Moore [MMG65, §3], we identify the functional dual of a smash product
X ANY of dualizable spectra with the smash product DX A DY, in that order, via
the canonical equivalence

DX ADY =F(X,S)AF(Y,8) 25 F(XAY,SAS)=D(X AY).

However, to form homotopy orbits we need genuine G-equivariant maps, and it is
generally not the case that a G-equivariant inverse can be found for the (weak)
equivalence displayed above. Thus some care will be in order.
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Working for a moment in the E-local stable category Dgr = hMg g, let
3: S|G] — SIGI A DG,

be dual to the module action map «: DG+ A S[G] — DG, It makes S[G] a right
DG -comodule spectrum, up to homotopy, where DG, has the weakly defined
coproduct ¢': DG — DG, A DG that is dual to ¢. Furthermore, let

¢': DG, ADG, — DG,

be the (strictly defined) product on DG that is dual to ¢. The functional dual
sh? of the shear map is then the composite

sh*: S[G] A DG4 225 S[G] A DG4 A DG <225 S[G] A DG
which is an equivalence by Lemma 3.1.3 and duality.
Returning to the category Mg g, we shall now obtain G-equivariant represen-
tatives for these maps.

DEFINITION 3.2.1. Let ¢: S[G] — F(S[G], S[G]) be right adjoint to the op-
posite product map ¢7v: S[G] A S[G] — S[G]. Algebraically, ¢: z — (y — yz).
Let ¢#: F(S[G] A S[G], SIG} A S) — F(S[G], S|G)) be given by precomposition by
¢: S[G] — S[G] A S|G] and postcomposition with S[G] A S = S[G].

The dual shear map sh’': S[G] A DG — F(S[G], S|G]) is defined to be the
composite map:

BAL

sh': S[G] A DGy 2% F(S[G), S[G]) A DG
2 P(S[G) A S, SIG) A S) 5 F(S[GY, S[G)).

It is equivariant with respect to the left G-action given by the standard left actions
on S[G] and DG on the left hand side, and the left action through the standard
right action on the S[G] in the source of the mapping spectrum.

THEOREM 3.2.2. The dual shear map sh’ is homotopic to the composite map
S # 1%
S[G] A DG 2% S[G) A DGy 225 F(S[G), S[G)).

In particular, sh’ is an equivalence. On G-homotopy orbit spectra it induces an
equivalence
DG, ~ S[G] A S™C

ProOF. The right action map « factors up to homotopy as the composite
DG4 A S[G] 2L DG A DG A S[G)
2, DG A S[G) A DGy 2L S A DG, = DG, .
Here €: DG4 A S[G] — S is the pairing that evaluates a function on an element
in its source. Let n: S[G] A DG4 — S be its functional dual, in the homotopy
category. Then the dual map 3 factors up to homotopy as

nAl

S[G] = S A S[G] — S|G] A DG4 A S[G]

1Ay @Al
-

S[G] A S[G] A DG 225 S[G) A DG .
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A diagram chase then verifies that ¢ is homotopic to the composite
s[G] % S[G] A DG 2> DG, A SIG) % F(S[G), S[G)) .

A similar chase shows that the diagram

1N

S[G] A DG4 A DG S[G] A DG

:lwy/\l :lV’Y
w#

F(S[G), S[G]) A DG+ —== F(S[G] A S[G], S[G] A §) — F(S[G], S[G])

homotopy commutes.
Taken together, these diagrams show that vy o sh# ~ sh/. Applying G-
homotopy orbits to the chain of equivalences

S[G) A DG ™, F(S[G), SIG)) < SIG] A DG

we obtain the desired chain of equivalences

(sh)na
-

DG, ~ (S[G] A DGy )na F(S[G], S[Gne

RS (S1G] A DGy )ne ~ S|G] A S~ . O

~

PROPOSITION 3.2.3. Let G be a stably dualizable group. The dualizing spec-
trum S%C and the inverse dualizing spectrum S~%C are both dualizable spectra.
Hence

S—adG ~ DsadG

as spectra with right G-action. The inverse Poincaré equivalence
S[G] A S7C ~ DG,

is equivariant with respect to the dual G-actions to those of Theorem 3.1.4: The first
of these is the right G-action through inverses on S|G], the standard right action
on S=*C gnd the standard right action on DG. The second is the left G-action
through inverses on S[G], the trivial action on S™*C and the standard left action
on DG .

