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Preface

This is the third and last part of the Proceedings of the Conference on Category Theory,
Homology Theory and their Applications, held at the Seattle Research Center of the Battell
Memorial Institute during the summer of 1968. The first part, comprising 12 papers, was
published as Volume 86 in the Lecture Notes series; the second part, also comprising

12 papers, as Volume 92.

It is again a pleasure to express to the administrative and clerical staff of the
Seattle Research Center the appreciation of the contributors to this volume, and of the
organizing committee of the conference, for their invaluable assistance in the prepa-

ration of the manuscripts.

Cornell University, Ithaca, March, 1969 Peter Hilton
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LECTURES ON GENERALISED COHOMOLOGY™*

by

J. F. Adams

LECTURE 1. THE UNIVERSAL COEFFICIENT
THEOREM AND THE KUNNETH THEOREM

It is an established practice to take old theorems
about ordinary homology, and generalise them so as to obtain
theorems about generalised homology theories. For example,
this works very well for duality theorems about manifolds.

We may ask the following question. Take all those theorems
about ordinary homology which are standard results in everyday
use. Which are the ones which still lack a fully satisfactory
generalisation to generalised homology theories? I want to
devote this lecture to such problems.

As my candidates for theorems which need general-
ising, I offer you the universal coefficient theorem and the
Kliinneth theorem. I will first try to formulate the conclu-
sions which these theorems should have in the generalised
case. I will then make some comments on these formulations,
and discuss a certain number of cases in which they are known
to be true. I will then comment on the connection between

one form of the universal coefficient theorem and the "Adams

* Note. These lectures are not arranged in the order in which

they were originally given.
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spectral sequence". After that I will give some proofs under
suitable assumptions. Finally I will show that certain re-
sults of Conner and Floyd [14] can be related to the universal
coefficient theorem.

In discussing the universal coefficient theorem and

the Kinneth theorem, we will write E and F, for general-

*
ised homology theories and E*, F* for generalised cohomology
theories. 1In order to avoid tedious notation for relative
groups, we will suppose that they are "reduced" theories, de-
fined on some category of spaces with base-point. Thus we can
replace the pair X, X' by the space with base-point X/X'.
In particular, the coefficient groups for E, are the groups
E, (s%), and similarly for the other theories.

The universal coefficient theorem should address
itself to the following problems.

(1) Given E,(X), calculate F_(X).

(2) Given E,(X), calculate F*(X).

(3) Given E*(X), calculate F*(X).

(4) Given E*(X), calculate F,(X).
The last two problems correspond to the "upside-down universal
coefficient theorems" in ordinary homology.

It will surely be necessary to assume some relation
between E, (or E*) and F, (or F*¥). To begin with, we must
suppose given enough products. For example, we need products

in order to give sense to the Tor and Ext functors which
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occur in our statements. We postpone all further discussion
of data; the first step is to formulate the conclusions
which our generalised theorems ought to assert. We suggest

the following.
(UCT1)

Suppose given product maps
us E,(X) ® E,(s?) — E, (X)
vi E.(X) ® F (S0) —> F,(X)

satisfying suitable axioms. Then there is a spectral segquence

0
TorE*(S )

p’* (E*(x)l F*(SO)) —‘_§> F*(X) .

The edge-homomorphism

E,(X) ® F,(89) — F, (X)

E, (89)

is induced by v .
(UCT2)

Suppose given product maps
v: E,(X) © F*(X) —> F*(s0)

satisfying suitable axioms. Then there is a spectral sequence

Extp

”*
E;(SO)(E* (X), F*(s0)) =P> F* (X) .

The edge-homomorphism
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F* (X) > Hom*

£, (50) Ex (X), F*(S)

is induced by v
(ucT3)

Suppose given product maps
u: E¥(X) @ E*(S?) — E*(X)
v: E*(X) @ F*(S0) —> F*(X)

satisfying suitable axioms. Then there is a spectral sequence

E* (s0)
Torp'* (E* (X), F*(s9)) -> F* (X) .

The edge-homomorphism

E* (X) ® F*(50) —» F*(X)

E* (50)
is induced by v .

(UCT4)

Suppose given product maps
u: E*(S0) @ E*(X) —> E*(X)
v: E¥(X) © F,(X) — F,(s?)

satisfying suitable axioms. Then there is a spectral sequence

ExtP:*

E* (S9) (E*(X), F,(89)) =P> F,(X) .

The edge-homomorphism

F, (X) —~> Hom;*(so)(E*(X), F,(59))

is induced by v .
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Note 1. We should spell out some of the axioms on
the product maps. We will obviously assume that the product
maps have the correct behavior with respect to induced homo-
morphisms and with respect to suspension. We will assume that
the map u, for X = S0, makes E,(S?) (in cases 1 and 2) or

E* (89) (in cases 3 and 4) into a graded ring with unit. We

will assume that the map n makes E, (X) (in cases 1 and 2)
*

or E (X) (in cases 3 and 4) into a graded module over

E,(S%) or E*(s%). This module is a left module in cases 2

and 4, a right module in cases 1 and 3. We will assume that
the map v, for X = 80, makes F_(S%) (in cases 1 and 4)
or F*(S0) (in cases 2 and 3) into a graded module over
E, (80) or E*(SO). This module is a left module in all four
cases. This is sufficient to give sense to the Tor and Ext
functors in the statements. Again, in cases 1 and 3 we will
assume that the product maps

v: E . (X) ® F (S?) — F,(X)

v: E*¥(X) ® F*(S0) —s F*(X)
F* (SO)

factor through E, (X) © F,(8%) and E*(X) @

E, (s9) E* (s0)
respectively. 1In cases 2 and 4 we convert the maps v into
maps

F*(X) —> Hom* (E, (X), F*(s0))

F, (X) —> Hom* (E*(X), F,(s?))

and assume that these actually map into HomE (So)(E*(X), F* (s0))
*

and Homg*(so)(E*(X), F,(S%)) respectively. All these four
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conditions may be viewed as associativity conditions on our
products. They give sense to the statements about the edge-

homomorphisms.

Note 2. The case of representable functors is par-
ticularly important. In this case we suppose given a ring-
spectrum E and a spectrum F which is a left module-spectrum
over the ring-spectrum E. We take E, and E* to be the
functors determined by E, as in [31l]; we take F, and F*
to be the functors determined by F. In this case we obtain
all the products required for the statements UCT 1-4. For
example, in cases 2 and 4 the products v are Kronecker
products. All these products satisfy all the assumptions
mentioned in Note 1.

As examples of ring-spectra E, we have MU, and
the BU spectrum, and the sphere spectrum S. We also have
examples of module-spectra. Any spectrum is a module-spectrum
over S; and BU is a module-spectrum over MU, this being

the case explored by Conner and Floyd [14].

Note 3. As remarked above, we have yet to discuss
the data which might suffice to prove these statements, or
the lines of proof which might establish them. The assump-
tions in Note 1 are intended simply to give meaning to the
statements.

Note 4. By assuming extra data, we might expect
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to make all these spectral sequences into spectral sequences
of modules over E,(S?) or E*(S0). The extra data would

be modelled on the case in which we start from a ring-
spectrum E which is commutative, and a module-spectrum

F over E. For example, we would take the ring E,(S?) or
E*(50) to be anticommutative. We spare ourselves the de-
tails. If the basic results are proved in any reasonable way,
it should not be hard to add such trimmings.

The Kunneth theorem (for reduced functors) should
address itself to the problem of computing E, and E* for
the smash-product X A Y in terms of corresponding groups
of X and Y. (This corresponds to computing an unreduced
theory on X x Y.) We may obtain four statements by sub-
stituting in UCT 1 and 4 the functor F, (X) = E (X A Y),
and in UCT 2 and 3 the functor F*(X) = E*(X A Y). We obtain

the following statements.

(KT1)

Suppose given an external product
vi E,(X) ® E,(Y) —> E (X A Y)
satisfying suitable axioms. Then there is a spectral sequence

rE*(SO)

To
P

(Ey (X)), E,(Y)) *;9 Ep (X A Y)

The edge-homomorphism

E,(X) ®© E,(Y) — E, (X A Y)

E, (s0)



is induced by v .
(KT2)

Suppose given a product
p: E (S9) ® E, (X) —> E, (X}
and a slant product
v: E,(X) ® E¥(X A Y) — E*(Y)

satisfying suitable axioms. Then there is a spectral sequence
P,¥ * _ *
ExtE*(So)(E*(X), E* (Y)) - E¥X(X A Y) .

The edge-homomorphism

E¥X(X A Y) —> HomE (So)(E*(X), E* (Y))
*

is induced by v .
(KT3)

Suppose given an external product
v: E*¥(X) ® E*(Y) —> E*(X A Y)

satisfying suitable axioms. Then there is a spectral sequence

rorE* (8%) (Ex (x), E*(Y)) —=> E*(X A ¥) .
Pr* P

The edge-homomorphism

E* (X) ® E*¥(Y) —> E*(X A Y)

E* (S0)

is induced by v .



(KT4)

Suppose given a product map
p: E*(s0) @ E*(X) —> E*(X)
and a slant product
v: E*¥(X) ®© E*(X A Y) —> E_(Y)

satisfying suitable axioms. Then there is a spectral sequence

Ethitso)(E*(X), E, (Y)) > E, (X A Y)

The edge-homomorphism

Ey (X A Y) —> Homg, oo, (E*(X), E,(Y))

is induced by v .

Note 5. In KT 1 and 3 it is unnecessary to suppose
given the product u, as it can be obtained by specialising

the product v to the case Y = §0 .

Note 6. As each part of the "Kunneth theorem" is
obtained by transcribing the corresponding part of the "uni-
versal coefficient theorem", Notes 1, 3 and 4 above can also
be transcribed. ©Note 1 yields the formal properties of our
products u and v which we should assume in order to give

sense to the statements.

Note 7. The case of representable functors is par-
ticularly important. In this case we suppose given a ring-

spectrum E. We take E, and E* to be the functors
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determined by E, as in [31]. We then have four classical
products - two external products and two slant products [31].
These products satisfy all the formal properties needed to
give sense to our statements - see Note 6.

This provides some justification for stating the
Kunneth theorem in four parts. In fact, we have four products;
from each product product we can construct an associated
"edge-homomorphism"; the corresponding spectral sequence (if
it applies) shows whether or not this homomorphism is an iso-

morphism.

Note 8. Since each part of the Kunneth theorem is
obtained by specialising the corresponding part of the univer-
sal coefficient theorem, the latter will presumably imply the
former, once we get the data settled. (Of course, if we
wished to stay inside ordinary homology we could not use this
argument.) It should therefore be enough to discuss the

universal coefficient theorem.

Note 9. It is almost certain that UCT 3 and UCT 4
will require some finiteness condition, because such a condi-
tion is needed for the "upside-down universal coefficient
theorems" in ordinary homology. If X is a finite complex,
then we can deduce UCT 3 from UCT 1 by S-duality. Let DX
be the Spanier-Whitehead dual of X. Suppose given E*, F¥

as in UCT 3. Then we can define theories E,, F, on finite
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complexes by setting
E, (¥) = E*(DX), F,(X) = F*(DX) ;

we extend to infinite complexes and spectra by direct limits.
We obtain product maps

E,(X) ® E (S9) — E, (X)

E, (X) ® Fu (8% — F, (X)
as required for UCT 1. Applying UCT 1 to DX, we obtain
UCT 3 for X.

Similar remarks would apply to deduce UCT 4 from
UCT 2, except that the definition
F* (X) = F, (DX)

will only define F* on finite complexes. At this point we
do not know whether it will suffice for UCT 2 to have F¥
defined on so small a category. It therefore seems best to
begin from a ring-spectrum E and a module-spectrum F. 1In
this case F* will be defined on a sufficiently large cate-

gory. We have isomorphisms

¥

E, (DX) = E* (X)
F* (DX) = F, (X)
and these can be taken to throw the usual products
E,(s?) ® E, (DX) —> E, (DX)
E, (DX) ® F*(DX) —> F*(80)
onto the usual products
E* (S0) ® E*(X) — E*(X)

E*(X) ® F,(X) —> F,(S0) .
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Applying UCT 2 to DX, we obtain UCT 4 for any finite complex
X.

Of course, this method of deducing UCT 4 from UCT 2
only gives UCT 4 for representable functors. It is therefore
necessary to note that UCT 4 for representable functors implies
KT 4 for representable functors. Suppose we start from a ring-
spectrum E. Then the functor

F,(X) = E,(X A Y)
is representable; the representing spectrum is given by
F =E A Y. This spectrum can be made into a (left) module-
spectrum over E in the obvious way; this results in a
product
E*(X) ® F,{X) —> F,(S?)
which coincides with the usual slant-product
E*(X) 8 E,(X A Y) —> E, (Y) .
If X is a finite complex, and we apply UCT 4 to X (with
this E and F), we obtain KT 4 for X.

The result of this discussion is that to obtain all

eight results, under suitable conditions, it should be enough

to discuss UCT 1 and UCT 2.

Note 10. Our treatment leads to KT 3 with a finite-
ness assumption on X but none on Y. Since KT 3 is symme-
trical between X and Y, it would be equally reasonable to
make a finiteness assumption on Y but none on X. Some

finiteness assumption is almost certainly necessary, because



- 13 -

it is so far the corresponding Kiunneth theorem in ordinary
cohomology.

Our treatment leads to KT 4 with a finiteness
assumption on X but none on Y. Some finiteness assump-
tion on X is almost certainly necessary, for the usual reason.
A finiteness assumption on Y is very likely to be irrelevant.
For example, suppose that E*(X) has a resolution by finitely-

generated projectives over E*(S?); e.g. this is so if

E=MU and X 1is a finite complex (see Lecture 5). Then
Extggtso)(E*(X), E, (Y)) passes to direct limits as we vary

Y; and KT 4 for this X and general Y follows from the
case in which Y is a finite complex.
It is now time to discuss some cases in which the

statements we have formulated are known to be true.

Note 1l1l. Certain special cases of the statements

are classical theorems about ordinary homology.

Note 12. Suppose that F,(S?) is flat over
E*(SO). Then UCT 1 asserts that the edge-homomorphism

e: E (X) ® F,(80) — F,(X)

E, (89)
is an isomorphism. This is certainly true when X is a
finite complex, because as we vary X, ¢ 1is a natural trans-
formation between homology functors which is iso for X = SO.

If we assume that E, and F, pass to direct limits as we
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vary X, then the same result holds when X is a CW-complex
or a spectrum.

Since KT 1 is symmetrical between X and Y, it
follows that KT 1 is true if either E_ (X) or E,(Y) is
flat.

Similar remarks apply to UCT 2 if F*(sS0) is injec-
tive, although this case hardly ever arises. One has to
approach the case of infinite complexes X by discussing
the case of infinite wedge-sums, as in [21].

The same approach does not immediatly prove UCT 1
under the assumption that E,(X) is flat, because we cannot
vary F arbitrarily without losing the products we need.
(See Note 14 below.) However, UCT 1 and UCT 2 are triv-
ially true if X is a wedge-sum of spheres; we will use

this later.

Note 13. If E 4is the sphere-spectrum S then
any spectrum is a module over S. In this case all the re-
sults are true and easy to prove. This will appear as a

special case in Note 15 below.

Note 14. Next I have to recall that in the de-
finition of a ring-spectrum, one is allowed various homo-
topies; for example, the product is supposed to be homotopy-
associative. If we do not wish to allow any homotopies, we

speak of a strict ring-spectrum. The sphere S is a strict
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ring-spectrum; otherwise it is usually laborious to show

that a given spectrum is a strict ring-spectrum. It has been
proved by E. Dyer and D. Kahn (to appear) that if E 1is a
strict ring-spectrum, then KT 1 holds. Their argument also
shows that if E is a strict ring~spectrum and F is a
strict module-spectrum over E, then UCT 1 holds. The
method amounts to constructing an E-free resolution of F;
compare the last paragraph of Note 12 above.

This is at least a general theorem. It is likely
that one could weaken the conditions on the spectra slightly,
by analogy with the case of "A, H-spaces" [28]. Unfortunately,
the method does not seem to prove any of the theorems involv-

ing Ext; this would require a different sort of resolution.

Note 15. If E is the BU-spectrum and X, Y are
finite complexes then KT 3 is a result of Atiyah [6]. (Of
course in this case Torp =0 for p > 1.) By combining
the idea of Atiyah's proof with S-duality, one can obtain a
proof of UCT 1 and UCT 2 (and hence of all the rest) for
various spectra for which the method happens to work. The
spectra E to which the method applies include BO, BU,

MO, MU, MSp, S and the Eilenberg-MacLane spectrum K(Zp).

This method is already known to E. Dyer, and per-
haps to many other workers in the field. Since giving the

original lecture I have heard that L. Smith has applied the
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method (a) to consider UCT 1 for the case E = MJ, F = K(2)
and (b) to consider KT 1 for the case E = MJ; I am grateful
to him for sending me a preprint.

This method is very practical when it works. It
definitely doesn't work for E = K(Z). Thus it fails to gen-

eralise the classical theorems for ordinary homology.

Note 16. Atiyah [6, footnote on p. 245] has indi-
cated an example in which the edge~homomorphism is not mono-
morphic; and presumably further such examples can be found.
They do not contradict our thesis, because they presumably
give examples in which the differentials of the relevant
spectral sequence are non-zero.

Next I want to comment on the connection between
UCT 2 and the "Adams spectral sequence"” [1,2,15]. For this
I need some standard ideas from homological algebra, and I
give them now in order to avoid interrupting the discussion
later.

Let A be an algebra over a ground ring R, and
let M be an R-module. Then A ®r M may be made into an
A-module by giving it the obvious structure maps; and we have

HomA(AQRM, N) == HomR(M,N) .

(Hence the same thing is true for Ext .) A e, M is called
an "extended" module. Similarly, let C be a coalgebra over

a ring R, and let M be an R-module. Then C @R M nmay be
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made into a C-comodule by giving it the obvious structure
maps; and we have

HomC(L, C@RM) £ HomR(L,M) .

(Hence the same thing is true for Ext .) C 8y M is called
an extended comodule.

