
KLEIN FOUR 2-SLICES AND THE SLICES OF Σ±nHZ

CARISSA SLONE

ABSTRACT. We determine a characterization of all 2-slices of equi-
variant spectra over the Klein four-group C2 × C2. We then de-
scribe all slices of integral suspensions of the equivariant Eilenberg-
MacLane spectrum HZ for the constant Mackey functor over C2 ×
C2.
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1. INTRODUCTION

The slice filtration, a filtration of genuine G-spectra, was developed by
Hill, Hopkins, and Ravenel in their solution to the Kervaire invariant-
one problem [HHR1] and is a generalization of Dugger’s filtration [D].
It was modeled after Voevodsky’s motivic slice filtration [V] and is an
equivariant generalization of the Postnikov tower. Rather than de-
composing a G-spectrum into Eilenberg-Mac Lane specra, as does the
Postnikov tower, instead the slice filtration decomposes a G-spectrum
into “n-slices”.

There is a complete characterization of all n-slices where −1 ≤ n ≤ 1,
listed in Proposition 2.4. This, combined with Proposition 2.5, charac-
terizes all slices in degrees congruent to −1, 0, or 1, modulo the order
of G. For G = C2 ×C2, we are then only missing the (4k+2)-slices. In
Section 5 we finish this characterization with the following result.

Theorem 5.9: Suppose the only nontrivial homotopy Mackey functors
of a (C2 ×C2)-spectrum X are π1(X ) and π2(X ) where certain maps in
each Mackey functor are injective. Then X is a 2-slice. Conversely, if
X is a 2-slice, then its only nontrivial homotopy Mackey functors are
π1(X ) and π2(X ) where Σ2Hπ2(X ) is a 2-slice and Σ1Hπ1(X ) ∈ [2,4].

Much work has been done computing the slices of certain RO(G)-graded
suspensions of HGZ including G = Cpn by [HHR2] and [Y], and G = D2p
by [Z2]. [GY] computes the slices of ΣnHKF2 where K = C2 ×C2. Most
of these slices are RO(K)-graded suspensions of Hπ−i(Σ

−kρK HKF2) for
i in the range [k+3,4k]. We primarily focus on the slices of Σ±nHKZ.
Although we have cofiber sequences relating ΣnHKZ to ΣnHKF2, we
can only recover some information about the former from the latter.

As for the slices of Σ±nHKZ, the main result can be summarized as
follows:

Main Result: For n < 0, all nontrivial slices of ΣnHKZ are given by:

P i
i (Σ

nHKZ)'Σ−V HK M
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where i is in the range [4n,n]. For 0 ≤ n ≤ 5, ΣnHZ is an n-slice. Fi-
nally, for n > 5,

P i
i (Σ

nHKZ)'ΣV HK M

where i is in the range [n,4(n−4)]. The representations V and Mackey
functors M are given in Proposition 7.3, Proposition 7.4, Proposition 7.8,
Proposition 8.5, Proposition 8.6, and Proposition 8.7.

The paper is organized as follows. In Section 2, we review the slice
filtration and relevant dualities. The story for K must restrict to the
corresponding results for C2, so we review these results in Section 3.
Section 4 provides us with the main Mackey functors for K and some
pertinent results for Section 5, in which we characterize all 2-slices
over K . We provide some slice towers in Section 6 and describe the
slices of Σ−nHKZ in Section 7.1. In Section 8, we use Brown-Comenetz
duality and the slices of Σ−nHZ to obtain the slices of ΣnHKZ. We
then compute the homotopy Mackey functors of the slices of Σ±nHKZ

in Section 9. Finally, we provide some examples of the slice spectral
sequence for Σ±nHKZ in Section 10.

The author is grateful for the guidance of Bert Guillou and some help-
ful conversations with Vigleik Angelveit. Figures 10.10, 10.11, 10.12,
10.13, 10.14, and 10.15 were created using Hood Chatham’s spec-
tralsequences package.

2. BACKGROUND

In this section we give background for the slice filtration as well as
Brown-Comenetz and Anderson duality, and K-representations. Here,
except for Section 2.3, G is any finite group.

2.1. The Slice Filtration.

We start with a brief review of the equivariant slice filtration. For
more details see [HHR1, Section 4].

Definition 2.1. Let SpG be the category of genuine G-spectra. Let
τG
≥n ⊆ SpG be the localizing subcategory generated by G-spectra of the

form Σ∞
G G+∧H SkρH where H ≤G, ρH is the regular representation of

H, and k |H| ≥ n. We write X ≥ n to mean that X ∈ τG
≥n.

Definition 2.2. We say that X < n if

[SkρH+r, X ]H = 0

for all r ≥ 0 and all subgroups H ≤G such that k |H| ≥ n.
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Theorem 2.3. [HY, Corollary 2.9, Theorem 2.10] Let n ≥ 0. Then
X ≥ n if and only if

πk(X H)= 0 for k < n
|H| .

Proposition 2.4.

(1) [HHR1, Proposition 4.50] X is a 0-slice if and only if X ' HM
for some M ∈Mack(G).

(2) [HHR1, Proposition 4.50] X is a 1-slice if and only if X 'Σ1HM
for some M ∈Mack(G) with injective restrictions.

(3) [U1, Theorem 6-4] Σ−1HM is a (−n)-slice iff M has surjective
transfers for |H| ≥ n and M(G/H)= 0 for |H| < n.

It is important to note that [HHR1] uses the original slice filtration
whereas we employ the regular slice filtration from [U1]. Except for
an indexing difference of one, the results are the same.

Proposition 2.5. [HHR1, Corollary 4.25] For any k ∈Z,

Pk+|G|
k+|G|(Σ

ρX )'ΣρPk
k (X ).

That is, suspension by the regular representation commutes with the
slice filtration.

Given some surjection of groups φN : G →G/N where NEG, there is a
geometric pullback functor φ∗

N : SpG/N →SpG [H, Definition 4.1].

Proposition 2.6. [H, Conjecture 4.11], [U1, Corollary 4-5] Let NEG.
If the (G/N)-spectrum X is a k-slice over G/N, then φ∗

N X is a k[G : N]-
slice over G.

2.2. Brown-Comenetz and Anderson Duality.

As in [HS], we write IQ/Z to indicate the representing G-spectrum of
the cohomology theory X 7→ Hom(πG

−∗X ,Q/Z). The Brown-Comenetz
dual of X is then defined to be the function G-spectrum F(X , IQ/Z).
Similarly, IQ represents X 7→ Hom(π−∗X ,Q) and IQX = F(X , IQ). Fi-
nally, the Anderson dual of X is IZX = F(X , IZ), where IZ is the fiber
of the natural map IQ→ IQ/Z.

Example 2.7. [GM, Section 3A], [HS] For a torsion Eilenberg-MacLane
spectrum HM,

IZHM 'Σ−1HM∗

and

IQ/ZHM ' HM∗.
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One should note that [HS] deals with non-equivariant spectra and
[GM, Section 3A] refers specifically to HM as an F2-torsion spectrum.
This example, however, follows easily from their work and [U2, Corol-
lary I.7.3]. See [GM, Section 3A, Section 3B] for a more detailed dis-
cussion of equivariant Anderson duality.

Proposition 2.8. ([U2, Theorem I.7.7, Theorem I.7.8]) For a spectrum
X ,

X ≥ n ⇔ IQ/ZX ≤−n.

In particular,

Pn
k IQ/ZX ∼= IQ/ZP−k

−n X .

That is, the Brown-Comenetz dualization functor dualizes slice status.

2.3. K-Representations.

Recall that σ is the one-dimensional sign representation of C2. The
sign representations of K are then the pullbacks p∗

1σ, m∗σ, and p∗
2σ

where p1, m, and p2 are

C2

C2 ×C2 C2 R

C2

σp1

m

p2

σ

σ

As in [GY], we will write

α= p∗
1σ, β= p∗

2σ, and γ= m∗σ.

The regular representation of K is then ρK = 1+α+β+γ.

3. REVIEW OF C2

The Lewis diagram for a C2-Mackey functor takes the form

M(C2)

M(e)
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where M(e) has a C2/e action. Arrows going down the diagram are
called restrictions and arrows going up are called transfers.

For the sake of clarity in large diagrams, in a general Mackey functor
M we will henceforward denote M(H) by MH .

Proposition 3.1. A C2-spectrum Y is a 2-slice over C2 if and only if
the only nontrivial homotopy Mackey functors are π1(Y ) and π2(Y ),
where

(1) The restriction map rC2
e :πC2

2 (Y )→πe
2(Y ) is injective

(2) πe
1(Y )= 0.

That is, both Σ2Hπ2(Y ) and Σ1π1(Y ) are 2-slices.

Proof. Let M = π2(Y ) and N = π1(Y ) and suppose that they are the
only nontrivial homotopy Mackey functors of Y . We show that Σ2HM
and Σ1HN are 2-slices if and only if Item 1 and Item 2 hold.

First, consider Σ2HM. We immediately see that this spectrum is at
least two. As for Σ2HM ≤ 2, the cofiber sequence

(S−σ→ S0 → C2/e+)∧Σ2HM

provides the homotopy

π2(Σ−σHM) =

ker(rC2
e )

0

and π1(Σ−σHM) =

Me/im rC2
e

Zσ⊗Me

Then the cofiber sequences

(S−kσ→ S−(k−1)σ→ C2/e+∧S−(k−1)σ)∧Σ2HM

reveal that πC2
2 (Σ−kσΣ2HM)= ker(rC2

e ) for all k ≥ 2.

By definition, Σ2HM ≤ 2 if and only if πC2
2 (Σ−kσΣ2HM)= 0 for all k ≥ 2.

Consequently, Σ2HM is a 2-slice if and only if rC2
e is injective .

As for Σ1HN, by Theorem 2.3, we find that Y ≥ 2 if and only if Ne = 0.
But then Σ1HN is the pullback φ∗

KΣ
1HNe and consequently, a 2-slice

by Proposition 2.6.