Proor. It suffices to prove that S~2¢C¢ is dualizable, in view of Proposi-
tion 2.5.7 and Theorem 3.1.4. We must show that the canonical map

v DS—adG /\S—adG N F(SwadG’SwadG)

is an equivalence. We first check that v smashed with the identity map of S[G] is
an equivalence. This map factors as the composite

DS~C A §799C A §[G] ~ DS™%C A DG, % F(S™*¢ DGY)
~ F(§7edC §-adC A §[Q)) £ F(S™¢ §—edG) A S[q].

Here the first and third equivalences follow from the inverse Poincaré equivalence,
while the second and fourth equivalences are consequences of the dualizability of
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3.3. THE PICARD GROUP 119

DG and S[G], respectively. Thus v A 1g(g) is an equivalence. Since S is a retract
of S[G], it follows that also v itself is an equivalence. Hence S~%9¢ is dualizable.[]

3.3. The Picard group

The Picard group of the category of FE-local S-modules was introduced by
M. Hopkins; see [HMS94].

DEFINITION 3.3.1. An E-local S-module X is invertible if there exists a spec-
trum Y with X AY ~ S in Mg g. Then Y is also invertible. The smash product
X A X' of two invertible spectra X and X' is again invertible.

The E-local Picard group Picg = Pic(Mg g) is the set of equivalence classes
of invertible E-local S-modules. We write [X] € Picg for the equivalence class of
X. The abelian group structure on Picg is defined by [X] + [X'] = [X A X'] and
—[X]=[Y], with X, Y and X’ as above.

ExXAMPLE 3.3.2. The only invertible spectra in Mg are the sphere spectra
S84 = ¥48 for integers d € Z, so Picg = Z. Similarly, in the p-complete category
Ms, ur, the invertible spectra are precisely the p-completed sphere spectra (Sd)g
for d € Z, so Picgr, = Z too.

ExAMPLE 3.3.3. Hopkins, Mahowald and Sadofsky [HMS94, 1.3] show that
a K(n)-local spectrum X is invertible if and only if K(n).(X) is free of rank one
over K (n).. These authors also prove [HMS94, 2.1, 2.7, 3.3] that for n = 1 and
p # 2 there is a non-split extension

0 — Z, — Picxn) — Z/2—0
while for n = 1 and p = 2 there is a non-split extension

0 — Z5 — Picgy — Z/8 — 0.
Furthermore, they show [HMS94, 7.5] that when n? < 2p—2 and p > 2 there is an
injection a: Picg(ny — H Y(Sp;mo(EnR)™), where E,, is the Hopkins—Miller commu-
tative S-algebra and S,, is (one of the variants of) the n-th Morava stabilizer group.

This permits an algebraic identification of Picg (9 for p odd. The homomorphism
a seems to have a non-trivial kernel for n = 2 and p = 2, cf. [HMS94, §6].

THEOREM 3.3.4. Let G be a stably dualizable group. Then
SadG A S—adG ~ S

50 S4C and S—*C gre mutually inverse invertible spectra in the E-local stable cat-
egory. Hence the equivalence classes [S?C) and [S~%9C] represent inverse elements
in the E-local Picard group Picg.

PRrROOF. The Poincaré duality equivalence and the inverse Poincaré equivalence
provide a chain of equivalences

S[G] A 874G A §99¢ ~ DG, A ST ~ S[@],

which is equivariant with respect to the standard left action on both copies of
S[G], the trivial action on S~%¢ and the standard left action on S%¢¢. Taking
G-homotopy orbits of both sides yields the required equivalence

§7adG A §94CG ~ S[Q)e ~ §.0

Licensed to Univ of Rochester. Prepared on Mon Jun 12 12:34:38 EDT 2023for download from IP 128.151.13.220.



120 3. DUALITY THEORY

REMARK 3.3.5. These results show that the shift given by smashing with %4
as in the Poincaré duality equivalence, is really an invertible self-equivalence of the
stable homotopy category of spectra with G-action, in that it can be undone by
smashing with §—24¢ ~ D gadG,

DEFINITION 3.3.6. Let the E-dimension of G be the equivalence class
dimg(G) = [S?U“] € Picg
of the dualizing spectrum S%¢¢ in the E-local Picard group.

