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Abstract. We compute the Cp-equivariant dual Steenrod algebras associated
to the constant Mackey functors Fp and Z(p), as HZ(p)-modules. The Cp-

spectrum HFp∧HFp is not a direct sum of RO(Cp)-graded suspensions of HFp

when p is odd, in contrast with the classical and C2-equivariant dual Steenrod
algebras.
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Introduction

For over a decade, since the Hill-Hopkins-Ravenel solution of the Kervaire invari-
ant one problem [HHR16], there has been great success in using exotic homotopy
theories, like C2n-equivariant homotopy theory and motivic homotopy theory, to
study classical homotopy theory at the prime 2. A key foundational input to many
of these applications is the computation of the appropriate version of the dual Steen-
rod algebra, HF2∧HF2, which was carried out by Hu-Kriz [HK01] in C2-equivariant
homotopy theory and by Voevodsky [Voe03] in motivic homotopy theory. One of
the major obstacles to carrying out a similar program at odd primes is that we
do not understand the structure of the dual Steenrod algebra in Cp-equivariant
homotopy theory. The purpose of this paper is to make some progress towards this
goal.

To motivate the statement of our main result, recall that we have the following
description of the classical, p-local dual Steenrod algebra as a Z(p)-algebra
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1We learned this fact from John Rognes. One proof is to base change the equivalence

BP ∧S0[v1,... ]
S0 � HZ(p) to HZ(p) and use that the Hurewicz image of the vi’s are pti, mod

decomposables.
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3636 KRISHANU SANKAR AND DYLAN WILSON

HZ(p) ∧ HZ(p) � HZ(p) ∧
∧
i

cofib
(
Σ|ti|S0[ti]

·pti−→ S0[ti]
)
.

Here the tensor product is taken over the sphere spectrum, S0[x] denotes the free E1-
algebra on a class x, and the classes ti live in degree 2pi−2. Modding out by p causes
each of the above cofibers to split into two classes related by a Bockstein; modding
out by p once more introduces the class τ0 and recovers Milnor’s computation of
A∗ = π∗(HFp ∧ HFp), as an Fp-algebra.

In the Cp-equivariant case our description involves a similar decomposition but
is more complicated in two ways:

• Rather than extending the class ti to a map from S0[ti] using the multi-
plication on HZ ∧ HZ, we will want to choose as generators a mixture of
ordinary powers of ti and of norms, N(ti), of ti.

• Rather than modding out by the relation ‘pti = 0’ we will need to enforce
the relation that ‘θti = 0’, where θ is an equivariant lift of p to an element
in nontrivial RO(Cp)-degree. We will then also need to enforce the relation
pN(ti) = 0.

To make this precise, we will assume that the reader is comfortable with equi-
variant stable homotopy theory as used, for example, in [HHR16], and introduce
the following conventions, in force throughout the paper:

• We will use � to denote the real regular representation of Cp.
• We will use λk to denote the representation of Cp on R2 = C where the

generator acts by e2πik/p. When k = 1 we abbreviate λ1 = λ.
• We denote by θ : Sλ−2 → S0 the map of Cp-spectra arising from the degree
p map Sλ → S2. We’ll denote the cofiber of θ by Cθ. Note that the
underlying nonequivariant spectrum of Cθ is the Moore space M(p).

• If X is a spectrum, we will denote by N(X) the Cp-equivariant Hill-
Hopkins-Ravenel norm of X, which is a Cp-equivariant refinement of the
ordinary spectrum X∧p.

• We denote by HZ and HFp the Cp-equivariant Eilenberg-MacLane spectra
associated to the constant Mackey functors at Z and Fp, respectively.

• We use π�X to denote the RO(Cp)-graded homotopy groups of a Cp spec-
trum, so that, when � = V − W is a virtual representation, πV−WX =
π0MapSpCp (SV−W , X).

• The degree k map

uλ−λk : Sλ → Sλk

is a p-local equivalence when (k, p) = 1. When working with any p-local Cp-
spectrum, we will use these equivalences to redefine π� to indicate grading
over RO(Cp)/(λ− λk : (k, p) = 1). We will also write expressions such as

S�
(p) = S

1+ p−1
2 λ

(p) ,

where equality is meant to indicate ‘equivalent via the aforementioned iden-
tification’.

