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Preface

This is the third and last part of the proceedings of the Conference on Category Theory,

Homology Theory and their Applications, held at the Seattle Research Center of the Battell

Memorial Institute during the summer of 1968. The first part, comprising 12 papers, was

published as Volume 86 in the Lecture Notes series; the second part, also comprising

12 papers, as Volume 92.

It is again a pleasure to express to the administrative and clerical staff of the

Seattle Research Center the appreciation of the contributors to this volume, and of the

organizing committee of the conference, for their invaluable assistance in the prepa­

ration of the manuscripts.

Cornell University, Ithaca, March, 1969 Peter Hilton
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LECTURES ON GENERALISED COHOMOLOGY*

by

J. F. Adams

LECTURE 1. THE UNIVERSAL COEFFICIENT
THEOREM AND THE KUNNETH THEOREM

It is an established practice to take old theorems

about ordinary homology, and generalise them so as to obtain

theorems about generalised homology theories. For example,

this works very well for duality theorems about manifolds.

We may ask the following question. Take all those theorems

about ordinary homology which are standard results in everyday

use. Which are the ones which still lack a fully satisfactory

generalisation to generalised homology theories? I want to

devote this lecture to such problems.

As my candidates for theorems which need general-

ising, I offer you the universal coefficient theorem and the

Kunneth theorem. I will first try to formulate the conclu-

sions which these theorems should have in the generalised

case. I will then make some comments on these formulations,

and discuss a certain number of cases in which they are known

to be true. I will then comment on the connection between

one form of the universal coefficient theorem and the "Adams

* Note. These lectures are not arranged in the order in which

they were originally given.
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spectral sequence". After that I will give some proofs under

suitable assumptions. Finally I will show that certain re-

sults of Conner and Floyd [14] can be related to the universal

coefficient theorem.

In discussing the universal coefficient theorem and

the Kunneth theorem, we will write E* and F* for general-

ised homology theories and E*, F* for generalised cohomology

theories. In order to avoid tedious notation for relative

groups, we will suppose that they are "reduced" theories, de-

fined on some category of spaces with base-point. Thus we can

replace the pair X, X' by the space with base-point X/X'.

In particular, the coefficient groups for E* are the groups

E*(SO), and similarly for the other theories.

The universal coefficient theorem should address

itself to the following problems.

(1) Given E*(X), calculate F*(X).

(2) Given E*(X), calculate F*(X).

(3) Given E*(X), calculate F*(X).

(4) Given E*(X), calculate F*(X).

The last two problems correspond to the "upside-down universal

coefficient theorems" in ordinary homology.

It will surely be necessary to assume some relation

between E* (or E*) and F* (or F*). To begin with, we must

suppose given enough products. For example, we need products

in order to give sense to the Tor and Ext functors which
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occur in our statements. We postpone all further discussion

of data; the first step is to formulate the conclusions

which our generalised theorems ought to assert. We suggest

the following.

(UCTl)

Suppose given product maps

E*{X) E*{SO) E*{X)

v: E*{X) F*{SO) F*{X)

satisfying suitable axioms. Then there is a spectral sequence

The edge-homomorphism

is induced by v.

(UCT2)

Suppose given product maps

E*{SO) E*{X) E*{X)

v: E*{X) F*{X) F*{SO)

satisfying suitable axioms. Then there is a spectral sequence

The edge-homomorphism
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is induced by v.

(UCT3),

Suppose given product maps

E*(X) E*(SO) --. E*(X)

v: E*(X) F*(SO) --. F*(X)

satisfying suitable axioms. Then there is a spectral sequence

(E* (X), F* (SO» -p> F* (X) .

The edge-homomorphism

E*(X) F*(X)

is induced by v.

(UCT4)

Suppose given product maps

E*(SO) 0 E*(X) --. E*(X)

v: E*(X) 0 F*(X) --. F*(SO)

satisfying suitable axioms. Then there is a spectral sequence

The edge-homomorphism

F*(X) --. Hom;* (So) (E*(X), F*(SO»

is induced by v.
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Note 1. We should spell out some of the axioms on

the product maps. We will obviously assume that the product

maps have the correct behavior with respect to induced homo-

morphisms and with respect to suspension. We will assume that

(in cases 1 and 2) or

(in cases 3 and 4) into a graded ring with unit. We

will assume that the map makes E*(X) (in cases 1 and 2)

*or E (X) (in cases 3 and 4) into a graded module over

E*(SO) or E*(SO). This module is a left module in cases 2

and 4, a right module in cases 1 and 3. We will assume that

the map v, for X = SO, makes F*(SO) (in cases 1 and 4)

or F* (S 0) (in cases 2 and 3) into a graded module over

*or E (SO). This module is a left module in all four

cases. This is sufficient to give sense to the Tor and Ext

functors in the statements. Again, in cases 1 and 3 we will

assume that the product maps

v: E*(X) @ F*(SO) F*(X)

v: E*(X) @ F*(So) F*(X)

factor through E*(X) @E*(SO)F*(SO) and E*(X) @E*(SO)F*(SO)

respectively. In cases 2 and 4 we convert the maps v into

maps

F* (X) Hom* (E* (X), F* (So»

F*(X) Hom* (E*(X), F*(SO»

and assume that these actually map into Homi*(so) (E*(X), F*(So»

and Hom;* (So) (E*(X), F*(So» respectively. All these four
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conditions may be viewed as associativity conditions on our

products. They give sense to the statements about the edge-

homomorphisms.

Note 2. The case of representable functors is par-

ticularly important. In this case we suppose given a ring-

spectrum E and a spectrum F which is a left module-spectrum

*over the ring-spectrum E. We take E* and E to be the

*functors determined by E, as in [31] ; we take F* and F

to be the functors determined by F. In this case we obtain

all the products required for the statements UCT 1-4. For

example, in cases 2 and 4 the products v are Kronecker

products. All these products satisfy all the assumptions

mentioned in Note 1.

As examples of ring-spectra E, we have MU, and

the BU spectrum, and the sphere spectrum S. We also have

examples of module-spectra. Any spectrum is a module-spectrum

over S; and BU is a module-spectrum over MU, this being

the case explored by Conner and Floyd [14].

Note 3. As remarked above, we have yet to discuss

the data which might suffice to prove these statements, or

the lines of proof which might establish them. The assump-

tions in Note 1 are intended simply to give meaning to the

statements.

Note 4. By assuming extra data, we might expect
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to make all these spectral sequences into spectral sequences

of modules over E*{SO) or E*{SO). The extra data would

be modelled on the case in which we start from a ring-

spectrum E which is commutative, and a module-spectrum

F over E. For example, we would take the ring E*(So) or

E*{SD) to be anticommutative. We spare ourselves the de-

tails. If the basic results are proved in any reasonable way,

it should not be hard to add such trimmings.

The Runneth theorem (for reduced functors) should

address itself to the problem of computing E* and E* for

the smash-product X A Y in terms of corresponding groups

of X and Y. (This corresponds to computing an unreduced

theory on X x Y.) We may obtain four statements by sub-

stituting in UCT I and 4 the functor F*{X) = E*{X A Y),

and in UCT 2 and 3 the functor F*{X) = E*{X A Y). We obtain

the following statements.

(KTl)

Suppose given an external product

satisfying suitable axioms. Then there is a spectral sequence

The edge-homomorphism
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is induced by v •

(KT2)

Suppose given a product,

and a slant product

v: E*(X) E*(X A Y) E*(Y)

satisfying suitable axioms. Then there is a spectral sequence

(E*(X), E*(Y» p> E*(X A Y) •

The edge-homomorphism

is induced by v •

(KT3)

Suppose given an external product

v: E*(X) E*(Y) E*(X A Y)

satisfying suitable axioms. Then there is a spectral sequence

TorE*(So) (E*(X) E*(Y» E*{X A Y) .
p,* ' p

The edge-homomorphism

is induced by v.
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(KT4)

Suppose given a product map

E*{SO) 0 E*{X) E*{X)

and a slant product

satisfying suitable axioms. Then there is a spectral sequence

p,* (*{) ( )) ( )ExtE*{SO) EX, E* Y p> E* X A Y .

The edge-homomorphism

is induced by v.

Note 5. In KT 1 and 3 it is unnecessary to suppose

given the product as it can be obtained by specialising

the product v to the case Y = SO .

Note 6. As each part of the "Kiinneth theorem" is

obtained by transcribing the corresponding part of the "uni-

versal coefficient theorem", Notes 1, 3 and 4 above can also

be transcribed. Note 1 yields the formal properties of our

products and v which we should assume in order to give

sense to the statements.

Note 7. The case of representable functors is par-

ticularly important. In this case we suppose given a ring-

spectrum E. We take E* and E* to be the functors
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determined by E, as in [31]. We then have four classical

products - two external products and two slant products [31].

These products satisfy all the formal properties needed to

give sense to our statements - see Note 6.

This provides some justification for stating the

Kunneth theorem in four parts. In fact, we have four products;

from each product product we can construct an associated

"edge-homomorphism"; the corresponding spectral sequence (if

it applies) shows whether or not this homomorphism is an iso-

morphism.

Note B. Since each part of the Kunneth theorem is

obtained by specialising the corresponding part of the univer-

sal coefficient theorem, the latter will presumably imply the

former, once we get the data settled. (Of course, if we

wished to stay inside ordinary homology we could not use this

argument.) It should therefore be enough to discuss the

universal coefficient theorem.

Note 9. It is almost certain that UCT 3 and UCT 4

will require some finiteness condition, because such a condi-

tion is needed for the "upside-down universal coefficient

theorems" in ordinary homology. If X is a finite complex,

then we can deduce UCT 3 from UCT 1 by S-duality. Let DX

be the Spanier-Whitehead dual of X. Suppose given E*, F*

as in UCT 3. Then we can define theories E*, F* on finite
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complexes by setting

E* (X) = E* (OX), F* (X) = F* (OX) ;

we extend to infinite complexes and spectra by direct limits.

We obtain product maps

E*(X) E*(SO) E*(X)

E*(X) F*(SO) F*(X)

as required for UCT 1. Applying UCT 1 to OX, we obtain

UCT 3 for X.

Similar remarks would apply to deduce UCT 4 from

UCT 2, except that the definition

F*(X) = F*(OX)

will only define F* on finite complexes. At this point we

do not know whether it will suffice for UCT 2 to have F*

defined on so small a category. It therefore seems best to

begin from a ring-spectrum E and a module-spectrum F. In

this case F* will be defined on a sufficiently large cate-

gory. We have isomorphisms

E*(OX) E*(X)

F*(OX) F*(X)

and these can be taken to throw the usual products

E* (S 0) E*(OX) E*(OX)

E* (OX) e F*(OX) F* (S 0)

onto the usual products

E*(So) e E*(X) --7 E*(X)
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Applying UCT 2 to DX, we obtain UCT 4 for any finite complex

X.

Of course, this method of deducing UCT 4 from UCT 2

only gives UCT 4 for representable functors. It is therefore

necessary to note that UCT 4 for representable functors implies

KT 4 for representable functors. Suppose we start from a ring-

spectrum E. Then the functor

F*{X) = E*(X A Y)

is representable; the representing spectrum is given by

F = E A Y. This spectrum can be made into a (left) module-

spectrum over E in the obvious way; this results in a

product

E*{X) F*{X) F*(SO)

which coincides with the usual slant-product

E*{X) E*{X A Y) E*{Y) .

If X is a finite complex, and we apply UCT 4 to X (with

this E and F), we obtain KT 4 for X.

The result of this discussion is that to obtain all

eight results, under suitable conditions, it should be enough

to discuss UCT 1 and UCT 2.

Note 10. Our treatment leads to KT 3 with a finite-

ness assumption on X but none on Y. Since KT 3 is symme-

trical between X and Y, it would be equally reasonable to

make a finiteness assumption on Y but none on X. Some

finiteness assumption is almost certainly necessary, because
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it is so far the corresponding Kunneth theorem in ordinary

cohomology.

Our treatment leads to KT 4 with a finiteness

assumption on X but none on Y. Some finiteness assump-

tion on X is almost certainly necessary, for the usual reason.

A finiteness assumption on Y is very likely to be irrelevant.

For example, suppose that E*(X) has a resolution by finitely-

generated projectives over E*(SO)i e.g. this is so if

E = MU and X is a finite complex (see Lecture 5). Then

(E*(X), E*(Y» passes to direct limits as we vary

Yi and KT 4 for this X and general Y follows from the

case in which Y is a finite complex.

It is now time to discuss some cases in which the

statements we have formulated are known to be true.

Note 11. Certain special cases of the statements

are classical theorems about ordinary homology.

Note 12. Suppose that F*(So) is flat over

E*(SO). Then UCT 1 asserts that the edge-homomorphism

E: E*(X) F*(X)

is an isomorphism. This is certainly true when X is a

finite complex, because as we vary X, E is a natural trans-

formation between homology functors which is iso for X = S°.

If we assume that E* and F* pass to direct limits as we



- 14 -

vary X, then the same result holds when X is a CW-complex

or a spectrum.

Since KT 1 is symmetrical between X and Y, it

follows that KT 1 is true if either E*(X) or E*(Y) is

flat.

Similar remarks apply to UCT 2 if F*(So) is injec-

tive, although this case hardly ever arises. One has to

approach the case of infinite complexes X by discussing

the case of infinite wedge-sums, as in [21].

The same approach does not immediatly prove UCT 1

under the assumption that E*(X) is flat, because we cannot

vary F arbitrarily without losing the products we need.

(See Note 14 below.) However, UCT 1 and UCT 2 are triv-

ially true if X is a wedge-sum of spheres; we will use

this later.

Note 13. If E is the sphere-spectrum S then

any spectrum is a module over S. In this case all the re-

sults are true and easy to prove. This will appear as a

special case in Note 15 below.

Note 14. Next I have to recall that in the de-

finition of a ring-spectrum, one is allowed various homo-

topies: for example, the product is supposed to be homotopy-

associative. If we do not wish to allow any homotopies, we

speak of a strict ring-spectrum. The sphere S is a strict
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ring-spectrum; otherwise it is usually laborious to show

that a given spectrum is a strict ring-spectrum. It has been

proved by E. Dyer and D. Kahn (to appear) that if E is a

strict ring-spectrum, then KT 1 holds. Their argument also

shows that if E is a strict ring-spectrum and F is a

strict module-spectrum over E, then UCT 1 holds. The

method amounts to constructing an E-free resolution of Pi

compare the last paragraph of Note 12 above.

This is at least a general theorem. It is likely

that one could weaken the conditions on the spectra slightly,

by analogy with the case of "Aoo H-spaces" [28]. Unfortunately,

the method does not seem to prove any of the theorems involv-

ing Ext; this would require a different sort of resolution.

Note 15. If E is the BU-spectrum and x, Yare

finite complexes then KT 3 is a result of Atiyah [6]. (Of

course in this case Tor = 0 for p > 1.) By combining
p

the idea of Atiyah's proof with S-duality, one can obtain a

proof of UCT 1 and UCT 2 (and hence of all the rest) for

various spectra for which the method happens to work. The

spectra E to which the method applies include BO, BU,

MO, MU, MSp, S and the Eilenberg-MacLane spectrum K (Z ).p

This method is already known to E. Dyer, and per-

haps to many other workers in the field. Since giving the

original lecture I have heard that L. Smith has applied the
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method (a) to consider VCT 1 for the case E = MJ, F = K(Z)

and (b) to consider KT 1 for the case E = MU; I am grateful

to him for sending me a preprint.

This method is very practical when it works. It

definitely doesn't work for E = K(Z) . Thus it fails to gen-

eralise the classical theorems for ordinary homology.

Note 16. Atiyah [6, footnote on p. 245] has indi-

cated an example in which the edge-homomorphism is not mono-

morphic; and presumably further such examples can be found.

They do not contradict our thesis, because they presumably

give examples in which the differentials of the relevant

spectral sequence are non-zero.

Next I want to comment on the connection between

VCT 2 and the "Adams spectral sequence" [1,2,15]. For this

I need some standard ideas from homological algebra, and I

give them now in order to avoid interrupting the discussion

later.

Let A be an algebra over a ground ring R, and

let M be an R-modu1e. Then A M may be made into an

A-module by giving it the obvious structure maps; and we have

N) HomR(M,N) .

(Hence the same thing is true for Ext.) A M is called

an "extended" module. Similarly, let C be a coa1gebra over

a ring R, and let M be an R-modu1e. Then C M may be
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made into a by giving it the obvious structure

maps; and we have

C@RM) HomR(L,M) •

(Hence the same thing is true for Ext.) C @R M is called

an extended comodule.

In the applications everything will be graded.

Also C will be a bimodule over R and the two actions of

R on C will be quite distinct; but this does not affect

the truth of the cliches presented above.

Let [X,Y]* be the set of stable homotopy classes

of maps from X to Y. I shall argue in Lecture 2 that

the most plausible generalisation of the "Adams spectral

sequence" would give the following statement.

(ASS)

Under suitable assumptions, there is a spectral

sequence

(E*(X) , E*(Y» p> [X,Y]*

The edge-homomorphism

[X,Y] * --+ (E) (E* (X), E* (Y) )

assigns to each map f its induced homomorphism

f*: E*(X) E*(Y).

Here E is (as usual) a The func-

tors Hom and Ext are defined by considering E*(X) and
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E*(Y) as comodules with respect to the coalgebra E*(E).

We use E*(So) as the ground ring for our comodules etc.

The necessary details are given in Lecture 3.

This result refers to [X,Y]* for a general Y.

If we assume that Y is F, a left module-spectrum over E,

then [X,Y]* becomes F*(X), and we may hope that this extra

data will simplify the computation of the E2 term. We will

now make this more precise. In Lecture 3 we will define a

product map

This map is not one of those we have so far considered, but

it is related to the map v of UCT I by the following com-

mutative diagram.

EO<::ljEO(SOlFO(SO)

E * (E) 0E * (S 0 ) F * (S 0 )

E*(F)

T01
\)

F*(E)---;.

Here '* is the isomorphism induced by the switch map

,: E A F F A E, and similarly for c. In Lecture 3 we

shall assume that the relevant action of E*(So) on E*(E)

makes E*(E) into a flat module. So if UCT I applies to

v, it will show that v is an isomorphism, and hence m

is an isomorphism. In any case, for each E and F we

can check once for all whether this is so. If it is, then
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the results of Lecture 3 show that E*(F) is an extended co-

module; that is, the isomorphism m throws the diagonal

@ 1 for E*(E) @E*(SO)F*(SO) onto the diagonal for

E*(F). In this case we have

(as modules over E*(SO», the state-

ment ASS specialises to UCT 2. (Checking reveals that the

edge-homomorphism behaves correctly.)

Since F*(X) admits an interpretation in terms of

stable homotopy, one may ask whether UCT 1 can be related to

ASS. Further thought reveals that this is unlikely, as the

spectral sequence of UCT 1 involves a filtration starting

from 0 and increasing indefinitely, while ASS involves

a filtration starting from the whole group [X,Y]* and de-

creasing indefinitely. In particular, the edge-homomorphisms

run in opposite directions.

I can now explain one motivation for interest in

UCT 2. I would like to see further results of the general

form of ASS; compare Novikov [23, 24]. It seems that UCT 2

is a special case which sufficiently exhibits many of the

difficulties. I would therefore like to see new proofs of

UCT 2, as general as possible, in the hope that they may

generalise to proofs of ASS.

I will now turn to give further details of the
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method mentioned in Note 15. For this purpose I will assume

once for all that in what follows the functors E* and F*

*or F satisfy Milnor's additivity axiom on wedge-sums [21].

The first step is to deal with a special case which is very

restrictive, but important for the applications.

Let X be a CW-complex or a connected spectrum.

We assume that the spectral sequence

is trivial, that is, its differentials are zero. We observe

that this spectral sequence is a spectral sequence of modules

over E*(SO); in the case of UCT 1 it is a spectral sequence

of right modules, and in the case of UCT 2 it is a spectral

sequence of left modules. The module structure of the E2

term H*(X;E*(SO» is the obvious one. We assume that for

each p, Hp(X;E*(SO» is projective as a module over E*(So)

(on the left or right as the case may be). Note that for

this purpose it is not necessary to assume that H (X) is
p

free; for example, if Eo(SO) is a (commutative) principal

ideal ring it will be sufficient if

Then we conclude:

Proposition 17

H (X;Eo(So»
p

is free.

With these assumptions, E*(X) is projective and

X satisfies UCT 1 or UCT 2 (as the case may be). That is,

the map
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or

F*(X) HOm; (SO) (E*(X) ,F*(SO))

*is iso.

Proof. Let

the spectral sequences

H*(X;E*(SO)) => E* (X)

H*(X;F*(So)) ==> F* (X)

H*(X;F*(So)) => F*(X)

It follows immediately from the assumptions on the spectral

*sequence E**(O) that E*(X) is projective.

The products v yield homomorphisms

HomE*(So) ,F*(So))

as the case may be. These homomorphisms send d r @ 1 into dr,

or d r into (dr)*, as the case may be. (These assertions need

detailed proof from the definitions of the spectral sequences,

but it can be done using only formal properties of the products

v and the fact that @ is right exact while Hom is left

exact.) Because of the assumption that the spectral sequence

E:*(O) is trivial (which is essential here), the groups

(for r 2), equipped with the
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boundaries dr 1, form a (trivial) spectral sequence

Similarly, the groups Hom;*{So)

equipped with the boundaries (dr)*, form a (trivial) spec-

tral sequence

quences

We now have a map of spectral se-

or

Er (3) Er (I)p,q p,q

as the case may be. For r = 2 it becomes the obvious map

or

as the case may be. But since we are assuming that

Hp{XiE*{SO» is projective over E*{SO) for each p, a

theorem on ordinary homology shows that for r = 2 the map

is iso. Therefore it is iso for all finite r, and the

spectral sequence Er (I) or EP,q(2) is trivial.p,q r

We next deduce that the map

or

is iso. {If X is not finite-dimensional, this needs
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properties of E* and F* or F* with respect to limits,

but these follow from the axiom on wedge-surns.)

Let us now introduce notation for the filtration

subgroups or quotient groups, as the case may be; say

G *(0) = Im(E*(XP) E* (X) )p,

G (1) = Im(F*(XP) --+ F*(X»p,*

GP'*(2) = Coim(F*(X) F* (Xp) )

The product v yields us homomorphisms

Gp, * (0) (S 0) F* (S 0) --+ Gp, * (1)

GP,* (2) (SO) (Gp,. (0) ,F* (So»

as the case may be. (Again, the verification uses only formal

properties of the products v and the fact that is right

exact while Horn is left exact.) Consider the following com-

mutative diagrams.

o Gp_ 1 , * (1) Gp , . (1) E;,. (1) ----;.:>0
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0
> (2J

) GP, * (2) >-

1
Hom*(E

OO

(0) ,F*(SO» Hom* (Gp* (0) ,F* (S°»p*

Here all the 0's and Hom's are taken over E*(So). The
00

first and last rows are exact because Ep,*(O) is projective.

An easy induction over p, using the short five lemma, now

shows that

or

is iso.

In the case of UCT 1, we now pass to direct limits

and see that

is iso. In the case of UCT 2, we first observe that the spec-

tral sequence satisfies the Mittag-Leffler condition

for spectral sequences, and therefore
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= Lim GP I * (2) .
+-
P

and

G * (O)P,
co

= G 1 (O) E * (O)p- 1* p,

we have

E*(X) = Gp,*(O}
p

We can thus pass to inverse limits and see that

F* (X) (SO) (E* (X) ,F* (SO))

is iso. This proves Proposition 17.

We next need two further lemmas. For this purpose

we assume that we can work in a suitable category in which we

can do stable homotopy theory [7, 8,25]. We assume that the

theories E* and F* or F* are defined on this category,

and that E* is represented by an object E in this cate-

gory. The next two lemmas are stated for E, but they also

apply to any other object (such as F, if we have an F.)

We assume that E is the direct limit of a given system of

finite CW-complexes

Lemma 18

E .
a.

For any object X and any class e E E (X)
P

there

is an E and a class fEE (Sp A DE) and a map
a. p a.
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g: sP A OE X such that e = g*f.
a

Proof. Take a class e E Ep(X). Then there is a

finite subcomplex X' c X and a class e' E E (X')
P

such

that i*e ' = e. We may interpret e' as a class in

E-P(OX '): so e l may be represented by a map

h: OX' S-PE. Since OX' is a finite complex and E is

the direct limit of the E, we can factor h in the form
a

OX' S-p A E
a

----"0.. S-p E----..- A •

That is, there is a class such that

k*f = e I. Oualising back, f may be interpreted as a class

in E (Sp A DE ), and we obtain a mapp a

Ok: sP A DE XI
a

such that (Dk) *f = e' . We have only to take

g = i(Ok): sP A DE X .
a

This proves Lemma 18.

Lemma 19

For any object X there exists an object of the

form

and a map g: W X such that

is epi.
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The construction is inunediate from Lemma 18, by

allowing the class e in Lemma 18 to run over a set of gen-

erators for E*(X).

We now introduce the sort of resolution we need.

By a "resolution of X with respect to E "
*

we shall mean

a diagram of the following form, with the properties listed

below.

Xo Xl X2

X = X\iX\iX\/X'
(i) The triangles

are exact (cofibre) triangles.

(ii) For each r,

is zero.

(iii) For each r, E*(Wr) is projective over

(iv) For each r, Wr satisfies UCT 1 or UCT 2,

i.e. the map
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or

is iso.

In order to prove the existence of such resolutions,

we introduce the following hypothesis.

Assumption 20

E

for which

is the direct limit of finite CW-complexes E
CI.

(i)

(Ii)

E*(DE) is projective over E*(SO), and
CI.

DE satisfies UCT 1 or UCT 2, as the case may
CI.

be, for the theory F* or F*.

In theory we can check this assumption for given

E and F. In practice we usually prove it using Proposition

17, which requires strong hypotheses on DE
CI.

but none on F.

In practice E is a ring-spectrum, so the use of Proposition

17 involves checking the following two conditions.

(i) The spectral sequence

H*(E ·E*(So» > E*(E )a' a

is trivial, and

(Li.) For each p, is projective

as a module over E*(So).
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Examples.

(i) E = S, the sphere spectrum. Take E = SIl ia

the conditions are trivially satisfied, and of course Assump-

tion 20 is very easily verified directly.

(ii) E = K(Z ).
P

are satisfied by any x.

The conditions of Proposition 17

It is sufficient to let E run
a

over any system of finite complexes whose limit is

(iii) E = MO. It is well known that

MO - V sn(i)K(Z2) _ rrsIl(i)K(Z2) •
i i

K (Z ).
p

The conditions of Proposition 17 are satisfied by any X. It

is sufficient to let E run over any system of finite com-
a

plexes whose limit is MO.

(iv) E = MU. We have HP(MU;MUq(SO» = 0 unless

p and q are even. Therefore the spectral sequence

H*(MUiMU*(SO» > MU*(MU)

is trivial. Again, HP(MUiMU*(SO» is free over MU*(So).

It is sufficient to let E run over a system of finite
a

complexes which approximate MU in the sense that

is iso for p n,

i*: Hp(E a ) Hp(MU)

while H (E ) = 0 for p > n.p a

(v) E = MSp. A simple adaptation of the method

of S. P. Novikov [23, 24] from the unitary to the symplectic

case shows that the spectral sequence

H* (MSpiMSp* (SO» > MSp*(MSp)
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is trivial. Again, HP(MSp;MSp*(SO» is free over MSp*(So).

The rest of the argument is as in (iv).

(vi) E = BU. Let us recall that in the spectrum

BU every even term is the space BU. We have

HP(BUiBUq(SO» = 0 unless p and q are even. Therefore

the spectral sequence

H*(BUiBU*(SO» > BU*(BU)

is trivial. Again, HP(BUiBU*(SO» is free over BU*(So).

It is sufficient to let E run over a system of finite com-
a

plexes which approximate as in (iv) to the different spaces

BU of the spectrum BU.

(vii) E = BO. Let us recall that in the spectrum

BO every eighth term is the space BSp. I claim that the

spectral sequence

H*(BSpiBO*(SO» > BO*(BSp)

is trivial. In fact, for each class h E HSP(BSp(m» we

can construct a real representation of Sp(m) whose Chern

character begins with h; for each class

h E Hsp+4(BSp(m» we can construct a symplectic represen-

tation of Sp(m) whose Chern character begins with h.

The rest of the argument is as for (vi).

(viii) Cobordism and K-theory with coefficients.

The reader will find further examples in Lecture 4.

Assumption 20 allows us to use the method of
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Atiyah [6].

The next lemma will construct the resolutions we

require; but we state it in a more general form, so that it

will also allow us to compare resolutions. We suppose given

a diagram of the following form.

x' Xl x'
x ' := XI 0 X. 1 XI 2 x '

\i\i\i
3

WI
o

WI
1

WI
2

Here the triangles are supposed to be exact (cofibre) tri-

angles, and

(x I ) *: E* (X I) E* (X 1+ 1)r r

is zero for each r. We also suppose given a map f: X XI.

Lemma 21

Under these conditions we can construct a resolution

of X with respect to E* which admits a map over f, in

the sense that we can construct the following diagram so that

the prisms are maps of exact (cofibre) triangles.



- 32 -

In order to construct a resolution of X with

respect to E*, we need only apply Lemma 21 to the case in

which all the objects XI and WI
r r

are trivial.

Proof of Lemma 21. As an inductive hypothesis,

suppose the diagram constructed up to the following map.

Xl
r

Form the following cofibre triangle.

xlf
r r

z

Then we have the following commutative square.

Z

1
X I Wi
r r

Since (x If) = 0, E*(Z) ....-+ E* (Xr) is epi. By Lemma 19
r r *

we can construct a map W Z such that W has the form
r r

W = '{ sP (3) 1\ DEa,r
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and E*(Wr) E*(Z) is epi. We now have the following

commutative square.

X' <l!!'<----W'r r

Here E*(Wr) E*(Xr) is epi. Form the following cofibre

triangle.

X
r

\
This triangle can be mapped in the required way, and we have

(Xr ) * = o. This completes the induction.

We have constructed a resolution, because W
r

in-

herits the property that E*(Wr) is projective from its

summands sP 1\ DE, and similarly for UCT 1, VCT 2 (see
a

Assumption 20). This proves Lemma 21.

We will now construct the spectral sequences of

UCT 1 and UCT 2, using Lemma 21 and the assumption that E*

and F* or F* are defined on a sufficiently large category

in which we can do stable homotopy theory. Take a resolution

of X with respect to E*, as provided by Lemma 21. By

applying the functor F* or F*, we obtain a spectral
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sequence. Now the sequence

o E*(X) E*(WO) E*(WI> E*(W 2 ) •••

is a resolution of E*{X) by projective modules over E*(SO).

Since the Wr satisfy UCT 1 or UCT 2, the E1-term of the spec-

tral sequence is obtained by taking this projective resolution

or ,p*(SO». There-

fore the Ef-term is the required Tor or Ext.

We have to show that the spectral sequence is inde-

pendent of the choice of resolution. Suppose given two reso-

lutions, as follows.

x =

WI

°
WI

1
WI
2

x = X" ) X" > X" ) X"

\/\/\/'
W"
°

WIt
1

WIt
2

Then we can form the following diagram.

X V X = XI V X" XI V X" > Xl V X"o 01 1 2 2

\ / \ /
WI V W"° 0

WI V WIt
1 1
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We can now apply Lemma 21 to the map X X V X of type

(1,1). We obtain a third resolution and a third spectral se-

quence which admits comparison maps to or from the first two

spectral sequences. ("To" for F*, "from" for F*.) But

both these comparison maps are iso for r = 2 by the comparison

theorem of homological algebra; therefore they are iso for

all finite r.

It remains to discuss the convergence of these

spectral sequences. Given a resolution of X, we can con-

struct a direct limit Xoo of the objects X
r

(by forming

a "telescope" or iterated mapping-cylinder). The object XOO

has the property that

E*(Xoo) = E*(Xr ) = a .
r

In the case of UCT 1, for example, the spectral sequence con-

verges in a perfectly satisfactory manner to F*(Xoo,Xo). We

therefore face the following question.

Problem 22

When can we assert that E*(X) = a implies

F*(X) = a or F*(X) = 0 ?

This is of course a special case of UCT 1 or UCT 2.

When the answer is affirmative, we have (for example)

F*(Xoo) = 0, F*(Xoo,Xo) F*(X) and the spectral sequence of

UCT 1 converges in a satisfactory way to F*(X).

Unfortunately the present state of our knowledge
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*on Problem 22 appears to be far from satisfactory. Of course

we know special cases; for example, if E = S, then

S*(X) = 0 implies that X is contractible, and so

F*(X) = 0, F*(X) = O. Again, if E*(X) = 0, then as we

vary Y, E*(X A Y) is a homology functor of Y with zero

coefficient groups, therefore zero. Thus the spectral se-

quence of KT 1 always converges.

At this point we pause to show that our spectral

sequences can behave well even in cases which are known to

be somewhat pathological.

Example 23. We consider UCT 2 for the case in

which X is K(Z), while E and F are the spectrum BU.

We can compute the ordinary homology of the spectrum BU by

considering that of the space BU and passing to a direct

limit; we find

if

if

n

n

is even

is odd •

By George Whitehead's remark [31] , this is equivalent to

{:
if n is even

BU (K (Z) ) =--n if is oddn .
Now owing to the favourable structure of the ring BU*(So),

the computation of Ext over this ring reduces to computing

Ext over Z. We find

* Note added in proof. A satisfactory answer to Problem 22 is
now available.
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ExtP,q
BU (S0) (BU* (K(Z» ,BU* (S°»
-*

if p = 1 and q is even

otherwise.

This agrees with the result of Hodgkin and Anderson [5, 17].

We will now make some comments on the situation

whose exploration was pioneered by Conner and Floyd [14]. We

assume that we have representing objects E and F, that

E satisfies Assumption 20 and that F satisfies the fo11ow-

ing hypothesis.

Assumption 24

for which

F is the direct limit of finite CW-comp1exes F
a

(i) is projective over E*(SO), and

(ii) DF satisfies UCT 1 for the theory F*.
a

(Compare Assumption 20.) In practice we generally

verify this assumption by using Proposition 17, as for Assump-

tion 20.

Examples.

(i) E = MU, F = BU. In the spectrum BU every

even term is the space BU. For the space BU we have

HP(BUiMUq(SO» = 0 unless p and q are even. Therefore
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the spectral sequence

H*{BU;MU*{SO» > MU*{BU)

is trivial. Again, HP{BU;MU*{SO)) is free over MU*{SO).

As in Example (vi) on Assumption 20, it is sufficient to let

F run over a system of finite complexes which approximate
CL

to the different spaces BU of the spectrum BU in the

sense that

i*: H (F ) H (BU)
P CL P

is iso for p n, while

(ii) E = MSp,

H (F ) = 0 for p > n.p CL

F = BO. In the spectrum BO every

eighth term is the space BSp. It follows from the work of

Conner and Floyd [14] that the spectral sequence

H* {BSp;MSp* (S 0) ) MSp* (BSp)

is trivial. Again, HP{BSp;MSp*{SO)) is free over MSp*{SO).

The rest of the argument is as in (i).

With these assumptions (especially 20 and 24) we have

the following results for any X.

Proposition 25

We have

(E*{X),F*{So)) = 0 for p > 0 .

The spectral sequence of UCT 1 collapses, and its edge-homo-

morphism
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is iso.

Compare Conner and Floyd [14, pp. 60, 63]; but

these authors state their theorem with the variance of UCT 3,

and use finiteness assumptions.

Proof. It follows from Lemma 19 that given any

object X, there exists an object W of the form

W=V
B

sp (y) I\DF
a(y)

and a map g: W X such that both

and

g*: E*(W) E*(X}

g*: F*(W) F*(X)

are epi. Arguing as in Lemma 21, we can now construct a reso-

lution of X with respect to E* which has the following

extra properties.

(i) The objects W have the formr

W = V
r B

(ii) Not only the homomorphisms

but also the homomorphisms

are zero for all r.

Then the sequence
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is a resolution of E*(X} by projectives over E*(So).

Consider the following diagram.

F * (Wo) <E(-------- F * (Wd <OE;(------

The homomorphisms vr are iso. The lower row is exact by

construction. Therefore the upper row is exact, and

(E* (X) ,F* (So)) = 0 for p > 0 •

We can now consider the following diagram.

o E*(X) GE*(SO)F*(SO) +- E* (Wo) GE* (S0) F* (S 0)

vI vol
o ... F*{X) -< F*{Wo) <;



- 41 -

The upper row is exact because 0 is right exact, and the

lower row is exact by construction. The maps vQ and VI

are iso. Therefore v is iso. This completes the proof of

Proposition 25.

Since we now know what happens to UCT 1 in this

situation, it is natural to ask what happens to UCT 2.

For this we need slightly more data. We suppose given two

ring-spectra E, F and a map i: E F of ring-spectra.

(For example, E = MU and F = BU, or E = MSp and

F = BO.) We suppose given also a spectrum G which is a

module-spectrum over F, and therefore a module-spectrum

over E via i. (For example, G = F.) (It would presum-

ably be sufficient to suppose given enough products in hom-

ology and cohomology, but let us spare ourselves the details.)

We suppose that the pair of theories (E,G) satisfies Lemma

21, so that we can construct a spectral sequence for computing

G* or G* from E* as in UCT 1 or UCT 2; we also suppose

that the pair of theories (F,G) satisfies Lemma 21, so that

we can construct a spectral sequence for computing G* or

G* from F* as in UCT 1 or UCT 2.
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Proposition 26

(i) The spectral sequence for computing G* from

E* coincides with the spectral sequence for computing G*

from F*.

(Ld.) The spectral sequence for computing G* from

E* coincides with the spectral sequence for computing G*

from F*.

Note. By specialising Proposition 26(i) to the

case G = F , we obtain a result agreeing with Proposition

25; for of course the spectral sequence for computing F*

from F* collapses.

Proposition 26 will follow almost immediately from

the following lemma.

Lemma 27

(i) If E*(W) is projective over E*(SO) I then

F*(W) is projective over F*(SO).

(ii) If

E*(W) 0E*(SO)G*(SO) G*(W)

is iso, then

is iso.

(iii) If

G*(W) (E*(W) IG*(SO»
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is iso, then

is iso.

Proof.

(i) F*(W) E*(W) by Proposition

25. So if E*(W) is projective over E*(So), F*(W) is

projective over F*(SO).

(ii) Consider the following commutative diagram.

E*(W) (S°)F* (S°) 1 'J
) E* (W) (SO)G* (So)

v@l1
\i 1v

F* (W) GF* (So)G* (51) ) G* (W)

The left-hand column is iso by Proposition 25, the right-hand

column is iso by assumption, and the top row is trivially iso.

Therefore the bottom row is iso.

(iii) Consider the following commutative diagram.

G* (W) 'J

*v

HomF* (S 0) (F* (S 0 )@E* (S 0) E* (W), G* (S 0))

II
(E*(W), HomF*(So) (F*(So),
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The result follows as in part (ii).

Proof of Proposition 26. Take any resolution of

X over E*, say the following.

X = ...

Here the objects
,

Ware supposed to satisfy UCT 1 or UCT 2
r

with respect to the functors E* and G* or G*. We will

show that it qualifies as a resolution of X over F*. In

fact, since

is zero, the homomorphism

is zero by Proposition 25. The remaining statements which

need to be checked are provided by Lemma 27. proposition 26

follows immediately.

Example. For any X we have

ExtP,* (MU*(X),BU*(SO» = 0 for p > 1 •
MU*(SO) -

This follows immediately from Proposition 26, since

the result is trivial for
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The following result is required for use in

Lecture 3.

Lemma 28

If E = BO, BU, MO, MU, MSp, S or K(Z )
P

then E*(E) is flat as a module over E*(So).

Proof. The cases E = MO, Sand K(Zp) are tri-

vial. In the cases E = MU, MSp we can apply the spectral

sequence

H*(EiE*(SO» > E*(E)

to show that E*(E) is projective over E*(So) i in the case

E = MSp this involves remarking that the spectral sequence

is trivial, by duality with the spectral sequence

H*(MSpiMSp*(SO» > MSp*(MSp)

which is known to be trivial (see Assumption 20, Example (v».

In the cases E = BU, BO we apply this argument to the

spaces BU, BSp to show that the modules BU*(BU),

BO*(BSp) are projective (compare Assumption 20, examples

(vi), (vii». We then remark that a direct limit of projec-

tive modules is flat. This proves Lemma 28.

t Note added in proof. I have been asked to say explicitly at
this point that UCT2 gives the following exact sequence.

O---?ExtA;* (So) (MU* (X) ,BU* (SO») (So) (MU* (X) ,BU* (SO»)
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LECTURE 2. THE ADAMS SPECTRAL SEQUENCE

In this lecture I want to discuss the prospects of

setting up an "Adams spectral sequence" [1, 2, 15] using a

generalised homology or cohomology theory. Everything is to

be taken as provisional, or as work in progress, and no proofs

will be given.

I shall assume that we can work in some stable cate-

gory, like those supplied by Boardman [7, 8] and Puppe [25].

I shall also suppose that we are given a homology or cohomology

functor to use in our constructions. I will suppose that

this functor takes values in an abelian category. As long as

we are talking generalities, we can then suppose that the

functor is covariant; because if it is contravariant, we can

replace the abelian category by its opposite. We will write

E* for this homology functor.

I suggest that we now adopt a construction

scent of those constructions for Ext which avoid using

projectives and injectives. More precisely, I suggest we

proceed as follows. Suppose given two objects X,Y in our

stable category. Consider diagrams of the following form.

Yo Y1 Y2
Y "'" Yo Y1 Y2 E Y3

\/\/\/
Zo Zz
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Here the notation Y - Yo means a homotopy equivalence; and

the triangles are supposed to be exact (cofibre) triangles

in our stable category. We restrict attention to the diagrams

such that

for each r 0; this is the crucial condition. In this

case the sequence

is exact. We call such diagrams "filtrations" of Y. If we

wish, we can suppose without loss of generality that each Yr

is an inclusion map (replace Yo by a "telescope") .

By mapping X into such a filtration of Y we

get a spectral sequence; but this is not yet the spectral

sequence we seek. However, we can take all possible filtra-

tions of Y and consider them as the objects of a directed

category (in the sense of Grothendieck). (Since I am omit-

ting proofs, I will omit certain details as to how this is

done, although they were given in the original lecture.)

From each filtration we get a spectral sequence, and we can

now take the direct limit of all these spectral sequences;

this is the spectral sequence I suggest. Let us call it

I will also omit some arguments in favour of this

definition, although they were given in the original lecture.

At this level one should already be able to set up
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some formal properties of the spectral sequence. For example,

suppose that we have a functor T from one abelian category

to another, and that both E* and TE* are homology functors.