ExAMPLE 3.3.7. For E = S the S-dimension of a compact Lie group G equals
its manifold dimension in Picg = Z. Similarly, for E = HF,, the HF,-dimension of
a p-compact group G is the same as its p-dimension.
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CHAPTER 4

Computations

4.1. A spectral sequence for E-homology

Suppose that the S-module F is an S-algebra. The standard left G-action o’
on DG4 makes E,(DGy) = E7*(G) a left E,(G)-module via the composite action
map

EL(G) ® E.(DG4) — E.(S[G] A DG,) 25 E.(DG.).
PROPOSITION 4.1.1. Let E be an S-algebra and let G be a stably dualizable
group. There is a spectral sequence
B, = Tor; D (B, E7(G)) = Boye(S7*°)
converging strongly to E,(S™9C) = =+ (594G,

ProoF. This is the F-homology homotopy orbit spectral sequence, which is a
special case of the Eilenberg-Moore type spectral sequence [EKMM97, IV.6.4]
for the E-homology of

§7%% = EG, Ao DG4 = S[EG] Agiq) DG .

(Other names in use are the bar spectral sequence and the Steenrod-Rothenberg
spectral sequence.) Here E.(S[EG]) & E., E.(S[G]) & E.(G) and E,(DG;) =
E~*(G). The duality S~%¢ ~ DS from Proposition 3.2.3 relates the abutment
to the E-cohomology of S%4C . a

4.2. Morava K-theories

In this and the following section (4.3) we specialize to the case when E = K (n),
for some fixed prime p and number 0 < n < oco. Hence stably dualizable means
K (n)-locally stably dualizable, etc.

LEMMA 4.2.1. Let G be a stably dualizable group, so that H = K(n).(G) is a
finitely generated (free) module over R = K(n).. Then H is a graded cocommutative
Hopf algebra over R, and its R-dual H* = K(n)*(G) = Hompg(H, R) is a graded
commutative Hopf algebra over R.

Proor. By [HSt99, 8.6], a topological group G is stably dualizable if and only
it H = K(n).(G) is finitely generated over R = K(n),. The group multiplication
and diagonal map on G induce the Hopf algebra structure on H, in view of the
Kiinneth isomorphism

K (n)4(X) @ (n). K(n)u(Y) = K(n) (X AY)
121
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in the case X =Y = S[G]. The identity K(n)*(G) = Homg(H, R) is a case of the
universal coefficient theorem

K(n)*(X) = Hompg (n). (K (n).(X), K(n),).

O

This also leads to the Hopf algebra structure on H*.

PROPOSITION 4.2.2. Let G be a stably dualizable group. Then K (n),(S%¢) =
YR for some integer d, and K(n).(S™29%) = 4R,

PROOF. By Theorem 3.3.4, S%4¢ is an invertible K (n)-local spectrum with
inverse S~%4C  so by the Kiinneth theorem

K(n)«(5%) @r K (n).(S7*%) 2 K(n).(S) = R.

This implies that K (n).(S%%) and K (n).(S~??%) both have rank one over R. (Al-
ternatively, use Theorem 3.1.4 and the Kiinneth theorem to obtain the isomorphism

H* ®p K(n).(S*°) =~ H .

The total ranks of H* and H as R-modules are equal, and finite, so K (n).(5%9%)
must have rank one. In view of [HMS94, 1.3] or [HSt99, 14.2], this also provides
an alternative proof that S24¢ is invertible in the K (n)-local category.) O

DEFINITION 4.2.3. Let the integer d = deg(,,)(G) such that K(n),(5%4¢) =

Y¢R be the K (n)-degree of G. When 0 < n < co this number is only well-defined
modulo |v,| = 2(p" — 1).

REMARK 4.2.4. The evident homomorphism deg: Pick(n) — Z/|v,| takes the
K (n)-dimension of G to its K(n)-degree. By [HMS94, 1.3] or [HSt99, 14.2]

* %

we also have m (§99¢) =~ $9E(n) , where E(n) = LgmE(n). Similarly
E(8%9C) = $4E* where E, is the Hopkins-Miller commutative S-algebra. Tak-
ing into account the action of the n-th Morava stabilizer group on E(S%4%) it is
in principle possible to recover much more information about the K(n)-dimension
of G than just the K (n)-degree.