Now we can give a somewhat ad-hoc description of the equivariant refinements
of the building blocks in HZ ∧HZ.
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Construction. Let x be a formal variable in an RO(Cp)-grading |x|. Define a
Cp-spectrum as follows:

Tθ(x) := Σ|x|Cθ ⊕ Σ2|x|Cθ ⊕ · · · ⊕ Σ(p−1)|x|Cθ ⊕ Σ|x|�M(p),

where M(p) is the mod p Moore spectrum. Denote by N(x) : S|x|� → Tθ(x) the
inclusion of the bottom cell of Σ|x|�M(p).

Now suppose that R is a Cp-ring spectrum equipped with a norm N(R) → R.
If we have a class x ∈ π�R such that θx = 0, it follows that p ·N(x) = 0 (see the
proof of Lemma 4.4), so we may produce a map

S0 ⊕ (S0[Nx] ∧ Tθ(x)) → R,

which only depends on the choice of the nullhomotopy witnessing θx = 0.

We can now state our main theorem.

Theorem A. There are equivariant refinements

tG,i : S
2pi−1�−λ → HZ(p) ∧HZ(p)

of the nonequivariant classes ti ∈ π∗(HZ(p) ∧ HZ(p)) which satisfy the relation
θtG,i = 0. For any choice of witness for these relations, the resulting map

HZ(p) ∧
∧
i≥1

(
S0 ⊕ (S0[NtG,i] ∧ Tθ(tG,i))

)
−→ HZ(p) ∧ HZ(p)

is an equivalence.

As an immediate corollary we have:

Corollary. With notation as above, we have

Fp ∧ Fp � Λ(τ0) ∧Fp
HFp ∧

∧
i≥1

(
S0 ⊕ (S0[NtG,i] ∧ Tθ(tG,i))

)
,

where τ0 is dual to the Bockstein, in degree 1 and Λ(τ0) = HFp ⊕ΣHFp. In partic-
ular, since HFp ∧ Cθ is indecomposable at odd primes, the spectrum HFp ∧ HFp is
not a direct sum of RO(Cp)-graded suspensions of HFp at odd primes.

Remark. When p = 2 we have an accidental splitting HF2∧Cθ � Σσ−1HF2⊕ΣσHF2,
where σ is the sign representation.

Remark. One can show that HFp∧Cθ∧Cθ splits as (HFp∧Cθ)⊕ (HFp∧Σλ−1Cθ).
It follows that HFp ∧ HFp splits as a direct sum of cell complexes with at most 2
cells.

Our result raises a few natural questions which would be interesting to investi-
gate.

Question 1. When specialized to p = 2, how does our basis compare to the Hu-
Kriz basis?

Question 2. Is it possible to profitably study the HFp-based Adams spectral se-
quence using this decomposition? Since HFp ∧HFp is not flat over HFp, one would
be forced to start with the E1-term. But this is not an unprecedented situation
(e.g. Mahowald had great success with the ko-based Adams spectral sequence).

Question 3. Can one describe the multiplication on π�HFp ∧HFp in terms of our
decomposition?
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Relation to other work. As we mentioned before, we were very much motivated
by the description of the C2-equivariant dual Steenrod algebra given by Hu-Kriz
[HK01]. That said, our generators are slightly different than the Hu-Kriz generators
when we specialize to p = 2. For example, the generator t1 lives in degree 2ρC2

−λ =
2, whereas the Hu-Kriz generator ξ1 lives in degree ρ = 1 + σ.2 Hill and Hopkins
have also obtained a presentation of the C2n-dual Steenrod algebra, using quotients
of BPR and its norms, which is similar in style to the one obtained here.

At odd primes, Caruso [Car99] studied the Cp-equivariant Steenrod algebra,
π�map(HFp,HFp), essentially by comparing with the Borel equivariant Steenrod
algebra and the geometric fixed point Steenrod algebra, and was able to compute
the ranks of the integer-graded stems. There is also work of Oruç [Oru89] computing
the dual Steenrod algebra for the Eilenberg-MacLane spectra associated to Mackey
fields (which does not include Fp).

In the Borel equivariant setting, the dual Steenrod algebra is given by the action
Hopf algebroid for the coaction of the classical dual Steenrod algebra on H∗(BCp)
(see [Gre88]).