In the applications everything will be graded.
Also C will be a bimodule over R and the two actions of
R on C will be quite distinct; but this does not affect
the truth of the clichés presented above.

Let [X,Y], be the set of stable homotopy classes
of maps from X to Y. I shall argue in Lecture 2 that
the most plausible generalisation of the "Adams spectral

sequence" would give the following statement.

(ASS)

Under suitable assumptions, there is a spectral

sequence

P,*
ExtE*(E) (E, (X), E,(Y)) =p> [x,¥l, .

The edge-homomorphism

[X ,Y]* ——— HOIH:E*:* (E) (E* (X) ’ E* (Y) )

assigns to each map f its induced homomorphism
fo: Ep(X) —> E,(Y).
Here E is (as usual) a ring-spectrum. The func-

tors Hom and Ext are defined by considering E,(X) and
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E,(Y) as comodules with respect to the coalgebra E,(E).
We use E,(S?) as the ground ring for our comodules etc.
The necessary details are given in Lecture 3.

This result refers to [X,Y], for a general VY.
If we assume that Y is F, a left module-spectrum over E,
then ([X,Y], becomes F*(X), and we may hope that this extra
data will simplify the computation of the E, term. We will
now make this more precise. In Lecture 3 we will define a
product map

m: E, (E) ® F,(S0) —» E,(F) .

E, (89)
This map is not one of those we have so far considered, but
it is related to the map v of UCT 1 by the following com-

mutative diagram.

E, (E) QE*(SO)F*(SO) = E, (F)
c@l Ty ;
E, (E) @E*(SG)F*(SO) — F, (E)

Here 1, 1is the isomorphism induced by the switch map

Tt EAF —~ FA E, and similarly for c¢. In Lecture 3 we
shall assume that the relevant action of E_(S?) on E,(E)
makes E,(E) into a flat module. So if UCT 1 applies to
v, it will show that v 1is an isomorphism, and hence m
is an isomorphism. In any case, for each E and F we

can check once for all whether this is so. If it is, then
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the results of Lecture 3 show that E,(F) is an extended co-
module; that is, the isomorphism m throws the diagonal
¥ ® 1 for E,(E) & (SG)F*(SO) onto the diagonal ¢ for

*

E,(F). In this case we have

ExtD’” ) (Ey (X), Ey (F)) = ExtE’ 50y (B (X), Fy(59)) .

E, (E E, (S0)

Since F,(S0) = F*(s0) (as modules over E,(S?)), the state-
ment ASS specialises to UCT 2. (Checking reveals that the
edge-homomorphism behaves correctly.)

Since F,(X) admits an interpretation in terms of
stable homotopy, one may ask whether UCT 1 can be related to
ASS. Further thought reveals that this is unlikely, as the

spectral sequence of UCT 1 involves a filtration starting

from 0 and increasing indefinitely, while ASS involves
a filtration starting from the whole group [X,Y¥], and de-
creasing indefinitely. 1In particular, the edge-homomorphisms
run in opposite directions.

I can now explain one motivation for interest in
UCT 2. I would like to see further results of the general
form of ASS; compare Novikov [23, 24]. It seems that UCT 2
is a special case which sufficiently exhibits many of the
difficulties. I would therefore like to see new proofs of
UCT 2, as general as possible, in the hope that they may
generalise to proofs of ASS.

I will now turn to give further details of the
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method mentioned in Note 15. For this purpose I will assume
once for all that in what follows the functors E, and F,
or F* satisfy Milnor's additivity axiom on wedge-sums [21].
The first step is to deal with a special case which is very
restrictive, but important for the applications.

Let X be a CW-complex or a connected spectrum.
We assume that the spectral sequence

H, (X;E, (8%)) —> E, (X)

is trivial, that is, its differentials are zero. We observe
that this spectral sequence is a spectral sequence of modules
over E,(S%); in the case of UCT 1 it is a spectral sequence
of right modules, and in the case of UCT 2 it is a spectral
sequence of left modules. The module structure of the E?
term H, (X;E,(S?)) is the obvious one. We assume that for
each p, Hp(X;E*(SO)) is projective as a module over E*(SO)
(on the left or right as the case may be). Note that for
this purpose it is not necessary to assume that Hp(x) is
free; for example, if E (S%) is a (commutative) principal
ideal ring it will be sufficient if Hp(X;EO(SO)) is free.

Then we conclude:

Proposition 17

With these assumptions, E,(X) is projective and
X satisfies UCT 1 or UCT 2 (as the case may be). That is,

the map
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E, (X) © F,(8%) — F,(X)

E, (S0)
or

F* (X) —> Homg*(so)(E*(X),F*(SO))
1s 1s0.

r r P.q
Proof. ILet E q(O), Ep q(l) and Er

2) b
D, ) (2) be

the spectral sequences
H, (X;E,(80)) => E,(X)
Hy (X;F,(S?)) == F,(X)
H* (X;F*(89)) == F*(X)
It follows immediately from the assumptions on the spectral

*
sequence E

«x(0) that E_(X) is projective.

The products v yield homomorphisms

r 0 r
Ep’*(O) e Fe(8V) ——> Ep,*(l)

E, (s%)
ED’*(2) —> Homg, (50) (EF , (0) ,F*(50))
as the case may be. These homomorphisms send a* ® 1 into &%,
or d, into (dr)*, as the case may be. (These assertions need
detailed proof from the definitions of the spectral sequences,
but it can be done using only formal properties of the products
v and the fact that © is right exact while Hom is left
exact.) Because of the assumption that the spectral sequence

*

E**(O) is trivial (which is essential here), the groups

r . )
Ep’*(O) ®E*(SO)F*(S°) (for r = 2), equipped with the
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boundaries d° @ 1, form a (trivial) spectral sequence

r < * r % (c0
Ep,q(3)° Similarly, the groups HomE*(So)(Ep’*(O),F (s%)),

equipped with the boundaries (dr)*, form a (trivial) spec-
tral sequence Eg’q(4). We now have a map of spectral se-

quences

r r
E 3) ~>» E 1
prq( ) Prq( )

or

P.q p.qd
Er' (2) — Er’ (4)

as the case may be. For r = 2 it becomes the obvious map

Hp(X;E*(SO)) ® F,(s?) — HP(X;F*(S°))

E, (89)
or

Py. 0 *
HY (X;F* (S —> H
( (sY)) omE*(SO)

(Hp(x;E*(SO)),F*(SO))

as the case may be. But since we are assuming that
Hp(X;E*(SO)) is projective over E,(S?) for each p, a
theorem on ordinary homology shows that for r = 2 the map
is iso. Therefore it is iso for all finite r, and the

spectral sequence (1) or Ei’q(2) is trivial.

EY
P.g
We next deduce that the map

B, (50)F* (8% — By (1)

Lo -]
p’
or

EE’*(Z) —> Hom”

E, (59) (Fp,» (0 /F¥ (%)

is iso. (If X is not finite-dimensional, this needs
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properties of E, and F, or F* with respect to limits,
but these follow from the axiom on wedge-sums.)
Let us now introduce notation for the filtration

subgroups or quotient groups, as the case may be; say

Gy, 4 (0) = Im(E, (xP) — E, (X))
Gy,s (1) = In(F, (XF) — F, (X))
GPr*(2) = coim(F* (X) —> F*(xP)) .

The product v yields us homomorphisms

0
GPr*(2) — Hom? (G , (0),F*(s0))
E, (s?) “Vp,*
as the case may be. (Again, the verification uses only formal

properties of the products v and the fact that ® is right
exact while Hom is left exact.) Consider the following com-

mutative diagrams.

© 0
0—>G_ | ,(0) ® Fy(s0)=—>G  (0) © Fy(SO)—>E] ,(0) 8 F,(S°)—>0

e ——j ot
0 —s Gp—l,*(l) > Gp,*(l) Ep,*(l)_‘____‘*o
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0———— EP"*(2) —> GP’*(2)

W

0 —> Hom*(E;*(O),F*(SO)) — Hom*(Gp*(O),F*(So)) —

> Pl Ty ———5 0

—> Hom*(G__,, (0),F*(80)) —> 0

Here all the ®©'s and Hom's are taken over E,(S%). The
first and last rows are exact because E; 5 (0) is projective.
14

An easy induction over p, using the short five lemma, now

shows that
0
or
P:* * * 0
G (2) — HomE*(So)(Gp’*(O),F (s9))
is iso.

In the case of UCT 1, we now pass to direct limits
and see that

E,(X) ®© F, (80) — F(X)

E, (89)
is iso. In the case of UCT 2, we first observe that the spec-
tral sequence Eg'q(Z) satisfies the Mittag-Leffler condition

for spectral sequences, and therefore



———

P

Because
Gp,*(O) = G _1,*(0) ® E ,*(0)
and
E, (X) = Lip Gp’*(O)

p

we have

HomE*(So)(E*(X),F*(SO)) = Lim Hom

< E*(So) (Gp'*(O) IF*(SO)) .

We can thus pass to inverse limits and see that

F* (X) —> HomE*(So)(E*(X),F*(SO))

is iso. This proves Proposition 17.

We next need two further lemmas. For this purpose
we assume that we can work in a suitable category in which we
can do stable homotopy theory [7, 8, 25]. We assume that the
theories E, and F, or F* are defined on this category,
and that E, is represented by an object E in this cate-
gory. The next two lemmas are stated for E, but they also
apply to any other object (such as F, if we have an F .)
We assume that E is the direct limit of a given system of

finite CW-complexes Ea.
Lemma 18

For any object X and any class e € Ep(x) there

is an E, and a class f ¢ Ep(Sp A DEa) and a map
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g: sP A DE, —> X such that e = g.f.

Proof. Take a class e € Ep(X). Then there is a
finite subcomplex X' c X and a class e' € Ep(X') such
that i,e' = e. We may interpret e' as a class in
EP(DX'); so e' may be represented by a map
h: DX' —> S PE. Since DX' is a finite complex and E is

the direct limit of the Ea, we can factor h in the form
px' X sPAE — sPAE.

That is, there is a class f in E P(S P A E ) such that
k*f = e'. Dualising back, f may be interpreted as a class
in EP(Sp A DEu), and we obtain a map
Dk: s® A DE —> X'
such that (Dk),f = e'. We have only to take
g =i(pk): s A DE, —> X .

This proves Lemma 18.
Lemma 19

For any object X there exists an object of the

form

w=Y sP(B) DE, (4)

and a map g: W — X such that
g.: E, (W) — E, (X)

is epi.
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The construction is immediate from Lemma 18, by

allowing the class e in Lemma 18 to run over a set of gen-

erators for E,(X).

We now introduce the sort of resolution we need.

By a "resolution of X with respect to E," we shall mean

a diagram of the following form, with the properties listed

below.

Xp X1 X2
X=X0 ;Xl :'XZ X3 PR
Wo W, W,

The triangles

Er
Xr —___i;;;;/xr+l
Wy

are exact (cofibre) triangles.

is zero.

E, (s0).

i.e. the map

For each r,

)

(%p) 42 By (Xp) —> E, (X,

For each r, E*(Wr) is projective over

For each r, Wr satisfies UCT 1 or UCT 2,
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E,(X) © F,(S?) ~—> F,(X)

E, (s9)
oxr
F* (X) —> Hom* (E4 (X) ,F* (80))
m'E*(So) * ’
is iso.
In order to prove the existence of such resolutions,

we introduce the following hypothesis.

Assumption 20

E 1is the direct limit of finite CW-complexes Ea
for which

(1) E,(DE ) is projective over E,(s?), and

(1i) DE, satisfies UCT 1 or UCT 2, as the case may
be, for the theory F, or F*.

In theory we can check this assumption for given
E and F. In practice we usually prove it using Proposition
17, which requires strong hypotheses on DEa but none on F.
In practice E 1is a ring-spectrum, so the use of Proposition
17 involves checking the following two conditions.

(i) The spectral sequence

H*(Ea;E*(SO)) —> E*(E )

is trivial, and

(ii) For each p, Hp(Ea;E*(SO)) is projective

as a module over E*(s0),



- 29 _

Exameles.
n

(i) E = S, the sphere spectrum. Take E =57
the conditions are trivially satisfied, and of course Assump-
tion 20 is very easily verified directly.

(ii) E = K(Zp). The conditions of Proposition 17
are satisfied by any X. It is sufficient to let Ea run
over any system of finite complexes whose limit is K(Zp).

(iii) E = MO. It is well known that

MO =~ V s"Wgiz,) - r;sn(i)

1 1

K(Z,) .

The conditions of Proposition 17 are satisfied by any X. It
is sufficient to let E  run over any system of finite com-
plexes whose limit is MO .

(iv) E = MU. We have HP (MU;MU%(S%)) = 0 unless
p and g are even. Therefore the spectral sequence

H* (MU;MU* (S0)) —> MU* (MU)
is trivial. Again, HP (MU;MU*(S?)) is free over MuU*(S?).
It is sufficient to let Eu run over a system of finite
complexes which approximate MU in the sense that
i,: Hp(Ea) — Hp(MU)

is iso for p < n, while Hp(Ea) =0 for p > n.

(v) E = MSp. A simple adaptation of the method
of S. P. Novikov [23, 24] from the unitary to the symplectic
case shows that the spectral sequence

H* (MSp;MSp* (S?)) —> MSp* (MSp)
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is trivial. Again, Hp(MSp;MSp*(SO)) is free over MSp*(s0).
The rest of the argument is as in (iv).

(vi) E = BU. Let us recall that in the spectrum
BU every even term is the space BU. We have
HP(BU;ggq(SO)) =0 unless p and q are even. Therefore
the spectral sequence

H* (BU;BU* (S?)) =—> BU* (BU)

is trivial. Again, HP (BU;BU*(S?)) is free over BU*(S?).
It is sufficient to let E, run over a system of finite com-
plexes which approximate as in (iv) to the different spaces
BU of the spectrum BU.

(vii) E = BO. Let us recall that in the spectrum
BO every eighth term is the space BSp. I claim that the
spectral sequence

H* (BSp; BO* (S?)) —> BO* (BSp)

is trivial. 1In fact, for each class h € Hap(BSp(m)) we
can construct a real representation of Sp(m) whose Chern
character begins with h; for each class
h € H8p+4(BSp(m)) we can construct a symplectic represen-—
tation of Sp(m) whose Chern character begins with h.
The rest of the argument is as for (vi).

(viii) Cobordism and K-theory with coefficients.
The reader will find further examples in Lecture 4.

Assumption 20 allows us to use the method of
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Atiyah [6].

The next lemma will construct the resolutions we
require; but we state it in a more general form, so that it
will also allow us to compare resolutions. We suppose given

a diagram of the following form.

l I 1

X,
X' = X'-———; X ——~—> X'-———> X'

\VAVAV

Here the triangles are supposed to be exact (cofibre) tri-
angles, and

(x1) g Ef (X)) —> B, (X7, ))

r+l

is zero for each r. We also suppose given a map f: X —> X',
Lemma 21

Under these conditions we can construct a resolution
of X with respect to E, which admits a map over £, in
the sense that we can construct the following diagram so that
the prisms are maps of exact (cofibre) triangles.

X
1 l
X

e

X=X0 _>X

—
-

Xl

X

.
=

1 !
2 3

N

Eé———ﬂ———- S
E‘————E

i -

1
2
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In order to construct a resolution of X with
respect to E,, we need only apply Lemma 21 to the case in

which all the objects XL and Wé are trivial.

Proof of Lemma 21. As an inductive hypothesis,

suppose the diagram constructed up to the following map.

X
r

1
Xy
Form the following cofibre triangle.

x'fr
X —Xt 50X
r

Z

Then we have the following commutative square.

'
r+i

X Z

] 1
Xr < Wr
Since (x;fr)* = 0, E,(2) — E,(Xy) 1is epi. By Lemma 19

we can construct a map W, —> 2 such that W has the form

(B)
Wy = X sP A DE; ()
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and E,(W.) —> E,(Z) is epi. We now have the following

commutative sqguare.

] )
Xr é———————-Wr
Here E,(W.) —> E,(X) is epi. Form the following cofibre

triangle.

W

This triangle can be mapped in the required way, and we have
(xr)* = 0. This completes the induction.

We have constructed a resolution, because Wr in-
herits the property that E*(Wr) is projective from its
summands SP A DEu, and similarly for UCT 1, UCT 2 (see
Assumption 20). This proves Lemma 21.

We will now construct the spectral sequences of
UCT 1 and UCT 2, using Lemma 21 and the assumption that E,
and F, or F* are defined on a sufficiently large category
in which we can do stable homotopy theory. Take a resolution
of X with respect to E,, as provided by Lemma 2]1. By

applying the functor F, or F¥*, we obtain a spectral
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sequence. Now the sequence

0 «e— E,(X) «— E (W) e« E (W) €« E, (W) e ...
is a resolution of E,{X) by projective modules over E,(8?).
Since the Wr satisfy UCT 1 or UCT 2, the El-term of the spec-
tral sequence is obtained by taking this projective resolution

and applying ®© F,(s0) or Hom,, (So)( ,F*(s0)). There-
*

E, (s9)
fore the E?-term is the required Tor or Ext.

We have to show that the spectral sequence is inde-
pendent of the choice of resolution. Suppose given two reso-

lutions, as follows.

_ T T . ]
= X! /xl /x2
Wl wl
X = X8 ——> X} — X} > X% ...

YAVA!

Then we can form the following diagram.

4
»

._

Xv Xs= X' \Y X“ > ' \Y X" 5 \Y; X; e

W

W' 1 w! "
0 \% WD 1 v W)
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We can now apply Lemma 21 to the map X —» X v X of type
(1,1). We obtain a third resolution and a third spectral se-
guence which admits comparison maps to or from the first two
spectral sequences. ("To" for F,, "from" for F* .) But
both these comparison maps are iso for r = 2 by the comparison
theorem of homological algebra; therefore they are iso for
all finite r.

It remains to discuss the convergence of these
spectral sequences. Given a resolution of X, we can con-
stfuct a direct limit X, of the objects X (by forming
a "telescope" or iterated mapping-cylinder). The object X«
has the property that

E, (Xo) = Lim E,(X_) = 0 .

In the case of UCT 1, for example, the spectral sequence con-
verges in a perfectly satisfactory manner to F,(X«,X0). We

therefore face the following question.

