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Abstract. In this paper, we investigate certain graded-commuta-
tive rings which are related to the reciprocal plane compactification
of the coordinate ring of a complement of a hyperplane arrange-
ment. We give a presentation of these rings by generators and
defining relations. Our presentation was recently used by Holler
and I. Kriz [7] to calculate the Z-graded coefficients of localizations
of ordinary RO((Z/p)n)-graded equivariant cohomology at a given
set of representation spheres. We also give an interpretation of
these rings in terms of superschemes, which can be used to further
illuminate their structure.

1. Introduction

G-equivariant generalized homology and cohomology theory for a
compact lie groupG is best behaved when the (co)-homology groups are
graded by elements of the real representation ring RO(G). In this case
(see Lewis, May, Steinberger [13] for background), the theory enjoys
many of the properties of non-equivariant (co)-homology, for example,
Spanier-Whitehead duality. Explicit calculations of equivariant coho-
mology groups, however, are much harder than in the non-equivariant
case. A telling example is the case of “ordinary” G-equivariant co-
homology theories, defined by Lewis, May and McClure [12]. These
theories satisfy a “dimension axiom” in the sense that the Z-graded
part of their coefficients (i.e. (co)-homology of a point) are zero except
in dimension 0 for all (closed) subgroups of G.

However, calculation of the RO(G)-graded coefficients of these “or-
dinary” G-equivariant cohomology theories has been an open problem
since the 1980s, and these groups carry some deep information. For ex-
ample, for the “constant” Z Mackey functor coefficients, (which means
that restrictions to subgroups are identities), a partial calculation of
the RO(G)-graded coefficients for G = Z/8 was a key ingredient in the
solution by Hill, Hopkins and Ravenel [6] of the Kervaire invariant 1
problem.
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The algebraic calculations made in the present paper are relevant to
the ordinary RO(G)-graded (co)homology theory with constant Z/p
coefficients for G = (Z/p)n. We denote this theory by HZ/p

(Z/p)n
. In

the paper [8], Holler and I. Kriz calculated the “positive” part of these
coefficients, meaning the groups

(1) HZ/pV
(Z/p)n

(∗)

with V an actual (not virtual) representation for p = 2. A key ingre-
dient in this calculation was the geometric fixed point ring

(2) (Φ(Z/p)nHZ/p)∗,

which is the localization of the full RO((Z/p)n)-graded coefficient ring
by inverting the inclusions S0 → Sα for all non-trivial irreducible rep-
resentations α (see Tom Dieck [20] and [13], chapter 11, Def. 9.7).

Holler and I. Kriz [8] calculated the ring (2) for p = 2 by hand using
a spectral sequence, and commented that the rings seemed to have an
unusual algebraic structure, and asked about its geometric significance.
They also did not know how to complete the same computation for
p > 2, where the structure seemed much more complicated.

Answering these algebraic questions is the main purpose of the present
paper. Using our main theorem (Theorem 2 below), Holler and I. Kriz
[7] then generalized their calculations of the geometric fixed point coef-
ficient ring (2) to p > 2, and also answered the following more general
question:

What is the structure of the Z-graded coefficient ring RS of the
(Z/p)n-fixed point specctrum given by localizing HZ/p

(Z/p)n
by in-

verting the maps S0 → Sα for a given set S of irreducible (Z/p)n-
representations?

Symbolically, we may write

(3) RS = ((
m∧
i=1

S∞αi) ∧HZ/p)(Z/p)n
∗

where S = {α1, . . . , αm}.
Then, in particular, the geometric fixed point coefficient ring (2) is

equal to RS where

S = {α1, . . . , αpn−1}
consists of all non-trivial irreducible representations of (Z/p)n.

The contribution of the present paper was essential to 1. better
understanding the algebraic structure for the case of Z/2, which was
necessary for considering the case of an arbitrary set S, and 2. finding
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a graded-commutative analog, which is relevant for the case of Z/p-
coefficients for p > 2 (since in that case, Z/p-valued cohomology forms
a graded-commutative, and not a commutative ring), which give a can-
didate for the RS. The algebraic computations of this present paper
then gives sufficient control on the structure of this ring to show that
the candidate is correct by a counting argument [7].

What kind of algebra are we talking about? In [8] Theorem 2, Holler
and I. Kriz proved that

(4)
(Φ(Z/2)nHZ/2)∗ =

Z/2[tα|α ∈ (Z/2)n \ {0}]/(tαtβ + tαtγ + tβtγ|α + β + γ = 0).

Where tα are in degree 1. They proved this by counting the dimen-
sion of the submodule of homogeneous elements of a given degree and
matching it with a spectral sequence. But what do these relations
mean?

Consider the affine space

An
F2

= Spec(F2[x1, . . . , xn]).

Then the elements zα, can be identified with non-zero linear combina-
tions of the coordinates x1, . . . , xn with coefficients in F2. Such linear
combinations can, in turn, be identified with equations of hyperplanes
through the origin in An

F2
. (All possible rational hyperplanes, as it

turns out.) If we remove these hyperplanes from An
F2

, we obtain an
affine variety with coordinate ring

(5) (
∏

α∈(Z/2)n\{0}

z−1
α )F2[x1, . . . , xn].

I showed that the ring (4) is isomorphic to the subring of the ring
(5) generated by the elements tα = z−1

α . This result turned out to be
known (for example, [16], Theorem 4). In fact, the affine variety with
coordinate ring (4) is known as the reciprocal plane of the hyperplane
arrangement {zα} (see [3]).

The reciprocal plane can, of course, be considered over any field, and
the likely reason this significance of the ring (4) was not noticed before
is that the focus of the previous work was mostly on characteristic
0: certainly not on the arrangement of all rational hyperplanes over
a finite field. This interpretation, then, begged the question as to
what happens if we remove just some subset S of hyperplanes from
An

F2
? What is the topological significance of the reciprocal plane in that

case? Using the known presentation [16] I rediscovered, Holler and I.
Kriz subsequently proved that those rings are isomorphic to the rings
(3).
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The real story, and the main contribution of the present paper, how-
ever, is for p > 2. From the point of view of algebraic geometry, there
is no difference: As we already mentioned, the reciprocal plane con-
struction is independent of characteristic.