There is also related work from the first and second authors. The first author
produced a splitting of HFp ∧HFp in [San19] using the symmetric power filtration.
The summands in that splitting were roughly given by the homology of classifying
spaces, and were much larger than the summands produced here. The second
author and Jeremy Hahn showed [HW20] that HFp can be obtained as a Thom

spectrum on ΩλSλ+1. The Thom isomorphism then reduces the study of the dual
Steenrod algebra to the computation of the homology of ΩλSλ+1. Understanding
the relationship between this picture and the one in this article is work in progress.

1. Outline of the proof

To motivate our method of proof, let’s first revisit the classical story. We are
interested in where the classes ti ∈ π∗(HZ ∧ HZ) come from, and why they are
annihilated by p.

Recall that the homology of CP∞ is a divided power algebra

H∗(CP
∞) = ΓZ{β1},

where β1 is dual to the first Chern class c1. Write β(i) := γpi(β1). Since CP∞ =
K(Z, 2), we have a map of spectra

CP∞
+ → Σ2Z

and hence a homology suspension map

σ : H∗(CP
∞) → π∗−2(HZ ∧ HZ)

which annihilates elements decomposable with respect to the product structure on
H∗(CP

∞). We can take3 ti := σ(β(i)). The relation pti = 0 follows from the fact
that pβ(i) is, up to a p-local unit, decomposable as βp

(i−1) in H∗(CP
∞).

In the equivariant case, we will proceed similarly.

Step 1. Compute the homology of K(Z, λ) and use the homology suspension to
define classes in π�(HZ ∧HZ).

2In this low degree, it seems likely that, modulo decomposables, we have uσξ1 = t1 and that
ξ1 is recovered from t̂1 by restricting along HF2 ∧ S1+σ → HF2 ∧ Σ2Cθ.

3Depending on ones preferences, this might be the conjugate of the generator you want; but
we are only really concerned with these classes modulo decomposables.
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ON THE Cp-EQUIVARIANT DUAL STEENROD ALGEBRA 3639

Step 2. Use information about the product structure on the homologies of K(Z, λ)
and K(Z, 2) to deduce relations for these classes, and hence produce the
map described in Theorem A.

Step 3. Verify that the map in Theorem A is an equivalence by proving that it is
an underlying equivalence and an equivalence on geometric fixed points.

The first step is carried out in §2 and §3 by identifying K(Z, λ) with an equi-
variant version of CP∞ and then specializing a computation due to Lewis [Lew88],
which we review in our context. The second step is carried out in §4. The third and
final step is carried out in §6 using a lemma proven in §5 that allows us to check
that the map on geometric fixed points is an equivalence by just verifying that the
source and target have the same dimensions in each degree.

2. Homology of BCp
S1

Recall that we have the Cp-space BCp
S1 classifying equivariant principal S1-

bundles. The following lemmas give two useful ways of thinking about this space.

Lemma 2.1. The complex projective space P(C[z]) is a model for BCp
S1, where

the generator of Cp acts on C[z] through ring maps by z �→ e2πi/pz. Here C[z] is
the ordinary polynomial ring over C, and the projective space P(C[z]) = (C[z] −
{0})/(C×) inherits an action in the evident way.

Lemma 2.2. The space BCp
S1 is a model for K(Z, λ).

Proof. The map
P(C[z]) → SP∞(Sλ)

to the infinite symmetric product, which sends a polynomial f(z) to its set of roots
(with multiplicity), is an equivariant homeomorphism. The group-completion of
the latter is a model for K(Z, λ) by the equivariant Dold-Thom theorem [LF97].
But SP∞(Sλ) is already group-complete: the monoid of connected components of
the fixed points is N/p = Z/p. �
Remark 2.3. The reader may object that the definition of BCp

S1 makes no reference

to λ, so how does BCp
S1 know about this representation rather than λk for some

k coprime to p? The answer is that, in fact, each of the Eilenberg-MacLane spaces
K(Z, λk) coincide for such k: we have an equivalence of HZ-modules

ΣλHZ � Σλk

HZ

whenever (k, p) = 1. This follows from the computations in [FL04, Proposition
9.2], for example.