Problem 22

When can we assert that E, (X) = 0 implies
F,(X) =0 or F*(X) =072

This is of course a special case of UCT 1 or UCT 2.
When the answer is affirmative, we have (for example)
Fo{(Xo) = 0, F,(Xe,Xg9) = F,(X) and the spectral sequence of
UCT 1 converges in a satisfactory way to F,(X).

Unfortunately the present state of our knowledge
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*
on Problem 22 appears to be far from satisfactory . Of course
we know special cases; for example, if E = S, then

S, (X)

0 implies that X 1is contractible, and so

F, (X) 0, F*(X) = 0. Again, if E,(X) = 0, then as we
vary Y, E, (X A Y) is a homology functor of Y with zero
coefficient groups, therefore zero. Thus the spectral se-
quence of KT 1 always converges.

At this point we pause to show that our spectral

sequences can behave well even in cases which are known to

be somewhat pathological.

Example 23. We consider UCT 2 for the case in

which X is K(Z), while E and F are the spectrum BU.
We can compute the ordinary homology of the spectrum BU by
considering that of the space BU and passing to a direct
limit; we find
Q if n 1is even
H, (BU) =
O if n is odd .
By George Whitehead's remark [31], this is equivalent to
Q if n 1is even
BU (K(z)) =
O if n is odd .
Now owing to the favourable structure of the ring BU,(S0),

the computation of Ext over this ring reduces to computing

Ext over Z. We find

* Note added in proof. A satisfactory answer to Problem 22 is
now available.
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P/q
Ext * 0
Eth(Q,Z) if p=1 and g is even
0 otherwise.

This agrees with the result of Hodgkin and Anderson [5, 17].
We will now make some comments on the situation

whose exploration was pioneered by Conner and Floyd [14]. We

assume that we have representing objects E and F, that

E satisfies Assumption 20 and that F satisfies the follow-

ing hypothesis.

Assumption 24

F is the direct limit of finite CW-complexes Fa

for which

(1) E,(DF ) is projective over E,(s%), and
(ii) DF satisfies UCT 1 for the theory F,.

(Compare Assumption 20.) In practice we generally
verify this assumption by using Proposition 17, as for Assump-

tion 20.

Examples.
(i) E = MU, F = BU, In the spectrum BU every

even term is the space BU. For the space BU we have

HP (Bu;MU9(s%)) = 0 unless p and g are even. Therefore
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the spectral sequence

H* (BU;MU* (S0)) == MU* (BU)
is trivial. Again, HP(BU;MU*(S?)) is free over MU*(s0),
As in Example (vi) on Assumption 20, it is sufficient to let
Fa run over a system of finite complexes which approximate
to the different spaces BU of the spectrum BU in the

sense that

i,: Hp(Fa) — Hp(BU)
is iso for p < n, while Hp(Fa) = 0 for p > n.

(ii) E = MSp, F = BO. In the spectrum BO every
eighth term is the space BSp. It follows from the work of
Conner and Floyd [14] that the spectral sequence

H* (BSp;MSp* (S?)) — MSp* (BSp)
is trivial. Again, HP(BSp;Msp*(s?)) is free over MsSp*(s?).
The rest of the argument is as in (i).

With these assumptions (especially 20 and 24) we have

the following results for any X.

Proposition 25

We have
TorP* (E, (X),F,(S8%)) =0 for p> 0 .
E*(SO) * s

The spectral sequence of UCT 1 collapses, and its edge-~homo-
morphism

E,(X) © F,(s?) — F, (X)

E, (S0)
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is iso.

Compare Conner and Floyd [l14, pp. 60, 63]; but
these authors state their theorem with the variance of UCT 3,
and use finiteness assumptions.

Proof. It follows from Lemma 19 that given any

object X, there exists an object W of the form

w=VY sP®)ng, () vy s? ) pp

B o(y)

and a map g: W —> X such that both

gi: EL(W) —> E_(X)
and gyt Fp(W) —> F,(X)
are epi. Arguing as in Lemma 21, we can now construct a reso-
lution of X with respect to E, which has the following
extra properties.

(1) The objects Wr have the form

v sPYapp
y a

_ p(B)
Wy =Y ST ADE,(g) V Y)

(ii) Not only the homomorphisms

()4t By (X)) —> E (X))

r+1
but also the homomorphisms

()43 FalX) —> FulX_ )

r+1
are zero for all r.
Then the sequence

0 «— E (X) e« E,(W)) «— E,(W;) «— E,(Wy) ...
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is a resolution of E,{X) by projectives over E,(S?).

Consider the following diagram.

E, (W) @E*(SO)F*(SO) <«— E (W) ®

Vol Vi

F*(Wg} < F*(Wl) -

E* (SO)F* (SO) <

<«— E,(W,) © F,(s0)...

E, (89)
V2
—— F, (W) ...

The homomorphisms v, are iso. The lower row is exact by

construction. Therefore the upper row is exact, and
TorP’* (E,(X),F*(8%)) =0 for p>0 .
E*(SO) * ’
We can now consider the following diagram.

0 «— E,(X) @E*(SO)F*(SO) <«— E, (W) @ F,(s0)

E, (s0) -«

AV \)0

0 «— F,(X) <« F,(Wy) <

e
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«— E,(W;) ® F, (s0)

E, (s0)

Vil

- F,(Wy)

The upper row is exact because ® 1is right exact, and the
lower row is exact by construction. The maps vy and v,
are iso. Therefore v is iso. This completes the proof of
Proposition 25.

Since we now know what happens to UCT 1 in this
situation, it is natural to ask what happens to UCT 2.
For this we need slightly more data. We suppose given two
ring-spectra E, F and a map i: E — F of ring-spectra.
(For example, E = MU and F = BU, or E = MSp and
F = BO.) We suppose given also a spectrum G which is a
module-spectrum over F, and therefore a module-spectrum
over E via i. (For example, G = F.) (It would presum-
ably be sufficient to suppose given enough products in hom-
ology and cohomology, but let us spare ourselves the details.)
We suppose that the pair of theories (E,G) satisfies Lemma
21, so that we can construct a spectral sequence for computing
G, or G* from E, as in UCT 1 or UCT 2; we also suppose
that the pair of theories (F,G) satisfies Lemma 21, so that
we can construct a spectral sequence for computing G, or

G* from F, as in UCT 1 or UCT 2.
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Proposition 26

(i) The spectral sequence for computing G, from
E, coincides with the spectral sequence for computing G,
from F,.

(ii) The spectral sequence for computing G* from
E, coincides with the spectral sequence for computing G*

from F,.

Note. By specialising Proposition 26 (i) to the
case G = F, we obtain a result agreeing with Proposition
25; for of course the spectral sequence for computing F,
from F, collapses.

Proposition 26 will follow almost immediately from

the following lemma.
Lemma 27

(i) If E,(W) is projective over E,(S?), then
F, (W) is projective over F, (S0).
(ii) 1If

E,(W) ® G, (80) — G, (W)

E, (s9)
is iso, then

F, (W) © so)G*(SO) —> G, (W)

is iso.
(iii) 1If

G* (W) —> Hom;* (50) (Ex (W) ,G*(s0))
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is iso, then

G* (W) —> Hom; (So)(F*(W),G*(SO)) is iso.
*

Proof.

(i) F,(W) = E_ (W) ®© F,(s%), by Proposition

E, (s0)
25. So if E,(W) is projective over E,(S?), F, (W) is
projective over F, (89).

(1i) Consider the following commutative diagram.

18 wv

0 0 0
E, (W) eE'*(SO)F*(S ) ®F*(SO)G*(S ) ———— E_, (W) ®E*(SO)G*(S )
vl Y
Py (W) ®p (50)Gu (87 - > Gy (W)

The left-hand column is iso by Proposition 25, the right-hand
column is iso by assumption, and the top row is trivially iso.
Therefore the bottom row is iso.

(iii) Consider the following commutative diagram.

G* (W) . —> HomF*(So)(F*(W),G*(SO))

W

* 0
E*(SD)E*(W), G™ (S ))

HomF*(So)(F*(S°)®

'

Vg 0 N 0
HomE*(So)(E*(W),G*(SO))-—>HomE*(SO)(E*(W), HomF*(So)(F*(s ), G* (s g
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The result follows as in part (ii).

Proof of Proposition 26. Take any resolution of

X over E,, say the following.

= Xo—b Xl-ﬁ Xzé X3 e e

AN

Here the objects Wr are supposed to saéisfy UCT 1 or UCT 2
with respect to the functors E, and G, or G*. We will
show that it qualifies as a resolution of X over F,. 1In
fact, since

()42 Ey (X)) —> E, (X_,,)

is zero, the homomorphism

(xr)*: F*(xr) "%F*(X )

r+1
is zero by Proposition 25. The remaining statements which
need to be checked are provided by Lemma 27. Proposition 26

follows immediately.
Example. For any X we have

ExtP’* (MU, (X),BU*(S%)) = 0 for p > 1 .
MU, (S7)

This follows immediately from Proposition 26, since

the result is trivial for
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Extﬁ_ﬁi (50) (BU (X) ,BU* (50) )T .

The following result is required for use in

Lecture 3.

Lemma 28

——

If E = BO, BU, MO, MU, MSp, S or K(Zp)

then E,(E) is flat as a module over E,(S?).

Proof. The cases E = MO, S and K(Zp) are tri-
vial. In the cases E = MU, MSp we can apply the spectral
sequence

H, (E;E, (80)) —> E, (E)

to show that E,(E) is projective over E, (50); in the case
E = MSp this involves remarking that the spectral sequence
is trivial, by duality with the spectral sequence

H* (MSp;MSp* (%)) —> MSp* (MSp)
which is known to be trivial (see Assumption 20, Example (v)).
In the cases E = BU, BO we apply this argument to the
spaces BU, BSp to show that the modules BU, (BU),
BO, (BSp) are projective (compare Assumption 20, examples
(vi), (vii)). We then remark that a direct limit of projec-

tive modules is flat. This proves Lemma 28.

T Note added in proof. I have been asked to say explicitly at
this point that UCT2 gives the following exact sequence.

0O->Extl* (MU, (x) ,BU* (89)) =>BU* (x)—>Hom¥ (<0 (MU, (%) ,BU* (7)) >0
*

MU, (s?)



- 46 -

LECTURE 2. THE ADAMS SPECTRAL SEQUENCE

In this lecture I want to discuss the prospects of
setting up an "Adams spectral sequence" [1, 2, 15] using a
generalised homology or cohomology theory. Everything is to
be taken as provisional, or as work in progress, and no proofs
will be given.

I shall assume that we can work in some stable cate-
gory, like those supplied by Boardman [7, 8] and Puppe [25].

I shall ;lso suppose that we are given a homology or cohomology
functor to use in our constructions. I will suppose that

this functor takes values in an abelian category. As long as
we are talking generalities, we can then suppose that the
functor is covariant; because if it is contravariant, we can
replace the abelian category by its opposite. We will write

E, for this homology functor.

I suggest that we now adopt a construction remini=
scent of those constructions for Ext which avoid using
projectives and injectives. More precisely, I suggest we
proceed as follows. Suppose given two objects X,Y in our

stable category. Consider diagrams of the following form.

Yo
Ya'Yo’ Yz@—-Y3

\/\/\/
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Here the notation Y = Y; means a homotopy equivalence; and
the triangles are supposed to be exact (cofibre) triangles

in our stable category. We restrict attention to the diagrams
such that

Eply,) = 0t Eu(Y, ) —> E (Y))

for each r > 0; this is the crucial condition. In this
case the sequence

0 —> E,(Y) —> E,(Z)) => E (Z;) —> E,(Z;) —> ...
is exact. We call such diagrams "filtrations" of Y. If we
wish, we can suppose without loss of generality that each Yy
is an inclusion map (replace Y, by a "telescope").

By mapping X into such a filtration of Y we
get a spectral sequence; but this is not yet the spectral
sequence we seek. However, we can take all possible filtra-
tions of Y and consider them as the objects of a directed
category (in the sense of Grothendieck). (Since I am omit-
ting proofs, I will omit certain details as to how this is
done, although they were given in the original lecture.)

From each filtration we get a spectral sequence, and we can
now take the direct limit of all these spectral sequences;
this is the spectral sequence I suggest. Let us call it
SS(X,Y;E,).

I will also omit some arguments in favour of this
definition, although they were given in the original lecture.

At this level one should already be able to set up
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some formal properties of the spectral sequence. For example,
suppose that we have a functor T from one abelian category
to another, and that both E, and TE, are homology functors.
(For examples, see Lecture 1, Proposition 25, or Lecture 4.)
Then there clearly is a homomorphism

SS(X,Y;E,) —» SS(X,Y,TE,) ,
because every diagram which qualifies as a filtration for E,
also qualifies as a filtration for TE,. (Compare Lecture 1,
Proposition 26.) If E, and F, are homology functors which
mutually determine each other in this way, then

SS(X,Y;E,) =~ SS(X,Y;F,) .
(For examples, see Lecture 4.)

We can now raise the following question. Suppose
that X and Y are finite complexes, and that we consider
only filtrations in which each Yr is equivalent to a finite
complex. Do these yield in the limit the same spectral se-
quence as if we did not restrict the filtrations? This is
probably true if the homology theory E, has sufficiently
strong finiteness properties.

We can now consider the behaviour of our construc-
tions under S-duality. Do we have

ss(X,Y,E,) = SS(DY,DX,E,D) ?
(Note that E,D is a cohomology theory defined on finite
complexes.) This problem leads one to consider also a "dual"

approach to the construction.
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We consider diagrams of the following form.

XQ'XO_-;Xl—-—;‘XZ-——‘;X3

\VAVAV

As above, the notation X = X; means a homotopy equivalence,
and the triangles are supposed to be exact (cofibre) tri-
angles in our stable category. We restrict attention to the
diagrams such that

Ey(x)) = 05 Eg(X) —> E (X))

r+1
for each r > 0. 1In this case the sequence
0 «— E,(X) «— E, (W) «<— E, (W) « E, (W) = ...

is exact. We call such diagrams "filtrations" of X. If we
wish, we can suppose without loss of generality that each X,
is an inclusion map (replace X, by a "telescope").

By mapping such a filtration of X into Y we get
a spectral sequence. The suggestion would be to vary the
filtration (inversely) and take a direct limit of the result-
ing spectral sequences. Does this give the same spectral
sequence as before?

Evidently the situation is like that in homological
algebra; there we can define Ext*(L,M) by resolving L, or
by resolving M, and we want to show that the result is the

same. The proof there, as we know, is to resolve both of
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them, and show that that gives the same result as resolving
either one. Similarly here; one should consider a filtra-
tion of X, and also a filtration of Y, and one should
try to get a spectral sequence by mapping one to the other.
Then one should take a double direct limit, and show that
this gives the same spectral sequence as one obtains by
filtering either X or Y alone. I haven't tried to write
down any details about this.

If one can attain this sort of manipulative ability,
one ought to be able to set up various formal properties of
the spectral sequences without further assumptions on E,.
For example, there should be a pairing

Ss(Y,Z;E,) © SS(X,Y;E,) —> SS(X,Z;E,)
which on the E« level is given by composition.

The next step would be to compute the E, term
of our spectral sequence. We are supposing that E, takes
values in an abelian category, so we can define Ext by
classifying long exact sequences. It is reasonable to hope
that we can define a homomorphism from the E, term to
Ext** (E_ (X),E,(Y)). The question would be, when can we prove
that this homomorphism is an isomorphism? For this purpose
one obviously needs to choose the right category, so as to
obtain the right Ext groups. More precisely, we need to
arrange a very close correspondence between the algebra and

the geometry, so that there is some algebraic situation which
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gives us a legitimate calculation of the Ext groups and
which can be realised geometrically.

At this point all suggestions for proceeding
assume that our functor is represented by a spectrum E.

(i) The original formulation asks us to work in
cohomology, and consider E*(X), E*(Y) as modules over the
ring E*(E) of cohomology operations [1, 2, 23, 24]. This
approach has various disadvantages.

(a) In the generalised case E*(E) is a
topologised ring, and E*(X), E*(Y) are topologised modules
over the topologised ring E*(E). We have to take account
of the topology [24]. Topologised modules usually fail to
form an abelian category, owing to the existence of maps
f: L —> M which are isomorphisms of the module structure,
and continuous, but such that f-1 is not continuous.

(b) We cannot assert that EI(E) = 0 for
g < 0; we may have non-zero cohomology operations which
lower dimension by any prescribed amount, as well as ones
which raise it. Similar remarks apply to our modules. Both
(a) and (b) mean that our constructions and calculations
lose a certain element of finiteness which is present in the
classical case.

(c) By means of examples (which I will now
omit, although they were given in the original lecture) we

see that even in the classical case of ordinary cohomology
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with Zp coefficients, approach (i) only works under finite-
ness assumptions on Y. In the generalised case, we may see
this as follows.

We wish to consider filtrations of Y in which each
object Zr is "free"; in particular, E*(Zr) should be "free"
in some sense applicable to topologised modules, and we

should have
[X,2 1, = Homp, .y (E* (2. ),E*(X)) .

Since we wish to know about maps from X to Z. and from
Zr to E, this means in practice that we must stick to the
case in which Zr is both a sum and a product of suspensions
s"E of E. And again, this means in practice that we must

stick to the case in which E 1is connected and Zr is a

countable sum,

©

Z. = \V sl
i=1

in which n(i) —» « as i1 =—> « , In other words, we are
compelled to prove or assume that E*(Y) admits a resolution
by "free" topologised graded modules which have only a finite
number of "generators" in dimensions less than n (for each
n). Although Novikov [24] arranges his work somewhat differ-
ently, it is essentially for this purpose that he relies on
finiteness properties of E* which are true in the case

E = MU (see Lecture 5). The corresponding properties are

unknown for E = MSp, and definitely false for E = S,
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although the Adams spectral sequence works for these spectra
in some cases at least.

It may be seen from the examples that trouble (c¢)
arises from a double dualisation. The spectral sequence is
covariant in Y, but by taking E*(Y) we are taking a
contravariant functor of Y, and then by taking

* %
ExtE*(E)(E*(Y),E*(X)) we are taking a contravariant functor

of E*(Y). This leads to the next approach.