For any graded commutative ring R and R-algebra H, we may consider both H
and its R-dual H* = Hompg(H, R) as left H-modules in the standard way. Recall
from e.g. [Pa71, §4] that H is called a (graded) Frobenius algebra over R if

(1) H is finitely generated and projective as an R-module, and

(2) H and some suspension X¢H* are isomorphic as left H-modules.

It follows that H is also isomorphic to X?H* as right H-modules, and conversely.
A (left or right) module M over a Frobenius algebra H is projective if and only if
it is injective.

PROPOSITION 4.2.4. Let G be a stably dualizable group. Then H = K(n).(G)
is a Frobenius algebra over R = K(n).. In particular, H* = K(n)*(G) is an
injective and projective (left) H-module. In fact, it is free of rank one.
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ProOF. Applying K (n)-homology to the equivalence of Theorem 3.1.4 gives
an isomorphism

H* @p TR = K(n)«(DG) @k (n), K(n)(5*) = K(n).(S[G]) = H .

Here H acts from the left via the inverse of the second G-action, i.e., by the standard
left action on H*, the trivial action on K(n).(S%“) = X¢R, and the left action
through inverses on H. We continue with the isomorphism

¥t H=K([n).,(G) = K(n),(G)=H

induced by the conjugation x on S[G], which takes the left action through inverses
to the standard left action. Then the composite of these two isomorphisms exhibits
H as a Frobenius algebra over R.

It is a formality that H* is injective as a left H-module, so the general theory
implies that it is also projective. But we can also see this directly in our case, since
H* =~ Y[ is an isomorphism of left H-modules, and the right hand side is free
of rank one and thus obviously projective. g

THEOREM 4.2.5. Let G be a K(n)-locally stably dualizable group. The spectral
sequence

E?, = Torl (R, H*) = K(n)s4+(S™*)

collapses to the line s = 0 at the E%-term. The natural map i: DG, — S—%C

identifies
YR = K(n).(S )Y~ Ry H”

with the left H = K(n).(G)-module indecomposables of H* = K(n).(DGy) =
K(n)™*(Q@). Dually, the natural map p: SC — S[G) identifies

YR = K(n),(S*%) = Homy (H*, R)

with the left H*-comodule primitives in H.

ProoOF. The spectral sequence is that of Proposition 4.1.1 in the special case
E = K(n). By Proposition 4.2.4, H* is a free left H-module of rank one, hence
flat. Thus Torgt(R, H*) =0 for s > 0, while for s =0, Torg*(R,H*) =R®y H*.
Hence the spectral sequence collapses to the line s = 0, and the edge homomorphism
corresponding to the inclusion i: DG, — EG4 Ag DG, = §~%C is the surjection
H* = K(n).(DGy) — K(n).(57%%) = R @y H*. Thinking of H* as a left
H-module, these are the H-module coinvariants, or indecomposables, of H*.

Passing to duals, the projection p: S%¢ = F(EG, S[G]) — S|G] is function-
ally dual to the inclusion above, hence induces the R-dual injection Homg(R ® g
H* R) — Hompg(H*, R) in K(n)-homology. Thus K (n).(S%%) is identified with
Hompr(R @y H*, R) © Hompy(H*, R), sitting inside Hompg(H*, R) = H. The left
H-module structure on H* dualizes to a left H*-comodule structure on H. The
inclusion Homy (H*, R) — Hompg(H*, R) = H then identifies Homy (H*, R) with
the H*-comodule primitives in H. O
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REMARK 4.2.6. We sometimes write Qu(H*) = R @y H* for the left H-
module indecomposables of H*, and dually Py«(H) = Hompy(H*, R) for the left
H*-comodule primitives in H. Then

K(n), (S99 = Qu(H*) and K (n).(SC) = Py.(H).