(For examples, see Lecture 1, Proposition 25, or Lecture 4.)

Then there clearly is a homomorphism

because every diagram which qualifies as a filtration for E*

also qualifies as a filtration for TE*. (Compare Lecture 1,

Proposition 26.) If E* and F* are homology functors which

mutually determine each other in this way, then

(For examples, see Lecture 4.)

We can now raise the following question. Suppose

that X and Yare finite complexes, and that we consider

only filtrations in which each Y is equivalent to a finite
r

complex. Do these yield in the limit the same spectral se-

quence as if we did not restrict the filtrations? This is

probably true if the homology theory E* has sufficiently

strong finiteness properties.

We can now consider the behaviour of our construc-

tions under S-duality. Do we have

SS(X,Y,E*) SS(DY,DX,E*D) ?

(Note that E*D is a cohomology theory defined on finite

complexes.) This problem leads one to consider also a "dual"

approach to the construction.
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We consider diagrams of the following form.

XQ Xl X2
X COo Xo Xl ----;.. X2 )- X3

\/\/\/
As above, the notation X COo Xo means a homotopy equivalence,

and the triangles are supposed to be exact (cofibre) tri-

angles in our stable category. We restrict attention to the

diagrams such that

for each r O. In this case the sequence

is exact. We call such diagrams "filtrations" of X. If we

wish, we can suppose without loss of generality that each x r

is an inclusion map (replace Xo by a "telescope").

By mapping such a filtration of X into Y we get

a spectral sequence. The suggestion would be to vary the

filtration (inversely) and take a direct limit of the result-

ing spectral sequences. Does this give the same spectral

sequence as before?

Evidently the situation is like that in homological

algebra; there we can define Ext*(L,M) by resolving L, or

by resolving M, and we want to show that the result is the

same. The proof there, as we know, is to resolve both of
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them, and show that that gives the same result as resolving

either one. Similarly herei one should consider a filtra-

tion of X, and also a filtration of Y, and one should

try to get a spectral sequence by mapping one to the other.

Then one should take a double direct limit, and show that

this gives the same spectral sequence as one obtains by

filtering either X or Y alone. I haven't tried to write

down any details about this.

If one can attain this sort of manipulative ability,

one ought to be able to set up various formal properties of

the spectral sequences without further assumptions on E*.

For example, there should be a pairing

SS(Y,ZiE*} SS(X,Y;E*} SS(X,ZiE*}

which on the level is given by composition.

The next step would be to compute the E2 term

of our spectral sequence. We are supposing that E* takes

values in an abelian category, so we can define Ext by

classifying long exact sequences. It is reasonable to hope

that we can define a homomorphism from the E2 term to

Ext** (E* (X) ,E*(Y}}. The question would be, when can we prove

that this homomorphism is an isomorphism? For this purpose

one obviously needs to choose the right category, so as to

obtain the right Ext groups. More precisely, we need to

arrange a very close correspondence between the algebra and

the geometry, so that there is some algebraic situation which
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gives us a legitimate calculation of the Ext groups and

which can be realised geometrically.

At this point all suggestions for proceeding

assume that our functor is represented by a spectrum E.

(i) The original formulation asks us to work in

cohomology, and consider E*(X), E*(Y) as modules over the

ring E*(E) of cohomology operations [1, 2, 23, 24]. This

approach has various disadvantages.

(a) In the generalised case E*(E) is a

topologised ring, and E*(X), E*(Y) are topologised modules

over the topologised ring E*(E). We have to take account

of the topology [24]. Topologised modules usually fail to

form an abelian category, owing to the existence of maps

f: L M which are isomorphisms of the module structure,

and continuous, but such that f- 1 is not continuous.

(b) We cannot assert that Eq(E) = 0 for

q < 0; we may have non-zero cohomology operations which

lower dimension by any prescribed amount, as well as ones

which raise it. Similar remarks apply to our modules. Both

(a) and (b) mean that our constructions and calculations

lose a certain element of finiteness which is present in the

classical case.

(c) By means of examples (which I will now

omit, although they were given in the original lecture) we

see that even in the classical case of ordinary cohomology



- 52 -

with Z coefficients, approach (i) only works under finite-p

ness assumptions on Y. In the generalised case, we may see

this as follows.

We wish to consider filtrations of Y in which each

object Zr is in particular, E*{Z )
r

should be "free"

in some sense applicable to topologised modules, and we

should have

Since we wish to know about maps from X to Zr and from

Z to E, this means in practice that we must stick to ther

case in which Z is both a sum and a product of suspensions
r

SnE f Eo • And again, this means in practice that we must

stick to the case in which E is connected and

countable sum,

Q)

V Sn (i)E ,
i=l

Z is a
r

in which n{i) 00 as i 00 In other words, we are

compelled to prove or assume that E*{Y) admits a resolution

by "free" topologised graded modules which have only a finite

number of "generators" in dimensions less than n (for each

n). Although Novikov [24] arranges his work somewhat differ-

ently, it is essentially for this purpose that he relies on

finiteness properties of E* which are true in the case

E = MU (see Lecture 5). The corresponding properties are

unknown for E = MSp, and definitely false for E = S,
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although the Adams spectral sequence works for these spectra

in some cases at least.

It may be seen from the examples that trouble (c)

arises from a double dualisation. The spectral sequence is

covariant in Y, but by taking E*(Y} we are taking a

contravariant functor of Y, and then by taking

**
ExtE*(E} (E*(Y) ,E*(X}} we are taking a contravariant functor

of E*(Y}. This leads to the next approach.

(ii) The next approach would ask us to follow

Cartan and Douady [15], and work in homology, considering

E*(X} and E*(Y} as modules over the ring E*(E}. In the

classical case E = K(Z} this works quite well. This is
p

partly owing to the fact that E*(E} is then an injective

module over the ring E*(E}; but this fails to generalise

to cases in which E*(So} is not a field. In general the

ring E*(E} retains its previous disadvantages, and this

approach suffers from being a compromise or half-way house

between (i) and (iii). The way ahead appears to lie in a

more whole-hearted acceptance of the idea that homology is

better than cohomology.

(iii) My final suggestion is that we should work

wholly in homology, and consider E*(X}, E*(Y} as comodules

with respect to the coalgebra E*(E}. We use E*(So} as

the ground ring for our comodules etc. The necessary details
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are given in Lecture 3. Of course, we need some data for

this; in fact, we need to assume that E is a ring-

spectrum and E*(E) is flat over E*(SO). This is true for

the spectra mentioned in Lecture 1, Lemma 28. Everything

now works much better. The comodules E*(X), E*(Y) and

the coalgebra E*(E) are discrete; in typical cases we have

E (X) = 0 for sufficiently large negative q, andq

E (E) = 0 for q < o. The comodules form an abelian cate-q

gory. Our constructions and calculations regain that element

of finiteness which we lost before.

In order to compute (E*(X) ,E*(Y»,

sufficient to take a resolution of E*(X) by comodules which

are projective over E*(SO), and a resolution of E*(Y) by

extended comodules; the latter play the part of "relative

injectives". Both sorts of resolution can be constructed geo-

metrically. For the first, we require a filtration of X

such that E*(Wr) is projective over E*(SO) for each r.

Such a filtration can be constructed by Lemma 21 of Lecture

1. Moreover, we see that such filtrations are cofinal in

the set of all filtrations of X. For the second, we require

a filtration of Y such that E*(Z) is an extended comodule
r

for each r. Such a filtration can be constructed in the

following way. Let the structure maps of the ring spectrum

E be E A E E and i: SO E. Suppose we have

constructed Y .
r' the induction starts with YO = Y. Take
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Zr = E A Yr, and form the map

Y ... S° A Yr r
i A 1

) E A Yr

Then E*(Yr) E*(Zr) is mono, since it is defined to be

w*(E A Yr) TI*(E A E A Yr), and this has a one-sided in-

verse induced by E A E A Y A 1 E A Y •
r r The comodule

E*(Zr) is extended, by the results of Lecture 3. Form the

following cofibre triangle.

Y ( Yr r+l

Z
r

Then E*(Yr +1
) E*(Yr) must be zero. This completes the

induction. By adding a few details, we see that such filtra-

tions are cofinal in the set of all filtrations of Y.

We may say that at the present time approach (iii)

seems to be promising.

The final step, of course, would be to discuss the

convergence of the spectral sequence. I would like to defer

this question.
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LECTURE 3 HOPF ALGEBRA COMODULE STRUCTURE

In the classical case of ordinary cohomology with

coefficients Z, the mod p Steenrod algebra A* is a
p

Hopf algebra, and it acts on the left on the cohomology of

any space, so that we have an action map A* H* H*.

If we dualise by applying HomZ ( ,Z), we see that the
p p

dual A* of the Steenrod algebra is also a Hopf algebra; and

if the homology H* of a space is locally finitely generated,

(The finiteness con-

dition is actually unnecessary, but we do not need to spend

time on that here.)

It is the object of this lecture to see how the

material mentioned above generalises to the case of a gen-

eralised homology theory. We will begin by stating our

assumptions; then we will list the structure maps we propose

to introduce, and list their principal formal properties.

Next we will give the definitions of the structure maps, and

comment on the proofs of the formal properties. Then we give

two propositions which relate A* to A* in the generalised

case. Finally, we use these two propositions to show that if

we specialise to the classical case of ordinary cohomology

with Z coefficients, all our structure maps specialisep

to those classically considered.
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It will be convenient to write as if we are work-

ing in a stable category in which we have smash-products with

the usual properties; but if the reader objects to this, our

statements can be "demythologised" by known methods. We

shall suppose given a ring-spectrum E, so that we are given

a product map E A E --. E and a unit map i: SO E.

These are supposed to have the usual properties; that is,

the following diagrams are homotopy-commutative.

SO A A E

1"
E A E A E

1

A "1 1"
E » E 1

I"
E A E

)J '} E

iE A SO 1 A :- E 1\ E

E A E

Here T is the usual switch map.

We recall that the homology groups of a spectrum

x with coefficients in E are given by

En (X) = [Sn, E A X] = 1Tn (E A X) •
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The classical case is given by taking E to be the Eilenberg-

MacLane spectrum K (Z i ,p The analogue of in the gen-

eralised case is therefore E*(E) = TI*(E A E), the homology

of E with coefficients in E. The analogue of Z is
P

is a ring-spectrum, we have various

products. More precisely, suppose given a pairing

E A F G of spectra. Then we shall have to consider

three products, which appear in the following commutative

diagram.

'Jr*(E A X) 0 TI*(F A Y)
v

'Jr*(G A X y)A

'* o 11 r(, A 1)*

TI*(X A E) 0 TI * (F A Y)
m

TI*(X A G A Y)

10 ,*1 1(1 A ,)*

v 'TI*(X A E) 0 TI*(Y A F) ---+ 'IT* (X A Y A G)

Here the product v is the usual external homology product,

as used (for example) in Lecture 1, Note 7. The product v'

is a back-to-front version of v. The product m is defined

as follows. Suppose given maps

f: sP ----+ X A E, g: sq FAY .

Then m(f 0 g) is the following composite.

lA pA 1fAg;) X A E A FAY X A GAY .
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Since it is important for us in this lecture to keep factors

in their correct order, we will use m as our basic product.

By taking X = SO or Y = So, we obtain the following

special cases.

m: n (E) n (F A Y) n + (G A Y)P q P q

m: n (E) n (F) n + (G) •p q p q

In particular, n*(E) is an anticommutative ring

with unit. For any Y, n*(E A Y) is a left module over

n*(E)i the product map

m: n*(E) n*(E A Y) n*(E A Y)

is the usual one, and coincides with the map considered

in UCT 2 (see Lecture 1, Note 2). For any X, n*(X A E)

is a right module over n*(E). The product

factors to give a map

which we also call m.

We have product maps

m: n*(E A E) n*(E) n*(E A E),

and thus n*(E A E) becomes a bimodule over n*(E). It

should be noted that the two actions of n*(E) on n*(E A E)
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are in general quite distinct; this is the main difference

between the generalised case and the classical case, in which

we have only one action of Z on A*. The presence ofp

these two actions means that the generalised case demands

a little more care than the classical case.

We now assume that TI*(E A E) is flat as a right

module over TI*(E)

switch map

(using the right action). By using the

T: E A E E A E

to interchange the two factors, we check that it is equiva-

lent to assume that TI*(E A E) is flat as a left module over

TI*(E) (using tne left action). This hypothesis is somewhat

restrictive, but it is satisfied in many important cases,

notably the cases

E = BO, BU, MO, MU, MSp, Sand K(Z )- - p

(see Lecture 1, Lemma 28).

With this hypothesis, we will see that TI*(E A E)

is a Hopf algebra in a fully satisfactory sense, and that for

any spectrum X, TI*(E A X) is a comodule over the coalgebra

TI*(E A E). We will now make this more precise by listing the

structure maps we shall introduce, and giving their principal

properties.

The structure maps comprise a product map

two lI un i t ll maps
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a counit map

a canonical anti-automorphism

c: w*(E A E) w*(E A E)

a diagonal map

= w*(E A E) w*(E A E) A E)

and for each spectrum X, a coaction map

= w*(E A X) w*(E A E) A X) .

(The diagonal map is obtained by specialising the co-

action map to the case X = E.)

It is important to note that in the tensor-product

w*(E A E) A X), the action of w*(E) on the

left-hand factor w*(E A E) is the right action. (The

action of w*(E) on the right-hand factor w*(E A X) is

the usual left action.) This is exactly what we need to use

the tensor-product notation in a systematic way.

The tensor-produot w*(E A E) A X)

be considered as a left module over w*(E), by using the

left action of w*(E) on w*(E A E); that is,

x) = (Ae) x
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(A E 1T*(E), e E 1T.(E /\ E), x E 1T*(E /\ X» •

The coaction map is a map of left modules over 1T*(E).

In particular, the previous two paragraphs apply to

the case X = E. Here the tensor-product

1T*(E /\ E) 0 1T * (E) 1T * (E /\ E) can also be considered as a right

module over 1T*(E) , by using the right action of 1T*(E) on

the right-hand factor. The diagonal map is a map of

bimodules over 1T*(E).

The behaviour of the other structure maps with re-

spect to the actions of 1T*(E) will emerge from the proper-

ties given below. The tensor-product on which the product

map is defined can be taken over the integers.

The principal properties of these structure maps

are as follows. The product map is associative, anticom-

mutative and has a unit element 1. The maps nL , nR, £

and c are homomorphisms of graded rings with unit. The left

action of 1T*(E) on 1T*(E /\ E) is given by

(A E 1T. (E), e E 1T* (E /\ E»

Similarly, the right action of 1T.(E) on 1T*(E /\ E) is

given by

We have

£c = £, c 2 = 1 •
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These properties determine the behaviour of nL , nR, £

and c with respect to the actions of TI*(E). In particular,

£ is a map of bimodules.

The coaction map is natural for maps of X. The

coaction map is associative, in the sense that the following

diagram is commutative.

) TI*(EAE)

11 0 Ix

) Tr* (EA E) 120 71 * (E) iT* (EA E) 13 TT * (E) TI * (EA X)

(Note that 1 is defined because is a map of left

modules over TI*(E), and 1 is defined because

is a map of right modules over TI*(E).) In particular, we

can specialise this diagram to the case X = E, and we see

that the diagonal map is associative.

The behaviour of the diagonal with respect to the

product is given by the following commutative diagram.

TI*(EAE) 0 TI*(EAE)

"E 0 -El
[TI*(EAE)
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Here the map is defined by

f g h) = g) h)

where f E TIp(E A E), g E TIq(E A E). It has to be verified

that this formula does give a well-defined map of the product

of tensor products over TI*(E), but this can be done using

the facts stated above.

The behaviour of the diagonal map on the unit is

given by = 1 1. It follows that we have

(). E TI* (E») •

The behaviour of the diagonal map with respect to

the counit is given by the following commutative diagram.

'IT*(E A X)
l/ix

• ,.(E A E)
A X)

11
TI*(E A X) == TI*(E) A X)E

Here the bottom arrow is given by the usual left action of

'IT * (E) on TI*(E A X). The map 1 is defined because

is a map of right modules over TI*(E). Similarly, we have

the following commutative diagram.

TI*(E A E) .. TI * (E A E) A E)

11 11&<

TI*(E A E) TI * (E A E)E
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Here the bottom arrow is given by the right action of

on A E). The map 1 is defined because is a

map of left modules over

The behaviour of the diagonal with respect to the

canonical anti-automorphism c is given by the following

commutative diagram.

Here the map C is defined by

C(e f) = (-l)pqcf ce

(e E (E A E), f E n (E A E» •p q

It has to be verified that this formula does give a well-

defined map of the tensor product over TI*(E) , but this can

be done using the facts stated above.

The following commutative diagrams express that

property of the canonical anti-automorphism which in the

classical case is taken as its definition.

;) TI * (E A E)
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> 'l1"*(E /\ E)

It has to be verified that and do give well-

defined maps of the tensor product over 'l1"*(E) , but this can

be done using the facts stated above.

This completes the list of properties of our struc-

ture maps. We also require one further formal property in

order to show that certain comodules E*(X) are extended (see

Lectures 1, 2). Let F be a left module-spectrum over the

ring-spectrum .E; for example, we might have F = E /\ Y.

Then the following diagram is commutative.

'l1"*(E /\ E)
m

> '1T*(E 1\ F)

ljJE 011 lop
'l1" * CSI\E) 7T*(EI\E) @TT*(E)TI*(EI\F)

The map 1 m is defined because m is a map of left modules

over 'l1"*(E).

We now give the definition of our structure maps.

The product is given by either way of chasing round the

following commutative square.
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1T * (E A E A E)

v'

(For v and v', see the discussion of products at the be-

ginning of this lecture.) In other words, suppose given

f: sp E A E, g: sq E A E;

then 0 g) is the following composite.

sP A sq fA g ) E A E A E A E lAyAl E A E A E A E pAp A E.

We have maps

E "'" E A SO lA i > E A E

E SO A E
iAl

E A E.... )

which map E into E A E as the left and right factors.

We define nL and nR to be the corresponding induced homo-

morphisms. We define E and c to be the homomorphisms

induced by

p: E A E E

and

y: E A E E A E

It only remains to define
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Lemma I

If IT*(X A E) is flat as a right module over

then

is iso.

Proof. This is essentially the trivial case of

KT I (see Lecture 1, Note 12). The map m is a natural

transformation between homology functors of Y which is iso

for Y = So; therefore it is iso for any finite complex Y.

Pass to direct limits.

We now define

to be the homomorphism induced by

X A Y - X A SO A Y
1AiA 1

The map h is essentially the Hurewicz homomorphism in E-

homology.

If IT*(X A E) is flat, we can 'consider the follow-

ing composite.
h -1

IT * (X A Y) IT * (X A E A Y) 4 IT * (X A E) IT * (E) IT * (E A Y) •

We define -1
ljJ = m h. In particular, since we are assuming

that IT*(E A E) is flat, we can specialise to the case

X = E; we take the resulting map ljJ for our coaction map

ljJy. This completes the definition of the structure maps.

The proofs of all the formal properties are by
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diagram-chasing. In proving any property of of course

we have to make our diagram up out of two subdiagrams, one

for h and one for m. For example, in proving that the

coaction map is associative, we first prove two more elemen-

tary results; is natural for maps of x, and

m = (l e m) l) (which is the diagram required toF

prove that E*(F) is an extended comodule}. We now set up

the following diagram.

ll*(E A X}

hl
ll*(E A E A X}

Here the top square is commutative because h is induced by

a map

X - SO A X E A X ,

and is natural for maps of X. Similarly, the bottom

square is commutative by the second result mentioned, taking

F = E A X. This gives the required result. The two subsid-

iary results are proved in the same way.

In proving the behaviour of the diagonal with re-

spect to the product, it is convenient to prove a slightly
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more general result first. Suppose that IT*(A A E), IT*(B A E)

and IT*(A A B A E) are all flat; then the following diagram

is commutative.

Here the upper horizontal map is the obvious product, and the

lower horizontal map sends e @ f @ g @ h into

(-l)pqv' (e e g) @ v(f @ h) (see the discussion of products

at the beginning of this lecture). This diagram is proved

commutative in the same way as before - separate hand m.

Next observe that since the functor IT*(E A E) @IT*(E) pre-

serves exactness, applying it twice preserves exactness; that

is, the right module

is flat. So we may specialise to the case A = B = E. Now

apply naturality to the map

A A B = E A E E ;

we see that the following diagram is commutative.
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v

ljJX /\ Y

Here the lower horizontal map sends e @ f @ g @ h into

@ g) @ v(f @ h). This diagram gives the behaviour

of the coaction map with respect to the external homology

product. Finally we specialise to the case X = Y = E and

apply naturality to the map

X/\Y=E/\E4E.

We obtain the required commutative diagram.

The proof of the remaining formal properties does

not call for any special comment.

We now turn to further formulae, involving cohomology,

which will help to show that our definitions specialise cor-

rectly to the classical case. We recall that the cohomology

groups of a spectrum X with coefficients in E are given

by

We have a Kronecker product

E-P(X) 0 E (X) TI + (E)
q P q

defined as follows. Suppose given maps
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f: SPAX -+ E, g: sq ---+ EAX •

Then (f,g) is the following composite.

fA 1SPAXI\E __ EAE E •

In particular, we have the cohomology groups E*(E}.

Since these are defined in terms of maps from E to E (up

to suspension), they act on the left on the homology and coho­

mology groups E*(X} and E*(X}. The precise definitions are

as follows. Suppose given maps

a: E, f: EAX, g: SrAX E .
Then af is

sPASq
lAf

SPAEAX
aI\ 1.,. ) EAX ,

and ag is

In this way E*(E) becomes a ring with unit, and E*(X), E*(X)

become left modules over this ring.

We will show that the action of E*(E) on E*(X) is

determined by the coaction map Suppose a E E*(E},

x E E*(X) and = I ei Xi ' where ei E E*(E} ,
i

Xi E E*(X) • Then we have:

Proposition 2

ax = l (a,ce,}xi •
• 1.
1.

To prove this proposition, we set up the following

diagram.
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1T*(E" X) a
)0 11 * (E 1\ Xl

hl ;/
1T*(E " E " X)

a
) 1T * (E " E 1\ X) 1

ml ("Al\
1T*(E" E) @ 1T*(E " X)

a .,. 11* (E A X)

Here a is defined by

aCe @ x) = <a,ce}x .

It is easy to show that the diagram is commutative. This

proves Proposition 2.

In the case when an element z E E*(X) is deter-

mined by the values of (Z,x) for all x E E*(X), it is

reasonable to ask for a calculation of the action of E*(E)

on E*(X) in terms of There is a choice of formulae

which answer this question; here I will give one which seems

neater than that which I actually gave in Seattle. Suppose

and = L e. @ x.,..1. .1..1.

where e. E E ") (E), x.1.' E E*(X). Then we have:
1. q\.1.

Proposition 3

} _ \ (_ )pq (i)(ay,x - L I <a,e.(y,x.)}.. .1..1..1.

The formula on the right makes sense, because e·.1. lies

in 1T*(EAE), and (y,xt ) lies in 1T*(E), which acts on the right

on 1T* (EAE) •
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To prove the proposition, we first define

y*: TI*(F II X) TI*(F II E)

(for any F) as follows. Suppose given y: sP II X E

and r
f: S F II Xi let y*f be the composite

It is easy to show that this diagram is com-

Then we "easily check that

We now set up the following diagram.

TI*(E II X) y* ) TI * (E II E)

hI ;/
7I*{E A E A X) y*

) 11 * (E A E A E) 1

ml
7I*(E II E) @ 7I*(E II X) B

) 71* (E II E)

Here S is defined by

S(e @ x) = (-l)pq e(y,x)

for e E E (E).q

mutative. This shows that

y *x = L (-1) pq (i) e . <y ,x.) ,.

and proves Proposition 3.

We will now discuss the way in which our constructions
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E = K(Z ).
P

It is sUfficiently clear

from the definitions that <P , and specialise

to their classical counterparts ¢, n, nand E. The

right action of TI*(E) = Zp on TI*(E A E) = A* coincides

with the left action, because the unit acts as a unit on

either side, and so the result follows for integer multiples

of the unit. It follows that in Proposition 3 we can bring

the factor (y,x.)a teo the left of e. ; and after that we

can bring it outside the Kronecker product, so as to obtain

the following formula.

(ay,x) = I (-l)pq(i){a,e.){y,x.).
a

It follows that *x is indeed the dual of the action map

A* H* H*, and (specialising to the case X = E) that

wE is the dual of the composition map A* A* A*.

Thus *E and Wx specialise to their classical counterparts.

Since we have seen that

and

it now follows that c specialises to its classical counter-

part.

It remains only to point out one difference between

the classical case and the generalised case. In the general-

ised case we have introduced a left action of E*(E) on
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E*(X). This does not specialise to the action of A* on

H* which is usually considered in the classical case, since

the latter is a right action, defined by

(y,xa) = (-1) (p+q)r(ay,x)

The connection between the two actions may be read off from

Proposition 2 and 3. We have

xa = (-l)qr(ca)x

Thus the left and right actions differ by the canonical anti-

automorphism, as one might expect.
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LECTURE 4 SPLITTING GENERALISED
COHOMOLOGY THEORIES WITH COEFFICIENTS

S. P. Novikov [23, 24] has emphasised the importance

of the generalised cohomology theory provided by complex co-

bordism. This is a representable functor; if we take it

II r e d uc e d ll, we have

It has been proved by Brown and Peterson [10] that if one

neglects all the primes except one prime p, then the MU-

spectrum splits as a sum or product:

MU =- VSn (i) BP (p) ... 11 s" (i) BP (p) .
P . .

1. 1.

Here BP(p) means the Brown-Peterson spectrum. The sum

coincides with the product since BP(p) is connected and

n(i) 00 as i 00. The business of neglecting all

primes except one may be formalised conveniently by intro-

ducing coefficients. Let Qp be the ring of rational numbers

alb with b prime to p. Then we can form MU*(X'Q)
I P ,

and we have

MUn(X;Q ) TT Ln + n(i) (X)
p i

where

and L is a suitable version of the Brown-Peterson spectrum.

This situation has been considered by S. P. Novikov
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[24]. Potentially it is very profitable. The cohomology

theory L* is just as powerful as MU*( ;Qp); for example,

it gives rise to the same "Adams spectral sequence" (see

Lecture 2). However, the groups L*(X) are much smaller

than the groups

groups L*(So),

algebra L*(L)

MU*(X;Q ); similarly for the coefficientp

the ring of operations L*(L) and the Hopf

(see Lecture 3). For all these reasons,

calculations with L should be smaller and easier than cal-

culations with MU.

Unfortunately, these benefits have not yet been

fully realised in practice. The reason is that the split-

tings given by Brown and Peterson, and by Novikov, are not

canonical; they involve large elements of choice. It is

doubtless because of this that these authors have not yet

given such helpful and illuminating formulae for the struc-

ture of L*(L), etc., as are available for the structure of

MU* (MU) , etc.

I therefore propose the following thesis. When we

split a cohomology theory into summands, we should try to do

so in a canonical way, issuing in helpful and enlightening

formulae. To secure these ends I would even be willing to

split the theory into summands larger than the irreducible

ones. The method which I propose is to take a suitable ring

of cohomology operations, say A, and construct in it canon-

ical idempotents, say e. Then whenever A acts on a module,
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say H, H will split as the direct sum eH e (l-e)H.

I will first show how this thesis applies to K-

theory. Not only is the case of K-theory somewhat easier,

but for technical reasons it is useful as a tool in attacking

cobordism. For K-theory I shall give a treatment which seems

tolerably complete and satisfactory (Lemma 1 to Lemma 9 below).

I will then turn to cobordism (Lemma 10 to Theorem 19 below).

Here the theory is somewhat less complete, but it is suffi-

cient to show the existence of canonical summands in cobord-

ism with suitable coefficients.

Let R be a subring of the rationals. Let

K*(X;R) be ordinary, complex K-theory, with coefficients in

R. We write K for KO; then K(X;R) is a representable

functor; we write BUR for the representing space. We re-

quire some information on K*(BUR;R). All that is really

needed is that its Lim l subgroup [21] is zero; but our

method will prove more. It is for this purpose that we in-

troduce the first few lemmas.

Let d be a positive integer, and let

f: BU BU be the map obtained by taking the identity map

of the space BU and adding it to itself d times, using

the H-space structure of BU.

Lemma 1

If d is invertible in R then
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and

f*: H*(BU;R) H*(BU;R)

are isomorphisms.

Proof. We will prove that f* is epi. Suppose,

as an inductive hypothesis, that the image of f* contains

the Chern classes cl' c2' ..• 'c 1. Then it contains alln-
decomposable elements in H2n(BU;R). For any primitive ele-

2n
ment Pn E H (BU;R) we have f*Pn = dPn. But we can find

such a Pn which is a non-zero multiple of mod decom-

posable elements. Therefore f*c = dc mod decomposables.
n n

Since d is invertible in R, c lies in the image of f*.
n

This completes the induction and proves that f* is epi; by

duality, f* is mono.

A precisely dual argument shows that f* is epi

and f* is mono. Indeed, the preceding paragraph was written

so as to dualise correctly. One needs some minimal knowledge

of H*(BU;R) as a ring under the Pontryagin product, and

the fact that f is an H-map, so that f* is a homomorphism

of rings. This proves Lemma 1.

Next, let Rl 1 R2 be two subrings of the rationals.

We have an obvious map i: BU BURl.

Lemma 2

If Rl C R21 the maps
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i*: H*(BURliRZ) H*(BUiRZ)

(ixi) *: H* (BURl xBUR 1 i RZ) H* (BUxBUi RZ)

are isomorphisms.

Proof. If Rl = Z the result is trivial, so we

may assume Rl Z. We now construct a model for BURl'

Consider the positive integers invertible in Rl and arrange

them in a sequence d l, d z, d 3 , •••• For each dn we have

a map f : BU --+ BU,n as in Lemma 1. Take the maps

f l £2 f
BU --+ BU --+ BU --+ ... BU BU --+

and form a "telescope" or iterated mapping-cylinder; this

gives a construction for BURl' The map i: BU BURl is

the injection of the first copy of BU. We have

H*(BUR1;Rz) = ,fn*) .

Now ,the result about i* follows from Lemma 1. The result

about (i x i)* follows from the Kunneth theorem. The re-

sults about i* and (i x i)* follow from the universal

coefficient theorem. This proves Lemma 2.

Lemma 3

Suppose Rl C Rz. Then the maps
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i*: K*(BUiR2) K*(BURliR2)

i*: K*(BURliR2) K*(BUiR2)

(ixi)*: K*(BUR1:KBUR1i R2) K*(BUxBUi R2 )

are isomorphisms. The maps i* and (i x i)* are also

homeomorphisms with respect to the filtration topology.

Proof. Let P be a point. Consider the usual

spectral sequence

H* (XiK* (PiR 2» > K* (XiR2) •

By Lemma 2, the map i: BU BURl induces an isomorphism

between the spectral sequences for X = BU and for X = BURl.

This proves the result about i*. The proof for i* and

(i x i)* is similar, using the spectral sequence

H*(XiK*(PiR2» > K*(Xi R2) •

The space BURl is an H-spacei let

BURl x BURl BURl be the product map, and let

n,w: BURl x BURl BURl be the projections onto the two

factors. We retain the assumption that Rl C R2, and con-

sider the set of primitive elements in K(BURliR2)' that is,

the set of elements a such that = n*a + w*a. This

set may be identified with the set of cohomology operations

a: K(XiRd K(XiR2)

which are defined for all connected X, natural, and addi-

tive in the sense that

a (x + y) = a (x) + a (y) •
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(If an operation is additive, it follows that it is Rl-linear.)

Such operations need not be stable.

This set is to be topologised as a subset of

K(BUR1iRz)i in other words, an operation a is close to zero

if it vanishes in all CW-complexes of dimension n.

According to Lemma 3 above, the set of operations

a to be considered is essentially independent of R1, so

long as R1 C Rz. (This fact would be trivial if we were

dealing only with finite CW-complexes X, since then we have

K(XiRl) =K(X) R1, K(XiRz) =K(X) Rz.) We therefore write

A(Rz) for the set of operations introduced above, and regard

it primarily as the ring of cohomology operations on K(XiRz).

We define

A(R) = R + A(R) .

By making the first summand R act in the obvious way on

K(PiR), the set A(R) may be identified with the set of

cohomology operations

a: K(XiR) K(XiR)

which are defined for all X, natural, and additive (hence

R-linear) .

Lemma 4

If R1 C Rz, we have a monomorphism

1: A(Rl) A(Rz)

such that for each a E A(Rl) and each X the following
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diagram is commutative.

K{XiRd i. K(XiR2)

al
i.

l,a

K(x i Rl ) ) K{XiR2)

This follows from the preceding discussion together

with the fact that

is monomorphic.

Because of this lemma, it will be sufficient to

construct idempotents in A{Q) and then prove that they are

defined over some suitable subring of the rationals. But

over Q the idempotents are obvious. The Chern character

allows us to identify K{XiQ) with the product

IT H
2n {Xi Q) .

n

Let us define e to be projection on the nth factor:n

o 2 2n-2 2n 2n+2 2ne (h ,h , ..• ,h ,h ,h , •.• ) = (O,O, .•• ,O,h ,0, ••. ) .
n

Then e is an idempotent in A{Q).n

I now choose a positive integer d, and seek to

construct a IIfake K-theory" with one non-zero coefficient

group every 2d dimensions. The required idempotents are

obvious. Take a residue class of integers mod d, say
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a E Zd' and define

Ea = L en E A(Q) •
nEa

This sum is convergent in the topology which A(Q) has. If

we use the Chern character to identify K(XiQ) with

IT H2n (X,· Q) , as above then we have,
n

where

if n E ex

if n f: u

Theorem 5

E lies in A(R), where R = R(d) is the ringa

of rationals alb such that b contains no prime p with

p :: 1 mod d.

For example, if d = 2, R is the ring of fractions

For the proof, we need to work with a representation

R[[r;]],

of A (R). Let

co
then K(CP i R)

n be the canonical line bundle over

is the ring of formal power-series

co
CP i

where = n - 1. We define an (R-linear) homomorphism
coe: A(R) K(CP iR)

by

e ta) = a Ln ) .



- 86 -

Lemma 6

e is an isomorphism.

Proof. First we show that e is mono. Let

a E A{R) be such that a(n) = O. Then by naturality

a(l) = 0, so a E A(R). Let be the universal U(n)-

bundle over BU(n)i then - n is the universal element in

K(BU(n». Since a is additive, the splitting principle

shows that = 0 in K(BU(n)iR). Let i: BU BUR

be as above. We have

K(BUiR) = Lim K(BU(n)iR) i

it follows that a(i) = 0 in K(BUiR). By Lemma 3 we have

a = 0 in K(BURiR).

Next we show that e is an epimorphism. For each

n we can find an integral linear combination

operations [3, 4] such that

a n = r;n
n

more precisely,

an = \ (_l)n-k n!
L k!n-k!os ksn

For any sequence of elements r(n) E R, the sum

I r(n)ann=l

of the

is convergent in the filtration topology on K(BUiR) and

defines a primitive element a of K(BUiR), that is, an
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element a E A(R). It remains only to take

a = + E A(R) •

We have
00

a(n) = L a(n)z;n
n=o

This proves Lemma 6.

We observe that the isomorphism e of Lemma 6 be-

comes a homeomorphism if we give
00

K (CP ;R) the filtration

topology. The filtration topology coincides with the usual

topology on R[[Z;]]: a power-series is close to zero if its

first n coefficients vanish.

The isomorphism e of Lemma 6 throws the monomor-

phism 1 of Lemma 4 onto the obvious inclusion map

We now return to the proof of Theorem 5. Let

x E H2(Cp
oo
; Z) he the generator, so that

L
xnchn= _.
n!n

Consider the power-series

log(l + Z;) = r _ + _
':> 2. 3 4' •• •

Since ch commutes with sums, products and limits, we have

ch log(l + Z;) = log ch(l + Z;)

= log exp x

= x •

Now we have
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n
= ch «log (I+z;» )

n!

Therefore

(log ( 1+z ) ) n
e n = .n n!

We now make a formal manipulation in Q[t] [[r;]],

the ring of formal power-series in r; with coefficients

which are polynomials in t. Namely:

n n= \ t (109 (l+r;) )
l. n!
n

= exp(t log(l+r;»

= (l+r;)t

= 1 + tr + t(t-l)r2 +
1 • 2 • •• •

This is true as a formal identity in the ring cited.

I
ar We wishNow consider Ean = enn - I _r;n say.- b '

nEa r r

to show that the coefficients
ar lie in R R(d). TakeE; =

any prime p such that p:: 1 mod d; we wish to show that

a /b is a p-adic integer. Since d divides p - 1, I canr r

f ' d' th d" t "t' d t h root of 1e p-a egers a , say

w. Set p = wm, where the integer m is fixed for the

moment. Then pd = 1 and pa makes sense. We have
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r paE n = L pne n
a ann

= 1 + p + p (p-U r; 2 + ...
1.2

= cm( r;), say.

Here the binomial coefficient

b (t) t(t-1) ••• (t-r+l)= 1 .2 • •• r

maps Z to Z and is continuous in the p-adic topology;

therefore it maps p-adic integers to p-adic integers. So

cm(r;) is a formal power-series in r; with coefficients

which are p-adic integers. Take m' = l,2, ••• ,d; we obtain

d equations for the d unknowns E n.a
The solution is

E na

Since is a p-adic integer, this is a formal power-

series whose coefficients are p-adic integers. This proves

Theorem 5.

follows.

The properties of the elements E E A (R)
a

are as

Theorem 7

(i) E2 = E
a a

(ii) EaEa = 0 if a a

(iii) I E = 1aa

(iv) For any x,y in K (X; R)
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we have a "Cartan formula"

E (xy) = I (E 13x) (E y) •
13+y=a y

Proof. By Lemma 4, 1: A (R) A (Q) is a mono-

morphism. So parts (i), (ii) and (iii) follow from the cor-

responding equations in A(Q), which are obvious. We turn

to part (iv). The result is trivial when either x or y

lies in K(P;R), so it is sufficient to prove it when x

and y lie in K(X;R). It is sufficient to prove it for

external products. Let both x and y be the universal

elements in K(BU); then the result holds in Q),

by an obvious calculation using the Chern character. Since

K(BUxBU; R) K(BUxBU; Q)

is monomorphic, the result holds in K(BUxBU; R) • Let x

and y be the universal element in K(BUR;R); then the

result holds in K(BURxBUR; R) by Lemma 3. The case in

which x and yare general follows by naturality. This

proves part (iv) and completes the proof of Theorem 7.

Theorems 5 and 7 lead immediately to the results

on the splitting of K*(X;R) (and indeed of K*(X:R), if

required). As above, we are supposing given a positive

integer d; R = R(d) is as in Theorem 5, and runs over
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Corollary 8

(i) We have a natural direct sum splitting

K(X;R) (X),
aa

where

K (X) = E K(X;R) •
a a

(ii)

(iii)

K (X) is a representable functor.
a

If X E KS(X) and y E Ky(X), then

otherwise .

xy E KS+y(X) •

(iv) We have

Ku(Sn)
if 1-n E a2

(v) Define

K (X) K + (S2 A X)
a a 1

by taking the external product with a generator of

Then is an isomorphism.

Proof. Part (i) follows from Theorem 7 parts (i),

(ii), (iii). For part (ii), observe that a direct summand

of an exact sequence is an exact sequence, and that we have

no trouble about verifying the axiom about disjoint unions

(for K ) or wedge-sums (for K).
a a

Part (iii) follows from

Theorem 7 part (iv). For part (iv), make the obvious calcu-

lation in K(S2m;Q) H2m(S 2m; Q) . For part (v), let the re-

presenting space for K
a

be BUR •
a' convert the homomorphism

into a map BURa n 2BURa+ 1, and check as in part (iv)
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that this map induces an isomorphism of homotopy groups.

It follows from part (v), iterated d times, that

the representable functor K (X)
a

is periodic with period

2d, in the same sense that standard K-theory is periodic

with period 2. We therefore have no difficulty extending

it to a graded cohomology theory

we can first take the spectrum

Alternatively,

and then take the resulting cohomology theory.

It follows from part (iii) that for a = 0 the

theory Ko has products.

Let BUR
a

be the representing space for K ,
a

as

abovei then we have

BUR - IT BURa

It is easy to obtain the rational cohomology of the factors

BUR by inspecting their homotopy groups. In fact,a

H*(BURaiQ) is a polynomial algebra on generators of dimen-

sion 2n, where n runs over the positive integers in the

residue class a.

Before moving on to cobordism, we need one more

result. Given d, we have a map

EO: BU BUR

where R = R(d).
,

Let us define Eo so that the following

diagram is commutative.
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*Eo

H*(BUiQ)

We remark that in what follows, H*(XiQ) really arises as

EO(X), where E is the spectrum

n K(Q,2n).
-oo<n<+ao

Thus H* should be interpreted as a direct product of groups

HP, while H* should be interpreted as a direct sum of

groups Hp . Let

todd E H*(BUiQ)

be the characteristic class which has the following properties.

(ii) If n is the canonical line bundle over
00

CP

is the generator (so that

eX-l
todd n = -- .x

x
ch n = e ) then

Then we have the following result.

Lemma 9

There is a characteristic class

T E K (BUiR)

such that
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I
Eptodd = ch
todd T •

Here R = R(d) is as in Theorem 5. The motivation

for this result is best seen from the proof of Theorem 14.

Proof. Let todd' be the class in H*(BURiQ)

which maps to todd in H*(BU;Q). Then we easily see that

todd' E9 2 ) = (todd' t; 1) (todd' t; 2)

for t;l, t;2 in K(X;R). We also have
I

(Eotodd)t; =
for in K(X). It is now easy to see that

I I I

(Eptodd) E9 ) = ) )
todd todd todd 2 •

Now E6todd
todd is certainly equal to ch T for some of

augmentation 1 in K(BUiQ). Using the last formula, we

find that

Therefore

ED = •

in K(XiQ) for any X. We wish to show that T E K(BU;R).

For this purpose it is now sufficient to consider T(n),

where n is the canonical line bundle over
00

CP i if T ( n)

lies in K(CpooiR) then the splitting principle shows that

T lies in K(BUiR).

Next let S be some ring containing the rationals.