(ii) The next approach would ask us to follow
Cartan and Douady [15], and work in homology, considering
E,(X) and E,(Y) as modules over the ring E*(E). 1In the
classical case E = K(Zp) this works quite well. This is
partly owing to the fact that E,(E) is then an injective
module over the ring E*(E); but this fails to generalise
to cases in which E*(SO) is not a field. In general the
ring E*(E) retains its previous disadvantages, and this
approach suffers from being a compromise or half-way house
between (i) and (iii). The way ahead appears to lie in a
more whole-hearted acceptance of the idea that homology is
better than cohomology.

(iii) My final suggestion is that we should work
wholly in homology, and consider E,(X), E,(Y) as comodules
with respect to the coalgebra E,(E). We use E,(S?) as

the ground ring for our comodules etc. The necessary details
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are given in Lecture 3. Of course, we need some data for
this; in fact, we need to assume that E is a ring-
spectrum and E,(E) is flat over E*(SO). This is true for
the spectra mentioned in Lecture 1, Lemma 28. Everything
now works much better. The comodules E,(X), E,(Y) and

the coalgebra E,(E) are discrete; in typical cases we have

Eq(x) = 0 for sufficiently large negative g, and

Eq(E) 0 for g < 0. The comodules form an abelian cate-
gory. Our constructions and calculations regain that element
of finiteness which we lost before.

In order to compute Extﬁ*(E)(E*(X),E*(Y)), it is
*

sufficient to take a resolution of E_, (X) by comodules which
are projective over E*(SO), and a resolution of E_(Y) by
extended comodules; the latter play the part of "relative
injectives". Both sorts of resolution can be constructed geo-
metrically. For the first, we require a filtration of X

such that E, (W) is projective over E,(s?) for each r.
Such a filtration can be constructed by Lemma 21 of Lecture

l. Moreover, we see that such filtrations are cofinal in

the set of all filtrations of X. For the second, we require
a filtration of Y such that E,(Zz ) 1is an extended comodule
for each r. Such a filtration can be constructed in the
following way. Let the structure maps of the ring spectrum

E be uy: EAE — E and i: s” — E. Suppose we have

constructed Y i the induction starts with Y, = Y. Take
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Zr =E A Yr' and form the map
a a0 iAal =
Yr SAYr—>EAYr Zr'

Then E, (Y ) — E,(2.) is mono, since it is defined to be

T (E A Yr) —> 1,(E A E A Yr), and this has a one-sided in-

verse induced by E A E A Y iLlL-Lq> E A Yr. The comodule

E*(Zr) is extended, by the results of Lecture 3. Form the

following cofibre triangle.

Yr < Yr+1
r

Then E*(Yr+1) —_— E*(Yr) must be zero. This completes the

induction. By adding a few details, we see that such filtra-
tions are cofinal in the set of all filtrations of Y.

We may say that at the present time approach (iii)
seems to be promising.

The final step, of course, would be to discuss the

convergence of the spectral sequence. I would like to defer

this question.
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LECTURE 3 HOPF ALGEBRA AND COMODULE STRUCTURE

In the classical case of ordinary cohomology with
coefficients Zp, the mod p Steenrod algebra A* is a
Hopf algebra, and it acts on the left on the cohomology of
any space, so that we have an action map A* ® H* — H*.

If we dualise by applying Homzp( ,Zp), we see that the
dual A, of the Steenrod algebra is also a Hopf algebra; and
if the homology H, of a space is locally finitely generated,
we have a coaction map H, — A, ® H,. (The finiteness con-
dition is actually unnecessary, but we do not need to spend
time on that here.)

It is the object of this lecture to see how the
material mentioned above generalises to the case of a gen-
eralised homology theory. We will begin by stating our
assumptions; then we will list the structure maps we propose
to introduce, and list their principal formal properties.
Next we will give the definitions of the structure maps, and
comment on the proofs of the formal properties. Then we give
two propositions which relate A, to A* in the generalised
case. Finally, we use these two propositions to show that if
we specialise to the classical case of ordinary cohomology
with Zp coefficients, all our structure maps specialise

to those classically considered.
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It will be convenient to write as if we are work-
ing in a stable category in which we have smash-products with
the usual properties; but if the reader objects to this, our
statements can be "demythologised" by known methods. We
shall suppose given a ring-spectrum E, so that we are given
a product map up: EA E ~» E and a unit map i: s —s E.
These are supposed to have the usual properties; that is,

the following diagrams are homotopy-commutative.

50 A EXAL L EAE
1
~ y EAEAEEAL S B AE
E - —> % 1 A ul lu
- " E A E L —> E

oy

Here 1 1is the usual switch map.

E

We recall that the homology groups of a spectrum
X with coefficients in E are given by

E,(X) = [s®, EA X] = m (E A X) .
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The classical case is given by taking E to be the Eilenberg-

MacLane spectrum K(Zp). The analogue of A, in the gen-

eralised case is therefore E_ (E) = n,(E A E), the homology
of E with coefficients in E. The analogue of Zp is
E,(S%) = n,(E). Since E is a ring-spectrum, we have various

products. More precisely, suppose given a pairing
u: EA F —> G of spectra. Then we shall have to consider
three products, which appear in the following commutative
diagram.
Te(EAX) 8@ ny(FAY) ~—> 1,(GAXAY)
A -
T, 1 (t A 1),

T (X AE) @ 1, (FAY) 25 1, (XAGAY)

16, {1 A 1)y

- 4

\ .
Te(X A E) @ 1, (Y AF) = m,(XA YA G)

Here the product v 1is the usual external homology product,
as used (for example) in Lecture 1, Note 7. The product v'
is a back-to-front version of v. The product m is defined

as follows. Suppose given maps
£: SP — x A E, g: ST —> F A Y.
Then m(f ® g) is the following composite.

SPAsd A9 S y AEAFAY AWML xAGAY
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Since it is important for us in this lecture to keep factors
in their correct order, we will use m as our basic product.
By taking X = 8% or Y = S0, we obtain the following

special cases.

m: np(E) ® nq(F AY) —> “p+q(G AY)
m: np(X A E) ® nq(F) — 1rp+q(X A G)
(¢) .

m: 'np(E) ® nq(F) —_— “p+q

In particular, =,(E) is an anticommutative ring
with unit. For any Y, w,(E A ¥Y) is a left module over
T, (E); the product map

m: m,(E) @ 1, (EA Y) —> 7,(E A Y)
is the usual one, and coincides with the map u considered
in UCT 2 (see Lecture 1, Note 2). For any X, T4 (X A E)
is a right module over n,(E). The product

m: 7, (XAE) @ m,(EAY) — 1, {XAEAY)
factors to give a map

T« (X A E) QH*(E)H*(E AY) => 1, (XAEAY),

which we also call m.
We have product maps

m: 7,(E) @ 7, (EA E) — 7,(E A E)

m: 7,(EAE) ® m,(E) —> 1,(E A E),
and thus 7,(E A E) becomes a bimodule over ==,(E). It

should be noted that the two actions of 1,(E) on 1,(E A E)
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are in general quite distinct; this is the main difference
between the generalised case and the classical case, in which
we have only one action of Zp on A,. The presence of
these two actions means that the generalised case demands

a little more care than the classical case.

We now assume that n,(E A E) is flat as a right
module over w,(E) (using the right action). By using the
switch map

Tt EAE —> EAE

to interchange the two factors, we check that it is equiva-
lent to assume that =,(E A E) is flat as a left module over
71, (E) (using the left action). This hypothesis is somewhat
restrictive, but it is satisfied in many important cases,
notably the cases

E = BO, BU, MO, MU, MSp, S and K(Zp)
(see Lecture 1, Lemma 28).

With this hypothesis, we will see that n,(E A E)
is a Hopf algebra in a fully satisfactory sense, and that for
any spectrum X, 7,(E A X) is a comodule over the coalgebra
m,{(E A E). We will now make this more precise by listing the
structure maps we shall introduce, and giving their principal
properties.

The structure maps comprise a product map

¢: TL,(EAE) @ 1, (EAE) —> m,(EA E),

two "unit" maps
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ng,? T (E) —> 7,(E A E)

nR: T (E) = 7,(E A E)

a counit map

€: T,(E A E) => 7,(E)

a canonical anti-automorphism
c: 1,(EA E) => n,(E A E)
a diagonal map

Y = Ypt Ty (E A E) — 14 (E A E) @ﬂ*(E)n*(E A E)

and for each spectrum X, a coaction map

p = q;xz Te(E A X) —> 7,(E A E) @“*(E)ﬂ*(E A X) .

(The diagonal map wE is obtained by specialising the co-
action map ¥y to the case X = E.)
It is important to note that in the tensor-product

T, (E A E) © (E A X), the action of ==,(E) on the

1, (E)"*
left-hand factor =,(E A E) is the right action. (The
action of 7,(E) on the right-hand factor =,(E A X) is
the usual left action.) This is exactly what we need to use
the tensor-product notation in a systematic way.

The tensor-product m,(E A E) ©_ (E)"*(E A X) can
%*

be considered as a left module over w,(E), by using the

left action of n,(E) on =w,(E A E); that is,

Ale @ x) = (xe) @ x
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(A € 1,(E), e € T ,(E A E), X € 1, (EA X)) .
The coaction map 2% is a map of left modules over m,(E).

In particular, the previous two paragraphs apply to
the case X = E. Here the tensor-product
1, (E A E) Qn*(E)“*(E A E) can also be considered as a right
module over w,(E), by using the right action of =, (E) on
the right-hand factor. The diagonal map Vg is a map of
bimodules over m,(E).

The behaviour of the other structure maps with re-
spect to the actions of n,(E) will emerge from the proper-
ties given below. The tensor-product on which the product
map ¢ is defined can be taken over the integers.

The principal properties of these structure maps
are as follows. The product map ¢ is associative, anticom-

mutative and has a unit element 1. The maps €

nLI an
and c are homomorphisms of graded rings with unit. The left

action of w,(E) on w,(E A E) is given by
re = ¢((n;2) @ e) (A € 71, (E), e € 1, (EA E)) .

Similarly, the right action of n,(E) on w,(E A E) is
given by

ex = ¢(e © (nRA)) (e € 1, (E A E), A € 7 (E)) .
We have

eny, = 1, eng = 1, Cny = Nps CNp = Ny
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These properties determine the behaviour of ¢, €

nLI nR’
and c¢ with respect to the actions of n_(E). In particular,
e 1is a map of bimodules.

The coaction map is natural for maps of X. The

coaction map is associative, in the sense that the following

diagram is commutative.

v
X
T, (EAX) » 7, (EAE) ®n*(E)ﬂ*(EAx)
¥Yx Lo vy
vg®?
T4 (EAE) Qn*(E)"*(EAX) ———> 7, (EAE) ®ﬂ*(E)W*(EAE) @ﬁ*(E)ﬂ*(EAXJ

(Note that 1 @ 2% is defined because is a map of left

Vx
modules over n,(E), and wE ® 1 is defined because wE
is a map of right modules over w,(E).) In particular, we
can specialise this diagram to the case X = E, and we see
that the diagonal map is associative.

The behaviour of the diagonal with respect to the

product is given by the following commutative diagram.

T, (EAE) © m, (EAE) - - 7, (EAE)
vp @ Vg
VE
[7, (EAE) @ﬂ*(E)n*(EAE)] !

—2 s i, (EAE) @
*

7, (E) T, (EAE)
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Here the map ¢ is defined by
(e ® f@ge®h) = (-1)P9 (e ® g) @ ¢(f ® h)
where f ¢ np(E A E), g€ nq(E A E). It has to be verified
that this formula does give a well-defined map of the product
of tensor products over =, ,(E), but this can be done using
the facts stated above.
The behaviour of the diagonal map on the unit is

given by wE(l) = 1@® 1. It follows that we have
v h = (npA) @ 1, ypnph = 1@ (npd) (4 € 1, (E)) .

The behaviour of the diagonal map with respect to

the counit is given by the following commutative diagram.

1
T, (E A X) -—1-——> 1, {E A E) @ﬂ_*(E)n*(E A X)

1 e ® 1

T, (E A X) «—— 1. (E) © T4 (E A X)

T4 (E)

Here the bottom arrow is given by the usual left action of
T .(E) on w,(EA X). Themap ¢ @ 1 is defined because ¢
is a map of right modules over =, (E). Similarly, we have

the following commutative diagram.
(E n &) —E (E A E) (E A E)
T E/\ —. E/\E ® T A
* * T, (B) ' *

1 1®c

T4(E A E) «e—=—— 1, (E A E) @ﬂ*(E)ﬂ*(E)
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Here the bottom arrow is given by the right action of 1, (E)

on 7m,(EAE). Themap 1 ® ¢ is defined because ¢ is a

map of left modules over «n,(E).

The behaviour of the diagonal with respect to the
canonical anti-automorphism ¢ is given by the following

commutative diagram.
YE
1,(E A E) ————> 1,(E A E) en*(E)ﬂ*(E A E)
c c

Y
ﬂ*(E A E)L_) T (E A E) @ﬁ*(E)w*(E A E)

Here the map C 1is defined by

Cle © £f) = (—l)pqcf ® ce

(e € wp(E AE), £ ¢ “q(E A E)) .

It has to be verified that this formula does give a well-
defined map of the tensor product over «=,(E), but this can

be done using the facts stated above.

The following commutative diagrams express that
property of the canonical anti-automorphism which in the

classical case is taken as its definition.

T,(E A E) = » 7, (E)
g Ny,

T (EAE) O (pm(E A g) 2183 . . (kA E)
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T (E A E) = > 7, (E)

¥p n

T, (E A E) Qn*(E)ﬂ*(E A E)M e (E A E)

R

It has to be verified that ¢(18c) and ¢(c®1) do give well-
defined maps of the tensor product over w,(E), but this can
be done using the facts stated above.

This completes the list of properties of our struc-
ture maps. We also require one further formal property in
order to show that certain comodules E, (X) are extended (see
Lectures 1, 2). Let F be a left module-spectrum over the
ring-spectrum .E; for example, we might have F = E A Y.

Then the following diagram is commutative.

T, (E A E) @ﬂ*(E)w*(F) T, (E A F)

Vg @ 1 Ve

18m

T, (EAE) 8“*(E)ﬂ*(EAE) ®ﬂ*(E)ﬂ*(F)-——+> 14 {EAE} © T o (EAF)

Ty (E)

The map 1 ® m is defined because m 1is a map of left modules
over 1, (E).

We now give the definition of our structure maps.
The product ¢ 1is given by either way of chasing round the

following commutative square.
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]
1,(EAE) @ 1,(EA E) ————> 1,(EA E A E)
v (n A 1)
{lau) ,
T4 (E A E A E) > 1, (E A E)

(For v and v', see the discussion of products at the be-

ginning of this lecture.) In other words, suppose given
f: P — EA E, g: s9 — E A E;
then ¢(f ® g) is the following composite.

gP gq _fAg IATA L

A A9 UCEAEAEANE —2™! S EAEAEAE XL SEAE.

We have maps

E=EASt 2L EAE
EQSOAELAI_,EAE
which map E into E A E as the left and right factors.
We define L and "R to be the corresponding induced homo-
morphisms. We define ¢ and c¢ to be the homomorphisms

induced by

u: EA E —> E
and
7: EAE —> EAE

It only remains to define Uy
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Lemma 1

If n,(X A E) is flat as a right module over
1, (E), then m: m (X A E) @ﬂ*(E)w*(E AY) — 1, (XA EAY)

is iso.

Proof. This is essentially the trivial case of
KT 1 (see Lecture 1, Note 12). The map m is a natural
transformation between homology functors of Y which is iso
for Y = 89; therefore it is iso for any finite complex Y.
Pass to direct limits.
We now define
h: 1, (X A Y) — 71, (XA EAY)

to be the homomorphism induced by

™
XAY=XAs80ay 2 S xAEAY.
The map h is essentially the Hurewicz homomorphism in E-

homology.

If 7,(X A E) is flat, we can consider the follow-

ing composite.
-1

TeXAY) s r  XAEAY)ES 1, (XA E) @ (E A Y) .

T (E) "%
We define y = m ‘h. 1In particular, since we are assuming
that =,(E A E) is flat, we can specialise to the case

X = E; we take the resulting map ¢ for our coaction map

Vye This completes the definition of the structure maps.

The proofs of all the formal properties are by
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diagram-chasing. In proving any property of Yyr of course
we have to make our diagram up out of two subdiagrams, one
for h and one for m. For example, in proving that the
coaction map is associative, we first prove two more elemen-

tary results; is natural for maps of X, and

x
Ypm = (10 m)(wE ® 1) (which is the diagram required to
prove that E,(F) 1is an extended comodule). We now set up

the following diagram.

12
7, (E A X) X > 1, (E A E) e (E) T (E A X)
*
h 1eh
b Y v
T,(EA E A X) EAX 1, (E A E) 8"*(E)w*(E A E A X)
~ ,
m l1Om
V.81

7, (EAE) @ﬂ*(E)ﬂ*(EAx)—E——>n*(EAE) ®, (z)" (BAE) 8 (57, (EAX)

Here the top square is commutative because h 1is induced by
a map

X =50 A x 3 gAx,
and wx is natural for maps of X. Similarly, the bottom
square is commutative by the second result mentioned, taking
F = E A X. This gives the required result. The two subsid-
iary results are proved in the same way.

In proving the behaviour of the diagonal with re-

spect to the product, it is convenient to prove a slightly
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more general result first. Suppose that =w,(A A E), 7,(B A E)

and 7,(A A BA E) are all flat; then the following diagram

is commutative,

Ty (AAX) © 7, (BAY) > 7, (AABAXAY)

Yy O y
b

[’"* (AAE) e,",* (E) Ty (E/\X) ]

——— n4 (AABAE) 8, (E) T* (EAXAY)
® [7, (BAE) 9“*(E)1T,"(E/\Y)] *

Here the upper horizontal map is the obvious product, and the
lower horizontal map sends e ® £ ® g ® h into

(-1)P91(e ® g) © v(f ® h) (see the discussion of products
at the beginning of this lecture). This diagram is proved
commutative in the same way as before - separate h and m.