To be explicit, an element z € H = Hompg(H*, R) lies in Homy(H*, R) if and
only if (y * &)(z) = £(zy) equals €(y)&(z) = £(ze(y)) for each y € H and £ € H*.
Here ¢: H — R is the augmentation. This condition is equivalent to asking that
zy = 0 for each y € ker(e), i.e., * € H multiplies to zero with each element
in the augmentation ideal of H. So Py-(H) is the left annihilator ideal of the
augmentation ideal of H.

4.3. Eilenberg—Mac Lane spaces

We can make the identifications in Theorem 4.2.5 explicit in the cases when
G = K(Z/p,q) is an Eilenberg-Mac Lane space. For p an odd prime the K(n)-
homology H = K (n).K(Z/p, q) was computed by Ravenel and Wilson in [RaW80,
9.2], as we now recall.

Writing K(n)«K(Z,2) = K(n)«{Bm | m > 0} with |3,,| = 2m there are classes
am € K(n).K(Z/p,1) in degree |am,| = 2m for 0 < m < p™ such that the Bockstein
map K(Z/p,1) — K(Z,2) takes each a, to By, Let ag;y = a,: in degree |ag| = 2p°
for 0 < i < n. The g¢-fold cup product K(Z/p,1) A --- AN K(Z/p,1) — K(Z/p,q)
takes a;,) ® -+ ® a(;,) to a class a; € K(n).K(Z/p,q), where I = (iy,...,4,) and
lar| =2(p" + - +p'0).

For ¢ =0, G = K(Z/p,0) = Z/p is a finite group and not very special to the
K (n)-local situation. For each ¢ > n, K(Z/p, q) has the K (n)-homology of a point.
The intermediate cases 0 < g < n are more interesting.

For 0 < ¢ < n there is an algebra isomorphism

K(n).K(Z/p,q) ®K Jarl/ @y,

where I = (i1, ...,1q) ranges over all integer sequences with 0 <i; <--- <ig <mn,
and p(I) = s+ 1 where s € {0,1,...,q} is maximal such that the final s-term
subsequence has the form

(lg—s+1y--rig) =(n—s,...,n—1).

Equivalently, s is minimal such that i,y <n —s—1.
For ¢ = n there is an algebra isomorphism

K(n).K(Z/p,n) = K(n).[as]/(a] + (=1)"vnar) ,
where I = (0,1,...,n —1). Here |a;| =2(1+p+---+p" 1) =2(p" - 1)/(p — 1).

PROPOSITION 4.3.1. For G = K(Z/p,q) with 0 < q < n, K(n).(S%%) is

generated over K(n). by the product m = [[; a’,’pm_l, Its K(n)-degree is 0 mod-

ulo 2(p™ —1).
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4.3. EILENBERG-MAC LANE SPACES 125

PROOF. By Theorem 4.2.5 we identify K (n),(5%4%) with the left H*-comodule
primitives in H, which by Remark 4.2.6 consists of the elements of H that multiply
to zero with every element in the augmentation ideal of H. These are generated by
the product 7 above. Its degree degy,)(G) = || can be computed by grouping
together the integer sequences with the same value of p(I) = s + 1:

m| =320 +...p) () - 1)
I

= > 207 - AP AP T T (T - 1)
0<s<q
15i1<-~-<1q_sgn—s—2

z 2pTett 44 ple 4 pl 4 4 p%)

0<s<q
s+2<jg 1< <jg<n-—1
- > 2(p" 4P AP T T
0<s<gq
1<ip < <ig_g<n—s—2
_ Z 2(pj1_|_,..+qu)_ Z 2(pi1+..,+piq):0
1<) << jg<n—1 1Sii < <igsn—d
modulo 2(p" — 1). =

PROPOSITION 4.3.2. For G = K(Z/p,n), K(n).(S%) is generated by
T=al"t 4 (=1)"v,2
as a K(n).-module. Its K(n)-degree is 0 modulo 2(p™ — 1).