Let G(Cpn i S) be the mUltiplicative group of elements of
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augmentation 1 in H*(Cpn;S). Then we can define a homo-

morphism

by

s) =

for E K(Cpn). Here (1 + x)s is defined by the usual bi-

nomial series

s 3(S-1) 2
(1 + x) = 1 + sx + 1 X +... ;

• 2

in this case the series is finite. On K(Cpn;R) the homo-

morphism agrees with todd'. Passing to inverse limits, we

obtain a homomorphism
00 00

todd: K(CP is) G(CP is) •

(Here G(Cpoo;S) is the mUltiplicative group of elements of

augmentation 1 in
00

H*(CP ;S).) On
00

K (CP ; R) this homo-

morphism agrees with todd'.

Take an indeterminate t and take S = Q[t]. Con-

sider

todd(l + t)t = todd(l + + + '" ) .

This is an element of G(Cpoo;Q[t]), that is, it is a formal

power-series in x with coefficients which are polynomials

in t; say

todd(l + = 1 + P1(t) + P2(t)X2 + ....

But for any integer n, (1 + is a line bundle, and we

have
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todd(l + r,;}n =
nx 1e -
nx

nx + n2x 2
= 1 + 21 --3-!- + ••••

So for integer values of t we have

thus

Pr(n}
nr= (r+ 1) !

and

todd(l + s)t =
tx 1e -
tx

Consider now d(.(n}) . A priori this is a power-

series in 1; with rational coefficients. I claim that these

coefficients actually lie in R. To prove this, choose a

prime p such that p = 1 mod d; we wish to prove that

the coefficients of (.(n»d are p-adic integers. We work

over the p-adic integers, and manipulate as follows.

dch(.(n» = ch T(dn)

todd'Eodn= todd dn

= todd •
todd n

Now the basic remark in the proof of Theorem 5 is that
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dEan = L (1 + z;)p

p

where runs m for 1 ::s:: m ::s:: d, and isp over p = w w an

primitive d t h root of unity as in Theorem 5. Thus we have

d
ch Ir Ln ) =D

p

todd ( 1+ I; ) P
todd ( 1+1;)

p (by the remarks above)

Thus we have

But for each p

p

(T(n»d =n(1+I;)P- 1
pI;

P

the coefficients of the power series

are p-adic integers; and the denominator

n P = (_l)d-l
P

is invertible. Therefore the coefficients in the power-

series (T(n»d are p-adic integers. This proves that these
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coefficients lie in R, as claimed.

Finally, since d is invertible in R, we deduce

that the coefficients of T(n) lie in R. This proves Lemma

9.

We now turn to cobordism.

Let R be a subring of the rationals. Let

MU*(X;R) be complex cobordism with coefficients in R. This

is a representable functor; we write MUR for the represent-

ing spectrum. We require the same information as before.

Lemma 10

If R} c R2 , the maps

are iso.

Proof. Let Y be a Moore spectrum with

1Tn (Y) = 0 for n < 0 ,

H (Y) for n = 0= for of 0n n .
Then we may take MU 1\ Y as a construction for MUR. This

leads immediately to the result.
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Lemma 11

Suppose R1 C Rz. Then the maps

i*: K*(MUiRz) K*(MURliRz)

(iAi)*: MU*(HUR1I\MUR1; Rz) MU*(MUAMUi Rz)

are iso. The maps i* and (i 1\ i)* are also homeomor-

phisms with respect to the filtration topology.

The proof is the same as for Lemma 3.

We now consider the set MUO(MUR1iRz). This set

may be identified with the set of cohomology operations

which are defined for all X and n, natural, and stable

(therefore additive and Rl-linear). This set is topologised

by the filtration topology. According to Lemma 11, the set

to be considered is essentially independent of Rl' so long

as R1 C Rz. We therefore write B(Rz) for the set of

operations just introduced, and regard it primarily as the

ring of stable cohomology operations of degree zero on

MU*(XiRz)·

Lemma 12

If Rl C Rz, then we have a monomorphism
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such that for each b E B(R1 ) , each X and each n the

the following diagram is commutative.

This follows from the preceding discussion, together

with the fact that

i*: MUO(MU;R1 ) MUO(MU;R2 )

is monomorphic. (Compare Lemma 4.)

Because of this lemma, it will be sufficient to

construct an idempotent in B(Q). But over Q, stable homo-

topy theory becomes trivial. We will give the next construc-

tion in slightly greater generality than is needed now, for

use later. Let f: X MUQ be a map. Then we define f!

so that the following diagram is commutative.

Of course we can make a similar definition with H* replaced

by K*, or with MU, MUQ replaced by BU, BUQ.

Now we define
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as follows. If f: X MUQ is a map, then e(f) = f,.

Lemma 13

e is an isomorphism.

If we assign the obvious topology to the Hom group,

then e becomes a homeomorphism. If X = MD, then e carries

composi tion in B (Q-) into composi tion in the Hom group.

This lemma is a known consequence of Serre's C-

theory [27].

I now choose a positive integer d, and seek to

construct a "fake cobordism the or y ll whose coefficient groups

are periodic with one multiplicative generator every 2d

dimensions. Let Eo E A(Q) be as above. Then we define

E E B(Q) to be the element such that the following diagram

is commutative.

H*(MUiQ)
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(Here is the Thom isomorphism in homology.) It is clear

that £ is idempotenti indeed £ is the most obvious idem-

potent in sight.

Theorem 14

£ lies in B(R), where R = R(d) is the ring of

rationals alb such that b contains no prime p with

p = 1 mod d, as in Theorem 5.

The proof will require two intermediate results.

Lemma 15

A map f: sP MUQ factors through MUR if and

only if

f!: K*(SPiQ) K*(MUiQ)

maps K* (Sp i R) into K* (MU i R) •

This is the theorem of Stong and Hattori [16, 29].

Note that if sP is regarded as a space rather than as a

spectrum, then K*(SP) must be taken reduced.

Lemma 16

Let X be a connected spectrum such that H (X)r

is free for all r. Then a map f: X MUQ factors through

MUR if and only if

f! : K*(XiQ) --+ K*(MUiQ)
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Proof. It is trivial that if f factors, then

f! maps K*(XiR) into K*(MUiR). We wish to prove the

converse. First assume that X is finite-dimensional, say

(n-l)-connected and (n+d)-dimensional. We proceed by in-

duction over d. The result is true if X is a wedge of

spheres, by Lemma 15. We may now assume we have a cofibering

A i B

with the following properties.

(i) For r :s: m we have

i*: Hr(A) Hr (X) , Hr(B) = 0 .
(ii) For r :s: m we have

H (A) = 0, j*: H (X) H (B)r r r

(iii) The result holds for A and B.

Now suppose given a map f: X MUQ such that f! maps

K* (XiR) into K* (MU;R). Then fi: A MUQ. maps K* (A;R)

into K*(MU;R). By (iii), we have the following commutative

diagram.

i

i'

Now the spectral sequence

H*(XiMUR*(SO) > MUR*(X)
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is trivial (since the differentials are zero mod torsion and

the groups are torsion-free). We deduce that

i*: MUR*{X) MUR*{A)

is epi. So g extends over Xi say we have h: X MUR

such that hi = g. Then we have

f = i'h + kj

for some k: B --. MUQ. Then evidently (kj)! maps K*{XiR)

into K*{MUiR). Now the spectral sequence

H*{XiK*{SOiR» > K*{Xi R)

is trivial (since the differentials are zero mod torsion and

the groups are torsion-free). We deduce that

is epi. Therefore k! maps K*{B;R) into K*{MU;R). By

(iii), k factors through MUR. Therefore f factors through

MUR. This completes the induction and proves the result when

X is finite-dimensional.

We now tackle the case of a general X. Approximate

X by Xn such that i*: H (Xn) Hr{X) is iso for r s: nr

and Hr{X
n) = 0 for r > n. We have

MUR*{X) = Lim MUR*{Xn)

MUQ*{X)

(since the usual spectral sequences satisfy the Mittag-Leffler

condition). Take a map f: X MUQ ,such that f! maps

K*{X;R) into K*{MUiR). Then the composite
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n in f
X

(fi i , n into K*(MUi R). Hencemaps K* (X i R)n .

through an element gn E MURo (Xn) • Since

MUQ*(Xn) is mono, the elements gn define an

fi factorsn

MUR*(Xn)

element of Lim MUR*(Xn) and thus give a factorisation of

is such that

f. This proves Lemma 16.

Proof of Theorem 14. Let E: MU MUQ be as

above. We aim to apply Lemma 16 to E. We equip ourselves

with various formal remarks.

(i) The following diagram is not commutative.

ch

ch

In fact, for a suitable choice of we have

ch = todd • chz .

(Here the product of a cohomology class and a homology class

is taken in the sense of the cap product. The reader who

prefers to work entirely in cohomology may write out an ar-

gument dual to the one which follows, to verify that E

satisfies the analogue of Lemma 16 for K*.)

(ii) The following diagrams are commutative.
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K*(MU;Q)
e: !

) K* (MU; Q)

ch1
!

ICh
H*(MUiQ) ) H*(MU;Q)

K*(BU;Q)
Eo!

K* (BU;Q)

ChI
EO!

lCh
H*(BUiQ) - ) H*(BU;Q)

(iii) If u E H*(BU;Q), v E H*(BUiQ) we have

Now we wish to check that e:: MU MUQ satisfies the con-

ditions of Lemma 16. So take any element x in K*(MU;R);

we wish to check that e:!x lies in K*(MUiR). Since

is iso, it is sufficient to prove that lies in

But we have

(by definition of e:)



- 107 -

== EO! (ch T • ch <PKX )

(where T is as in Lemma 9)

Since ch is iso, we have

<PKE! x = EO! (1" • <PKX ) •

But 1" E K*(BUiR) and <PKx E K*(BUiR) , so

1" • <PKx E K*(BUiR). Again, we have Eo: BU BUR, so EO!

maps K*(BUiR) into K*(BUiR). Thus <PKE!x lies in

K*(BUiR} and E!X lies in K*(MUiR). Therefore E satis-

fies the conditions of Lemma 16, and E E B(R). This proves

Theorem 14.

The properties of the element E E B(R) are as

follows.

Theorem 17

(i) E2 = E: in B(R).

(ii) For any x,y in MU*(XiR) we have

E (xy) = (EX) (Ey)

Proof. Since B(R) B(Q) is mono, part (i)
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follows trivially from the corresponding equation in B(Q).

To prove part (ii), we have to compare the follow-

ing composites.

MU A MU MU MUQ

MU A MU EAE MUQ A MUQ MUQ •

We have to compare 1 with A E» 1. If we compose

with the map

we obtain the two ways of chasing round the following commu-

tative diagram.

H*(MUiQ) S H*(MUiQ) ) H*(MUiQ)

I
H*(BUiQ) S H*(BUiQ)

u ) H* (BUi Q)

E ,SE, 2: 0 !0EO!1 lEO! E1. .

H*(BUiQ) S H*(BUiQ) ) H* (BUiQ)

H*(MUiQ) S H*(MUiQ)
).J

) H* (MUiQ)

Here the commutativity of the central square arises from the

fact that Eo is additivei that is, the following square is

commutative.
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BU

BUQ x BUQ u

(Here is the product map in BU which represents addi-

tion in K.) This proves that

and (using Lemma 13) that the following square is homotopy-

commutative.

MU 1\ MU u ) MU

'A'l 1,
MUQ 1\ MUQ .. MUQ

In other words, we have the formula

e: (xy) = (ex) (e:y)

for the external product, when x and yare both the gen-

erator in MU*(MU) and the equality takes place in

MU*(MUI\MU; Q). Since

MU* (MUI\MU; Q) MU* (MUI\MUi R)

is mono, the equality holds in MU*(MUI\MU; R).

MU* (MURI\t·1URi R) MU* (MUt\MU i R)

is iso, the equality holds in MU*(MURI\MURi R)

Since

when x and

yare both the generator in MU*(MURiR). Therefore it always
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holds. This proves Theorem 17.

S. P. Novikov [24] has shown that multiplicative

cohomology operations on MU* are characterised by their

values on the generator w E MU2(Cp
oo

) . It might perhaps be

of interest to examine EW, and to see if this provides an

alternative approach to E.

We now define (X) = EMU* (X i R).•

Corollary 18

is a cohomology theory with products, and

is a representable functor.

The proof that is a representable functor

is exactly as for Corollary 8, using Theorem 17 (i). The

fact that has products is immediate from Theorem 17

(ii) .

We write MURo for the representing spectrum for

*MUo(X). In order to lend credibility to the idea that MURo

is an acceptable "Thom complex" corresponding to the space

BURO, we remark that the following diagram factors to give

a unique "Thom isomorphism" epo.

i* "'"H*(MURoiR) H*(MURiR) H*(MUiR)
I
I

ep 0 I

I
y .

H*(BURiR)
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This follows immediately from the definition of E.

Theorem 19

(i) The coefficient ring TI*(MURo} is a po1yno-

mia1 ring over R with generators in dimensions 2d, 4d,

6d, ... .

(ii) MU*(X;R} is a direct product of theories iso-

morphic to *MU 0 (X) •

Note. In part (ii) the splitting is not asserted

to be canonical, but the injection of and the pro-

jection, onto are of course canonical; this is

sufficient for the app1icationR.

Proof. For any connected algebra A, let Q(A}

be its indecomposable quotient. Then

induces

Q(E}: Q(TI*(MUR}} Q(TI*(MUR}}

with Q(E} • Q(E} = Q(E}. We have

Q(ImE) Im(QE) .

Now Q(TI*(MUR}} is R-free with generators xl'

X2' x3' •.• in dimensions 2, 4, 6, •.• [20, 30]. For

each X
n

we have either X
n

or Q (E) Xn = o. We

may thus choose a homogeneous R-base for ImQ(E} and extend

it to a homogeneous R-base for Q(TI*(MUR}}. Lift the basis
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elements in· ImQ(E) to elements g.
1.

in ImE, and lift the

remaining basis elements in any way to elements

1T * (MUR)

h ..
J

is the polynomial algebra generated by the

Then

g. and
1.

h., and ImE is precisely the subalgebra generated by the
J

g .. But this subalgebra is polynomial. It remains only to
1.

find the dimensions of the generators.

We have

(by the remarks above). But as remarked above, H*(BURaiQ)

is a polynomial algebra with generators in dimension 2d, 4d,

6d, ..•. Now part (i) follows by counting dimensions over Q.

The preceding proof actually shows that 1T*(MUR)

is free as a module over n*(MURa). Choose a 1T*(MURu)-free

base for 1T*(MUR) (beginning with the unit element 1) and

represent the basis elements by maps

f.: sn(j) MUR .
J

We now consider the map

g: V s" (j) A MURa MUR
J

which on the jth factor is given by

( .) f .Ai
Sn J A MURa J ) MUR A MUR •

It is clear that g induces an isomorphism of homotopy groups.

Since MURa is connected and n(j) 00 as j 00 the

infinite wedge-sum is also a product. Therefore
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[X,MUR] "'" n [X, Sn(j)AMURa] .
j

This proves part (ii).

We have now accomplished our object of splitting

MU*(XiR) into a direct sum of similar functors. I believe

that the functors and *Ka, together with the spectrum

MURa and the space BURa, are of some interest. I would

like to give further results to prove that MURa is related

to BURa as MU is to BUi for lack of time in writing up

these notes I offer the following in the disguise of an

exercise.

Exercise 20

Show that Proposition 25 of Lecture 1 (the Conner-

Floyd theorem) applies to the case E = MURa, F = BURa.

Hints.

(a) HP (MURa iR) = 0 unless p - 0 mod 2d. There-

fore K (MURa) = 0 for CL 0, and Ka (MURa) is the whole
CL

of K(MURaiR). Take the orientation class u in K (MU) ,

map it into K(MUiR), lift it into K(MURiR) and restrict

it to K(MUROiR)i the result must lie in Ko(MURa). This

gives the necessary orientation class.

(b) In checking Assumption 20 and 24 of Lecture 1,

exercise care in approximating MURo and BURo by finite

complexes.
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LECTURE 5. FINITENESS THEOREMS

In this lecture I want to give an exposition of

certain finiteness theorems in algebra which seem useful in

algebraic topology. These results are slight generalisations

of known results on coherent rings; one may find the latter

in Bourbaki [9, pp. 62-63]. I became interested in the

subject in the course of reproving certain results of S. P.

Novikov [24]. Independently, Joel M. Cohen became interested

in similar results for a different topological application.

I am most grateful to Cohen for sending me preprints of his

two papers [12, 13]. (So far as I know these papers have not

yet appeared , )

The following results 1-5 will serve as illustrations

of the sort of topological application which I have in mind.

Theorem 1 (S. P. Novikov)

If X is a finite CW-complex, then MU*(X) is

finitely-generated as a module over the coefficient ring

MU*(So) •

The methods I will give also yield the following

result, which is slightly stronger.

Theorem 2

Let X be a finite CW-complex. Then

considered as a module over the coefficient ring

MU*(X) ,

MU* (S 0) ,
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admits a resolution of finite length

o Cn --. Cn- 1
--. ••• --. C1 --. Co --. MU*(X) 0

by finitely-generated free modules.

Since giving the original lecture I have heard that

this result is also known to P. E. Conner and L. Smith; it may

also be known to other workers in the field. I am grateful

to L. Smith for sending me a preprint.

I will not qUote the results of Cohen verbatim, but

will reword them to suit the present lecture. I will use the

words "almost all" to mean "with a finite number of exceptions".

Theorem 3 (J. M. Cohen)

Let X be a spectrum whose stable homotopy groups

mod

1T r ( X )

Then

are finitely generated, and are zero for almost all

H*(X;Zp) is finitely-presented as a module over the

p Steenrod algebra A.

This result can be used to show that under mild

restrictions, a space Y (as distinct from a spectrum) must

r •

have infinitely many non-zero stable homotopy groups. Even

better for this purpose is the variant which follows next.

We will say that an abelian group G is p-trivial if

p: G G is iso. Spelling this out, it asks that the

torsion sUbgroup of G should contain no elements of order

p , and that the torsion-free quotient of G should be

divisible by p.
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Theorem 4 (J. M. Cohen)

Let X be a connected spectrum whose stable homotopy

groups TIr(X) are p-trivial for almost all r. Then the

A-module H*(X;Zp) can be presented by generators in only

finitely many dimensions and relations in only finitely many

dimensions.

In particular, of course, the theorem applies if

TIr(X) = 0 for almost all r. The difference between this

case and Theorem 3 is that if the groups TIr(X) are not

finitely-generated, then H*(X;Zp) may need infinitely many

generators in some dimensions.

Corollary 5 (J. M. Cohen)

Let Y be a space such that H*(Y;Zp) O. Then

there are infinitely many values of r such that the stable

homotopy group is not p-trivial (and therefore non-

zero) •

This answers a question of Serre [26, p.2l9].

To prove these results, we will present a slight

axiomatisation of Bourbaki's results. We will first set up

our assumptions, definitions and general theory. From

Corollary 12 onwards we turn to the topological applications,

and sketch the proof of the results given above. Topologists

looking for motivation might perhaps turn to the passage

beginning immediately after Example 14.
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We suppose given a graded ring R with unit.

The word "module" will mean a graded left R-modu1e, unless

otherwise specified. We suppose given a class C of projective

modules. The class C is supposed to satisfy two axioms*.

(i) If P Q and P E C , then Q E C

(ii) If P E C and Q E C , then P Q E C •

Examples.

(i) We define F to be the class of finite1y-

generated free modules.

(ii) We define D to be the class of free modules

with generators in only a finite number of dimensions.

(iii) We define E to be the class of free

modules such that for each n there are only a finite number

of generators in dimensions n •

(iv) We define 0 to be the class containing only

the zero module.

In what follows the symbols F and D will always

have the meanings just given to them. In proving Theorems 1,

2 and 3 we take C = F ; in proving Theorem 4 and Corollary 5

we take C = D. The axiomatisation simply saves us from

giving the same proof twice over.

Definition 6

An R-modu1e M is of if it has a pro-

jective resolution

* Note added in proof. It should also be assumed that 0 E c.
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o M Co C ••• C •••
1 r

such that Cr E C for 0 r n. (Compare Bourbaki

p. 60, exercise 6.)

Examples.

(i) All modules are of C-type - 1 •

(ii) A module is of £-type if -and only if it

has a projective resolution by modules in C.

(iii) A module of F-type 0 is a finitely-

generated module.

(iv) A module of 1 is a finitely-

presented module.

(v) A module of £-type 0 is one which can be

generated by generators in only finitely many dimensions.

(vi) A module of D-type 1 is one which can be

presented using generators in only finitely many dimensions

and relations in only finitely many dimensions.

Thus, the conclusion of Theorem 1 states that

MU*(X) is of F-type o. The conclusion of Theorem 3

states that H*(X1Zp) is of l. The conclusion of

Theorem 4 states that H* (X1Zp) is of D-type 1 •

We could also say that M is of £-cotype n if

it has a projective resolution such that Cr E £ for r > n •

With C = 0 , for example, we would be discussing homological

dimension. It would perhaps be interesting to see if known

results about homological dimension generalize to cotype
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(perhaps in the presence of extra assumptions on C). In

particular, is the analogue of Lemma 7 (iii) below true for

*cotype ? We will not pursue this further here.

If we do not need to emphasise C, we will write

"type" for "f.-type". The basic property of Definition 6 is

as follows.

Lemma 7

Suppose given an exact sequence

of R-modules.

(i) If L is of type (n - 1) and M is of

type n , then N is of type n •

( ii) If L is of type n and N is of type n ,
then M is of type n •

( iii) If M is of type n and N is of type

(n + 1), then L is of type n •

(Compare Bourbaki p.60, exercise 6 a, c, d. For

the most significant special case see Bourbaki p. 37,

Lemma 9.)

Proof. We begin with part (ii) • Given resolutions

0 L C' C' oE- ••• C' ...
0 1 r

0 N C" C" oE- ••• C" --Eo- •••
0 1 r

of L and N , one knows how to construct a resolution of

M in which Cr = e C; ; see [11, p.80]. If C' E Cr

for r n , and C" E Cr for r n , then for

* Note added in proof. An affirmative answer to this problem
has been obtained by Mrs. S. Cormack.
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r n. This proves part (ii).

We proceed similarly for part (i). Suppose that we

are given resolutions

0 +0- L +- C' C' +0- ••• +0- C' +0- •• •
0 1 r

0 +0- M .... Co +0- C
1
.......+0- Cr +0- •• •

of L and M • By constructing a chain map over i: L -+ M

and forming its mapping cylinder, we can construct a resolu-

tion for N in which = Co and C" = C $ C'r r r-l for

If for r n and C' E C forr -
r n - 1 ,

then C" E Cr for r n • This proves part (i).

To prove part (iii), we begin by considering the

special case in which M is projective. Since N is of type

(n + 1), we have an exact sequence

O-+K-+F-+N-+O

with F E C and K of type n. Compare this with the exact

sequence

O-+L-+M-+N-+O

By Schanuel's Lemma [18, p.10l] we have

•

•

So we have an exact sequence

•

Here F is of type and M $ K is of type n by part

(ii). Therefore L is of type n by part (i).

We now turn to the general case. Since M is of

type n, and the result is empty for n = -1 , we may

suppose given an exact sequence
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with F E C and K of type (n - 1). Let P be the kernel

of the composite jq: F N; then P has type n by the

special case already considered. We can construct the

following diagram.

K

P )' F

1
___ M J

The sequence

is exact. Here K has type (n - 1) and P has type n,

so L has type n by part (i). This completes the proof of

Lemma 7.

For technical reasons we need the following

corollary.

Corollary 8

Suppose given an exact sequence

o --+ K --. Co C 1 ••• Cn- 1
4 Cn 0

in which Cr is of type r • Then M is of type n •

Proof. The result is true for n = 0 , by 7(i).

As an inductive hypothesis, suppose it true for (n - 1).

Then d(Cn_ 1
) is of type (n - 1), and we have the following

exact sequence.
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o d(C 1) C M 0 .n- n

So M is of type n by 7 (i). This completes the induc-

tion and proves Corollary 8.

The next question which we consider arises as

follows. The "Noetherian" case is essentially that in which

all modules of 0 are of 00 The "coherent"

case is essentially that in which all modules of 1

are of F-type 00. (See Bourbaki, p. 61 exercise 7a and p.

63 exercise 12d, or below). Although it is not necessary

for the applications, it seems worth describing a hierarchy

of more subtle cases; the nth case is that in which all

modules of type n are of type 00

Theorem 9

Suppose given C and n O. Then the following

conditions are all equivalent.

(i) If C E C and P is a submodule of C of type

(n-l) , then p is of type n.

(ii) If M is of type n and P is a submodule

of M of type (n-l) , then P is of type n.

(iii) Suppose given an exact sequence

in which Cr is of type n for each r. Then K is of type

n.
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(iv) Suppose given an exact sequence

Cn Cn_ l •.• -+ Cl --+ Co ..-... M -+ 0

in which Cr E C for each r. Then we can extend it to an

exact sequence

in which Cn+ l E C.

(v) Every module of type n is of type 00

We note that in conditions (iii) and (iv) the

module M at the right-hand end of the sequence is included

only to avoid making an exception of the case n = O. If

n 1, we can suppose given the sequence

and define M = Co/dCl.

Proof of Theorem 9. First we prove that (i) im-

plies (ii). Suppose that M is of type n. Then by defini-

tion, we can find a sequence

o --+- K -+ Co 4 M --+- 0

with Co E C and K of type (n-l). Let P be a submodule

of M of type (n-l); then we have the following exact

sequence.

o K j-lp P 0 •

Since K and P are of type (n-l), j-lp is of type (n-l)

by 7 (ii). Since j-lp is a submodule of Co and Co E C,
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j-lp is of type n by 9 {il, which we are assuming. Hence

p is of type n by 7 {i}. This proves {ii}.

We prove that {ii} implies {iii}. Suppose given an

exact sequence

o K C C Cl
d Co4 0... --+n n-l

in which C is of type n for each r. Let Z c Cr ber r

the submodule

with the obvious interpretation for r = O,n. Then by

Corollary 8 {or trivially if n = O} Zo is of type {n-l}.

Since Zo is a submodule of Co and we are assuming 9 {ii},

Zo is of type n. Assume as an inductive hypothesis that

Zr_l is of type n. We have the following exact sequence.

o Z -+ Cr Z 0 .r r-l

So Zr is of type (n-l) by 7 {iii}. Since Zr is a sub-

module of Cr and we are. assuming 9 (ii) I Zr is of type

n. This completes the induction. The induction proves that

K = Zn is of type n. This proves {iii}.

We prove that (iii) implies (iv). Suppose given

an exact sequence

C C ••• Cl -+,C o -+ 0n n-l

in which C E C for each r. Then certainly C is ofr r

type n. Let Z be as in the proof of {iii} ; then byn

{iii} I Zn is of type n O. Thus we can find an
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epimorphism

Cn+ 1 Zn

with Cn+ 1
E C. This proves (iv).

We prove that (iv) implies (v). Suppose given a

module M of type n. By definition, we have an exact

sequence

C C .-...+ •• • Cl Co .-...+ M 0n n-l

in which C E C for each r. By (iv) we can extend it tor

an exact sequence

C C ••• ---+ Cl Con+l n

in which Cn+ 1
E C. Now (iv) applies again to the sequence

Cn+ 1 Cn .•• C2 Cl Zo 0 .

Continue by induction. The induction constructs a resolution

of M by modules Cr in C and shows that M is of type

00 This proves (v).

We prove that (v) implies (i). Suppose given

C E C and a submodule Pc C of type (n-l). Then we have

an exact sequence

o ---+ P C C/P 0 .

Here C/P is of type n (by 7 (i) or direct from the defini-

tion). By 9 (v), which we are assuming, C/P is of type

(n+l). Therefore P is of type n by 7 (iii). This proves

(i). We have completed the proof of Theorem 9.

It now seems reasonable to make the following defini-

tion.
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Definition 10

The ring R is (n,C)-coherent if the equivalent

conditions stated in Theorem 9 are satisfied.

It is clear from 9 (v) that if R is (n,C)-coherent,

it is (m,C)-coherent for m n.

Examples.

(i) The ring R is (O,F)-coherent if and only if

it is (left) Noetherian.

(ii) We say that R is finite-dimensional if it

has non-zero components in only finitely many dimensions, so

N
that R = L Rn • Such a ring is (O,D)-coherent; the proof is

-N

trivial.

(iii) Coherence, as defined in Bourbaki, is (l,F)-

coherence. More precisely, condition 9 (i) says in this case

that every submodule P of 0 in C is of F-type

1. This coincides with Bourbaki's condition "C is pseudo-

cohezerrt" • If

o C' C C" 0

is exact and C', C" satisfy this condition, then so does

C. (This follows easily from Lemma 7; see Bourbaki p. 62

exercise lla). So in order to check the condition for every

C in F, it is sufficient to check it for C = R (compare

Bourbaki p. 63 exercise l2a). This proves the equivalence

of our definition with Bourbaki's.
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We will now prove that for n 1 the property of

n-coherence passes to suitable direct limits. We suppose

given a (graded) ring R containing subrings Ra, and make

the following assumptions. First, we assume that C is

either F or D, and we divide cases accordingly. If

C = F, we assume that for any finite set of elements

r 1 , r! , ..• , r in R we can find an a such thatn

r l' r 2' ••• , r lie in Ra• If C = D, we assume that forn

any finite set of dimensions n,m, •.• ,p we can find an a

such that Rn, Rm, ••• , are contained in Ra• This assump-

tion ensures that the Ra approximate sufficiently closely

to R, in a sense depending on C. Secondly, we assume that,

for each a, R is free as a right module over Ra. With

these assumptions we have:

Theorem 11

(i) For 0 < n < 00, the R-modules of type n are

precisely those of the form where runs over

the subrings and Ma runs over the Ra-modules of type n.

(ii) If n > 0 and Ra is (n,C)-coherent for each

a then R is (n,C)-coherent.

(Compare Bourbaki p. 63 exercise l2e. A check

through the proof below shows that for n = 1 we need only

assume that R is flat, rather than free, as a right module

over Ra.)
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Proof. For part (i), we begin by showing that the

R-modules of the form are of type n. For suppose

that Ma . f t1.S 0 ype n; then there is an exact sequence of

Ca Ca Ca Ca Ma 0n •. 1 0

with in F or D as the case may be. The functor

R @Ra preserves exactness, so we have the following exact

sequence.

Here the modules aR @RaCt are free and lie in F or D

as the case may be. Thus is of type n.

To prove the converse, suppose given an R-module

M of type n, where 0 < n < 00 Then we have an exact

sequence of R-modules

Cn •.• Cl
d

Co 0n-i i

with Ct E C for each t. Choose R-free bases in each Ct;

then each map d can be represented by a matrix r ... If
1.J

there are only a finite number of elements in

all. If C = the elements r ..
1.J

r ..
1.J

lie in only a finite

number of dimensions. In either case, we can find an a

such that all the elements r .. lie in Ra. Let CU be
1.J t

athe free R -module generated by the R-free base of Ct. Then

the maps d restrict to give

d u
Cu Ca
n n-l
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The original sequence

is, up to isomorphism,

Since R is free as a right module over ROo, this sequence

(as a sequence of groups) is isomorphic to a direct sum of

copies of the sequence

... a
Co. d co.

I o·

Since the original sequence was exact, the sequence

a
••• 4

must be exact. We define MOo a a and MOo iscan = CO/dCI, an

ROo-module of type n, since co. lies in F or D as thet

case may be. Since R 0RQ. preserves exactness, the sequence

R a 10da R a -+ R
a 00RaCI ) 0RaCo 0RaM -+

is exact, and we have

This proves part (i).

To prove part (ii), we assume that ROo is n-coher-

ent for each a. Let M be an R-module of type n. By

part (i) M has the form with of type n.

By 9 (v) for is of type (n+l) • By part (i), M
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is of the type (n+l). We have shown that each R-module of

type n is of type (n+l). By the proof that 9 (v) implies

9 (i), this is sufficient to show that R is

Corollary 12

The ring MU*(So) is but not

Noetherian.

In fact, MU*(So) is a polynomial ring

X2/ ••• ' x, ... ]n
on a countable set of generators

[20, 30]. Each finite subset of the generators generates a

Noetherian subring, and we take these subrings for the R
a

in Theorem 11.

Corollary 13

(Compare Bourbaki p. 63 exercise l2f.)

The Steenrod algebra A is both (l,F)-coherent and

(l,D)-coherent, but neither Noetherian nor finite-dimensional.

In fact, any finite subset of A, and any finite-

N
dimensional part l A of A, is contained in a Hopf sub-

r=O r

algebra which is finite [19], and therefore both (O,F)-

coherent and (O,D)-coherent. We take such subalgebras for

the Ra in Theorem 11; the whole algebra is free over Ra

since Ra is a Hopf subalgebra [22].

Example 14

The stable homotopy groups of spheres form (under
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composition) a graded ring which is neither (l,F)-coherent

nor (l,D)-coherent.

We may now summarise our guiding philosophy. The

most classical finiteness theorems in algebra concern finitely-

generated modules over a Noetherian ring. In our applications,

however, we have to use rings which are not Noetherian. The

Noetherian condition gives us finiteness results on submodules.

But in algebraic topology and in homological algebra we can

do without information about general submodules, provided that

we have information about kernels. (I mean, of course, ker-

nels of maps from one IIgood ll module to another.) In other

words, we can use the following result.

Corollary 15

Suppose that R is (l,C)-coherent, that Land

M are modules of 1 and that f: L M is an

R-map. Then Ker f is of 1.

This follows immediately from Theorem 9 (iii).

Corollary 16

Suppose that R is (l,C)-coherent, and that

N

/\
f

M. < L
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is an exact triangle of R-modules in which Land Mare

of 1. Then N is of 1.

Proof. Coker f is of type 1 by Corollary 8 and

Ker f is of type 1 by Corollary 15. Thus N is of type

1 by Lemma 7 (ii).

For the next proposition we assume that the class

C contains any free module on one generator. This is true,

of course, for C = F and C = D. We assume that E* is

a (reduced) generalised cohomology theory with products, and

that the coefficient ring E*(So) is

ProEosition 17

If X is a finite CW-complex, then E*(X) is a

module of C-type 00 over E*(So).

Proof. The result is true if n
X = S , for

is a free module over E*(So) on one generator. This serves

to start an induction over the number of cells in X. If X

is not a sphere, we can find a cofibering

B

in which A and B have fewer cells than X. (For example,

take A to be any proper subcomplex of X.) As our induc-

tive hypothesis, we suppose that E*(A) and E*(B) are of

type 1. The cofibering gives the following exact triangle

of modules over E*(So).
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E*(X)

E* (B) E* (A)

By Corollary 16, E*(X) is of type 1. This completes the

induction. Of course, by Theorem 9 (v) a module of type 1

is of type This proves Proposition 17.

It is clear that Theorem 1 follows immediately from

Corollary 12 and Proposition 17.

To prove Theorem 2, one uses Theorem 11 to reduce

the problem to the study of a module MU over a polynomial

ring RU on finitely many generators (see Corollary 12).

For MU we know the existence of a resolution of the sort

requiredi take such a resolution and apply R 0RU' as in

the proof of Theorem 11.

We will sketch the proof of Theorem 4. Let G be

an abelian group which is p-trivial, and let K(G) be the

corresponding Eilenberg-MacLane spectrum. Then

H*(K(G)iZp) = 0, for p: G G must induce an isomorphism

p* of H*(K(G)iZ), but p* = O. Next let X be a con-
p

nected spectrum such that TI (X) is p-trivial for each ri
r

then again we have H*(XiZ) = O. It follows that the gen-
p

eral case of Theorem 4 can be deduced, without changing the

module H*(XiZp)' from the special case in which

is zero for almost all r.

TI (X)
r
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Next let F be a free abelian groupi one can show

that H*(K(F)iZ) is of D-type 1. This allows us to de-p

duce the same result for a general Eilenberg-MacLane spectrum

K(G)i we consider a fibering

and apply Corollary 16 to the resulting exact triangle of

cohomology modules.

Now we can prove the result for a spectrum X with

just n non-zero homotopy groups. This is done by induction

over n, as for Proposition 17, but applying Corollary 16

to the exact triangle of cohomology modules arising from a

suitable fibering. This completes the proof.

The proof of Theorem 3 can now safely be left to

the reader.

To deduce Corollary 5, we suppose given a space Y

which contradicts Corollary 5, so that H*(YiZp) 1 0 and

Theorem 4 applies to the corresponding spectrum. Let y

be a non-zero class of lowest dimension in

f
pP Y = 0

}i* (Y· Z ).
I P I

then

for all sUfficiently large fi this makes it extremely plau-

sible that H*(YiZp) cannot have a presentation with rela-

tions in only finitely many dimensions, and this can indeed

be proved. This contradicts Theorem 4 and proves Corollary 5.
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On H-spaces and infinite loop spaces

by

Jon Beck

By a topological category I think is generally understood a category X in which:

(1) For each pair of objects X,Y E there is a hom object (X,Y) which is a topologi-

cal space, and composition is a continuous unitary, associative operation

(X,Y) x (Y,z) (X,Z).

(2) For every space A and object Y E there is an object (A,Y) E and a natural

homeomorphism (X, (.fu.Y» (A, (Xz.X) ) •

(3) For every space A the functor (A, ):) has a left adjoint A x (

The category of topological spaces is itself a topological category. The pre-

caution of course is actually taken of restricting to a category of spaces or something

like them for which the conversion (XxY,Z) holds. Specifically, I have com-

pactly generated spaces in mind (E.Spanier, Annals of Math. 12 (1959), 142-197,§2), but

with care and compactness assumptions everything can be pushed through in the ordinary

category of topological spaces.

Another topological category is that of spaces with base points and base point

preserving maps. We will practically always work in this category, which we denote sim-

ply by Top.

In this case pairing (3)

Topological spaces x Top Top

is naturally written as For example, if I is the unit interval and X E Top, then

is the reduced cylinder over the pointed space X, and maps Yare base point

preserving homotopies.

Of course, Top is also a closed category, that is, itself a Top-category. This

fact gives rise to a different pairing X®Y where X,Y are both pointed spaces, namely

X x y/x x 0 + 0 x Y, usually written X A Y.

is called a pointed topological category if it possesses a hom functor with val-

ues in Top and pairings as in (2) ,(3) exist for A E Top, X,Y E
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The point is that as soon as a category has a horn functor with values in Top and

adjoints as specified above, then the constructions of algebraic topology are available

that category. be a Top-category in this sense and let X
o
be a fixed object in

Usually has some well known underlying-(pointed)-topological-space functor and Xo

is chosen as the object which represents this via (X
o'

Top. The tensor product

gives adjoint functors

Since cells and spheres are in Top we have objects

(n+i)-cell and n-sphere in Let us write

n+i n
e S in .*. which are the

instead. Modulo minor assump-

tions of completeness, CW-objects exist inX. Such are built up by glueing onto

lower-dimensional skeleta via attaching maps Y inX; by adjointness, these are

n
the same as maps S (XO,Y), the latter being the "underlying space" of Y. The usual

development of CW-theory can be conducted in such a category. The essential fact to be

supplied is that

{

0,

z,

i < n ,

i = n.

This is true in all of the tripleable or "theoretical" examples of Top-categories used

in this paper.

As an example, consider the category of topological groups. The continuous homomor-

phisms G H form a space (G,H) E Top. The group structure of (A,H) for A E Top is val-

ue-wise, and is the free topological group generated by all symbols a®g modulo the

relations = (a®go) (a®gi)· The discrete group z plays the role of XO• Given a

n+i n+i.
complex X with cells e X/the cells e g1ve a group-cellular decomposi-

tion of Homotopy theory in this category can now be carried out in the usual man-

nero Some of this has been done under the guise of the theory of simplicial groups.

One application: let 0 E I be the base point of the unit interval. Then is the

group-theoretical cone on G. The natural map G at the i-end is an embedding of G

into a contractible topological group. Under standard assumptions on the topology of G

near its neutral element, the projection is easily shown to be a fiber bun-

dIe. Thus is a classifying space for G. Later on we shall construct classifying



- 141 -

spaces for other types of H-spaces. Lack of a in those cases make the con-

struction more difficult.

Another algebraic topology arises in the category of spaces a fixed space X

(no base points are needed). An object in this category is a map A X, a map is a com-

mutative triangle. The maps A B over X form a closed subspace (A,B)x of the usual

(A,B). The n-cell in this topological category is en x X. Homotopy equivalence is what

is usually called fiber homotopy equivalence.

Notice that differential (or PL) topology exists over X even when X is a quite ar-

n m n
bitrary space. Euclidean space/X is R x X and a map R x X R x xix is differentiable

if it is so with respect to the real component. For example, there should be an isomor-

Jl n-1
phism r*(x) [X,PL/O] where 1" (X) is the group of diffeomorphisms of S x X modulo

n
those which can be extended to D x X, all Ix.

The category of spaces Ix could be taken as a base category for algebraic topology.

Pointed objects (those with zero sections), H-objects, ••• can be defined and have their

usual properties. When X = 1 this program reduces to ordinary topology.

However, in this paper we will adhere to the standard base category Top of pointed

topological spaces, and concentrate on categories tripleable over Top (which actually

counter-includes the case of spaces Ix). We recall that a tripleable category is one

whose objects are determined by a free-object functor (the definition follows), and for

these we have:

(4) Theorem. Let T be a pointed topological triple. Then the category of T-spaces is

a pointed topological category; more precisely, axioms (1) ,(2) for a topological cate-

gory hold and the tensor product A @ (X,s) which is asserted to exist in (3) does exist,

at least when T is derivable from a topological theory.

We define a pointed topological triple T = to be a functor T: Top Top

with oT = 0 and Tcontinuous, that is, effecting for all X,Y E Top a continuous map

(X,Y) (XT,YT), together with natural transformations T, T such that
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commute. A T-algebra, or T-space, is a pair (X,;) where X E Top and ;:XT X is a conti-

nuous map such that the unitary and associative laws hold:

; is called the T-structure of the space. With an evident definition of morphisms, T-

Tspaces form a category Top •

The usefulness of this concept arises from the fact that, by composition, adjoint

functors give rise to triples T, and the corresponding categories of T-spaces consist

precisely of those spaces which possess the general structure of values of the right

adjoints.

As an example, consider the adjoint functors L,Q:Top Top. Let XLQ,

E:XQL - X be the usual adjointness maps. Then the composite functor LQ is a triple in

Top with unit and multiplication

A LQ-space is then a pair (X,;) where X E Top and ;:XLQ X is a unitary, associative

structure map:

Such a map; furnishes X with all of the structure which loop spaces possess in general.

Algebraically, for example, let e be any n-variable operation on loops and x , ••• ,x 1o n-

any n points in X. Then the value of e in X is [(x ••• ,x The fact that; iso n-

associative implies that e satisfies all of the identities in X which it satisfies in

the world of loop spaces.

In particular, every loop space has a LQ-structure, by evaluation of loops:

(BQ)LQ = (BQL)Q BQ. As to whether there are any LQ-spaces that are not loop spaces a

priori, that question will be inveRtigated in (16).