The filtration of C[z] by the subspaces C[z]≤n of polynomials of degree at most
n gives a filtration of BCp

S1.

Lemma 2.4. There is a canonical equivalence

grkBCp
S1,∼= SVk ,

where Vk =
⊕

0≤i≤k−1 λ
i−k.

Proof. This follows from a more general observation. If L is a one-dimensional
complex representation, and V is an arbitrary complex representation, then the
function assigning to a linear map its graph,

HomC(L, V ) −→ P(V ⊕ L)− P(V ),
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3640 KRISHANU SANKAR AND DYLAN WILSON

is an equivariant homeomorphism. So it induces an equivalence on one-point com-
pactifications

SL∨⊗V ∼= P(V ⊕ L)/P(V ).

�

Proposition 2.5 now follows from [Lew88, Proposition 3.1].

Proposition 2.5 (Lewis). The above filtration on BCp
S1 splits after tensoring with

HZ, giving an equivalence

HZ ∧ BCp
S1
+ � HZ{e0, e1, . . . },

where

|ek| =
⊕

0≤i≤k−1

λi−k.

In particular, for i ≥ 1 we have |epi | = 2pi−1�.

We will also need some information about the multiplicative structure on homol-
ogy.

Lemma 2.6. Writing x
.
= y to mean that x = αy for some α ∈ Z×

(p), we have

ep1
.
= θep, and eppi

.
= pepi+1 for i ≥ 1.

Proof. Using the model for BCp
S1 given by P(C[z]), we see that, in fact, P(C[z])

has the structure of a filtered monoid. It follows that the product in homology
respects the filtration by the classes {ei}. Thus, for i ≥ 0, we have

eppi =
∑

j≤pi+1

ci,jej ,

where the coefficients lie in π�HZ. When j < pi+1 we see that the virtual rep-
resentations |ci,j | have positive virtual dimension and their fixed points also have
positive virtual dimension. The homotopy of HZ vanishes in these degrees (see,
e.g., [FL04, Theorem 8.1(iv)]), so we must have

eppi = ci,pi+1epi+1 ,

where |c0,p| = λ− 2 and |ci,pi+1 | = 0 when i ≥ 1. In both cases, the restriction map
on π�HZ is injective in this degree, so the result follows from the nonequivariant
calculation. �

3. Suspending classes

We begin with some generalities. If X is any Cp-spectrum, we have the counit

Σ∞
Cp,+Ω

∞
Cp

X → X

which induces a map

σ : HZ ∧ Σ∞
Cp,+Ω

∞
Cp

X → HZ ∧X,

called the homology suspension. Just as in the classical case, it follows from the
equivariant Snaith splitting [LMSM86, §VII.5] that σ annihilates decomposable
elements in π∗(HZ ∧ Σ∞

Cp,+
Ω∞

Cp
X).
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Construction 3.1. For i ≥ 1, we define

tG,i : S
2pi−1�−λ → HZ ∧HZ

as the homology suspension of the element epi ∈ π2pi−1�(HZ ∧ BCp
S1
+). Here we

use the identification
BCp

S1 � K(Z, λ) = Ω∞ΣλHZ.

4. Two relations in homology

We begin with a brief review of norms, transfers, and restrictions.

Remark 4.1 (Transfer and restriction). Given a nonequivariant equivalence (SV )e ∼=
Sn, we define

res : πV X → πnX
e, (x : SV → X) �→ (Sn ∼= (SV )e → X)

and

trV :πnX
e→πV X, (y : Sn→Xe) �→ (SV →Cp+∧SV ∼= Cp+∧Sn→Cp+∧X→X).

For example, when V = λ− 2 and X = S0, then trλ−2(1) = θ.
Changing the equivalence (SV )e ∼= Sn has the effect of altering these classes by

±1; in our case the representations in question have canonical orientations so this
will not be a concern. Given a map X ∧ Y → Y we have a relation:

tr(x⊗ res(y)) = tr(x)⊗ y.

Remark 4.2 (Norms). If a Cp-spectrum X has a map N(X) → X, then, given an
underlying class x : Sn → Xe, we may define a norm by the composite

Nx : N(Sn) = Sn� → N(X) → X.

The underlying nonequivariant class is given by res(Nx) =
∏

g∈Cp
(gx) ∈ πpnX

e.

