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KLEIN FOUR 2-SLICES AND THE SLICES OF >*"HZ

CARISSA SLONE

ABSTRACT. We determine a characterization of all 2-slices of equi-

variant spectra over the Klein four-group Cg x Co.

We then de-

scribe all slices of integral suspensions of the equivariant Eilenberg-
MacLane spectrum HZ for the constant Mackey functor over Cg x

Cs.
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1. INTRODUCTION

The slice filtration, a filtration of genuine G-spectra, was developed by
Hill, Hopkins, and Ravenel in their solution to the Kervaire invariant-
one problem [HHR1] and is a generalization of Dugger’s filtration [D].
It was modeled after Voevodsky’s motivic slice filtration [V] and is an
equivariant generalization of the Postnikov tower. Rather than de-
composing a G-spectrum into Eilenberg-Mac Lane specra, as does the
Postnikov tower, instead the slice filtration decomposes a G-spectrum
into “n-slices”.

There is a complete characterization of all n-slices where —1<n <1,
listed in Proposition 2.4. This, combined with Proposition 2.5, charac-
terizes all slices in degrees congruent to —1, 0, or 1, modulo the order
of G. For G = C3 x Cg, we are then only missing the (4% + 2)-slices. In
Section 5 we finish this characterization with the following result.

Theorem 5.9: Suppose the only nontrivial homotopy Mackey functors
of a (Cg x Cg)-spectrum X are n,(X) and n,(X) where certain maps in
each Mackey functor are injective. Then X is a 2-slice. Conversely, if
X is a 2-slice, then its only nontrivial homotopy Mackey functors are
71,(X) and 71,(X) where Zzng(X) is a 2-slice and Zngl(X) €[2,4]

Much work has been done computing the slices of certain RO(G)-graded
suspensions of Hg Z including G = Cp,» by [HHR2] and [Y], and G = Dy,
by [Z2]. [GY] computes the slices of X" HgFg where K = Cg x Cy. Most
of these slices are RO(K)-graded suspensions of H g_i(Z_k"K HgTy) for
i in the range [k + 3,4k]. We primarily focus on the slices of Z*"HgZ.
Although we have cofiber sequences relating X"HgZ to X"HklFg, we
can only recover some information about the former from the latter.

As for the slices of Z*"HgZ, the main result can be summarized as
follows:

Main Result: For n <0, all nontrivial slices of 2"HgZ are given by:

Pi(Z"HxZ)=%VHgM
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where i is in the range [4n,n]. For 0<n <5, Z"HZ is an n-slice. Fi-
nally, for n > 5,

P{(x"Hg2)=xVHgM

where i is in the range [n,4(n — 4)]. The representations V and Mackey
functors M are given in Proposition 7.3, Proposition 7.4, Proposition 7.8,
Proposition 8.5, Proposition 8.6, and Proposition 8.7.

The paper is organized as follows. In Section 2, we review the slice
filtration and relevant dualities. The story for K must restrict to the
corresponding results for Cg, so we review these results in Section 3.
Section 4 provides us with the main Mackey functors for K and some
pertinent results for Section 5, in which we characterize all 2-slices
over K. We provide some slice towers in Section 6 and describe the
slices of Z™"Hg Z in Section 7.1. In Section 8, we use Brown-Comenetz
duality and the slices of Z™"HZ to obtain the slices of Z"HgZ. We
then compute the homotopy Mackey functors of the slices of Z*"HygZ
in Section 9. Finally, we provide some examples of the slice spectral
sequence for Z*"HgZ in Section 10.

The author is grateful for the guidance of Bert Guillou and some help-
ful conversations with Vigleik Angelveit. Figures 10.10, 10.11, 10.12,
10.13, 10.14, and 10.15 were created using Hood Chatham’s spec-
tralsequences package.

2. BACKGROUND

In this section we give background for the slice filtration as well as
Brown-Comenetz and Anderson duality, and K -representations. Here,
except for Section 2.3, G is any finite group.

2.1. The Slice Filtration.

We start with a brief review of the equivariant slice filtration. For
more details see [HHR1, Section 4].

Definition 2.1. Let Sp® be the category of genuine G-spectra. Let
Tgn c SpG be the localizing subcategory generated by G-spectra of the
form Z°GOG+ Ap SkPH where H <G, og is the regular representation of
H,and k|H| = n. We write X = n to mean that X € 7&,.

Definition 2.2. We say that X <n if
[Ska+r,X]H =0
for all r = 0 and all subgroups H < G such that &2 |H| = n.
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Theorem 2.3. [HY, Corollary 2.9, Theorem 2.10] Let n = 0. Then
X =n if and only if
n
mXH)=0 for k<—.
* |H|
Proposition 2.4.

(1) [HHR1, Proposition 4.50] X is a O-slice if and only if X ~ HM
for some M € Mack(G).

(2) [HHR1, Proposition 4.50] X is a 1-slice if and only if X = Z1HM
for some M € Mack(G) with injective restrictions.

(3) [U1, Theorem 6-4] Z~1HM is a (~n)-slice iff M has surjective
transfers for |[H| =n and M(G/H) =0 for |H| < n.

It is important to note that [HHR1] uses the original slice filtration
whereas we employ the regular slice filtration from [U1]. Except for
an indexing difference of one, the results are the same.

Proposition 2.5. [HHR1, Corollary 4.25] For any k€ Z,

Pyli6i(2"X) = Z'PLC0.

That is, suspension by the regular representation commutes with the
slice filtration.

Given some surjection of groups ¢n : G — G/N where N <G, there is a
geometric pullback functor ¢y, : SpG/ N_, SpG [H, Definition 4.1].

Proposition 2.6. [H, Conjecture 4.11], [U1, Corollary 4-5] Let N <@G.
If the (G/N)-spectrum X is a k-slice over G/N, then ¢ X is a k[G : N]-
slice over G.

2.2. Brown-Comenetz and Anderson Duality.

As in [HS], we write Ig/z to indicate the representing G-spectrum of
the cohomology theory X — Hom(ng*X ,Q/7). The Brown-Comenetz
dual of X is then defined to be the function G-spectrum F(X,Ig/;7).
Similarly, I represents X — Hom(n_.X,Q) and I¢X = F(X,Ig). Fi-
nally, the Anderson dual of X is I;X = F(X,17), where I7 is the fiber
of the natural map Ig — Ig/z.

Example 2.7. [GM, Section 3A], [HS] For a torsion Eilenberg-MacLane
spectrum HM,

I;HM =3 ‘HM*
and
IQ/ZHM = HM* .



June 8, 2021 Klein Four Slices 5

One should note that [HS] deals with non-equivariant spectra and
[GM, Section 3A] refers specifically to HM as an Fa-torsion spectrum.
This example, however, follows easily from their work and [U2, Corol-
lary 1.7.3]. See [GM, Section 3A, Section 3B] for a more detailed dis-
cussion of equivariant Anderson duality.

Proposition 2.8. ([U2, Theorem 1.7.7, Theorem 1.7.8]) For a spectrum
X,

X=n C)I@/ZX <-n.
In particular,

PrgzX =1gzP7kX.
That is, the Brown-Comenetz dualization functor dualizes slice status.

2.3. K-Representations.

Recall that o is the one-dimensional sign representation of Cy. The
sign representations of K are then the pullbacks pjo, m*o, and pso
where p1, m, and pg are

m
Ca2xCg > C

/\
\/

As in [GY], we will write
a=pjo, B=ps50, and y=m"o.

The regular representation of K is then pg =1+a+f+7y.

3. REVIEW OF Cy

The Lewis diagram for a Co-Mackey functor takes the form

M(Co)

y

M(e)



June 8, 2021 Klein Four Slices 6

where M(e) has a Cy/e action. Arrows going down the diagram are
called restrictions and arrows going up are called transfers.

For the sake of clarity in large diagrams, in a general Mackey functor
M we will henceforward denote M(H) by My.

Proposition 3.1. A Cy-spectrum Y is a 2-slice over C; if and only if
the only nontrivial homotopy Mackey functors are 7,(Y) and 7,(Y),
where

(1) The restriction map reC2 : ng2(Y) — m5(Y) is injective
2) 7¢(Y) =0.

That is, both ZZHEQ(Y) and ZIEI(Y) are 2-slices.

Proof. Let M = n,(Y) and N = n,(Y) and suppose that they are the
only nontrivial homotopy Mackey functors of Y. We show that S2HM
and Z'HN are 2-slices if and only if Item 1 and Item 2 hold.