Conversely, assume Y is a 2-slice. By Theorem 2.3, we know πe
1(Y )= 0

and πk(Y ) = 0 for k ≤ 0. For k ≥ 3, the slice status of Y and Defi-
nition 2.2 dictate that πk(Y ) = 0. Consequently, the only nontrivial
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homotopy Mackey functors of Y and π1(Y ) = N and π2(Y ) = M. Thus,
we have a fiber sequence Σ2HM →Y →Σ1HN.

If either Σ2HM or Σ1HN is trivial, the result follows from above. So
assume that both are nontrivial. Because Ne = 0, Σ1HN is a 2-slice.
In particular, Σ1HN ≤ 2, and since Y ≤ 2, we have that Σ2HM ≤ 2.
Consequently, as Σ2HM ≥ 2, we have that Σ2HM is a 2-slice.

�

From [GY], we will see the C2-Mackey functors in Table 1.

TABLE 1. Familiar C2-Mackey functors.

Z Z∗ f̂

Z

Z

1 2

Z

Z

2 1

0

Zσ

F2 F2
∗ f

F2

F2

1

F2

F2

1

0

F2

g

F2

0

Proposition 3.2 ([GY]). There are equivalences

(1) Σ4HC2Z'Σ2ρHC2Z
∗

(2) Σ2HC2 f 'ΣρHC2F2
∗

(3) Σ1HC2 g 'ΣρHC2 g

Note, in particular, that Item 3 makes ΣnHC2 g a 2n-slice for any n ∈Z.
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Proposition 3.3. For k, r ≥ 0,

πi(Σ
kσ+rHC2Z)=





Z i = k+ r, k even

f̂ i = k+ r, k odd

g i ∈ [r,k+ r−1], i ≡ r (mod 2)

Proof. We calculate πi(Σ
kσHC2Z) and then shift the degrees by r. The

result follows by induction on j ≥ 1 using the cofiber sequence

Σ( j−1)σ+2HZ'Σ jσHZ∗ →Σ jσHZ→Σ jσH g ' H g.

�

3.1. Slices of Σ±nHC2Z.

Because the slices for Σ±nHKZ over K restrict to the corresponding
slices over C2, we must know these slices over C2. They are as follows.

Proposition 3.4. ΣnHC2Z is an n-slice for 0≤ n ≤ 6.

Proof. For 0 ≤ n ≤ 2, this follows from Proposition 2.4 and Propo-
sition 3.1. By the same results, ΣnHZ∗ is an n-slice for 0 ≤ n ≤ 2.
Furthermore, Σ−1HZ∗ is a (−1)-slice by Proposition 2.4. Then, by
Proposition 3.1 and Proposition 2.5, ΣnHZ ' Σn−4+2ρHZ∗ is a n-slice
for 3≤ n ≤ 6.

�

Proposition 3.5. Let n ≥ 7 and take r ≡ n (mod 4) with 3≤ r ≤ 6. The
slice tower of ΣnHC2Z is

P2n−6
2n−6 =Σn−3H g ΣnHZ

P2n−10
2n−10 =Σn−5H g Σ2ρ+(n−4)HZ

...

Pn+r−2
n+r−2 =Σ n+r

2 −1H g Σ
n−r−4

2 ρ+(r+4)HZ

Pn
n =Σ n−r

2 ρ+rHZ
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Proof. The exact sequence Z∗ →Z→ g and the homotopy equivalence
ΣnHZ'Σn−4+2ρHZ∗ provide the fiber sequence

Σn−3H g →ΣnHZ→Σ2ρ+(n−4)HZ.

We then augment this sequence with its appropriate 2ρ suspensions
until Σ

n−r
2 ρ+rHZ, a slice, is reached.

�

Corollary 3.6. Let n ≥ 7 and take r ≡ n (mod 4) with 3 ≤ r ≤ 6. The
(2k)-slices of ΣnHC2Z are

P2k
2k (ΣnHC2Z)'ΣkHC2 g

for k ≡ n+1 (mod 2) and k ∈ [n+r
2 −1, . . . ,n−3

]
.

Proposition 3.7. Let n ≥ 1 and take r ≡ n (mod 4) with 1≤ r ≤ 4. The
slice cotower of Σ−nHC2Z is

Σ− n−r
2 ρ−rHZ∗ = P−n

−n

Σ− n−r
2 ρ−rHZ Σ− n+r

2 H g = P−n−r
−n−r

...

Σ−2ρ−n+4HZ Σ−n+2H g = P−2n+4
−2n+4

Σ−nHZ Σ−nH g = P−2n
−2n

Proof. The exact sequence Z∗ →Z→ g and the homotopy equivalence
Σ−nHZ'Σ2ρ−n−4HZ provide the cofiber sequence

Σ−2ρ−n+4HZ→Σ−nHZ→Σ−nH g.

We then augment this sequence with its appropriate −2ρ suspensions
until Σ− n−r

2 ρ−rHZ, a slice, is reached.
�

Corollary 3.8. Let n ≥ 1 and take r ≡ n (mod 4) with 1 ≤ r ≤ 4. The
(−2k)-slices of Σ−nHC2Z are

P−2k
−2k (Σ−nHC2Z)'Σ−kHC2 g

for k ≡ n (mod 2) and k ∈ [n+r
2 ,n

]
.
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4. K -MACKEY FUNCTORS

Recall that K = C2 ×C2 and let L, D, and R be the left, diagonal, and
right subgroups of K , respectively. The Lewis diagram for a K-Mackey
functor takes the form

MK

ML MD MR

Me

with a Weyl group action WG(H) � MH at each level. If we do not
indicate the Weyl group actions for a specific Mackey functor, then
they are trivial.

A number of Mackey functors from [GY] will make their appearance.

TABLE 2. Familiar K-Mackey functors.

mg m

F2
2

F2 F2 F2

0

p1 ∇
p2

F2

F2 F2 F2

0

1
1

1

φ∗
LDRF2 gn

F3
2

F2 F2 F2

0

p1 p2
p3

Fn
2

0 0 0

0

We will also see the duals of the Mackey functors in Table 2.
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Proposition 4.1. ([GY, Proposition 4.8]) There are equivalences

Σ−ρHK m 'Σ−2HK mg∗(1)

Σ−2HK m∗ 'Σ−ρHK mg(2)

We will also see the new Mackey functors in Table 3.

TABLE 3. New K-Mackey functors.

Z Z∗

Z

Z Z Z

Z

Z

Z Z Z

Z

Z(2,1) Z(2,1)∗

Z

Z Z Z

Z

Z

Z Z Z

Z

M

Z/4

Z/2 Z/2 Z/2

0

In Table 3, Z∗ is the dual to the constant Mackey functor Z and Z(2,1)∗

is the dual to Z(2,1), so named for consistency with [Y]. The Mackey
functor M results from the injection Z∗ ,→ Z� M. In each Mackey
functor, the blue arrows are multiplication by one and the orange ar-
rows are multiplication by two.

Proposition 4.2. We have the equivalence

Σ−ρHKZ'Σ−4HKZ
∗.
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Proof. This follows from Proposition 5.4.
�

4.1. Induced Mackey Functors.

We will now give an explicit description of K-Mackey functors induced
from the cyclic subgroups.

We recall the following standard result.

Lemma 4.3 (Shearing isomorphism). Let M be a Z[G]-module and H
a subgroup of G. Then we have an isomorphism of Z[G]-modules,

Z[G]⊗H M ∼= Z[G/H]⊗M

H G

where G acts on the left of Z[G] and diagonally on Z[G/H]⊗M via the
map g⊗m 7→ gH⊗ g ·m.

Let N be a C2-Mackey functor. Take h ∈ K and set ∆h : Ne →Z[K]⊗Z[L]
Ne and ∇h :Z[K]⊗Z[L] Ne → Ne to be n 7→ (e+h)⊗n and e⊗n,h⊗n 7→ n,
respectively.

Then ↑K
L N is

↑K
L N ∼=

NC2

Z[K /L]⊗NC2 Ne Ne

Z[K]⊗Z[L] Ne

∆

rC2
e rC2

e
∇ tC2

e tC2
e

id⊗r C
2e

∆d
∆rid⊗ t C

2e

∇d ∇r

The Weyl group WK (D) acts on ↑K
L N(D) = Ne via the isomorphism

WK (D) ∼= C2 and the given action of C2 = WC2(e) on Ne. Similarly for
the action of WK (R) on Ne. As for L, WK (L) acts only on Z[K /L]. Fi-
nally, WK (e)= K acts on the Z[K] factor of Z[K]⊗Z[L] Ne.

We are now going to define the unit map M →↑K
L ↓K

L M. The pullback
along K�K /L ∼= C2 of Z ,→Z[C2] is an inclusion Z ,→Z[K /L]. Tensor-
ing with Me gives

Me Z[K /L]⊗Me.
iL
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We will also use iL to denote the inclusion of K /L fixed points

ML Z[K /L]⊗ML.
iL

Consider

∇r :Z[K /L]⊗Me → Me and ∆r : Me →Z[K /L]⊗Me.

Let ∇r be the action map and define ∆r by m 7→ e⊗m+ r⊗ r ·m. Then,
for M ∈Mack(K), the map M →↑K

L ↓K
L M is

MK

ML MD MR

Me

ML

Z[K /L]⊗ML Me Me

Z[K /L]⊗Me

∆r

∇r

id⊗ r ·r Le

∆d ∆r

id⊗ r · t Le ∇d ∇r

rK
L




iL

rD
e

rR
e




iL

Again, WK (D) acts on Me via the C2-action WC2(e) � Me. The same
applies for WK (R) � Me. Note we have used Lemma 4.3 to rewrite
the bottom group in ↑K

L ↓K
L M. We now have a diagonal action K /L on

Z[K /L]⊗ML. Similarly, K /e acts diagonally on Z[K /L]⊗Me.

Example 4.4. For M =Z, ↑K
L Z and Z→↑K

L Z are as follows.