In algebraic topology, however, when we are dealing with character-
istic p 6= 2, coefficient rings become graded-commutative, i.e.

xy = (−1)|x||y|yx

where |x| denotes the degree of x. So to solve the structure of the rings
(2), (3) for p > 2, it was necessary to discover the appropriate graded-
commutative analogue of the reciprocal plane, and to prove structure
results analogous to [16]. This is the main result of the present paper.

Very briefly, we consider the ring

Fp[x1, . . . , xn]⊗ ΛFp [dx1, . . . , dxn]

where Λ denotes the exterior algebra. In this ring, invert a set of lin-
ear combinations zα of the elements xα. The right ring turns out to
be the subring generated by tα = z−1

α and uα = z−1
α dzα. Topologi-

cally, the element tα has degree 2 and the element uα has degree 1,
corresponding to the fact that we are dealing with complex, not real,
representations for p > 2. I determine the structure of these subrings
in a way analogous to (but more complicated than) the commutative
case. Holler and I. Kriz [7] then used my structure theorems to prove
that these rings are isomorphic to the rings (3) for p > 2. This is the
main topological application of the results of the present paper. The
very striking geometric interpretation of the reciprocal planes begs the
question what is the appropriate analogue of this interpretation in the
graded-commutative case. The Spec of a graded-commutative ring is a
superscheme (for a survey, see [21]). In section 6, I develop the super-
scheme analog of some of the known geometric structures associated
with the reciprocal plane, which correspond to my algebraic general-
ization to graded-commutative rings. (Again, the algebraic geometry
side of the story is independent of characteristic).

The present paper is organized as follows: In the next section, I
give precise statements of the algebraic results of this paper, which
amount to finding a presentation of the rings in question, in Theorem
1 in the commutative case and Theorem 3 in the graded-commutative
case. Essentially, the proof is by describing an explicit algorithm of
reducing a given relation to the relations in my presentation, which I
do not think was known before. In Section 3, as a warm-up, I give an
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explicit proof of Theorem 1 which can be generalized to the graded-
commutative case. In Section 4, I use this method to prove Theorem 3.
In Section 5, I prove that the relation ideals I,K are also generated by
the relation polynomials PL, PL,S where the L’s are restricted to “mini-
mal” relations. The commutative case is particularly simple. This was
also proved in [16] in the commutative case by less explicit methods.
In Section 6, I discuss the geometric interpretation, including the con-
struction of the superscheme corresponding to the graded-commutative
case (Theorem 3).

Acknowledgement: I am most thankful to J.P. May for comments
and encouragement.

2. Statement of the results

Following Terao [19], consider an n-dimensional affine space An
F over

a field F . Let z1, . . . , zm be non-zero linear combinations of the coor-
dinates x1, . . . , xn with coefficients in F . We can think of the zi’s as
equations of hyperplanes in An

F . Then the coordinates ti = z−1
i define

a morphism of affine varieties

π : An
F \ Z(z1 . . . zm)→ Am

F

where ZI = Z(I) is the set of zeros of an ideal I. The morphism π is
an embedding if the zj’s linearly span the xi’s. Consider the Zariski
closure of Im(π). As we shall see, this variety is a cone, so we can speak
of the corresponding projective variety. This construction, called the
reciprocal plane, has been studied extensively (see [16, 14, 9, 15, 18,
17, 10, 11]). For a survey, see [3].

To understand this construction better, we must describe it alge-
braically, which will also bring us closer to the motivation of the present
paper. Let

R = z−1
1 . . . z−1

m F [x1, . . . , xn] = F [x1, . . . , xn][z−1
1 , . . . , z−1

n ].

Then we have a homomorphism of rings

h : F [t1, . . . , tm]→ R

with h(ti) = z−1
i (which is, of course, not onto). Consider the ideal

I = Ker(h). Denote A = {z1, . . . , zm}, and put

RA,An
F

= F [t1, . . . , tm]/I.

Then Spec(RA,An
F

) is, by definition, the Zariski closure of Im(π). Also
by the homomorphism theorem, RA,An

F
is a subring of R. Observe that
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I is a prime ideal (therefore a radical) since R is an integral domain,
and hence so are its subrings. Further, if the zi’s generate the xj’s,
then

R = (t1 · · · · · tm)−1RA,An
F
.

Thus, in particular, in this case π is an open embedding of the hyper-
plane arrangement complement into the Zariski closure of its image.

The ideal I is non-zero when there are linear dependencies among
the hyperplane equations zi. Suppose, then,

(6) L = a1zi1 + · · ·+ akzik = 0 ∈ F [x1, . . . , xn]

where a1, . . . , ak ∈ F are not 0, and

1 ≤ i1 < · · · < ik ≤ m.

So, in R, we have a
ti1

+ · · ·+ ak
tik

= 0 where k > 1 (where, in the rest of

this paper, we indentify tj = z−1
j ). Thus,

(7)
a1ti2 . . . tik + · · ·+ ajti1 . . . t̂ij . . . tik + · · ·+ akti1 . . . tik−1

ti1 . . . tik
= 0 ∈ R,

where the hat means an omitted term.
Hence, the numerator PL of the left hand side of (7) is in I.

Theorem 1. ([16], [3], (5.3)) Let Z be the set of all linear relations L
among the hyperplane equations zi. Then

(8) I = (PL(t1, . . . , tm)|L ∈ Z),

or in other words,

RA,An
F

= F [t1, . . . , tm]/(PL(t1, . . . , tm)|L ∈ Z).

Corollary 2. ([7, 8]) For p = 2, the Z-graded coefficient ring (6) of
the constant Z/2-Mackey functor ordinary (Z/2)n-equivariant cohomol-

ogy spectrum with the inclusion S0 → Sαi inverted where αi are real
irreducible representations corresponding to the hyperplanes zi is

RS = RA,An
F2
.