PROOF. In this case the primitives in K (n).(S%%) are generated by m = a’,’_1 +

(=1)"vy, in degree |v,| = 2(p™ — 1). So also in this case degy(,)(G) = 0. O

REMARK 4.3.3. It would be interesting to produce non-integer elements in
the K (n)-local Picard group Picg () as the class [S*C] of the dualizing spectrum
of a K(n)-locally stably dualizable group G. The Eilenberg-Mac Lane examples
above do not decisively produce any such non-integer elements. Together with
Lemmas 2.3.2 and 3.1.6, and [HRW9S8], this indicates that the required stably
dualizable group G should not even be homotopy commutative. This adds interest
to the construction suggested in Remark 2.4.8.
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CHAPTER 5
Norm and transfer maps

5.1. Thom spectra.

The Thom space of a G-representation V' is the reduced Borel construction, or
homotopy orbit space, BGY = EG4 Ag SV, where SV is the representation sphere
of V. Generalizing the compact Lie group case, when S%9C is the (suspension
spectrum of) the representation sphere of the adjoint representation adG, we make
the following definition:

DEFINITION 5.1.1. Let G be a stably dualizable group. The Thom spectrum
BG*C of its dualizing spectrum is the homotopy orbit spectrum

BGadG — (SadG)hG _ EG+ AG SadG )
The inclusion G ¢ EG induces the bottom cell inclusion i: S*G¢ — BGe4G,

Note that for G abelian, S?¥C is a spectrum with EG-action by Lemma 2.5.4,
so in these cases
BG*'¢ ~ BG4 A §5*F
As in Proposition 4.1.1, when F is an S-algebra there is a strongly convergent
spectral sequence

E?, = Tor?; (D (E., E.(5%C))
(5.1.2) — E,;(BG*%).

When E = K(n) we have K(n).(S%%) = $4K(n), by Proposition 4.2.2, with
d = degg(,)(G). Thus the spectral sequence takes the form
E?, = Tort "9 (K (n)., 2K (n).)

(5.1.3) — K(n)s4+(BG).

When S%¢ is K (n)-orientable, so that the bottom cell inclusion i: §34¢ — BGa4¢
induces a nonzero homomorphism i, : 2¢K (n) & K(n).(S%%) — K(n).(BG%%),
then this spectral sequence 5.1.3 is a free comodule over the corresponding bar
spectral sequence for K(n).(BG), on a single generator in degree d.

5.2. The norm map and Tate cohomology.

Let X be a spectrum with left G-action. We give it the trivial right G-action.
The smash product X AS[G] then has the diagonal left G-action, as well as the right
G-action that only affects S[G]. Consider forming homotopy orbits with respect to
the left action, and forming homotopy fixed points with respect to the right action.

We shall construct the norm map in three steps. First, there is a canonical
colimit/limit exchange map

(5.2.1) £: (X AS[G) e — (X A S[G)re)
126
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induced by the familiar map
EG+ A F(EG+, Y) — F(EG+, EG+ N Y) 5

in the case Y = X A S[G].

Second, there is a natural map v: X A S%¢ = X A S[G]"¢ — (X A S[G])M¢
since G acts trivially on X from the right. It can be identified with the chain of
weak equivalences

X AS%G 2, (G, X A SHG)G KT (X A DGy A SHGVRG Z, (X A S[G))hE

~

where the middle map uses that G is stably dualizable and the right hand map uses
the Poincaré duality equivalence of Theorem 3.1.4. In particular v: X A §%4¢ —
(X A S[G])"€ is a weak equivalence, and it induces a weak equivalence

VhG: (X N SadG)hG = ((X A S[G])hc)hc

on homotopy orbits with respect to the left actions. Note that v, maps to the
left hand side of (5.2.1). In the special case X = S, the maps v and g are
isomorphisms.

Third, there is an untwisting equivalence ¢: (X AS[G])hc — X AS[Glhg ~ X A
S = X, cf. [LMS86, p. 76], that takes the remaining right action on (X A S[G])na
to the right action on X through the inverse of the left action. Hence there is an
equivalence

¢ (X AS[Gwe)"® = XMC

of homotopy fixed points, formed with respect to these right actions. Note that
¢"E maps from the right hand side of (5.2.1).

DEFINITION 5.2.2. Let X be a spectrum with left G-action. The (homotopy)
norm map
N: (X A SadG)hG N XhG

is the composite of the natural maps:

hG
(X A §*C)nc 225 (X A SIG) Fne = (X A SIGDae)"® < X",
where vpg and ("¢ are weak equivalences. The G-Tate cohomology spectrum X
of X is the cofiber of the norm map:

(X/\S’“dG)hG LXhG —>XtG.