Z

Z Z Z

Z

Z

Z[K /L]⊗Z Z Z

Z[K /L]⊗Z

∆r

∇r

id⊗ r ·1

∆d ∆rid⊗ r ·2 ∇d ∇r

1




iL

1

1




iL

Again, blue denotes multiplication by one and orange multiplication
by two.
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5. 2-SLICE CHARACTERIZATION

Consider a K-spectrum X . Then by Proposition 2.5,

Pn
n X 'Σ n−r

4 ρPr
r

(
Σ− n−r

4 ρX
)

where n ≡ r (mod 4) and 0 ≤ r ≤ 3. Thus, to know the slices of X , we
need only know the 0-, 1-, 2-, and 3-slices of certain suspensions of X .
Proposition 2.4 and Proposition 2.5 characterize the 0-, 1-, and 3-slices.
We now characterize the 2-slices.

Proposition 5.1. Let G be a finite group, H an index two subgroup of
G, and σH the sign representation from G → G/H. For a G-spectrum
X , if ↓G

H πn+1(X ) = 0 =↓G
H πn(X ), the natural map Σ−σH

X → X induces
an isomorphism on πn. In particular, if πH

n+1(X ) = 0 = πG
n (X ), then

πG
n (Σ−σH

X )= 0.

Proof. Because σH is one-dimensional we may construct Σ−σH
X with

the cofiber sequence (S−σH → S0 →G/H+)∧X . The resulting long exact
sequence in homotopy is

↑G
H↓G

H πn+1(X )→πn(Σ−σH
X )→πn(X )→↑G

H↓G
H πn(X ).(3)

As ↑G
H↓G

H πn+1(X )= 0=↑G
H↓G

H πn(X ), we find that πn(Σ−σH
X )∼=πn(X ).

Now suppose that πH
n+1(X ) = 0 = πG

n (X ). Because πH
n+1(X ) is the value

of ↑G
H↓G

H πn+1(X ) at the orbit G/H, the left three terms of (3) prove the
exact sequence

0→πG
n (Σ−σH

X )→ 0.

Consequently, πG
n (Σ−σH

X )= 0.
�

Corollary 5.2. Let HM be an Eilenberg-MacLane G-spectrum and
V ∼= s⊕⊕r

i=1σ
Hi be a real representation with s copies of the trivial

representation and each σHi the sign representation from G → G/Hi,
where Hi is an index two subgroup of G. Then Σ−V HM does not have
nontrivial homotopy above degree −s.

Proof. First apply (3) to X1 := Σ−σH1 HM with n ≥ 1. Then repeat
for X i :=Σ−σHi X i−1 where 2 ≤ i ≤ r. Then Σ−V HM ' Σ−sXr has no
homotopy above degree −s.

�
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Recall from Section 2.3 that α, β, and γ are the sign representations of
K .

Lemma 5.3. Let M be a K-Mackey functor. The nontrivial homotopy
of Σ−βHM is

π0 =

kerrK
L

0 kerrD
e kerrR

e

0

π−1 =

ML/im rK
L

ZL
σ⊗ML Me/im rD

e Me/im rR
e

ZL
σ⊗Me

ϕKL
r

π
1⊗ r ·r Le

1⊗ r · t Le

ϕDe
r

ϕRe
r

π π

Here, ϕKL
r is induced by ∆r in the square

ML ML/im rK
L

Z[K /L]⊗ML ZL
σ⊗ML

π

∆r ϕKL
r

qL

and is given by ϕKL
r (m)= m−r ·m. The maps ϕDe

r : Me/im rD
e →ZL

σ⊗Me
and ϕRe

r : Me/im rR
e →ZL

σ⊗Me are defined similarly.

Proof. We have the cofiber sequence (S−β → S0 → K /L+)∧HM. The
result then follows from the description of the map M →↑K

L ↓K
L M given

in Section 4.1.
�

Proposition 5.4. Let M be a K-Mackey functor. The nontrivial homo-
topy of Σ−α−β−γHM is

π0 =

ker(rK
L +rK

D +rK
R )

0 0 0

0

π−1 =

E2

ZL
σ⊗

kerrL
e

ZD
σ⊗

kerrD
e

ZR
σ⊗

kerrR
e

0
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π−2 =

E3

ZL
σ⊗

kerϕLe
r

ZD
σ⊗

kerϕDe
r

ZR
σ⊗

kerϕRe
r

0

π−3 =

(Me/im ϕDe
r )/im ϕ

R,L
r

Me/im ϕLe
d Me/im ϕDe

r Me/im ϕRe
r

Me

ϕd

ϕl
ϕd

π π π

ϕdLe
l

ϕrDe
d ϕrRe

l
π π π

where E1, E2, and E3 are extensions

Me/im ϕDe
r E3 (Me/im rR

e )/im rL
e

kerrD
e E2 E1

kerrR
e E1 ML/im rK

L

Let ϕ∗
h : Me → Me

′
be one of the maps shown. Then ϕ∗

h(m) = m−h ·m.
Additionally, (Me/im ϕDe

r )/im ϕ
R,L
r is the cokernel of the map

(Me/im rR
e )/im rL

e Me/im ϕDe
r .

ϕ
R,L
r

Proof. Lemma 5.3 supplies the homotopy for Σ−βHM. We continue
constructing Σ−α−β−γHM iteratively. The cofiber sequence

(S−α→ S0 → K /R+)∧Σ−βHM

results in the homotopy of Σ−α−βHM

π0 =

ker(rK
L +rK

R )

0 kerrK
D 0

0

π−1 =

E1

ZL
σ⊗

kerrL
e

kerϕDe
r

ZR
σ⊗

kerrR
e

0
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π−2 =

(Me/im rD
e )/im rL

e

ZL
σ⊗

Me/im rL
e

ZD
σ⊗

Me/im ϕDe
r

ZR
σ⊗

Me/im rR
e

ZD
σ ⊗Me

ϕ
D,L
r

ϕ
D,L
r

ϕ
D,L
d

π π π

ϕLe
d

ϕrDe
d

1⊗
ϕ

Re
rπ π

1⊗
π

Finally, the cofiber sequence (S−γ → S0 → K /D+)∧Σ−α−βHM provides
the result.

�

Lemma 5.5. Let φ : G → N and ψ : G → M be group homomorphisms.
Then

ker(φ,ψ)= ker(φ)∩ker(ψ)= ker(φ|ker(ψ))

where (φ,ψ) : G → N ⊕M is defined by g 7→φ(g)⊕ψ(g).

Proposition 5.6. Let M be a K Mackey functor where the restrictions
rL

e , rD
e , and rR

e are injective. The following are equivalent.

(A) The sequence

MK
rK

L +rK
D+rK

R−−−−−−−→ ML ⊕MD ⊕MR



−rL

e rL
e 0

rD
e 0 −rD

e
0 −rR

e rR
e




−−−−−−−−−−−→ M3
e

is exact.
(B) im rK

H1
= (rH1

e )−1(im rH2
e )∩(rH1

e )−1(im rH3
e ) where H1, H2, H3 are

distinct order two subgroups of K . This equality is represented
by the diagram below.

im rK
H1

im rH2
e ∩ im rH3

e

MH1 Me
rH1

e

Proof. Without loss of generality, let H1 = L, H2 = D, and H3 = R. For
convenience, set I = (rL

e )−1(im rD
e )∩ (rL

e )−1(im rR
e ).

Item (A) ⇒ Item (B):

Let x ∈ im rK
L . Then we have k ∈ MK such that rK

L (k)= x. Additionally,
rL

e (x)= rD
e rK

D(k)= rR
e rK

R (k). It follows that x ∈ I.
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Now suppose x ∈ I. We then have y ∈ D and z ∈ R such that

rL
e (x)= rD

e (y)= rR
e (z).

Thus, (x, y, z) ∈ ker

(−rL
e rL

e 0
rD

e 0 −rD
e

0 −rR
e rR

e

)
. Consequently, we have x = rK

L (k) for

some k ∈ MK ; that is, x ∈ im rK
L .

Item (B) ⇒ Item (A):

Let (x, y, z) ∈ ker

(−rL
e rL

e 0
rD

e 0 −rD
e

0 −rR
e rR

e

)
. Then rL

e (x)= rD
e (y)= rR

e (z), so x ∈ im rK
L .

So there is some k ∈ MK such that x = rK
L (k). Because rD

e and rR
e are

injective, it must be that y= (rD
e )−1(rL

e (x)) and z = (rR
e )−1(rL

e (x)). Hence,
Item (A) is exact.

�

Proposition 5.7. The K-spectrum Σ1HN is a 2-slice if and only if
Ne = 0 and NK → NL ⊕ND ⊕NR is injective.

Proof. By Theorem 2.3, we find that Σ1HN ≥ 2 if and only if Ne = 0.
Consequently, going forward we may assume Ne = 0.

Now Σ1HN ≤ 2 if and only if [SkρH+r,Σ2HN]H = 0 for all k ≥ 3
|H| and

r ≥ 0. Because Ne = 0, Proposition 3.1 implies that i∗H(Σ1HN) is a
2-slice, where H is an order two subgroup of K . Thus, to finish the
equivalence, we only need consider

[SkρK+r,Σ1HN]K = [Sk+r−1,Σ−kρK HN]K

for all k ≥ 1 and r ≥ 0.

From Corollary 5.2, we need only concern ourselves with [S0,Σ−kρK HN].
From Proposition 5.4,

π0(Σ−ρHN)=φ∗
K (kerrK

L ∩kerrK
D ∩kerrK

R ).

Therefore Proposition 5.1 shows that π0(Σ−ρHN) vanishes if and only
if π0(Σ−kρHN) vanishes for all k ≥ 1. Hence, Σ1HN ≤ 2 if and only
if kerrK

L ∩kerrK
D ∩kerrK

R = {0}. By Lemma 5.5 this is equivalent to
NK → NL ⊕ND ⊕NR being injective.

�
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Proposition 5.8. The spectrum Σ2HM is a 2-slice if and only if all
restrictions of M are injective and the sequence

MK
rK

L +rK
D+rK

R−−−−−−−→ ML ⊕MD ⊕MR



−rL

e rL
e 0

rD
e 0 −rD

e
0 −rR

e rR
e




−−−−−−−−−−−→ M3
e

is exact.