First, consider X2HM. We immediately see that this spectrum is at
least two. As for Z2ZHM < 2, the cofiber sequence

(87 —8%— Cole )AZ2HM
provides the homotopy

ker(rC?) M, /im r$?
1, (EHM) = and  1,(SOHM) = O
0 Zs® M,

Then the cofiber sequences
(S7R - 8§~V _, Cole, ASTEVYASZHM
reveal that 75*(X*7S2HM) = ker(r$?) for all & > 2.
By definition, Z2HM < 2 if and only ifggz(z_k”ZQHM) =0forall 2 = 2.
Consequently, X2HM is a 2-slice if and only if r§2 is injective .

As for le-ﬂi, by Theorem 2.3, we find that Y =2 if and only if N, = 0.
But then Z'HN is the pullback (/);‘{ZIHNQ and consequently, a 2-slice
by Proposition 2.6.

Conversely, assume Y is a 2-slice. By Theorem 2.3, we know 75(Y) =0
and 7,(Y) =0 for £ < 0. For k = 3, the slice status of Y and Defi-
nition 2.2 dictate that 7,(Y) = 0. Consequently, the only nontrivial
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homotopy Mackey functors of Y and 7,(Y)=N and 7,(Y) = M. Thus,
we have a fiber sequence X?HM —Y — Z1HN.

If either 2HM or X'HN is trivial, the result follows from above. So
assume that both are nontrivial. Because N, =0, ZlHﬂ is a 2-slice.
In particular, ZlH]j < 2, and since Y < 2, we have that ZZHM < 2.

Consequently, as X2H M =2, we have that >2H M is a 2-slice.
[ |

From [GY], we will see the C2-Mackey functors in Table 1.

TABLE 1. Familiar Co-Mackey functors.

A A
VA z
lﬁ /)1

z

N
*
S |I™n)

Z 2y
F2 P f
Fo Fo 0
Fo Fo Fo
g
Fo
0

Proposition 3.2 ((GY]). There are equivalences

(1) 2*H¢,Z =X*°Hc,Z*
(2) 2% Hc,f =~ZPHc,Fo*
(3) 2'Hc,g ~2Hc,g

Note, in particular, that Item 3 makes X" H, ga 2n-slice for any n € Z.
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Proposition 3.3. For k,r =0,

Z i=k+r, keven
n,(EF T He,2) =3 F i=k+r, kodd
g ielr,k+r—11,i=r (mod 2)

Proof. We calculate Ei(ZkUH c,Z) and then shift the degrees by r. The
result follows by induction on j = 1 using the cofiber sequence

Z(j_1)0+2HZ ~ ZjOHZ* N szHZ — szﬂg ~ Hg

3.1. Slices of Z*"H,Z.

Because the slices for Z*"HygZ over K restrict to the corresponding
slices over C2, we must know these slices over Cy. They are as follows.

Proposition 3.4. 2"H¢,Z is an n-slice for 0 < n <6.

Proof. For 0 < n < 2, this follows from Proposition 2.4 and Propo-
sition 3.1. By the same results, Z"HZ" is an n-slice for 0 < n < 2.
Furthermore, S"'HZ* is a (—1)-slice by Proposition 2.4. Then, by
Proposition 3.1 and Proposition 2.5, 2"HZ =~ X" 4*2°H7* is a n-slice
for 3<n<6.

|
Proposition 3.5. Let n =7 and take r =n (mod 4) with 3 <r <6. The
slice tower of 2"H¢,Z is

ping=3x"3Hg —— X"HZ

~

sz:il(()) — Zn—5I_Ig s 22p+(n—4)HZ

~
n-r—4

Pn+r—2_z”7”—ng N p+(r+4)HZ

n+r-2

~

Pl=3%PHz
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Proof. The exact sequence Z* — Z — g and the homotopy equivalence
SPHZ ~ 3420 [ 7* provide the fiber sequence
" Hg—3"HZ —3**"YHZ.

We then augment this sequence with its appropriate 2p suspensions

until 2“2 P*"HZ, a slice, is reached. =

Corollary 3.6. Let n =7 and take r = n (mod 4) with 3 <r <6. The
(2k)-slices of Z"H¢,Z are

P%If(anczz) = Z]:EI'IC2<§
fork=n+1 (mod 2) and k€ [ —1,...,n-3].

Proposition 3.7. Let n =1 and take r =n (mod 4) with 1 <r <4. The
slice cotower of X" H¢,Z is

=-0THZ =P

~N

Y TPTHZ — % 5" Hg =P "

-n-r

~

—20-n+4 -n+2 _ p—2n+4
> p—n+ HZ—>Zn+ Hg_P—QZLL

~

3 "HZ ——— > X "Hg=P_}"

Proof. The exact sequence Z* — Z — g and the homotopy equivalence
I "HZ ~3%"""*[H7 provide the cofiber sequence

22 H7 -3 "HZ -3 "Hg.

We then augment this sequence with its appropriate —2p suspensions

until Z_%p_rHZ, a slice, is reached. -

Corollary 3.8. Let n =1 and take r =n (mod 4) with 1 <r <4. The
(—2k)-slices of ™ "H¢,Z are

PN "He,2) =3 "Hc,g

for £ =n (mod 2) and & € [23-,n].
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4. K-MACKEY FUNCTORS

Recall that K = C3 x C9 and let L, D, and R be the left, diagonal, and
right subgroups of K, respectively. The Lewis diagram for a K-Mackey
functor takes the form

with a Weyl group action Wg(H) O My at each level. If we do not
indicate the Weyl group actions for a specific Mackey functor, then
they are trivial.

A number of Mackey functors from [GY] will make their appearance.

TABLE 2. Familiar K-Mackey functors.

mg m
F2 Fo
p1 D2 1 1
N YN
Fo Fo Fo Fa Fa Fo
0 0
%7 prf "
LDR_2 g
P F3
VN
Fa Fa Fo 0 0 0
0 0

We will also see the duals of the Mackey functors in Table 2.
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Proposition 4.1. ([GY, Proposition 4.8]) There are equivalences
(1) S PHgm =X *Hgmg"

(2) 2 ?Hgm* =3 PHgmg

We will also see the new Mackey functors in Table 3.

TABLE 3. New K-Mackey functors.

Z z

N TN
g ‘\;/

/W\\ /w\y
\g// \J/f

M

7/4

/L\

Z/2

VA

In Table 3, Z* is the dual to the constant Mackey functor Z and Z(2,1)*
is the dual to Z(2,1), so named for consistency with [Y]. The Mackey
functor M results from the injection Z* — Z — M. In each Mackey
functor, the blue arrows are multiplication by one and the orange ar-
rows are multiplication by two.

Proposition 4.2. We have the equivalence

Z_pHKZ =~ Z_4HKZ*-
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Proof. This follows from Proposition 5.4.

4.1. Induced Mackey Functors.

We will now give an explicit description of K-Mackey functors induced
from the cyclic subgroups.

We recall the following standard result.

Lemma 4.3 (Shearing isomorphism). Let M be a Z[G]-module and H
a subgroup of G. Then we have an isomorphism of Z[G]-modules,

ZIGlegM = ZIG/Hle M
) )
H G

where G acts on the left of Z[G] and diagonally on Z[G/H]® M via the
map g®m—gH® g -m.

Let N be a C3-Mackey functor. Take h € K and set Ay, : N, — Z[K1®7(1
N, and Vj, : Z[K]®7;11)N, = N, tobe n— (e+h)®n and e®n,h®n —n,
respectively.

Then 1X N is
Ng,

AN

KN = ZIK/L1®N¢, N,

A

ZIK]®7111 N,

The Weyl group Wx(D) acts on Tf N(D) = N, via the isomorphism
Wk (D) = Cg and the given action of Ca = W¢,(e) on N,. Similarly for
the action of Wx(R) on N,. As for L, Wx(L) acts only on Z[K/L]. Fi-
nally, Wk (e) = K acts on the Z[K] factor of Z[K]1®z[7] N,.

We are now going to define the unit map M —>Tf 15 M. The pullback
along K — K/L = Cy of Z — Z[C9] is an inclusion Z — Z[K/L]. Tensor-
ing with M, gives

M, <Ly ZIK/LleM,.
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We will also use iz, to denote the inclusion of K/L fixed points
My, <y ZIK/L1e My

Consider

V" :ZIK/L1e M, — M, and A":M,— ZIK/L1® M,.