In the general case, if is left adjoint to let T

responding triple in There is a canonical functor

FU be the cor-
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defined by = (BU,BEU), where E:UF - id. is the adjointness morphism. In the case of

L,Q, the value of this canonical functor

LQ
Top - Top at a space B is BQ considered as a LQ-space.

The adjoint pair (F,U) is tripleable if is an equivalence of categories. The

tripleableness problem is in general very difficult, and we shall not go into it. Suf-

v
fice it to say that a left adJoint <P for <t> is easily constructed as the coequalizer

t,F _. .;
XFUF :; XF ---7;:r(X, t;) <t>

XFE

and that the greatest difficulty ordinarily attends on showing that the adjointness map

v
(X,s) - is an isomorphism of T-algebras; this map is essentially the composition

v T
of - XFU and XFU - • The following fact is used in studying this map, and is

relevant later:

(5) The augmented simplicial object

X(FU)n+1 , n ) -1 ,

- X(FU)n+1 given by E = s(FU)n+1,
o

E.
J.

n+2
with face operators E.:X(FU)

J.

XF(UF)i-1 E (UF)n-i+1 U, 1 ,

by - FU, has a "contraction"

h
n

i , n + 1, and suitable degeneracy operators induced

n ) -1

obeying h
n
E
i
= Eih

n,
0 , i , n, hnEn+1 = id., namely h

n
= and B therefore

homotopy equivalent, as a simplicial object, to the constant or "discrete" simplicial

object X.

Finally, as to the topological nature of TOpT, if (X,s), (Y,e) are T-spaces, their

T-space maps f:X - Y form a closed subspace of the space of all maps (X,Y), namely the

equalizer

(X'Y)T-------">-) (X,Y) Sf =; (XT,Y).
fT.S

If A is a space, (ArY) is a T-space by means of the composition (A,Y)T - (A,YT) - (A,Y) J
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where the first map is adjoint to A (A,Y)T YT and the second is induced by the T-

structure of Y. The T-space A (X,s) should be produced as a quotient of

(cf. the example of topological groups). But for topological triples in general it is

not known whether a T-structure can be defined on the quotient. This problem is open,

in particular, for the triple Parenthetically, the same results and difficulties

carryover to any suitable notion of "enriched" category and triple thereon.

On the other hand, when T is a triple arising from a topological theory, which we

shall shortly define, the above quotient problem is easily disposed of.

Another problem also leads us to introduce topological theories. That the continu-

ous triple morphisms S T form a topological space is evident. But for other construc-

tions such as the function space (A,T) , the product A T and the rest of the algebraic

topology of continuous triples, it is necessary to reveal the internal structure of

triples, and restrict to those for which this is a topological theory.

Since there will be a lot of deliberate confusion between topological theories and

triples, the same letter T will be used to refer to both concepts. The original notion

of theory, over the category of sets, is due to F.W. Lawvere (Proc. NAS USA 50 (1963),

869-872).

(6) By a (finitary) pointed topological theory is meant a pointed topological category

T whose objects are the natural numbers 0, 1, 2, ••• and in which m is the coproduct

1+1+••• +1 (m times). Thus the hom object (m,n)T is a topological space with base point

and is the cartesian power (n)T
m,

where (n)T is the space of n-ary operations (1,n)T.

The composition in T is an associative family of continuous base point preserving maps

(m,n)T (n,p)T (m,p)T.

Probably with a more advanced concept the objects A n could also be attributed

to the theory, but we shall not bother with that.

A map T T' is a continuous, pointed, 1- and coproduct-preserving functor.

An algebra over a topological theory T, or for greater clarity, a T-space.is a

pointed continuous product-preserving functor

X
T* Top.

T* is the dual or opposite of the topological category T. By the product-preserving

property, such a functor is determined by the image of 1 E T which is also denoted by X
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(and then Thus the functor is equivalent to a family of continuous maps

(n) T -+ (x" ,X)

subject to various identities, that is, the n-ary operations of T are continuously re-

n
presented by actual maps X -+ X.

A map f:X -+ Y of T-spaces is a natural of X,Y thought of as func-

tors; equivalently, a continuous map such that all diagrams

(n)T @ Xn -+

1
X ....

(n)T@yn
1
y

Tcommute. The resulting category of T-spaces is denoted by Top.

(7) Examples of topological theories. The easiest theories are those which arise from

"algebraic" theories in the category of sets. Let Alg(Top) be the category of algebras

of any specified discrete type, but interpreted in the category of topological spaces,

for example, topological groups, topological rings, topological Lie algebras, •••• A

free-algebra functor Top -+ Alg(Top) manifestly exists and is left adjoint to the for-

getful Alg(Top) -+ Top. The values of the resulting triple T on sums of O-spheres,

(nSo)T, n 0, defines a theory T. The space of maps m -+ n in the theory is then the

cartesian power The category of models for the theory, i.e., spaces X equipped

n
with maps (n)T -+ is exactly the category Alg(Top).

For topological groups, (nSo)T is just the free topological group generated by

+ SO (n times), and this is the free discrete group on n generators. (As the

group is free relative to pointed spaces, the apparent generator furnished by the base

point is suppressed). Thus the elements of (n)T are exactly all of the n-variable ope-

rations in the theory of topological groups, and these are the same as in the discrete

ntheory of groups. Maps (n)T -+ as above clearly make X into a topological group.

Topological monoids, that is, strictly associative H-spaces, arise similarly.

More significant and indicative of the reason for introducing topologies into

theories are categories of H-spaces in which the defining equations hold only up to

specified homotopies.

Consider the theory of homotopy-associative H-spaces (with strict unit). This

theory T has (O)T = 0, and its operations of higher power are generated by a binary
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operation x,y - xy which is a O-cell in (2)T, and i-cell in (3)T whose vertices are

(x y)z and x(yz). This results in considerable complexity, (i)T for example containing

O-cells corresponding to the unary operations x - x
n,

i-cells corresponding to the va-

rious ways of introducing parentheses into these homotopy-associative "powers", 2-cells

as products of these i-cells, .•. in fact (i)T is an infinite-dimensional CW complex;

(2)T, (3)T, ••• are more complicated. Maps in this category TOpT of canonically homo-

topy-associative H-spaces are, of course, required to preserve the generating i-simplex

in (3)T, and all of its consequences.

More complicated is Stasheff's theory Aoo (cf. Trans. AMS 108 (1963),275-292). This

is the theory of H-spaces which have (unnecessarily) strict multiplicative units and

homotopy associativities as above, as well as many "higher associativities". For eXam-

1
pIe, in the space (4)A ro the homotopy associativity generates an S :

(x(yz»t

(xy) (z t ) x(y(zt) )

The cell structure of (4)A oothen includes a 2-cell with this S1 as its boundary, and so

on.

In order to be able to manipulate these constructs with confidence, it is essential

to know that every graded topological space (i.e. sequence of spaces) generates a free

topological theory, or even more, that topological theories are tripleable over graded

spaces, and that arbitrary theories can therefore be constructed as coequalizers of maps

between free theories.

T
If T is a topological theory, the adjoint pair Top - Top - Top is easily seen to

be tripleable. In fact, from now on we confuse topological theories with the triples in

TOp which they generate via their free algebra functors. We will find it useful to have

the following formula for the triple in terms of the spaces of operations in the theory:

AT = I An (n) T / (&-identities).
n>O

The precise identifications made are generated by maps of finite sets. If a:m - n, then

a a.aT is identified with a.A
a

a for a E An, e e(m)T, much as in Milnor's geometri-

cal realization of a s. s. complex.

(8) Theorem. Let f:T - T' be a map of finitary pointed topological theories such that
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(n)f:(n)T - (n)T' is a homotopy equivalence for each n)O. Then Xf:XT - XT' is a homo-

topy equivalence for every CW complex X.

To prove this, note that the above formula for AT makes sense for any functor

- Top and in fact is the of functors A* ® T where - Top is

the powers of A = finite sets). Let T - T' - T be a mapping cone sequence in the
f

topological category of functors - Top. Then AT - AT' - A* ® Tf is a mapping cone

sequence in Top. One demonstrates that the space A* ® T
f
is contractible by induction

on p applied to the spaces I An ® (n)T
f

/ (® - id.), n,p.

The concept of discreteness gives rise to certain operations on topological triples.

Let the two adjoints to the inclusion of discrete spaces be written X
d

- X (discrete

topology on X) and X - x good X). Similar functors exist for topological theories.
o

Actually, we have no use for the atomization T
d

- T. The other discretization T - xoT

gives us the theory which has (n) (x T) = x (nT) with the obvious composition of opera-
o 0

tions. For example, the discretization Aoo - x A yields A, the theory of monoids (seeo 00

(7». For the similar theory of groups up to compatible homotopies, Goo' we have

Goo - x G = G, the theory of groups.o 00

(9) proposition. In the diagram of natural transformations

Gee G

the horizontal arrows are homotopy equivalence of CW theories, or of CW triples (by

(8». The vertical arrows have the property that they are equivalences when evaluated

on any connected CW complex X.

For the horizontals, the spaces (n)Aoo are unions of contractible components, the

(n)Goo as well. For the verticals let

F U
Top - Mon(Top) - Top

be the usual free topological monoid and underlying space functors. Both of these func-

tors "preserve" the subcategory W - Top of connected CW complexes. Moreover, by use of
-0

the homotopy extension theorem, F,U remain adjoint modulo homotopy, i.e.

[W ] KMon[W ] [W ]
-0 -0-0
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is an adjoint pair of functors, where [W ] denotes the category modulo homotopy or weak
""""0

homotopy. The same holds for groups. The natural forgetful functor from groups to mon-

oids

A
-oY

is actually an isomorphism by the well known fact that a connected CW H-space always

possesses a multiplicative inverse up to homotopy. Since both categories are tripleable

over [W ], this implies that the triple map A G is an isomorphism when restricted to
""""0

the category [W ].
""""0

(10) Discretization of the powers of operations of topological triples is an important

process. Let T = be a topological triple with OT = O. Let T
f.

be the pointed
J.n

topological theory (m,n)T
f.

= «nSo)T)m, with composition law (m,n)T @ (n,p)T (m,p)T
J.n

given by a @

The T
f,

construction reflects triples into the subcategory of topological theories,
J.n

and is about the same process as was applied to an "algebraic triple" in Top in (7).

Of course, T
f i n

can be considered as a triple itself, and this finitary reflection or

truncation of T is an injection

T
f i n

T

(cf. Linton, La Jolla Conference on Categorical Algebra, Springer Verlag, 1966).

As an example, consider the suspension-loops triple IQ. The finitary theory (IQ)fin

1 1
has as its space of n-ary operations the space of loops on the sum S + ••• + S of n

circles.

(11) Proposition. The inclusion

X(IQ)f' XIQJ.n

is a weak homotopy equivalence (homotopy equivalence if X is a CW complex).

For the proof we use the fact that the operation ( )fin can actually be applied

to any endofunctor of Top:

X.Ffin

where the lim has to be understood in the right closed-category, i.e. topological,
-7
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sense, namely as a quotient space of I x? 0 (nSo)F. We then have the diagram

where E is the contractible path space functor. The left column is essentially a fibra-

tion by means of a path lifting function which shifts the terminal segments of paths

from "generator to generator" of the suspension. From the homotopy exact sequences,

K X(IQ) . K XIQ.
n fl.n n

Since loop spaces are there is a topological theory map G (ZQ)f" •
co ln

By (8), this is a homotopy equivalence of CW theories. Thus in the following diagram of

triples in Top, all of the arrows are homotopy equivalences, at least when evaluated on

connected CW complexes.

(12) Theorem. The triples A and IQ are naturally equivalent on the category of con-

nected CW complexes, that is, if X is such a space there is a natural homotopy equiva-

lence of the "reduced product space"

= XA ::; XIQ.

(I.M. James, Ann. Math. (1955), 170-197).

The above fibration argument can be iterated to obtain the same result about the

triples IkQk, The inductive step in the proof of the following theorem has the

form

X(I
kI1Qk+l) fin------------;> X

k+l k
X( I I E) f' -----------')"" X1 an

X(Ik+1Qk) . = X I(IkQk) . -----""'» X
fl.n fl.n

(13) Theorem. The horizontal inclusions in the diagram
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XIII"k} fin )X(kOk

X Qf 1n----------=-==-------7) X Q

are weak homotopy equivalences (homotopy equivalences if X is a CW complex); here

Q = lim
k-><Xl

The functor Q was introduced by Dyer-Lashof (Am. J. Math. 84 (1962),35-88). As a

direct limit of direct limit preserv1ng triples (the circle is compact), Q is itself a

direct limit preserving triple. The discretization Q x Q is the natural map Q AG,
o

the latter the free abelian group triple, and is not a homotopy equivalence. Indeed,

Q AG induces the Hurewicz homomorphism stably, and Q-spaces generally have non-trivial

k-invariants.

Here Q-space means an algebra over the Q triple:

XQQ XQ

XQ

Q-spaces more or less coincide with the homotopy-everything H-spaces of Boardman-Vogt

Q
(Bull. AMS 74 (1968),1117-1122). At least the functor h.e.-spaces - Top is evident,

and we do demonstrate that Q-spaces are infinite loop spaces «17) below; we mean h.e.-

spaces X with x X abelian groups). It would be desirable to have direct demonstrationso

that the infinite objects of algebraic and differential topology, O,U,BO,PL, ••• are

Q-spaces.

The homotopy-finitary character of a topological triple has various consequences.

Restricting to a suitable class of "linear" finitary triples, it is possible to demon-

strate theorems of the type

(14)

that is, existence of triples on the category of graded vector spaces over a field

rendering the diagram

T
7- Top

H*T lH*
) Vect
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commutative (non-naturally, for coefficients in a hereditary ring). I hope to carry this

out in a later paper for the triples tkQk, Q (which are not themselves linear but have

linear approximations). It should be possible to press triple-theoretic techniques far

enough to obtain the calculations of Milgram (Ann. of Math. 84 (1966), 386-403) and

Dyer-Lashof (op. cit•. their Theorem 5.1 gives H*(Q,Z/pZ) explicitly). For triples with

"simplicial" bases it is possible to demonstrate formulas like (14), replacing vector

spaces with coalgebras over a field and constructing from theories which have hom

objects in the cartesian-closed of coalgebras.

(15) The purely categorical question of whether the t,Q adjoint pair is tripleable

leads to the construction of universal base spaces. Tripleableness would mean that the

functor

is an equivalence. The question can be examined in several parts. If X is a connected

CW complex, it is of "descent type" for this adjoint pair, that is,

EXQtQt XQt X
QLE ?

is a coequalizer diagram. Restricted to spaces for which this diagram is a coequalizer,

4! is full. For a tQ-space to be "ef:ective", letting B = (X, s> ®tQt be the coequalizer

the composition X XrQ BQ would have to be a homeomorphism. Yet from experience it

is unreasonable to expect this map to be better than a homotopy equivalence. If even

this were so, B would be a classifying space for the IQ-algebra (X,§) in the usual

sense of homotopy theory. But as a caution: if X is a discrete group and X is

the structure induced by the group law, then B o. Perhaps for connected X the result

is better, but connectivity would be an awkward assumption later on.

Before resolving the difficulty, worsen it by considering the general case of a

k kr Q -space where k is any integer 0, thus § is a unitary, associative structure

map xrkQk -to X.

Regard the simplicial space
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n>O,

Ii .
:L

with continuous face operators

X __ X

i=O,

E. =
1.

f
l X

k k
where E is the adjointness map Q L id., and degeneracy operators similarly defined

1.

. t f' d ., " 1 bl 1 h l' b1.n erms 0 " • It 1.S 1.ntu1.t1.ve y reasona e to rep ace t e coequa 1.zer a ove

with

n>O

exactly as defined originally by Milnor (Ann. of Math. &2 (1957),357-362). For example,

BO = X.

Using the distributivity of Qk over the realization identifications, we have a na-

tural map

geom. realiz. (X

By an elaboration of (5), there is also a natural homotopy equivalence of X into the

above geometrical realization, hence by composition a map X BkQk.

k k
(16) Theorem. Every Q -space has a k-classifying space. Precisely, the above

map X is a LkQk_map and a weak homotopy equivalence (homotopy equivalence if X

has the homotopy type of a CW complex).

It suffices to prove X BkQk is a homology equivalence. When k=O this is X=X, and

when k>O iterated cobar constructions are applied.

We can also de-loop in the limit:

(17) Theorem. Every Q-space has a classifying space B which is also a Q-space.

Precisely, there exist a Q-space B which is a functor of X and a natural map

which is a Q-homomorphism relative to the induced Q-structure on BQ and is a homotopy

equivalence.

Each Q is a triple map, so X has induced LkQk-structures for Let Bk

be the "classifyi.ng spaces" for these (16). Maps Bk Bk+t Ql are easily obtained such
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that the diagrams

tk
BkQ - 7' Bk+(,Q Q

commute. As contains no cells of dimensions < k, Bk+tQl is a homotopy equiva-

lence.

For the proof of (17), let B = as k 00.

tures for all by the direct limit preserving property

k kB has compatible I Q -struc-

k k
of I Q , hence B has a natural

Q-structure. BQ also has a natural Q-structure via the transposition QI IQ which gives

kk
rise to compatible I Q -structures:

BQIkQk BIkQkQ BQ.

These IkQk-structures coincide with those defined "internally" by the fact that

BQ = Using the "internal" point of view, X BQ is seen to be a Q-map,

and it is obviously a homotopy equivalence.

We could have de-looped k times at once by using B = If B is erroneous-

ly defined as the "telescope"

2... B
2
Q ... B

3
Q -to

of

. .. ,

an example of a "Q-space up to canonical homotopies" results. This might prove to be a

useful concept for the triple Q, and for other topological triples. In contrast to

"homotopy-everything" structures, Q-structures are not transportable along homotopy

equivalences.

(18) Dualizing the foregoing produces a rather striking phenomenon; we mean dualizing

in both the categorical and Eckmann-Hilton senses. The composition QI is a cotriple in

TOp, and an QI-costructure on a space X is a counitary, coassociative map a:X XQI.

By adjointness every suspension canonically has such a costructure. Does the existence

of a costructure imply that X is a suspension? Although in the case of loop spaces the

general "tripleableness" theorem was more or less useless, in this instance the dual

"cotripleableness" theorem, or a simple manual approach, shows that every X with an QI-

structure is canonically homeomorphic to a suspension. This fact, which also holds for

the cotriples QkIk, was pointed out by Luke Hodgkin.
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FUNCTORS BETWEEN CATEGORIES

OF VECTOR SPACES

by

D. B. A. Epstein*

and

M. Kneser**

Let K and L be fields. We consider the problem

of classifying functors from the category of finite

dimensional K-vector spaces and K-linear maps, to y(L). For

any two categories A and B and for any object B of

we have a functor from A to which assigns to each ob-

ject of the object B, and to each morphism of a the

identity map lB. Any functor isomorphic to such a functor

will be called a constant functor.

The following results are improvements

on the results in [2].

Theorem 1

Let F: V(K) VeL) be a non-constant functor,= =

and let K be infinite. Then K and L have the same char-

acteristic and L is infinite.

If K is finite then Theorem 1 is false. For we

* University of Warwick, Coventry, England

** Gottingen, Germany
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have the forgetful functor from V(K).. to the category of

finite sets, and for any field L there are many functors

from the category of finite sets to Y(L). This remark is

due to A. Borel. We shall therefore assume throughout this

paper that K is infinite.

Theorem 2

Let K and L have characteristic zero and let

F: V(K) VeL) be a non-constant functor. Then for each

integer n 0, there exists a functor

and a functor F: V(K) VeL), such thatn = =

i) Gn is additive in each of its n variables

ii) Fn is a subfunctor of Gn• where

is the diagonal functor

iii) F = n

Note. When n = 0, Y(K)n is defined as the cate-

gory with one object and one morphism. So Go, and Fo

are constant functors.
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Corollary 3

K can be embedded in a finite field extension of

L.

Corollary 4

If K the field of rationals, then F is a

polynomial functor. Such functors are completely classified

in [2].

Corollary 3 is a consequence of Theorem 2. The

easy proof is given in Lemma 5. Corollary 4 follows from

[2] Lemma 7.2.

Since FV is naturally isomorphic to

FO 0 ker(FV FO), we may assume without loss of general-

ity that FO = O. (The constant functor V FO corres-

ponds to the case n = 0 in Theorem 2. That is FoV = FO .)

We now commence the proofs of the theorems.

Lemma 5

Let G be an abelian group and W a finite dimen-

sional vector space over L. Let e: G AutLW be a

homomorphism. Then the smallest extension field Ll of L,

which contains all eigenvalues of 8g for all g E G, is

a finite extension. Moreover there is a basis of

with respect to which all elements of 8G are upper tri-

angular.
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Proof. We use induction on the dimension of W.

Suppose that for some element g E G, 8g is not scalar

mUltiplication. Let A be an eigenvalue of 8g. Without

loss of generality, we may suppose that A E L. Then

W t- WI = {w E wi (8g)W = AW} t- 0

is a representation space for G. We apply the induction

hypothesis to WI and W/W I. This completes the proof.

We use this lemma to show that Theorem 2 implies

Corollary 3. Since F is not constant, G t- 0 for some
n

n 1. Therefore M = Gn(K, •.. ,K) t- o. Now M is an L-

vector space which is also a vector space over K (via the

action on the first variable, for example). By Lemma 5 we

may find a finite field extension LI of L and an LI-

basis for M3LLI' with respect to which the action of any

element k E K is upper triangular. Each diagonal position

then gives rise to a field embedding of K in L I .

Lemma 6

Let G be a nilpotent group and let L be an

algebraically closed field. Let W be a finite dimensional

vector space and let 8: G AutLW be a homomorphism.

Suppose that G has no finite cyclic quotient group. Then

it is possible to choose a basis for W, so that each ele-

ment g E G acts as an upper triangular matrix.
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Proof. We need only show that G acts by scalar

multiplication for every simple G-module W which is finite

dimensional over L. Let {I} = Go < G1 < .•• < Gr = G be

a central series for G, and suppose we have shown by induc-

tion on i, that G. acts on W by scalar multiplication.
l.

Let e : G AutLW be the representation.

Let E Gi + 1 and E G. Then
-1 -1 E G.x g xgx g

l.

and define >..(x,g) E L* >..(x,g) -1 -1so we can by = e(xgx g )

or

ex • eg = eg • exx (x,g)

Taking determinants, we see that >..(x,g) is a k t h root of

unity, where k = dimW. It is obvious that for fixed x,

>..(x,) gives a homomorphism of G into L*, and hence into

the group of k t h roots of unity in L. But the k t h roots of

unity form a finite cyclic group, and so >..(x,g) = 1 for

all x E Gi +1 and all g E G. Hence ex commutes with the

action of G on W. By Schur's Lemma, ex is therefore

scalar multiplication. This completes the proof of the lemma.

We recall that a linear map A: W W is called

unipotent if (A - 1) is nilpotent, i.e. if (A

for large enough r. This is equivalent to being able to

find a basis for W, with respect to which A is unitri-

angular (upper triangular with ones down the diagonal).
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Theorem 7

Let K be an infinite field and let dimKV> 2.

Let SL(V,K) be the group of automorphisms with determinant

one. Let 8: SL(V,K) AutLW be a non-trivial homomor-

phism. Then

i) L is infinite;

ii) K and L have the same characteristic;

iii) e maps unipotent elements to unipotent elements.

iv) In fact, if we fix a basis for V, then there

exists a basis for W such that 8 maps

unitriangular matrices to unitriangular matrices,

but we do not prove this.

Proof. Every normal subgroup of SL(V,K) is con-

tained in the group of scalar multiplications by the r t h

roots of unity (dim V = r) [1] p. 38. So SL(V,K) has

only trivial homomorphisms into finite groups. In particular

L must be infinite.

Let K have characteristic p. Then the unipotent

elements are exactly those whose order is a power of p. So

if L has characteristic p, then unipotent elements are

mapped to unipotent elements. The matrices of the form

1 + xE 1 2 ( X E K) form an infinite abelian group H of
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exponent p. By Lemma 5, we may choose a basis for W@LL,

so that 8H consists of upper triangular matrices. The

diagonal entries of an element of 8H are pth roots of

unity. Hence the subgroup S of H consisting of elements

mapping under 8 to unitriangular elements, is non-trivial.

On the other hand, if the characteristic of L is not p,

S = 1. It follows, as in the first paragraph, that 8 is

trivial. So we have proved that if K has characteristic

p, then so has L, and unipotent elements are mapped to

unipotent elements.

Now let K have characteristic zero. Without

loss of generality, we may suppose that L is algebrai-

cally closed (which would not be legitimate if we were

proving iv). We now apply Lemma 6, to deduce that unitri-

angular matrices in SL(V,K} are sent to upper triangular

matrices in AutLW. Let i < j < k. Then the commutator

(1 + AE .. }(l + E.k}(l - AE .. }(l - E. k) = 1 + AE
1
' k .

1J J 1J J

It follows that 8(1 + AEi k} is a commutator of upper tri-

angular matrices and is therefore unitriangular. So

8(1 + AEi k} is unipotent.

Changing the basis of V, we see that 8(1+AE.. }
1J

is unipotent for all i j. It follows that for i < j,

8(1 + AE .. }
1J is unitriangular. Since the elements 1 + AE ..1J

generate the group of unitriangular matrices in SL(V,K},
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we see that e maps unitriangular matrices to unitriangular

matrices, and hence unipotent elements to unipotent elements.

We therefore have

where a .. : K L. Since
1J

e (I + xE 1 2 ) = 1 + E•• 0. •• (x)E .. ,
l<J 1J 1J

e is non-trivial on SL{V,K),

We pick a pair of integersa.. must be non-zero.1J
withi < j,

some

a.. non-zero and j - i minimal. Then a ..1J 1J
is an additive homomorphism of the divisible abelian group

K into L. It follows that L has characteristic zero,

and the proof of Theorem 7 is complete.

We can now deduce Theorem 1. If Theorem 1 is

false, then by Theorem 7, each homomorphism

SL{V,K) AutLFV induced by F is trivial. Let V be

a vector space of even dimension, such that FV O. Let

i,j: V V$V be the canonical injections and

p,q: V be the canonical projections. Let

a = jp + iq. Then a has determinant one and 0. 2 = 1. We

have 0V$V = ip a ip a. Applying F and remembering that

Fa = Ivev' we have 0 = F{ip)2 = F{ip). Now Iv = pi pi.

Therefore

IFV = F{lv) = F{p) F{ip) F{i) = 0 ,

which is a contradiction.

We assume from now on that K and L have charac-

teristic zero. For any nilpotent endomorphism N of W,

we can define exp N and log (I + N) with the usual power
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series. The functions exp and log give inverse bijec-

tions between the set of unipotent endomorphisrns and the set

of all nilpotent endomorphisms.

Lemma 8

Let G be the group of automorphisms of V of

the form (1 + xN), where N is a fixed endomorphism of

V with N2 = 0 and x E K. Let 8: G GL(m,L) be a

homomorphism which maps G into unipotent matrices. Let

8 .. : K L(l s i,j s: m) be the function defined by
1)

8 .. (x) = 8 (1 + xN) ... Then 8 .. is a sum of products of
1) 1) 1)

additive homomorphisms from K to L.

Proof. 8(1 + xN) = exp log 8(1 + xN). Now

x log 8(1 + xN) is an additive homomorphism into the

additive group of (m x m) matrices over K. The result

follows by expanding the exponential series (which is zero

after a finite number of terms).

Lemma 9

Let xV: V V be scalar multiplication by

x E K. There exist endomorphisrns A. of FV(l s i s: r)
1

and functions a. : K ---+ L such that a. is a sum of pro-
1 1

ducts of additive homomorphisms and F(XV)
r= E. 10.. (x)A. .
1= 1 1
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Proof. Let i,j: V be the canonical injec-

tions and p,q: V be the canonical projections.

Then, has as a direct summand. The first

factor has as its canonical injection and projection the

maps Fi and Fp, and the second factor the maps Fj and

Fq.

We consider the subgroup of consisting

of elements of the form I + xiq(x E K). By Theorem 7,

F(l + xiq) is unipotent for all x E K. By Lemma 8, if we

choose a basis for then each entry in the matrix

of F(l + xiq) is a sum of products of additive homomorphisms

of K into L.

Now Fp. F(l + xiq) • Fj = F(XV). The lemma

follows.

We now apply Lemma 5, with G = 42* c K* . Here 42

is the field of rational numbers. G acts on FV by

A F(AV). We can choose a basis for FV@LLl, such that

F(AV) is upper triangular for each A Now any additive

homomorphism L has the form A aA fpr

a E L. By Lemma 9 each entry in the matrix of F(AV) is a

polynomial function in A, with coefficients in Land

zero constant term. The diagonal entries are multiplicative

homomorphisms L. But every multiplicative homomor-

phism, which is polynomial, has the form A Ai for some

i O. Hence the diagonal entries of F(AV) are all of the
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form where the value of i may depend on the position

of the entry. It follows that L1 (the extension field of

L described in Lemma 5), is in fact equal to L.

For each integer i > 0, we define

• N
FiV = {w E Fvl (FAV - Al

) w = 0 all A E and N = dim FV}

It is easy to see that if a: V W is linear, then F
a

carries F.V into F.W.
1 1

We have F ED.F .•
1 1

For the sake of completeness, we repeat some material

contained in [2] concerning deviation functors, which is a

notion due to Eilenberg and MacLane [3].

Let be an arbitrary category with finite pro-

ducts and a zero object, and let be an abelian category.

Let F: £ be a functor such that FO = O. If C and

o are two objects in £' we have canonical injections and

projections

i: C C x 0, j: D C x 0, p: C x 0 C, q: C x 0 0,

such that pi = lc, qj = 10 , pj = DOC, qi = 0CO. Let

F1(C,0) = ker Fp n ker Fq. We have a direct sum decomposi-

tion, which is natural for morphisms C C1 0 0 1 •

Lemma 10

F(C x 0) FC EDFO EDF1(C,0). The projections on

to the three factors are FP, Fq and 1 - Fj • Fq - Fi • Fp.
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The injections are Pi, Pj and inclusion.

Lemma 11

If PI P2 is a morphism of functors, then we

obtain an induced morphism (Pl)l (P 2 ) 1 of functors

from £2 = £ x £ to which respects the direct sum

decomposition 10.

If G: £k is a functor of k variables,

one can perform the above process on the i t h variable for

some fixed i, to obtain a functor Gi: ck + l (We

use Lemma 11 for this.) Suppose P is as above, and we have

defined pI: £k+l where I = {il, •.• ,i
k}

is a k-tuple

of integers such that

define

ls:i.s:j
J

for each j . Then we

where J = {i , ..• , i k ' j } and 1 s j s: k + 1 .
If C = CI x ... x Cn and K is a subset of

{1,2, .•. ,n}, we denote by 1/JK: C -+ C the morphism such

that p.1/J = p. for i E K and Pil/JK = 0 for i I- K. LetK a

IKI be the number of elements of K. It is easy to prove,

by induction on the length n of n-tuple I = {il, ... ,in}

such that 1 s: i. s: j for each j, that
J

pI(CI, ... ,C
n)

= Im(LK(-l) !Klp(l/JK)) C PC ,
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where K runs over all the subsets of {l, ... ,n}. Hence

FI depends only on the length of I and is independent of

the order of the variables CI' .•• 'C. We definen

F(n) is called the nth deviation of F. We obviously have:

Lemma 12

F(n) is additive in each variable if and only if

F(n+l) = 0 .

Now we turn to functors F: Y(K) y(L), and we

suppose that FO = 0, as we can do (see just before Lemma

5). A functor F will be homogeneous. of degree i if

for each vector space V over K, and each A the

eigenvalues of FAV are all equal to Ai. We have shown

above (just before the section on deviation functors), that

if K and L have characteristic zero, then every functor

is the direct sum of homogeneous functors. In order to prove

Theorem 2, we may therefore assume F is homogeneous.

Lemma 13

If F is homogeneous of degree n, then F(n) I 0

and F(n+l) = 0 .

Proof. If A and B are commuting endomorphisms

of a vector space, then every eigenvalue of AB is the
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product of an eigenvalue of A and an eigenvalue of B. Re-

garding F(k) as a functor of the i t h variable only, we have

(k)shown that F (1, •.. ,1, A, J. , ••• ,1) (A E lD) has each of its

eigenvalues of the form Ani. It follows that the eigenval-

f F (k ) ( ) f h f ,nl+n2+···+nk. Sl'nceues 0 A, ... ,A are 0 t e orm A

(k)F (V, •.. ,V) is a subfunctor of ... it follows

that nl + ... + nk = n. Since n, 1 for 1 s: i s: k, we
1

deduce that F (n+ 1 ) = o. Let k be the largest integer such

that F(k) o. Then F(k) is additive in each variable by

Lemma 12 and so each n, is equal to one.
1

Lemma 14

Let F: be homogeneolls of degree n.

Then F can be embedded in the direct sum G of (n - 1) !

copies of F (n)
• /::,.

n' where /::,. : V(K) Y(K)n is the di-n

agonal functor. This is natural in F - that is,

if a: F 1 F2 is al morphism of functors of degree n,

then we have a commutative diagram

Fl
a ) F2

1 1
G1

S
)0 G2

where f:\ is induced by (n )
a.

Proof. Consider the composition



- 168 -

where is the diagonal and m is addition. We have F(2v )

expressed as the composition

FV FV e FV $ F(2) (V,V) FV

which is equal to Flv + Flv + Fm • YV where

YV: FV F(2) (V,V) is equal to

(1 - FiFp - = - Fi - Fj. So Yv gives rise to

a morphism of functors y from y(K) to y(L). Moreover,

if a: F 1 F z is a morphism of functors, then we have a

commutative diagram

We know that F(2v) = lFV + lFV + Fm • yV. Without

loss of generality, we may suppose that n > 1. Then all

the eigenvalues of Fm. yV are equal to 2n - 2 and so

YV is a monomorphism for each V. Hence F is embedded in

F(z) • •
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The lemma is now proved by induction on n. We can

write EDn-1T
r=l r,n-r where

T : V(K) v_eLlr,n-r =

has degree r in the first variable and degree n - r in

the second variable. This is done by regarding F(2) as a

functor of the first variable only and writing it as a sum

of homogeneous functors. (We recall that F(2) (V,V) c F(VEDV),

so that the degrees in the two variables must add up to n.)

Let G: = x We define

G(r,s): yeLl by taking the r t h deviation with

t t h f " "bl d h th d "t" "threspec 0 t e 1rst var1a e an t e s eV1a 10n W1 re-

spect to the second variable. By induction on n, using the

naturality of the embeddings for lower values of n, we embed

T in (r - I)! {n - r - I}! copies ofr,n-r

(T ) (r,n-r) ( )
• I::, x I::, •r,n-r r n-r From Lemma 13, it follows

that T ) (r,n-r) = (F(2}) (r,n-r) = F(n}.
r,n-r Hence

T may be embedded in (r - I)! (n - r - I)! - 2)!}r,n-r

copies of • I::, x I::,r n-r It follows that T • 1::,2r,n-r

may be embedded in the direct sum of (r - 1) ! (n - 1 - r} !

copies of F (n) I::, Therefore F c
{2}

1::,2 be em-• . F • mayn

bedded in (n-l) ! copies of F en} • I::, . This completes then

proof of Theorem 2.
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NATURAL VECTOR BUNDLES

by

D. B. A. Epstein

1. DEFINITIONS AND RESULTS

Let 0 r s 00 be integers. An (r, s) natural

vector bundle is a functor V which assigns to each CS

manifold M a Cr vector bundle TIM: VM M and to each

CS map f: M N a Cr map Vf: VM VN , which is linear

on fibres and makes the diagram

Vf
iJNVM

M
f

commutative. (In this paper, a manifold will have no boundary,

will have a countable basis, but need not be connected or com-

pact. The dimension of the fibre of a vector bundle will be

assumed not to vary from one component to another.)

Examples are the tangent bundle (r = s - 1) and

the bundle of k t h order differential operators (r = s - k).

New examples can be generated by taking tensor products,

direct sums etc. of existing examples. Given a vector bundle

E M ,JkE is the bundle of k-jets of sections of E.

Given a natural vector bundle V, we obtain a new natural

vector bundle (Jk(v*))*.
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1.1. Let VLin be the category of finite dimen-

sional real vector spaces and linear maps. Let

T: VLin VLin=

be continuous. By [1] 1.7, T is polynomial. Then, given

any Cr vector bundle E M , we can construct a new

vector bundle TE M as follows. The underlying point

set of TE is U
XEM

, and is the fibre

over x. Given any open set U of M , over which E is

trivial, we have an isomorphism of vector bundles

G: U x V over U. We give TE a topology and

differential structure, by insisting that

defined by TG(u,v) = (TGu) (v) E , be a Cr isomor-

phism. If V is a natural vector bundle, then we can define

a new natural vector bundle TV by M T(VM) •

Definition 1.2

We say that an (r,s) natural vector bundle is

continuous, if, for any CS manifolds P, M and N and for

any CS map f: P x M N , the induced map

F: P x VM VN , defined by

F(p,W) = V(fp)w

is Cr.
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dim VM = dim VN (This
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Definition 1.3

A natural vector bundle

if dim M = dim N implies that

name is due to P. Freyd.)

Theorem 1.4

Every natural vector bundle is continuous and myopic.

Theorem 1.5

Let V be an (r,r) natural vector bundle, where

r < Then there is a vector space W, wuch that V is

isomorphic to the constant natural vector bundle M --. M x W •

Theorem 1.6

Let V be an (r,s) natural vector bundle. Then V ,

restricted to manifolds and maps, is isomorphic to a

unique natural vector bundle.

Theorem 1.7

Let V be an (r,s) natural vector bundle. Then V

is filtered by (r,s) natural subbundles

such that

i) For a fixed manifold M, VrM = VM for r large.

ii) For each integer i 0, Vi/Vi_l FiT' where
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is the tangent bundle and F· is a homogeneous continuous

functor of degree i from VLin to VLin •=
(To say F·a has

degree i means that F.a sends scalar multiplication by

to scalar multiplication by Ai. See [1] for the classifi-

cation of such functors.)

iii} Let f,g: M,m N,n have the same i-jet

at m. Then Vf and Vg induce the same map

2. CONTINUITY

In this section we begin the proof that a natural vector

bundle is continuous (see 1.2). The following lemma provides

the necessary point set topology.

Lemma 2.1 Let X be a complete metric space and let Y be a

Hausdorff topological space. Let yeY be a point with a count-

able basis of neighbourhoods. Let f:X - Y be a function with

the following property. For each xeX and each neighbourhood W

of {y,fx} there is a neighbourhood V of x such that fVcW. Then

f is continuous at a dense set of points in X.

Proof: Let U1,U2
,u3 ••. be a countable base of open neighbour-

hoods of y. Let

x i ={x l f x eU1 or f is continuous at x}

We claim that X. is open. In fact it is obvious that {x/fxEU.}

is open, by the conditions stated. Let f be continuous at x,

let W1 and W2 be disjoint open neighbourhoods of fx and y re-
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spectively and let V be an open neighbourhood of x such that

f V £ Wi. Then f is continuous at each point x' of V. For let

W3 be any neighbourhood of fx'. By the hypothesis we can find

an open neighbourhood V' of x' such that f V' £ W2 U (W3 n Wi) •

Then we obviously have f(V n V') £ W
3

Wi.

We also claim that Xi is dense. For suppose Xi. Then

fx +y. There are disjoint open neighbourhoods Wi and W2 of fx

and y respectively, such that W
2

U
i

and for each neighbourhood

V of x, f V Wi. By the hypothesis W
2
meets fV for each neigh-

-i
bourhood V of x. Hence V meets f U. eX .•-

Now let X' = n.x .. By the Baire Category Theorem X' is

dense in X. If x E X' then f must be continuous at x. For

suppose not. Then f x E U. for each i and so fx = y. The conti-

nuity of f then follows from the hypothesis and this is a contra-

diction. This completes the proof of the lemma.

We wish to show that V is a continuous (r,s) natural

vector bundle. We need only show that for all C
S
manifolds

P and M, the map

P x VM V(p x M)

defined by = V(i )w, is Cr. Here i :M P x M is
p p

defined by i (m) = (p,m). By restricting our attention to
p

a neighbourhood of P, we may in fact assume that P = R
n•

The proof that is cr will take place in a number of

steps.
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Lenuna 2.2

x VM x M) is continuous in the

first variable.

Proof. Let w E VM lie over m EM. Let

TI: x M) x M be the projection of the vector bundle

and let Y be the one point compactification of the

Euclidean space x m) • Y is homeomorphic to a sphere,

and the usual metric on the sphere makes Y into a uniform

space.

Let f: Y be defined by f(t) = •

We must show f is continuous. We first verify the hypo-

theses of Lenuna 2.1. We shall prove that as t tends to

to ,f(t) tends either to f(t o) or to 00 E Y. For

suppose not. Let {ti}i>o be a sequence such that

o < t. - t I < t. - t I0 a 0

and f (t.) tends to wo cI f(t o) •a

We choose a strictly increasing sequence of integers

n(i) (i > 0) , which increases sufficiently rapidly so that

there is a Coo function --. with the following

properties:

i) = to '

ii) = tn(i) •

Then

,w) •
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The left hand side tends to the limit x lM)w
O

' and so

the right hand side tends to a limit. But this means

= lim. 4> . ,w)

= f(t o)

which is a contradiction.

Hence, by Lemma 2.1, f is continuous at some point

to E Let Y
t
: --. be translation by t. Then

V(Yt x 1M) is a homeomorphism, since it has an inverse

V(Y_t x 1M) • Now

V(Ys x lM)4>(t,w) = 4>(s + t,w)

Taking s = t 1 - to ' we see that 4> is a continuous function

of t at all points in

Proposition 2.3

Let w1,···,Wk be a basis for the fibre of

over 0 E Then we have a Cr isomorphism of

vector bundles over

Rn x
II' ,..

! !
= lln

given by 'i'(x,y) k
y i [V (yx) wi]= ,
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is translation by x.

Proof. By induction on n, we know that for each

w E VM , the composite

i
ltn I.n x VM L. V(ltn x M)

is continuous. Hence the composite

is continuous. This composite sends x to V(yx)w. It

follows that the map of the theorem is a continuous

isomorphism. ltn acts as a transformation group on the

manifold by p(x,w) = V(yx)w. The action is contin-

uous, since

) = + x1,y)

and is a homeomorphism. Moreover, for fixed x ,

V(yx) is a Cr isomorphism of Vltn• By [3] p. 212, the

map

p: I.n x Vl.n Vl.n

is Cr. (The author wishes to thank R. Palais for drawing

his attention to the relevance of this result.) It follows

that is a Cr isomorphism.