Proof. Note that Σ2HM ≥ 2, so we just need to show that Σ2HM ≤ 2.
Now Σ2HM ≤ 2 if and only if [SkρH+r,Σ2HM]H = 0 for all k ≥ 3

|H| and
r ≥ 0. For H an order two subgroup of K , i∗HΣ

2HM ≤ 2 if and only if rH
e

is injective. Consequently, going forward we may assume rL
e , rD

e , and
rR

e are injective.

To finish the equivalence, we only need consider

[SkρK+r,Σ2HM]K = [Sk+r−2,Σ−kρK HM]K

for all k ≥ 1 and r ≥ 0. By Corollary 5.2, it is enough to examine
[S0,Σ−kρK HM] and [S−1,Σ−kρK HM]. From Proposition 5.4,

π0(Σ−ρHM)=φ∗
K (kerrK

L )

and

π−1(Σ−ρHM)=φ∗
K

(
(rL

e )−1(im rD
e )∩ (rL

e )−1(im rR
e )

im rK
L

)
.

Note that Proposition 5.4 states

π0(Σ−ρHM)=φ∗
K (kerrK

L ∩kerrK
D ∩kerrK

R ),

but because the lower restrictions are injective, these kernels coincide.
Proposition 5.1 then yields that

πG
0 (Σ−kρHM)∼=πG

0 (Σ−ρHM)= kerrK
L

πG
−1(Σ−kρHM)∼=πG

−1(Σ−ρHM)= (rL
e )−1(im rD

e )∩ (rL
e )−1(im rR

e )
im rK

L

for all k ≥ 2. By Definition 2.2, we find that Σ2HM ≤ 2 if and only
if these two homotopy groups vanish. Hence, Σ2HM ≤ 2 if and only
if kerrK

L = {0} and im rK
L = (rL

e )−1(im rD
e )∩ (rL

e )−1(im rR
e ). Because the

homotopy of Σ−α−β−γHM is invariant under the order of construction
– that is, whether HM is suspended by say −α or −β first – we find
that all upper restrictions must be injective and that Item (B) must
hold.

�
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Theorem 5.9. Suppose the only nontrivial homotopy Mackey functors
of a K-spectrum X are π1(X ) and π2(X ) where

(1) All restrictions of π2(X ) are injective and the sequence

πK
2 (X )

rK
L +rK

D+rK
R−−−−−−−→πL

2 (X )⊕πD
2 (X )⊕πR

2 (X )



−rL

e rL
e 0

rD
e 0 −rD

e
0 −rR

e rR
e




−−−−−−−−−−−→πe
2(X )3

is exact.
(2) πe

1(X )= 0.
(3) πK

1 (X )→πL
1 (X )⊕πD

1 (X )⊕πR
1 (X ) is injective.

Then X is a 2-slice.

Conversely, if a K-spectrum X is a 2-slice, then its only nontrivial
homotopy Mackey functors of a K-spectrum X are π1(X ) and π2(X )
where Σ2Hπ2(X ) is a 2-slice and Σ1Hπ1(X ) ∈ [2,4], i.e., both Item 1
and Item 2 hold.

Proof. Let π2(X ) = M and π1(X ) = N. If these are the only nontrivial
homotopy Mackey functors of X , we have a fiber sequence

Σ2HM → X →Σ1HN.(4)

By Proposition 5.7 and Proposition 5.8, conditions (1) - (3) show that
Σ2HM and Σ1HN are 2-slices. Now if Σ2HM and Σ1HN are 2-slices,
then X must be a 2-slice as well.

Conversely, suppose that X is a 2-slice. We then find that X has no
homotopy above degree two and none below degree one; thus, we have
the fiber sequence in (4). Because X ≥ 2 and Σ2HM ≥ 2, it follows that
Σ1HN ≥ 2. So by Theorem 2.3, Ne = 0. That Σ1HN ≤ 4 follows from a
similar argument as in Proposition 5.7.

Rotating this fiber sequence gives HN → Σ2HM → X . As HN is a
0-slice and X is a 2-slice, we have Σ2HM ∈ [0,2], so it must be that
Σ2HM = 2. Consequently, by Proposition 5.8, Item 1 holds.

�

It is not necessary for condition (3) to hold for X to be a 2-slice as we
show in the following example.
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Example 5.10. Take X 'Σ1+βHE where

E =

F2

0 F2 F2

F2

Then X is a 2-slice with π2(X ) = f and π1(X ) = g. But Σ1H g is not a
2-slice.

Proof. We can construct Σ1+βHE using the cofiber sequence

(K /L+ → S0 → Sβ)∧Σ1HE.

The resulting long exact sequence in homotopy is

π2 0

0

0 0 0

F2

π1

0

0 F2 F2

F2[K /L]

F2

0 F2 F2

F2

F2

0 0 0

0

∆ ∆
∇ ∇

11

11




0

1

1




∇

So π2(X ) = f and π1(X ) = g. From this we see that X ≥ 2 by Theo-
rem 5.9. Note that Σ2H f is a 2-slice and Σ1H g is a 4-slice.

To show that X ≤ 2, we need [SkρH+r,Σ1+βHE]H = 0 for all k ≥ 3
|H|

and r ≥ 0. As i∗H(X ) ' Σ2HC2 f is a 2-slice, where H is an order two
subgroup of K , we only need to consider

[SkρK+r,Σ1+βHE]K = [Sk+r−1,Σ−α−γ−(k−1)ρK HE]K

for all k ≥ 1 and r ≥ 0.

By Corollary 5.2, it is sufficient to examine [S0,Σ−α−γ−(k−1)ρK HE]K for
all k ≥ 1.
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From Lemma 5.3 we find that [S0,Σ−α−γHE]= 0. Consequently, given
any k ≥ 1, repeated application of Proposition 5.1 shows that

[S0,Σ−α−γ−(k−1)ρK HE]= 0.

That is, X is a 2-slice.
�

6. COTOWERS FOR Σ−nHZ

We determine the slice towers of Σ−nHZ and Σ−nHm∗ for 1≤ n ≤ 5.

Example 6.1. By Proposition 2.4 and Proposition 4.1, Σ−1Hm∗ is a
(−2)-slice and Σ−2Hm∗ is a (−4)-slice.

Alternatively, by Proposition 4.1, ΣρΣ−1Hm∗ ' Σ1Hmg, which is a 2-
slice by Proposition 5.7. Consequently, Σ−1Hm∗ is a (−2)-slice.

Example 6.2. By [U1, Theorem 6-4], the cotower for Σ−1HZ is

Σ−1HZ∗ = P−1
−1

Σ−1HZ(2,1) Σ−1Hm∗ = P−2
−2

Σ−1HZ Σ−1H g = P−4
−4

Example 6.3. We suspend the cotower in Example 6.2 by −1 to get
the cotower for Σ−2HZ.

Σ−2HZ∗ = P−2
−2

Σ−2HZ(2,1) Σ−2Hm∗ = P−4
−4

Σ−2HZ Σ−2H g = P−8
−8
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Example 6.4. We suspend the cotower in Example 6.3 by −1 to get a
partial cotower for Σ−3HZ.

Σ−3HZ∗ = P−3
−3

Σ−3HZ(2,1) Σ−3Hm∗

Σ−3HZ Σ−3H g = P−12
−12

The issue here is that Σ−3Hm∗ is not a slice.

However, the short exact sequence

g2 →φ∗
LDR(F2

∗)→ m∗

provides the tower

P−6
−6 =Σ−3Hφ∗

LDR(F2
∗)→Σ−3Hm∗ →Σ−2H g2 = P−8

−8 .

Consequently, the remaining slices of Σ−3HZ are P−6
−6 =Σ−2p+1Hφ∗

LDR(F2)
and P−8

−8 =Σ−2H g2.

Example 6.5. We suspend the cotower in Example 6.4 by −1 to get a
partial cotower for Σ−4HZ.

Σ−4HZ∗ = P−4
−4

Σ−4HZ(2,1) Σ−4Hm∗

Σ−4HZ Σ−4H g = P−16
−16

Again, Σ−4Hm∗ is not a slice. But suspending the cotower for Σ−3Hm∗

by −1 provides the missing slices: P−8
−8 = Σ−4Hφ∗

LDR(F2
∗) and P−12

−12 =
Σ−3H g2.

Example 6.6. We suspend the cotower in Example 6.5 by −1 and aug-
ment with the −ρ suspension of Example 6.2 to get a partial cotower
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for Σ−5HZ.

Σ−ρ−1HZ∗ = P−5
−5

Σ−ρ−1HZ(2,1) Σ−ρ−1Hm∗ = P−6
−6

Σ−ρ−1HZ Σ−2H g = P−8
−8

Σ−5HZ(2,1) Σ−5Hm∗

Σ−5HZ Σ−5H g = P−20
−20

This time, the cotower for Σ−5Hm∗ is

Σ−3ρ+1Hφ∗
LDR(F2)= P−10

−10

Σ−5Hφ∗
LDR(F2

∗) Σ−3H g3 = P−12
−12

Σ−5Hm∗ Σ−4H g2 = P−16
−16

The remaining slices of Σ−5HZ are then P−10
−10 =Σ−3ρ+1Hφ∗

LDR(F2),
P−12
−12 =Σ−3H g3, and P−16

−16 =Σ−4H g2.
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Example 6.7. The partial cotower for Σ−7HZ follows by suspending
the partial cotower in Example 6.6 by −2.

Σ−ρ−3HZ∗ = P−7
−7

Σ−ρ−3HZ(2,1) Σ−ρ−3Hm∗

Σ−ρ−3HZ Σ−4H g = P−16
−16

Σ−7HZ(2,1) Σ−7Hm∗

Σ−7HZ Σ−7H g = P−28
−28

We now have a cotower for Σ−ρ−3Hm∗.

P−10
−10 =Σ−ρ−3Hφ∗

LDR(F2
∗)→Σ−ρ−3Hm∗ →Σ−3H g2 = P−12

−12 ,

And a cotower for Σ−7Hm∗.