Let V" be the action map and define A” by m —e®m +r®r-m. Then,
for M € Mack(K), the map M —1¥ X M is

NN
N\ TS

Again, Wk(D) acts on M, via the Cs-action W¢,(e) O M,. The same
applies for Wx(R) O M,. Note we have used Lemma 4.3 to rewrite
the bottom group in Tf lf M. We now have a diagonal action K/L on
ZIK/L]® Mj,. Similarly, K/e acts diagonally on Z[K/L]1® M,.

Example 4.4. For M =Z, TIL( Zand Z —»Tf Z are as follows.

A7
N 7

Z[K/L] ®”Z

[ e s— N s— N

Again, blue denotes multiplication by one and orange multiplication
by two.



June 8, 2021 Klein Four Slices 14

5. 2-SLICE CHARACTERIZATION

Consider a K-spectrum X. Then by Proposition 2.5,
PIX =x""Pp] (2770 X)

where n =r (mod 4) and 0 < r < 3. Thus, to know the slices of X, we
need only know the 0-, 1-, 2-, and 3-slices of certain suspensions of X.
Proposition 2.4 and Proposition 2.5 characterize the 0-, 1-, and 3-slices.
We now characterize the 2-slices.

Proposition 5.1. Let GG be a finite group, H an index two subgroup of
G, and o the sign representation from G — G/H. For a G-spectrum
X, if lg 7,.1X)=0 :lg 7, (X), the natural map >-7"X — X induces
an isomorphism on z,. In particular, if nf+1(X )=0= ng(X ), then
2§ " X)=0.

Proof. Because o' is one-dimensional we may construct 3-9" X with

the cofiber sequence (S - 80 . G/H +)AX. The resulting long exact
sequence in homotopy is

(3) 1688 (X)—n,E 7" X)-1,(X)~1%1% 1 (X).

As11% 7 (X)=0=1%1% z (X), we find that z, (27" X) =z, (X).

Now suppose that n{f 1 (X)=0= ng(X ). Because n{l{ ,1(X) is the value
of Tglg 7, ,1(X) at the orbit G/H, the left three terms of (3) prove the
exact sequence

0—n8E"X)—0.

Consequently, ng(Z“’HX )=0.
[ |

Corollary 5.2. Let HM be an Eilenberg-MacLane G-spectrum and
Vzseo @leaHi be a real representation with s copies of the trivial
representation and each o’i the sign representation from G — G/H;,

where H; is an index two subgroup of G. Then X~V HM does not have
nontrivial homotopy above degree —s.

Proof. First apply (3) to X; := s g M with n = 1. Then repeat
for X; := Z"THiXi_l where 2 <i <r. Then Z'VHM ~ 275X, has no

homotopy above degree —s.
[ |
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Recall from Section 2.3 that a, 8, and y are the sign representations of
K.

Lemma 5.3. Let M be a K-Mackey functor. The nontrivial homotopy
of 2 PHM is

kerrf My /im rI[f
N\ VZIIN
Iy, = 0 kerr? kerrf T, = 7heMp M./imrl M/imrE
\C ¢ ‘P?e
J&BA e’tg’f b i
Py
0 7o M,

Here, <pf,{L is induced by A” in the square

M —"— Mp/imrk

l : Lo

ZIK/Lle M;, —%— 7L e M,

and is given by &L(m) = m—r-m. The maps ¢?¢: M /im r? — 7L o M,
and ¢f¢: M,/im rf — 7L ® M, are defined similarly.

Proof. We have the cofiber sequence (S™# — S® — K/L . )A HM. The
result then follows from the description of the map M — Tg lf M given
in Section 4.1.

Proposition 5.4. Let M be a K-Mackey functor. The nontrivial homo-

topy of X" AYHM is
Eq \
ZIN
kerr?

ker(rX +rk +rk)

7Le

kerrX

e

7Re

kerrf
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(M,/im @P®)im ok

oy TR

Ty = T3 = M/im ¢ Mim ¢P¢ M,/im e

kergl® ker pP¢ ker gf¢ e
\X(j\%
dL
P d n T

0 M,

where E{, E9, and E3 are extensions

M,/im @P¢ > E3 > (M,/im rE)/im rL

kerr? > Eg > Eq

kerr? > By > ML/imrIIf

Let ¢, ‘M, — E/ be one of the maps shown. Then ¢;(m)=m —h-m.
Additionally, (M,/im ¢P¢)/Aim (pf’L is the cokernel of the map

R,L
(M,/im rB)im vt 5 M, /im @Pe.

Proof. Lemma 5.3 supplies the homotopy for ZPHM. We continue
constructing X~ F~YHM iteratively. The cofiber sequence

(S-S’ K/R)ANZPHM

results in the homotopy of X~ *PHM

ker(rf + rg ) E,
ﬁ] 7L / ﬁj\ 7R
Ty = 0 kerrg 0 i, = ke:jL ker D¢ ket;;
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(M,/im rD)/im rk
DL

Pr

or’ (pD'
d
7Le 7Pe %o
M. /imrt  M,im P  M,/im r¥

o ¢

L

gl}\” 7” %

729 M,

Finally, the cofiber sequence (S™7 — S° — K/D ) AZ~* PHM provides

the result.
[ |

Lemma 5.5. Let ¢ :G — N and v : G — M be group homomorphisms.
Then

ker(¢,v) = ker(¢p) nker(y) = ker(¢lrer(y))
where (¢,y):G — N & M is defined by g — ¢(g) @ y(g).

Proposition 5.6. Let M be a K Mackey functor where the restrictions

rZ, r?, and r® are injective. The following are equivalent.

(A) The sequence

xxt o
rE +rE 4K 0 —rR B
Mg =22 M; e Mp & Mg ¢ < M3
is exact.

(B) imrk =@ im r)n@f)L(m r{®) where H:, Ha, Hj are
distinct order two subgroups of K. This equality is represented
by the diagram below.

1mr§1 —— imr,*Nnimr,*?

[ .

My, ——— M,

Proof. Without loss of generality, let H; =L, Hy =D, and Hg =R. For
convenience, set I = (r})"1(im r2) N (rl)~1(im rE).

Item (A) = Item (B):

Let x € im rf . Then we have k € M such that rIIf (k) = x. Additionally,
ri(x) = rPrk (k) = rfrk (k). It follows that x € I.
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Now suppose x € I. We then have y € D and z € R such that
rl(x) =rD(y) =r}(2).

-ty ry 0
Thus, (x,y,2) € ker( P 0 -r? ) Consequently, we have x = r]{f(k) for
0 -rf
some k € Mg; that is, x € im
Item (B) = Item (A):

CE!

ry xi 0
Let(x,y,z)eker(rg 0 —r’e-’).ThenreL(x):rg(y):rf(z),soxeimrf-f.
0 —rf rf

So there is some k& € Mk such that x = rf(k). Because r? and r? are
injective, it must be that y = (*?)"1(rZ (x)) and z = (*F) "1 (rL(x)). Hence,
Item (A) is exact.

n

Proposition 5.7. The K-spectrum X'HN is a 2-slice if and only if
N,=0and Nx — N7 @ Np @ Np is injective.

Proof. By Theorem 2.3, we find that S!HN > 2 if and only if N, = 0.
Consequently, going forward we may assume N, = 0.

Now Z'HN =2 if and only if [S*#*", 32HN" = 0 for all k = % and
r = 0. Because N, = 0, Proposition 3.1 implies that i;{(ZlHJX) is a
2-slice, where H is an order two subgroup of K. Thus, to finish the
equivalence, we only need consider

[Ska+r, ZIHJX]K — [Sk+r_1, Z_kﬁKH]X]K

forallk=1and r=0.

From Corollary 5.2, we need only concern ourselves with [S?, >kPx H N].
From Proposition 5.4,

EO(Z_EH]X) = (/);{(kerrf mkerr‘g mkerrg).

Therefore Proposition 5.1 shows that EO(Z_EH N) vanishes if and only
if EO(Z_kﬁHﬂ ) vanishes for all 2 = 1. Hence, Z'HN < 2 if and only
if kerrf N kerrg r‘nkerrg = {0}. By Lemma 5.5 this is equivalent to
Ng — N1, ® Np @ Ng being injective.

|
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Proposition 5.8. The spectrum X2HM is a 2-slice if and only if all
restrictions of M are injective and the sequence

ry rh 0
rE 4 rE 4K 0 —rR B
Mg =22 M; e Mp & Mg ¢ < M3

is exact.