REMARK 5.2.3. (a) Note that X*“ ~ x if and only if the norm map N is a weak
equivalence, which in turn is equivalent to the canonical colimit/limit exchange map
k in (5.2.1) being a weak equivalence. So G-Tate cohomology measures the failure
of G-homotopy orbits and G-homotopy fixed points to commute.

(b) In view of [GM95, 3.5], it is reasonable to expect that if X is an S-algebra
with G-action, then X*C is an S-algebra and X" — X'C is a map of S-algebras.
We do not know how to give a direct model for X G say as the “G-fixed points”
of the spectrum EG A F(EG4, X) with G-action, so it is not so easy to verify our
expectation. Here, as usual in this context, EG is the mapping cone of the collapse
map c: EG, — S°.
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In the special case when X = S with trivial G-action, the norm map simplifies
to the canonical colimit/limit exchange map

BGI¢ = (5%1%) 6 = (S[G]*)nc > (S[Clne)"® ~ S"° = D(BG..).

Here we use that S"¢ = F(EG,,S)¢ = F(BG,,S) = D(BG,) is the functional
dual of BG, since S has trivial G-action. Hence there is a cofiber sequence

BG*S N, D(BG,) — S©.

In the case of a compact Lie group G, the G-Tate cohomology X G is the same
as that denoted tg(X)€ by Greenlees and May [GM95] and H(G, X) by Bokstedt
and Madsen [BM94].

DEFINITION 5.2.4. A spectrum with G-action X is in the thick subcategory
generated by spectra of the form G AW, if X can be built from * in finitely many
steps by (1) attaching cones on induced G-spectra of the form G, A W, with W
any spectrum, (2) passage to (weakly) equivalent spectra with G-action and (3)
passage to retracts. For instance, any finite G-cell spectrum has this form.

THEOREM 5.2.5. Let G be a stably dualizable group. If a spectrum with G-
action X s in the thick subcategory generated by spectra of the form G, AW,
then:

(1) The norm map N: (X A S%%),q — XMC for X is an equivalence.

(2) The G-Tate cohomology X*¢ ~ x is contractible.

Proor. If X = G4 AW isinduced up from a spectrum W with trivial G-action,
the source of the norm map can be identified with

(G AW A S%F), 0 ~ W A 5946
while the target of the norm map can be identified with
(G4 ANW)HRE ~ (DG4 A SHE AN WG ~ F(G, W A SUEYE ~ 1y A §24C

These identifications are compatible, as can be checked by starting with the case
W =S, hence in this case the norm map is itself an equivalence. The general case
follows by induction on the number of attachments made. O

REMARK 5.2.6. This result generalizes the third case of [K101, Thm. D],
from compact Lie groups to stably dualizable groups. For compact Lie groups G
this norm equivalence can be compared with the genuinely G-equivariant Adams
equivalence Y/G ~ (YAS™%%)C for Y a free G-spectrum [LMS86, I1.7]. Any such
Y is a filtered colimit of finite, free G-spectra, which are in the thick subcategory
generated by S[G] = G4 AS. But, while genuine G-fixed points (Y — Y¢) commute
with filtered colimits, this is not generally the case for G-homotopy fixed points
(Y + Y"G). Therefore we cannot extend Theorem 5.2.5 to all spectra X with free
G-action.

There is also a dual construction X;s that is to Tate homology as the Tate
construction X*C is to Tate cohomology. To define it, we suppose that X is a
spectrum with right G-action, and give it the trivial left G-action. The smash
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product DG4 A X has the left G-action that only affects DG, and the diagonal
right G-action. There is a canonical colimit/limit exchange map

k: (DG4 A X)hc)h(; — ((DG4 A X)h(;)hG .

The source of k receives an equivalence from Xjg obtained by applying homo-
topy orbits to the equivalence X — F(G,,X)"®. The target of x admits a weak
equivalence to (S~%¢ A X)"G obtained by taking homotopy fixed points of the
isomorphism

(DG4 A X)he — (DG )hg A X =S~ %C A X

which exists because G acts trivially on X from the left.