Σ−4ρ+1Hφ∗
LDR(F2)= P−14

−14

Σ−ρ−5Hφ∗
LDR(F2

∗) Σ−4H g3 = P−16
−16

Σ−7Hφ∗
LDR(F2

∗) Σ−5H g3 = P−20
−20

Σ−7Hm∗ Σ−6H g2 = P−24
−24

We now see interference from the cotower for Σ−7Hm∗. Its (−14)-slice
appears below the (−16)-slice in the partial cotower for Σ−7HZ. Addi-
tionally, both of these (partial) cotowers have a (−16)-slice.

Proposition 7.4 and Proposition 7.8 tell us that P−14
−14(Σ−7HZ) is indeed

Σ−4ρ+1Hφ∗
LDR(F2) and P−16

−16(Σ−7HZ) is Σ−4H g∨Σ−4H g3 'Σ−4H g4.
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All partial cotowers for Σ−nHZ will follow this pattern of utilizing the
homotopy equivalence Σ−nHZ∗ ' Σ−ρ−n+4HZ to augment the bottom
of the cotower for Σ−nHZ with the cotower for Σ−ρ−n+4HZ.

7. SLICES OF Σ−nHKZ

Here we determine the slices of Σ−nHKZ.

Proposition 7.1. ΣnHZ is an n-slice for 1 ≤ n ≤ 5 and Σ−nHZ∗ is a
(−n)-slice for 1≤ n ≤ 4.

Proof. The K-spectra Σ1HZ, Σ1HZ∗, Σ2HZ, and Σ−1HZ∗ are 1-, 2-,
and (−1)-slices by Proposition 2.4 and Theorem 5.9. The result then
follows from Proposition 4.2 and the resulting equivalences

Σ5HZ'Σρ+1HZ∗, Σ4HZ'ΣρHZ∗, and Σ3HZ'Σρ−1HZ∗.

�

7.1. The (−n)-slice. We first establish a comparison of the slices of
Σ−nHZ with those of Σ−n+4HZ.

Proposition 7.2. Let n ≥ 5. Then

P−k
−k (Σ−nHZ)'Σ−ρP−k+4

−k+4(Σ−n+4HZ)

for k ∈ [n,2n−1].

Proof. By Proposition 4.2, we have

Σ−ρP−k+4
−k+4(Σ−n+4HZ)'ΣρΣ−ρP−k

−k (Σ−n+4−ρHZ)' P−k
−k (Σ−nHZ∗).

Thus, it is sufficient to compare the (−k)-slices of Σ−nHZ and Σ−nHZ∗.

Recall the injection Z∗ →Z→M from Section 4. We wish to show that

Σ−nHZ∗ →Σ−nHZ
µ−→Σ−nM(5)

induces an equivalence on slices strictly above level −2n.

We take the Brown-Comenetz dual of (5) to find the fiber sequence

ΣnHM ι−→ΣnIQ/ZHZ→ΣnIQ/ZHZ∗

Now ΣnHM is n-connective, and as its underlying spectrum is con-
tractible, when n ≥ 1, we know ΣnHM ≥ 2n by Theorem 2.3. Then
[HHR1, Lemma 4.28] provides that ι induces an equivalence on slices
strictly below level 2n. It then follows from Proposition 2.8 that µ in
(5) induces an equivalence on slices strictly above level −2n.

�
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This is an analogous result to [GY, Proposition 5.3]. However, the
injection Z∗ ,→Z allows us to simplify the argument.

Proposition 7.3. Let n ≥ 1 and take r ≡ n (mod 4) with 1 ≤ r ≤ 4.
Then the top slice of Σ−nHZ is

P−n
−n (Σ−nHZ)=Σ− n−r

4 ρ−rHZ∗

Proof. Section 6 gives the result for 1 ≤ n ≤ 4, and n ≥ 5 follows from
repeated application of Proposition 7.2.

�

7.2. The (−4k)-slices.

Here we determine the (−4k)-slices of Σ−nHZ.

Proposition 7.4. For n ≥ 1,

P−4k
−4k (Σ−nHZ)'





Σ−kρHmg 4k = n+2

Σ−kH g
1
2 (4k−n−1) 4k ∈ [n+1,2n−2]

n ≡ 1 (mod 2)

Σ−kρH(g
1
2 (4k−n+2)−3 ⊕φ∗

LDRF2)
4k ∈ [n+3,2n],
n ≡ 0 (mod 2)

Σ−kH gn−k+1 4k ∈ [2n+1,4n]

Proof. We have the equivalence

P−4k
−4k (Σ−nHZ)'Σ−kρHπ0(Σ−n+kρHZ).

The restriction to each cyclic subgroup agrees with the slices found
in Proposition 3.7 and Proposition 7.5 gives the fixed points. All that
remains is to verify the result for 4k ∈ [n+ 2,2n] with n even. For
4k ∈ [n+2,2n), this follows from Example 6.2, Example 6.3, Exam-
ple 6.4, Example 6.5, and Proposition 7.2.

Now let 4k = 2n. The transfer tK
L fits in the cofiber sequence

(Σ−n+kρHZ)L (Σ−n+kρHZ)K (Σ−n+kρ+βHZ)K .
tK

L

This gives the exact sequence

(6) πL
n(ΣkρHZ) πK

n (ΣkρHZ) πK
n (Σkρ+βHZ).

tK
L

We wish to show this transfer is trivial. By Proposition 7.5 and Propo-
sition 7.7, (6) becomes

F2 F
1
2 (n+2)
2 F

1
2 (n+2)
2 0=πL

n−1(ΣkρHZ).
tK

L
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Thus, tK
L must be zero. A similar argument shows that tK

R and tK
D are

trivial as well.

The restriction rK
L fits into the cofiber sequence

(Σ−n+kρ−βHZ)K (Σ−n+kρHZ)K (Σ−n+kρHZ)LrK
L

This gives the exact sequence

(7) πK
n (Σkρ−βHZ) πK

n (ΣkρHZ) πL
n(ΣkρHZ).

rK
L

We wish to show this restriction is surjective. By Proposition 7.5 and
Proposition 7.6, (7) becomes

πL
n+1(ΣkρHZ)= 0 F

1
2 (n)
2 F

1
2 (n)+1
2 F2

rK
L

Thus, rK
L must be surjective. A similar argument shows that rK

R and
rK

D are surjective as well.

All that remains to be shown is that the restrictions have distinct ker-
nels. Consider the cofiber sequence

Σ−n+kρ−βHZ Σ−n+kρHZ K /L+∧Σ−n+kρHZ.

This results in the exact sequence

(8) πn(Σkρ−βHZ) πn(ΣkρHZ) ↑K
L ↓K

L πn(ΣkρHZ)

which by Proposition 3.3, Proposition 7.5, and Proposition 7.6 is

F
n
2
2 F

n
2 +1
2 F2

0 F2 F2 F2 F2 F2 F2[K /L] 0 0

0 0 0

ϕ rK
L

0 1 1 ∆ 0 0

0 0

Each restriction is surjective with kernel of rank n
2 . As

dimπK
n (ΣkρHZ)= n

2
+1,

it is sufficient to show that the kernels are pairwise distinct.

Because the diagram on the left commutes, we find that

im ϕ∩ker(rK
R )= {0} and im ϕ∩ker(rK

D)= {0}.
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As im ϕ = ker(rK
L ), we have that ker(rK

L ) is distinct from ker(rK
R ) and

ker(rK
D). Replacing β by α shows that ker(rK

R ) and ker(rK
D) are distinct

as well.
�

Proposition 7.5. For G = K and k ≥ 1,

πK
i (ΣkρHZ)=





Z i = 4k

F
1
2 (4k−1−i)
2 i ∈ [2k+1,4k−1] odd

F
1
2 (4k+2−i)
2 i ∈ [2k+2,4k−2] even

Fi−k+1
2 i ∈ [k,2k]

Proof. Note that

P−4k
−4k (Σ−4kHZ)'Σ−kρHπ4k(ΣkρHZ).

Thus, by Proposition 7.3, Hπ4k(ΣkρHZ) ' HZ. So the result holds for
i = 4k and we only need consider i ≤ 4k−1.

We will use the resulting long exact sequences in homotopy resulting
from the cofiber sequences

(K /L+ → S0 → Sβ)∧Σkρ+1HZ(9)

(K /R+ → S0 → Sα)∧Σkρ+β+1HZ(10)

(K /D+ → S0 → Sγ)∧Σkρ+α+β+1HZ(11)

ΣkρHZ 2−→ΣkρHZ→ΣkρHF2(12)

where (12) is induced by the short exact sequence of Mackey functors
Z

2−→Z→ F2.

For k = 0, (9) - (11) provide that

πn(ΣρHZ)=





Z n = 4

0 n = 3

mg n = 2

g n = 1

Consequently, the result holds for k = 1. We now proceed by induction
on k. Assume the result holds for k. By restriction to L, D, and R,
we find that πi(Σ

(k+1)ρHZ) is a pullback over K for i ≤ 4k+3 odd, and
consequently, 2-torsion as in [Z1, Remark 2.13].
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In the long exact sequence of fixed points resulting from (9) - (11), we
have at the K /K level,

π
C2
i (Σ2kρC2+1HC2Z) πK

i (Σkρ+1HZ) πK
i (Σkρ+β+1HZ)

π
C2
i (Σ(2k+1)ρC2 HC2Z) πK

i (Σkρ+β+1HZ) πK
i (Σkρ+α+β+1HZ)

π
C2
i (Σ(2k+2)ρC2−1HC2Z) πK

i (Σkρ+α+β+1HZ) πK
i (Σ(k+1)ρHZ)

When 2k+1≤ i ≤ 4k+1, by Proposition 3.3,

π
C2
i (Σ2kσ+2k+1HC2Z)=




F2 i odd

0 i even

Now for i even, we have in our long exact sequence,

0 πK
i (Σkρ+1HZ) πK

i (Σkρ+β+1HZ)

F2 πK
i−1(Σkρ+1HZ) πK

i−1(Σkρ+β+1HZ) 0

Consequently, when i is even,

2-rk πK
i (Σkρ+β+1HZ)≤ 2-rk πK

i (Σkρ+1HZ)+1,

where equality occurs if πK
i (Σkρ+β+1HZ)=πK

i (Σ(kρ+1HZ)⊕F2.