Proof. Note that 2HM > 2, so we just need to show that Z2HM < 2.
Now X2HM < 2 if and only if [S*PH*" 32HM1H = 0 for all & = % and
r = 0. For H an order two subgroup of K, i;{ZZHM < 2if and only ifrgl
is injective. Consequently, going forward we may assume rg , rg , and
r? are injective.

To finish the equivalence, we only need consider
[Ska+r, ZZHM]K — [Sk+r—2’ z—kﬁKHM]K

for all £ =1 and r = 0. By Corollary 5.2, it is enough to examine
[SO, =%,k HM] and [S~!,>*Px HM]. From Proposition 5.4,

ny(ZPHM) = pj(kerry)
and
@) Him r?)n (@) 1(im rk)
im rllf '

n_(ZPHM) = ¢y

Note that Proposition 5.4 states
QO(Z_ﬁHM) = (p}‘}(kerrf N kerrg N kerrg),
but because the lower restrictions are injective, these kernels coincide.
Proposition 5.1 then yields that
R (= FPHM) = 2 (5 PHM) = kerrk
() 1im r2) n(@el)L(im rF)
im rI[f

for all 2 = 2. By Definition 2.2, we find that >?H M < 2 if and only
if these two homotopy groups vanish. Hence, X2HM < 2 if and only
if kerrX = {0} and im rf¥ = (r£)"1(im r?) N (r})~1(im r¥). Because the
homotopy of Z~*"#~YHM is invariant under the order of construction
— that is, whether HM is suspended by say —a or —f first — we find

that all upper restrictions must be injective and that Item (B) must
hold.

2%, EHM) =25 (=PHM) =
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Theorem 5.9. Suppose the only nontrivial homotopy Mackey functors
of a K-spectrum X are 7,(X) and 74(X) where

(1) All restrictions of 7,(X) are injective and the sequence

—rk k0
r? 0 —rE)
rK +rK 4+ rK 0 —rf R
5 (X) 2L 2l(X) e nl (X) @ 25 (X) 5 (X)?

is exact.
(2) 7¢(X)=0.
3) ¥ (X) - rh(X) e 7P (X) © 7¥(X) is injective.

Then X is a 2-slice.

Conversely, if a K-spectrum X is a 2-slice, then its only nontrivial
homotopy Mackey functors of a K-spectrum X are 7,(X) and 7,(X)
where Zzng(X) is a 2-slice and Zngl(X) € [2,4], i.e., both Item 1
and Item 2 hold.

Proof. Let 7,(X) =M and ,(X) = N. If these are the only nontrivial
homotopy Mackey functors of X, we have a fiber sequence

4) >?HM — X — 2'HN.

By Proposition 5.7 and Proposition 5.8, conditions (1) - (3) show that
>2HM and Z'HN are 2-slices. Now if Z2HM and Z'HN are 2-slices,
then X must be a 2-slice as well.

Conversely, suppose that X is a 2-slice. We then find that X has no
homotopy above degree two and none below degree one; thus, we have
the fiber sequence in (4). Because X =2 and X2HM > 2, it follows that
>HN = 2. So by Theorem 2.3, N, = 0. That Z'HN < 4 follows from a
similar argument as in Proposition 5.7.

Rotating this fiber sequence gives HN — X2HM — X. As HN is a
0-slice and X is a 2-slice, we have X2H M €[0,2], so it must be that
>2HM = 2. Consequently, by Proposition 5.8, Item 1 holds.

[ |

It is not necessary for condition (3) to hold for X to be a 2-slice as we
show in the following example.
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Example 5.10. Take X =~ X1*AHE where

Fo

1N
Fs Fo
T/
o

Then X is a 2-slice with 7,(X) = f and 7,(X) = g. But Z'Hg is not a
2-slice. N N B

|
I
=]

Proof. We can construct Z“ﬁHIj using the cofiber sequence
(K/L,—S°—SPyAZ'HE.

The resulting long exact sequence in homotopy is

0
Ty 00— 0 0 0
Fo
0 5 Fo Fo
: N
1
Ty 0 Fo Fg — 0 Fo Fg —» 0 0 0
W4 b
\Y v 1 1
FolK/L] v Fs 0

So 715(X) = f and 7,(X) = g. From this we see that X =2 by Theo-
rem 5.9. Note that ZzHi is a 2-slice and Zng is a 4-slice.

To show that X < 2, we need [S*Pa*" SHPHEH = 0 for all & = II?I_I

and r 2 0. As i;;(X) = Z2H02f is a 2-slice, where H is an order two
subgroup of K, we only need to consider

[Ska+r, Zl+ﬁHE]K — [Sk+r—1, Z—a—Y—(k—l)ﬁKHE]K

forallk>=1andr=0.

By Corollary 5.2, it is sufficient to examine [S 0 y>-a-y-(k=Dpg ff E]K for
allk=1.
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From Lemma 5.3 we find that [S?,2"“YHE] = 0. Consequently, given
any k =1, repeated application of Proposition 5.1 shows that

[SO, Z—a—y—(k—l)ﬁKHE] — Q

That is, X is a 2-slice.

6. COTOWERS FOR X2 "HZ
We determine the slice towers of Z™"HZ and X™"Hm™ for 1<n <5.

Example 6.1. By Proposition 2.4 and Proposition 4.1, S 1Hm* is a
(-2)-slice and 2" 2Hm* is a (-4)-slice.

Alternatively, by Proposition 4.1, 2> 'Hm* ~ X'Hmg, which is a 2-
slice by Proposition 5.7. Consequently, 2" 1Hm* is a (-2)-slice.

Example 6.2. By [U1, Theorem 6-4], the cotower for X 1HZ is

> 'Hz* =P}

i

2 'HZ72,1) —— T 'Hm* =P

|

> 'HZ — 2 'Hg=P}

Example 6.3. We suspend the cotower in Example 6.2 by —1 to get
the cotower for X 2HZ.

S 2HZ*=P2

!

2 2HZ7(2,1) — L ?Hm* =P}

|

*?HZ —— X ?Hg=P_§
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Example 6.4. We suspend the cotower in Example 6.3 by —1 to get a
partial cotower for 2 3HZ.

23HZ*=P~3

i

>3HZ7(2,1) — X 3Hm*

!

3P3HZ — 2 Hg=P_{}

The issue here is that Z2Hm* is not a slice.

However, the short exact sequence
§2 — ¢rprFe’) —m’
provides the tower
P =33Hp; pp(Fs*) — L *Hm* — £ ?Hg*=PZ§.

Consequently, the remaining slices of Z2HZ are P:g =>"2rtlg 7 pr(Fa)
and P~§ =X 2Hg".

Example 6.5. We suspend the cotower in Example 6.4 by —1 to get a
partial cotower for 2 *HZ.

S4HZ* =P}

!

>4HZ7(2,1) —— X *Hm*

!

2 *HZ — X *Hg=P_{§

Again, Z"*Hm* is not a slice. But suspending the cotower for * 3 Hm*
by —1 provides the missing slices: P:g =>"*H ¢ prF2”) and P:g =
>3Hg2.

Example 6.6. We suspend the cotower in Example 6.5 by —1 and aug-
ment with the —p suspension of Example 6.2 to get a partial cotower
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for > °HZ.

P lHZ7* =P}

~

2P 1HZ7(2,1) —— P 'Hm* =P~

~

3P 1HZ —— ¥ ?Hg=P}

~

>P%HZ7(2,1) ——— X °Hm*

~

3PHZ —— X °Hg=P~})

This time, the cotower for Z°Hm* is

Z_SPHH‘/’ZDR(@) =P_j)

i

EPH$; pp(Fe") ——— X °Hg? =P}

|

S PHm* ——— T *Hg?>=P_}¢

The remaining slices of X °HZ are then Pjg = Z_3p+1H¢EDR(@)’
PTi2=3%Hg® and P_}{ =X ™*Hg".
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Example 6.7. The partial cotower for X~'HZ follows by suspending
the partial cotower in Example 6.6 by —2.

2 P3HZ*=P]

~

> P3H7(2,1) — X P 3Hm*

~

3P 3H7 — T *Hg=P_{§

~N

> "Hz7(2,1) ——— X "Hm*

~N

>"HZ —— > "Hg=P_%
We now have a cotower for Z?3Hm*.
Py =X P Hp;pp(F2") — 2P Hm" — 2 Hg” = P_y3,
And a cotower for 2~ Hm*.
I Hep pp(Fy) =Py

~

IPPH T pp(Fe™) » 2 4Hg® = P_ig

~

2_7H‘/’}:DR(@*) — 2_5H§3 :P:gg

~

> "Hm* —— 2 %Hg?=P73}

We now see interference from the cotower for X~ "Hm*. Its (—14)-slice
appears below the (—16)-slice in the partial cotower for X~"H Z. Addi-
tionally, both of these (partial) cotowers have a (—16)-slice.