Proposition 2.4

U x VW V(U x W)

is Cr for finite dimensional vector spaces U and W •
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Proof. Let i: W U x Wand p: U x W W

be the canonical injection and projection. Then the composite

vw V(i») V(U x W) V(p») VW

is the identity. Let w , ••• ,w
1 r be a basis for the fibre of

VW over

to a basis

O. Let u· = V(i)w.(l j r) and extend this
J J

u1,···,u
k

for the fibre of V(U x W) over O.

By Proposition 2.3, we have Cr isomorphisms

W x VW and U x W x Rk V(U x W) •

Let i': Rr Rk be defined by

i'(x ,···,x) = (x ,···,x ,0,···,0)
1 r 1 r

The proposition follows from the commutative diagram

1
. ,

UxW x

x
1

--------+) V (U x W)

Rr

u x VW

U x W x

3. BASED MANIFOLDS

Let be the category of CS manifolds with

base point, satisfying the second axiom of countability, not

necessarily compact or connected, and which have no boundary.

Morphisms in preserve the base point and are CS

maps. If (M,m) and (N,n) are CS based manifolds, we

usually suppress the base points and write for the

space of CS maps from M to N , preserving the base points.

We give the coarse CS topology (on some compact
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subset of M the first s derivatives should be close).

An (r,s) natural vector bundle V obviously gives rise

to a functor T(V): ---;. , by putting TM equal

to the fibre over the base point. In due course we shall

show that the study of such functors is equivalent to the

study of natural vector bundles.

Definition 3.1

We say that T: ---;. is Cr if for

each pair of based CS manifolds (M,*) and (N,*) , for each

CS manifold P and for each CS map P x M, P x * ---;. N,* ,

the induced map P x TM TN is Cr.

Let VDiff(s) be the category of real vector spaces

and CS maps preserving the origin. We can talk of Cr

functors T: VDiff(s) VLin •

We shall in fact prove that every CO functor is

automatically Cs• We remark that T is CO if and only

if it is continuous in the sense that for each pair of based

manifolds M and N , the map

Lin(TM,TN)

is continuous.

Definition 3.2

We say T: VLin is myopic if

dim M = dim N implies that dim TM = dim TN. We say that

T is local if for any based manifold (M,m) and for any
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open neighbourhood U of m , the inclusion of U in M induces

an isomorphism TU --. TM •

We can also talk of a functor T: VDiff(s) --. VLin
="

being local. If T is local and f,g: M,* N,* agree on

some neighbourhood of the base point, then Tf = Tg: TM --. TN •

Theorem 3.3

a) Let T: VDiff(s) be continuous. Then

T is local.

b) Let T: be myopic and continuous.

Then T is local.

c) If T: --. is local, then it is myopic.

d) Every local functor T: VDiff(s) --. VLin has=

a unique extension to a local myopic functor

Conjecture 3.4

Every functor T: VDiff(s) VLin is local and
=

every functor T: M*Jg) --. VLin is both myopic and local.

Note that it is easy to construct functors which

are not continuous by composing some given functor with a non-

continuous functor VLin --. VLin [1] 1.2. c).=

Proof of 3.3. During this proof we shall regard

the objects of VDiff(s) as being the open unit disks Dn

in Rn , with base point at the centre.
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Let T be continuous. For 0 < t 1 , let

For t near 1,

mt is near 1
0

and so Tm
t
: TO TO is an isomorphism.

Fix such an

Let 0,0 M,* be a diffeomorphism on to a

neighbourhood of the base point. Let h: M,* 0,0 be a

CS map such that = id on mto. Then we have a commu-

tative diagram

0,0

In case a) above M,* = 0,0 so that TO TM. In case b)

this follows since T is myopic. We deduce that and

Th are isomorphisms. It follows that T is local.

Part c) needs no proof. To prove d), we fix for

each CS based manifold (M,*) a diffeomorphism

0,0 M,* on to a neighbourhood of the base point.

Given a local functor T: VDiff(s) VLin , we define

T: M*ll) VLin as follows. We put TM = TJ!I1. If

f: M,* --. N,* is a CS map, we define

Tf = (Ty)-l ,where y: 0,0 0,0 is equal to

m with small. It is easy to see that Tf is well-
E:

defined and that T defines a functor.

To show that the extension of T to is

unique, let T1 and T
2

be two extensions. We define an
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isomorphism a: T I T2 by putting aM: TIM T2M equal

to • This completes the proof of the theorem.

Corollary 3.5

Let V be a myopic (r,s) natural vector bundle.

Then V is continuous (see 1.2). If M is an open subset

of N, then the inclusion induces an isomorphism of VM with

VNIM. If T = T(V) , then T is Cr myopic and local.

Proof. The fact that T is myopic is obvious.

That T is Cr follows from Proposition 2.4. By Theorem

3.3 b), T is local. The fact that VN is isomorphic to

VNIM now follows by letting the base point vary over all

points of M. This isomorphism, together with Proposition

2.4, proves that V is continuous.

4. MYOPIA

In this section we prove

Theorem 4.1

Every natural vector bundle V is myopic. If

M is an open and closed subset of the non-connected manifold

N , then M is a retract of N. Hence VM is a retract of

VN. As M varies over all manifolds of dimension m,

dim VM is bounded. To see this, let MI, M2,···, be a col-

lection of manifolds of the same dimension, and let M be
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their disjoint union. Then dim VM is an upper bound for

dim VMi• For each integer n > 0 , let Pen) be a manifold

of dimension n with dim VP(n) maximal.

Lemma 4.2

Let dim Ml = n l ' dim Mz = nz• Let

f,g: Mil U P(n l) , Ml ' P(n l) '"'"""+ Mz U p(nz) , Mz ' p(nz)

and let flM l = glMl• Then Vf and Vg agree over Ml •

Proof. We extend f and g to

f' ,g': M
1

U p(n l) U P(n l) M
2

U p(nz)

(disjoint unions) by fixing a point in p(nz) and sending

the third summand to this point. Then we have the commutative

diagram

where a is the canonical inclusion avoiding the third

summand and a is the canonical inclusion avoiding the

second summand. Both a and a have one-sided inverses

so Va and va are isomorphisms over Ml • Hence

Vf = Vg over Ml •

From the lemma, we see that we can define a new
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natural vector bundle V' by ViM = V(M U Pen) ) 1M •

Moreover V' will be myopic and so Corollary 3.5 applies.

Let T = T(V): and let T' = T(V') • With

the notation of the proof of Theorem 3.3, we have a commu-

tative diagram

V(D U pen)

1
VD Vsp Vh

and hence a commutative diagram

TD

T'CD..... T'M

r
Teo TM

T'h

Th

T'D

1
TD

In both diagrams the vertical maps are injective. By

Corollary 3.5 T' is Cr, myopic and local. Hence the

composite in the top row is the identity and and T'h

are inverse isomorphisms. It follows that and Th are

both injective and hence they are isomorphisms. This shows

that dim TD = dim TM , and so V is myopic, which proves

Theorem 4.1.

5. CONSTRUCTING NATURAL VECTOR BUNDLES

Let T: VLin be a myopic Cr functor.

We construct an (r,s) natural vector bundle V using T.
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If M is an n-dimensional manifold, the underlying point set

and vector space structure on VM is UmEM T(M,m) , where

T(M,m) is the fibre over m. We give VM a differential

structure, by insisting that for each CS diffeomorphism

M on to an open subset of M, we have a Cr

diffeomorphism

given by 4>(X,w) = • Ty • w , where
x

y :
x

is translation by x.

To check that the differential structure is well-

defined, we let M be a diffeomorphism on to an open

subset of We must show that is a Cr isomor-

phism of vector bundles over (where is defined

analogously to 4».

Now

where y = The map x , given by

(x,x l) is Cs • Since T is Cr , we see

from the definition 3.1 that is Cr .
If f: M is CS , we define

Vf: UmEM T(M,m) U
nEN

T(N,n)

by VfIT(M,m) = Tf: T(M,m) T(N,fm) • The proof that Vf

is Cr is the same as the proof above that is Cr.

We now have a map (in fact a functor)
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a: {myopic Cr functors VLin}

{(r,s) natural vector bundles}

We also have the obvious map (also a functor)

S: {(r,s) natural vector bundles}

{myopic Cr functors VLin}

defined by taking the fibre over the base point.

Theorem 5.1

These maps are inverse bijections.

Proof. It is obvious that Sa = 1 •

Let us start with an (r,s) natural vector bundle V.

Then aSV and V have the same underlying point set and

vector space structure in each fibre. To see that aSV and

V have the same differential structure, we apply Proposition

2.3.

6. THE FINE STRUCTURE

Let T: VLin be a myopic Cr functor.

For each based manifold (M,*) we have the factorization

* M * •

This factorization is natural and so TM is naturally isomor-

phic to T* ker(TM T*)

6.1. We may therefore assume, whenever it is

convenient, that T* = 0 •
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Lenuna 6.2

If s = 0 , then T is a constant functor.

Proof. We suppose T* = O. By 3.3 b), T is local.

Let f.o mn,O --- be s ch that Tf 0& c-- U I • We can find

g arbitrarily near in the CO topology, such that there is

a neighbourhood of zero on which g is zero. By taking g

near enough to f and using the continuity of T, we may

assume Tg O. But this contradicts the fact that T is

local.

Theorem 6.3

There is a filtration

such that:

a) For each based manifold M, TrM = TM for some

r depending only on the dimension of M ;

b) Ti/Ti- 1 is isomorphic to F· 0 T , where T isJ.

the tangent space and F· • VLin VLin has degree i •J.0 .......-=== = I

c) If f,g: M,* N,* have the same k-jet at

the base point and if t k or if k = s then Ttf = Ttg •

Proof. By Theorem 3.3 d), we may take T to be a

cr functor from VDiff(s) to VLin. Let=

I: -.. VDiff(s) be the inclusion. T 0 I: VLin VLin

is obviously a continuous functor. By 6.1, we may assume

TO = O. By the results of [1] or [2], we have
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T 0 I = $1>0 F i ' where F i: --. has the property

that if AW: W W is scalar multiplication by A , then

Fi(Aw) is scalar multiplication by Ai. We have

TW = m. 0 F.W , but the direct sum decomposition will in gen-
1.> 1

eral not be preserved by Tf , where f is differentiable.

Lenuna 6.4

Let f: W1,0 Wz,O be a CS map between vector

spaces, with zero k-jet at zero. Then Tf sends

j t
mi=l FiW l C TW1 into mi=l FiW Z C TWz where t = [j/(k + 1)]

if k < sand t = 0 if k = s •

Proof.

the component in

If x E TW = m. F.W, we write x. for
1>0 1 1

F.W. Suppose that the lemma is false. Then
1

and f: W ,0 W,O with zero k-jet,
1 Z

such that [Tf (x) ] 1 0 , where l(k + 1) > i if k < s .
We replace Wl by m.n and Wz by m.m . We can

write f as a finite sum f = La.e. , where a· is a
1 1 1

monomial of degree k in the co-ordinates of m.n and

Q 0 0 l'S Cs - k•IJ.: .IIi., ----- A,
1

Since T is continuous, we can

approximate e. by a polynomial which vanishes at zero, and
1

hence f by a polynomial g, such that g vanishes to

order (k + 1) at zero, at [(Tg) (x)] 1 O. If k = s , we

may assume without loss of generality that g vanishes to

order (i + 1) •

We factorize g into
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where h(x1,···,xn) is a new vector, each entry of which is

a monomial in the x.'s of degree greater than k (greater
J

than i, if k = s), and where a is a linear map. Now

Ta sends F.I.N to F.Jtll for each j • Hence [Th(x)]1 0 .
J J

We have a conunutative diagram

12n,O 12n,Oit

hi
A
q

lh
llN 1 0 m.N,o S

) m.N,o)

where q = k + 1 if k < sand q = i + 1 if k = s , and

where S is a linear map, represented by a scalar matrix,

each entry being a power (possibly AD) of A.

Since each F. is a polynomial functor [1] 1.7, wea,

know that TS: TllN T12N depends in a polynomial fashion

on A. Applying T to the above diagram, we see that

• x

= TS • T (Aq) • Th • x •

Therefore, taking components,

;.i (Th • x) 1 = A1qT S • (Th • x) 1

Since lq > i , and TS is polynomial in A , we must have

(Th • x) 1 = 0 and this is a contradiction.

Corollary 6.5

Defining = e j F,W, we obtain a subfunctor
i=l



- 191 -

of T.

To complete the proof of Theorem 6.3, we need only

prove part c), because b) follows from c) by putting k = 1 •

We may assume that f,h: U,O W,O and that the k-jet of

h is zero. We must show that Ttf = Tt(f + h) if t k

or if k = s •

Now f + h factors as

A fxh +

Writing S = Tt , we see that we need only show that

S(f x h): S(U x U) Sew x W) is independent of h. Now

by Lemma 6.4, Sh: SU SW is zero. According to [2] 9.1,

we need only show that S(2) (1 ,h): S(2) (U,U) S(2) (U,W)
u

is zero. This follows by applying Lemma 6.4 to the functor

W S(2) (U,W) , since we know that this functor is the sum

of functors of degree less than t (see [2] 9.4).

7. MISCELLANEOUS

By now we have completed the proofs of most of the

results stated in 1. The only outstanding points are Theorems

1.5 and L 6.

We first prove Theorem 1.5. According to Theorem

5.1 and Lemma 6.2, we need only consider Cr functors

T: VDiff(r) --. VLin with r > 0. By 6.1, we may assume
=

that TO = 0. We wish to show that T = 0. Without loss

of generality, we may suppose (in the notation of Theorem 6.3)
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that T = Ti and Ti-l = 0 As in [2] 9.4, we can now

reduce i, by replacing T with T(2) (W,) for some fixed

W. There is therefore no loss of generality in supposing

T = Tl. But then, according to Theorem 6.3 and [1] 7.1,

T is simply the direct sum of a certain number of copies

(say N) of the tangent space at the origin.

T corresponds to an (r,r) natural vector bundle V

(see 5.1). There is a natural isomorphism between V,

considered as an (r - l,r) natural vector bundle, and N1 ,

where N is an integer and T is the tangent bundle. For

each Cr map f: a --. a , we have a commutative diagram

va

-----.....) Na

INTf
Nll •

We choose trivialisations and

NTa a x aN. In these terms = • y) for

x E a , yEaN , where is a non-singular (N x N)

.mat.rLx , We know that is Cr- 1
• We have

Vf(x,y) = (fx,gx • y) where g is Cr and gx is an

(N x N) matrix, and NTf(x,y) = (fx,f' (x)y) •

The commutative diagram above leads to the equation,

which exists for all Cr maps f: a --. a ,

= )g(x)

where is independent of f and g depends on f.

We choose i and j so that the (i,j) entry of
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cp(f(x) )-lcp(x) is non-zero for x = 0 • We call this entry

k(x) • Let h (x) = x r for x 0 and h(x) = _xr for

x 0 Then h is Cr- 1 but not Cr • Let f: It,O It,O

be a Cr function such that for x near zero

f' (x)k(x) = h(x) • But then the matrix g(x) , where g is

the function corresponding to f , has in its (i,j) entry

the function h(x) , which is not Cr , and this is a

contradiction.

We now prove Theorem 1.6. In view of Theorem 5.1,

we need only show that a functor T satisfying Theorem 6.3

is COO (in the sense of 3.1), when restricted to VDiff(oo) •

Without loss of generality, we assume that T = Ti •

If M and N are vector spaces, we denote by

Ji(M,N) the space of i-jets at the origin, of differentiable

maps preserving the origin. Ji(M,N) is a finite dimensional

manifold (in fact a Euclidean space). We denote by Inv JiM

the space of invertible i-jets. This is a finite dimensional

Lie group (under composition of jets) •

Let F: P x M, P x o ..-. N,O be COO . We have to

show that the composite

p C:(M,N) Lin (TM,TN)

is COO . We need only prove this when both M and N are

replaced by M x N , for the general case can then be deduced

by composing with the injection M M x N and the pro-

jection M x N N. We can therefore assume M = M = W ,

without loss of generality.
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We factor C:(W,W) --. Lin (TW,TW) :

Diffeo(W x W) Aut T(W x W) Lin(TW,TW) •

.1 y
Inv J1. (W x W)

This diagram is commutative, and a,a and yare defined as

follows: (af) (x,y) = (x,y + f(x) ) , a is induced by T

(according to Theorem 6.3 c) ) and y is defined by composing

on the right with Tj and on the left with Tq , where

j: W --+ W x W is the injection of the first factor and

q: W x W --+ W is projection on to the second factor.

We know that 8 is analytic since it is a map of

Lie groups. The maps y and a I are also analytic. If

p x W, p x 0 W,O is Cal , then the composite

p C:(W,W) -+ Ji (W ,W)

is obviously a Cal map between finite dimensional manifolds.

The result follows.
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SEVERAL NEW CONCEPTS:

LUCID AND CONCORDANT FUNCTORS, PRE-LIMITS, PRE-COMPLETENESS,

THE CONTINUOUS AND CONCORDANT COMPLETIONS OF CATEGORIES

by

Peter Freyd

I LUCID FUNCTORS

Given a set-valued functor T: A S we define

the category El(T}, the category of elements of T, as the

special comma category (l,T), i.e.,

Objects are pairs (x,A), A x ETA.

Maps from (x,A) to (y,B) are maps f: A B

such that (Tf) (x) = y.

A functor T: A S is called a PETTY functor (sometimes

IIproper'.''bounded, II) if El (T) has a pre-initial set, i.e., if

there is a set of g of objects in El(T} such that for every

X E El (T) there exists S E S and a map S X. By trans-

lation, then, there exists a generating set

Xi E TAi such that for any B E A, Y E TB there is a map

f: Ai B such that (Tf) (Xi) = Y» The subfunctor generated

by {<xi,Ai)} is all of T. (In general, given any class

{(xi,Ai)} we may define

T' c T by T' {B} = {y TBIZi, Ai B

such that (Tf) (Xi) = y}.} Note that the class of natural

transformations (T,V) , V any functor, is embedded in
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TIIV{Ai) where the i t h projection map is defined by

Pi(n) = n
A

(x.). Consequently the class of transformations may.
a,

be replaced by a set. The category of petty functors from A

to S is locally small. For petty T the functor LIIfi. --+ T

defined by
A·H where

B(f: A. B) = (Tf) (x.) is epimorphic. Conversely, anyoJ., ,
quotient functor of a sum of representable functors is petty.

T: A S is petty iff all chains of subfunctors

ranging through the ordinals, such that U T = Ta are

in fact eventually stationary, i.e., T = T for large a.a

Clearly, petty functors have this property because for each

i E I we let o{i) be the first ordinal such that

Let 0 = sup a{i). Then for o a, T = T.a Con-

versely, if T is not petty we may well-order the objects of

El(T) and construct a non-terminating chain.

An example of a naturally arising functor that is not

petty is the covariant power set functor P: S S. P (A) is

the family of subsets of A. Given f: A B, (Pf) (A') = Im{fIA').

We may construct a chain of subfunctors of P as follows: for

each cardinal K define P
K

to be such that

PK(A) = {A' c AI cardinality A' < K}. In fact, these are the

only subfunctors of P, and all proper subfunctors of Pare

petty.

A functor T: A B is called petty if for every
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petty set-valued functor s: B it is the case that

A T) is petty.

It is easy to see that it suffices to check for repre-

sentable S. If one replaces this last condition with primi-

tive terms the "solution set conditions" as used to be stated

for the general adjoint functor theorem is obtained. Of course,

nowadays, we replace that condition with the requirement that

the functor be petty.

Returning to set-valued functors, we say that

T: A is LUCID if:

(1) T is petty.

(2) For every P: A S and pair of transformations

P it is the case that the equalizer is

petty.

It should be noticed that lucid is to petty as coher-

ent is to finitely generated. The next proposition allows

us to test for lucidity by restricting P to representable

functors.

Proposi tion 1.1

A functor T: is lucid iff it is petty and for

every representable HA and transformations x,y: HA T

the equalizer Ker(x,y) is petty.

Proof. Given petty P and transformations a , a: P

we first use the pettiness of P to obtain an epimorphism
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K'----» ZIti

1 1
is a pullback then K' is epi and K' is

the equalizer of EHA.i -+P q. Ii B )' T. It suffices to show that

K' is petty. But K' =
J. where K'·J. is the equalizer of

We might add here that for ED' ive functors from an

G)' ive category to the category of abelian groups G, the the-

orem is true, but the proof is diffe:rent. It is not the case

that
J.

is epi. It is the case that

is the kernel aris-is epi where••• , in>EK'C"'."..... K'
J.,

ProEosition 1.2

Arbitrary sums of lucid functors are lucid.

Proof. Given a pair of maps if

x (lA) is not in the same component as y CIA) the equalizer of

x and y is empty. If, on the other hand,

x(lA) E TiA , y(lA) E TiA then the equalizer of x and y

is the same as the equalizer a pair of transformations from
A

H to T. •
J.

I
Again this proposition is true in the $' ive case,
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but not the proof. We shall wait until after 1.7 to describe

the correction. The only other closure property on lucid func-

tors true without restriction is:

Proposi tion 1. 3

The full subcategory of lucid functors on A is

closed under the formation of equalizers.

Proof. Given a., S: T 1 2 since T 1 satisfies

L1 'and T2 satisfies it follows that Ker(a.,S) satis-

fies L. Since Ker(a.,S) is a subfunctor of T and T sat-
III

isfies L
2
it follows that Ker(a.,S) satisfies L..

2

A category is RIGHT PRE-CQr.1:PLETE if the solution

set condition holds for right limits. This may be rephrased in

several ways, the easiest being that left-limits of represent-

able functors be petty. For example:

Proposition 1.4

PRE-COEQUALIZERS exist if representable functors are

lucid.

Proof. We mean by the phrase "pre-coequalizers

exist" that for any pair of maps x, y: A there exists a

set {B -+C.} such that

PCE (1)

PCE (2) For any B such that
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A B X = A B --.". X there exists a triangle

for some i.

X

The equalizer of the transformation HX
, HY: HB HA

Conversely, given that the equalizer of

is a subfunctor of HB, generated by the set

is petty we may reverse the argument to obtain a pre-coequalizer

for x, s . I

Proposition 1.5

(Finite) PRE-COPRODUCTS exist in A iff (finite) pro-

ducts of representable functors are petty.

Proof. We mean by the phrase "(Finite) pre-coproducts

exist" that for any (finite) family {Ai}I that there exists a

set {Ai p.} such that for any
J IxS

{A. X}
J.

there exists

some j such that all i. Such a set

is clearly seen to be nothing more nor less than a generating

A· •set for nH J. •

Corollar4: L 6

(Finite) pre-coproducts exist in A iff products of

petty functors are petty.
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Proof. Let {T.} be a family of non-empty pet-
1. iEI

ty functors. For each i let E
J

be epi. Then
. 1.
1.

A'ITIEJ.H is epi. Let K be the set of choice functions
1.

{k: I

! IT HAk(i)
K I

where k(i) E

A' IITIEJ.H J •
1.

J. •
1.

Then there is an epi

Proposition 1. 7

If finite pre-coproducts exist in A then finite left-

limits of lucid functors are lucid.

Proof. It suffices in light of 1.3 to prove that fi-

nite products of lucid functors are lucid. The last corollary

demonstrated their pettyness. It remains to verify Lz • Let

T1, Tz be lucid, P petty and (a1,aZ) , P Tz

transformations. The equalizer K1 of the maps a l , 62: P

(6 1,6 z ) is the equal-

.•

andThe equalizer of

izer of the pair and K12

In the e'ive case finite pre-products exist and hence

is petty.

finite products of lucid functors are lucid. The e'ive version

of 1.2 is proved by observing that any map
A
H ETi factors

through a finite subsume

An observation, though entirely formal is worth mak-

ing here. We'll say A is PRE-COREFLECTIVE in B, if for every

B E B there exists a set {A. E A such that for
1. ...-
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every A E A, A there exists a triangle

Proposition 1.8

A may be fully embedded as a pre-coreflective sub-

category of a finitely left complete category iff is finite-

ly left pre-complete iff A has pre-equalizers and finite pre-

products.

Proof. >clear

<== By the last propositions the category of

lucid functors from A op is finitely left-complete and the

Yoneda embedding embeds A into it by 1. 4. •

To remove the "finitely"'s we must do more work. Par-

ticularly, we must know when arbitrary products of lucid func-

tors are lucid. First, however, we consider the right-hand side.

We know that arbitrary sums of lucid functors are lucid (1.2).

It remains to that coequalizers of lucid functors are

lucid. In the E9 live case this is easy • Given 0

exact, S,T lucid, let C be any transformation,

is projective and we may lift to obtain a triangle
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Let 1 1be a pUllback. K is the kernel of aA
S ->T

But K

petty.

Ais also the kernel of a map S e H and hence K is

For the set-valued case we must do more.

Proposi tion 1. 9

If A has finite pre-coproducts then coequalizers of

lucid functors are lucid.

Proof. Let S,T be lucid, a,S: S

tions, T the coequalizer of a and C is easily

petty. To verify L z for C we first display C as the co-

equalizer of a reflexive, symmetric ana transitive pair of trans-

formations into T. The construction is familiar to topos-peo-

pIe. For each word on tne symbols "as" and liSa" we consider

the diagram typified by:

1\
'1' T \aT T

where the we-rd is (as) (Sa) (Sa). We let K be the left-limit
w

of the diagram for the word K
P,

>T the stipulated map tow, «

W

the left-most copy of T, K Pz >T to the right-most copy.
w

(K¢ = T) . Note that under the hypothesis of the propositions

K is petty. If we sum over all words X = EK and considerw w
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PI P2.
the pair of induced maps into T, K > T, K Tit becomes

- P L - P,-clear that K T C = K T C and that for elerrents

x, Y E TB which are sent to the s arne e lement in CB that there

exists z E KB such that (KPl) (z) = x, K(P2) (z) = y. Hence

the image K of K TxT is the kernel-pair of T C,

i.e., we obtain a pullback

T C

and K is petty (in fact, lucid) • Now let X, y be transfor-

mations from HA to C. We wish to show that the equalizer of

X, y is petty. We may lift each to a transformation into T:

HA HA

yl
let E be the left-limit of

HA

P
xl!y

1
K T

P
>

2

By the hypothesis of the proposition, E is petty. But

E HA is the desired equalizer••

We may collect:
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Propositlon 1. (10)

If A has finite pre-products then the full category

of contravariant lucid-functors is closed under finite left-

limits and arbitrary

If A furthermore has pre-equalizers then represent-

able functors are lucid and the yoneda embedding displays A

as a full pre-coreflective subcategory of the category of con-

travariant lucid functors. I
We shall now find the conditions under which lucid

functors are closed under arbitrary left-limits and under which

the yoneda embedding displays A as a pre-reflective

subcategory.

The first is the problem of finding when arbitrary

products ot lucid functors are lucid.

Proposition 1. (11)

If products of representables are petty and powers

of representables are lucid then products of lucid functors are

lucid.

Proof. We have already seen that products of repre-

sentable's petty implies products of petty being petty. Let

{Ti}I be a set of lucid functors X, y:

mations. We wish to show that the equalizer of X, y is pett:y.

For each i E I let u: be the equctlizer of

p.x, p.y: HA -? T.• Then the desired equalizer is the
]. a, a,
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and r.: be
1

the desired equalizer.

defined by r. = u.p ..111 The common equalizer of the r. IS
1

Consider the maps f,g:

is

where

f, g

p<. .) f = r i , p<. .) g = r. • Then the equalizer of1,J 1,J J

is the desired common equalizer. P is petty. Hence if

the power is lucid then every product of lucids is lu­

cid. I
We have seen that the pettyness of products of repre­

sentables is directly equivalent to the existence of precopro­

ducts. Powers of representables are lucid if we have the fur­

follows:

pairs of maps that there exists a solution set

ther condition that for any sequence {(f. g.):
1, 1

J J

of

as

f· g'(1) B ,
:-A )c. = B 1. all i, j .

J J
f·

(2) For such that B 1.

J'
:::: B A ­­:'I> X all i there exist

some j.

We can further reduce the condition so that instead

of sets of pairs of maps we have sets of maps. Given a set

{f.: B­­7A} we define an EXTENDED PRE­COEQUALIZER to be a
1.
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set . } such that
J

(1) f· fkB = B all i, k, j
J

f·
J

(2) For such that B J >A

== B A ..... X all i,k there exists

Some j .

It should be clear that an extended pre-coequalizer

is precisely a generating set for the common equalizer for the

set of transformations

Theorem 1. (12)

The following are equivalent.

(1) A is right pre-complete.

(2) Left-limits of representable functors are petty.

(3) Products of representable functors are lucid.

(4) Representable functors are lucid and left-limits

of lucid functors are lucid.

(5) A has pre-coproducts and extended pre-coequal-

izers.

Proof.

(1) <==> (2) by definition.

(2) > (3) one need only remember the test for

lucidi ty (1.1).
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(3) > (4) last propostion.

(4) > (2) by forgetting.

Now for 5. That (4) > (5) is easy. For the con-

verse we know that simple pre-coequalizers imply that represent-

ables are lucid. (1.4) Pre-coproducts imply that products of lu-

cid functors are petty. (1.6) Since equalizers of lucid functors

are lucid it suffices to show that products of lucids are lucid

and by the last proposition it suffices to show that powers of

representables are lucid. By our comments after the last proof

it suffices to construct for any set of pairs

{<f ., g.): B I
1. 1.

a solution set using the existence of extended precoequali-

zers and pre-coproducts.

For each i, let {A be a pre-coequali-
J jEJ.

1.

zer of f., g .•
1. 1.

Let K be the set of choice functions

For each r E K let

be a pre-coproduct of
r

be an extended precoequal-

There exists, then, for each

Mf

A--+D = (L). m r 1. m

The seti) .(independent of

r, and f E L letr m

izer of I •

m E Mf, f E Lr, r E K a map

is the desired solution set,
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as follows:

(1) Choose i, r E K, f E Lr, m E Mf • To show:

£1 gi
B = B ) A-----.Om •

But

and

= A
fi gi

B ) A---+-C r (i) = B A----+ Cr (i)

(2) Given A such that

f.
J. all i ,

to find r E K, f E Lr f m E Mf such that there exists

\J
We know that for each i E I there exists j E Ji and

•

Choosing a single j for each i we define r c K such

that there exists

all i.
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For the collection there exists f E L
r

and triangles

Remembering that there is only one map under discussion

from A to X we note that A is

independent of i. Hence by the definition of {Pf

there exists m and

Theorem 1. (13)

I

A may be fully embedded as a pre-coreflective

subcategory (simUltaneously pre-reflective) of a_complete

category iff A is left (and right) pre-complete.

Proof.

<= clear.

> The embedding is, of course, into the cate-

gory of contravariant lucid functors, Lucid The

last theorem showed that the left pre-completeness of A

implies the left-completeness of Lucid (AoP). 1.2 and 1.9

demonstrated its right completeness. For the parenthetical-

ly stated theorem we suppose that T is a lucid functor.
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such that for any there ex-

A transformation

is an element of the Isbell conjugate T* when evalu-

ated at B. And would be nothing more nor less than
1.

a generating set of elements for T*. Thus we wish to show

precisely that the Isbell conjugate of a lucid functor is petty.

of representables, conjugatingEvery petty functor is a lim

carries into lim's, hence T* is a lim of representables.

(T was contravariant, T* is a lim of covariant representables.)

Now the right pre-completeness and the last theorem finish the

proof. T* is lucid, a fortiore, it is petty. I

II THE RIGHT-COMPLETION

Let B be a right-complete category and F any set,

class or super-class of right-continuous functors from B

(range not fixed).

Let C c B+ be the class of maps carried into iso-

morphisms by every functor in IF. Let B be the category of

fractions obtained by formally adjoining inverses of the maps

in C. We recall that objects of B are the same as those of

B, the maps from B to A are represented by pairs

' where E C subject to the congruence

(B---+A1 , - A--+Az) if there exists



all sides of which are in C such that

- 213 -

l !
A
2-4A3

= B composition is defined as follows:

d f'
be a pushout, noting that is in C and e lne

the composition as

Proposition 2.1

B is right-comp Lete , B B right-continuous.

- -Given any F: B E in E there exists unique F: B E

-such that B --+ B --+ E = F, F is and given

-any G: B e and natural transformation n: F GIB

there exists unique extension F G.

Proof. We observe first that B B is right-

continuous. Given T: D B, D small we wish to show that

lim T remains the right-limit of T: D --;. B B. Given any

collection {(TD XD' X XD)} DED with X --+ XD
in

e all D, such that (TD' TD XD' X XD)

- (TD' XD' , XD' )
all D' --+ D in xeD , we

A

wish to find (lim T -+ XL' XL) , X XL in C
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all D. We define first X' as the right-limit of the family

{x X}. Because each functor in E is right-continuous
D

it is the case that XD --. X' and X --. X' are in C. For

X XD
each f: D' D let ! ! be such that

X XfD

TD' -. TD XD Xf = TD' XD' Xf (as must exist

because of the given equivalences). Let
X ......

!
X'

!
X'
f

be a

pushout, note that, X' is in C and define XL to be
f

the right-limit of the family {X -+ Xf }· We now have a

family {TD XL}D such that TD' -+ TD -+ XL

= TD' XL all D' --+ D in D. Hence there exists

lim T XL· The pair (lim T -+ XL' Xl) is the pair

we seek. To see that (TD -+ lim T XL' X --+ XL)

= (TD -+ XD' X -+ XD) recall that we have for each D a

map C such that TD XL = TD X X -+ XL.o
\'1e have shown that lim T is a weak-limit in B.

Any functor F from a right-complete category which carries

right limits into weak-right-limits is, in fact, right-con-

tinuous. We need only show that a jointly epimorphic family

the associated maps. FL

{Ai -+ B} is carried into such. Let

family fr - B} B .a, L, B .:4 L

L be the lim of the
-+
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Given ais the weak-right-limit of the family [ FE

FB

pair f,g: FB -+ X such that FAi -+ FB 4 X = FAi FB X

all i there exists a map FL X such that

FB FL X = f and FB FV» FL'-' X = g. The joint

epimorphism of the original family {A. --... B} implies (and

is equivalent to) u = v. Hence Fu = Fv and f = g.

The right-completeness of B is proved by first

observing that sums exist easily (because B B is right-

be a pushoutLetbe given.

continuous and every object in B comes from B). For the

existence of co-equalizers let (B AI' A --+ AI) and

A -+ Al

! !
A3 is in c. We may rename the maps

(B A3 ' A -+ A
3
) , (B .a, A

3
, A -+ A3 ) .

f I
andA3 , A3 -+ A)

in !, noting that A

of the given pair as

A co-equalizer of (B

(B A3 , A3 A
3
) would serve as a co-equalizer for the

given pair since (A A3 , A
3
-+ A3 ) is an isomorphism. We

know that the of (f,g) remains a co-equalizer

in B.-
Given F: B --. E in r its definition on the objects

of B is clearly forced. Given (B.!.. AI' A AI)' g in

C we define F(f/g) = FB FAI (Fg)-I. FA. The uniqueness
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is clear. That F preserves sums and co-equalizers is easily

proved along the lines of the last paragraph. I
Given a category A let be the

category of functors which appear as lim's of contravariant

representables. As Ulmer has observed, Small (AoP) is a free

right-completion. If we define ! to be the class of all

right-continuous extensions of right-continous functors on A,

define C as those maps carried into isomorphisms by functors

in ! and the category as the category of fractions

obtained from Small by inverting the maps in £, then

ProEosi tion 2.2

is right-complete, is a

right-continuous full embedding; and every right-continuous

-. !, right-complete, may be extended right-continuously

to uniquely up to natural equivalence.

Proof. All but one statement follow directly from

the last proposition. As for the properties of A

we first observe that if HA T is in C then since

HA: A ....... Sop is in 11: that (T IHA) (HA,HA) is an-
isomorphism. Hence there exists T HA such that

HA --... T --+ HA = 1 and T HA is in c. Given any map

(F ....... T, HA T) we see that it may be renamed as

(F HA, 1) • In particular the maps in
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from HB to HA are represented by maps in AOP from HB

to· HA• That the correspondence is one-to-one follows

again from the splitting of HA T for HA T in C.

The right-continuity of A is obtained

as follows: given T: D -. small li,iIl T = A we wish

to show that lim HTD HA is an isomorphism in

It clearly suffices to show that as a map in it

is in C. The very definition of i insures that it is. I

For many purposes is too big. It need

not be locally small. We wish to find a smaller completion.

III. CONCORDANT FUNCTORS

Given small £1 C Q2 and functor T: Q2 A we

say that (Q1,D
2,T)

is a SATURATED PAIR OF DIAGRAMS if for

every A E A the induced function

lim(TD,A).......
.Q2

lim(TD,A)......
12.1

is an isomorphism. By directly translating, then, the pair is

saturated if for every family {TD --.
-1

such t:1.at
J
TD'?

all D D' E £1" There exists a unique enlargement of the

family {TD A} such that
DE12.2
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J ,/'A
TD'

all 0' E O2 -

If either lim TD or lib TO exist in A then the
-0>
-1 -2

pair is saturated if and only if they both exist and are equal.

A functor F: A B is RIGHT CONCORDANT if it

carries saturated pairs into saturated pairs:

Proposition 3.1

Right-concordant functors are right continuous.

If A and B are complete then F: A -+ B is- --
right-concordant if and only if it is right-continuous. I
Proposition 3.2

Representable functors AOP S are left-concordant.

Products of left-concordant functors are left-

concordant.

Equalizers of maps between left-concordant functors

are left-concordant.

If A' c Lucid contains the representables and
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if all functors in A' are left-concordant, then the Yoneda

embedding A A' is right-concordant.

Proof. For the last statement we need only note that

A A' is right-concordant if and only if

AOP --+ (A')oP (-,T):. £. is left-concordant for every TEA'.

That it is such is the definition of the left-concordance of

T.I
Lemma 3.3

For A pre-bicomplete, (F P') E Lucid (Aop)

such that the Isbell conjugate F'* F* is an isomorphism

and for any left-concordant T: AOP --+ S (lucid or not) ,

it is the case that (F,T) (F,T) is an isomorphism.

Proof. We first display F as a lim of repre-

sentables. Since it is petty we can find a set {H F'}
A. I
J.

such that F' is onto. For each <i,j) E I x I we let
J.

be a pullback.

we know that

P<. .) HA.J.,J J.

t l
HA. l' F'

J

Because F' is lucid and

P is petty (1.7). Let
<i,j)

A has pre-products

{HA. P<. .) }K' .
-K J.,J J.,J

be such that LKHA --+ P is onto. Define D to be the
k -1
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category whose objects are I U UK.. and wi th maps
J.,]

i, k j for every k E K· . ° We define Q,1 --+ A
J.,J

by sending i E I to A. , k E K.. to Ako Given K i E £1J. J.,J

we compose H
Ak

--+ P .. --+ HA. and determine a map Ai"J.,J J.

Similarly for k j" ..!!: A) = F' 0

Similarly we may find Q,3 A such that

(£3

For every i E Q,1 we may choose c(i) E °3 and

HA. F'
J.

HM(i)! ! "

HA ) F
c(i)

We define !?z to be the category whose objects are the disjoint

union of those from °1 and
.£3 '

whose maps are those from

£1 and £3 together with new maps i c(i), one for eaCh

i E !?1' and finally the necessary compositions k i c(i),

k j c(j) for k E K. .":L,J We define by

extending the union of the two previous embeddings £1

£3 ---+ A to Q2 ---+ with i ---+ c{i) going to r(i). With

no assumptions on the map F' F it is easily the case that

£1' 02 is a saturated pair because F'* ---+ F* is

an isomorphism. I
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We consider again the category Small (Aop) and

define F as the family of all right-continuous functors

from which are extensions of right-concordant

functors from C as the maps carried into isomorphisms by

every functor in F and the category of fractions

obtained by inverting the maps in C. By the proof of the

last proposition, C consists of those maps which become

isomorphisms when conjugated.

Proposition 3.4

is right-complete, A Conc(AoP) is a

right-concordant full embedding and every right-concordant

A .... right-complete, may be extended right-contin-

uously to uniquely up to natural equivalence.

Proof. As for 2.2 ••

need not be locally-small. But.

Theorem 3.5

If A is pre-bicomplete, then-- -- -
small.

is locally-

Proof. Given any conjugacy-isomorph F F' we

obtain an induced map F' F** such that F F' F**

is the canonical F F**. F ' F** = F ' F'** --. F**

where the second map is the inverse of the isomorphism
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F** ...... F'**.

Lemma 3.51

(G F l' F F 1 ) :: (G F2' F .-. F 2) if and

only if G ...... F I F** = G F
2

F**.

and noteConsider the pushout

Proof. We suppose first that G F I F**

F F I

t
F 2 -. F 3

that the induced map F F**3 is such that

Fn F 3 F** = Fn F**, n = 1,2. Let FIj. be the image

of F
3 F**. F 3 FIj. is easily seen to be a conjugacy-

isomorph. Hence G F I --+ FIj. = G F
2 FIj. and

(G F l' F 1) - (G F2' F F 2 ) · The converse is

left as an exercise.

The lemma easily proves the theorem. Indeed, it

informs us that (G,F) as defined in is a subset

of (G,F**) as defined in Lucid (AoP), namely those maps/

G F** such that there exists

where is a conjugacy-isomorph and F F**1 is

monomorphic. •



- 223 -

Proposition 3.6

If A is small, then is the full left­

closure in of representables, and is reflective.

Proof. Given F E let F be its reflection

-in the left­closure of the representables. F F is a

is defined in(G, F)Hencethere exists unique

conjugacy­isomorphism and for conjugacy­isomorph F F
1

F F
1.

F

is canonically the same as (G,F) as defined in

,S). I

Corollary 3.7

If A is small is the category of

concordant functors. I

We consider now a very special case.

Suppose that A is a partially ordered set. In this

case and could, therefore, be called the

SYMMETRIC COMPLETION. To verify the symmetry, we note first

that a product of representables na. has the following

characteristic property:

(n H.)a ( j )
if j i
otherwise

all i E I ,

where 1 is the set with one element, 0 the empty set. There

is at most one map between two products of representables,
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hence Conc(AoP) is precisely the set of products of

represen tab Les , IIIHi """ III,Hi if and only if

{jlj i all i E I} = {j[j i all i E I' }. Given I .",e

- {iiimay define I = j for all j i all i E I}, and

I = -then IIIHi """ III,Hi if and only if I' • We'll say that

a pair of subsets (J,I) is a DEDEKIND PAIR if

1) j E J, i E. I j i

2) j i all i E I j E J

3) i jaIl j E J i E 1.