And, when i is odd,

2-rk πK
i (Σkρ+β+1HZ)≤ 2-rk πK

i (Σkρ+1HZ).

For i ≤ 2k we have

0 πK
i (Σkρ+1HZ) πK

i (Σkρ+β+1HZ) 0

Thus, for i ≤ 2k,

πK
i (Σkρ+β+1HZ)∼=πK

i (Σkρ+1HZ).

A similar statement holds for

2-rk πK
i (Σkρ+α+β+1HZ) and 2-rk πK

i (Σ(k+1)ρHZ).
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From [GY, Corollary 7.2], in the long exact sequence resulting from
(12), we have

Fl
2
∼=πK

2i+1(Σ(i+1)ρHZ) 0−→πK
2i+1(Σ(i+1)ρHZ) ,→πK

2i+1(Σ(i+1)ρHF2)∼= F2i+1
2

�πK
2i(Σ

(i+1)ρHZ)∼=πK
2i−1(ΣiρHZ)∼= Fi

2.

Consequently, l = i+1 and πK
2i+1(Σ(i+1)ρHZ) ∼= Fi+1

2 . We then have in
our long exact sequence

πK
2i+2(Σ(i+1)ρHZ)→πK

2i+2(Σ(i+1)ρHF2)∼= F2i+3
2 � Fi+1

2
∼=πK

2i+1(Σ(i+1)ρHZ).

Thus,

2-rk πK
2i+2(Σ(i+1)ρHZ)≥ i+2= 2-rk πK

2i+1(ΣiρHZ)+3.

We achieve the maximum bound for 2-rk πK
2i+2(Σ(i+1)ρHZ); thus,

πK
2i+2(Σ(i+1)ρHZ)∼=πK

2i+1(ΣiρHZ)⊕F3
2
∼= Fi+2

2 .

The rest of the result now follows from this long exact sequence in a
similar manner.

�

Proposition 7.6. For G = K and k ≥ 1,

πK
i (Σkρ−βHZ)=





F
1
2 (4k−i)
2 i ∈ [2k,4k−2] even

F
1
2 (4k−i−1)
2 i ∈ [2k−1,4k−3] odd

Fi−k+1
2 i ∈ [k,2k]

Proof. This follows from a similar argument as in Proposition 7.5.
�

Proposition 7.7. For G = K and k ≥ 1,

πK
i (Σkρ+βHZ)=





F
1
2 (4k−i)+1
2 i ∈ [2k+2,4k] even

F
1
2 (4k−i+1)
2 i ∈ [2k+1,4k−1] odd

Fi−k+1
2 i ∈ [k,2k]

Proof. This follows from a similar argument as in Proposition 7.5.
�
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7.3. The (−4k−2)-slices.

We now determine the (−4k−2)-slices of Σ−nHZ.

Proposition 7.8. For even n, Σ−nHZ has no (−4k−2)-slices, except
for possibly the −n slice. For odd n ≥ 1,

P−4k−2
−4k−2(Σ−nHZ)'





Σ−kρ−1Hm∗ 4k+2= n+1

Σ−kρ−1Hφ∗
LDRF2

∗ 4k+2 ∈ (n+1,2n]

Proof. When n is even, the slices in Proposition 7.4 restrict to the all of
the appropriate slices for Σ−nHC2Z. If, then, Σ−nHKZ has a (−4k−2)-
slice, it must be a pullback over K . But this is a contradiction as such
slices are (−4k)-slices. Thus, for n even, Σ−nHKZ has no (−4k− 2)-
slices.

Now let n be odd. We first handle the case 4k+2 = 2n. By Proposi-
tion 2.5,

P−4k−2
−4k−2(Σ−nHKZ)'Σ−(k+1)ρP2

2(Σ−n+(k+1)ρHKZ).

For clarity, let

X := P2
2(Σ−n+(k+1)ρHKZ).

Now from Corollary 3.8,

i∗H X 'Σ1HC2 g.

where H is L, D, or R. Thus, by Theorem 5.9,

π2(X )=φ∗
K B and π1(X )= A

where B is some group and

A =

AK

F2 F2 F2

0

and AK → F2 ⊕F2 ⊕F2 is injective. That is, AK = Fn
2 with 0≤ n ≤ 3.

If B 6= 0, then X cannot be a 2-slice. Consequently, X 'Σ1HA.

Because Z is invariant under the automorphisms of K , the spectrum
Σ−nHZ is as well. Therefore, the slices of Σ−nHZ are also invariant
under the automorphisms of K .
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Thus, A must be one of the following:

φ∗
LDR f , m, mg, or φ∗

LDRF2.

Except for degree −k − 1, Σ−(k+1)ρ+1HA has the same homotopy for
each choice of A.

For degree −k−1, π−k−1(Σ−(k+1)ρ+1HA) is a pullback over K of dimen-
sion 3, 2, 1, or 0.

From Proposition 10.4 we find that πK
−k−1(Σ−(k+1)ρ+1HA)= 0. The only

choice of A that meets this requirement is φ∗
LDRF2.

Now let 4k+2 ∈ [n+1,2n−1]. The base cases are established in Exam-
ple 6.2, Example 6.4, and Example 6.6. The result then follows from
Proposition 7.2.

�

8. SLICES OF ΣnHZ

Recall from Proposition 7.1 that ΣnHZ is a slice for 1≤ n ≤ 5.

Proposition 8.1. Let n ≥ 6. Then

Pk
k (ΣnHZ)'ΣρPk−4

k−4(Σn−4HZ)

for k ∈ [n,2n−7].

Proof. We employ a similar argument as in Proposition 7.2. Note that

Pk
k (ΣnHZ)'ΣρPk−4

k−4(Σn−ρHZ)'ΣρPk−4
k−4(Σn−4HZ∗).

Consequently, it is sufficient to compare the (k−4)-slices of Σn−4HZ
and Σn−4HZ∗.

The exact sequence Z∗ →Z→M provides the fiber sequence

Σ j−1HM→Σ jHZ∗ ι−→Σ jHZ.

Then, because Σ j−1HM≥ 2 j−2, by [HHR1, Lemma 4.28], ι induces an
equivalence on slices strictly below level 2 j−2. Taking j = n−4 gives
the result.

�

Example 8.2. The tower for Σ6HZ is

P8
8 =Σ2H g Σ6HZ

P6
6 =Σρ+2HZ(2,1)∗
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Proof. We have the short exact sequence Z∗ →Z(2,1)∗ → g. This leads
to the cofiber sequence

P8
8 =Σ2H g Σ6HZ'Σρ+2HZ∗ Σρ+2HZ(2,1)∗ = P6

6 .

�

Example 8.3. The tower for Σ7HZ is

P12
12 =Σ3H g Σ7HZ

P8
8 =Σρ+2Hm Σρ+3HZ(2,1)∗

P7
7 =Σρ+3HZ

Proof. We suspend the tower in Example 8.2 by 1 and augment with
the cofiber sequence Σρ+2Hm →Σρ+3HZ(2,1)∗ →Σρ+3HZwhich arises
from the short exact sequence Z(2,1)∗ →Z→ m.

�

We now determine the slices of ΣnHZ.

Theorem 8.4. Let n ≥ 6. For k ≥ n+2,

Pk
k (ΣnHZ)'Σρ IQ/ZP−k+4

−k+4Σ
−n+5HZ.

Proof. Take r ≡ n−5 (mod 4) with 1≤ r ≤ 4. We may map the top slice
of Σ−n+5HZ into it to find the cofiber sequence

P−n+5
−n+5 =Σ− n−5−r

4 ρ−rHZ∗ →Σ−n+5HZ→ P−n+5−1Σ−n+5HZ.(13)

Note that all slices of P−n+4HZ are torsion, so then

IQ/ZP−n+4 HZ=Σ1IZP−n+4Σ−n+5HZ.

Apply IZ to (13) and suspend by one to find

Σ1IZP−n+4Σ−n+5HZ→Σn−4HZ∗ →Σ
n−5−r

4 ρ+r+1HZ.

We can rewrite this as

IQ/ZP−n+4Σ−n+5HZ→Σn−ρHZ→Σ
n−5−r

4 ρ+r+1HZ.

Finally, suspend by ρ to obtain

Σρ IQ/ZP−n+4Σ−n+5HZ→ΣnHZ→Σ
n−1−r

4 ρ+r+1HZ.(14)
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Note that Σ
n−1−r

4 ρ+r+1HZ is an n-slice and

Σρ IQ/ZP−n+4Σ−n+5HZ ∈ [n,4(n−4)].

Furthermore, if n 6≡ 2 (mod 4),

Σρ IQ/ZP−n+4Σ−n+5HZ ∈ [n+1,4(n−4)].

From Proposition 2.8,

IQ/ZP−k
−k Σ

−n+5HZ' Pk
k IQ/ZΣ

−n+5HZ.

Consequently, Σρ IQ/ZP−n+4Σ−n+5HZ provides all slices of ΣnHZ.

Now suppose n ≡ 2 (mod 4) so that r = 1. Then from Proposition 2.8,

Pn
n (Σρ IQ/ZP−n+4Σ−n+5HZ)'Σρ IQ/ZP−n

−n (P−n+4Σ−n+5HZ)

'Σρ IQ/ZΣ
−( n−6

4 +1)ρ+1Hmg

'Σ n−2
4 ρ+1Hm

Apply Pn
n (−) to (14) to get the extension

Σ
n−2

4 ρ+1Hm → Pn
nΣ

nHZ→Σ
n−2

4 ρ+2HZ

and the fiber sequence

Σρ IQ/ZP−n+5HZ→Σρ IQ/ZP−n+4HZ→ Pn
nΣ

nHZ.