Proposition 7.4 and Proposition 7.8 tell us that Pjﬁ(Z‘U—I Z) is indeed
T HP; p(F2) and PZI(Z"HZ)is ™*Hg v *Hg® ~ X *Hg*.
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All partial cotowers for 27" HZ will follow this pattern of utilizing the
homotopy equivalence S ?HZ* ~ X P~"**HZ to augment the bottom
of the cotower for X *HZ with the cotower for X "**HZ.

7. SLICES OF 2™ "HgZ

Here we determine the slices of 2" HgZ.

Proposition 7.1. X"HZ is an n-slice for 1 <n <5 and X™"HZ" is a
(—n)-slice for 1 <n <4.

Proof. The K-spectra 2'HZ, 2'HZ*, X?HZ, and 2~ 'HZ* are 1-, 2-,
and (—1)-slices by Proposition 2.4 and Theorem 5.9. The result then
follows from Proposition 4.2 and the resulting equivalences

YHZ ~3P*'Hz*, :*HZ~3PHZ*, and x3HzZ=~3"'HZ"*.
|
7.1. The (—n)-slice. We first establish a comparison of the slices of
T "HZ with those of Z***HZ.
Proposition 7.2. Let n = 5. Then
P HEZT"HZ) =X PP (" HZ)
for k€[n,2n—-1].

Proof. By Proposition 4.2, we have

TP R (T HZ) = 2P PP TR P HZ) = PR(ETTHZY).
Thus, it is sufficient to compare the (—%)-slices of X™"HZ and 2 "HZ".
Recall the injection Z* — Z — M from Section 4. We wish to show that
(5) ST"HZ* -3 "Hz L 37"M
induces an equivalence on slices strictly above level —2n.
We take the Brown-Comenetz dual of (5) to find the fiber sequence

S"HM - X" 1g;zHZ — =" 1oz HZ*

Now X"HM is n-connective, and as its underlying spectrum is con-
tractible, when n = 1, we know X"HM = 2n by Theorem 2.3. Then
[HHR1, Lemma 4.28] provides that  induces an equivalence on slices

strictly below level 2n. It then follows from Proposition 2.8 that u in

(5) induces an equivalence on slices strictly above level —2n. -
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This is an analogous result to [GY, Proposition 5.3]. However, the
injection Z* — Z allows us to simplify the argument.

Proposition 7.3. Let n = 1 and take r = n (mod 4) with 1 <r < 4.
Then the top slice of 2™ "HZ is

PNz "HZ)=3x "1 °THZ"

Proof. Section 6 gives the result for 1 <n <4, and n =5 follows from

repeated application of Proposition 7.2. -

7.2. The (—4k)-slices.
Here we determine the (—4k)-slices of Z™"HZ.

Proposition 7.4. Forn =1,

> *Hmg 4k=n+2

o
PZ3y(Z"HZ) = | oy Hehns2)3 o s 4k € [n +3,2n],

L H(g? ®brprf2) =0 (mod2)

SkHgnkH 4k € [2n +1,4n]

Proof. We have the equivalence
P (Z"HZ) =X ®Hn (2" HZ).

The restriction to each cyclic subgroup agrees with the slices found
in Proposition 3.7 and Proposition 7.5 gives the fixed points. All that
remains is to verify the result for 4% € [n +2,2n] with n even. For
4k €[n +2,2n), this follows from Example 6.2, Example 6.3, Exam-
ple 6.4, Example 6.5, and Proposition 7.2.

Now let 4k = 2n. The transfer tf fits in the cofiber sequence
(znrho HZ) t_§> (e 7K —y (zonrko B Z)K.

This gives the exact sequence

(6) nk(zkrHZ) t—§> Kzt HZ) —— 2K cketPaZ).

We wish to show this transfer is trivial. By Proposition 7.5 and Propo-
sition 7.7, (6) becomes

1(n+2) 1(n+2)

tK
Fo —> F2 ~ —»F2 —~ —— 0=nkt_ (Z*H2).
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Thus, tf must be zero. A similar argument shows that tg and tg are
trivial as well.

The restriction rf fits into the cofiber sequence

rk
(Z—n+kp—ﬁHZ)K \ (Z_n+kaZ)K L; (Z_n+k'DHZ)L

This gives the exact sequence
rk
(7) n&(zkr-FHZ7) — nK(Z**HZ) —> 7L (Z**HZ).

We wish to show this restriction is surjective. By Proposition 7.5 and
Proposition 7.6, (7) becomes

Xy

1 1
ﬂ£+1(zkaZ)=O — ":22(71) SN |F22(n)+1 N N

Thus, r}f must be surjective. A similar argument shows that rg and
rg are surjective as well.

All that remains to be shown is that the restrictions have distinct ker-
nels. Consider the cofiber sequence

srtko-Py — & srtkeg7 — S KIL ATV HZ.

This results in the exact sequence

8  x,E*PHZ) — 1, (ZF*HZ) — 1K |K 7 (st HZ)

which by Proposition 3.3, Proposition 7.5, and Proposition 7.6 is

I\ RN a

0 Fy Fy —211y F, Fy Fo 290y Fo[K/L] 0 0

0 0

0 > 0

Each restriction is surjective with kernel of rank ¢. As

dimnX(Z* HzZ) = g +1,

it is sufficient to show that the kernels are pairwise distinct.
Because the diagram on the left commutes, we find that

im pnker(rf)={0} and  im @nker(rs)=1{0}.
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As im ¢ = ker(rf ), we have that ker(ri{ ) is distinct from ker(rg ) and

ker(rg ). Replacing 8 by a shows that ker(rg ) and ker(rg ) are distinct
as well.

[ |
Proposition 7.5. For G =K and £ =1,
z i =4k
l 1
o P2 je[2k+1,4k 1] 0dd

n; (ZFPHZ) =4 1(4h42-1)
F; 1 €[2k+2,4k — 2] even
Fok*l ielk,2F]

Proof. Note that

P *H7)=>*Hn, (S H2).
Thus, by Proposition 7.3, H g4k(ZkPH Z)=HZ. So the result holds for
i =4k and we only need consider i <4k — 1.

We will use the resulting long exact sequences in homotopy resulting
from the cofiber sequences

9) (K/L,—8°—SPyaztrtiHZ
(10) (K/R, — S° — S*) axkethPtlfgz
(11) (K/D, — 8° — 8") Azketa+hbtlpgz
(12) st H7 2 $* HZ — S* HF,

where (12) is induced by the short exact sequence of Mackey functors
z217—F.
For £ =0, (9) - (11) provide that

n,(ZPHZ) =1

4
3
2
1

n
n
n
n

S
| O ‘0‘4 o IN

Consequently, the result holds for 2 = 1. We now proceed by induction
on k. Assume the result holds for 2. By restriction to L, D, and R,
we find that gi(Z(k”)pHZ) is a pullback over K for i <4k + 3 odd, and
consequently, 2-torsion as in [Z1, Remark 2.13].
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In the long exact sequence of fixed points resulting from (9) - (11), we
have at the K/K level,

”?2(22kpc2+1HCZZ) 3 n{{(zkp+le) s n{{(zkp+ﬁ+le)
niCZ(Z(ZkJrl)PCzHcZZ) _ N nll_((zkp+ﬁ+lHZ) s n{{(zkp+a+ﬁ+lHZ)

n?2(2(2k+2)P02—1HC2Z) — n{{(zkp+a+,6+1HZ) y n{f(z(k+1)sz)

When 2k +1 <i <4k + 1, by Proposition 3.3,

Fo i odd
”?Q(sz“ZkHHCzZ){ 2

0 ieven

Now for i even, we have in our long exact sequence,

0o —— nf{(ZkPHHZ) SN n{{(zkp+ﬁ+lHZ) —

Fo — nk (St *1HZ) — of (SherPrigz) D

Consequently, when i is even,
2-rk nX(ZkP* P Z) < 2-rk 7K (2 HZ) + 1,
where equality occurs if nf{(Zk“ﬁHHZ) = nf(Z(kPHHZ) @ Fo.
And, when i is odd,
2-rk 7K (PP 7) < 2-rk 7K (PP HZ).