Given I we may define J = {j!j i all i E I}

and (J , I) is a Dedekind pair. We may now note that the

isomorphism classes of are in natural correspon-

dence with the set of Dedekind pairs, and the existence of

maps between objects in is reflected by the

natural ordering of Dedekind pairs: (J,I) (J',I') if and

only if J c J' if and only if I' c I. (It helps to note

that J n I need not be empty, but if non-empty it contains

at most one point.) We have obtained a symmetric description

of Conc(AoP) namely as the ordered set of Dedekind pairs.-- ,

Given a complete Band bi-concordant A B

there are two canonical extensions to Conc(AoP) one left-

continuous, the other right-continuous. The two coincide

(as a bi-continuous) if and only if f: A B is UNIFORMALY

CONTINUOUS, i.e., if for any Dedekind (J,I) it is the case

that sup f(j) = inf f(i).
J I
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IV. WHEN DOES PETTY IMPLY LUCID?

Curiosity: 4.1

All petty functors from S to S or from Sop to

S are lucid.

Proof. It suffices to show that for any petty T

and pair of transformations x,y: H T that the equalizer

of x and y is petty, where H is representable. A fortiore,

it suffices to show that subfunctors or representables are petty.

Let T be a subfunctor of (-,A), define SeT) to be

{Im(f) I f E TB, B E S}. Then T is generated by

{A' c...,. A}A'ES. Let T be a subfunctor of (A,-), define OCT)

to be the set of equivalence relations on A induced by elements

of T. Then T is generated by {A A/:}:EO. II

Pathology: 4.2

(Nunke's) The forgetful functor from abelian groups

to sets has a quotient (hence very petty) that is not lucid.

(Hedrlin's) For T the terminal functor from semi-

groups to set, T + T has a quotient (hence ridiculously petty)

that is not lucid.

Proof. Nunke finds a strictly ascending chain of

subfunctors of the identity functor. Briefly, they are described

as follows: let K be a non-limit cardinal, let SK c ITKZ
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be the subgroup of K-tuples with support smaller than K,

let AK = ITKZ/
S

' let TK c I be the subfunctor generated
k

by {x E ALI L K}, let T = UTK• T is not petty. liT

then is the example.

Hedrlin can fully embed the big discrete category

into semigroups. In particular, there exists a proper class

C of semigroups such that for any A,B E C (A,B) = ft.

T' c T as follows:

T'X =Gif 3A E c, X

if VA E C, (A,X) =

T' is not petty. Let

Define

T' T

! !
T ---;. P

be a pushout. P is not lucid. We'll say that a category

A is PIL if all petty functors from A to S are lucid.

Certainly, if all subfunctors of representables are petty then

PIL. The converse is true. Indeed:

A is PIL if and only if all of petty

functors are

Proof. Suppose T' is a subfunctor of T, T' not

petty, T petty. We construct a non-lucid petty functor. Let
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T' ----. T

i
T ----. P

be a pushout. P is petty since it is a quotient of T + T.

But T' is the equalizer of the two maps from T to P.

Proposition 4.4

If A is PIL then any category of the form

(i.e., objects A A', maps is PIL

and any full subcategory of a PIL is a PIL.

Proof. As we have noted, it suffices to verify that

subfunctors of representables are petty. This in turn is equiv-

alent, via the usual argument made familiar by Hilbert, to an

ascending chain condition, namely that no strictly

ascending chains exist indexed by the ordinals. Now if A

is PIL and A B E then the functor represented

by A B may be embedded in the functor A(B,F(-)) where

F: A is the forgetful functor. If A' is a full

subcategory of E A' then the lattice of subfunctors

of A' (A' -)- , is a retract of the lattice of subfunctors of

The inclusion is given by S the subfunctor of

generated by {x E SA}AEA' , the retraction is induced

by restrictions. II
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Proposi tion 4.5

are PIL.

Finite Cartesian products and disjoint union of1--
Proposi tion 4.6

If A is co-well powered and such that every map

factors as an epimorphism followed by a split-monomorphism then

A is PIL'.

Proof. Just as for A = Sets. I
The writer knows only one PIL not accounted for by

the last few propositions. To be more precise, he knows one

category A not to be obtained as a disjoint union of full

subcategories of something of the form (B where B is

a Cartesian product of categories satisfying the hypothesis

Kof the last proposition. But if B is replaced with B x ,

K discrete, then every PIL the writer knows may be so

obtained.

The exceptional A is the category of sets with a

distinguished endomorphism. Because any algebraic theory with

one unary operator and a set of constants, yields a full

embedding of its algebras into (F
C
' ! ) (the equations of

the theory can make ita proper embedding) we know that such

theories yield PIL catogories. But allow just two unary

operators and PIL is lost. Indeed if M is either the
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monoid on two generators a,b with

or the commutative monoid with three generators a,b,c

a 2 = ab = ac = bc = b 2 = cL , a 3 = a 4

then the category of semigroups may be fully embedded in

(A,SetsM) and SetsM is not PIL. Hence the fact that for M

the free monoid on one generator it is the case that SetM

is PIL should not be expected to be easy. We need a few

facts about sets with endomorphisms.

V. THE CATEGORY OF SETS WITH ENDOMORPHISM

Gi ven a se t A wi th an endomorphism s: A A,

we define a rank function r: A --+ 0*, where 0* is the

"extended ordinals", that is, the ordinals with a maximal

element "00" adjoined. To define r we first define the

following transfinite sequence of subsets of A.

AO = A

A + = sA = {(x) Ix E SAN}
a 1 a '"

for limi t ordinal y; Ay = n Aaa<y •

A uniform definition may be

We understand

Ay

given by

= ('lSA
a< y Ci

= ()A
aE: 13 a.

Define r(x) = sup {alx E Aa}.

We may note that r (x) = a ===i> X E Aa and x tI Aa+ I'
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rex) = 0 x has no ancestors.

rex) = I x has a father but no grandfather.

rex) = 2 x has a grandfather but no great grandfather.

Note that since A is a set there must exist an ordinal a

such that Aa = Aa+ 1
and hence Aa = AS all S > a and

(Keep in mind that could be empty.) In particular

= "" :-=;> such that sex + ) = xn 1 n
all n.

If rex) = a < "" then x E A , s (x) E A +a a 1
and

r(s(x» > rex). We obtain then the converse of the last

implication (because there are no descending chains of ordinals) :

is therefore precisely the set of elements with

infinite ancestral lines (perhaps periodic, even constant).

Note that r (x) < w means that there is a bound on the length

of ancestral lines. w rex) < means the ancestral lines

are unbounded but all fini te. r (x) = w means unbounded

ancestral lines but that each ancester has bounded ancestral

lines.

Lemma 5.1

For any x and a < rex) there exists y such

that s(y) = x, a r(y).
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Proposi tion 5.2

If A and B are sets with distinguished endomor-

phisms (both called s ) , f: A B is a map such that

f(s{x» = s f(x) all x, then rB(f(x» rA(x) all x.

and obtain an infinite ancestral line

Proof. If

ancestral line, apply

r (x) = 00

A

f

we can choose an infinite

for f(x), yielding rB(f(x» = 00 •

Note that if rA(x) = 0 it is clear that

rB(f(x» rA(x). For the general case we argue inductively.

Suppose that S is such that we know rACy) < S rB(f(y»

rACy). Given rA(x) = S, for any a < S we choose y such

that s(y) = x, rACy) a. It follows that f(s(y» = sf(y)

= f(x), rB(f(y» a.. Hence rB{f(x» = rB(sf{y» = rB(f(x» a.,

thus rB(f{x» a all a < rA(x) and rB(f(x» rA(x).1

Given a set A with distinguished endomorphism

s: A, we may define an equivalence relation by x = Y if

there exist n, m, snx = sny. We call a subset of A, PURE if it

is closed with respect to =. The purification of a subset is

the intersection of all pure subsets containing it. A may

be partitioned into its minimal pure subsets. In the category

of sets with distinguished endomorphisms disjoint union

is the categorical sum. Hence the classes provide the

maximal decomposition of A. If A is the only pure subset

containing a set A' we say A is an ESSENTIAL EXTENSION of



flA' - r B(f (x) ) •= f, sf (x) = f (sx) r
A
(x)

r A (sx) = 00 and r B (f (sx) ) = 00. We may pick

sy = x, rB(y) = co and define f (x) = y. If

may by 5.1 find y E B such that sy =
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of A'. Note then that given A' C A, we may define B as

the purification of A', C as the compliment of B and

obtain. A = B + C where B is an essential extension of A'.

Lenuna 5.3

In the category of sets with distinguished

phisms let A be an essential extension of A'. A map

f: A' B may be extended to all of A if and only if

Proof: last lenuna. We use Zorn's lenuna on the

set of partial extensions which maintain the rank inequality.

It suffices to show that any such map may be extended just a

little (while preserving the rank inequality). Accordingly we

show that if A' A we may choose x E A - A' such that

sx E A' and define a map f: A' U {x} B such that

If rA(x) = 00 then

y E B such that

r A (x) < co we

f(sx) rB(y) rA(x)

because rA(x) < rB(f(sx». Define f(x) = y. I

Theorem 5.4

For the category of sets with a distinguished endo-

morphism any subfunctor of a representable functor is petty.

Proof. We need to show that for any object A and
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transfinite sequence of maps A Ba}, ranging through

the ordinal numbers, that there exist a < e and a

commutative triangle

A 1
(This is equivalent to the conclusion of the theorem as follows:

given the transfinite sequence we consider the subfunctors

Tc (A,- ) defined by T(B) = {A Blaa,g, gfa = f}. If T

is petty let {hi: A Ci liEI be a generating set. For each

i E I let a(i) be such that :3:g: Ba(i) ---+ C· such that
1.

gfa(i) = hi· Let s be an ordinal larger than {a(i) i.

There exists i that A!4
hi

andsuch Be = A C· Be1.

hence a triangle

Conversely suppose T is a subfunctor of (A,-), and suppose

that T is not petty. Let {Ta} be a strictly transfinite

sequence of subfunctors of T. For each ordinal a choose

fa E - Ta, and obtain a sequence that violates the

condition.) We shall in fact show more. Given {fa: A Ba}

we shall find a cofinal subsequence of ordinals 0' c 0

such that for every a,e EO', a < e there exists a triangle
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•

Given the transfinite sequence let Ca C Ba be the purif-

ications of the image of fa. (We recall that

D i s a subobJ'ect.a

Ba = Ca + Da where + is the categorical sum. The next two

lemmas jointly imply the result:

Lemma 5.41

Given a transfinite sequence {fa: A Cal where each

Ca is an essential extension of Im(f a) there exists a

cofinal subsequence 0' C 0 such that for a,S EO', a < S

there is a triangle

Lemma 5.42

Given a transfinite sequence {D }
a

there exists a

cofinal subsequence 0' C 0 such that for a,S EO', a < S

there exists Da DS•

The lemmas imply the main result rather easily. We

first find a cofinal subsequence such that there exist maps

between the purifications of the images and then a cofinal

subsequences of that in which maps exist between the complements
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of the purifications.

Proof of Lemma 5.41. Each f induces a congruencea

on A: Y if fa(y) = fa(y). There are only a set of

consequences on A, and hence we can find a cofinal subsequence

such that all the congruences are the same. We notationally

assume, therefore, that such is already the case. Each fa

factors as A AI==- C where AI==- Ca is one-to-one

and it clearly suffices to solve the problem for {AI==- Cal.

We may notationally assume, therefore, that the given

{fa: A Cal is a sequence of one-to-one maps, and in fact

are inclusions. Thus we are given a sequence of essential

extensions of A, {A C Cal.

For each a we obtain a function r a: IAI 0*.

Where r a (x) = r C (x), - the rank function defined earlier.
a

Lemma 5.3 says that it suffices to find a cofinal subsequence

0' C 0 such that for a,8 EO', a < S it is the case that

r a r 8 (i.e., ra(x) all x E IAI). We switch

notation: let I be a set, let {r a: I O*} be a trans-

finite sequence of function from I to the extended ordinals.

We wish to show that there is a cofinal subsequence in which

As before, each a produces an equivalent relation

on I, we may pass to a cofinal subsequence in which all the

equivalence relations are the same and may specialize to the
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case that the functions are one-to-one. We notationally assume,

therefore, that such is already the case.

Each ra defines a well-ordering on I. (xa < y

if r a (x) < r S (y) ). Again there are only a set of orderings

on I and we may pass to a cofinal subsequence such that

all are the same. We assume therefore that I is well ordered

by a relation < and that each r a: I .... 0* is an order-

preserving embedding into the extended ordinals.

Either there is a cofinal subsequence in which

00 E Im(r a) or a cofinal subsequence in which Im(r a) C 0

(or both). We may specialize to the latter case as follows:

If there is a cofinal subsequence in which 00 E Im(r a) it

follows that I has a maximal dement m, that ra{m) = 00

all a in the subsequence. Let I' = I-{m}, = ralI' and

it suffices to prove the result for I' o}. In any

case, therefore, it suffices to assume that the sequence is

already such that Im(r a) C O.

Either UaIm{r a) is a set or not. In the first case

it is clear that only a set of functions appear in the sequence

and that there is a cofinal subsequence in which all the

functions are the same and we would be done. In the second

case we define k E I to be the first (with respect to the

well-ordering on I) element such that {ra(k)} is not a set.

Let I' = {iii < k}. Then uara{I') is a set. For each
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function f: I' define Vf = {raCk) IralI' = fl.

Because UfVf = Uara(k) there must exist f: I' 0 such

that Vf is not a set. Let 0' = {alraII' = fl. 0' is

cofinal. We may notationally assume, therefore that the given

sequence {r} is such that for all a,S r II' = rail' anda a

that {raCk) [a E O} is not a set. Now define a function

0: 0 0 as follows: 0(0) = 0; = min{slrS(k) uo(o)r(I)

o < a}. It is easy to check that for a < S ro(a) r o (S)

and we are done.

Proof of Lemma 5.42. Given {Da} define r(Da)

= sup{r(x) Ix E Da}. Either there is a cofinal subsequence

0' such that r(Da) = 00 all a E 0' or a cofinal 0' such

that r(Da) I 00 all a E 0' (or both). We treat the two

cases separately.

In the first case we may assume that the given

sequence is such that r(D) = 00 all a. For each a, define

Pa as the set of {nlax E Da sn(x) = x}. Only a

set of possibilities exist for Pa and there is a cofinal

subsequence such that they are all the same. We pass to such

a subsequence and prove that it satisfies the conclusions of

the lemma.

Assume then that {Da} is given, r(Da) = 00 all

a, and for any integer n, and pair of ordinals it is

the case that ax E Da, sn (x) = x < ax E DS sn (x) = x we
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wish to show that for any pair of ordinals there exists

f: Da. De. Clearly the problem is no longer a problem

about transfinite sequences but about pairs. Given Da. and

De' we partition Da. into its minimal pure subobjects.

Da. = UiEIEil each Ei an indecomposable object. Disjoint

union is the categorical sum and it suffices to show that there

exists a map E· --+ De each i. If r(Ei) < (X) we pick an1.

arbitrary point x E E' and a point y E DB such that1.

r(y) = 00. We define f (x) = y, f (sn (x) ) = sn(y). If we define

E{ = {sn(x) In = O,l, ••• } we note that E·1. is an essential

extension of E! , that for sn (x) E E.' r(sn(x» < r D (f(sn(x»)
1. 1. s

(because r(sn(x» < OD and (rD ) sn (y) = (0). Hence lemma
s

yields a map E· ---i> DB· If r (Ei) = 00 ei ther there exists1.

x E Ei and n > 0 such that sn(x) = x or not. In the latter

case we repeat the argument above I taking any x in Ei •

Otherwise we let n be the smallest positive integer such that

there exists x E Ei I sn (x) = x, and choose y E De such that

sn(y) = y (finally using the assumption Pa. = Pel. Define

E{ = {x,s(x) , ••• sn-1(x)} and f: Ei De by f(si(x»

= si (y). Lemma 5.3 now provides a map Ei -+ DB.

For the remaining case we assume that {Da.} is given,

r(D) < OD all a.. Either {r(D) Ia. E O} is a set or not.a. a.

In the latter case we may pick a cofinal subsequence such that

for a. < e r(Da.) < r(De). We show that this provides the

solution as follows: Partition Da. into its minimal pure
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subobjects. Da = UEi• It suffices to show that for each i

there is a map E. DS• Pick any x E Ei· Choose y E DSa,

such that r D (y) > r(Da)· Let E! = {sn(x) In = O,l, ••• }
S

and f: E' DS be the function f(sn(x)) == sn (y) • Because
i

r
D

(sn(x) ) < r D (f(sn(x)) lemma 5.3 yields a map f: Ei --.... DS•
a B

In the former case, there is only a set of ordinals that

is a set. For each a, and x E Daappear {rD (x) Ix E Da}a

we define the sequence t a,X
by n= r

Da
(s (x)).

For each a we obtain a set of Sa of sequences

The condition on the values of r D (x)
a

imply

that there are only a set of possibilities for $a and hence

there is a cofinal subsequence such that they are all the same.

We show that this provides a solution as follows: Given

Da,Ds,$a = $a we partition Da into its minimal pure sub-

objects. Da = UEi• It suffices to show that there exists a

map Ei DS each i. Pick x E Ei the sequence

ta,x: w 0 appears in $13' hence there exists y E DS

such that ta,x = ts,y. Define E1.. = {sn(x) In = O,l, ••• },

f: E! DQ by f(sn(x)) = sn(y). Then rEo (sn(x)) = r D (f(sn(y)))
S

because rEix(sn(x)) = rDa(Sn(x)) = ta,x(n) = ts,y(n)

= DS(Sn(y)) = DS(f(sn(x))). And the lemma5.3 yields a map

Ei DS.'

The techniques of the proof above can be used to
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prove the following propositions in which are used the

definitions:

r D(x) the rank as defined for lemma 5.3

r(D) = sup{rD(x) [x E D}

t the sequenceD,x

= D(Sn(X)).

w 0* defined by t D (n),x

$D the set of sequences

SD $D iff for all
1 2

{tD,x lx E D}

t E $D there exists
1

t' E $D '
2

t t'.

Proposition 5.5

Given objects, D1 , D2 in the category of sets with

distinguished endomorphism there exists a map f: D1 D2

if and only if

or

or

r(D 1 ) < r(D 2 )

r(D 1 ) = r(D 2 ) = and P(D 1 ) c P(D 2 )

r(D 1 ) = r(D 2 ) < and $(D 1 ) $(D2 ) . I
It may also be pointed out that every ascending sequence

t: w 0* appears, as follows:

For any limit ordinal a, let A be the set of ascending

sequences from w to the ordinals less than a. Define

s: A --. A by (st) (n) = t(n + 1). It may be easily verified

that AS ' as used for the definition of r, is the subset of

sequences whose initial values are greater than or equal to
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n
rA(s (t)) = t(n). An immediate

corollary is that the terminal functor on the opposite

category has a non-petty subfunctor, namely that which is empty

only on objects of rank 00.

Finally we note that the set $D is larger than it

need be. Define sequences t,t': w 0 to be stably

equivalent, t t' if there exist integers n,m such that

t(i + n) = t'(i + m) all i. Any two sequences arising from

an indecomposable object are stably equivalent. The set [$]

of stable equivalence types may be used instead of the set of

all sequences. It is amusing that the pre-ordered family of

indecomposable objects of rank w (the ordering given by the

existence of maps) is equivalent to the "orders of infinity"

of real variable analysis.
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THE CATEGORIC.AL COMPREHENSION SCHEME

by

John W. Gray

INTRODUCTION

This paper is based on an attempt to find an ana-

logue in category theory to the comprehension scheme of set

theory which says, essentially, that given a property, there

is a set consisting exactly of the elements having that

property. Lawvere has translated this into a statement about

adjoint functors

(Sets,X) ( .. 2X

which are determined by substitution. If, instead of 2-

valued functions on a set, one considers set-valued functors

on a category, then he showed that there is a similar pair

of adjoint functors
Xop

(Cat,X) Sets

where the functor from right to left assigns to F: Sets

the corresponding fibred category over

It is natural to ask if this extends to

X with discrete fibres.
Xop

Cat with values

being arbitrary (split, normal) fibrations over X. In §l, we

review and reformulate fibred categories, in §2, we show, using

properties of comma categories that there is such a pair of

adjoint functors

(Cat,X) CatX,
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and in §3, we discuss what it would mean for this to be an

instance of the comprehension scheme. The answer is that it

is not, and the reason is that in this context the comprehen-

sion scheme is equivalent to asserting that

1
lim (B Cat) = B E Cat

where IB is the constant functor with value n E Cat. This

is false, unless B is discrete.

*

The difficulty appears to lie in applying the notions

of functor categories, comma categories, adjointness and limits

in a delicate and interlocking way to Cat, which is intrinsi-

cally a 2-category. A discussion of the definition and some of

the properties of 2-categories will be found in §4. It seems

reasonable that if the above notions were suitably altered to

take account of the 2-category structure, then one might hope

to recapture a form of the comprehension scheme. Thus, in §S

on pro 2-functors and bifibrations, we describe the basic con-

struction in terms of which one can introduce the proper notion

of 2-comma categories and hence of super 2-functor categories

( §6). This determines the notion of 2-adj ointness (§ 7) • (It

should not be supposed that this coincides with adjointness

enriched in. Cat as in Linton [AC] or Eilenberg and Kelly

[CC] • ) In particular, one needs an amusing version of the

Yoneda lemma. 2-adjointness, of course, determines the notion

of 2-colimits in Cat, which are computed in §8. Finally, in

§9, we return to the comprehension scheme and find that it does
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work in considerably greater generality than indicated above,

the basic tool being the calculation of 2-Kan extensions of

Cat-valued functors.

In an appendix, we discuss the implications of these

results for a categorical foundationsof mathematics. It is

interesting and perhaps significant that the form of adjoint-

ness for 2-categories appears to be forced by requiring that

the analogue of equation * should hold, and that this in turn

is forced by asking for the comprehension scheme. If one

believes that the comprehension scheme is a basic ingredient of

mathematical thought, then the entire theory presented here is

already rigidly determined. In fact, this is how I felt in

writing down the theory. This was, of course, helped by the

fact that I had already found most of the constructions during

a year spent at the Forschungsinstitut fUr Mathematik of the

ETH in Zurich, while on an NSF Fellowship. Actually, I first

described the "basic construction" of §S at Oberwolfach in

1964, but it was only after hearing Lawvere's discussion of the

comprehension scheme during this conference that I realized

(almost instantly) how these constructions fitted together.

Such is the power of the comprehension scheme. I should also

remark that in [Be], Benabou promises that functor categories

and adjointness are different for bicategories. From remarks

of Tierney, it seems likely that Benabou has results analogous

to some of those presented here; in particular, he 'apparently

is aware of the Yoneda-like lemma in §8.
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PART I THE PROBLEM

§l CATEGORICAL FIBRATIONS

For a review of the Grothendieck theory of categorical

fibrations ([SGA]) and other aspects of the theory, see [FCC].

We reformulate the notions in the form we shall use them here.

Let P: E B be a functor and for each object B E IBI,
let EB = p-

1 (B) with the inclusion functor J B: EB E.

Definition

P: E B is an i-fibration, i = 0,1 if, for

each f: A B in B, there exist

i) functors

(i = 0) (i = 1)

ii) natural transformations

with P(G f) = f, such that given any m: E in E with

P(m) = f, then there is a unique factorization

(8 ) I

D
f D

f*D
I

0)0 I

I
I
I
I
I

I
I

E • f*E > E

An i-cleavage for P is a choice of the functors and natural
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transformations. It is called split-normal if

(gf)* = f*g*

To account for the terminology, let 1 denote the

category with a single identity morphism and 2 the category

illustrated by

a 1. .
wi th d.: Il. 1 the functor given by a. (11.) = i; i = 0,1.

As usual, given two functors F.: B, i = 0,1, the

comma category (F o,F1) is defined to be the inverse limit of

the diagram

(See [CCFM], [FCC] and §2.) In particular, (P,B) and (B,P)

are defined, and there are induced functors

a0 I a
So = {E ,p2}: EI (p,B) I S1 = {p2,E 1}: E2 (B,P) •

I

It was shown in [FCC] that P: E B is an i-fibration if

and only if there is a functor

such that

SOLO = (P,B)

LO --f So

N means M is left adjoint to N). A cleavage is

equivalent to a choice of L, and split normality can be
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described in terms of equations satisfied by L. In earlier

terminologies

I-fibration = fibration [SGA] = fibration [FCC]

O-fibration = cofibration [SGA] = opfibration [FCC]

For split normal i-fibrations, it makes sense to talk

about cleavage preserving functors over B; i.e., commutative

triangles

E F " E

B

such that

(P , B)

I
(F, B, B2 , B, BII

(p, B)

commutes. (See §2 for the notation.) The contravariant func-

tor which assigns to B the category Split. (B)
1

of split

normal i-fibrations over B (with small fibres) - made into a

functor by pullbacks - is "2-representable" by Cat (the cate-

gory of small categories).

Proposition

There are adjoint equivalences

Proof. Given a split normal O-fibration P: B,
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the corresponding functor is

B Cat: B EB : f ----? f*

It is immediate that a cleavage preserving functor determines

a natural transformation between the corresponding cat-valued

functors.

Conversely, the functor in the opposite direction is

given by pUlling back a universal a-fibration over Cat (this

was pointed out by Lawvere in [ETa]) which we provisionally

-Cat is the category whose objects are

denote by --Cat•. (Later it will be called I [n , Cat] I•) Rere

{ (A,A) IA E IAI and A E ICat I }
and whose morphisms are given by

Rom«A,A), (B,B» = {(R,h) IH: A Band h: R(A) B} •

Composition is (K,k) (H,k) = (KH,kK(h». If-P: Cat Cat: (A,A) A: (R,h) H ,

then a lifting functor L is easily described showing that P

is a split normal a-fibration.

If P: B Cat, then the corresponding split

normal a-fibration over B is the pullback

1
FB

--Ep ----» Cat

PFj

while if G: Cat, then the corresponding split normal
,..., ,...,

l-fibration PG: B comes from the pullback
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""'op -EG ) Cat

1
-opjPG

G (_) op
BOP ')0 Cat ) Cat

§2 COMMA CATEGORIES

In [CCC], a number of operations on comma categories

and their properties are catalogued. We mention here those

tha t we need.

i) Commutative diagrams

induce functors

7(Lo,M,M·,M,L 1 )
>

Aa x Ai

over Ao x Al and La x L 1 respectively. In general, given an

arbitrary morphism
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over La x Ll , the diagram

A& B I -Eo(---
p'

8'2 S' ( ) A'1

shows that there is an induced morphism

over Aa xA 1 •

ii) Given F·: A· B, i = 0,1,2,J. J..
there is a functor

(F F) x (F F) a.. (Fa ,F2 )
0' 1 A l' 2

1

defined as follOW's: From the diagram
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we deduce the existence of a functor W making the diagram

T l
(Fa ,F l) x (Fl'F2)

) (F I,F2)
Al

:/
, ..
" ',W,, ,

'.II.
Bl ) Ba

1
BO

BS

B'ol
So

Bdl
PI

Ba ) B

(Fa ' F I) --------------------.,> AI

commutative. It is easi.ly checked that this W also gives a

commutative diagram
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F"E .

(Fa ,Fl) (Fl ,F 2)

lw
8 Jl

F BaOIS' S 8 ]
Au a 8.. 81 ) 8

and hence determines a functor

which is "associative" in an obvious sense.

Note. a, S, and y designate the indicated morphisms

in the category 3.

/3

2

iii) A natural transformation m: F G, regarded

as a functor m: 81 is the same thing as a functor of

the form

in = {A,m,A}: (F,G) ;

L, e. ,
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commutes. Thus the set of natural transformations from F

to G is the pullback

> (F,G)A

1
A)A)' (A x1

Nat(F,G) ---.:;,.

1
iv) If

1. 1.
and G.: B, i = 0,1

1. 1.

are functors and if mo: Go Fo and mI: FI GI are

natural transformations, then there is an induced functor

over Ao x Al given by the composition

(F F) A (F F) A mpx{Fp,F 1)xmJ
0, 1 OX 0' 1 x 1 )

A Al

In [CCC] there is (hopefully) a basis for the many relations

satisfied by these operations.

In [FCC], it is shown that if M: A X is any

functor, then the functor PM: (M,X) X given by
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A M!o X

has a canonical split normal a-cleavage. Furthermore, there

is a commutative diagram

Here QM is left adjoint to the projection A .

This is universal in the sense that given any commutative

diagram

Q

x

where P has a given split normal a-cleavage, then there

is a unique cleavage preserving functor H: (M,X) E

with HQM = Q and PH = PM
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/(M,Xl

(M, Xl

X x

it follows that the fibre of PM over X E Ixl is

and that PM corresponds, via the equivalence of §l to the

functor

x -> Cat: X (MrX"): f (M,f) •

From the above operations and their properties, it is easily

checked that this gives a functor

(Cat ,X) q, > CatX

where X) = (M,-) E CatX. Conversely, the operation

that assigns to a functor G: X ---+ Cat the category

EG--->- X over X (as in §l), forgetting that it is a

a-fibration, gives a functor

--Cat
X (C t X)---------... a, .

The following result is immediate from the preceding universal

mapping property.

Proposition

-q, is left adjoint to q,

(Cat, X)
¥
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Note. For a detailed description of the adjunc-

tion maps in a more general context, see §9.

§3 THE COMPREHENSION SCHEME

In the theory of hyperdoctrines, Lawvere (this

volume, perhaps, and [CVHOL) has shown that one sometimes

has a pair of adjoint functors like the above pair which

fits into a much richer framework, called the comprehension

scheme. It works, for instance, in the case of sets for a

pair of adjoint functors

(Sets,X) 2X

and in the case of small categories for

___ Xop
(Cat,X) ( Sets

In our context, the comprehension scheme would

require that the functor above be calculated in the

following manner. A functor F: A X induces a functor

which is just composition with F. This functor has a left

adjoint which (following Lawvere) we denote by

A XL:F: Cat Cat •

For any M: A Cat, L:F(M): X Cat is called the

(left) Kan extension of M along F (see [AF). It is

easily described, being the functor whose value at

X E Ixi is given by

[L:F (M) ) (X) = lim ((F ,X) --+ A Cat) •
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It satisfies, for any N: X --. Cat,

Nat(EF(M),N) Nat(M,NF) .

Now given a composition

H

Cat

F '

with F = F'H, then composition with H induces a function

Nat (M,NF ')

Nat(EF ' (M) ,N)

Nat(MH,NF'H)

II
- - -> Nat(EF(MH),N)

and hence, taking N = EF' (M), one deduces the existence

of a natural transformation

EF (MH) EF I (M)

let lA: A Cat denote the constant functor with value

the category ]. E ICat I. Then, for any object F: A -+ X

of (Cat,X),

is an object of XCat , and for any morphism

A H .. AI

\;:.
X

of (Cat,X) , one has (since lA,H = lA) a morphism
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IF(lA) IF' (lA'). It is easily checked that this gives

a functor

X
I (-) (1 (_»: (Cat,X) Cat .

The analogue of the comprehension scheme would say that

(Actually, the comprehension scheme is the requirement that

I(-) (1(_» have a right adjoint.) Since we know what

is, we at the proposed equation

lA ?
lim «F ,X) A Cat) (F ,X)

Or, equivalently, for any small category B,

IB ?
lim (B Cat) == BEl Cat I

If B is discrete, this holds, which accounts for the

second instance of the comprehension scheme mentioned at

the beginning of this section. If B is not discrete,

this equation is false, and therefore there is no categor-

ical comprehension scheme in this sense.

PART II. THE SOLUTION

§4 2-CATEGORIES

There are several ways to describe 2-categories.

We mention a number of them.
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4.1

i) The elementary theory of abstract

In the spirit and notation of Lawvere's elementary

theory of abstract categories, there is an intrinsic descrip-

tion of 2-categories. Let

D.o' D.1 and r

D.o D.1 and r

be two independent Rets of operators for domain, codomain and com-

position, called the strong and the weak category structures,

respectively. Each triple is to satisfy the axioms for the

elementary theory of abstract categories ([CCFM], p. 2) and in

addition there are four axioms,

a) D.. (D. . (x ) = 'K. (D. • (x) )
1. J J 1.

i,j = 0,1

b) r(X,Yi u)

,..,
r(X,Yi u)

r(6'. (x) ,7.. (y) (u j ) ,
1. 1. 1.

f(D., (x) ,D., (y) iD., (u i ) ,
1. 1. 1.

i = 0,1

i = 0,1

,..,
c) r(x,Yiu) and r(x' ,Y' iU') and r(x,x' iV) and

f (Y, y' iV') and r (v , v' ; f) and r (u , u ' i g ) f = g

The first three axioms are symmetric in the strong and weak

structures and lead to the theory of double categories as in

Ehresmann, [CS]. The third axiom says that in the picture

u u'

x

y

X'

y'

v

V' f = g
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where strong composition is vertical and weak horizontal, the

resulting values are the same. The fourth asymmetrical axiom,

which distinguishes 2-categories from double categories

(Ehresmann [CS]) says that strong objects are weak objects.

In this paper we generally denote strong composition by juxta-

position and weak composition by dot (.).

ii) The basic theory of abstract 2-categories.

We forgo any extended discussion of this theory here,

mostly because of ignorance. (But, see the appendix.) The

general idea is that it is a cartesian closed (meta) 2-cat·egory

built from 1 2 in the same fashion that the basic theory of
""

abstract categories is built from 1 1 • Here, 2 0 = 1, 1 1 = 1

and 2 2 is the 2-category illustrated by
""

Note that corresponding to a 2-category A,,.., there are three

naturally associated categories, the strong category, the weak

category, and the "underlying" category It I which is the

strong structure restricted to the weak objects. This is the

universal "locally discrete" part of i.e., its weak struc-

ture is discrete. Part of the point of this paper is that

there is more "basic" structure than is indicated by this

analogy.

4.2 Categorical Description of 2-Categories

Suppose we are given an intrinsic description of
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categories. For the moment, we take this to mean the basic

theory of abstract categories of Lawvere [CCFM], together with

the axiom that there exists an object Cat which is itself a

model of the basic theory and which is reasonably complete.

We denote the subcategory of discrete objects of Cat by Sets,

and the "set of objects" functor by

I: Cat ---+ Sets .

Note that Sets lacks some of the properties one might want

for the category of sets, but that is not the problem that con-

cerns us here. If we restrict attention to categories A with

small horn sets: i.e., with Hom functors

Hom
A
: AOP x A Sets

then, since Cat is a cartesian closed category over Sets, we

may speak of Cat-categories in the sense of Eilenberg-Kelly,

[CC]: that is, categories A together with a factorization of

the Hom functor through Cat

HomA
SetsAOP x A

and a "composition rule" for any three objects (i.e., a functor)

which is natural in all three variables, is strictly associa-

tive, has strict units, and reduces to ordinary composition on
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objects. A 2-category is precisely such a Cat-category. In

this description, the objects of CatA(A,B) are the morphisms

of A and are frequently called the I-cells of A, while the

morphisms of CatA(A,B) are called the 2-cells of A

(Benabou [BC]). In terms of the intrinsic description, the

objects of A correspond to the strong objects, the I-cells to

the weak objects, and the 2-cells to the basic entities.

We shall denote 2-categories by underlined script

letters etc., and their underlying ordinary categories

with its canonical structure as a 2-category; thus

(i.e., forget CatA(-,-» by IAI, etc. Cat will denote Cat-
Icatl = Cat.-

A 2-functor between 2-categories and ] is a Cat-functor;

L, e., an ordinary functor F: IAI I I together wi th

functors

FA,B: CatA(A,B) ---+ Cats (FA,FB)

which commute with composition and reduce to the given values

of F on objects of CatA(A,B).

In this context, a locally discrete 2-category is one

for which CatA(A,B) is a discrete category; hence

BomA
Sets Cat) .

Since 2-functors between locally discrete 2-categories are just

ordinary functors, we may and often shall identify categories

with locally discrete 2-categories.

There are a number of obvious constructions on 2-cate-

gories. Finite limits and colimits clearly exist, and there
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are two kinds of opposite 2-categories:

i) Weak opposite OPt; catop (A,B) = [CatA(A,B)]oP
A

ii) Strong opposite tOP; Cat (A,B) =
AOP

CatA(B,A)
'"

and, of course, their combination oPAoP. In general, for

any functor K: Cat Cat which is product preserving,

will denote the 2-category with the same objects as

which

CatK (A,B) = K[CatA(A,B)]
A '",...

A,... and in

except that we make the obvious simplifications

and, as above OPt = (-)oPt .

Given two 2-categories, A and there is a

"functor 2-category" at as follows:

i) objects are 2-functors F: A B •
'" '"

interconnected pieces of the form

Cat(FA,GB)cat(GA,GEb
( __ ) A,B

ii) given two such 2-functors, F and G, then

Cat A(F,G)
B'"

is the inverse limit of the diagram of categories made up of

Cat(FB,GB)

r01
Cat(FA,GB)Cat(FA/FB)

(-) FA'Bl
) Cat(FA,GBlCat(A,B)



- 264 -

for every A and B in A. It is easily checked that the

I-cells of BA are the cat-natural transformations of [cCl.,..,

This functor 2-category is adjoint to direct products in

the sense that there is an evaluation 2-functor

A x B,..,,.., ,..,

satisfying the usual universal mapping property. This

adjointness is enriched in Cat; actually in 2-Cat;

i. e. (A x X)
B"" ,..,
,..,

Here 2-Cat refers to some (possibly nonexistent) 2-category

of (small) 2-categories. It itself is then a 3-categorYi

i.e., is enriched in 2-Cat. Note that if is locally

discrete then so is and if both are locally discrete

then BA coincides with the usual functor category. Finally,,..,

if is locally discrete, then

•

4.3 Set-theoretical Description of 2-Categories

There are at least three ways to accomplish this.

i) Start with a set theoretic description of cate-

gories in which Cat is the category of small categories,

or U-categories for some universe U. Then follow the des-

cription in 4.2.

ii) Start with the elementary theory of abstract

2-categories and define a 2-category to be a model of this
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theory; i.e., a set (or class) equipped with suitable opera­

tions satisfying the axioms. A 2­functor is then a function

preserving the operations.

iii) See the description of hypercategories in

Eilenberg­Kelly [CC], p. 425.

§5 PRO 2­FUNCTORS AND BIFIBRATIONS

Definition

A pair of functors

is called a (I,O)­bifibration if

i) p is a I­fibration and Q is a O­fibration.

ii) Let E
A = p­ 1 (A) and EB = Q­l(B). Then

plEB is a I­fibration and QIE
A is a 0­

fibration for all A E A and B E B •

iii) The inclusion functors E and

EB E are maps of fibrations in the sense

of [FCC].

A cleavage for a bifibration is a choice of all

the functors f* or f* whose existence is postulated in

i) and ii). A cleavage is called split­normal if

iv) It is split­normal for each fibration, P,

Q, plEB and QIEA.

v) The inclusion functors of iii) are cleavage

preserving,
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vi) For any f: A' A in A and g: B B '

A A'in B , f*: E ----+ E and g*: EB ---.,. EB ,

are cleavage preserving.

Note that as in the case of fibrations, these conditions

can be expressed by equations involving the lifting functors.

A cleavage preserving morphism between split-

normal (l,O)-bifibrations {P,Q} and {Pi ,Q'} is a commuta-

tive diagram

T

such that T is cleavage preserving for both fibration

structures. The category of split-normal (l,O)-bifibrations

will be denoted by Split(l,O) (A, B).

is defined analogously, but

BandAover

Split (. .) (A, B)
1,)

only the (0,1) case is interesting since

Split( .. ) (A,B) = Split. (A x B) •
1,1 1

Proposition

There is an adjoint equivalence

\jI AOP x B
Split(l,O) (A,B) ... \jIi Cat

Proof. Given a split-normal (l,O)-bifibration

{P,Q}, then \jI(P,Q): AOP x B ---.,. is the functor whose



- 267 -

value on (A,B) is = EA n EB and on

(f: A I ---+ A, g: B B I) is

extends to a functor in an obvious way.

The functor is a specialization of the basic

construction on which the whole theory depends, to which we

now turn.

Definition

Let A and B be 2-categories. A pro-2-functor

from A to B is a 2-functor

F: AOP x B Cat-
We shall describe a construction which assigns to

F a 2-category .sF over A x B whose underlying category,..., ,...,

IfFI is split-normal (l,O)-bifibred over IAI and .
This construction actually establishes an equivalence between

AOP x B
Cat,..., ,..., and a suitable category of 2-bifibrations. We--
forgo the definition of this notion and the proof that

(F) = IfFl. However, the construction of .sF is of crutial

importance here and we give it in two forms, a category-

theoretic form and a set-theoretic form.

Observe first that F: AOP x B Cat can be
,... ,... -

regarded as an object function together with functors

cat
A
(AI ,A) x CatB(B,B ') F(A',B,)F(A,B) •
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In particular, specializing to the identity morphisms of A

or B and using the cartesian closed structure of Cat, we

deduce functors
DB

F(A,B) x catB(B,B') F(A,B')
,..,

°Acat
A
(A' ,A) x F (A,B) F (A' ,B)

which we regard as operations of A and B on F. We also

forgo a formal treatment of pro-2-functors as modules over

A and and merely point out (to no one's surprise) that

diagrams like

F(A,B) x

F(A,B') x Catl!(B' ,B n )

commute.

-------3>':t F(A,B n
)

The Basic Construction. Let F: AOP x B --. Cat .,.., ,.., ,.-.-

Then I B is the 2-category whose objects are triples

(A,X,B) where A E A, B E and X E F(A,B). Given two

objects, (A,X,B) and (A' ,X',B'), one gets two functors

n x CatB(B,B')
DB

F (A,B')

CatA(A,A') x n id x rXil
Cat (A,A') x F (A' ,B') °A ) F (A, B' )

with codomain F(A,B'), which therefore have a comma cate-

gory. We set

Cate «A,X,B),(A',X',B'» = (0 (rX' x id), 0A(id x rx';l).
""F B
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Composition is illustrated by the adjoining large diagram.

If F and G are two pro-2-functors and if

F G is a Cat-natural transformation; i.e., a morphism
AOp x B

in , then for each (A,B)-
F{A,B) G{A,B)

is a functor and the diagrams

F{A,B) x Cat{B,B I)

1
G{A,B) x Cat{B,B I)

F (A, B I)

1
G(A,B I)

Cat{A',A) x F{A,B) F(A',B)

! 1
Cat {A' ,A) x G{A,B) G(A' ,B)

commute. Hence determines a 2-functor

where = ,B) and

(A X B) (A' x ' B'): CatE ({A,X,B), (AI ,XI ,B I» --+
", "

--+ CatE

is the induced functor between comma categories as in §2, i),

whose existence follows from the preceeding commutative dia-

grams. Commutativity with composition is an easy diagram

chase.