Now Σρ IQ/ZP−n+5HZ ∈ [n+1,4(n−4)] and thus supplies the remaining
slices of ΣnHZ.

�

Proposition 8.5. Let n ≥ 6 and set r ≡ n (mod 4) with 2 ≤ r ≤ 5. The
n-slice of ΣnHZ is

Pn
nΣ

nHZ'




Σ
n−2

4 ρ+2HZ(2,1)∗ n ≡ 2 (mod 4)

Σ
n−r

4 ρ+rHZ otherwise

Proof. For n 6≡ 2 (mod 4), this follows from (14). When n ≡ 2 (mod 4) it
follows from Example 8.2 and repeated application of Proposition 8.1.

�
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Proposition 8.6. Let n ≥ 6. The 4k-slices of ΣnHZ are

P4k
4k (ΣnHZ)'





ΣkρHmg∗ 4k = n+1

ΣkH g
1
2 (4k−n) 4k ∈ [n+2,2n−8],

n ≡ 0 (mod 2)

ΣkρH(g
1
2 (4k−n+3)−3 ⊕φ∗

LDRF2
∗)

4k ∈ [n+2,2n−6],
n ≡ 1 (mod 2)

ΣkH gn−k−3 4k ∈ [2n−4,4(n−4)]

Proof. This follows from Proposition 7.4 and Theorem 8.4.
�

Proposition 8.7. For n ≥ 6, except for possibly the n slice, the non-
trivial (4k+2)-slices of ΣnHZ are

P4k+2
4k+2(ΣnHZ)'

{
Σkρ+1Hφ∗

LDRF2
4k+2 ∈ [n+2,2n−6],

n ≡ 0 (mod 2)

Proof. By Corollary 3.6, ΣnHC2Z has no (4k+2)-slices except in the
range [n+2,2n−6] when n is even. So for 4k+2 not in this range,
any such slice must be a pullback over K . But then it is a 4k-slice.
For 4k+2 ∈ [n+2,2n−6], the result follows from Proposition 7.8 and
Theorem 8.4.

�

8.1. Comparison with the Slices of ΣnHF2.

This work is complementary to [GY], which calculates the slices of
ΣnHF2 for n ≥ 1. One would hope that the exact sequence Z 2−→Z→ F2
could play a role in recovering the slices of ΣnHZ from the slices of
ΣnHF2 or vice versa, but this is not always the case.

When G = C2, [GY, Theorem 3.18] shows that the slices of ΣnHC2F2
contain both even and odd suspensions of HC2 g, whereas Proposi-
tion 3.5 shows that ΣnHC2Z has only even or odd suspensions of HC2 g.
This is illustrated in Table 4.

The 2k-slices of ΣnHC2Z and Σn+1HC2Z only combine to give the slices
of ΣnHC2F2 when n ≡ 3,4 (mod 4). When n ≡ 5,6 (mod 4), the ΣnHC2Z

and Σn+1HC2Z slices miss the (n+ r)-slice of ΣnHC2F2, where r = 1,2,
respectively. For example, neither Σ9HC2Z nor Σ10HC2Z has a slice
equivalent to Σ5HC2 g, but Σ9HC2F2 does.

We can recover the (4k)-slices of ΣnHF2 from the (4k)-slices of ΣnHKZ

and Σn+1HKZ. As in Proposition 7.5, we use the sequence Z 2−→Z→ F2



June 8, 2021 Klein Four Slices 37

TABLE 4. Comparison of C2-slices

Slices of Σ9HC2Z Slices of Σ9HC2F2 Slices of Σ10HC2Z

P14
14 =Σ7HC2 g P14

14 =Σ7HC2 g

P12
12 =Σ6HC2 g P12

12 =Σ6HC2 g

P10
10 =Σ5HC2 g P10

10 =Σ2ρ+2HC2Z
∗

P9
9 =Σ2ρ+1HC2Z

∗ P9
9 =Σ2ρ+1HC2F2

∗

to get the cofiber sequence Σ−kρHKZ→ Σ−kρHKF2 → Σ1−kρHKZ. We
then have the long exact sequence in homotopy

(15)
π−n(Σ−kρHKZ) π−n(Σ−kρHKZ)

π−n(Σ−kρHKF2) π−n−1(Σ−kρHKZ) π−n−1(Σ−kρHKZ).

2

2

When n ≤ 4k−1, all groups in (15) are 2-torsion and the middle three
terms become the exact sequence
(16)

π−n(Σ−kρHKZ) π−n(Σ−kρHKF2) π−n−1(Σ−kρHKZ).

When n = 4k, the left four terms of (15) become the exact sequence

Z∗ Z∗ π−n−1(Σ−kρHKZ) 0.2 2

Consequently, the (4k)-slices of ΣnHKF2 are

P4k
4k (ΣnHKF2)'





ΣkρHKF2
∗ n = 4k

ΣkρE−n n ≤ 4k−1

where E−n is the middle Mackey functor in (16). This recovery is illus-
trated in Table 5.

Except for the n-slice, all slices of Σ7HKF2 are recovered from the slices
of Σ7HKZ and Σ8HKZ. It is not always the case, however, that the
(4k+2)-slices are recovered. For example, Σ10HKF2 has a 14-slice ([GY,
Example 6.14]), but neither Σ10HKZ nor Σ11HKZ have 14-slices.
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TABLE 5. Comparison of K-slices

Slices of Σ7HZ Slices of Σ7HF2 Slices of Σ8HZ

P16
16 =Σ4H g P16

16 =Σ4H g

P12
12 =Σ3H g P12

12 =Σ3H g3 P12
12 =Σ3H g2

P10
10 =Σρ+3Hφ∗

LDRF2 P10
10 =Σρ+3Hφ∗

LDRF2

P8
8 =Σρ+2Hm P8

8 =Σρ+2Hm P8
8 =Σρ+4HZ

P7
7 =Σρ+3HZ P7

7 =Σρ+3HF2

9. HOMOTOPY MACKEY FUNCTOR COMPUTATIONS

Here we compute the homotopy Mackey functors of the slices of Σ±nHZ.

Proposition 9.1. For k ≥ 1, the nontrivial homotopy Mackey functors
of ΣkρHZ are

πn(ΣkρHZ)=





Z n = 4k

mg n = 4k−2

g
1
2 (4k−n−1) n ∈ [2k,4k−3],

n ≡ 1 (mod 2)

g
1
2 (4k−n+2)−3 ⊕φ∗

LDRF2
n ∈ [2k,4k−3],
n ≡ 0 (mod 2)

gn−k+1 n ∈ [k,2k−1]

Proof. For n ∈ [k,4k−2], this is a restatement of Proposition 7.4. For
n = 4k, the result follows from Proposition 7.3 and repeated applica-
tion of Proposition 7.2.

�
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Proposition 9.2. For k ≥ 1, the nontrivial homotopy Mackey functors
of Σ−kρHZ are

π−n(Σ−kρHZ)=





Z∗ n = 4k

mg∗ n = 4k−1

g
1
2 (4k−n) n ∈ [2k+4,4k−3],

n ≡ 0 (mod 2)

g
1
2 (4k−n+3)−3 ⊕φ∗

LDRF2
∗ n ∈ [2k+3,4k−2],

n ≡ 1 (mod 2)

gn−k−3 n ∈ [k+4,2k+2]

Proof. For n ∈ [k+4,4k−1], this is a restatement of Proposition 8.6.
For n = 4k, the result follows from Proposition 8.5 and repeated appli-
cation of Proposition 8.1.

�

Proposition 9.3. For k ≥ 1, the nontrivial homotopy Mackey functors
of ΣkρHZ∗ are

πn(ΣkρHZ∗)=





Z n = 4k

mg n = 4k−2

g
1
2 (4k−n−1) n ∈ [2k+2,4k−3],

n ≡ 1 (mod 2)

g
1
2 (4k−n−2)−3 ⊕φ∗

LDRF2
n ∈ [2k+2,4k−3],

n ≡ 0 (mod 2)

gn−k+2 n ∈ [k+3,2k+1]

Proof. This follows from the equivalence ΣkρHZ∗ ' Σ(k−1)ρ+4HZ and
Proposition 9.1.

�

Proposition 9.4. For k ≥ 1, the nontrivial homotopy Mackey functors
of ΣkρHZ(2,1)∗ are

πn(ΣkρHZ(2,1)∗)=




πn(ΣkρHZ∗) n ∈ [k+3,4k]

g n = k

Proof. The exact sequence Z∗ →Z(2,1)∗ → g and corresponding cofiber
sequence ΣkρHZ∗ → ΣkρHZ(2,1)∗ → ΣkH g provide us with a long ex-
act sequence in homotopy. We then have that the homotopy of ΣkρHZ(2,1)∗

is the homotopy of ΣkρHZ∗ with an additional g in degree k.
�
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Proposition 9.5. For k ≥ 2, the nontrivial homotopy Mackey functors
of ΣkρHmg∗ are

πn(ΣkρHmg∗)=





φ∗
LDRF2 n = 2k

g3 n ∈ [k+2,2k−1]

g n = k+1

Proof. We have the equivalence ΣkρHmg∗ 'Σ(k−1)ρ+2Hm. The result
then follows from [GY, Proposition 7.3].

�

Proposition 9.6. For k ≥ 2, the nontrivial homotopy Mackey functors
of Σ−kρHmg are

π−n(Σ−kρHmg)=





φ∗
LDRF2

∗ n = 2k

g3 n ∈ [k+2,2k−1]

g n = k+1

Proof. The result follows by taking the Brown-Comenetz dual of each
Mackey functor in Proposition 9.5.

�

Proposition 9.7. For k ≥ 2, the nontrivial homotopy Mackey functors
of Σ−kρHm are

π−n(Σ−kρHm)=





φ∗
LDRF2

∗ n = 2k

g3 n ∈ [k+2,2k−1]

g2 n = k+1

Proof. First, take the Brown-Comenetz dual of the Mackey functors
in [GY, Proposition 7.4]. The result then follows from the equivalence
Σ−ρHm 'Σ−2Hmg∗.