For i <2k we have
0o — n{{(zkp+1Hz) - n{{(zkp+ﬁ+le) H())
Thus, for i <2k,
n{{(zkp+ﬁ+lHZ) ~ Tl{{(zkp-i_lHZ).

A similar statement holds for

2-rk Xkt P lgz)y  and 20k 2K E*VPHZ).
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From [GY, Corollary 7.2], in the long exact sequence resulting from
(12), we have

F,= K, 0 HZ) S 2K VP HZ) 2K (S HE,) = R

- X P HZ7) = 2K 1(z‘PHZ) =L,

Consequently, / =i+ 1 and né{Hl(Z(”DpHZ) = [F;”. We then have in
our long exact sequence

X oV HZ) — 2k VP HE) =R s P 20l VP H ),
Thus,
2-rk 7k (EVVPHZ) > i+ 2= 2-rk 7k, (ZPHZ)+3.
We achieve the maximum bound for 2-rk ”é{i +2(Z(”DPH Z); thus,
& UV HZ =K CPHD) o F = FL2.

The rest of the result now follows from this long exact sequence in a
similar manner.

[ |
Proposition 7.6. For G =K and £ =1,
l s
F2*Y i e[2k,4k — 2] even
Logp—i—
kG PHD) ={ P2V jef2r - 1,4k 3] 0dd
Fok+l ielk,2F]
Proof. This follows from a similar argument as in Proposition 7.5.
[ |

Proposition 7.7. ForG=K and k=1,

1
F270" e [2k +2,4k] even

K@ PED) = B eak 41,4k - 1] 0dd

Fok+l  ie[k,2k]

Proof. This follows from a similar argument as in Proposition 7.5.
|
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7.3. The (-4k —2)-slices.
We now determine the (—4% —2)-slices of Z™"HZ.

Proposition 7.8. For even n, 2 ™"HZ has no (—4k — 2)-slices, except

for possibly the —n slice. For odd n =1,
Pk ke 1Hm* 4k+2=n+1
P 5 "HD) = N
ske-lHpy pFo* 4k +2€(n+1,2n]

Proof. When n is even, the slices in Proposition 7.4 restrict to the all of
the appropriate slices for X" H¢,Z. If, then, 2 "HgZ has a (-4k - 2)-
slice, it must be a pullback over K. But this is a contradiction as such
slices are (—4k)-slices. Thus, for n even, X "HgZ has no (-4k — 2)-
slices.

Now let n be odd. We first handle the case 4%k + 2 = 2n. By Proposi-
tion 2.5,

—fb}: 3(2 "HyxZ)~3" (k+1)pP2(Z n+(k+Dp e 7).
For clarity, let
X := P2z Ve e 7).,
Now from Corollary 3.8,
iy X =2'He,g.
where H is L, D, or R. Thus, by Theorem 5.9,
1,(X) = ¢ B and m,(X)=A

where B is some group and

0
and Ag — Fe @ F @ Fg is injective. That is, Ax =F5 with0<n <3.
If B #0, then X cannot be a 2-slice. Consequently, X =~>'HA.

Because Z is invariant under the automorphisms of K, the spectrum
X "HZ is as well. Therefore, the slices of Z™"HZ are also invariant
under the automorphisms of K.
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Thus, A must be one of the following:
briprf> m, mg, or ¢rppFo.
Except for degree —k —1, 2~*+*Dp*1 A has the same homotopy for

each choice of A.

For degree -k —1, g_k_l(Z'(k”)p”Hé) is a pullback over K of dimen-
sion 3, 2, 1, or 0.

From Proposition 10.4 we find that nl_{k_l(Z_(k”)p“Hé) =0. The only
choice of A that meets this requirement is ¢; ;,,Fa.

Now let 42 +2 € [n+1,2n—1]. The base cases are established in Exam-
ple 6.2, Example 6.4, and Example 6.6. The result then follows from

Proposition 7.2.
|

8. SLICES OF X*HZ

Recall from Proposition 7.1 that X" HZ is a slice for 1 <n <5.

Proposition 8.1. Let n = 6. Then
Pi(Z"HZ)~3P; { (=" *HZ)

for k€[n,2n—"17].

Proof. We employ a similar argument as in Proposition 7.2. Note that
PHE"HZ)=3PPF {(Z"PHZ)=2PP; {(Z"*HZ").
Consequently, it is sufficient to compare the (k —4)-slices of X" *H yA

and 2" 1HZ*.
The exact sequence Z* — Z — M provides the fiber sequence
1M —3>'Hz* S S/HZ.

Then, because X" 'HM = 2 — 2, by [HHR1, Lemma 4.28], : induces an
equivalence on slices strictly below level 2j — 2. Taking j = n —4 gives

the result.
[ |

Example 8.2. The tower for 26HZ is

P{=3Hg ——  *°HZ

|

P =3P*?H7(2,1)*
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Proof. We have the short exact sequence Z* — Z(2,1)* — g. This leads
to the cofiber sequence

P{=3?Hg — °HZ ~3F**H7* — IP*?HZ(2,1)* = P§.

Example 8.3. The tower for 2"HZ is

P?=3"Hg —— X'HZ

|

PS=3P"?Hm — 2PHHZ(2,1)*

|

PT=3r3HZ

Proof. We suspend the tower in Example 8.2 by 1 and augment with
the cofiber sequence X°*2Hm — X°"3HZ(2,1)* — XP*3HZ which arises
from the short exact sequence Z(2,1)* — Z — m.

[
We now determine the slices of 2" HZ.
Theorem 8.4. Let n=6. Fork=n+2,
PHE"HZ)=3PIg P R4z " HZ.

Proof. Take r =n—5 (mod 4) with 1 <r <4. We may map the top slice
of Z""*5HZ into it to find the cofiber sequence

n=5-r
4

(13) P—n+5 _ z— p_rHZ* _ Z_n+5HZ _ P—n+5—1 Z_n+5HZ.

-n+5
Note that all slices of P™***HZ are torsion, so then
IQ/ZP_n+4HZ — leZP—n+4 Z_n+5HZ.
Apply I7 to (13) and suspend by one to find

n=5-r

ZIIZP—n+4 Z_n+5HZ . Zn_4HZ* _ Z 4 p+r+1HZ-

We can rewrite this as

n=5-r

IQ/ZP_n+4 Z_n+5HZ _ zn—pHZ N Z 1 p+r+1HZ-

Finally, suspend by p to obtain

n=1-r

(14) Iz P "2 " H7 - 3"HZz -3+ P*HHYZ.
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n=1-r

Note that X~ 7 °*"*!HZ is an n-slice and

Iz P "I HZ € [n,4(n - 4)).
Furthermore, if n Z 2 (mod 4),
SPIgz P I HZ e[n+1,4(n - 4)].
From Proposition 2.8,
IgzP fX "PHZ=Prlg; X" HZ.

Consequently, 2P I1q;z P4 "5 HZ provides all slices of Z"HZ.
Now suppose n =2 (mod 4) so that » = 1. Then from Proposition 2.8,
PZ(ZPI@/Z P—n+4 z—n+5Hz) ~ ZPIQ/Z P:Z(P—n+4 Z_n+5HZ)
=X Iz Z_(nT_GH)pHng

n-2
~37 P Hm

Apply P} (-) to (14) to get the extension
22,41 nyn 2,49
1 PHm—P}X"HZ —-X % P"°"HZ

and the fiber sequence

>Igz P " "HZ — 2PIg; P"""*HZ — P'3"HZ.