Our goal in this section is to prove the following two lemmas.

Lemma 4.3. The classes tG,i ∈ π2pi−1�−λ(HZ(p) ∧HZ(p)) satisfy θtG,i = 0.

Lemma 4.4. The classes N(ti) ∈ π(2pi−2)�(HZ(p) ∧ HZ(p)) satisfy pN(ti) = 0.

In fact, the second relation follows from the first.

Proof of Lemma 4.4 assuming Lemma 4.3. Since p = tr(1), the class pN(ti) is the
transfer of the class res(tG,i)

p into degree (2pi−2)�. Notice that (2pi−2)�−|tpG,i| =
λ− 2 (after identifying the λk suspensions with λ for (k, p) = 1), and the transfer
of 1 into this degree is θ, so we have

pN(ti) = θtpG,i = 0.

�
Proof of Lemma 4.3. By Lemma 2.6, we have ep1

.
= θep so that θtG,1 = σ(θep) = 0,

since σ annihilates decomposables. For the remaining classes, consider the commu-
tative diagram

Σ∞
Cp,+

K(Z, λ)+

[θ]

��

�� ΣλHZ

θ

��
Σ∞

Cp,+
K(Z, 2)+ �� Σ2HZ

,
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3642 KRISHANU SANKAR AND DYLAN WILSON

where [θ] = Ω∞(θ). Thus, to show that θtG,i = 0 for i ≥ 2, it is enough to show
that [θ]∗epi is decomposable in π�(HZ(p) ∧K(Z, 2)+) for i ≥ 2.

Write

HZ(p) ∧K(Z, 2)+ = HZ(p){γi(β1)},
where the elements γi(β1) are the standard module generators of H∗(CP

∞;Z), and
write β(i) = γpiβ1. To show that [θ]∗(epi) is decomposable for i ≥ 2, it is enough
to establish the following two claims:

(a) [θ]∗(epi)
.
= pi−1θ

u
pi−1(p−1)−1
λ

β(i), and

(b) βp
(i−1)

.
= pβ(i).

Claim (b) is just the classical computation of the product in homology for
H∗(CP

∞,Z). For claim (a), let ιλ denote the fundamental class in cohomology
for K(Z, λ) and ι2 the same for K(Z, 2). Then we have [θ]∗(ι2) = θιλ by design,
and hence

[θ]∗(ιj2) = θjιjλ.

The map on homology is now determined by the relation

〈[θ]∗epi , ιj2〉 = θj〈epi , ιjλ〉 ∈ π�HZ(p).

Since θj is a transferred class, the value above is also a transfer, and hence deter-
mined by its restriction to an underlying class. But res([θ]) = [p] and we clearly

have [p]∗(res(epi)) = piβ(i), which agrees with the restriction of pi−1θ

u
pi−1(p−1)−1
λ

β(i).

This completes the proof. �

5. Digression: Detecting equivalences nonequivariantly

The goal of this section is to establish a criterion for detecting equivalences of
Z-modules. We recall that

HZ
ΦCp � HFp[b],

where the class b in degree 2 arises from taking the geometric fixed points of the
Thom class uλ : Sλ → Σ2Z.

Proposition 5.1. Let f : M → N be a map of HZ-modules which are bounded below
(on underlying and fixed points). Assume the following conditions are satisfied:

(i) f is an underlying equivalence.
(ii) πjM

ΦCp and πjN
ΦCp are finite dimensional of the same rank, for all j.

(iii) π∗M
ΦCp and π∗N

ΦCp are graded-free Fp[b]-modules.

Then f is an equivalence.

We will deduce this proposition from the following one, which relates geometric
and Tate fixed points.