Besides this category-theoretic description, we

seem unable (because of incompetence, presumably) to dispense

with a set theoretic description later on. Thus, the objects

of CatE «A,X,B), (A',X',B'» that is, the I-cells of

£F - are triples where f: A AI in A ,



r\J
-.J
o

Cat (A ,A")

x Cat (A' ,J>..")

x F(A",B")

Cat(A,A') x Cat(A',A")

.:

(A I' , X" , B \I ) )

Cat (A,A") x F (An ,B")

Cat(A,A') x F(A' ,Bn)J

x Cat«A',X',B'),

\
Cat(Bl,B")

(A' ,X', B ' ) )

/

F(A B")) /I '1\ I Cat (A A I ) /'

F(A,B")l ' < F(A' ,B")

\

(-)y F(A,B")l

FIA,B")'/

\/
F (A,B")

-,
F(A,B r ) x Cat(B',B")

Cat«A,X,B),

x Cat(B',E")

B")Cat(B, J

<; ! B")
x Cat (B,F(A,

F(A,B")

Cat(B,B') x Cat(B',B")

-,
F(A,B) x Cat(B,B')

Yields Cat( (A,X,B), (A' ,X' ,B'» x Cat( (A' ,X' ,B'), (A" ,X" ,B"» Cat( (A,X,B), (A" ,X" ,B"»
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g: B B' in B and F{A,g) (X) F{f,B ') (XI) in F{A,B ').

The morphisms of CatE ({A,X,B), (AI ,XI ,B ' » - that is the
....F

2-cells of IF from to ,gl) - are pairs

(c , T) where 0: f f I in CatA (A,A I) ,

T: g gl in CatB{B,B ') and the diagram

F{A,g) (X)

F{A,T){X)! I

F{A,g') {X).4

F{f,B ') (XI)

IF(O,B') (X)

F{f',B'){X ')

commutes. The formula for composition of morphisms is

(h , A, k) (f, , g) = (hf, Af . kg)

and of 2-cells is

Proposition

If H: A I A, K: I Band

F: AOP x B ---;;.. Cat, then--
IF (HoP > IF0 x K)

1 1
X §,I ) A x B.... ....

is a pullback.

'¥ I :

Examples and Remarks.

i) As observed before,
AOp x B

Cat split{l,O) (A,B) assigns to
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F ·. AOP x B Cat the category IE I w;th ;ts canon;cal-.,... -F ...... ...

projections onto A and B. Note that if A and Bare-
locally discrete and F is set-valued, then IF is locally

discrete; but otherwise, not.

ii) If A is a category and

BomA: Aop x A Sets c Cat ,

then E = At •
-BomA

iii) Let be a 2-category with

We define = ENCatA
with

( 0 . ) A: FunA A, i = 0, 1
,-- -

the canonical projections. We shall also write

FunA= .
Note that if F: A is a 2-functor then there is a

commutative diagram •

l
A

A x B x B- -
so that can be regarded as an endofunctor on 2-Cat.

As such, it participates in triples analogous to those for

(-) 1 on Cat.

iv) In particular, for

CatOP x Cat
(-) (-)
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the corresponding 2-category is denoted by Fun and the pro-,-.-

jections by <5 • : cat, i = 0, l. The objects of Fun
1 -- ,....,

are functors B) , the morphisms (I-cells) of Fun are-diagrams
A F A')'

X X'

B CPt: B 'G

where cp: GX X'F is a natural transformation, composi-

tion being

A" A F'F A">

X" X X"= coiF
_.ere . \j-CP

B 4s"B" GIG

F'

G'

X'

F

X

A A I

and the 2-cells of Fun are diagrams--
A i A'

X]:;1 x'

B V
G I

where 0: F F' and T : G ----;. G' are natural transfor-

mations such that the diagram (of natural transformations)

S?

X' 0

cp

commutes.
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§6 2-COMMA CATEGORIES AND

SUPER FUNCTOR CATEGORIES

In order to place the constructions we are about

to make in their proper context, it is necessary to explain

the notion of a category object A in a category A •

Definition

A category object in A is an object A E A

together with a factorization

71 Cat
/- /Hom (- ,A),/

.: 1(_)11
'"'"'"

AOP ) Sets
Hom(-,A)

A functorial morphism between category objects is a morphism

f in A such that Hom(-,f) lifts to a natural transformation-Hom(-,f). The category of category objects in A is then

the pullback

A

AOP
Cat

1 11H llAOP

-----.....) Sets
Yoneda

We may assume, as in [CCFM], an isomorphism

•
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the right hand side denoting the category of limit pre-

serving functors from {4ijop to Sets. It follows (in

fact, for any such "limit theory") that if A has finite

limits, then

In this representation I (_)11 becomes the operation which

assigns to F: {41.}op Sets its value at 1, F(2). The

structure of AC is then easily deduced. A category object

is determined by an object A E A with the following

structure:

Two morphismsi)

-a. d. = d.
a J J

ii) Let

d.: A--::. A, i = 0,1

d •
a,

T --::.I A A be an equalizer.

such that

(It is

the same for i = 0,1 ).

and d.T = I. Leta

Then -
d. = T d •

v

for d.: A I
a

(J 1 B

be pullbacks.

iii) There is a morphism y: AI A with

daY = aaa and aly = dIe

iv) y{ao,A} = A and y{A,a
l
} = A .

v) y{alJ,Yv} = Y{YlJ,ev}: A".--+ A

Note: {-,-} denotes induced morphisms into pullbacks (or
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out of pushouts).

Cocategory objects are defined dually. The axioms

about 2 in [CCFM] just say that 2 is a cocategory object

in the universe. Hence Al is a category object in Cat for

any A and, in fact, (_)1 is a category object in CatCa t

i.e., as an endofunctor on Cat, its values on functors

being "functorial." This structure is all that is needed

to describe a "comma category" construction with the usual

properties. This structure can be described starting with

any category object, but it is of course especially rich

for category objects in non-trivial functor categories. For

details, see [CCC].

Proposition

:

(2-Cat) (2-%-) .-
Proof.

2-Cat 2-Cat-- - is a category object in

i) Let T: Id be the Cat-natural

transformation such that TA: A is the 2-functor
,....

given by TA(A) = (A,idA,A), TA(f) = (f,idf,f) and
,.... ,....

LA(a) = (a,;). (A categorical description of TA is easily
,....

,.... ,.... ,....
0.0. = O. and
a J J

given. ) Clearly
,....
O.T = id , so, if we seta

O.

Id F -----...- F
------ (-) (-)

O. = TO. , then

is an equalizer for i = 0,1 .
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ii) Let

0.

p
"" (-)

s
>

be a pullback (of endofunctors on 2-Cat). Then there is a-
Cat-natural transformation

such that 00Y = 00a and 0lY = ole. This can be described

by a diagram similar to the composition diagram for IF .
In set-theoretic terms, objects of are of the form

(A,f,A ') where f: A AI is a I-cell in A, so objects

of EA are pairs of the form {(A,f,A '), (AI ,g,A")}. We

set

YA{(A,f,A '), (Alg,A")} = (A,gf,A").

A I-cell of £A is a diagram

A m B

£1 Ih
miL: B

'AI

gl
A" » B"

where and are 2-cells in A. We define on

this I-cell to be the one cell
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of FunA ' where T = . Note that this operation

gives IFunAI a different 2-category structure; a fact which

is equivalent to y being a functor satisfying the stated

properties. Finally, a 2-cell of PA looks like

AT 01. B'

1::1
A" a'l/ B"

and

each

on this is (a,a").

and natural in A....

is then a 2-functor for

iii) If

"r-
J

v ·I.
p (-) ) Fun (_)

is a pullback, then one easily checks that

= .
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Definition

Let F. : ;§" i = 0,1 , be 2-functors. Then
l. ""'l.

[F o,F 1
] is the inverse limit of the diagram

Ao

Fo B
°0 °1

B
F
1

Al.. E .. E .
[F O,F 1

] is called a 2-comma category. (The general hier-

archy is (F o,F 1) = FOB F 1 for sets, (F o,F 1) 1 = (F a,F 1) ,

(F O,F 1)2 = [F a,F 1
] , etc.) As in §2 we have various opera-

tions on 2-comma categories.

i) Induced functors

[L 0 ' M, FunM' M, L 1 ]
[F IF' ]
0' 1

j
x A'

""'1

over Aa x A and La x L
1
; and a. : [F

o,F 1
] ---+

""'1

over Lo x L induces1

a. = {P,Q'a.,R}: [F o,F 1
]

exactly as in §2, except that B1 is replaced by FunB .
ii) There is an associative composition

[F O,F 1
] A [F

1,F2
] [F o,F 2

]
"",]

derived exactly as in §2 with BS replaced by •

iii) The correspondence in §2, iii) becomes a

definition.
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Definition

If F,G: A --. Bare 2-functors then a 2-natural,.., ,..,

transformation is a 2-functor

A m ): [F,G]

"\ /
A x A

over A x A,.., ,.., Note that a 2-natural transformation is not a

Cat-natural transformation, in general.

iv) Exactly as in §2, using composition one derives

induced functors

over A
o

x Al corresponding to 2-natural transformations

m0: Go ---+ F 0 and m1: F 1 --. G1 •

Definition

Let A and B be 2-categories.,.., Then the super

functor category Fun(A,B)--- is the 2-category whose objects

are 2-functors from to B,.., and such that

catFun(A B) (F,G) ): [F
,....".,..., ,..".,',..".,

11 rll' AlAn ):0 (A x,....

is a pullback. Ostensibly, this pullback is a 2-category,
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but it is easily seen to be locally discrete. Note that

means the 2-functor category described in §4.2.

Composition is the induced morphism in the diagram

Cat(FO,F 1 ) x
\

\
\
\
\

'fI

Cat <1 0 ' F ,)

([F
O
,F

1
] x [F ,F ]AA 1 2

Using this composition in the usual fashion, one deduces the

following result.

Proposition.

is a 2-functor.

Fun (- ,-): (2-Cat) op x (2-Cat) 2-Cat- -- - --
For future calculations, we need to know in hor-

rendous set-theoretical detail exactly what Fun(A,B) looks,,-.- ,.., ,..,

like. From the above description one deduces that if F and

G are 2-functors from A to B then a 2-natural transfor-,..,

mation cp: F --. G assigns

i) to an object A E A , a morphism,..,

CPA: F(A) --+ G(A) in B,..,

ii) to a morphism (I-cell) f: A B of A ' a

diagram



G(A)

- 282 -

F(f)

such that

a) for a composition gf in A one has

b) for a 2-cell a: f f' in A, one has a

commutative diagram

F(f)

F(A)

G(A)

F (f' )

G (f)

G(ay
G(f' )

F(B)

i.e., in CatB(F(A), G(B», the diagram

commutes.
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If and are 2-natural transformations from

F to G (i.e., l-cells of Fun(A,B)), then a 2-cell_........

t: in Fun(A,B) assigns to each A E A a 2-cell_........

in B.... such that for any 2-cell

a: f fl in , the diagram

F (f)

F(A)

Ii!A

G(A)

G (f I)

F(B)

t erB

/

commutes. This commutativity can be expressed either as

commutativity of the cube
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or of the square

CPf

ljif'

in CatB{F{A),G{B». Actually, it is sufficient to require
,..,

only the commutativity of the top of the cube for all f,

but this does not so graphically illustrate that we have, in

fact, used up all the available structure.

Finally, if cp: F G and Iji: G Hare 2-

natural transformations then ljicp: F H is given by

(ljicp) A = IjiACPA

{IjiCP)f = IjiBCPf • IjifCPA

The composition of 2-cells is simply (st)A = sAtA •

The prefix 2- will refer to Fun{A,B); thus a-,..,,..,

2-subfunctor means a monomorphism in Fun{A,B) and a 2--- ,..,,..,

natural equivalence means an isomorphism in Fun{A,B) ..,...- ,.., ,..,

Proposition

is a sub 2-category of

imbedding

Fun{A,B)--,.., ,.., and the

(-) (-) Fun (- , - )

is a Cat-natural transformation.
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Compare

Fun
A

oPFun(l,oPA).
,..",.",..., ,...,

and •,..,

1) [H,K] Ao x Al is isomorphic as a split

(l,O)-bifibred category and as a 2-category to

E A""CatB(H(-),K(-» 0

2 ) I [li, Ca t] I- -Cat (see si i .

3) For any F: X Cat, EF = [I,F]. In parti-

cular, if F = X Il, Cat , then [ll.,F] = IA x X .

4) Fun = [Cat,Cat] and =_ ,......,,-- -r_

5) Fun (li,B) B and for any A, the constant- ,.., ,..,

functor TA: A li induces Fun(TA,B): B Fun(A,B) ...- ,.,...""..""',....,,

6) If and are locally discrete, then

Fun (A, B)-,..,,.., i.e., for functors between locally discrete

categories

[F,G] = (F,G) .

7) The 2-categories [F,G] are useful for certain

notions in category theory. Thus, let 1: Cat be the

terminal object of Cat and let m: li Cat be any other

object. Then B = [I,m] is the category in the universe

that looks like the object m of Cat. In the notation of

[CCFM], p. 17, B (E) Cat and m = BCat. There is a canoni-

cal imbedding

B = [I,m] [l,Cat,Fun,Cat,li] [Cat,m]

and B is cocomplete if and only if this functor has a left
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adjoint

lim: [Cat,lB] B .

This shows, for instance, that if F: A [Cat,lB]

is a functor such that lim F = Foo exists in [Cat,lB], then

denoting the values of F by F{A): IDA 18 and

Foo: 18 we get that in B,

lim F(A» =
IDA

The proof follows from the diagram

lim F oo
00

Note that [Cat,lB] was introduced by Grothendieck in [SGA],

§ll,b where it is denoted by CatlllB. It was utilized by
•

Giraud [MD] and Hofmann [CCEF], who also discusses the functor

lim: [Cat ,lB] B .

As still another use, note that if lB and are

two objects of Cat, then

(assuming that Cat is full in the universe).
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§7 2-ADJOINTNESS

Given two functorial morphisms between a pair of

category objects one can describe adjointness in terms of

the corresponding comma category constructions and derive

the usual properties. (See [CCC].) In the present case,

it works out as follows.

Definition

Let F: A and U: A be 2-functors.

A 2-adjunction is an isomorphism

[F,A] q> > [B,U]- -
\ /

of 2-categories over x A .

Proposition

If q> is also a morphism of split (l,O)-bifibra-

tions, then q> corresponds to an ordinary Cat-enriched

adjunction between F and U.

Proof. Since [F,A] =- E-CatA (F (-) ,-) and

we have
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E
""'CatA(F(-) ,-)

\
Under the hypotheses, then corresponds to a cat-natural

isomorphism

Remark. In the case of ordinary categories,

(F,A) = EHom(F(-) ,_) is a split (l,O)-bifibration with dis-

crete i-fibres, i = 0,1. A functor between two such dis-

crete bifibrations over B x A is easily seen to be a mor-

phism of bifibrations and hence corresponds to a natural

transformation of the respective functors. Thus an ordinary

adjunction

(F,A) (B,U)

\ j
B x A

is always (assuming A and B are locally small) the same

as a natural equivalence

HomA(F (-) , -) HomB(- , U(-) )

In the case of 2-categories these conditions are not equivalent,

as we shall see by example later.
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§8 2-COLIMITS IN CAT

The notion of limits depends on the notions of

"functor categories" and of "adjointness", being the adjoint

on one side or the other of the constant imbedding

B BA

In our case, we equally well have the constant imbedding

(see §6, example 5),

and we define the 2-limit functor (resp., the 2 colimit func-

tor) to be the right (resp., left) 2-adjoint of when

it exists. We wish to calculate 2-colimits in Cat. Thus-
2-lim A: Fun(A,Cat) Cat-,...- -

is the unique (up to a 2-isomorphism) 2-functor such that

there is an equivalence

[2-lim A,Cat]-
\

A
[Fun (A,Cat) , t]

a

Fun(A,Cat) x Cat-,...- -
Theorem

i) Let F: A Cat. Then = [1,F] .

ii) In general, if F: Cat is a 2-functor
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Corollary

Note. The theorem says that is the split

O-fibred category over A determined by F. This only really

makes sense if A is small and Cat is cat-complete ([CCFM],

p. 17). However, the theorem can also be read as asserting

the existence of in the universe, providing [n,F]

exists. (See the appendix.) We have separated the theorem

into two cases and will only prove part i) for a small cate-

gory A = [1,0.\], A E Cat. (See §6, Example 7.) This proof

has a nice conceptual form in terms of the following lemma,

whereas the only proof I know for ii) is an explicit con-

struction of the required equivalence. In the lemma,

denotes the full subcategory of

mined by split-normal O-fibrations over

Lemma (The Yoneda-like Lemma)

(Cat ,A)-
A •

deter-

Let A = [l,A], A E Cat. Then there is a commu-

tative diagram
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Fun(A,Cat)-- -
Cat- "[1 f -] "

0

Cat
""-

where the vertical functor is an equivalence.

Proof of Lemma. The commutativity of the left hand

triangle is Example 3, §6, while that of the right hand tri-

angle is trivial. Note that P denotes the usual projection

of a comma category on its first component. In Example 3,

§6, it was also pointed out that if F: A Cat, then

= EF ' which is a split O-fibration over A. Further-

more every split O-fibration over A arises this way, so we

need only worry about morphisms and 2-cells.

If F G is a 2-natural transformation in

Fun(A,Cat), then- --
[1 , F l [Gl ) [1 , G l

A

is a morphism over A = 1 x A. Furthermore, if t: W

is a 2-cell in Fun(A,Cat), then t determines a natural-- -
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transformation

over A whose component at the object (i,a,A) E m,F]

is given by

t =(1,a,A) u , t a ,A): (li 'CPA (a) ,A) (ll., ljiA (a) ,A)

and (t,A) is a 2-cell of

Conversely, suppose

[1, F] T > [i , G]

A

commutes (i.e., is a I-cell of We must show that

there is a unique cp: F G with T = [1,cp]. Define cP

to be the 2-natural transformation whose component at A E A

is the functor CPA: F(A) G(A) such that

i) If a E F(A), then CPA (a) = T(1,a,A).

ii) If f is a morphism in F(A), then

CPA (f) = T(1,f,A); i.e., CPA = TI = TIF(A). To define

CPm on a morphism m: B in A , observe that T assigns

to the morphism

1

I "" F(m)a

F (A) F (m) > F (B)
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in [1,F], a morphism

G(B)

, (I,F(m)a,B)

G (A)

.(I,a,A)

in [1,G]. We set ( rn ) - m) Then rn is a 2-natural't'm a - L ,...,. 't'

transformation such that T = [n,cp].

Finally, if s:, is a natural transforma-

tion over A, let t: cp cp' be the 2-cell between the

corresponding 2-natural transformations whose component

t A: CPA CP'A is the natural transformation with components

cp'A(a)

II II II
s("1I i ' .'en.,a,A).JL,a,A

Then clearly s = t .

Note. This lemma says that, while catA corres-

ponds to split-normal O-fibrations and cleavage preserving

morphisms, Fun(A,Cat)- corresponds to all functors between

such fibrations over A. Thus, it generalizes the proposi-

tion of §l. On the other hand, the correspondence between

functors T: [1,F] [1,G] over A and natural transfor-

mations cp: F G looks like the Yoneda lemma (§7) which
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gives a correspondence between 2-natural transformations and

2-functors [Cat,F] [Cat,G] over Cat x A .- ".-.- --'

Proof of the Theorem. We have vertical isomorphisms

[ [1, -] rCat] A
[Fun(A,Cat),6.c t]- __ a

l it
[p ,Cat] <P

((Cat,lA) 0'- x 8\]-- --
so it is sufficient to establish an equivalence <P as indi-

cated, over (Cat,/A)o x Cat. An object of- - [p ,Cat]- can be

represented by a diagram

M

where Q is a split normal a-fibration, while an object of

[ (Cat ,IA),- x IA] looks like a diagram-
E N > X x A

A

On objects, set <p(M,Q) = {M,Q}: X x A. This clearly

gives a bijection between objects. Morphisms on each side

look like
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A

E N ) X x A

(\\

N' .»: 1/
E' < XI X A

\1
and

A

where pr. = ide Set

<I> (R,cp,S) = (R,{cp,Q},S x A)

This gives a bijection between l-cells. Finally, a 2-cell on

the left is a pair (p,a) where p: R R' and a: S S'

are natural transformations compatible with and Icp • Set

<I>(p,a) = (p,a x A). Then <I> is an equivalence of 2-cate-

gories.

Examples.

i) Since 1 is terminal in Cat, there is a

natural transformation F lA for any functor.
F: A --+ Cat. The induced functor

is just the canonical projection

[].. , F] ----;. A

ii) Since the constant imbedding factors via
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B

there is an induced functor

[BA, A] [Fun (A, B) , A]row __ row

which, by the Yoneda lemma, corresponds to a 2-natural trans-

formation

As an example, A = (Rings)oP and F (R) is the category

of R-modules. Then 2-lim F is the category of all modules

over all rings, while is the category of abelian

groups, since Z is a terminal object of (Rings)oP.

iii) Sets c Cat is not closed under 2-colimits

since if F: A Sets then

2-lim F = [1,F] = (I,F)

and this is discrete only if A is discrete.

iv) 2-limits in Cat can also be calculated and

turn out to be the category of sections of [1,F] over A.

If, in the definition of 2-natural transformation, all

were required to be equivalences, then the corresponding
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notion of "2-limit" would give "cartesian sections" which

long ago was called lim in [SGA].

§9 THE 2-COMPREHENSION SCHEME

We must first describe the 2-Kan extension.

Definition

Let F: A be a 2-functor. Then the left

2-adjoint (when it exists) to

F* = Fun{F,X): Fun{B,X) Fun{A,X)
""'-I ,.""".",,...,,...,

is called the (left) 2-Kan extension of F. It is denoted

Proposition

Given H: , then L
2F{H):

X is the

2-functor whose value on any B E B,.., is given by

Corollary

H= ( [F ,B] f. ---7

For 1
lA = 1. ---7 we have

Proofs. The corollary follows from the proposition

by using the corollary to the theorems in §8. The proposi-

tion is proved by verifying that the usual construction still
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makes sense. Thus, define

Then we must produce an equivalence

over Fun(A,X) x Fun(B,X). To do so, we first describe the
,...." #"OJ ,..." ,....,.,.,""" ,....,

objects on both sides over a given H: 6 and

K: B X An object of [Fun(A,X) ,F*] over H,K is a"""'" ,...., ,......." ,...., ,....,

2-natural transformation H KF. An object of

over (H,K) is a 2-natural transformation

A: --7 K. To understand A, observe that its

component at B E B is a morphism

in X.... But, by definition of (B), any morphism

m: (H) ] (B) X

in corresponds to a 2-natural transformation mt from

the 2-functor [F,B] A X to the constant 2-functor,.., ,..,

determined by X EX.,.., m' assigns to an object (F(A) B)

in [F,B] a morphism H(A) X in X and to a morphism

F (f)

K :

B
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in [F,B] a diagram

H(A) H(f) ) H(A')

x

in )$.

Now, given H KF , define

A = L:
2
F (H) K

to be the 2-natural transformation whose component

corresponds to the 2-natural transformation AE whose value

on K above is the composed diagram

H(A) H(f») H(A')

"A1
KF(A) KF(f) (A' I

K(B)

Conversely, given A: L:
2
F (H) K , define

= 4> (A): H KF

to be the 2-natural transformation constructed as follows:

i) For each object A E A , F (A): F (A) F (A),..

is an object of [F,FA], the adjunction morphism



- 300 -

is defined. We set

E A
= (H(A) (FA) FA> KFA •

ii) For a morphism f: A A', is the

composed square

H (f)

t'FA

KF(f)

It is easily checked that and are 2-functors. We

omit the more lengthy verification that •

Theorem (2-Comprehension Scheme)

Let X = [:n.$] , E: E Cat. Then the 2-functors

[ ,-]

(-) (1)

[oPCat ,E:] E- > oPFun (X ,Cat)-- -
have the following property: There exist 2-functors

such that
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i) is (enriched) left adjoint to

ii) Restricted to the subcategories

,

= and hence on these subcategories L
2
( - ) (1) is left

2-adjoint to [1,-]

iii) Restricted further to

X
(L

2
(-) (1) ,Cat)

< , «Cat,}§{ ), []L,-])

defines an ordinary adjunction

[:no, - ]

L
2
(-) (1)

catX(Cat,X{ )
<

Lenuna

op op X op
L 2 (-) (1(_»: [ Cat,X] (Cat) c Fun(X,Cat)- - --

Proof of Lenuna. The 2-Kan extension of lA along

F as a functor in F is very sensitive to variances and only

works as indicated. An object of [oPCat,X] is a functor-
F: A X. Since A and X are locally discrete as 2-cate-

gories, L2F(lA) is the functor

(F,-): X Cat

i.e., an object oPCatX. A morphism in [oPCat,X] is a- -
diagram



M
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A

x

where m: F is a natural transformation. This deter-

mines a natural transformation

{M,m}: (F,-) (F' ,-)

whose component

{M,m}x: (F ,X) (F' ,X)

is the functor which takes the object FA X of (F,X)

to the object

of (F' ,X); i.e., {M,m}x is the composition

(F,X) (ffi;X) (F'M,X) )0 (F'X) •

It is easily seen that {M,m} is natural, and not just

2-natural, so that

L:
2
(M,m) (lA) = {M,m}

is a morphism of

is a diagram

Finally, a 2-cell in

x
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where t: N M is a natural transformation such that

m • Fit = n. This determines a 2-cell in op(catX) from-
{M,n} to {N,n}i i.e., a 2-cell in catX from {N,n} to--
{M,m}, whose component at X is the natural transformation

{N,n}x {M,m}x

whose value on FA X in (F,X) is the morphism

FitFINA FIMA

\/A
PA

t
X

in (pi ,X).

Proof of Theorem. By the Yoneda-like lemma of §8,

[li,-]: Pun(X,Cat) .. (Cat,Z) c [Cat,X]--- -- --
and hence, if we wish, we may regard it as a 2-functor

[li, -]: oPpun (X ,Cat) [oPCat, 2«] •-- -- --
Using this and the preceeding lemma, it follows that the re-

strictions of the functors map as indicated.

The functors and

I

are described as follows: An object on the left hand side is a

2-natural transformation a: (p,-) K, whereas an object on

the right hand side is a diagram
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A

X

The functor M is described by a pair of components,

A E A, M2 (A) E K(MI (A», while for f: A A' in A,

With the description, m is a natural transformation,

Given 0': (F,-) --? K, define to be the

object for which

M(A) /= {F(A) ,a
FA

(id
FA)}

.

If g: A A' , let g be the map

FA F(g)

fFA'
FA'

in (F,A') and set

M(g) = {F(g),aFA,(g)O(aF(g»id }.
F(A)

Finally, m: F is the identity.

Conversely, given M, m, define to be the

2-natural transformation 0': (F,-) K such that

ax: (F,X) K(X) is the functor whose value on an object

(A, f: F (A) X) in (F ,X) is K(fmA) (M2 (A) ) and on a map
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F(A) F(g) > F(A')

x

is K(f'mA,) (M2 (g».

The action of and on morphisms is consider-

ably more complicated. The descriptions of this and of the

enriched natural transformations

0 id, id

as well as the verification that these operations behave as

indicated will be published elsewhere.

Note. The distribution of weak dualizations in the

general statement of the theorem is a bit mysterious. As with

ordinary adjointness, the possibility of dualization gives rise

to a number of types of 2-adjointness which do not as yet

deserve special names. It is possible that if one concentrated

on l-fibrations as basic rather than O-fibrations, then this

statement might come out more naturally. However, along the

way one would find - for this approach - that

2-lim 1 Cat) = AOP •

It seemed to me that getting A as the answer to this without

an artificial dualization was more desirable than getting the

neatest comprehension scheme, but this may be overly provincial.

In any case, the phenomena exhibited by the proof of the com-

prehension scheme seem to be genuine and not artifacts of the
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notation.

APPENDIX

Some Remarks on a Categorical Foundations of Mathematics

The possibility, indicated by Lawvere in [CCFM] of

giving a foundation for mathematics in categorical terms raises

the interesting problem of finding the correct form for such an

axiomatization. The answer of course depends on the intended

uses. I would like to suggest here that there is in fact a

whole hierarchy of theories and that their mutual inter­

expressability poses a strong restraint on the form of anyone

of them.

Specifically, there is the hierarchy of n­categories,

where an n­category is a "category" whose "hom­objects" are

(n­l)­categories. Here O­categories are sets, I­categories

are categories, 2­categories are as described in this paper,

etc. At the top are w­categories whose "hom­objects" are

simplicial sets (as suggested by Epstein). This sequence

should have certain properties.

i) There should be an elementary theory of abstract

n­categories. In this paper, we have given this theory for

n = 2 and the general case is easily derived from that.

Nothing new happens until wand it is not clear that this is

finitely axiomatizable.

ii) There should be a basic theory of abstract
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n-categories. The case n = 1 is not clear yet and in this

paper there is an indication of what is needed for n = 2.

However, certain things can be said in general.

a) There is a generating n-category 1 which has two
n

i-cells, i < n and a unique n-cell. (Except, 1 0 = 1.) This

is finitely describable, but 1
w

is apparently not.

b) Finite limits and colimits exist and there are "func-

tor n-categories" adjoint to cartesian product. Besides this,

there is an increasing sequence of (n - 1) more "hyper functor

n-categories" constructed as in the case n = 2 presented

here. There are almost certainly associated tensor products,

but their structure is so complicated that at the moment, for

n = 2, I cannot even tell if - A is adjoint or 2-adjoint

to Fun(A,-). I do not know the description of these hyper-,..,
functor categories in the basic theory.

c) There are a number of functors from n-categories

to "locally discrete" n-categories.

d) There is an object which is a model of the basic

theory; i.e., an n-category of (small) n-categories. It is

an (n+l)-category in, apparently, n different ways.

This is certainly not an exhaustive list of desirable

properties. There are some further requirements that are even

more crutial. If we regard the basic theory of abstract

n-categories as a description of n-categories in terms of

themselves, then we also require the following.

iii) m-categories should be expressable in terms of
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n-categories for m < n. By induction, this reduces to the

simply expressed requirement that the axioms of the basic

theory of n-categories, restricted to "locally discrete"

n-categories should imply the axioms of the basic theory of

(n-l)-categories.

iv) n-categories should be expressable in terms of

m-categories for n > m. Clearly, n-categories can be described

in terms of a-categories = sets, but one would hope that the

elegance of the description would increase with decreasing

n - m. In particular, there should be an analogue of the re-

lation Cat between models of (n-l)-categories

and n-categories.

We suggest that a proper foundation of mathematics

is an elementary axiomatization of the hierarchy described here.

The actual status of the program outlined above is

rather meager compared with its grandiose intentions.

Lawvere has given a beautiful discussion of the interconnections

between the cases n = a and n = 1, ([CCFM] but it is known

that the basic theory of abstract categories as presented there

is inadequate for the results claimed.

In this paper we have tried to see what happens if

the case n = 2 is included, by trying to discuss constructions

for 2-categories both in terms of sets and of categories. And,

of course, there is interplay going down as exemplified by the

examples of §6 and the main result of this paper. However, it

seems that there is a glaring inadequacy in the basic theory
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of categories; namely, we cannot construct the universal

O-fibration (i.e., -Cat of §l) in the basic theory. What is

needed is an axiom that looks like the operation UX in set-

theory. Let Cat be a model of the basic theory which is

full in the universe, and for any A E Cat, let A be the

corresponding category in the universe that looks like
I

( [CCFM], p. 17.)

Axiom

There exists P: Cat with the following

properties:

i) Given E Cat, there is an imbedding--I A: A Cat such that

commutes.

ii) Given F: A B, there is
...--

H: A x 1 Cat

such that

A x 2

- priA x 2 H ,. Cat and

Axa1t lIB
F

1
A )0 B

H

f
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commute.

iii) If ­Cat' P'
Cat also satisfies i) and ii),

then there is a unique functor over Cat,­ --Cat Cat'

Cat

preserving the structure described in i) and ii).

Hopefully, this is enough to give the basic construc-

tion of §5. If not, this could be described by an axiom scheme

saying that for each F: AOP x Cat there is a category-A x B with properties analogous to those of Cat. We

assume that once categories of these sizes are available, then

using the Category Construction Theorem and the Predicative

Functor-Construction Scheme of [CCFM), it is possible to con-

struct the 2-categories used in this paper within category

theory by giving categorical formulas for the objects, for the

categories Cat(A,B) and for the
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NON-ABELIAN SHEAF COHOMOLOGY BY DERIVED FUNCTORS

by

R. T. Hoobler*

INTRODUCTION

Given an arbitrary Grothendieck topology and a

sheaf of groups G in that topology, the construction of

Hl(X;G), the first cohomology set with coefficients in

G evaluated at X, is well known. Its usefulness in

algebraic geometry stems from Grothendieck's descent theory.

The problem of constructing H2(X;G) and a connecting map

0 1 : Hl(X;G") H2(X;G') for a central extension of

sheaves of groups G' G Gil giving a nine term exact

sequence of pointed sets has been solved by Giraud [61. He

adopted the point of view that Hl(X;G) classified locally

trivial (for the given topology) principal homogeneous spaces

for G up to isomorphism and then extended this approach to

define H2(X;G) as a set of equivalence classes of gerbes

which are essentially local equivalence classes of principal

homogeneous spaces. There are of course numerous prerequi-

sites for understanding this approach.

Since the boundary map 0 1 for a central extension

of sheaves of groups in the etale topology plays a key role

*I wish to express appreciation for support extended by the
National Science Foundation through contract NSF GP 8718.
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in the theory of Brauer groups of schemes [8] as well as

having other applications, we have developed a non-abelian

cohomology theory part of which is presented here. Its

culmination is Theorem 3.2 which produces a boundary map 6 1

and describes the exactness properties of the corresponding

nine term sequence of groups and pointed sets. For group

cohomology this map is well known [11] and has even been

defined for non-central extensions by Dedecker [3] and

Springer [12]. The boundary map is also easily defined for

Amitsur cohomology [5,10]. However, it is much harder for

sheaf cohomology, although this contains group cohomology as

a special case (see Theorem 3.3) since in an appropriate

topology non-abelian Amitsur cohomology agrees with non-

abelian group cohomology [5, Chapter I, Theorem 7.6].

The essence of our approach is to give a set of

axioms on a topology from which a functorial "flask resolution"

of G, a sheaf of groups, can be produced which resembles

Godement's flask resolution of a sheaf of abelian groups.

In order to get a "resolution" we define quotients in the

category of sheaves of pointed sets with group action. One

of the axioms then gives a functorial injection of such sheaves

into "flask" sheaves. The other axioms then allow us to copy

the procedures of homological algebra and so to produce

resolutions of "short exact sequences" and diagrams in which

we can "diagram chase" (using group actions on sets instead

of mUltiplication in abelian groups) to get the desired results.
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A number of examples are given which include the above appli-

cations. This approach to the problem was suggested by

Grothendieck's [9] and Artin's [2] results showing that the

non-abelian HI is an effacable functor.

Unfortunately the definitions and techniques devel-

oped here do not give an exact nine term cohomology sequence

associated to an extension of sheaves of groups

G' G Gil where G' is a normal subgroup sheaf of

G and Gil = GIG' • The main difficulty is in the definition

of H2(X,G') H2(X,G) • A description of the relations

between the various cohomology groups arising from such a

sequence can be given, but it is beyond the scope of this

present preliminary report on this approach. Similar prob-

lems arise in Giraud's work and are solved there with the

aid of the notion of twisting by cocycles. In fact for a

central extension G' G Gil , he only has a correspon-

dence H2(X;G') --0 H2(X;G) which makes it unlikely that his

H2 is the same as the one defined here. It would be inter-

esting to find a universal mapping property for non-abelian

cohomology so that the various definitions could be compared

more easily. This exists for HI and is the basis of the

proof of Theorem 3.3.

We have adopted the notation and basic definitions

of [1] in this work. Those readers familiar with the material

on general Grothendieck topologies in [2] can readily trans-

late the statements and results into the language used there.
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The increase in obscurity does not seem to justify using it

here. We will avoid all set theoretic questions by assuming

that all categories are small. The reader can justify this

by using the theory of universes. Finally all functors will

be covariant, and given a category C, CO will denote the

dual category.

§l PRELIMINARIES

We will be interested in the following categories:

S: Category of sets and set maps.

Category of pointed sets and point preserving

maps.

SG: Category whose objects are pointed sets with

a right group action not necessarily preserving the point,

(S,G), where S x G S satisfies

• g
2

and s • I = s for all s E S,

gl' g2 E G and whose morphisms are pairs (f,a), f E Mor

a E Mor G, with f(s • g) = f(s) • a(g) for all s E S,

g E G •

GS: Category whose objects are pointed sets with

a left group action not necessarily preserving the point,

(G,S) , where G x S S satisfies

(g 1g 2) • s = gl . (g2 • s) and I • s = s for all s E S,

g 1 ' g2 E G and whose morphisms are pairs of maps as above.

GSG: Category of pointed sets with a left and
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right group action, (GI,S,G2), where (GI,S) E

(S,G2) E SG and (gl· s) • g2 = gl • (s • g2) for all

gl E GI, S E S, g2 E G2 and whose morphisms are triples of

maps satisfying conditions analogous to the above.

G: Category of groups and group homomorphisms.

Ab: Category of abelian groups and group homo-

morphisms.

The components of a morphism in SG, or GSG

will be denoted by the same letter since the context will

show whether it is a group homomorphism or a pointed set map.

The distinguished point in a pointed set will always be

written as e and the identity of a group G as 1.

Given M E GsG, let MG or GM denote the group acting on the

right or on the left respectively, and let MS be the pointed

set on which MG and

for objects in SG and

Similar notation will be used

Note that there are several

obvious forgetful functors connecting these categories. These

will not be given explicit names in order to simplify notation.

We will rely on the context to show which category we are

working in. As an important example there is a functor

G --. GSG gotten by allowing a group to act on itself by

left and right translation.

Now fix once and for all a Grothendieck topology T.

Recall from [1] that this means giving a category T with

fibred products and a set Cov T of families of maps in T,
(fJi

{Ui--,U}iEI ' where in each family of maps U is fixed and
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which satisfy:

(1) If is an isomorphism, E Cov T •

(2) If
ljJ ••

, {V ..2.4u.} E Cov T , then...

(3) If {Ui--.U} E Cov T , V --. U E Mor T , then

{U. x E Cov T •
U

The category of presheaves on T with values on a category

C with products is the category of contravariant functors

is exact; that is,F(U)

from T to C and is denoted by P(C). The category of

sheaves on T with values in C , denoted by S(C), is

the full subcategory of P(£) consisting of presheaves F

such that for any {Ui--.U} E Cov T ,

p!
ITF(Ui) IT F(U i x U. )
I IxI 1 U

F(U) ITF(U.) is the equalizer of
I

p*
ITF(U.) IT F(U. x U.) where comes from the pro-
I IxI U

2

jection onto the itb factor for i = 1 or 2 •

Note that the objects and morphisms in S(£),

P(C), or C can be described by finite products of objects,

the "one point" or final object, and morphisms in S(S),

P(S), or S respectively such that various diagrams commute

where C = Ab, G, GsG, sG, Gs, or S· • Alternatively the

various functors between these values of C and S give
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identifications of P(C) and S(C) with group objects and

set with group action objects in P(S) and S(S). Thus

functors from or to or which

preserve equalizers and finite products, i.e., finite

inverse limits, and the final object correspond to functors

from C, P(C), or S(C) to C, P(C), or S(C) respectively.

Moreover, if i: P(S) is the inclusion functor,

then i preserves inverse limits and so products and

equalizers. These observations will often be used without

referring to them. For instance the formation of equalizers

in S(S), P(S), or S commutes with finite inverse limits

and the final object. Hence equalizers in S(C), P(C), or

C may be computed in S(S), P(S), or S respectively where

C is any of the above categories.

Artin's construction [1] of the sheafification

functor, #: P(Ab) S(Ab) , carries over directly to give

a left adjoint #: P(S) S(S) to i: S(S) P(S) which

preserves finite inverse limits and the final object. Thus

it also gives a left adjoint #: P(C) S(C) where C is

any of the above categories. We will give a brief description

of this procedure in order/to fix notation.

Given U E T , let Ju be the category of coverings

of U. Thus the objects of J u are coverings

and a morphism

is a function I J and maps Ui E Mor T
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conunutes.

Let J u be the corresponding partially ordered category;

that is, and

if Mor J = ¢ and otherwise it is a one
U J

element set. Note that J
U

is a connected directed category,

i.e., it satisfies Ll, L2, and L3 of [1], and so

preserves monomorphisms. Moreover, given V U E Mor T ,

we have a functor 0.+: J U -+ J v and (i+: Ju ...., J v given

by = {Ui u and

a+({Ui....,U}) = {Ui u •

Now suppose C is a left complete category

(possesses arbitrary products and equalizers) such that direct.

limits over categories satisfying Ll, L2, and L3 of [1] exist.

For instance C might be any of the categories at the begin-

ning of §l. For F E P(C) and {U E Cov T ,
l. -

V p*
let = Equalizer (IIF (U . ) -4 II F(U i

x u. »
l. I l. U l.IxI 1 2

Since the formation of equalizers is functorial,
v
HO( ;F): JO C. Suppose we are given

U -

...., E Mor Ju • Since

{V. x V. is the product of with itself
J 1 U J 2 JxJ
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in J u , there is {V. x V. such
1 I J 1 U J 2 JxJ

where= IjJandthat p = cp
1

p.: {V.
1 J 1

x V. comes from the projection
U J JxJ J J

2

maps onto the i lh factor. This gives a diagram

canonical monomorphisms of the equalizers, and cp, are

the induced maps between the equalizers. Now

iUcp = cp*iv = = = ljJ*i
V

= and so cp = •1 V 2 V
V -0 V *0 ({ } ; F) .Thus HO ({ } ; F) : J u C • Define HO(U;F) = lim

JO
U

This construction is functorial in U and F , and so gives
v

a functor HO( ; ): !O x P(f) --. C. Let
V

+ : P(C) --. P(C) be the functor (+F) (U) = HO(U;F) •

Note that there is a natural transformation I: I --. +

coming from

F E P(C) and

TIcp1y = TIF (cp.): F (U) --. TIF'(U.)
I 1 I 1 I 1

CPi
{U.--.U} E Cov T •

1

for any

Following Artin we introduce the condition

(+) on F E P(C) :

(+): For all E Cov T, F(U) --.
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is a monomorphism. Then copying Artin's proof [1], we see

that for C = (+F) satisfies (+) for F E peS) and

that if F E satisfies (+), then (+F) is a sheaf.