This was proved in [8] using a direct method for the case of all
2n − 1 rational hyperplanes through the origin in An

F2
. The authors of

[8] asked about the algebraic interpretation of this ring. I found the
above interpretation and proved Theorem 1 by describing an explicit
algorithm for reducing relations. Using this and the commutative case
of Theorem 8 below then led to the proof of the general case of Corollary
2 in [7].
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Both Theorem 1 and the commutative case of Theorem 8 turned out
to be known ([16], Theorem 4). The reason the connection with [8],
and Corollary 2 of [7] were not noticed before is probably that the focus
of [16] and other previous work was not on the case of all hyperplanes
over a finite field.

While the work of [16] (and hence Theorem 1 and the commutative
case of Theorem 8) work over any field, in algebraic topology, those
calculations are not relevant in characteristic p > 2, where the relevant
rings are graded-commutative. In fact, [8] was written entirely in char-
acteristic 2 because the graded-commutative analog of the ring RA,An

F

was not known. I found this ring algebrically by looking for a “graded-
commutative” analog of the geometric structures described above, and
my reduction algorithm. I then proved a graded-commutative analog
of Theorem 1, (and the corresponding part of Theorem 8), which is the
main result of the present paper.

For the graded-commutative case, consider

Ω = F [x1, . . . , xn]⊗ Λ[dx1, . . . , dxn]

where Λ denotes the exterior algebra over the field F . Then the non-
zero F -linear combinations zi of the xi’s are in the center of Ω. Now
consider

T = z−1
1 . . . z−1

m Ω ⊃ Ω.

This is the graded-commutative analog of the ring R. We are interested
in the subring TA,An

F
of T generated by z−1

1 , . . . , z−1
m , z−1

1 dz1, . . . , z
−1
m dzm.

Put ti = z−1
i and ui = z−1

i dzi. Then we have a canonical homomorphism
of rings

ψ : Ξ = F [t1, . . . , tm]⊗ Λ[u1, . . . , um]→ T.

Let K = Ker(ψ). Note that I ( K. Thus, we have

TA,An
F

= Ξ/K.

We want to find the generators of the ideal K. If L is again the left
hand side of (6), then

dL = ai1dzi1 + · · ·+ aikdzik = 0 ∈ T.
If we multiply

PL = ai1ti2 . . . tik + ai2ti1 t̂i2 . . . tik+

· · ·+ aij ti1 . . . t̂ij . . . tik + · · ·+ aikti1 . . . tik−1

by dzj1 . . . dzjl where

(9) S = {j1 < · · · < jl} ⊆ {i1, . . . , ik},
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some monomial summands can be expressed in terms of the uj’s. If a
monomial summand does not contain tjs but does contain dzjs , then
use dL = ai1dzi1 + · · ·+ aikdzik to eliminate dzjs . Explicitly, let

PL,S = PLdzj1 . . . dzjl
−
∑l

s=1 ti1 . . . t̂js . . . tikdzj1 . . . d̂zjsdL . . . dzjl .

We have PL,S ∈ Ξ. Note that, by definition, PL,∅ = PL. Our main
result is

Theorem 3. Let Y be the set of all pairs (L, S) where L is a linear
relation among hyperplanes equations as in (6), and S is a subset of
the index set as in (9). Then

K = (PL,S | (L, S) ∈ Y).

In other words,

TA,An
F

= Ξ/(PL,S | (L, S) ∈ Y).

This algebraic Theorem, along with Theorem 8 below was used in
[7] to prove the following result:

Corollary 4. ([7]) For p > 2, the Z-graded coefficient ring (6) of the
constant Z/p-Mackey functor ordinary (Z/p)n-equivariant cohomology

spectrum with inclusions S0 → Sαi inverted where αi are complex irre-
ducible representations corresponding to the hyperplanes zi is

RS = TA,An
F
.

Since the commutative algebra methods of [16] are at present not
available for graded-commutative rings, our proof of Theorem 3 is el-
ementary and in fact is an elaboration of my algorithm used to prove
Theorem 1. As a warm-up, I also include my original elmentary proof
of Theorem 1, which I then generalized to the graded-commutativee
case. Some brief notes on the interpretation of the graded-commutative
result in algebraic geometry are given in Section 6 below.

Example: Let L = z1 + z2 + z3 = 0 ∈ Ω. Then we have

PL = PL,ø =
z1 + z2 + z3

z1z2z3

= t2t3 + t1t3 + t1t2.

Now to compute PL,{2}, write

(10) PLdz2 = t2t3dz2 + t1t2dz2 + t1t3dz2 = u2t3 + t1u2 + t1t3dz2.

Now use

(11) dL = dz1 + dz2 + dz3 = 0
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to express dz2 = −dz1 − dz3, which we use to conclude

t2t3dz2 = −t1t3(dz1 + dz3) = u1t3 + u3t1.

Substituting this into (10) gives the relation

PL,{2} = u2(t1 + t3)− u1t3 − u3t1.

To calculate PL,{1,2}, we start with the expression

pLdz1dz2 = t2t3dz1dz2 + t1t2dz1dz2 + t1t3dz1dz2 =

= t2t3dz1dz2 + u1u2 + t1t3dz1dz3.

Using (11) again, we get

t2t3dz1dz2 = t2t3(−dz2 − dz3)dz2 = t2t3dz2dz3 = u2u3

and
t1t3dz1dz2 = t1t3dz1(−dz1 − dz3) = u3u1.

Thus, we obtain the relation

PL,{1,2} = u1u2 + u2u3 + u3u1.

The reader should keep in mind that the above derivation of examples
of the relations PL,S is used simply to explain our definition of these
relations. Nevertheless, they illustrate the fact that PL,S is a relation
in t−1

1 . . . t−1
m Ξ which is contained in Ξ, and thus is valid in Ξ.

3. The commutative case

The purpose of this section is to prove Theorem 1.