Proposition 5.2. Let M be an HZ-module which is both bounded above and below
(on underlying and fixed point spectra). Then the natural map

MΦCp [b−1] → M tCp

is an equivalence.
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ON THE Cp-EQUIVARIANT DUAL STEENROD ALGEBRA 3643

Proof of Proposition 5.1 assuming Proposition 5.2. By assumption (i), it is enough
to check that fΦCp is an equivalence; by assumption (ii), it is enough to check
that π∗(f

ΦCp) is an injection; and by assumption (iii) it is enough to check that
π∗(f

ΦCp)[b−1] is an injection.
Again by (i), the map f tCp is an equivalence. So, from the diagram

MΦCp [b−1] ��

��

NΦCp [b−1]

��
M tCp

	
�� N tCp

we see that it is enough to check that the vertical maps are injective on homotopy.
More generally, we show that whenever X is a bounded below HZ-module, the map

π∗X
ΦCp [b−1] → π∗X

tCp

is injective. Indeed, by Proposition 5.2 and the fact that the Tate construction
commutes with limits of Postnikov towers (see, e.g., [NS18, I.2.6]), we have

lim
n

(
(τ≤nX)ΦCp [b−1]

) 	→ lim
n
(τ≤nX)tCp � XtCp .

Therefore, we need only check that

π∗X
ΦCp [b−1] → π∗ lim

n

(
(τ≤nX)ΦCp [b−1]

)
is injective. Since the maps XΦCp → (τ≤nX)ΦCp have increasingly connective
fibers, we can replace the left hand side by (limn π∗(τ≤nX)ΦCp)[b−1] and reduce to
showing that

(lim
n

π∗(τ≤nX)ΦCp)[b−1] → lim
n

π∗
(
(τ≤nX)ΦCp [b−1]

)
is injective. Finally, this reduces to showing that the kernel of

lim
n

π∗(τ≤nX)ΦCp → lim
n

π∗
(
(τ≤nX)ΦCp [b−1]

)
consists of elements annihilated by a power of b. This is clear because, for each j,
the system {πj(τ≤nX)ΦCp}n is eventually constant. �

Proof of Proposition 5.2. Let E denote the full subcategory of HZ-modules M for
which

MΦCp [b−1] → M tCp

is an equivalence. Then E is stable, closed under retracts, and closed under sus-
pending by representation spheres.

The map MΦCp [b−1] → M tCp is one of HZ
ΦCp = HFp[b]-modules, and hence one

of HFp-modules, so it must be a retract of

(M/p)ΦCp [b−1] = MΦCp [b−1]/p → M tCp/p = (M/p)tCp .

Thus M/p ∈ E if and only if M ∈ E . So, by replacing M with M/p and considering
the Postnikov tower, we are reduced to proving the proposition in the case where
M ∈ Mod♥

Z
is a Mackey functor which is a module over Fp.

In particular, Me is an Fp[Cp]-module. Let γ denote the generator of Cp so that
Fp[Cp] = Fp[γ]/(1 − γ)p. Let FjM ⊆ M be the sub-Mackey functor generated by
(1− γ)jMe ⊆ Me. This is a finite filtration with associated graded pieces given by
Mackey functors with trivial underlying action. So, since E is a thick subcategory,
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we are reduced to the case when M is a discrete HFp-module with trivial underlying
action.

For the next reduction we recall some notation. If N is any Mackey functor,
denote by NCp

the Mackey functor N ⊗ Cp+ and, if A is an abelian group, denote
by Atr the Mackey functor whose transfer map is the identity on A and whose
restriction map is multiplication by p. We also recall that the transfer extends to
a map of Mackey functors tr : NCp

→ N .
Now consider the two exact sequences

0 → im(tr) → M → M/im(tr) → 0

0 → ker(tr) → M e
tr → im(tr) → 0.

Notice both M/im(tr) and ker(tr) vanish on {e}. If N is any Mackey functor
with Ne = 0, then N ∈ E since then N = NΦCp is bounded above and hence
NΦCp [b−1] = 0. Thus, from the exact sequences above, we are reduced to the case
where M is of the form V tr for an Fp-vector space V (with trivial action). Now
recall that H(Fp)tr = Σ2−λHFp and hence HV tr = Σ2−λHV . So we are reduced to
showing that HV lies in E , where V is an Fp-vector space with trivial action. This
certainly holds for V = Fp, and in general we have

HV ΦCp � HF
ΦCp
p ∧HFp

V,

since geometric fixed points commutes with colimits, and

HV tCp � HFtCp
p ∧HFp

HV

by direct calculation. (Notice this holds even when V is infinite-dimensional.) This
completes the proof. �

6. Proof of the main theorem

We are now ready to prove the main theorem. Recall that we have constructed
classes

tG,i ∈ π2pi−1�−λ(HZ(p) ∧ HZ(p)),

and shown that θtG,i = 0 and pN(ti) = 0. With notation as in the introduction,
let

Xi =
(
S0 ⊕ (S0[NtG,i] ∧ Tθ(tG,i))

)
and

X =
∧
i≥1

(
S0 ⊕ (S0[NtG,i] ∧ Tθ(tG,i))

)
.