�

Proposition 9.8. We have the equivalences

ΣkρHφ∗
LDRF2

∗ '




Σ2Hφ∗
LDR f k = 1

Σ4Hφ∗
LDRF2 k = 2
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Then for k ≥ 3, the nontrivial homotopy Mackey functors of ΣkρHφ∗
LDRF2

∗

are

πn(ΣkρHφ∗
LDRF2

∗)=




φ∗
LDRF2 n = 2k

g3 n ∈ [k+2,2k−1]

Proof. This is the pullback over L, D, and R of the Mackey functors
in [GY, Proposition 3.6].

�

Proposition 9.9. We have the equivalences

Σ−kρHφ∗
LDRF2 '





Σ−2Hφ∗
LDR f k = 1

Σ−4Hφ∗
LDRF2

∗ k = 2

Then for k ≥ 3, the nontrivial homotopy Mackey functors of Σ−kρHφ∗
LDRF2

are

π−n(Σ−kρHφ∗
LDRF2)=





φ∗
LDRF2

∗ n = 2k

g3 n ∈ [k+2,2k−1]

Proof. This is the pullback over L, D, and R of the Mackey functors
in [GY, Proposition 3.7].

�

10. SPECTRAL SEQUENCES

The slice spectral sequence for Σ−nHZ and ΣnHZ must recover the ho-
motopy Mackey functors of each spectrum, that is, we must be left with
π−n(Σ−nHZ) = πn(ΣnHZ) =Z and all other homotopy Mackey functors
trivial. For most of the differentials, then, there is only one choice.

We use the indexing convention from [HHR1, Section 4.4.2]. The Mackey
functor Et−n,t

2 is πnP t
t (X ). We also use the Adams convention, so that

πnP t
t (X ) has coordinates (n,n− t) and the differential,

dr : Es,t
r → Es+r,t+r−1

r ,

points left one and up r.

The symbols in Table 6 denote the Mackey functors in the slice spectral
sequences shown.

Example 10.1. The slices for Σ−1HZ are all a one-fold desuspension
of Eilenberg-MacLane spectra (Example 6.2, Figure 10.10). Because
each of these Mackey functors is in the same column, there are no



June 8, 2021 Klein Four Slices 42

TABLE 6. Symbols for K-Mackey functors

�=Z =φ∗
LDRF2 = mg

�=Z∗ =φ∗
LDRF2

∗ = mg∗

F2 = n = gn 4= m∗

differentials. Consequently, in the spectral sequence, we find a double
extension:

(17)

Z∗

Z(2,1)

m∗ Z

g

Example 10.2. In the spectral sequence for Σ−5HZ, Figure 10.10, be-
cause we can only be left with π−5(P−5

−5Σ
−5HZ)∼=Z and all differentials

must go left one and up at least two, all differentials are forced. Once
we have evaluated each differential, we once again find ourselves with
the double extension in (17).

Example 10.3. In Figure 10.11, most of the differentials for Σ−9HZ
are again forced by the fact that only π−9(P−9

−9Σ
−9HZ) ∼=Z can survive

the spectral sequence. For example, we have two choices for a differ-
ential from π−8P−32

−32Σ
−9HZ∼= g2. We find it must be

d15 : g2 →φ∗
LDRF2

∗ ∼=π−9(P−24
−24Σ

−9HZ)

so that we are left with the extension in (17). Indeed, we will always
be left with this extension once all differentials have been evaluated.
Similarly, for n ≡ 1 (mod 4), we will always have a

d2 :φ∗
LDRF2

∗ ∼=−→φ∗
LDRF2

∗

in the upper right corner.

In Proposition 7.8 we claim that for n odd,

P−2n
−2n (Σ−nHZ)'Σ−(k+1)ρ+1Hφ∗

LDRF2.

We now prove this claim.
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Proposition 10.4. Let n be odd and take A to be one of the Mackey
functors listed in Table 7. The only choice of A where the homo-
topy of P−2n

−2n (Σ−nHZ) ' Σ−(k+1)ρ+1HA fits into the spectral sequence
for Σ−nHZ is φ∗

LDRF2.

Proof. Because Σ−(k+1)ρ+1HA is a (−4k−2)-slice, its π−k−1 is located
at (−k−1,−3k−1). We argue that we cannot have a nonzero Mackey
functor in this location.

TABLE 7. Homotopy Comparison

A π−k−1(Σ−(k+1)ρ+1HA)

φ∗
LDR f g3

m g2

mg g

φ∗
LDRF2 0

In the spectral sequence for Σ−nHZ, all slices below level −2n are
Σ−kH gn−k+1 where 4k ∈ [2n+1,4n]. These Mackey functors, for 4k ≤
2n+1, lie on the line y = −3k. Thus, for the Mackey functors in Ta-
ble 7, the source of a differential hitting it must be (−k,−3k). This is
not possible.

We now argue that the Mackey functor located at (−k−1,−3k−1) can-
not be the source of a differential.The first value of n for which we
must determine the (−2n)-slice is n = 7. The spectral sequence where
A = φ∗

LDRF2 is shown in Figure 10.11. This spectral sequence leaves
us with the appropriate homotopy for Σ−7HZ.

Note there is a copy of g4 located at (−4,−12). For any other choice of
A, we would have a nontrivial π−4 located at (−4,−10). For a differen-
tial originating from (−4,−10), there are two possible targets: φ∗

LDRF2
∗

at (−5,−5) and g at (−5,−2). However, these two Mackey functors
must fit into the exact sequences

g2 → g3 → g and g4 →φ∗
LDRF2

∗ → mg.

Thus, we cannot have a nonzero Mackey functor at (−4,−10).

We now consider the spectral sequence for Σ−9HZ, located in Fig-
ure 10.11. We again use Σ−(l+1)ρ+1Hφ∗

LDRF2 for the (−2n)-slice. The
resulting homotopy fits in the spectral sequence. For the other three
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choices of A we would have a nontrivial π−5 located at (−5,−13). For a
differential originating from (−5,−13) there are two possible targets:
g3 at (−6,−8) and φ∗

LDRF2
∗ at (−6,−3).

However, we have a d2 :φ∗
LDRF2

∗�φ∗
LDRF2

∗ and a d7 : g5� g3. Thus,
there is no target for a differential from (−5,−13). Consequently, the
only choice of A that works is φ∗

LDRF2.

There is a similar story for all odd n > 9. There will always be a d2 hit-
ting the φ∗

LDRF2
∗ located at (−k−2,−n+k+2). The only other possible

targets for a differential from (−k−1,−3k−1) are then the g3’s result-
ing from the homotopy of the other (−4 j−2)-slices. All of these will be
hit by a differential from the gn−k+1 located at (−k−1,−3k−3). Thus,
we cannot have a nonzero Mackey functor located at (−k−1,−3k−1).
The only choice of A which satisfies this requirement is φ∗

LDRF2.
�

Example 10.5. For the positive, trivial suspensions of HZ, we find
that Σ6HZ has the first nontrivial slice tower. In Figure 10.12, we
then see that there is only one possible differential. This d3 exists
because we must be left with only π6(Σ6HZ)∼=Z.

Example 10.6. The spectral sequence for Σ7HZ, in Figure 10.12, is
more interesting. Here we find the differentials d2 :φ∗

LDRF → mg and
d5 : mg → g. Indeed, we will always see a dn−7 : φ∗

LDRF2 → mg and
d2n−9 : mg → g on the right side of the spectral sequence for ΣnHKZ.

Example 10.7. Except for the homotopy of the n-slice of Σ7HKZ,
Σ7HKF2, and Σ8HKZ, the spectral sequences for Σ7HKZ and Σ8HKZ

collapse to give the spectral sequence for Σ7HKF2. We see in Fig-
ure 10.12 the g in (3,9) and the g2 in (3,9) in the spectral sequences
for Σ7HKZ and Σ8HKZ, respectively, combine to give the g3 in (3,9) in
the spectral sequence for Σ7HKF2. Off the diagonal for the n-slice for
Σ7HKZ and Σ8HKZ we have a single copy of φ∗

LDRF2. These provide
the two copies of φ∗

LDRF2 off the diagonal for Σ7HKF2.

Example 10.8. Now, in Figure 10.13, we have some choice of differ-
entials in the spectral sequence for Σ11HZ. Once we consider that
only π11(Σ11HZ) ∼= Z can be left, there is only one choice of each dif-
ferential that provides the desired result. Analogously to the spec-
tral sequence for Σ−nHZ where n ≡ 1 (mod 4), we will always have a
d2 :φ∗

LDRF2
∼=−→φ∗

LDRF2
∗ in the bottom left corner when n ≡ 3 (mod 4).
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Example 10.9. Again, with the exception of the homotopy of the n-
slice, the spectral sequences for Σ10HKZ and Σ11HKZ collapse to give
the spectral sequence for Σ10HKF2 in Figure 10.13. As in Example 10.7,
the upper left diagonals in in the spectral sequences for Σ10HKZ and
Σ11HKZ combine to even more copies of g in the upper left diagonal in
the spectral sequence for Σ10HKF2. This will always be the case.
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Figure 10.10. The slice spectral sequence over K , n =−1,−3,−5.
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Figure 10.11. The slice spectral sequence over K , n =−7,−9.
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Figure 10.12. The slice spectral sequence over K , n = 6,7,8.

0 2 4 6 8 10

0

2

4

6

8

10

1

1

Σ6HKZ

0 2 4 6 8 10

0

2

4

6

8

10

1

1

1 Σ7HKZ

0 2 4 6 8 10

0

2

4

6

8

10

12

3

2

1

1

Σ8HKZ

0 2 4 6 8 10

0

2

4

6

8

10

12

1

1

1

3

3

Σ7HKF2



June 8, 2021 Klein Four Slices 49

Figure 10.13. The slice spectral sequence over K , n = 10,11.
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Figure 10.14. The slice spectral sequence over K , n = 12.
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Figure 10.15. The slice spectral sequence over K , n = 14.
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