Lemma 5. The relation ideal I of Theorem 1 satisfies

(12)
I = {q = p1L1 + · · ·+ pNLN |

pi ∈ t−1
1 . . . t−1

m F [t1, . . . , tm], q ∈ F [t1, . . . , tm]}

Proof. Consider the diagram
(13)

F [t1, . . . , tm]

��

π // R F [x1, . . . , xn]oo

F [t1, . . . , tm, t
−1
1 , . . . , t−1

m ]
= // t−1

1 . . . t−1
m F [t1, . . . , tm]

π̃

OO

F [z1, . . . , zm]oo

π

OO

We know ker(π) = (L1, . . . , LN) ⊆ F [z1, . . . , zm]. Therefore we know
that

ker(π̃) = z−1
1 , . . . , z−1

m ker(π) = (L1, . . . , LN)
⊆ z−1

1 . . . z−1
m F [z1, . . . , zm] = t−1

1 . . . t−1
m F [t1, . . . , tm]

by exactness of localization.



10 SOPHIE KRIZ

�

Proof of Theorem 1. Let J be the ideal in I which is generated by all
the PL’s. Then we want J to equal I. We shall perform induction on
m (the number of the variables zj). If m = 0, then RA,An

F
= F and

there is nothing to prove. Let

(14) q = p1L1 + · · ·+ pNLN ∈ I
be as in Lemma 5. We want to show that q ∈ J . We may assume
L1, . . . , LN are in reduced row echelon form where the order of columns
corresponds to the order of variables zm, . . . z1. Let A′ = {z1, . . . , zm−1}
and define an ideal I ′ ⊂ F [t1, . . . , tm−1] by

RA′,An
F

= F [t1, . . . , tm−1]/I ′.

If the first pivot of our RREF is not in the first column, there is no
relation L1, . . . , LN with a1 6= 0 involving zm = t−1

m . In this case, by
construction, we have a homomorphism of rings

RA′,An
F
→ RA,An

F
.

Now, we may write each p1, . . . , pN as a Laurent polynomial in the
variable tm. Since L1, . . . , LN do not involve zm, by Lemma 5, the co-
efficients qi of q at tim are in F [t1, . . . , tm−1], and are 0 for i < 0. Thus,
by Lemma 5, each qi maps to 0 in RA′,An

F
, and thus, by the induction

hypothesis, is an F [t1, . . . , tm−1]-linear combination of the elements PL
where L runs through all linear relations among z1, . . . , zm−1. Thus,
q ∈ J and we are done. Thus, assume that the RREF of the rela-
tions L1, . . . , LN , as described above, has a pivot in the first column,
corresponding to zm.

Now write pi ∈ F [t1, . . . , tm−1, t
−1
1 , . . . , t−1

m−1][tm, t
−1
m ]. Denote by

pi,k ∈ t−1
1 . . . t−1

m−1F [t1, . . . , tm−1]

the coefficients of every power tkm, k ∈ Z.
Without loss of generality,

(15)
L1 = a1zm + . . . ,
a1 6= 0 ∈ F

has more than two non-zero terms. Otherwise, the number of nonzero
terms in L would be exactly 2 (since we did not allow zm = 0). But if
the number of non-zero terms in L1 is exactly 2, then zm is a non-zero
multiple of some zi, i < m. Therefore, if we put A′ = {z1, . . . , zm−1},
RA,An

F
= RA′,An

F
, and our statement follows from the induction hypoth-

esis.
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Suppose, therefore, that (15) has at least 3 non-zero terms. Now
consider the highest k ∈ Z such that pi,k 6= 0 for some i. Let L′1 be the
linear combination obtained from L1 by omitting the a1zm summand.

Case 1: k > 0. Then

(16) q = p1,kL
′
1 + p2,kL2 + · · ·+ pN,kLN ∈ F [t1, . . . , tm−1].

Note: we do not, of course, claim that (16) is a relation among the
chosen zj’s. However, since the relations are in reduced row echelon
form, and L1 has at least three terms, the relation L′1 only introduces
a linear relation among at least two of the non-pivot variables of the
relationns L2, . . . , LN . Therefore, there exist some non-zero linear com-
binations z2, . . . , zm of some other parameters y1, . . . , yn′ , which satisfy
the relations L′1, L2, . . . , LN . Since our induction is only on the number
m of the hyperplanes, the induction hypothesis applies. By Lemma 5,
q ∈ I ′. By the induction hypothesis, (16) is a linear combination

w1PL′1 + w2PL2 + · · ·+ wNPLN
, wi ∈ F [t1, . . . , tm−1].

Then subtracting

w1t
k−1
m PL1 + w2t

k
mPL2 + · · ·+ wN t

k
mPLN

from (14), we obtain an element q′ ∈ F [t1, . . . , tm] which differs from L
by an element of J , and for which the number k ∈ Z is lower. Thus,we
are reduced to:

Case 2: k ≤ 0. Then consider the lowest l ≤ 0 for which there
exists an i with pi,l 6= 0. Then, p1,l = 0, since p1,lz

−l+1
m has nothing to

cancel out against in (14) (since all the other powers of zm are ≤ −l.
Thus, since −l + 1 > 0, this contradicts q ∈ F [t1, . . . , tm].) Thus,

q′ = p2,lL2 + · · ·+ pN,lLN ∈ F [t1, . . . , tm],

and thus, by Lemma 5, we have q′ ∈ I ′. Thus, by the induction hy-
pothesis applied to pi,`, q

′ is a linear combination

w2PL2 + · · ·+ wNPLN
, w2, . . . , wN ∈ F [t1, . . . , tm−1].

If k = l = 0, we are done. If l < 0, we must have

−p1,`+1 = a−1
1 (p2,`L2 + · · ·+ pN,`LN)

for cancellation, so

(p2,lL2 + · · ·+ pN,lLN)z−lm +
p1,l+1L1z

−`−1
m + a−1

1 (p2,lL2 + · · ·+ pN,lLN)L′1z
−l−1
m

= 0 ∈ t−1
1 . . . t−1

m F [t1 . . . tm]

can be subtracted from (14), thus increasing l without violating k ≤ 0.
Thus, by repeating this process, we are done.

�



12 SOPHIE KRIZ

4. The odd case

In this section, we prove Theorem 3.