Next observe that since the functor =, (E A E) @ﬂ pre-

» (E)
serves exactness, applying it twice preserves exactness; that

is, the right module

Te(EA EAE) = 7, (EA E) Qn*(E)“*(E A E)

is flat. So we may specialise to the case A =B = E. Now
apply naturality to the map
AAB=EANELSE;

we see that the following diagram is commutative.
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T4 (EAX) © 7, (EAY) > 7, (EAXAY)

®

Yy Y v

[ 74 (EAE) ®ﬂ*(E)ﬂ*(EAX)] ¥

— T (EAE) ®_,T (E)’ﬂ'* (BAXAY)
® [, (EAE) @ gy 7y (EAY)] ¥
*

Here the lower horizontal map sends e @ £ ® g ® h into
(—l)pq¢(e ® g) ® v(f ® h). This diagram gives the behaviour
of the coaction map with respect to the external homology
product. Finally we specialise to the case X = Y = E and
apply naturality to the map

XAY=EAELs>E.
We obtain the required commutative diagram.

The proof of the remaining formal properties does
not call for any special comment.

We now turn to further formulae, involving cohomology,
which will help to show that our definitions specialise cor-
rectly to the classical case. We recall that the cohomology
groups of a spectrum X with coefficients in E are given
by

E M (x) = [s"Ax, E] .

We have a Kronecker product

-p
E “(X) @® Eq(X) —_— ﬂp+q(E)

defined as follows. Suppose given maps
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f: SPAX —> E, g: s9 — EAX .

Then (f,g) is the following composite.

1A 1A fAl
sPasd —22 o Papax 215 SPAXAE —~—> EAE ——> E .

In particular, we have the cohomology groups E*(E).
Since these are defined in terms of maps from E to E (up
to suspension), they act on the left on the homology and coho-
mology groups E_(X) and E*(X). The precise definitions are
as follows. Suppose given maps

a: SPAE—> E, f: s9 —> EAX, g: STAX —> E .
Then af is
sPasd —Ef o Prpx 215 mrx

and ag is

Pastax 295 sPAg 25 & .

S
In this way E*(E) becomes a ring with unit, and E, (X), E* (X)
become left modules over this ring.
We will show that the action of E*(E) on E,(X) is
determined by the coaction map y,. Suppose a € E*(E),

X € E,(X) and yux = ) e ® x4 , where e; € E_(E) ,
i

X5 € E*(x) . Then we have:

Proposition 2

ax = Z (a,ce;)x; .
i

To prove this proposition, we set up the following

diagram.
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me (E A X) a > 1, (E A X)
h h
$
T, (EAEAX)—2—>3 1, (EA E A X) 1
*
m (uA1)
+
T4(E A E) ® 1, (E A X) = —> 71, (E A X)
Here o is defined by
a(e ® x) = (a,ce)x .

It is easy to show that the diagram is commutative. This
proves Proposition 2.

In the case when an element 2z € E*(X) is deter-
mined by the values of (z,x) for all x € E,(X), it is
reasonable to ask for a calculation of the action of E¥(E)

on E*(X) in terms of wx. There is a choice of formulae

which answer this question; here I will give one which seems

neater than that which I actually gave in Seattle. Suppose

* P =
a € E¥(E), y € EE(X), x € E,(X) and VUyX g e, ® x.,

where e, € Eq(i)(E)’ Xy € E,(X). Then we have:

Proposition 3

(ay,x) = Z (-l)pq(i)(a,ei(y,xi)).
i

The formula on the right makes sense, because ey

in 1n,(BEAE), and (y,xi) lies in 14 (E), which acts on the

on w*(EAE).

lies

right
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To prove the proposition, we first define
Ve?: Te(F A X) —> 7w, (F A E)
(for any F) as follows. Suppose given y: sP A X — E

and f: s — F A X; let v+«f be the composite

P Ny

S*AST ————> S"AFAX =—> FAS AX ——=—> T[AE

Then we "easily check that

(ay,X) = {a,y¥xX) .

We now set up the following diagram.

T, (E A X) Ly > 7,(E A E)
h h
|
T.{E A E A X) —% 1, (E A EA E) 1
E
m
v

T (EA E) @ 1, (E A X) > 7, (E A E)

Here 8 1is defined by

gle ® x) = (-1)P9 o(y,x)
for e € Eq(E). It is easy to show that this diagram is com-
mutative. This shows that

YiX = g (_l)pq(l)ei(YIXi> '

and proves Proposition 3.

We will now discuss the way in which our constructions
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specialise to the case E = K(Zp). It is sufficiently clear

from the definitions that ¢, L+ DR and ¢ specialise
to their classical counterparts ¢, n, n and e. The
right action of 1n,(E) = 2 on m,(E A E) = A, coincides

p
with the left action, because the unit acts as a unit on

either side, and so the result follows for integer multiples
of the unit. It follows that in Proposition 3 we can bring
the factor (y,xi) to the left of e, and after that we

can bring it outside the Kronecker product, so as to obtain

the following formula.

(ay,x) =) ('1)pq(i)<a:ei)(yrxi)
1

It follows that Yy is indeed the dual of the action map

A* ® H* —> H*, and (specialising to the case X = E) that

Vg is the dual of the composition map A* ® A* — A¥*,
Thus 128 and Yy specialise to their classical counterparts.
Since we have seen that
$(1 @ c)vp = npe
and
¢ (c ® l)wE = nge -

it now follows that ¢ specialises to its classical counter-
part.

It remains only to point out one difference between
the classical case and the generalised case. In the general-

ised case we have introduced a left action of E*(E) on
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E,(X). This does not specialise to the action of A* on
H, which is usually considered in the classical case, since

the latter is a right action, defined by

(y,xa) = (-1) PO

{(ay ,Xx)
(y € H?, x ¢ Hy» @ € a%y .

The connection between the two actions may be read off from

Proposition 2 and 3. We have
xa = (~1)9F (ca)x (x € Hq, a ¢ AY) .

Thus the left and right actions differ by the canonical anti-

automorphism, as one might expect.
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LECTURE 4 SPLITTING GENERALISED
COHOMOLOGY THEORIES WITH COEFFICIENTS

S. P. Novikov [23, 24] has emphasised the importance
of the generalised cohomology theory provided by complex co-
bordism. This is a representable functor; if we take it
"reduced", we have

mu™ (x) = [x,s"MU] .
It has been proved by Brown and Peterson [10] that if one
neglects all the primes except one prime p, then the MU-

spectrum splits as a sum or product:
MU 3 \/Sn(l)BP(p) =-T_[ s D pp (p) .
i i

Here BP(p) means the Brown-Peterson spectrum. The sum
coincides with the product since BP(p) 1is connected and

n(i) —» » as i —» «, The business of neglecting all
primes except one may be formalised conveniently by intro-
ducing coefficients. Let Qp be the ring of rational numbers
a/b with b prime to p. Then we can form MU*(X;Qp),

and we have

MUn(X;Qp) -~ TT ht ) gy
1

where
1™(x) = [x,8™L]
and L is a suitable version of the Brown-Peterson spectrum.

This situation has been considered by S. P. Novikov
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[24]. Potentially it is very profitable. The cohomology
theory L* 1is just as powerful as MU*( ;Qp); for example,
it gives rise to the same "Adams spectral sequence" (see
Lecture 2). However, the groups L*(X) are much smaller
than the groups MU*(X;Qp); similarly for the coefficient
groups L*(S0), the ring of operations L*(L) and the Hopf
algebra L, (L) (see Lecture 3). For all these reasons,
calculations with L should be smaller and easier than cal-
culations with MU.

Unfortunately, these benefits have not yet been
fully realised in practice. The reason is that the split-
tings given by Brown and Peterson, and by Novikov, are not
canonical; they involve large elements of choice. It is
doubtless because of this that these authors have not yet
given such helpful and illuminating formulae for the struc-
ture of L*(L), etc., as are available for the structure of
MU* (MU), etc.

I therefore propose the following thesis. When we
split a cohomology theory into summands, we should try to do
so in a canonical way, issuing in helpful and enlightening
formulae. To secure these ends I would even be willing to
split the theory into summands larger than the irreducible
ones. The method which I propose is to take a suitable ring
of cohomology operations, say A, and construct in it canon-

ical idempotents, say e. Then whenever A acts on a module,
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say H, H will split as the direct sum eH & (l-e)H.

I will first show how this thesis applies to K-
theory. Not only is the case of K-theory somewhat easier,
but for technical reasons it is useful as a tool in attacking
cobordism., For K-theory I shall give a treatment which seems
tolerably complete and satisfactory (Lemma 1 to Lemma 9 below).
I will then turn to cobordism (Lemma 10 to Theorem 19 below) .
Here the theory is somewhat less complete, but it is suffi-
cient to show the existence of canonical summands in cobord-
ism with suitable coefficients.

Let R be a subring of the rationals. Let
K* (X;R) be ordinary, complex K-theory, with coefficients in
R. We write K for KU?; then K(X;R) is a representable
functor; we write BUR for the representing space. We re-
quire some information on K¥* (BUR;R). All that is really
needed is that its Lim! subgroup [21] is zero; but our
method will prove more. It is for this purpose that we in-
troduce the first few lemmas.

Let d be a positive integer, and let
f: BU —> BU be the map obtained by taking the identity map
of the space BU and adding it to itself d times, using

the H-space structure of BU.
Lemma 1

If d is invertible in R then
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f,: H, (BU;R) —> H, (BU;R)
and
f*: H*(BU;R) —> H¥* (BU;R)

are isomorphisms.

Proof. We will prove that f£f* is epi. Suppose,
as an inductive hypothesis, that the image of £f* contains

. Then it contains all

the Chern classes c,, CoreverCp

decomposable elements in Hzn(BU;R). For any primitive ele-
ment p, € Hzn(BU;R) we have f*pn = dpn. But we can find
such a P, which is a non-zero multiple of ch mod decom-
posable elements. Therefore f*cn = dcn mod decomposables.
Since d is invertible in R, c, lies in the image of f£f¥*.
This completes the induction and proves that f* is epi; by
duality, £, is mono.

A precisely dual argument shows that £, is epi
and f* 1is mono. Indeed, the preceding paragraph was written
so as to dualise correctly. One needs some minimal knowledge
of H,(BU;R) as a ring under the Pontryagin product, and
the fact that f is an H-map, so that £, 1is a homomorphism
of rings. This proves Lemma 1.

Next, let R;, R, be two subrings of the rationals.

We have an obvious map i: BU —> BUR;.
Lemma 2

If R; ©« Ry, the maps
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i*: H*(BU7R2) — H*(BURI;Rz)
i*: H* (BUR;;R,) —> H* (BU;R,)

(ixi)  : H, (BUxBU; R,)——> H, (BUR,;xBUR;; R,)

(ixi)*: H*(BUR,xBUR,; R,) —> H*(BUxBU; R,)

are isomorphisms.

Proof. If R; = Z the result is trivial, so we
may assume R; # Z. We now construct a model for BUR;.
Consider the positive integers invertible in R; and arrange
them in a sequence d;, d,, d3,... . For each dn we have
a map fn: BU —» BU, as in Lemma 1. Take the maps

£, £, fn
BU ~>» BU —> BU =>.,, = BU —> BU — ...
and form a "telescope" or iterated mapping-cylinder; this
gives a construction for BUR;. The map i: BU - BUR; 1is
the injection of the first copy of BU. We have

H, (BUR);R,) = Lim(H, (BU;Rp),£ ) .

Now .the result about i, follows from Lemma l. The result
about (i x i), follows from the Kunneth theorem. The re-
sults about i* and (i x i)* follow from the universal

coefficient theorem. This proves Lemma 2.
Lemma 3

Suppose R; < R,. Then the maps



- 82 -

i*: K* (BU;Rz) — K* (BURl;Rz)
i*: K* (BUR;;R,) —> K* (BU;R,)

(ixi)*: K* (BUR,xBUR;; R,) —> K*(BUxBU; R,)

are isomorphisms. The maps i* and (i x i)* are also

homeomorphisms with respect to the filtration topology.

Proof. Let P be a point. Consider the usual
spectral sequence
Hy (X; K, (P;Ry)) => K, (X;Ry)
By Lemma 2, the map i: BU —> BUR; induces an isomorphism
between the spectral sequences for X = BU and for X = BUR;.
This proves the result about i,. The proof for i* and
(i x i)* 1is similar, using the spectral sequence
H* (X;K*(P;R,)) => K*(X;Ryp) .
The space BUR; is an H-space; let
u: BUR; x BUR; —> BUR; be the product map, and let
m,%: BUR; x BUR; —> BUR; be the projections onto the two
factors. We retain the assumption that R; < R,, and con-
sider the set of primitive elements in i(BURl;RZ), that is,
the set of elements a such that uy*a = n*a + W*a. This
set may be identified with the set of cohomology operations
a: K(X;R;) —> K(X;R,)
which are defined for all connected X, natural, and addi-
tive in the sense that

a(x +vy) = a(x) + aly) .
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(If an operation is additive, it follows that it is R;-linear.)
Such operations need not be stable.

This set is to be topologised as a subset of
K(BUR;;R,); in other words, an operation a is close to zero
if it vanishes in all CW-complexes of dimension n.

According to Lemma 3 above, the set of operations
a to be considered is essentially independent of R;, so
long as R; © R,. (This fact would be trivial if we were
dealing only with finite CW-complexes X, since then we have
K(X;R;) = K(X) ® R;, K(X;R,) = K(X) @ R,.) We therefore write
X(Rz) for the set of operations introduced above, and regard
it primarily as the ring of cohomology operations on ﬁ(X;Rz).

We define

A(R) = R + A(R) .
By making the first summand R act in the obvious way on
K(P;R), the set A(R) may be identified with the set of
cohomology operations
a: K(X;R) -—>» K(X;R)
which are defined for all X, natural, and additive (hence

R-linear).
Lemma 4

If R, € R, we have a monomorphism
1: A(R;) —> A(Ry)

such that for each a € A(R;) and each X the following
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diagram is commutative.
K(X;R;) —=% 5 K(X;R,)
a ta
K(X;R;) —=* 5 K(X;R,)

This follows from the preceding discussion together

with the fact that
i,: K(BU;R,) —> K(BU;R,)
is monomorphic.

Because of this lemma, it will be sufficient to
construct idempotents in A(Q) and then prove that they are
defined over some suitable subring of the rationals. But
over Q the idempotents are obvious. The Chern character

allows us to identify X(X;Q) with the product
T #*x:0) .
n

th

Let us define e, to be projection on the n factor:

en(ho,hz,...,hzn_z,hzn,h2n+2,...) = (0,0,...,0,h%™,0,...) .

Then e, is an idempotent in A(Q).

I now choose a positive integer d, and seek to
construct a "fake K-theory" with one non-zero coefficient
group every 2d dimensions. The required idempotents are

obvious. Take a residue class of integers mod d, say
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o € 2 and define

dl

E =) e €2a(Q .
anEan

This sum is convergent in the topology which A(Q) has. If
we use the Chern character to identify K(X;Q) with

TT Hzn(X;Q), as above, then we have
n

Ea(ho,hz,h“,...) = (k9,k2,x%,...)
where
n
h if n € o
kzn - .
0 if n g «
Theorem 5

Ea lies in A(R), where R = R(d) is the ring
of rationals a/b such that b contains no prime p with
p =1 mod 4.

For example, if d = 2, R is the ring of fractions
a/2f.

For the proof, we need to work with a representation
of A(R). Let n be the canonical line bundle over CP";
then K(CP ;R) is the ring of formal power-series RI[I[zl],
where ¢ = n - 1. We define an (R~linear) homomorphism

6: A(R) —> K(CP”;R)
by

6(a) = a(n) .
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Lemma 6
6 is an isomorphism.

Proof. First we show that 6 is mono. Let
a € A(R) Dbe such that a(n) = 0. Then by naturality
a(l) =0, so a € A(R). Let ¢ be the universal U(n)-
bundle over BU(n); then ¢ - n is the universal element in
K(BU(n)). Since a is additive, the splitting principle
shows that a(¢-n) = 0 in X(BU(n);R). Let i: BU —> BUR
be as above. We have

K(BU;R) = Lim X(BU(n);R) ;

it follows that a(i) = 0 in ﬁ(BU;R). By Lemma 3 we have
a=0 in f(BUR;R).
Next we show that 6 is an epimorphism. For each
n we can find an integral linear combination a, of the
operations yk [3, 4] such that
an=¢t ;

n
more precisely,

a_ = ) 17 et -
n o<k<n kin-k!

For any sequence of elements r(n) € R, the sum

[22]

} ri(n)a

n=1 n

is convergent in the filtration topology on K(BU;R) and

defines a primitive element & of K (BU;R), that is, an
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element % € A(R). It remains only to take
a=r1r(0)¥? +¥ € A(R) .

We have

a(n) =) atn)c” .
n=o0
This proves Lemma 6.

We observe that the isomorphism 6 of Lemma 6 be-
comes a homeomorphism if we give K(CP”;R) the filtration
topology. The filtration topology coincides with the usual
topology on R[[z]]: a power-series is close to zero if its
first n coefficients vanish.

The isomorphism 6 of Lemma 6 throws the monomor-
phism 1 of Lemma 4 onto the obvious inclusion map

Ri[Iz]]l €« RyI[[2z]] .

We now return to the proof of Theorem 5. Let

X € H2(CP ;2) be the generator, so that

n

]

chn=]
n

2

Consider the power-series

2 3 4
_ _ £” _z
log(l +¢) =¢ - 2 + 2 2.

Since ch commutes with sums, products and limits, we have

ch log(l + z) log ch(l + )

log exp x
= x -

Now we have
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We now make a formal manipulation in QIltl([({zll,
the ring of formal power-series in ¢ with coefficients

which are polynomials in t. Namely:

n n
n _ v t (log(i+z))
Lt €n" = g n!

n
= exp(t log(i+z))

(1+7) ©

1+ tg + E{E%llcz +

This is true as a formal identity in the ring cited.

a
Now consider E n = ) e n = ) SECH, say. We wish
n€a r °r

a
to show that the coefficients BE lie in R = R(d). Take
r

any prime p such that p =1 mod d; we wish to show that

a /b_ is a p-adic integer. Since d divides p - 1, I can

h

find in the p-adic integers a primitive dt root of 1, say

w. Set p = «M, where the integer m is fixed for the

moment. Then o9 =1 and p® makes sense. We have



1+ g + 2ozl 4l
1.2
= c,(z), say.