Now X°I @/ZP‘”+5H Z €[n+1,4(n—4)] and thus supplies the remaining
slices of 2"HZ.
[ |

Proposition 8.5. Let n =6 and set r =n (mod 4) with 2 <r <5. The
n-slice of 2"HZ is

" PP 2H7(2,1)* n=2 (mod 4)

P)X"HZ7Z = e
X7 PTTHZ otherwise
Proof. For n Z2 (mod 4), this follows from (14). When n =2 (mod 4) it

follows from Example 8.2 and repeated application of Proposition 8.1.
[ |
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Proposition 8.6. Let n = 6. The 4k-slices of 2"HZ are

kaHm_g* 4k =n+1
_ 4k e[n+2,2n 8]
Zng%(4k n) S ’
g =0 d2
PREHD =Y s e o 4k eI+ 2,(;10— 6]?
2"’ H(g? ®prprlF2”) n=1 (mod 2)
Zngn‘k‘3 4k €[2n —4,4(n —4)]

Proof. This follows from Proposition 7.4 and Theorem 8.4. -

Proposition 8.7. For n = 6, except for possibly the n slice, the non-
trivial (4% + 2)-slices of 2"HZ are

4k +2€[n+2,2n - 6]

4k+2 _ kp+1 * ) )

P4k12(Z”HZ) = { T HGr ppla n=0 (mod 2)
Proof. By Corollary 3.6, 2"H¢,Z has no (4k + 2)-slices except in the
range [n +2,2n — 6] when n is even. So for 4k + 2 not in this range,
any such slice must be a pullback over K. But then it is a 4k-slice.
For 4k + 2 € [n + 2,2n — 6], the result follows from Proposition 7.8 and

Theorem 8.4.
[ |

8.1. Comparison with the Slices of 2" HF .

This work is complementary to [GY], which calculates the slices of

2"HFgy for n > 1. One would hope that the exact sequence Z 2 Z—TFy
could play a role in recovering the slices of X"HZ from the slices of
X"HFy or vice versa, but this is not always the case.

When G = Cg, [GY, Theorem 3.18] shows that the slices of X" H¢,[Fg
contain both even and odd suspensions of H¢,g, whereas Proposi-
tion 3.5 shows that X" H¢,Z has only even or odd suspensions of H, Co8.-
This is illustrated in Table 4. B

The 2k-slices of 2"H¢,Z and PUARY c,Z only combine to give the slices
of 2"H¢,Fg when n = 3,4 (mod 4). When n=5,6 (mod 4), the 2"H¢,Z
and X"*1H¢,Z slices miss the (n +r)-slice of 3" Hc,F2, where r = 1,2,
respectively. For example, neither 29H02Z nor 21OHCQZ has a slice
equivalent to Z5H, c,8, but >%H c,Fa does.

We can recover the (4k)-slices of X" HFg from the (4k)-slices of X"HgZ

and X**'HgZ. As in Proposition 7.5, we use the sequence Z 2 Z—TFy
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TABLE 4. Comparison of Cs-slices

Slices of 9H¢,Z Slices of 2°H,Fy Slices of 21°H¢,Z
P14 Z7H02g P14 Z7HC2g
P12 Z6H02g P12 ZGHCQg
PlO Z5H(;2g P10 $2042F . 7"
Pg — 22P+IHC2Z* P9 — 229+1HC2@*

to get the cofiber sequence X *°HyxZ — Z_kaK@ — XIk0Hp7. We
then have the long exact sequence in homotopy

n_, C*HE7) 25 1 (S P Hk7) —
(15)

n_(E*HgFy) — n_, (E*Hxz) % 1, (S Hg2).
When n <4k —1, all groups in (15) are 2-torsion and the middle three

terms become the exact sequence
(16)

n_,(Z*HgZ) — n_,(S"*PHgFs) —» n_, (S HgZ).
When n = 4k, the left four terms of (15) become the exact sequence

¢ 237 2y, EFHgZ) — 0.

Consequently, the (4k)-slices of X" Hg[Fg are

kP HKFo* n=4k

Pz HgFp) =
skhE . n=4k-1

where E_ is the middle Mackey functor in (16). This recovery is illus-
trated in Table 5.

Except for the n-slice, all slices of *"H kg are recovered from the slices

of X"HxZ and X8HgZ. Tt is not always the case, however, that the
(4k +2)-slices are recovered. For example, >1°H kg has a 14-slice ([GY,
Example 6.14]), but neither Z1°Hx Z nor 21! Hx Z have 14-slices.
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TABLE 5. Comparison of K-slices

Slices of Z"HZ

Pi?=3°Hg

P3=3P*?Hm
Pl =3P*HZ

Slices of 2"HFy Slices of 28HZ
P16 Z4Hg P16 Z4Hg
P12:23Hg P12 Z3Hg

P10 zp+3H(pLDR P10 zp+3H(pLDR

P3=3P*?Hm PS=3r*HZ

Pl =3r"3HF,

9. HOMOTOPY MACKEY FUNCTOR COMPUTATIONS

Here we compute the homotopy Mackey functors of the slices of Z*"HZ.

Proposition 9.1. For £ = 1, the nontrivial homotopy Mackey functors

of *°HZ are

n,(Z*HZ) =+

Proof. For n € [k,4F

YA n=4k
mg n=4k -2
1(4k-n-1) n€[2k,4k - 3],
g n=1 (mod 2)
Ak—n+2)-3 4 px n €[2k,4k - 3],
g 2 ®¢rprf2 =0 (mod 2)
g+l nelk,2k—1]

— 2], this is a restatement of Proposition 7.4. For

n = 4k, the result follows from Proposition 7.3 and repeated applica-

tion of Proposition 7.2.
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Proposition 9.2. For £ = 1, the nontrivial homotopy Mackey functors
of kP HZ are

z" n=4k
mg”® n=4k -1
_ Li4p— nel2k+4,4k - 3],
n_,(Z kaZ) =3 52( " n=0 (mod 2)
L(4kh-n+3)-3 % « DNE [2F + 3,4k -2],
gy e ¢yl n=1 (mod 2)
gn k3 nelk+4,2k+2]

Proof. For n € [k + 4,4k — 1], this is a restatement of Proposition 8.6.
For n =4k, the result follows from Proposition 8.5 and repeated appli-

cation of Proposition 8.1. =

Proposition 9.3. For £ = 1, the nontrivial homotopy Mackey functors
of Z*PHZ* are

VA n=4k
mg n=4k -2
" Lgp—n-1 nel2k+2,4k — 3],
En(zkaZ ) =1 ‘52( " n=1 (mod 2)
14k-n-2)-3 % nel2k+2,4k — 3],
‘52( " GB’(PLDR@ n=0 (mod2)
gn k2 nelk+3,2k+1]

Proof. This follows from the equivalence Z*?HZ* ~ 3*~Dr+4 7 and
Proposition 9.1. -

Proposition 9.4. For k£ = 1, the nontrivial homotopy Mackey functors
of Z*°HZ(2,1)* are

n (ZFHZ*) nelk+3,4k]
n, P HZ2,1D*)={ " B
g n==~k

Proof. The exact sequence Z* — Z(2,1)* — g and corresponding cofiber
sequence X*PHZ* — Sk H7(2,1)* — Zng provide us with a long ex-
act sequence in homotopy. We then have that the homotopy of Z*° H 7(2,1)*

is the homotopy of Z*?HZ* with an additional & in degree k. =
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Proposition 9.5. For k£ = 2, the nontrivial homotopy Mackey functors
of TP H mg* are

¢rprfz n=2k
n,(E*Hmg") =4 g° nelk+2,2k-1]
g n=k+1

Proof. We have the equivalence ¥ Hmg* =~ 2k-Dp+2f1 m. The result

then follows from [GY, Proposition 7.3].
]

Proposition 9.6. For £ = 2, the nontrivial homotopy Mackey functors
of kP H mg are

¢rprFe" n=2k

n_,(EZ*Hmg)={ g3 nelk+2,2k-1]

g n=k+1

Proof. The result follows by taking the Brown-Comenetz dual of each

Mackey functor in Proposition 9.5.
[ |

Proposition 9.7. For £ = 2, the nontrivial homotopy Mackey functors
of X *°Hm are

¢rprFe” n=2k
n (Z*Hm)={ g3 nelk+2,2k—1]

52 n=k+1

Proof. First, take the Brown-Comenetz dual of the Mackey functors
in [GY, Proposition 7.4]. The result then follows from the equivalence
S PHm=~X"2Hmg".

o |

Proposition 9.8. We have the equivalences

2 H¢ ppf k=1

B Z4H¢ZDR@ k=2
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Then for & = 3, the nontrivial homotopy Mackey functors of Z*° H brprfe”
are

¢rprf2 n =2k
g8 nelk+2,2k—1]

n,(EHp ppFe®) = {

Proof. This is the pullback over L, D, and R of the Mackey functors
in [GY, Proposition 3.6]. -

Proposition 9.9. We have the equivalences
-2 * —
LHoriprf k=1

27| s tHe e k=2

Then for £ = 3, the nontrivial homotopy Mackey functors of = *° H 1 prl2
are

$rprFe” n=2k

g3 nelk+2,2k—1]

E—n(z_ka‘/’ZDR@) ) {

Proof. This is the pullback over L, D, and R of the Mackey functors

in [GY, Proposition 3.7]. -

10. SPECTRAL SEQUENCES

The slice spectral sequence for X" HZ and X" HZ must recover the ho-
motopy Mackey functors of each spectrum, that is, we must be left with
n_,(X"HZ)=n,(X"HZ)= Z and all other homotopy Mackey functors
trivial. For most of the differentials, then, there is only one choice.