DEFINITION 5.2.7. Taken together, these maps yield the alternate norm map
N’, defined as the composite:

N': Xng = (DG4 AX)'NYa 5 (DG4 A X)pg)'Y = (874G A X)RE

Its homotopy fiber X;g is the G-Tate homology spectrum, and sits in a cofiber
sequence

Xic — Xna EUN (S7% A X)MG

If X is an S-coalgebra with G-action, it again appears likely that X;g is such
a coalgebra and that X;g — Xp¢ is a map of S-coalgebras.

5.3. The G-transfer map.

DEFINITION 5.3.1. Let X be a spectrum with left G-action. The G-transfer
map
trfg: (X A S%%)e — X
is the composite of the norm map N: (X A S*C), 4 — X"C and the forgetful map
p: XhG — X,
When X = S[Y] is the unreduced suspension spectrum of a G-space Y, this is

the dimension-shifting G-transfer map associated to the principal G-bundle Y ~
EGxY — EG xgY.

5.4. E-local homotopy classes.

Let G be a stably dualizable group, with dualizing spectrum S%4“. The com-
posite of the bottom cell inclusion i: S?4¢ — BG%4Y and the dimension-shifting
G-transfer trfg: BG*¢ — § is the composite map

gadG i} (SadG)hG _ (S[G]hc)hc LR (S[G]h(;)hG ~ GhG P, g

Noting that the projection p amounts to forgetting G-homotopy invariance, this
map can also be expressed as the composite

5%C¢ = §[G)"C L §[G] 5 S[Glhe ~ S.

DEFINITION 5.4.1. The composite map pri: S — § represents a class de-
noted [G] € m.(LgS) in the Picg-graded homotopy groups of the E-local sphere
spectrum, in degree * = dimg(G) = [S*¢] € Picg. We might call [G] the E-local
stably framed bordism class of G.
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130 5. NORM AND TRANSFER MAPS

EXAMPLE 5.4.2. For the circle group G = S! and E = S we have [G] =
n € m(S). For the p-complete Sullivan sphere G = (5§?73)) and E = HF, we
have [G] = o € 7r2p*3(5$), when p is odd. These examples are also detected
K (1)-locally, i.e., for G considered as a K (1)-locally stably dualizable group.

LEMMA 5.4.3. In the case E = K(n), the induced homomorphism
(G, : 24K (n), = K(n).(S99%) — K(n).(S) = K(n).

takes a generator of the K(n)*(G)-comodule primitives in K (n).(G) to its image
under the augmentation e: K(n).(G) — K(n)..

PROOF. Recall from Theorem 4.2.5 that K(n),(S%) is identified with the
H* = K(n)*(G)-comodule primitives Hom g (H*, R), and the projection p: S$%4¢ —
S[G] induces the forgetful inclusion into Homp(H*,R) = H = K(n).(G). The
inclusion : S[G] — S[Glue =~ S induces the augmentation €, which establishes the
claim (]

EXAMPLE 5.4.4. When F = K(n) and G is a finite discrete group we get
H = R[G| and Py-(H) = R{N}, where N = }_ g is the norm element in H.
Then (V) = |G| equals the order of G, so [G]. multiplies by |G| in R = K{(n)..

EXAMPLE 5.4.5. When E = K(n) and G = K(Z/p,q) for 0 < g < n, the H*-
comodule primitives were found in Proposition 4.3.1 to be generated by an element
« that lies in the augmentation ideal ker(e), so the induced homomorphism [G]. is
zero and [G]: S%9¢ — S has positive K (n)-based Adams filtration.

EXAMPLE 5.4.6. When F = K(n) and G = K(Z/p,n), with ¢ = n, Proposi-
tion 4.3.2 exhibited a generating element m = a‘}‘l + (=1)"™v, for Py+(H), which
augments to the unit (—1)™v, € K(n).. Hence in this case [G]: S*4¢ — S induces
an isomorphism on K (n)-homology, and so S?¥¢ ~ § in the K (n)-local category.
By Lemma 2.5.4, the G-action on S?¥C is homotopy trivial in this case. Hence the
Poincaré duality equivalence 3.1.4 amounts to a K (n)-local self-duality equivalence

for G = K(Z/p,n), which is left and right G-equivariant up to homotopy, and which
may be compared with [HSt99, 8.7].
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