Here the binomial coefficient

= B(t-1)... (t-r+l)
1,2 .4.

b(t)

maps 2 to 2 and is continuous in the p-adic topology;
therefore it maps p-adic integers to p-adic integers. So
cm(g) is a formal power-series in ¢ with coefficients
which are p-adic integers. Take m = 1,2,...,d; we obtain

d equations for the d unknowns Ean. The solution is

-1 -=Ino
En=4d } o ow e (z) .
o 1<smsd m

Since d ! is a p-adic integer, this is a formal power-
series whose coefficients are p-adic integers. This proves
Theorem 5.

The properties of the elements Ea € A(R) are as

follows.
Theorem 7

(i) E2 = E
(ii) EE_=0 if o # B
(iii) g E =1

(iv) For any x,y in K(X;R)



- 90 -

we have a "Cartan formula"
E_ (xy) =B+§=Q(EBX)(EYY) .

Proof. By Lemma 4, 1: A(R) — A(Q) is a mono-
morphism. So parts (i), (ii) and (iii) follow from the cor-
responding equations in A(Q), which are obvious. We turn
to part (iv). The result is trivial when either x or vy
lies in K(P;R), so it is sufficient to prove it when x
and y 1lie in K(X;R). It is sufficient to prove it for
external products. Let both x and y be the universal
elements in ¥ (BU); then the result holds in X(BUxBU; Q),
by an obvious calculation using the Chern character. Since

K (BUxBU; R) —> K(BUxBU; Q)
is monomorphic, the result holds in X(BUxBU; R) . Let x
and y be the universal element in X(BUR;R); then the
result holds in X(BURxBUR; R) by Lemma 3. The case in
which x and y are general follows by naturality. This
proves part (iv) and completes the proof of Theorem 7.

Theorems 5 and 7 lead immediately to the results
on the splitting of K*(X;R) (and indeed of K, (X:R), if
required). As above, we are supposing given a positive
integer d; R = R(d) is as in Theorem 5, and o runs over

Zd.
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Corollary 8

(1) We have a natural direct sum splitting

K(X;R) =~ ) K, (X),
o

where
Ka(X) = EaK(X;R) .
(ii) Ka(X) is a representable functor.
(iii) If x ¢ KB(X) and y € KY(X)' then
Xy € KB+Y(X) .

(iv) We have

R if -]2-'n€oc

0 otherwise .

K (s™

3

) =

(v) Define

. T R 2
b2 Ka(X) —_ Kaﬂ(s A X)

by taking the external product with a generator of ¥;(s2).

Then ¢ is an isomorphism.

Proof. Part (i) follows from Theorem 7 parts (i),
(ii), (iii). For part (ii), observe that a direct summand
of an exact sequence is an exact sequence, and that we have
no trouble about verifying the axiom about disjoint unions
(for Ka) or wedge-sums (for ia). Part (iii) follows from
Theorem 7 part (iv). For part (iv), make the obvious calcu-
lation in ﬁ(Szm;Q) = Hzm(Szm;Q). For part (v), let the re-
presenting space for ﬁa be BURa; convert the homomorphism

¢ into a map BUR,Z —> QZBURa and check as in part (iv)

+1’
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that this map induces an isomorphism of homotopy groups.

It follows from part (v), iterated d times, that
the representable functor Ka(x) is periodic with period
2d, in the same sense that standard K-theory is periodic
with period 2. We therefore have no difficulty extending
it to a graded cohomology theory K:(X). Alternatively,
we can first take the spectrum

BURa ’ BURa BUch+ roeee

+1' 2
and then take the resulting cohomology theory.

It follows from part (iii) that for o = 0 the
theory K; has products.

Let BURa be the representing space for ﬁa, as
above; then we have

BUR = || BUR .
a

It is easy to obtain the rational cohomology of the factors
BURG by inspecting their homotopy groups. 1In fact,
H*(BURa;Q) is a polynomial algebra on generators of dimen-
sion 2n, where n runs over the positive integers in the
residue class «a.

Before moving on to cobordism, we need one more
result. Given d, we have a map

Ep: BU —> BUR

where R = R(d). Let us define Eé so that the following

diagram is commutative.
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H* (BUR; Q) —> H* (BU;Q)

NI

H* (BU; Q)

We remark that in what follows, H* (X;Q) really arises as

E®(X), where E is the spectrum

T x(Q,2n) .

—ngn<+e
Thus H* should be interpreted as a direct product of groups
Hp, while H, should be interpreted as a direct sum of
groups Hp' Let
todd € H* (BU;Q)

be the characteristic class which has the following properties.
(i) todd(t; ® £,) = (todd ;) (todd &,) .

(ii) If n is the canonical line bundle over CP°

and x € H2(CP”) is the generator (so that ch n = e®) then

X
-1
todd n = & — .

Then we have the following result.

Lemma 9

There is a characteristic class
T € K(BU;R)

such that
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1
Egtodd _
~toaa = Cch T -
Here R = R(d) is as in Theorem 5. The motivation

for this result is best seen from the proof of Theorem 14.

Proof. Let todd' be the class in H* (BUR;Q)
which maps to todd in H*(BU;Q). Then we easily see that
todd'(g; ® £,) = (todd'g;) (todd'g,)

for ¢£;, €, in K(X;R). We also have

(Ejtodd) £ = todd'EyE

for £ in K(X). It is now easy to see that
] 1 1
Eptodd - (Egtodd Egtodd
( tOdd ) (E]_ ® 52) ( tOdd gl) ( tOdd 52) .

!
Etgggd is certainly equal to ch t for some <t of

Now
augmentation 1 in K(BU;Q). Using the last formula, we
find that
ch 1(g; & £;) = (ch t(&;)) (ch t(&3)) .
Therefore
(81 ® £5) = t(E1) « 1(E2)

in KX(X;Q) for any X. We wish to show that =t € K(BU;R).
For this purpose it is now sufficient to consider «1(n),
where n is the canonical line bundle over CP ; if t(n)
lies in K(CP”;R) then the splitting principle shows that
t lies in K(BU;R).

Next let S be some ring containing the rationals.

Let G(CP™;S) be the multiplicative group of elements of
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augmentation 1 in H*(CPn;S). Then we can define a homo-
morphism
todd: K(cP%;s) —> G(cP";s)
by
todd (g ® s) = (todde)®
for £ € RK(CP"). Here (1 + x)° is defined by the usual bi-
nomial series

(1 + x)s =1 + sx + E%EELLXZ + ... ;

in this case the series is finite. On K(CPn;R) the homo-
morphism agrees with todd'. Passing to inverse limits, we

obtain a homomorphism

todd: K(CP™;S8) —> G(CP ;S) .
(Here G(CP”;S) is the multiplicative group of elements of
augmentation 1 in H* (CP”;S).) On K(CP”;R) this homo-
morphism agrees with todd'.

Take an indeterminate t and take S8 = Q[t]. Con-

sider
todd(l + )% = todd(l + tc + EéEgll 2+ ... ) .

This is an element of G(CPm;Q[t]), that is, it is a formal
power-series in x with coefficients which are polynomials
in t; say

todd(l + £)F = 1 + py(t) + pr(t)x2 + ...
But for any integer n, (1 + z)® is a line bundle, and we

have
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todd (1 + )™

So for integer values of t we have

r
(n) = —_E__ -
. Py {r+1)! !
thus
r
(£) = —=
Py (r+1)1!
and
tx
todd(l + )¢ = etx‘l )

Consider now (T(n))d. A priori this is a power-
series in ¢ with rational coefficients. I claim that these
coefficients actually lie in R. To prove this, choose a
prime p such that p =1 mod d; we wish to prove that
the coefficients of (T(n))d are p-adic integers. We work

over the p-adic integers, and manipulate as follows.

ch 1 (dn)

ch(t(n))2
! .
EQtodd

- todd'Epdn
todd dn

_ todd dEgn
- todd gn

Now the basic remark in the proof of Theorem 5 is that
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dEgn = ] (1 + z)°
P

m .
where o runs over Pp = W for l1<ms<d, and w 1is a

primitive dth root of unity as in Theorem 5. Thus we have

d _ todd (1+z)”
chiz(n))™ = I_I todd (1+¢)
P

o le¥-1)

o (by the remarks above)

P_
- ch (1+z)" =1
pC

I

(t(n))9 = HL}:Q"_-_I )
pT

P

Thus we have

But for each [ the coefficients of the power series

(1+z)P-1
z

are p-adic integers; and the denominator
-1
TT e = (-1
Y

is invertible. Therefore the coefficients in the power-

series (-r(n))d are p-adic integers. This proves that these
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coefficients lie in R, as claimed.

Finally, since d is invertible in R, we deduce
that the coefficients of +1(n) 1lie in R. This proves Lemma
9.

We now turn to cobordism.

Let R be a subring of the rationals. Let
MU* (X;R) be complex cobordism with coefficients in R. This
is a representable functor; we write MUR for the represent-

ing spectrum. We require the same information as before.
Lemma 10

If R; ¢ R,, the maps

i,: H, (MU;R,) —> H, (MUR;;R,)
i*: H*(MURI;Rz) — H*(MU;Rz)
(iAi)  : H, (MUAMU; R,) —> H, (MUR,AMUR,; R,)

(iAi)*: H* (MUR,AMUR,; R,) —> H* (MUAMU; R,)

are iso.

Proof. Let Y be a Moore spectrum with

ﬂn(Y) =0 for n< 0,
_ IR for n=20
Hn(Y) T (0 for n # 0 .

Then we may take MU A Y as a construction for MUR. This

leads immediately to the result.
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Suppose Rj; c Ry. Then the maps

i,: K, (MU;R,) —> K, (MUR;;Rjp)
i*: MU* (MUR;;R,) —> MU* (MU;R,)
(iAi)*: MU* (MUR;AMUR,; R,) —> MU* (MUAMU; R,)

are iso. The maps i* and (i A i)* are also homeomor-
phisms with respect to the filtration topology.

The proof is the same as for Lemma 3.

We now consider the set MUC(MUR;;R,). This set

may be identified with the set of cohomology operations
b: MU™(X;R;) —> MU" (X;R,)

which are defined for all X and n, natural, and stable
(therefore additive and R;-linear). This set is topologised
by the filtration topology. According to Lemma 11, the set
to be considered is essentially independent of R;, so long
as R; ¢ R,. We therefore write B(R,) for the set of
operations just introduced, and regard it primarily as the
ring of stable cohomology operations of degree zero on

MU* (X;R,) .
Lemma 12

If R; € Ry, then we have a monomorphism

t: B(R;) —> B(Rj)
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such that for each b € B(R;), each X and each n the

the following diagram is commutative.
MU™ (X3R,) — 25 MU™ (X;R,)
b 1b
MU® (X:R;) ——% 5 MU" (X;R,)

This follows from the preceding discussion, together

with the fact that
i,: MUO(MU;R;) —> MUO(MU;R,)
is monomorphic. (Compare Lemma 4.)

Because of this lemma, it will be sufficient to
construct an idempotent in B(Q). But over Q, stable homo-
topy theory becomes trivial. We will give the next construc-
tion in slightly greater generality than is needed now, for

use later. Let f: X —> MUQ be a map. Then we define f£f,

so that the following diagram is commutative.
H, (X; Q)-————————a H, (MUQ; Q)
H, (MU; Q)

Of course we can make a similar definition with H, replaced
by K,, or with MU, MUQ replaced by BU, BUQ.

Now we define
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6: MUY (X;Q) —> Hom, (H, (X;Q) ,H, (MU;Q))

as follows. If f: X —> MUQ is a map, then ©6(f) = £
Lemma 13

8 1is an isomorphism.

If we assign the obvious topology to the Hom group,
then 6 becomes a homeomorphism. If X = MU, then 6 carries
composition in B(Q) 1into composition in the Hom group.

This lemma is a known consequence of Serre's C-
theory [27].

I now choose a positive integer d, and seek to
construct a "fake cobordism theory"” whose coefficient groups
are periodic with one multiplicative generator every 2d
dimensions. Let E; € A(Q) be as above. Then we define
e € B(Q) to be the element such that the following diagram

is commutative.

H, (MU;Q) Cx > H, (MUQ;Q)
2\'\\}‘ ////?;ﬂ
H, (MU;Q)
on by
H, (BU; Q)
J EO! ~
y

H, (BU; Q) 1P — H, (BUQ;Q)
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(Here Oy is the Thom isomorphism in homology.) It is clear
that € is idempotent; indeed ¢ 1is the most obvious idem-

potent in sight.

Theorem 14

¢ lies in B(R), where R = R{d) is the ring of
rationals a/b such that b contains no prime p with
p =1 mod d, as in Theorem 5.

The proof will require two intermediate results.
Lemma 15

A map f: sP —s MuQ factors through MUR if and
only if
£,: R (8%:Q) — K, (MU;Q)
maps K, (sP;R) into K, (MU;R) .
This is the theorem of Stong and Hattori [1l6, 29].
Note that if sP is regarded as a space rather than as a

spectrum, then K*(Sp) must be taken reduced.
Lemma 16

Let X be a connected spectrum such that Hr(X)
is free for all r. Then a map f: X —> MUQ factors through
MUR if and only if
f!: K, (X;Q) —> K, (MU;Q)

maps K, (X;R) into K, (MU;R).
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Proof. It is trivial that if £ factors, then

£

y maps K, (X;R) into K, (MU;R). We wish to prove the

converse. First assume that X is finite-dimensional, say
(n-1) -connected and (n+d)-dimensional. We proceed by in-
duction over d. The result is true if X is a wedge of

spheres, by Lemma 15. We may now assume we have a cofibering
A-3>x4s B
with the following properties.
(i) For r s m we have
i,: Hr(A) = Hr(X), Hr(B) =0 .
(ii) For r < m we have
H (A) = 0, j,: H_(X) = H_(B) .
(iii) The result holds for A and B.
Now suppose given a map £f: X —> MUQ such that £, maps
Ky (X;R) into X,(MU;R). Then fi: A— MUQ maps K, (A;R)
into K, (MU;R). By (iii), we have the following commutative

diagram.

g f

MUR — 2 MUQ

Now the spectral sequence

H* (X;MUR* (S0)) —> MUR¥* (X)
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is trivial (since the differentials are zero mod torsion and
the groups are torsion-free). We deduce that
i*:; MUR* (X) — MUR¥*(A)
is epi. So g extends over X; say we have h: X —>» MUR
such that hi = g. Then we have
f=4i'h + kj
for some k: B —» MUQ. Then evidently (kj)! maps K, (X;R)
into K,(MU;R). Now the spectral sequence
H, (X;K, (80;R)) —> K, (X;R)
is trivial (since the differentials are zero mod torsion and
the groups are torsion-free). We deduce that
Je: Ki(X;R) —> K, (B;R)
is epi. Therefore k! maps K, (B;R) into K, (MU;R). By
(iii), k factors through MUR. Therefore f factors through
MUR. This completes the induction and proves the result when
X is finite-dimensional.
We now tackle the case of a general X. Approximate

X by x® such that i,: Hr(xn) —_— Hr(X) is iso for r < n

and Hr(xn) =0 for r > n. We have
MUR* (X) = Lim MUR* (X™)
o)
. n
* = %*
MUQ* (X) L;m MUQ* (X™)

(since the usual spectral sequences satisfy the Mittag-Leffler
condition). Take a map f: X —> MUQ ,such that £, maps

K, (X;R) into K, (MU;R). Then the composite
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i
x* 2, x £ muo
is such that (fin)l maps K*(Xn;R) into K, (MU;R). Hence
fin factors through an element g, € MURC (x™). Since

MUR* (X7) —> MUQ* (x™) is mono, the elements 9, define an

element of Lim MUR*(Xn) and thus give a factorisation of
)

f. This proves Lemma 16.

Proof of Theorem 14. Let ¢e: MU —» MUQ be as

above. We aim to apply Lemma 16 to e. We equip ourselves
with various formal remarks.

(i) The following diagram is not commutative.

K, (MU;Q) —S2 5 B, (MU;Q)

¢x *H

K, (BU;Q) ~—SB— H, (BU;Q)

In fact, for a suitable choice of ¢K we have

ch ¢Kz = todd . chz .

*n
(Here the product of a cohomology class and a homology class
is taken in the sense of the cap product. The reader who
prefers to work entirely in cohomology may write out an ar-
gument dual to the one which follows, to verify that ¢
satisfies the analogue of Lemma 16 for K*.)

(ii) The following diagrams are commutative.
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€
K, (MU;Q) ————> K, (MU;Q)

ch ch
H, (MU; Q) —————5 H, (MU;Q)
E0|
K, (BU;Q) ————> K, (BU;Q)
ch ch
EO|
H, (BU;Q) ———=— H, (BU;Q)

(iii) If u € H*(BU;Q), v € H,(BU;Q) we have
Eg, ((Bgu) « v) = u . (E,v) .

Now we wish to check that e: MU —» MUQ satisfies the con-
ditions of Lemma 16. So take any element x in X, (MU;R);

we wish to check that e;x 1lies in K, (MU;R). Since

g

is iso, it is sufficient to prove that e,x lies in

ok
¢ K« (MU;R) = K, (BU;R) .

But we have

ch¢Ke,x = todd .

todd .

todd « E

(by definition of ¢)

= EOE(Eétodd « ¢,ch X)

On
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(Eétodd
- FoNtoagg + chegx
= EU!(Ch T « Cch ¢KX)
(where <t is as in Lemma 9)
= EO!Ch(T . ¢Kx)
= ChEO! (T . ¢KX) .
Since ch 1is iso, we have
¢Ke!x = EO!(T . ¢Kx) .
But 1 € K*¥(BU;R) and ¢Kx € K, (BU;R), so
T o ¢Kx € K, (BU;R). Again, we have Ej: BU —> BUR, so EO!
maps K, (BU;R) into X, (BU;R). Thus ¢ge,X lies in
K, (BU;R) and ¢,x lies in K, (MU;R). Therefore ¢ satis-
fies the conditions of Lemma 16, and ¢ € B(R). This proves
Theorem 14.
The properties of the element ¢ € B(R) are as
follows.
Theorem 17
(i) €2 = ¢ in B(R).
(ii) For any x,y in MU*(X;R) we have
e(xy) = (ex) (ey) .
Proof. Since B(R) — B(Q) 4is mono, part (i)
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follows trivially from the corresponding equation in B(Q).
To prove part (ii), we have to compare the follow-
ing composites.
MU A MU > MU —> MUQ

MU A MU A5 5 MuQ A MUQ —2» MUQ .