We use the indexing convention from [HHR1, Section 4.4.2]. The Mackey
functor lj;_n’t is 7, P{(X). We also use the Adams convention, so that
gnPf (X) has coordinates (n,n — t) and the differential,

L sit gr—1
dr Ef. _’Ei-'—r +r ,
points left one and up r.

The symbols in Table 6 denote the Mackey functors in the slice spectral
sequences shown.

Example 10.1. The slices for Z"'HZ are all a one-fold desuspension
of Eilenberg-MacLane spectra (Example 6.2, Figure 10.10). Because
each of these Mackey functors is in the same column, there are no
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TABLE 6. Symbols for K-Mackey functors

W=z ®=9¢;prl2 a=mg
L=z O=¢rprle’ n=mg’

differentials. Consequently, in the spectral sequence, we find a double
extension:

Z(2,1)

S

17

N
m*/ VA

g

Example 10.2. In the spectral sequence for X °HZ, Figure 10.10, be-
cause we can only be left with 1_5(P:g >-5HZ)= 7 and all differentials
must go left one and up at least two, all differentials are forced. Once
we have evaluated each differential, we once again find ourselves with
the double extension in (17).

Example 10.3. In Figure 10.11, most of the differentials for X °H yA
are again forced by the fact that only Q_g(P:S > 9HZ)= Z can survive
the spectral sequence. For example, we have two choices for a differ-
ential from n_nggg > 9H7Z = g?. We find it must be

dis:g" — ¢ippFe” E1_o(P 53X HZ)

so that we are left with the extension in (17). Indeed, we will always
be left with this extension once all differentials have been evaluated.
Similarly, for n =1 (mod 4), we will always have a
da:dpprFe” = ¢rprFa”
in the upper right corner.
In Proposition 7.8 we claim that for n odd,
P2y (E"HZ) =2~ *Drt g oFs.

We now prove this claim.
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Proposition 10.4. Let n be odd and take A to be one of the Mackey
functors listed in Table 7. The only choice of A where the homo-
topy of P:gr’l‘(Z_”H 7) = 2~ **Dr+1 A fits into the spectral sequence
for "HZ is ¢; pFo.

Proof. Because 2~ #*DP+1H A is a (—4k — 2)-slice, its 7_;_, is located
at (-k—-1,-3k —1). We argue that we cannot have a nonzero Mackey
functor in this location.

TABLE 7. Homotopy Comparison

A E_k_l(z_(k+1)p+1Hé)
rorl g’

m g’

mg g
('DZDR@ Q

In the spectral sequence for Z"HZ, all slices below level —2n are
>k Hg"*+1 where 4k € [2n + 1,4n]. These Mackey functors, for 4% <
2n +1, lie on the line y = —3k. Thus, for the Mackey functors in Ta-
ble 7, the source of a differential hitting it must be (—%,—3k). This is
not possible.

We now argue that the Mackey functor located at (-2 —1,—3% —1) can-
not be the source of a differential.The first value of n for which we
must determine the (—2n)-slice is n = 7. The spectral sequence where
A = ¢; ppFe is shown in Figure 10.11. This spectral sequence leaves

us with the appropriate homotopy for *~"HZ.

Note there is a copy of g* located at (—4,—12). For any other choice of
A, we would have a nontrivial n_, located at (—4,-10). For a differen-
tial originating from (-4, —10), there are two possible targets: ¢; ;,,F2*
at (—5,-5) and g at (-5,-2). However, these two Mackey functors
must fit into the exact sequences

g—g'—g and  g'—¢j;pF" —mag.
Thus, we cannot have a nonzero Mackey functor at (-4,—-10).

We now consider the spectral sequence for > °H Z, located in Fig-
ure 10.11. We again use Z_(”l)“lH(p}‘ZDR@ for the (—2n)-slice. The
resulting homotopy fits in the spectral sequence. For the other three
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choices of A we would have a nontrivial z_ located at (-5,—-13). For a
differential originating from (—5,—-13) there are two possible targets:
g% at (-6,-8) and ¢}, ,F2* at (—6,-3).

However, we have a dg : (PLDR[FZ —» (PLDRH:Q and ady: g —» g Thus,
there is no target for a differential from (-5, —-13). Consequently, the
only choice of A that works is ¢; ;) »F2

There is a similar story for all odd n > 9. There will always be a dg hit-
ting the ¢; ;,,F2* located at (—k —2,—n + k& +2). The only other possible
targets for a differential from (—% — 1,—3% — 1) are then the g%’s result-
ing from the homotopy of the other (-4, — 2)-slices. All of these will be
hit by a differential from the g” **! located at (—% — 1,-3% —3). Thus,
we cannot have a nonzero Mackey functor located at (=% —1,—-3% — 1).
The only choice of A which satisfies this requirement is ¢; ;, ,Fo.

Example 10.5. For the positive, trivial suspensions of HZ, we find
that X®HZ has the first nontrivial slice tower. In Figure 10.12, we
then see that there is only one possible differential. This d3 exists
because we must be left with only §6(26H Z2)=Z

Example 10.6. The spectral sequence for X’HZ, in Figure 10.12, is
more interesting. Here we find the differentials dg : ¢; ,p, ' — mg and
ds: mg — §g. Indeed, we will always see a d,_7: ¢LDR[F2 —mg and
dgn-9:mg — g on the right side of the spectral sequence for S"HygZ.

Example 10.7. Except for the homotopy of the n-slice of X"HxZ,
STH k[, and X8H kZ, the spectral sequences for >"H kZ and >8H kZ

collapse to give the spectral sequence for >'H kF2. We see in Fig-
ure 10.12 the g in (3,9) and the g in (3,9) in the spectral sequences
for X"Hx Z and 138H xZ, respectively, combine to give the g in (3,9) in
the spectral sequence for X" H kFg. Off the diagonal for the n-slice for
>"H xZ and >8H kZ we have a single copy of ¢; ;,,F2. These provide
the two copies of ¢} ; . Fs off the diagonal for Z"HgFs.

Example 10.8. Now, in Figure 10.13, we have some choice of differ-
entials in the spectral sequence for X1'H Z. Once we consider that
only gll(ZHH Z) = Z can be left, there is only one choice of each dif-
ferential that provides the desired result. Analogously to the spec-
tral sequence for 2 "HZ where n =1 (mod 4), we will always have a

do:¢; prfe — ¢;prFe” in the bottom left corner when n =3 (mod 4).
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Example 10.9. Again, with the exception of the homotopy of the n-
slice, the spectral sequences for Z1°HyxZ and 21 Hg Z collapse to give
the spectral sequence for Z1°HxF, in Figure 10.13. As in Example 10.7,
the upper left diagonals in in the spectral sequences for X1°HxZ and
> HygZ combine to even more copies of g in the upper left diagonal in

the spectral sequence for X1H kFg. This will always be the case.
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Figure 10.10. The slice spectral sequence over K, n =-1,-3,-5.
° : i
= 0 = |
-2 A -2 |
®
—4 —4 }
-6 -6 i
-8 -8 3
®
~10 -10
-10 -8 -6 —4 -2 0 -10 -8 -6 —4 -2 0

-10

-12

-14

-16
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Figure 10.11. The slice spectral sequence over K, n = —-7,-9.

’ T 0

-2 | -2
-4 -4
-6 -6
-8 | -8
-10 3 -10
-12 i -12
-14 3 -14
-16 3 -16
-18 3 -18
-20 5 -20
—22 —22
—924 -24
—96 -26
—28 —28

-8 -6 -4 -2 0 -0 -8 -6 -4 -2 0
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Figure 10.12. The slice spectral sequence over K, n =6,7,8.

10 10
8 8
6 6
4 4
2 2
0 [ 0 [
0 2 4 6 8 10 0 2 4 6 8 10
12 12
8 8
6 6
4 4 @\®
2 NERRER
0 [ 0 L 4
0 2 4 6 8 10 0 2 4 6 8 10
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Figure 10.13. The slice spectral sequence over K, n =10,11.
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Figure 10.14. The slice spectral sequence over K, n = 12.
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Figure 10.15. The slice spectral sequence over K, n = 14.
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