Lemma 6. The relation ideal K of Theorem 3 is given by

K = {q = p1L1 + · · ·+ pNLN + r1dL1 + · · ·+ rNdLN
| q ∈ Ξ, pi, ri ∈ Ξ[t−1

1 . . . t−1
m ]}.

Proof. Denote Y = F [z1 . . . zm]⊗Λ[dz1 . . . dzm]. The analog of diagram
(13) is

(17)

Ξ

��

// T = z−1
1 . . . z−1

m Ω Ωoo

Ξ[t−1
1 . . . t−1

m ]
= // z−1

1 . . . z−1
m Y

ψ

OO

Yoo

ψ

OO

where ψ is the canonical map. Then

(18) Ker(ψ) = (L1, . . . , LN , dL1, . . . , dLN).

Now certainly Ker(ψ) ⊇ z−1
1 . . . z−1

m (L1, . . . , LN , dL1, . . . , dLN). To prove
the converse, note that exactness of localization works the same here
as in the commutative case. If ψ(x) = 0, x ∈ z−1

1 . . . z−1
m Y , then

(z1, . . . , zm)Nψ(x) = ψ((z1, . . . , zm)Nx) = 0. Without loss of gener-
ality (by increasing N if necessary), we may then also assume x ∈ Y ,
ψ̄(x) = 0. �

It is useful to note here that in general, for a commutative ring R,
and a multiplicative set S ⊆ R

(19) S−1(ΛR[u1, . . . , um]) = ΛS−1R[u1, . . . , um].

Proof of Theorem 3: The reader is encouraged to follow along the cor-
responding steps of the proof of Theorem 1, which we shall mimic.
Let

(20) M ⊆ K

be the ideal generated by the elements PL,S. Again, we prove the
statement by induction bym, the number of hyperplanes zj. Form = 0,
again TA,An

F
= F , so there is nothing to prove. For m > 0, again, put

A′ = {z1, . . . , zm−1},
Ξ0 = F [t1, . . . , tm−1]⊗ Λ[u1, . . . , um−1],

TA′,An
F

= Ξ0/K
′.
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First we again put L1, . . . , LN in reduced row echelon form so that the
columns correspond to zm, zm−1, . . . , z1. Then let

(21) w = p1L1 + · · ·+ pNLN + q1dL1 + · · ·+ qNdLN ∈ Ξ

and pj, qj ∈ Ξ[t−1
1 , . . . t−1

m ]. Again, we may assume that the first col-
umn (corresponding to zm) has a pivot: Otherwise, consider again the
canonical homomorphism of rings

TA′,An
F
→ TA,An

F
.

Again, each coefficients wi,0 and wi,1 of w at tim and timum, respectively
are in Ξ′ by Lemma 6, and hence are linear combinations of PL,S where
L are the relations among z1, . . . , zm−1 by the induction hypothesis.
Thus w ∈M and we are done. Again, we may also assume that L1 has
at least 3 terms: 1 term is excluded by z1 6= 0, and 2 terms would give
TA,An

F
= RA′,An

F
, and our statement would follow from the induction

hypothesis.
Then

pi =
∑
k∈Z

(pi,kt
k
m + pi,kt

k
mum)

and
qi =

∑
k∈Z

(qi,kt
k
m + qi,kt

k
mum)

with pi,k, pi,k, , qi,k, qi,k ∈ Ξ0[t−1
1 , . . . , t−1

m−1]. Let L′1 be L1 with the zm
term removed. Consider the highest k for which at least one of the
polynomials pi,k, pi,k, , qi,k, qi,k is non-zero. Let us distinguish two cases.
(Note that dzm = t−1

m um, so the omitted terms have lower total power
of tm).

Case 1:
Suppose k > 0. By maximality of k,

(22) p1,kL
′
1 + p2,kL2 + · · ·+ pN,kLN + q1,kdL

′
1 + · · ·+ qN,kdLN ∈ Ξ0.

By the induction hypothesis this is a linear combination of PL′1,S, PLi,S, i >
1. Similarly for

(23) p1,kL
′
1+p2,kL2 · · ·+pN,kLN+q1,kdL

′
1+q2,kdL2 · · ·+qN,kdLN ∈ Ξ0.

(This time, we are also using u2
m = 0.) Subtracting the corresponding

linear combinations of PL1,S, PLi,S from

p1,kL1 + · · ·+ pN,kLN + q1,kdL1 + · · ·+ qN,kdLN

or
p1,kL1 + · · ·+ pN,k + q1,kdL1 + · · ·+ qN,kdLN ,

we decrease k. Thus, again, we are reduced to
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Case 2:
Suppose k ≤ 0. Then consider the lowest ` for which at least one of

the polynomials pi,k, pi,k, , qi,k, qi,k is non-zero. Let

(24)

ω = p1,`L1 + · · ·+ pN,`LN
ρ = q1,`dL1 + · · ·+ qN,`dLN
ω = p1,`L1 + · · ·+ pN,`LN
ρ = q1,`dL1 + · · ·+ qN,`dLN

and denote by ω′, ρ′, ω′, ρ′ the linear combinations obtained by replacing
L1, dL1 by L′1, dL

′
1 in (24). Then by minimality of `,

(25) ω + ρ+ ω + ρ = ω′ + ρ′ + ω′ + ρ′.

(The extra terms on the left hand side of (25) have nothing to cancel
against so their sum must be 0.) Therefore, if k = ` = 0, the right hand
side of (25) (which is equal to (21)) is in Ξ0 + umΞ0, and the statment
follows from the induction hypothesis and the lemma following this
proof.

If ` < 0, for cancellation, we must have

a1p1,`+1 = −ρ′ − ω′

a1(q1,`+1um + p1,`+1um) = −ρ′ − ω′,
using the convention (15) for the definition of 0 6= a1 ∈ F . Thus,
adding to (21)

0 = −(ω + ρ+ ω + ρ)z−`m
−(p1,`+1 + q1,`+1um + p1,`+1um)z−`−1

m L1

−a−1
1 (ρ+ ω + ω + ρ)z−`−1

m L′1,

which is a t−1
1 . . . t−1

m Ξ-linear combination of the elements Li and dLi,
increases `, without increasing k.