We have to compare (eu)! with (ule A e))!. If we compose
with the map

H, (MU;Q) @ H, (MU;Q) —> H, (MU A MU;Q) ,
we obtain the two ways of chasing round the following commu-

tative diagram.

H, (MU;Q) © H, (MU;Q) L > H, (MU;Q)

$@4 ¢

H, (BU;Q) ® H, (BU;Q) ——> H, (BU;Q)

H, (BU;Q) ® H, (BU;Q) —t—> H, (BU;Q)

484, ¢

W hd
H, (MU;Q) © H, (MU;Q) £ > H, (MU;Q)

Here the commutativity of the central square arises from the
fact that E; is additive; that is, the following square is

commutative.
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BU x BU ——* 5 BU

BUQ x BUQ —————> BU)

(Here u 1is the product map in BU which represents addi-
tion in ¥.) This proves that

(ew), = (ule A &)y ,

and (using Lemma 13) that the following square is homotopy-

commutative.

MUQ A MUQ —H—— 5 MUQ

In other words, we have the formula
e(xy) = (ex) (ey)

for the external product, when x and y are both the gen-
erator in MU* (MU) and the equality takes place in
MU* (MUAMU; Q). Since

MU* (MUAMU; Q) — MU* (MUAMU; R)
is mono, the equality holds in MU* (MUAMU; R). Since

MU* (MURAMUR; R) —> MU* (MUAMU; R)
is iso, the equality holds in MU* (MURAMUR; R) when x and

y are both the generator in MU* (MUR;R). Therefore it always
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holds. This proves Theorem 17.

S. P. Novikov [24] has shown that multiplicative
cohomology operations on MU* are characterised by their
values on the generator w € MU2 (cP”). It might perhaps be
of interest to examine ew, and to see if this provides an
alternative approach to «.

We now define MU%(X) = eMU* (X;R).

Corollary 18

MUE(X) is a cohomology theory with products, and
is a representable functor.

The proof that MUS(X) is a representable functor
is exactly as for Corollary 8, using Theorem 17 (i). The
fact that MU3(X) has products is immediate from Theorem 17
(ii).

We write MURy for the representing spectrum for
MUE(X). In order to lend credibility to the idea that MUR,
is an acceptable "Thom complex" corresponding to the space
BUR;, we remark that the following diagram factors to give
a unique "Thom isomorphism" 4.

H, (MUR,;R) ~=%—> H, (MUR;R) <—— H, (MU;R)

|
$oy
|

v

H, (BUR,;R) —~%— H, (BUR;R) <— H, (BU;R)

¢
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This follows immediately from the definition of .

Theorem 19

(i) The coefficient ring =,(MUR;) is a polyno-
mial ring over R with generators in dimensions 24, 44,
6d, ... .
(ii) MU*(X;R) 1is a direct product of theories iso-

morphic to MUK(X).

Note. 1In part (ii) the splitting is not asserted
to be canonical, but the injection of MUg(X) and the pro-
jection onto MU%(X) are of course canonical; this is

sufficient for the applications.

Proof. For any connected algebra A, let 0Q(a)
be its indecomposable quotient. Then
e: m, (MUR) —> m, (MUR)
induces
Q(e): Q(mn, (MUR)) —> Q(m, (MUR))
with Q(e) « Q(e) = Q(e). We have

Q(Ime) = Im(Qe) .

Now Q(rm,(MUR)) is R-free with generators x,
X5, X3,+.. in dimensions 2, 4, 6,... [20, 30]. For
each x =~ Wwe have either Q(s)xn = x, or Q(e)xn = 0. We

may thus choose a homogeneous R-base for 1ImQ(e) and extend

it to a homogeneous R-base for Q(n,(MUR)). Lift the basis
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elements in  ImQ(e) to elements 95 in Ime, and lift the
remaining basis elements in any way to elements hj' Then
1, (MUR) is the polynomial algebra generated by the g5 and

hj’ and 1Ime is precisely the subalgebra generated by the
g;- But this subalgebra is polynomial. It remains only to
find the dimensions of the generators.

We have

T (MURp) © Q = H, (MUR(;Q) = H, (BUR;;Q)

(by the remarks above). But as remarked above, H* (BURg;Q)
is a polynomial algebra with generators in dimension 24, 44,
6d,... . Now part (i) follows by counting dimensions over Q.

The preceding proof actually shows that =, (MUR)
is free as a module over m,(MUR,). Choose a m, (MURg)-free
base for 7,(MUR) (beginning with the unit element 1) and
represent the basis elements by maps

£.: s73) 5 mur .

J
We now consider the map

g: V23 A mur, — MUR
j

which on the jth factor is given by

f.Al

s 3) . mur, 35 MUR A MUR —E5> MUR .

It is clear that g induces an isomorphism of homotopy groups.
Since MUR; is connected and n(j) —» « as Jj -—>» o the

infinite wedge-sum is also a product. Therefore
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[X,MUR] = T] (%, s®(I)amur,]
J

This proves part (ii).

We have now accomplished our object of splitting
MU* (X;R) into a direct sum of similar functors. I believe
that the functors MU; and K%, together with the spectrum
MUR, and the space BUR;, are of some interest. I would
like to give further results to prove that MUR; is related
to BUR;, as MU is to BU; for lack of time in writing up
these notes I offer the following in the disguise of an

exercise.

Exercise 20

Show that Proposition 25 of Lecture 1 (the Conner-

Floyd theorem) applies to the case E = MUR;, F = BURg.

(a) Hp(MURO;R) = 0 unless p = 0 mod 2d. There-
fore Ka(MURo) =0 for o # 0, and K (MURy) is the whole
of K(MURy;R). Take the orientation class u in K(MU),
map it into K(MU;R), 1lift it into K(MUR;R) and restrict
it to K(MURg;R); the result must lie in K(MURg). This
gives the necessary orientation class.

(b) In checking Assumption 20 and 24 of Lecture 1,
exercise care in approximating MUR, and BURy by finite

complexes.
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LECTURE 5, FINITENESS THEOREMS

In this lecture I want to give an exposition of
certain finiteness theorems in algebra which seem useful in
algebraic topology. These results are slight generalisations
of known results on coherent rings; one may find the latter
in Bourbaki [9, pp. 62-63]. I became interested in the
subject in the course of reproving certain results of S. P.
Novikov [24]. Independently, Joel M. Cohen became interested
in similar results for a different topological application.

I am most grateful to Cohen for sending me preprints of his
two papers [12, 13]. (So far as I know these papers have not
yet appeared.)

The following results 1-5 will serve as illustrations

of the sort of topological application which I have in mind.

Theorem 1 (S. P. Novikov)

If X is a finite CW-complex, then MU*(X) is
finitely-generated as a module over the coefficient ring
MU* (s0) .

The methods I will give also yield the following

result, which is slightly stronger.
Theorem 2

Let X be a finite CW-complex. Then MU*(X),

considered as a module over the coefficient ring Mu* (s9),
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admits a resolution of finite length

0 ~=>Cy =—> Cy | =>e*—> C;, — C;, —> MU*(X) —> 0

1
by finitely-generated free modules.

Since giving the original lecture I have heard that
this result is also known to P. E, Conner and L. Smith; it may
also be known to other workers in the field. I am grateful
to L. Smith for sending me a preprint.

I will not gdote the results of Cohen verbatim, but

will reword them to suit the present lecture. I will use the

words "almost all" to mean "with a finite number of exceptions".

Theorem 3 (J. M., Cohen)

Let X be a spectrum whose stable homotopy groups
m1.(X) are finitely generated, and are zero for almost all «r .
Then H*(X;Zp) is finitely-presented as a module over the
mod p Steenrod algebra A .

This result can be used to show that under mild
restrictions, a space Y (as distinct from a spectrum) must
have infinitely many non-zero stable homotopy groups. Even
better for this purpose is the variant which follows next.
We will say that an abelian group G is p-trivial if
p: G —>» G 1is iso. Spelling this out, it asks that the
torsion subgroup of G should contain no elements of order
p » and that the torsion-free quotient of G should be

divisible by p .
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Theorem 4 (J. M. Cohen)

Let X be a connected spectrum whose stable homotopy
groups nr(x) are p-trivial for almost all r . Then the
A-module H*(X;Zp) can be presented by generators in only
finitely many dimensions and relations in only finitely many
dimensions,

In particular, of course, the theorem applies if
m.(X) = 0 for almost all r . The difference between this
case and Theorem 3 is that if the groups nr(X) are not
finitely-generated, then H*(X;Zp) may need infinitely many

generators in some dimensions.

Corollary 5 (J. M. Cohen)

Let Y be a space such that ﬁ*(y;zp) # 0 . Then
there are infinitely many values of r such that the stable
homotopy group ﬂi(Y) is not p-trivial (and therefore non-
zero) .

This answers a question of Serre [26, p.219].

To prove these results, we will present a slight
axiomatisation of Bourbaki's results. We will first set up
our assumptions, definitions and general theory. From
Corollary 12 onwards we turn to the topological applications,
and sketch the proof of the results given above. Topologists
looking for motivation might perhaps turn to the passage

beginning immediately after Example 14.
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We suppose given a graded ring R with unit.
The word "module" will mean a graded left R-module, unless
otherwise specified, We suppose given a class C of projective
modules., The class C 1is supposed to satisfy two axioms*,

(i) If P=Q and P €C , then Q€ C .

(ii) If Pe€ C and Q€ C , then P® Q€ C.

Examples.
(i) We define F to be the class of finitely-

generated free modules.

(ii) We define D to be the class of free modules
with generators in only a finite number of dimensions.

(iii) We define E to be the class of free
modules such that for each n there are only a finite number
of generators in dimensions < n .

(iv) We define O to be the class containing only
the zero module.

In what follows the symbols F and D will always
have the meanings just given to them. In proving Theorems 1,
2 and 3 we take C = F ; in proving Theorem 4 and Corollary 5
we take C =D . The axiomatisation simply saves us from

giving the same proof twice over.

Definition 6

An R-module M is of C~type n if it has a pro-

jective resolution

* Note added in proof. It should also be assumed that 0 € C.
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0 e— M <« C, < c1 i cr
such that C. € C for 0 s r < n ., (Compare Bourbaki

p. 60, exercise 6.)

Examples,
(i) All modules are of C-type - 1 .

(ii) A module is of C-type «» if and only if it
has a projective resolution by modules in C .

(iii) A module of F-type 0 is a finitely-
generated module,

(iv) A module of F-type 1 1is a finitely-
presented module,

(v) A module of D-type 0 is one which can be
generated by generators in only finitely many dimensions.

(vi) A module of D-type 1 is one which can be
presented using generators in only finitely many dimensions
and relations in only finitely many dimensions.

Thus, the conclusion of Theorem 1 states that
MU*(X) is of F-type 0 . The conclusion of Theorem 3
states that H*(X;Zp) is of F-type 1 . The conclusion of
Theorem 4 states that H*(x;Zp) is of D~type 1 .

We could also say that M 1is of C-cotype n if
it has a projective resolution such that C, €C for r>n.
With C = 0 , for example, we would be discussing homological
dimension. It would perhaps be interesting to see if known

results about homological dimension generalize to cotype
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(perhaps in the presence of extra assumptions on C). In
particular, is the analogue of Lemma 7 (iii) below true for
cotype*? We will not pursue this further here,

If we do not need to emphasise C , we will write
"type" for "C-type". The basic property of Definition 6 is

as follows.
Lemma 7

Suppose given an exact sequence
0 —> L is> MIsN—0

of R-modules.

(i) If L is of type (n - 1) and M is of
type n , then N is of type n .

(ii) If L is of type n and N is of type n ,
then M is of type n .

(iii) If M 1is of type n and N is of type
(n + 1), then L 1is of type n .

(Compare Bourbaki p.60, exercise 6 a, ¢, d. For
the most significant special case see Bourbaki p. 37,

Lemma 9.)

Proof., We begin with part (ii). Given resolutions

e - 1 & -< e e e ! &« s e e
0 L Co Ci < € Cr

" n < ce e " ce e
0@-—N<—CO<—C1 < Cr
of L and N , one knows how to construct a resolution of

M in which C,. = CL @ Cy ;7 see [11, p.80]l. If Cl € C

r
for r<n, and Cf € C for r <n , then Cp € C for

* Note added in proof. An affirmative answer to this problem

has been obtained by Mrs. S. Cormack.
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r <n. This proves part (ii).

We proceed similarly for part (i). Suppose that we
are given resolutions

0 €&— L €— ca G c; G o o c; L i

0 €= M &= C) €« C = e Cp &=
of L and M ., By constructing a chain map over i: L ==> M
and forming its mapping cylinder, we can construct a resolu-
tion for N in which Cg =C, and Crb=¢C,. 8 Cé_l for
rz21l. If ¢c,€C for r<n and CL €C for r<n-1,
then Cl € C for r s n ., This proves part (i).

To prove part (iii), we begin by considering the
special case in which M is projective. Since N is of type
(n + 1), we have an exact sequence

0 > K > P » N == 0

with F € C and K of type n . Compare this with the exact
sequence
0 = L =>»> M=—> N—> 0 ,
By Schanuel's Lemma [18, p.1l0l1] we have
LeF=M®K .
So we have an exact sequence
0O > F —> MO K—=—>L-—>0 .
Here F is of type « and M ® K is of type n by part
(ii). Therefore L 1is of type n Dby part (i).
We now turn to the general case. Since M is of
type n , and the result is empty for n = -1 , we may

suppose given an exact sequence
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tﬂ

0 —> K —» F M => 0
with F € C and K of type (n -~ 1), Let P be the kernel
of the composite 3jg: F —> N; then P has type n by the

special case already considered. We can construct the

following diagram.
K
N
P ————> F
|
?”’,,a N
I, ——> M J
The sequence

O =3 K = P > L > 0

is exact. Here K has type (n - 1) and P has type n ,
so L has type n by part (i). This completes the proof of
Lemma 7.

For technical reasons we need the following

corollary.

Corollary 8

Suppose given an exact sequence

0-—>K-—>C0—->C1—>---—->cn_1d—>cn—>M—>0

in which C,. is of type r . Then M is of type n .

Proof. The result is true for n =0 , by 7(i).
As an inductive hypothesis, suppose it true for (n - 1).
Then d(Cn_l) is of type (n - 1), and we have the following

exact sequence.
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0 — d(c, ;) —>C —MN—0.

So M is of type n by 7 (i). This completes the induc-
tion and proves Corollary 8.

The next question which we consider arises as
follows. The "Noetherian" case is essentially that in which
all modules of F-type 0 are of F-type <. The "coherent”
case is essentially that in which all modules of F-type 1
are of F-type «. (See Bourbaki, p. 61 exercise 7a and p.
63 exercise 12d, or below). Although it is not necessary
for the applications, it seems worth describing a hierarchy

th

of more subtle cases; the n case is that in which all

modules of type n are of type =.
Theorem 9

Suppose given C and n = 0. Then the following
conditions are all equivalent.
(i) IfC € C and P 1is a submodule of C of type
(n~1), then P 1is of type n.
(ii) If M is of type n and P is a submodule
of M of type (n-1), then P is of type n.
(iii) Suppose given an exact sequence

0-—>K—>Cn—>cn ... > C} —> Cjp —-> M — 0

-1
in which C. is of type n for each r. Then K 1is of type

n.
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(iv) Suppose given an exact sequence

Cn—>Cn —>... => C} = Cjp = M —> 0

-1
in which Cr € C for each r. Then we can extend it to an
exact sequence

C,,—m C_ —>C
n n

n+1 —_.,.. —> C} —» Cjp —> M — 0

-1
in which Cn+1 € C.

(v) Every module of type n is of type .

We note that in conditions (iii) and (iv) the
module M at the right-hand end of the sequence is included

only to avoid making an exception of the case n = 0. If

n =1, we can suppose given the sequence

d

and define M = C,/dC;.

Proof of Theorem 9. First we prove that (i) im-

plies (ii). Suppose that M 1is of type n. Then by defini-
tion, we can find a sequence

0 —> K —> Cy 2—> M—0

with C; € C and K of type (n-1). Let P be a submodule
of M of type (n-1); then we have the following exact
sequence.

0 —> K —> j7'P —» P —> 0 .
Since K and P are of type (n-1), 3 !'P 1is of type (n-1)

by 7 (ii). Since j-lP is a submodule of C; and Cy € C,
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j p is of type n by 9 (i), which we are assuming. Hence
P is of type n by 7 (i). This proves (ii).
We prove that (ii) implies (iii). Suppose given an

exact sequence

d

0 — K — Cn —> C —> > C1~g—> Co-3> M—> 0

n-1

in which Cr is of type n for each r. Let Z.cC. be

the submodule

Im(d: Crp; — Cr) = Ker (d: c., — C._ )

+1 1

with the obvious interpretation for r = 0,n. Then by

Corollary 8 (or trivially if n = 0) 2Z;, is of type (n-1).

Since Z; is a submodule of C; and we are assuming 9 (ii),

Z; 1is of type n. Assume as an inductive hypothesis that

Zr-l is of type n. We have the following exact sequence.
0—>Zr—->Cr—>Zr_1—>0.

So 2z,  is of type (n-1) by 7 (iii). Since Z_ 1is a sub-

module of Cr and we are assuming 9 (ii), Zr is of type
n. This completes the induction. The induction proves that
K = Zn is of type n. This proves (iii).

We prove that (iii) implies (iv). Suppose given
an exact sequence

Ch 4 Chuy —>++e—>C —Cp —> M —0

in which Cr € C for each r. Then certainly Cr is of
type n. Let Zn be as in the proof of (iii); then by

(iii), Z, is of type n = 0. Thus we can find an
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epimorphism

Cn+1 —_— Zn

with C_, ., € C. This proves (iv).