Then, choosing nullhomotopies which witness θtG,i = 0 (end hence, by restriction,
witnesses for pti = 0), we get a map:

f : HZ(p) ∧
∧
i≥1

(
S0 ⊕ (S0[NtG,i] ∧ Tθ(tG,i))

)
−→ HZ(p) ∧HZ(p).

The main theorem is then the statement:

Theorem 6.1. The map f is an equivalence.

Proof. Combine Proposition 5.1 with the two lemmas below. �

Lemma 6.2. The map fe is an underlying equivalence.
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Proof. We denote the inclusion of the summand Σi|x|Cθ by

xi−1x̂ : Σi|x|Cθ → Tθ(x),

the restriction of x̂ to the bottom cell by x, and the inclusion of the final summand

by N̂x. We denote by

Nx : S|x|� → Tθ(x)

the restriction of N̂x to the bottom cell of the mod p Moore spectrum.
First observe that, by our construction in the proof of Lemma 4.4, the map

N̂(tG,i) restricts to the map tp−1
i t̂i, since the nullhomotopy witnessing pN(ti) = 0

was chosen to restrict to the nullhomotopy chosen for ptpi that came from the already
chosen nullhomotopy of pti. The upshot is that the map

S0 ⊕ S0[NtG,i] ∧ Tθ(tG,i) → HZ ∧ HZ

restricts on underlying spectra to the map

S0[ti]/(pti) → HZ ∧ HZ

obtained just from the relation pti = 0 and extended via the multiplicative struc-
ture.

In particular, on mod p homology fe induces a ring map

Fp[ti]⊗ Λ(xi) → Fp[ξi]⊗ Λ(τi).

We know that ti maps to ξi and that βxi = ti, so that β(fe
∗ (xi)) = ξi. Modulo

decomposables, τi is the only element whose Bockstein is ξi. So xi must map to
τi, mod decomposables. It follows that fe is a mod p equivalence, and hence an
equivalence. �

Lemma 6.3. π∗(HZ ∧ X)ΦCp and π∗(HZ ∧ Z)ΦCp are free Fp[b]-modules, finite-
dimensional in each degree, and isomorphic as graded vector spaces over Fp.

Proof. If Y is any Cp-spectrum, then

(HZ(p) ∧ Y )ΦCp = HFp[b] ∧ Y ΦCp � HFp[b] ∧HFp
(HFp ∧ Y ΦCp)

is a free HFp[b]-module. Applying this in the cases Y = X and Y = HZ, we see
that each is a free HFp[b], evidently finite-dimensional in each degree. So it suffices
to prove that

π∗(HFp ∧XΦCp) ∼= π∗(HFp ∧ (HFp[b]))

as graded vector spaces. Notice that we can write, as graded vector spaces,

π∗(HFp ∧X
ΦCp

i ) ∼= Fp[di−1, ξi]⊗Fp
Λ(σi−1, τi)/(d

p
i−1, di−1τi, d

p−1
i−1 σi−1, σi−1τi),

where |σi−1| = 2pi−1 − 1 and |di−1| = 2pi−1. Indeed, t̂i, on geometric fixed points,
gives rise to two classes; one we are calling di−1 and the other we are calling σi−1.

Similarly, N̂(tG,i), on geometric fixed points, gives rise to two classes: one we are
calling ξi and the other τi, in their usual degrees. The relations are the ones needed
to ensure that the monomials not arising from geometric fixed points of elements
in Xi are omitted.

It follows that we have an isomorphism of graded vector spaces

π∗(HFp ∧XΦCp) ∼= Fp[ξn : n ≥ 1]⊗Fp
Fp[di : i ≥ 0]

⊗Fp
Λ(σj , τk : j ≥ 0, k ≥ 1)/(dpi , di−1τi, d

p−1
i σi, σi−1τi).
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We are trying to show that this is isomorphic, as a graded vector space to

π∗(HFp ∧ HFp[b]) ∼= Fp[ξn : n ≥ 1]⊗Fp
Λ(τi : i ≥ 0)⊗Fp

Fp[b].