�

Lemma 7. Assuming the statement of Theorem 3 holds with m re-
placed by m − 1, and L1, . . . , LM are in reduced row echelon form in
the order of columns zm, zm−1, . . . , z1 with a pivot in the first column
and assume L1 has at least 3 non-zero terms. Then, we have

(26) (Ξ0 + umΞ0) ∩Ker(ψ) ⊆M + (Ξ0 ∩Ker(ψ))

(see (20)).

Proof. We want to rephrase the Lemma to say

(27) Ξ0 + (PL,S) ⊇ umΞ0 ∩ ψ−1(ψΞ0).

This is possible because if a ∈ Ξ0 and b ∈ umΞ0, and ψ(a+ b) = 0 then
−ψ(a) = ψ(b) ∈ ψΞ0. Then b ∈ umΞ0∩ψ−1(ψΞ0) so if (27) holds, then
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b ∈ Ξ0 + (PL,S). In other words, b = c+ linear combinations of PL,S
with c ∈ Ξ0. Then a+b = a+c+linear combination of PL,S, a+c ∈ Ξ0,
ψ(a+ c) = 0 (since ψ(PL,S) = 0). Thus, proving the statement (26) is
reduced to proving the statement (27).

To prove (27), let R = {p ∈ Ξ0|ψ(ump) ∈ ψ(Ξ0)}. (Note that
umR = umΞ0 ∩ ψ−1(ψΞ0).) Let

Y0 = F [z1 . . . zm−1]⊗ Λ[dz1 . . . dzm−1].

Put Q = {p ∈ z−1
1 . . . z−1

m−1Y0|ψ(pum) ∈ ψ(z−1
1 . . . z−1

m−1Y0)}. We have

z−1
1 . . . z−1

m Y = t−1
1 . . . t−1

m Ξ

and

(28) z−1
1 . . . z−1

m−1Y0 = t−1
1 . . . t−1

m−1Ξ0.

Then R ⊆ Q ∩ Ξ0. So

(29) ψ(pum) = ψ(p)ψ(um) = ψ(p)
ψ(dL′1)

ψ(L′1)
∈ ψ(L′1)−1T.

Note that ψ(L′1) is a non-zero linear combination of the xi’s which is
not an F -multiple by any of the zj’s by our assumption on L1. Then
umY0 goes to (ψ(L′1))−1Ω by ψ and um(z−1

1 . . . z−1
m−1Y0) goes to T by ψ.

Let Q = {p ∈ Y0|ψ(pum) ∈ ψ(Y0)}. So Q = z−1
1 . . . z−1

m−1Q. By (29), Q̄
is the ideal of all p ∈ Y0 such that

(30) ψ(L′1)|ψ(p)ψ(dL′1) ∈ T.
But since L′1 is not an F -multiple of any of the zj’s, by (19), (30) is
equivalent to

ψ̄(L′1)|ψ̄(p)ψ̄(dL′1) ∈ Ω.

Also, ψ(L′1) ∈ Ω is a regular element: let

µ =
ψ̄(p)ψ̄(dL′1)

ψ̄(L′1)
∈ Ω.

We may now assume that the zj’s linearly span the xi’s (since otherwise
we could replace the xi’s by the span of zj’s), so

ψ̄|Y0 : Y0 → Ω

is onto. Let ψ(µ̄) = µ, µ̄ ∈ Y0. Thus, by (18), we have

pdL′1 ∈ µ̄L′1 + (L2, . . . , LN , dL2, . . . , dLN).

Now note that in Y0, L′1 is not a linear combination of L2, . . . , Ln, (since
zm 6= 0), so by basic properties of polynomial and exterior algebras,
writing

Y0 = F [L′1, γ2, . . . , γm−1]⊗ ΛF [dL′1, dγ2, . . . , dγm−1],
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we see that dL′1|µ̄ ∈ Y0. Also, the kernel of multiplication by dL′1 is
(dL′1), so

p ∈ (L′1, L2, . . . , LN , dL
′
1, dL2, . . . , dLN) ⊆ Y0.

Thus, we proved

Q̄ = (L′1, L2, . . . , LN , dL
′
1, dL2, . . . , dLN) ⊆ Y0.

By exactness of localization,

Q = (L′1, L2, . . . , LN , dL
′
1, dL2, . . . , dLN) ⊆ z−1

1 . . . z−1
m−1Y0.

Now we need to prove

um(Q ∩ Ξ0) ⊆ Ξ0 +M

(see (20)). Let v ∈ Q ∩ Ξ0. Then we have

v ∈ p1L
′
1 + p2dL

′
1 + (L2, . . . , LN , dL2, . . . , dLN) ⊆ z−1

1 . . . z−1
m−1Y0

with p1, p2 ∈ Ξ0[t−1
1 , . . . , t−1

m−1]. Let

(31) L′1 =
k∑
j=2

ajzij

for 1 ≤ i2 < . . . , ik < m.
Note that L′1 is linearly independent over F of L2, . . . , LN (since zm 6=

0). Now subtract a linear combination of L2, . . . , LN from (31) so that

the right hand side L̃1

′
has the fewest possible non-zero terms. Without

loss of generality, thus, L̃1

′
= L′1 and zi2 , . . . , zik , L2, . . . , LN are linearly

independent over F . Then, choosing a basis for F{z1, . . . , zm−1} con-
taining {zi2 , . . . , zik , L2, . . . , LN} and writing elements of t−1

1 . . . t−1
m−1Ξ0

using this basis, we see that the elements p1L
′
1, p2dL

′
1 must be in Ξ0, if

we absorb any monomials from

(32) (L2, . . . , LN , dL2, . . . , dLN)

containing dL′1 into p2dL
′
1 and any remaining monomials from (32)

containing L′1 into p1L
′
1. This means that (recalling that zi2 , . . . , zik

are the summands of L′1 with non-zero coefficients), then p1 is a Ξ0-
multiple of ti2 . . . , tik , and p2 is a Ξ0-multiple of ti2 . . . tikdzj2 . . . dzjl for
some {j2 < · · · < jl} ⊂ {i2 < · · · < ik}.