We prove that (iv) implies (v). Suppose given a
module M of type n. By definition, we have an exact
sequence

¢, = ¢., —»>.-—>C —=>C —M-—>0

in which Cr € C for each r. By (iv) we can extend it to
an exact sequence

Cn+1 —_ Cn —_—...—>C; —— Cj —m M —> 0

€ C. Now (iv) applies again to the sequence

in which Cn+1

Che1 — ¢, —=>...—>C, — C, —> Zy — 0 .

Continue by induction. The induction constructs a resolution
of M by modules Cr in C and shows that M is of type
«, This proves (v).
We prove that (v) implies (i). Suppose given

C € C and a submodule P c C of type (n-1). Then we have
an exact sequence

0O —-P—>C—>C/P—> 0.
Here C/P 1is of type n (by 7 (i) or direct from the defini-
tion). By 9 (v), which we are assuming, C/P is of type
(n+l). Therefore P 1is of type n by 7 (iii). This proves
(1). We have completed the proof of Theorem 9.

It now seems reasonable to make the following defini-

tion.
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Definition 10

The ring R is (n,C)-coherent if the equivalent
conditions stated in Theorem 9 are satisfied.
It is clear from 9 (v) that if R is (n,C)-coherent,

it is (m,C) -coherent for m = n.

Examples.

(1) The ring R is (0,F)-coherent if and only if
it is (left) Noetherian.

(ii) We say that R is finite-dimensional if it

has non-zero components in only finitely many dimensions, so
N

that R =] R . Such a ring is (0,D)-coherent; the proof is
-N

trivial.

(iii) Coherence, as defined in Bourbaki, is (1,F)-
coherence. More precisely, condition 9 (i) says in this case
that every submodule P of F-type 0 in C is of F-type
1. This coincides with Bourbaki's condition "C is pseudo-
coherent"., If

0 - C' =—>C —>C" —> 0
is exact and C', C" satisfy this condition, then so does
C. (This follows easily from Lemma 7; see Bourbaki p. 62
exercise lla). So in order to check the condition for every
C in ¥, it is sufficient to check it for C = R (compare
Bourbaki p. 63 exercise 1l2a). This proves the equivalence

of our definition with Bourbaki's.
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We will now prove that for n = 1 the property of
n-coherence passes to suitable direct limits. We suppose
given a (graded) ring R containing subrings R%, and make
the following assumptions. First, we assume that C is
either F or D, and we divide cases accordingly. If
C=F, we assume that for any finite set of elements
Y1y rsy..., r_ in R we can find an a such that

n

L1, o,00ay r, lie in R%. 1If C =D, we assume that for
any finite set of dimensions n,m,...,p we can find an o
such that Rn' Rm,..., Rp are contained in R®. This assump-

tion ensures that the R”

approximate sufficiently closely
to R, in a sense depending on C. Secondly, we assume that,
for each o, R is free as a right module over R®. With

these assumptions we have:

Theorem 11

(i) For 0 < n < =, the R-modules of type n are
precisely those of the form R ®ra M%, where R® runs over
the subrings and M* runs over the R%-modules of type n.

(ii) If n>0 and R®* is (,C) -coherent for each
o then R is (n,C)-coherent.

(Compare Bourbaki p. 63 exercise 12e. A check

through the proof below shows that for n =1 we need only

assume that R 1is flat, rather than free, as a right module

over R%.)
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Proof. For part (i), we begin by showing that the

o

R-modules of the form R @Ra M are of type n. For suppose

that M% is of type n; then there is an exact sequence of

R%-modules
Cg —_— Cg_l —...=> ] —m ) — M —> 0

with Cg in F or D as the case may be. The functor

R 8p0 DPreserves exactness, so we have the following exact

sequence.

R @p4C, —>...—> R 8,,C0 —> R @ oM" —> 0 .

RG
Here the modules R QRGCz are free and lie in F or D
as the case may be. Thus R ®R0‘Mu is of type n.

To prove the converse, suppose given an R-module

M of type n, where 0 < n < =, Then we have an exact
sequence of R-modules

d

C, — Chey —---—>C) —§> Co - M — 0

with C, € C for each t. Choose R-free bases in each C.;

then each map d can be represented by a matrix rij' If
C =F, there are only a finite number of elements i in
all. If C =D, the elements rij lie in only a finite

number of dimensions. In either case, we can find an «a

such that all the elements rij lie in R%. Let Cz be

the free R%-module generated by the R-free base of C Then

£
the maps d restrict to give

¢}
a d a
C —_—>...—>» C; — Cy

a
n n-1
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The original sequence

d d

is, up to isomorphism,

a 16d4¢ a
R 8L,CY —22>R ,,C

o leda o
RaCpoy —>+-+—> R 8p4C; —>R ©.,C; .

Since R is free as a right module over R%, this sequence
(as a sequence of groups) is isomorphic to a direct sum of

copies of the sequence

a
a o d o

[
g_>c ‘éoo.‘éCI-'éco -

o
Cn n-1

Since the original sequence was exact, the sequence

e a « a° a

must be exact. We can define M® = C%/dc?, and M% is an

R%*-module of type n, since Cz lies in F or D as the

case may be. Since R @Ra preserves exactness, the sequence

a
R O ,CY 18d g 8o0C —> R OpM® —> 0

is exact, and we have

o

M=RQ® M .

RG
This proves part (i).

To prove part (ii), we assume that R® is n-coher-
ent for each a. Let M be an R-module of type n. By
part (i) M has the form M = R @, ,M" with M% of type n.

By 9 (v) for R*, M® is of type (n+l). By part (i), M
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is of the type (n+l). We have shown that each R-module of
type n is of type (n+l). By the proof that 9 (v) implies

9 (i), this is sufficient to show that R is (n,C)-coherent.

Corollary 12

The ring MU*(S0) is (1,F)-coherent but not
Noetherian.

In fact, MU*(S?) is a polynomial ring
Z[X1, Xpyeeey xn,...] on a countable set of generators
[20, 30]. Each finite subset of the generators generates a
o

Noetherian subring, and we take these subrings for the R

in Theorem 11. (Compare Bourbaki p. 63 exercise 12f.)

Corollary 13

The Steenrod algebra A 1is both (1,F)-coherent and
(1,D)-coherent, but neither Noetherian nor finite-dimensional.
In fact, any finite subset of A, and any finite-
N
dimensional part rZOAr of A, is contained in a Hopf sub-

algebra which is finite [19], and therefore both (0,F)-

coherent and (0,D)-coherent. We take such subalgebras for

(o o

the R in Theorem 11; the whole algebra is free over R

since R% is a Hopf subalgebra [22].

Example 14

The stable homotopy groups of spheres form (under
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composition) a graded ring which is neither (1,F)-coherent
nor (1,D)-coherent.

We may now summarise our guiding philosophy. The
most classical finiteness theorems in algebra concern finitely-
generated modules over a Noetherian ring. In our applications,
however, we have to use rings which are not Noetherian. The
Noetherian condition gives us finiteness results on submodules.
But in algebraic topology and in homological algebra we can
do without information about general submodules, provided that
we have information about kernels. (I mean, of course, ker-
nels of maps from one "good" module to another.) In other

words, we can use the following result.

Corollary 15

Suppose that R 1is (1,C)-coherent, that L and
M are modules of C-type 1 and that f: L — M 1is an
R-map. Then Ker f is of C-type 1.

This follows immediately from Theorem 9 (iii).

Corollary 16

Suppose that R is (1,C)-coherent, and that

/\

M e——= L
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is an exact triangle of R-modules in which L and M are

of C-type 1. Then N is of C-type 1.

Proof. Coker f is of type 1 by Corollary 8 and
Ker £ is of type 1 by Corollary 15. Thus N is of type
1 by Lemma 7 (ii).

For the next proposition we assume that the class
C contains any free module on one generator. This is true,
of course, for C =F and C = D. We assume that E* is
a (reduced) generalised cohomology theory with products, and

that the coefficient ring E*(S?) is (1,C)-coherent.

Proposition 17

If X is a finite CW-complex, then E*(X) 1is a

module of C-type « over E*(s0).

Proof. The result is true if X = Sn, for E*(Sn)

is a free module over E*(S?) on one generator. This serves
to start an induction over the number of cells in X. If X
is not a sphere, we can find a cofibering
A —> X —> B

in which A and B have fewer cells than X. (For example,
take A to be any proper subcomplex of X.) As our induc-
tive hypothesis, we suppose that E*(A) and E*(B) are of
type 1. The cofibering gives the following exact triangle

of modules over E¥*(s0).
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E* (X)

/N

E¥(B) «—— — _E*(A)

By Corollary 16, E*(X) is of type 1. This completes the
induction. Of course, by Theorem 9 (v) a module of type 1
is of type «. This proves Proposition 17.

It is clear that Theorem 1 follows immediately from
Corollary 12 and Proposition 17.

To prove Theorem 2, one uses Theorem 11 to reduce
the problem to the study of a module M* over a polynomial
ring R on finitely many generators (see Corollary 12).

For M® we know the existence of a resolution of the sort
required; take such a resolution and apply R ®Ra’ as in
the proof of Theorem 11.

We will sketch the proof of Theorem 4. Let G be
an abelian group which is p-trivial, and let K(G) be the
corresponding Eilenberg-MacLane spectrum. Then
H*(K(G);Zp) = 0, for p: G —» G must induce an isomorphism
p, of H*(K(G);Zp), but p, = 0. Next let X be a con-
nected spectrum such that nr(X) is p-trivial for each r;
then again we have H*(X;Zp) = 0. It follows that the gen-
eral case of Theorem 4 can be deduced, without changing the
module H*(X;Zp), from the special case in which ﬂr(X)

is zero for almost all r.
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Next let F be a free abelian group; one can show
that H*(K(F);Zp) is of D-type 1. This allows us to de-
duce the same result for a general Eilenberg-MacLane spectrum
K(G); we consider a fibering

K(F;) —> K(F,) —> K(G)
and apply Corollary 16 to the resulting exact triangle of
cohomology modules.

Now we can prove the result for a spectrum X with
just n non-zero homotopy groups. This is done by induction
over n, as for Proposition 17, but applying Corollary 16
to the exact triangle of cohomology modules arising from a
suitable fibering. This completes the proof.

The proof of Theorem 3 can now safely be left to
the reader.

To deduce Corollary 5, we suppose given a space Y
which contradicts Corollary 5, so that ﬁ*(Y;Zp) # 0 and
Theorem 4 applies to the corresponding spectrum. Let vy

be a non-zero class of lowest dimension in ﬁ*(Y;Zp); then

£
PPy =0

for all sufficiently large £; this makes it extremely plau-
sible that ﬁ*(Y;Zp) cannot have a presentation with rela-

tions in only finitely many dimensions, and this can indeed

be proved. This contradicts Theorem 4 and proves Corollary 5.
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On H-spaces and infinite loop spaces
by

Jon Beck

By a topological category I think is generally understood a category X in which:

(1) For each pair of objects X,Y ¢ X there is a hom object (X,Y¥) which is a topologi-
cal space, and composition is a continuous unitary, associative operation

(X,¥) x (¥,2) ~ (X,2).

(2) For every space A and object Y € X there is an object (A,Y) ¢ X and a natural

homeomorphism (X, (A,Y)) = (A,(X,Y)).

(3) For every space A the functor (A, ):¥ - X has a left adjoint A x ( )k - X.
The category of topological spaces is itself a topological category. The pre-
caution of course is actually taken of restricting to a category of spaces or something

like them for which the conversion (X, (Y,Zz) = (XxY¥,Z2) holds. Specifically, I have com-

pactly generated spaces in mind (E.Spanier, Annals of Math. 79 (1959), 142-197,§2), but
with care and compactness assumptions everything can be pushed through in the ordinary

category of topological spaces.

Another topological category is that of spaces with base points and base point
preserving maps. We will practically always work in this category, which we denote sim-

ply by Top.

In this case pairing (3)

Topological spaces X Top — Top

is naturally written as A®X. For example, if I is the unit interval and X ¢ Top, then
I®& is the reduced cylinder over the pointed space X, and maps I®X - Y are base point
preserving homotopies.

Of course, Top is also a closed category, that is, itself a Top-category. This
fact gives rise to a different pairing X®Y where X,Y are both pointed spaces, namely
X X Y/X X0+ 0 x Y, usually written X A Y.

X is called a pointed topological category if it possesses a hom functor with val-

ues in Top and pairings AQX, (A,Y) as in (2),(3) exist for A ¢ Top, X,Y ¢ X.
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The point is that as soon as a category has a hom functor with values in Top and
adjoints as specified above, then the constructions of algebraic topology are available
in that category. Let ¥ be a Top-category in this sense and let XO be a fixed object in
X. Usually ¥ has some well known underlying-(pointed)-topological-space functor and X

(o]

is chosen as the object which represents this via (Xo, ) X - Top. The tensor product

gives adjoint functors

Top 7 —— 7 x.
T (X, )

+1

Since cells and spheres are in Top we have objects en [26):4 Snexo in X, which are the

0)
(n+1) -cell and n-sphere in X. Let us write en+1®}; SE&} instead. Modulo minor assump-
tions of completeness, CW-objects exist in X. Such are built up by glueing X-cells onto

lower-dimensional skeleta via attaching maps Sneg -+ Y in ¥X; by adjointness, these are

the same as maps s - (XO,Y), the latter being the "underlying space" of Y. The usual

development of CW-theory can be conducted in such a category. The essential fact to be
supplied is that
0, 1 <n,
n
ﬂi(S ®%) =
Z, 1 =n.
This is true in all of the tripleable or "theoretical" examples of Top-categories used
in this paper.
As an example, consider the category of topological groups. The continuous homomor-
phisms G - H form a space (G,H) ¢ Top. The group structure of (A,H) for A ¢ Top is val-
ue-wise, and A®G is the free topological group generated by all symbols a®3 modulo the

relations a®(g091) = (aego)(asgi). The discrete group Z plays the role of X . Given a

o
complex X with cells en+1 - X, the cells en+1ez - X®Z give a group-cellular decomposi-
tion of X®Z. Homotopy theory in this category can now be carried out in the usual man-
ner. Some of this has been done under the guise of the theory of simplicial groups.

One application: let O ¢ I be the base point of the unit interval. Then IQG is the
group-theoretical cone on G. The natural map G -+ IQG at the 1-end is an embedding of G
into a contractible topological group. Under standard assumptions on the topology of G

near its neutral element, the projection I®G -~ I®G/G is easily shown to be a fiber bun-

dle. Thus I®G/G is a classifying space for G. Later on we shall construct classifying
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spaces for other types of H-spaces. Lack of a ®product in those cases make the con-
struction more difficult.

Another algebraic topology arises in the category of spaces over a fixed space X
(no base points are needed). An object in this category is a map A -+ X, a map is a com-
mutative triangle. The maps A -+ B over X form a closed subspace (A*E)X of the usual
(A,B) . The n-cell in this topological category is e x X. Homotopy equivalence is what
is usually called fiber homotopy equivalence.

Notice that differential (or PL) topoloyy exists over X even when X is a quite ar-
bitrary space. Euclidean space/X is R® x X and a map ' x X » R® x X/X is differentiable
if it is so with respect to the real component. For example, there should be an isomor-
phism I'*(X) - [X,PL/0] where Pn(X) is the group of diffeomorphisms of Sn_1 x X modulo
those which can be extended to D" x X, all /X.

The category of spaces /X could be taken as a base category for algebraic topology.
Pointed objects (those with zero sections), H-objects, ... can be defined and have their
usual properties. When X = 1 this program reduces to ordinary topology.

However, in this paper we will adhere to the standard base category Top of pointed
topological spaces, and concentrate on categories tripleable over Top (which actually
counter-includes the case of spaces /X). We recall that a tripleable category is one
whose objects are determined by a free-object functor (the definition follows), and for
these we have:

(4) Theorem. Let T be a pointed topological triple. Then the category of T-spaces is
a pointed topological category; more precisely, axioms (1),(2) for a topological cate-
gory hold and the tensor product A ® (X,t) which is asserted to exist in (3) does exist,
at least when T is derivable from a topological theory.

We define a pointed topological triple T = (T,n,u) to be a functor T: Top - Top

with oT = o and Tcontinuous, that is, effecting for all X,Y ¢ Top a continuous map
(X,¥Y) - (XT,YT), together with natural transformations n:id. - T, pusTT - T such that

T . L,.TT; TTT L’I‘T

\&‘L/ HTl l H

TT T

=
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commute. A T-algebra, or T-space, is a pair (X,t) where X € Top and £:XT - X is a conti-

nuous map such that the unitary and associative laws hold:

x—2N oy xrT— X xp
\lé er) le
X X'I'Téx

£ is called the T-structure of the space. With an evident definition of morphisms, T-
spaces form a category Egg?.

The usefulness of this concept arises from the fact that, by composition, adjoint
functors give rise to triples T, and the corresponding categories of T-spaces consist
precisely of those spaces which possess the general structure of values of the right
adjoints.

As an example, consider the adjoint functors Z,Q:Top - Top. Let n:X -+ XzQ,
€:XQZ - X be the usual adjointness maps. Then the composite functor ZQ is a triple in
Top with unit and multiplication

id—ss0, sozg B = Z€Q_ 5o,

A ZQ-space is then a pair (X,{) where X ¢ Top and £:XXQ -+ X is a unitary, associative
structure map:

X\”—a:—:sz Xz0zo — 29 Sxzo

\:\l% EZQ l lE

Such a map £ furnishes X with all of the structure which loop spaces possess in general.
Algebraically, for example, let © be any n-variable operation on loops and KgreeorXy g
any n points in X. Then the value of 9 in X is [(xon,...,xn_ln)elg. The fact that ¢ is
associative implies that © satisfies all of the identities in X which it satisfies in
the world of loop spaces.
In particular, every loop space has a ZQ-structure, by evaluation of loops:

(BQ)zQ = (BQZ)Q - BQ. As to whether there are any IQ-spaces that are not loop spaces a
priori, that question will be investigated in (16).

In the