We may regard each vector space as a module over Fp[ξn : n ≥ 1] in the evident
way, and hence reduce to showing that the two vector spaces

V = Λ(τi : i ≥ 0)⊗Fp
Fp[b]

and

W = Fp[di : i ≥ 0]⊗Fp
Λ(σj , τk : j ≥ 0, k ≥ 1)/(dpi , di−1τi, d

p−1
i σi, σi−1τi)

are isomorphic. (Here recall that |σi| = |τi| = 2pi − 1, |b| = 2, and |di| = 2pi.)
Let I range over sequences (a0, a1, . . . ) with 0 ≤ ai ≤ p − 2, J range over

sequences (ε0, ε1, . . . ) with εi ∈ {0, 1}, K range over sequences (κ0, κ1, . . . ) with
κi ∈ {0, 1}, and let K ′ range over sequences (κ′

0, κ
′
1, . . . ) with κ′

i ∈ {0, 1}. We
impose the following requirements on these sequences:

• Each sequence has finite support.
• κ′

i ≤ κi. (So K ′ is otained from K by changing some subset of 1s to 0s).
• J ·K = I ·K = (0, 0, . . . ). That is: I and K have disjoint support and J
and K have disjoint support.

Then V has a basis of monomials

MI,J,K,K′ = (
∏
i≥0

baip
i

)τJ(
∏
i≥0

bκi(p−1)pi

)τK′

and W has a basis of monomials

NI,J,K,K′ = dIσJ (
∏
i≥0

d
(κi−κ′

i)(p−1)
i )τK′[1],

where K ′[1] = (0, κ′
0, κ

′
1, . . . ). These have the same number of basis elements in

each dimension, so V ∼= W . �

We end with a question, a satisfying answer to which would yield a proof of the
main theorem which avoids the use of Proposition 5.1.

Question 4. The geometric fixed points of HZ(p) ∧ HZ(p) are given by (HFp ∧
HFp)[b, b], where b is the conjugate of b, a class in degree 2. It is possible to

understand what happens to the generators tG,i and N̂(tG,i) upon taking geometric

fixed points. One is left with trying to understand the remaining class hit by t̂i on
geometric fixed points. We don’t know what this should be. One guess that seems
consistent with computations is that this class is given, up to conjugating the τi
and modding out by (b), by

τi−1 + b
pi−1−pi−2

τi−2 + · · ·+ b
pi−1−1

τ0.

It would be useful for computations to sort out what actually occurs.
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[Oru89] Melda Yaman Oruç, The equivariant Steenrod algebra, Topology Appl. 32 (1989),
no. 1, 77–108, DOI 10.1016/0166-8641(89)90008-4. MR1003301

[San19] Krishanu Roy Sankar, Steinberg summands in the free Fp-module on the equivariant
sphere spectrum, arXiv:1711.05708, 2019.

[Voe03] Vladimir Voevodsky, Reduced power operations in motivic cohomology, Publ. Math.

Inst. Hautes Études Sci. 98 (2003), 1–57, DOI 10.1007/s10240-003-0009-z. MR2031198

Email address: sankark1991@gmail.com

Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138

Email address: dwilson@math.harvard.edu

Licensed to Univ of Rochester. Prepared on Wed Dec 28 13:26:08 EST 2022 for download from IP 128.151.124.135.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

https://www.ams.org/mathscinet-getitem?mr=1684248
https://www.ams.org/mathscinet-getitem?mr=2025457
https://www.ams.org/mathscinet-getitem?mr=938918
https://www.ams.org/mathscinet-getitem?mr=3505179
https://www.ams.org/mathscinet-getitem?mr=1808224
https://www.ams.org/mathscinet-getitem?mr=4194302
https://www.ams.org/mathscinet-getitem?mr=979507
https://www.ams.org/mathscinet-getitem?mr=1452050
https://www.ams.org/mathscinet-getitem?mr=866482
https://www.ams.org/mathscinet-getitem?mr=3904731
https://www.ams.org/mathscinet-getitem?mr=1003301
https://arxiv.org/abs/1711.05708
https://www.ams.org/mathscinet-getitem?mr=2031198