Now umti2 . . . tikL
′
1 can be eliminated by PL1,{m}. For

S = {j1 < · · · < jl} ⊆ {i2, . . . , ik},

umti2 . . . tikdzj1 . . . dzjldL
′
1
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can be eliminated by umPL1,S∪{m}. This is because

umPL1,S∪{m} =

umPL1dzj1 . . . dzjldzm

−
l∑

q=1

umti2 . . . t̂jq . . . tikdzj1 . . . dL1d̂zjq . . . dzjldzm

− umti2 . . . tjkdzj1 . . . dzjldL′1
= −umti2 . . . tjkdzj1 . . . dzjldL′1

�

Some concrete examples of the eliminations we used in the conclusion
of the proof of Lemma 7 are shown below.

Example 1: zm+z1+z2 = L1,m > 2 ,then L′1 = z1+z2, so umt1t2(z1+
z2) = tmdzmt1t2(z1 + z2) = um(t1 + t2) = umt1 + umt2. And PL1,m =
umt1 + umt2 − t1u2 − t2u1.

Example 2: S = ø so

umt1t2dL
′
1 = umu1t2 + umu2t1.

This is elimenated by

umPL1∪{m} = −umtu2 − umt2u1

Example 3: S = 1 so

umt1t2dz1(dz1 + dz2) = umu1u2

is eliminated by

umPL1,{1,m} = umu1u2.

5. Minimality

Let

L = a1zi1 + · · ·+ akzik
where

1 ≤ i1 < · · · < ik ≤ m,

ai 6= 0 ∈ F.
Then put

(33) |L| := {i1, . . . , ik}.
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Call L minimal if there do not exist relations L1, L2 such that

L1 + L2 = L

|L1|, |L2| ( |L|.
Define shuffle permutations as follows: for sets of natural numbers

S1 = {i1 < · · · < ik}

S2 = {j1 < · · · < jl}
S1 ∩ S2 = ø,

denote by σS1,S2 the permutation which puts the sequence

(i1, . . . , ik, j1, . . . , jl)

in increasing order. Also define for S = {i1 < · · · < ik}:
tS := ti1 . . . tik

uS := ui1 . . . uik
dzS := dzi1 . . . dzik

Theorem 8.
I = (PL|L is a minimal relation)

K = (PL,S|L is a minimal relation and S ⊆ |L|)
(For the case of I, see [16], Theorem 4.)

Let L be as in (33), S ⊆ |L|. Put

QL,S := t|L|dLdzS.

So obviously, QL,S ∈ K.

Lemma 9. QL,S ∈ (PL,T |T ⊆ |L|)

Proof. If S 6= ø, let i ∈ S. Then QL,S = uiPL,S. On the other hand,

QL,ø = ui1PL,ø − ti1PL,{i1}.
In the first summand the surviving term is the term of PL,ø which omits
ti1 . In the second summand the surviving terms are the “error terms”
of the summand of PL which omits ti1 . All remaining terms cancel. �

Proof of Theorem 8: Even case : Suppose we know

L1 + L2 = L

|L1|, |L2| ( |L|.
Then

PL = tL\L1PL1 + tL\L2PL2 .
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Odd case : If L is not minimal we know L1 +L2 = L and |L1|, |L2| (
|L|. Based on the even case, the first guess for PL,S could be

PL1,S1uS\S1t|L|\(|L1|∪S)sign(σS,S\S1)

+ PL2,S2uS\S2t|L|\(|L2|∪S)sign(σS2,S\S2),

S1 = S ∩ |L1|, S2 = S ∩ |L2|.
The terms that match are those when we omit ti from tL with i ∈
|L| \ S or i ∈ |L1| ∩ |L2| ∩ S. The terms which do not match are for
i ∈ (|L1| ∩ S) \ |L2| or (|L2| ∩ S) \ |L1|. For i ∈ (|L1| ∩ S) \ |L2|, the
term missing in our first guess is

uS\S2\{i}QL2,S2t|L|\(|L2|∪S)sign(σS\S2\{i},{i})sign(σS\S2,S2).

Symmetrically for |L2| ∩ S \ |L1|. Thus we have

PL,S = PL1,S1uS\S1t|L|\(|L1|∪S)sign(σS,S\S1)
+PL2,S2uS\S2t|L|\(|L2|∪S)sign(σS2,S\S2)
+
∑

i∈S\S2
uS\S2\{i}QL2,S2t|L|\(|L2|∪S)

sign(σS\S2\{i},{i})sign(σS\S2,S2)
+
∑

i∈S\S1
uS\S1\{i}QL1,S1t|L|\(|L1|∪S)

sign(σS\S1\{i},{i})sign(σS\S1,S1).

Use Lemma 9. �

6. the geometric interpretation

Since the well known paper by W. Fulton and R. MacPherson [4],
compactifications of configuration spaces, and complements of hyper-
plane arrangements [2], became an important topic of algebraic geom-
etry. For a good survey, see [3]. Our geometric interpretation is related
to a compactification known as the reciprocal plane [3], Section 5.1, and
its super analog.

Let us assume the zj’s linearly span the vector space An
F (otherwise,

we can replace x1, . . . , xn by a basis of the span of z1, . . . , zm). Denote

A = {z1, . . . , zm},AS = {zi|i ∈ S}.

Let RA,An
F

= F [t1, . . . , tm]/I (see Theorem 1). We can then similarly
write RA,W where A is a set of vectors spanning the dual of an F -vector
space W . A stratification of Spec(RA,An

F
) can be described as follows.

Recall that we have a canonical embedding

(34) An
F \ Z(z1 . . . zm) ⊆ Spec(RA,An

F
).
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Call a vector subspace V ⊆ An
F special if V = Z(AS) for some S ⊆

{1, . . . ,m}. (Note: S can be empty.) Put also

SV = {i ∈ {1, . . . ,m}|V ⊆ Z(zi)}.
(Note [3] that the sets of i’s for which the zi’s are linearly independent
are the independet sets of a matroid. Then the sets SV are precisely
what is called the flats of this matroid.) For a scheme X, denote by
|X| the underlying topological space.

Theorem 10. ([16], Remark 6) For V ⊆ An
F special, there is a canon-

ical embedding

(35) Spec(RASV
,An

F /V
)→ Spec(RA,An

F
).

Composing (35) with

An
F/V \

⋃
i∈S

Z(zi) ⊆ Spec(RASV
,An

F /V
),

(see (34)), induces a decomposition of sets (not topological spaces),

(36) |Spec(RA,An
F

)| =
∐

V⊆An
F special

|(An
F/V ) \

⋃
i∈SV

Z(zi)|.

Proof. We have

RA,An
F
/(ti|i /∈ SV ) = RAS ,An

F /V
,

which gives the maps (35). (The point is that there is no linear relation
between the zi’s in which all but one term would have i ∈ SV . Thus, all
the relations PL where L contains a term not in SV are in (ti|i /∈ SV ).)

To prove (36), first note that the images of the inclusions of the
components of the right hand side of (36) are clearly disjoint since
they correspond to imposing relations ti with i /∈ SV for some special
vector subspace V , and inverting all other ti’s. Thus, our task is to
show that the canonical map from the right hand side to the left hand
side of (36) is onto. To this end, let Q ∈ Spec(RA,An

F
) and let

S = {j ∈ {1, . . . ,m}|Q ∈ (tj)}.
Let

V =
⋂
j∈S

Z(zj).

We want to prove that S = SV . The fact that S ⊆ SV is automatic.
Suppose j ∈ SV \S. Then zj = a1zj1 + . . . akzjk with j1 < · · · < jk ∈ S,
a1, . . . , ak 6= 0 ∈ F . Let

L = zj − a1zj1 − · · · − akzjk .
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By assumption, Q ∈ (tj). But in RA,An
F
/(tj), PL is a non-zero multiple

of

tj1 · · · · · tjk .
This implies Q ∈ (tji) for some i = 1, . . . , k. Contradiction. �

Theorem 10 suggests that Spec(RA,An
F

) should have a compactifica-
tion where on the right hand side of (36) we replace each

(An
F/V ) \

⋃
i∈SV

Z(zi)

with the corresponding affine space (An
F/V ). In fact, there is such a

compactification XAn
F ,A and it can be described as the Zariski closure

of the image of the embedding

(37) An
F \ Z(z1 . . . zm)

(z1,...,zm)−→
m∏
i=1

P1
F .

In the terminology of [3], this is an example of what is called a toric
compactification. It was also studied, from a different point of view,
in [1]. Note that while (37) resembles superficially the formula for
the De Concini-Procesi wonderful compactification [2], (37) is in fact
quite different. While the wonderful compactification uses projections
to (typically) higher-dimensional projective spaces, (37) uses inclusions
of the affine coordinates zi into P1

F .

The projective variety XAn
F ,A is covered by a system of affine open

sets, closed under intersection,

UV,T = Spec
∏
j∈T

z−1
j F [ti, zj|i /∈ SV , j ∈ SV ]/(

PL
tSV ∩|L|

)

where V runs through special subspaces of An
F , L runs through all linear

relations among the zi’s, and T is any subset of SV . The following fact
follows from the definitions:

Lemma 11. We have

UV,T
⋂

UV ′,T ′ = UW,T∪T ′∪(SV −SV ′ )∪(SV ′−SV )

where

V + V ′ ⊆ W =
⋂

i∈SV ∩SV ′

Z(zi)

so

SV
⋂

SV ′ = SW .
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�

It follows from Theorem 10 that |UV,T | are open subsets covering
XAn

F ,A. To show the affine schemes UV,T are reduced (their coordinate
rings have no nilpotent elements), we have the following generalization
of Theorem 1:

Theorem 12. Let V be a special subspace of An
F . The kernel of the

homomorphism of rings

F [ti, zj|i /∈ SV , j ∈ SV ]→
∏
i/∈SV

z−1
i F [z1, . . . , zm]/(ZV )

given by ti 7→ z−1
i , where ZV is the set of all linear relations among the

zi’s, i ∈ SV , is

(
PL

tSV ∩|L|
).

Proof. Note that by the proof of Theorem 10, any linear relation among
the zi’s which involves a zi for i /∈ SV involves at least two of them.
Therefore, we can repeat the induction in Section 3 with {1, . . . ,m}
replaced by {1, . . . ,m} \ SV . �

We also have a similar analog of Theorem 3:

Theorem 13. Let V be a special subspace of An
F . The kernel of the

homomorphism of rings

F [ti, zj|i /∈ SV , j ∈ SV ]⊗ Λ[ui, dzj|i /∈ SV , j ∈ SV ]

��∏
i/∈SV

z−1
i F [z1, . . . , zm]⊗ Λ[dzi, . . . , dzm]/(YV )

given by ti 7→ z−1
i , ui 7→ z−1

i dzi, where YV = ZV ∪ {dL|L ∈ ZV }, is

(
PL,S
tSV ∩|L|

)

where L runs through the linear relations among the zi’s and S ⊆ |L|.

Accordingly, we have a superscheme analog X̃An
F ,A of XAn

F ,A. Here
by a superscheme, we mean a locally ringed space by Z/2-graded com-
mutative rings which is locally isomorphic to Spec of a Z/2-graded

commutative ring (see e.g. [21]). X̃An
F ,A is covered by super-affine open

subsets
ŨV,T = Spec

∏
j∈T z

−1
j F [ti, zj|i /∈ SV , j ∈ SV ]

⊗Λ[ui, dzj||i /∈ SV , j ∈ SV ]/(
PL,S

tT∩|L|
).
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We clearly have

|ŨV,T | = |UV,T |
and for |UV ′,T ′ | ⊆ |UV,T |, ŨV ′,T ′ is a complement of the zero set of an

(even) principal ideal in ŨV,T . Therefore, X̃An
F ,A can be defined as the

colimit of the ŨV,T ’s in the category of superschemes.
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