Let #: S(S) be given by #(F) = +(+F). It is

easily verified that # is a left adjoint to i as desired.

Moreover, since lim over connected, directed categories

preserves finite products and equalizers, the sheafifica-

tion functor preserves finite inverse limits. Since the one

point presheaf is already a sheaf, there is an induced

sheafification functor #: P(C) --. S(C) which is left

adjoint to i for any of the above values of C.

We will construct resolutions by embedding an object

in a larger one, taking a quotient, and repeating the process.

However, the definition of quotients requires a number of

preliminary concepts which are given below along with some

of their properties which are easily proven and will be left

to the reader. For the remainder of this section C will

denote one of the categories GsG, or

e will be the trivial map or final object in S(C), P(C),

or C, and Pi: M
1

x M
2

Mi will be the canonical

projection map onto the itb factor of a product. Where

there is any ambiguity in notation, the context will indicate

which category the object is being constructed in.

Let a: M Mil be a map in S(C), P(£), or C.

The kernel of a, Ker (a), KerP(a), or Ker (a) respectively,

is the equalizer of a and e. Note that iKer (a) = KerP(ia) •



- 323 -

a E Mor S(C) or Mor P(C) is of course a monomorphism if

and only if a(U) is one-to-one for all U E T. The

image of a, a(M), aP(M), or a(M), is the smallest sub-

object of Mil through which a factors. Thus

aP(M) (U) = a (U) (M(U» for U E T , and a (M) = # (iaP(iM» •

a is onto if the image of a equals Mil. This says that

a is an epimorphism in P(S), or respectively. For

notational purposes, we will write M Mil or M Mil

if a is monic or onto respectively. A sequence

M
1

M
2

M
3

in S(S·), or S· is exact at M
2

if the image of a equals the kernel of S. If M E S(sG),

P(sG), or sG, N is a subobject of M
S

and G is a subgroup

object of MG, then the orbit of N under G, 0N(G),

or 0N(G), is the image of N x G in M
s

under the group

action. MG acts transitively on MS if 0e(MG),

or 0e(MG) equals MS. Orbits of subobjects with respect

to left group actions are defined similarly and will be

denoted as above since the context will determine which side

the group acts on.

Let G E peG) or G. H is a normal subgroup

sheaf, normal subgroup presheaf, or normal subgroup - in

general, a normal subobject - if H is the kernel of a

for some a a map in S(G), P(G), or respectively.

For G E S(G) or P(G), a subsheaf or subpresheaf H of G

is normal if and only if H(U) is a normal subgroup of

G(U) for all U E T. If H· is a subgroup object of G
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and G
I
, G

2
are subgroup objects of G containing H as

a normal subobject, then H is a normal subobject of

G
I

• G2 ' the subgroup object of G generated by the image

of G
I

x G
2

in G under the multiplication map. Let the

normalizer subgroup sheaf, normalizer subgroup presheaf, or

normalizer subgroup, N (H), NP(H), N (H), be the largest
G G G

subobject G of G containing H such that H is a

normal subobject of G. This always exists since the set

of subobjects of G containing H as a normal sub-

object forms a directed system by the above remark and so

lim over this system is a subgroup object of G containing

H as a normal subobject. Note that for any U E T ,

NG(U) (H (U» :2 (H) (U) or N
G
(H) (U), and for G E S (G) ,

iNG(H) = NlG(iH).

If M E S(sG), P(sG) or sG, 0: M
S

x M
G

M
S

defines the group action on the right, and i: N MS is

a subobject, then the stabilizer of N in M, StM (N), "(N)
G G

or stM (N) , is the largest subgroup object j : M
G

such
G

that N x H is the equalizer of N x H
o (ixj)

Ms..-, >

As above, the subgroup ob ject.s H!: MG satisfying this con-

dition form a directed system, and so the stabilizer always

exists. If G is a subgroup object of MG containing the

stabilizer of N in M and N x G MS ' defined by the
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restriction of 0, factors through N , then

StM (N), (N),
G G

or St
M

(N)
G

is a normal subobject of G.

Stabilizers of group actions on the left are defined by inter-

changing right and left. They have similar properties which

we leave to the reader to prove and will be denoted in the

same way since the context will determine which side the

group acts on.

We are now ready to define quotients. Let

0.: M Mil be a map in S{sG), P{SG), or sG,

0: Mil x M ---+ Mil be the map defining the group action of
S G S

MG on MS via a , and suppose Mil E S{GsG), P{G§.G) or GSG

respectively. Define the set component of the right quotient

of Mil by M, Qr{o.)s, or Qr{a)s, to be the co-

equalizer of 0 and e in P{S·), or S· respectively,

and let TI be the corresponding epimorphism of pointed sets.

Temporarily let this set component be denoted by QS. Since

the left action of Mil commutes with the action of Mil ,
G G

Mil has an induced action on QS • Let GMII (a.) , (a.), orG

GM"{a) be Mil with this action on QS . Temporarily let
G

GM"{o.) be these groups with their action on Qs and St

be StM"{ ) (Qr{o.)s), StPp or St
GM"

(a) (Qr{o.)S)·
G 0. - Mil (a.)

G

Define GQr{o.), or GQr{o.) to be the sheaf of groups,

presheaf of groups, or group GM"{o.)/St (depending on the

category Mil is in) together with the corresponding left

group action on QS. Note that if Mil E then
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G9.r (a) = # (ia)) • Suppose that HI' H
2

are subgroup

objects of Mil such that there are right group actions
G

o 1 '
O
2

of H
1 '

H on Os giving commutqtive diagrams
2

Mil X H. -+ Mil
S a, S

7T x
Hil 17T

0.

Os x H. Qs

for i = I or 2 • Since 7T x H. is an epimorphism, 0'a a

is uniquely determined by H. and the group action ofa,

Mil on Mil . In particular 0
1
= O2

when restricted toG S

HI n H
2

Mil • Thus o 1 '
O2 define a group action on the

G

right of HI . H2 on Q
s

Let Me; (a) , PMC; (a) , or Mil (a)
G

be the largest subgroup object of Mil
G

for which such a group

acton on Qs can be defined. If we temporarily denote this

by MG(a), then it is lim over the directed system of all

Mil
G

subgroup objects of satisfying the above condition.

Note that Mil (a)
G

contains

NM"(a(MG) ) respectively. As above let st temporarily
G

stand for

StM" (a) (Or (a) s), and" define
G

StPp (QP (a) S), or
M"(a) r
G

Q (a)G' op(a)G' or-r r

to be Mil (a)/St in S (G) , p (§) , or G respectively,G -
together with their induced action on QS . Putting this

together gives Qr (a.,) , (a) , or Qr(a) in P(GsG) ,

Let O Q Q and, G -, -S' temporarily stand for these
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right quotients and their components respectively. Then

1T: Mil -+ Q preserves the left group action, and if the

image of is a normal subobject of Mil then
G '

1T also

preserves the right group action. In any case 1T preserves

the right group action if Mil is restricted to MG(a).G

Moreover, 1T is onto in S (GS) , P (GS) , or GS • In-
particular, if Mil acts transitively on Mil , then GQG S

acts transitively on QS • If M, Mil are in S (Q) , P (G) ,

or G and the image of M is a normal subobject of Mil ,

then Q is the quotient group in S(G), P(G), or G

regarded as a set with left and right group actions coming

from left and right translation because of the definition of

GQ and QG. The operation of taking right quotients is

functorial on the pointed set component. In particular

Qi(a)s(U) = Qr(a(U»s for all U E T. The functorial

behavior of the group components is not as nice however and

will be discussed later. Finally since # is a left adjoint

to i, it preserves coequalizers. Thus Qr(a)s = #(Qi(ia)s)'

and so

e -+ Or -+ Mil -+ Q -+ e
S S

is exact in or S· where Or is the orbit

of e under the image of M
G

in P(S·), or S· •

(See Proposition 2.2.) In particular the image of MS in QS

is trivial if and only if the image of MG acts transitively

on the image of MS •

Left quotient objects are defined similarly and
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will be denoted by replacing r with l in the notation

above. The above statements with left and right interchanged

hold for left quotients. We leave their statement and

verification up to the reader.

§2 FLASK RESOLUTIONS AND NON-ABELIAN HOMOLOGICAL ALGEBRA

In this section we first investigate the exactness

properties of #, i, and the formation of quotients. Then

we introduce some additional assumptions on T which enable

us to define a canonical "flask" resolution a la Godement [7].

Several examples are then given. The results of the last

section applied to them enable us to define the connecting

homomorphism for central extensions of sheaves of groups

on non paracompact topological spaces, a non-abelian

cohomology theory for groups and profinite groups, and the

connecting map Grothendieck used in his study of the Brauer

group of a scheme. The remainder of this section is devoted

to developing the analogue of the 3 x 3 lemma in our

setting.

Definition 2.1

Given M' , M, M" E S (GsG) , P (GsG) , or GSG ,-
M' 4 M 4 M" is a short exact sequence in S (SG) , P (SG) ,

or SG if 0. is a map in S (SG) , P (§.G) , or SG which is

monic and M" .Qr(ex), (ex) , or Or (ex) in S (GS) , P (GS) ,
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It is a short exact sequence of sets

in S (SG) , P (SG) , or SG if a is a map in S (SG) , P (SG) ,-
or SG which is monic and M" ::.. Qr(a)s' or Qr(a)S.S -

It is an exact sequence of sets in S (SG) , P (SG) , or SG at-
M if a(M') M SCM) is a short exact sequence

of sets in S(SG), P(sG) , or SG. Replacing right by

left gives the definition of a short exact sequence (of sets)

and an exact sequence of sets at M in S(GS), peGs), or Gs

The analogue of the exactness properties of #

and i for SCAb) is contained in the following two propo-

sitions.

Proposition 2.2

1) If M' !.. M" is an exact sequence in

S (S .) with a monic, then iM' iM .4 iM" is an

exact sequence in P (S·) with a monic in P(S·). If S

is onto in S(C), C = Ab, G, GS, sG, or S· , then for

CPi
any U E T , x E M"(U), there is E J u and

Y E IIM (Ui) with (Ui)) (y) = (x) •
I I 1

2) If M" is a short exact sequence

of sets in S (sG) , then iO e (MG)
al

iM S iM" is an exact........ --.
sequence in P (S·) with al monic and S factors through

If M' E S(G), and GM acts transitively on MS

or a(M') is contained in the center of MG and MG acts

transitively on MS ,then iM' iM 4 iM" is an exact

sequence of sets in with a monic.
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Proof. The first part of 1) is straightforward

monic implies = The rest follows

immediately from the fact that for M E P (C) , x E (+M) (U) ,

there is
Cj)i

and lIM (U . ) withE J U Y E I 1.

(IIi (M) (u.» (y) = (x) for the desired values of C .
I 1. I 1.

Suppose C = S·

being similar).

(the argument for the other categories
V

Then x E can be
1.

J u

represented by Y E lIM (U . )
I 1.

with

= p;(y) E II M(U. x U.) for some {DiCj)i»U} E J& .
IxI 1. 1 D 1. 2

is

and

is represented by(x)
I 1.

• Vo
But now (IIi(M) (D.» (y) E II l1.m H ({V .. };M)

I 1. I J,1. 1.
J u .1.

v
represented by E. II HO{{Ui1. 2 EI 1

which gives the desired result.

For 2), is the inclusion the orbit sheaf of

e under where = It is clear that

is monic, is the trivial map and (by definition)

a factors through If S(U) (x)

U E T, then there is E J
u

and

= e

g E

, x E M
S
(D) ,

IIM
G
' (U. )

I 1.

with (e . g) = (x) , Hence x E (D)
I 1. I 1.

as desired. Finally under the additional hypotheses we

must show that given x,y E MS{U) with S(D) (x) = S(U) (y),
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there is 9 E Mb(U} with x • a(U) (g) = y. First let us

show that for any U E T , given x E Ms(U) and

with x = x • a(U} (h), then h = e. There is

or 9 E ITMG(U.} with (x) = 9 • e or
I I

e • 9 respectively. Then in the first case

(g • e) • (a (U) (h») = 9 . e and so
I

e • a (U) (h) = e = a (U) (e • h) • Hence h = e as stated.

The proof of the other case using the central assumption is

essentially the same. Returning to the original problem and

using the notation there, we can find a covering

and E ITMG' (U.) with (x) • (ITa(U.» = (y).
I I I I

Hence (x) . IT a(U. x ) •
I IxI U ·2

= (x), and so = by the above observation.

Hence g = (g) for some 9 E Mb(U). Since M is a

sheaf we get x • a(U) (g) = y as desired••

corollary 2.3

Let U E T and M' M 4 Mil be a short exact

sequence of sets in S(sG). If M' E SCAb) and a(M') is

contained in the center of M
G,

then

M'(U),a(U») 0e(MG)(U) S(U»)M"(U) is exact in sG and S·

where 0e(MG)G = MG •

Proposition 2.4

#: P(C) S(C) preserves monomorphisms and maps
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which are onto for C = G, GsG, SG, Gs, S· as well as exact­

ness in short exact sequences of sets, and transitivity

of group actions.

Proof: Since lim preserves monomorphisms, it
Ju

is clear that # preserves monomorphisms as well as maps which

are onto for the above categories. Given M' M 4 Mil

an exact sequence of presheaves of pointed sets, we have

#(aP(M'» = #(KerP(s» = Ker(#(S» since preserves
­0J u

the exactness of the sequence in P(S·) if a is monic.

This also shows that # preserves short exact sequences of

sets since #(Qi(a)s) = Qr(#(a»s by universal mapping prop­

erties. Finally # preserves transitivity since #(0) is

onto if 0 is onto where 0: e x MG MS comes from the

right group action. •

Returning to the functoriality of GQr(a) and

Qr(a)G ' there are two cases of interest where this behavior

can be described. The statements are based on the diagram

below where all objects are in S(GSG), a, a E Mor S(GsG),

and f, fll E Mor S(SG).

Qr(a)

1"1
Q Ca)
-r

The two cases are:
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is contained in the center of

To simplify notation, if

(B)

denote

fll (Mil)
G

M (U)
I

M E P(C),

ITM(Ui). If a: M'
I

Nil
G

E Cov T , let

--. M E Mor P (C) ,

let a denote ITa(U;): ITM' (U.) --. ITM(U.), the context
I • I I

determining I and {Ui}.

Proposition 2.5

1) In either (A) or (B), f"(MG(a» S:NG(Ci).

In (A), f E Mor S(SG).

2) In (A), if fll E Mor S(GsG), then I E Mor

Proof: Suppose fll (Mil)
G

is contained in the center

of Nil
G • Then as

desired. In (B) , if g E f"(M"(a» (U) and x,y E Nil (U)
G s

with -:;;:"(x) = -:;;:" (y) , then there is a covering of

U, {u.CPi>U}, g E ITMG(a) (U.) with fll(g) = (g) ,a I

gl E ITNG(U. ) with (x) = (y) • a (g1) , gl E ITa (MG) (U . )
I I

Y E ITM"(U.)
I S

with fll (y) = cp* (y) •
I

Then fll(y. gl) = and 1T«Y· gl) • g) = 1T(y • g).

Hence g) = rr(fll(y • gl) • fll(g» = I1T«y • gl) • g)

= f1T(y • g) = • g). Qr(a)S is a sheaf, this

shows that f"(M;(a» (U) s: NG(a) (U).
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Finally, in case (B), f x f" is an epimorphism in

the commutative diagram below, and so

2r (a) S x St M" (C!) (.9.r (C!) 5)

If x :"

Qr (a) s x f" (S t M " (C!) (.Qr (C! ) S)) =:
G P 1

Thus I" E Mor S(sG). If f" E Mor S(GsG), a similar diagram

shows that f E Mor S(GsG).. A similar proposition holds

for Qt(a) and Qt(o) which we leave to the reader to state

and prove.

We are now ready to begin the construction of a

canonical "flask" resolution. First we need a canonical

embedding of a sheaf into a "flask" sheaf. The following

definition gives the necessary axioms.

Definition 2.6

Godement resolutions can be constructed in

if there is a functor C: S(S) and a natural trans-

formation j: I C with the following properties:

GRI: C preserves finite inverse limits and mono-

morphisms.

GR2: For all a: M M" E Mor S (sG) , M" E S (GSG) ,- -
the canonical map iCQr(a)s is an

isomorphism, and similarly for a E Mor S(GS).
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Moreover, iC preserves maps which are onto.

GR3: If M
l

and M2 are subsheaves of M, then

CM
l
= CM2 if and only if M

l
= M2

GR4: The maps j(CM}: CM C2M and

C(j(M}}: CM --. C2M have left inverses for all

M E S(S}.

GR5: Let U E T , be the category of sheaves in

T regarded as sheaves in the induced topology on

the category T/u of objects over U [1, Chap. II,

4.12]. Let Cu: SUeS} --. Sues} be defined by

Cu(M} (V) = CM(V}. If E Cov T/u , then

the map CU(M}
I

has a left

inverse for any M E Sues} which is natural in M •

Note that GRI and GR3 imply that C: S(C} S(C} where C

is any of the categories at the beginning of §l. This, the

functorialityof C, and the definition of produce

the canonical map in GR2. We give below several examples of

topologies in which Godement resolutions can be defined.

Examples: l} Let X be a topological space, T

the category of open subsets of X with inclusion maps for

morphisms, {u' U} E Cov T if u u' = u • Let Xd' be

the space X with the discrete topology, f: Xd" X the

canonical continuous map. Define a Grothendieck topology on

Xd' as above, and let SX(S} and be the category
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of sheaves of sets on X and X
d'

respectively. Then it

is well known that there is a left adjoint

to the direct image functor

f*: Sx . (8) Sx (8). The trivial triple on Sx . (8)

gives a triple (C,j,k) = (f*f*,S,f*af*) where

S: I f*f* and a: f*f* --. I are the respective adjunc-

tion maps [7]. Moreover, (f*f*) (M) (U) = f*(M) (Ud i s) where

Ud i s has the discrete topology on it, and so

CM(U) = n f*(M) IT M •
yEUd i s Y yEU Y

j (M): M CM is, of

U = U CPi(U i) (CPi is necessarily etale).

VIllI a geometric point y of X is

course, the map restricting a section of Mover U to its

value at all of the stalks. This construction is the one

Godement originally gave [7]. The verifications of GRI - GRS

are either trivial or simpler versions of the arguments in the

next example.

2) Let X be a prescheme, T the etale site on

X [2, Expose VII]. This is the full subcategory of schemes

U over X belonging to a fixed universe such that the

structure map U --. X is etale (Case (2) of [lJ), with

CPi
E Cov T if

Following [2, Expose

an X-scheme which is the spectrum of a separably closed

field. For each y EX, choose a separable closure kT¥)
of k(y), and let GP(X) be the set of the corresponding

geometric points. Let X = li Y , the disjoint union of
yEGP(X)
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the preschemes Spec <Kl'Y» , y E X , and let IIi • Xy.

be the canonical map. Note that for U X E T ,
U x X = II ( II y. ) = II Y where y - y since

X yEcp(U) y.Ecp-l(y) a YEGP(U)
i -

a

U x X is etale over X which implies that each fibre over
X

y E GP(X) is a finite disjoint union of copies of y .
Let Sx (S) and Sx (S) be the category of sheaves of sets on

the etale sites over X and X respectively. As in the

above example, the trivial triple in Sx(S) induces a triple

(C,j,k) = «IIiy)*(IIiy)*' S, (IIiy)*a(JIiy)*)

a, S are the respective adjunction maps.

in

For

SX(S) where

U X E T ,

CM(U) = (IIi )*M( II (II y.». Since (IIiy)*M is a
y yEcp(U) YiEcp-1(y)

sheaf on the etale site over X and

II (II Yi)} is a covering family,
yEcp(U) YiEcp-1(y)

CM(U) =

Essentially by definition (IIiy)*M(y) = My , the stalk of

M at y , where My = M(X I
) , Cy being the category

y

of preschemes Xl etale over X with a map y Xl over

y X [2, Chapter IlIa 1, Expose VIII]. If V U E Mor T ,

then the map

CM(U) = IT M- CM(V) = IT (IT M-) comes
yEGP(U) y yEGP(w(V» y.Ew-1(y) Yi

from composing the projection IT M- IT M-
yEGP(U) Y y
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with the product of the diagonal maps

(remember y = y.). In particular for
a

a: M N E Mor C(a) is determined by the maps

ay: My --. Ny for all y E GP(X). The map j(M) may be

thought of as sending a section to its value in each stalk

of M.

Since C and j come from a triple, GR4 is

satisfied. GRI is immediate since the product of equalizers

is the equalizer of the product and over Cy '
Cy being a connected directed category, preserves equal-

izers and monomorphisms. GR3 is Proposition 1.8 of Chapter

II of [1] • For GR2, recall that if M £4 Mil E Mor SG ,

0': Mil x MG
Mil is the map defining the right group

S S

action of MG on Mil via a , then the coequalizer of
S

Mil 0' Mil is M"/...... where is the equivalencex MGS P7 s S

relation x ...... y if there is a g E MG with x • a(g) = y •

Now a straightforward calculation using the definition of

(M;)S and the description above of Qr(ay)s shows that

Q () (Q ( » Thus for M Mil E Mor S (SG) we
r ay S -r a S y •

see from the structure of CMG and CMS that the

coequalizer of

is II Q (a-) S •
yEGP(U) r y

This and

the above description of the restriction map CM(U) --. CM(V)

for V U E Mor T shows that GR2 holds for right quotients.
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The argument for left quotients is identical, and iC preserves

maps which are onto by proposition 2.2. Finally, if

E Cov T/U , we must show that

CU(M) (V) = CM(V) = ITM(V x V.)
I 1* 1 I V 1

has a left

inverse which is natural with respect to V and M . A

section 1jJ of lI( II Yi) II Y can be defined by
I YiEGP(V i) yEGP(V)

choosing a point in the fibre over Y for each y E GP (V)

(the fibre is non-empty since E Cov since the struc-

ture sheaves of two such points are isomorphic. Then this

induces «IIi )*M) (V x 1jJ): ITCM(V x V.) CM(V) which is
Y V I U 1

clearly natural and left inverse to ITCM (q>. ) since
I 1

ITCM(V x U. ) = CM (lIV x V. ) • Hence GRS is satisfied.
I V 1 I V 1

3) Let G be a group, !G the category of left

G-sets with the canonical topology [1, Chapter I, Example 0.6].

Thus E Cov!G if and only if (Vi) = U .

In this topology all sheaves are representable. If M is a

sheaf in !G ' then the object representing M is M(G)

which has a left G-structure coming from functoriality via

right translation by for g E G • Let T..:J'-u1S
be the

category of left e-sets, where e is the trivial group with

the corresponding topology. The forgetful functor

f: a morphism of topologies. Let S(8) and

Sd' (8)1S -
be the category of sheaves of sets on and T..:J'-u1S
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respectively. Repeating the above process (and using notation

which conforms with it) there is a left adjoint

f*: S(S) Sd' (S) to the direct image functor f* .
1.S -

This defines a triple (C,j,k) = (f*f*,a,f*Sf*) where a

and S are the adjunction morphisms.

where Ud i s is U regarded as a set.

Now CM(U) = f*M(Ud i s)

Since f*M E Sd' (S)
1.S -

G .

T ,
-dis

and

and U is the disjoint union of its points in

CM(U) = IT M = HomT ( li G ,M) where My = M(G)
yEU y =G yEU Y

For V U E Mor ' CM(U) CM(V) is the composition

of the projection ITM --. IT M
yEU Y Y

followed by the product

of the diagonal maps The object

representing CM is IT M and the left G-action is induced
9EG g

from right translation by -1 on the index set G Theg .
functorial behavior of CM and the definition of equalizers

in shows that GRI holds. GR3 is clear, and GR4 follows

since C was defined by a triple. Suppose that M Mil

is a map in S (§.G) • The definition of the coequalizer of

ITcr
IT (M") x IT (MG) IT (M") where cry comes from

YEU S Y YEU Y PI yEU S Y

the group action of (MG)y on (MS)y shows that it is

IT Q (a )S. But Qr(ay)s ' once the notation and identifi-
yEU r y

are untangled, is just the object representing

Hence since the only coverings of G are disjoint sums of G,

this and 2.2
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show that GR2 is satisfied. Finally, as in 2), to verify GRS,

choose a section U liU. to the left G-map
I 1.

liU. U. While cannot usually be chosen as a G-map,
I 1.

and so a mapII G
yEV Y

II(II G)
I yEVxU. y

U 1.

(II G ,M) HomT ( II G ,M) which is natural in V
I =G yEVxU. Y =G yEV Y

U 1.

it does define a map

since the G-action on II G
yEV Y

comes from left translation

by g in each factor G Thus GRS is also satisfied.y

The Grothendieck topology which defines the Tate

cohomology groups of a profinite group [1, Chapter 1, Example

(0.6 bis)] also has Godement resolutions. The construction

is essentially the one given above with appropriate

continuity restrictions.

The next theorem summarizes the properties of C

and j. In particular it will be used to show that we get

"flask" resolutions and that these resolutions may be used

to resolve short exact sequences.

Let M E S(C) where C = Ab, G, GsG, SG, or S·

and fix U E T • Define a functor s* (M) ( from to

the category of augmented co-semi-simplicial objects in C

by
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p* p*
1 1 !'>>

II M(U. x U. x U. ) )

13 1. 1 U 1. U 1
3

p* > 2

3 p* >
4

where for simplicity we will write for
I

and

IInM(U. X"'x U. ) --. IIn+ 1M(U.
X"'x

J I 1. 1 U U 1.n I 1. 1 U U

U

1 j n + 1 , for the map coming from the projection maps

p. .1) .: U. x· "x1 ••• 1 ••. 1 1l' , j' , n+l 1 U

--. U. x···x
1. 1 U U

which excludes the jth factor. (The degeneracy maps come

from the diagonal maps, but these won't be needed.)

Theorem 2.7

Let

1)

C be any of the above categories, M E S(C).

For any E Cov T , there are maps
1.

IICM(U.) --. CM(U) and
I 1.

U. ),n>l,
1.n-l

such that

(a) = n * = 1 andP 1*P 1

(b) n * n-l
Pl*Pk =

for n> 1 and = .
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2) Let a: Mil E Mor S (C) . a is monic if

and only if C(a) is monic. In particular j (M) : CM

is monic. Moreover, iCKer (a) = KerP(C(a» and

iC(a(M» = C(a) p (CM) •

3) If M' M Mil is an exact sequence in

S (s ' ), then iCM' C (a » iCM C (13») iCM" is an exact sequence

in P (S· ) .

4) If M E S(sG), then iCOM (e) = (e). In
G G

particular if MG acts transitively on MS ,then iC(MG)

acts transitively on iC(MS). If H is a normal subgroup

sheaf of G, then CH is a normal subgroup sheaf of CG I

iC(#(iG/iH» = iC(G)/iC(H) I and so

iCH iCG iC(#(G/H» is a short exact sequence in

P (G) •

5) Let

Then there is a map

a: M Mil E Mor S (SG) I Mil E S (GSG) •

6: iC(Q (a» QP(C(a» E Mor P(G_SG)
-r r

which is an isomorphism on the pointed set components and

onto in P (GS) • If moreover a (MG) is a normal subgroup

sheaf of Mil
I then 6 is onto in P • A similar state-G

ment holds for left quotients.

Proof: 1) Note that <:Pi *<:P!Cu (M) (V) = CM (U. x V)
1. U

<:p'
for any M E S (f.) and {Ui -4U} E Cov T/U by [1, I, 2.8] •

Now by GR5, (<:p x V) *: C (M) (V) ITCM (U. x V) has a left
I 1. U

inverse cp(V) natural in V and M . The naturality in M

shows that cp(V) E Mor C for all V (<:Pi*<:Pt conunutes with
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finite inverse limits [1, Chapter II, 4.14]). Let

qJ* = qJ (U): ITCM (U.) CM (U) .
I

a left inverse of

Now qJ(U. x···x U.
U U

is

CM(U. x···x U. )
. U U

ITCM(U. x U. x···x U. )
I U U U

for each

n-tuple (iI' .•• , in) E In. Le t

n
llnqJ(U. U. ) . Then n is left inverse toPI* = x· •• x PI* a
I U U

p*. ITnCM(U. x· •• xU. ) ITn+1CM(Ui
x U. x > •• x U I )I . I U U I U U U

which gives (a). Since qJ is a sheaf map, the diagram

below commutes which gives (b):

U. x U. x···x
U U U

U. )
n

U. x U. x···x
U U U

2) Let a: Mil be a map of sheaves with

C(a) monic. Let f
l,f2: L --+ M with af

l
= af . Let2

F. = Equalizer (L x M
P2

M) be the graph of f.
J J



is the graph of C (f . ) : CL
J

is monic and so CF
1
= CF

2

f = f Since C (j (M) ) :
1 2

By GR3 this gives F
1
= F

2
or

CM C2M has a left inverse, it

j = 1 or 2. Since C

- 345 -

preserves fihite inverse limits

CM in CL x CM. But

CF.
J

C(a)

is a monomorphism. Thus j(M) is a monomorphism. Since

iKer (C(a» = KerP(C(a» and C preserves equalizers,

iCKer (a) = KerP(C(a». Moreover C(a(M» is a subsheaf

of CM" , and since iC preserves maps which are onto,

3) follows immediately from 2) as do the first two

assertions of 4) • The condition that H is a normal sub-

group sheaf of G is equivalent to saying that

p xp x inv Pz
H G z 1 G H G G factors through Hx > x x ....
where inv is the inverse map and the last map comes from

multiplication. Thus CH is a normal subgroup sheaf of CG .
Now as a set iC(#(iG/iH» = iCG/iCH since

# (iG/iH) = Qr(j)s ' j: H G being the inclusion map. But

the stabilizer subgroup in CG of its action on CG/CH is

precisely CH which comes from the stabilizer subgroup in

G of its action on G/H. Hence the argument below for 5)

shows that iC(#(iG/iH» = iCG/iCH in P(GsG) or equivalently

in P (G) .

5)

iC (G9.r (a) ) = iC(GM" (a)/St M" (a) (Qr(a)S»·
G

Since = iC(GM"), the definition of
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StP (QP{C(a»s)' GRl, and the onto statement of GR2
(C (a) r

show that iC(St M"(a) (9.r(a)s» is contained in
G

StP (QP(C(a»s) and that GQi(C(a»
PCM" (C (a) ) r
G

is onto. (In 4), C applied to the first stabilizer equals

the second stabilizer which finishes the proof of 4). 4)

then shows that the map is onto.) PiCM"(C(a»
G

is the sup of the

subgroup presheaves in iCM" whose actions on iCW'G S induce

an action on

GRl and GR2 show that

MS induces an action on Qr(a)s '

iCMG(a) is contained in PiCMG(C(a».

is a subgroup sheafM"(a)
G

Since

whose action onM"
G

of

Moreover the argument above shows that

iC (StM" (a) (9.r (a) S» s;; StP (QP (C (a» S) where we have
G PiCM"(C(a» r

G

identified CQr(a)s with Qi(C(a»s. Hence we get a map

iC(9.r(a)G) Qi(C(a»G which fails to be onto only because

iCMG(a) may not equal PiCMG(C(a». This together with the

map between the groups acting on the left and the isomorphism

which is onto in P(GS).

M
G
,then C(a)P(CM

G)
is

iCM"(a) = PiCM"(C(a»G G

of the pointed set components gives

iC(Qr(a» Qi(C(a» E Mor

If a (MG) is a normal subgroup of

a normal subgroup of iCMG. Thus

and the map is onto in .•

This gives a reasonably good picture of the func-

torial properties of C. The last result of this section

does the same thing for Q .-r In particular we will need a
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non-abelian analogue of the 3 x 3 lemma which will follow

by combining the results below.

Theorem 2.8

1) Given M' M -4 Mil

j'r j 1- j"r
N' >4 Nil

!
e -......,. Q Qr(j)-r

where all of the sheaves are in suppose that

j, j', a, a E Mor S(sG), the other maps are in S(S·),

a, a, j', j, and j" are monic in the first two rows

are exact in S (S· ) and M'
G

acts transitively on MS .
Then the third row is exact in S (s·) • Moreover, if N' orG

N' acts transitively on N' and , , , E Mor S(sG) orG S
S(GS) respectively, then

,..,
is monic.a

2) Consider M' a M f3
) Mil

j '! j!
s

j"l
N' a N ) Nil)

,.., ,,! ."!
Q. (j)l.. g. (j")

where all of the sheaves are in G G -
S( ), a, 0., n '

NS Qr(a)S ' and if NG is restricted to a(NG), then

becomes a map in
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If • = r, and j " j, j ", S, S E Mor S (sG), and

"SI: j (M)G j" (M") is onto, then Qr(j")S Qr(a)S .
G

If = i, and
. ,

j , j II , S, S E Mor S (G§.) , and. J ,

"SI: Gj (M) j II (M") is onto, then Q.Q, (j " ) S 9.r (a) S .G

Moreover left and right may be interchanged in the

hypotheses if they are interchanged in the con9lusion.

if
1

a(x) = e • j (g) •

Let U E , x E 9.r ( j ' ) s (U) with

CPi
is onto, there is E Cov T

1T' (x) = (x). But 1T (ex(x) = e ,

1T '

1)

Since

Proof:

= e

ment of

that a(e· g ) =
1

and x E TINS' (U.) with
I 1

and so by 2.2 (and taking a refinement of

necessary) there is g E TIMG(U.) with
I 1

Since j II is monic, e· g E TIa (M
S'
) (U. ). Taking a refine-

I 1

if necessary, there is gl E such

e • g , and so j' (e • gl) = x since a

-is monic. Hence x = e as desired since Qr(j') is a

sheaf. For the rest assume that N' acts transitively on
G

N' and a1T ' E Mor S(sG). Then given x, y E Qr (j' ) s (U)S

with Ci' (x) a (y) , there is CPi
J u TINS (U. )= E , x, Y E I 1

with 1T' (x) = and 1T' (y) = , and g E TING(U . )
I 1

with x . g = e . Then a (1T' (x . g» = aCe) = a(1T' (y . g».
Thus the above shows that 1T' (x • g) = . 1T' (g)

= 1T' (y • g) = • 1T' (g), and so x = y. The other case

is similar.

2) The hypotheses on the group actions the maps

preserve are, except for 1T', S, and i required for the other
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hypotheses and the conclusion to make sense. For = r ,

the result follows from a diagram chase in the diagram below.

N
S

x M
G

x N' N
S

x M
G

SxMG Nil x M
G > S G

P, XP311
Pl xp"

P
J!1 p'll

- <.

SNS
x N' ) NS

Nil
G )L S

1
Pl

,1 "'1
1TxN'

G

132r ( j ) s x NG 2r (j) S Q (j")-r S
P 1

By defini-

All unlabeled maps come from the group actions and

projection from the product onto the factor.

p.
1

denotes

tion Sand 1T are coequalizers. Since

81: j (M) G j II (Mil)G is onto, 1T II is also a coequalizer

(the coequalizer of is the coequalizer of

M:=; N if L M is an epimorphism). A straightforward

argument using Proposition 2.2 and the structure of the

coequalizer Q of MS x NG :::: MS where NG is a sheaf of

PI

groups acting on any sheaf of sets shows that Q x L is the

coequalizer of M
S

x N
G

x L t MS x L for any L E S(S).
PI xP3

Thus and 1T x N'
G

are also coequalizers. Finally

the hypothesis on N
G

shows that the whole diagram is commu-

tative. Now a diagram chase shows that 8 is also a

coequalizer. Hence Q (J' " ) Q (,..,) .-r S =:! -r C/. S s arice
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below.

For . - l , the result follows from the diagram

GM x NS x N' GM x NS
GMxi3 M x Nil

G
xp "

G S

P2xP31 1
PI 2

P211 P211
NS x N' NS

8 Nil) •G ) S

1
PI

,1 '-1TIxN'G

'SQ (j) x N' ) Q,t(j)s ) Q (j ")-,t S G ) -£ S
PI

The arguments above show that TI, TI", 13, TI x N(; , and

GM x 8 are coequalizers. A diagram chase as above then shows

that S is a coequalizer as desired ••

§3. COHOMOLOGY WITH NON-ABELIAN COEFFICIENTS

This section is devoted to the definition of

n G GH (UiM), M E S( S ), and a description of its properties

including the exactness of a 9 term cohomology sequence

associated to a central extension of coefficient sheaves.

It concludes with a comparison theorem which says that our

definition agrees with the usual one for well known coho-

mology theories.

As before we fix a topology in which Godement

resolutions can be constructed, (T,C,j), for the entire
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section. Let M E The canonical resolution of M

is the complex:

e CM dO> CQt (j 0 ) d 1 > CQ
r
(j 1 )

! n\ j! n\ i n\ i
M

where of course j 0 = j (M), j 1 = j (Qj/, (j 0) ), etc., and

d i E Mor preserves the left group action if i is odd

and the right group action if i is even. For the remainder

of this section fix U E T (thus giving f U: S(GSG) --;.. GSG

which we will derive). Let Zn (M) E GsG be defined by-
n dn n

Z (M)s = (CQ. (jn-l)s(U) CQ. (jn)s(U» with Z (M)G

and GZn(M) being the largest subgroups of Q.(jn-l)G(U)

and GQ. (jn-l) (U) respectively which stabilize Zn(M)s as

a set where . = i or r depending on n. Proposition 2.2

shows that Zn(M)s = 0e (GQr (jn-l» (U) Qr ( j n - 1 ) s (U) and

GZn(M) = GQr(jn-l) (U) for n even and

Zn(M)s = 0e (QJI, (jn-l )G) (U) and Zn(M)G = Qt(jn-l)G(U) for

n odd where Q (J' )-r -1
is always to be interpreted as M and

Qj/,(j-2) as e. For n odd, let 0e(CQr(jn)G) E be

the sheaf of pointed sets whose right group component is

n even. Then by restriction we have a map
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TIl : 0 (CQ (j )G) (U) Zn(M) which is in SG for n
n-1 e -r n-2 :J

odd and a map (U) Zn(M) which is in GS

for n even. Define Hn(UiM) = Hn(M) = Q. (TInI ) E GSG
-1

where . = I for n even and . = r for n odd. Thus if

n n n
GH (M) = GZ (M)/St Zn(M) (H (M)S). Note that if M E S(Ab),

G
n ththen H (M) is, via a forgetful functor, just the n--

homology of the complex:

dO d 1 d 2
e CM(U) CQ£(jo) (U) CQr(j1) (U) •

If

x

n
x E Z (M) S '

n
in H (M)S .

let {x} denote the equivalence class of

Finally observe that Hn(M)S is a pointed

The neutral elements,set with neutral elements.

are the image in Hn(M)S of

If GM acts transitively on

TI (CQ. (j ) s (U»n-l - n-2

MS ' then HO (M)S =

Hn(M)S '

n Zn(M)s

MS(U)

HO(M)S are quotients of those

M E HO(M) = M(U),

Q£(jO)G acts transitively on

since CMG(U) acts transitively

where the groups acting on

acting on MS(U). Thus if

Z1 (M)S = Q£ (jo)s(U) (since

Q£(jo)s)' and = e

on CMS (U) .

Now HO(M)S = 0e(GM) (U) defines a functor

HO( )s: S(GS ) S·. If we restrict the category of

sheaves, then we can enlarge the range category. Thus

HO ( ): S G. Moreover, given M Mil E Mar S (GS)

acts faithfully on

HO E Mar Gs

if GM (U)

P(GS), then

MS(U) or is onto in

since in either case
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S(St M(U) (Oe(GM» (U» acts trivially on
G

The functoriality of H1(M) and

oe (GM") (U) •

H2(M) is a little

more complicated. For our purposes the following observations

for S: M Mil E Mor S suffice:

1) HI (M) S defines a functor HI ( ) S: S (G) S· ,

2) H2 (S) exists in S· if S is onto, and

3) H1(S), H2 (S) exist in GSG if M E SCAb) and

SCM) is contained in the center of Mil •

In either 2) or 3) H2 ( S) (H2(M)S) l;;; H2(M")S' and in 3),

iii igiven g E H (M), x E H (Mil), H (S) (g) • x = x • H (S) (g) .

The proof is based on the following diagram:

CM(U)
TI
O

•

In general a 1 E Mor However,

a TI = TI"CS E Mor S (_SG) , and so it induces a map
1 0 0

HI (a) = sl: HI (M) HI (Mil) E Mor S·. In either 2) or 3),

a 1 (and so Cal) is a map in S(GsG) by Proposition 2.5

since in 3), StCM (j ) (Q.R, (j 0)) = j 0 (M) = St CM (j ) (9.R, (j 0) ) ,
GoG 0

and SCM) is contained in the center of Mil. Thus ca

takes stabilizers into stabilizers as required. Moreover, in

this case HI (a) E Mor GsG since TIo(CM(U)) is the stabilizer

of H1(M)S in (U) and QR,(jO)G(U) which are the
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groups acting on HI(M}S. The action of HI(M} E Ab on

HI(M"}S is independent of the side it acts on since this is

true of the action of Qt(jo}(U) E Ab on

Since 8 1
and so e8

1
are onto in S in 2} and in 3}

Qt(jo} E SCAb} with 8 1 (Qt (jo)) contained in the center of

and and its action on is

independent of the side, we can apply Proposition 2.5 and

the above argument again to finish the proof. Note that if

8: M M" E Mor S (G) and 8 (M) is contained in the center

of M" , then HI (8) and H2(8} exist in S· since 8 can

be factored as a map which is onto followed by a monomorphism

into the center of M" .

The first exactness statement is needed for the

comparison theorem.

Proposition 3.1

Let M' M M" be a short exact sequence

in S(SG} with M', M E S(G}. Then there is a natural

transformation 00: HO(M"} HI(M'} in S· giving a

sequence

1 HO (M') HO (M) HO (M") HI (M') HI (M)

which is exact in SG at HO(M'} and HO(M}, exact in GS

at HO (M"), and exact in S· at HI (M').

Proof: The proof is based on the following diagram

where the maps are the obvious ones:
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M' (U) :-
0.

M(U) S Mil (U),. ,.

j;l jal
e

CM' (U)
0.

CM (U) CM" (D);:- " )3

TI'l TIol0

0.]
Q

j

(jO) (U) ) Q (j") (U)
-t °

The first row is exact in SG by 2.2. The second row is a

short exact sequence of sets in SG by 2.7. The third row

comes from a short exact sequence of sets in and

is monic by 2.8 since E Mor Since

acts transitively, 2.2 shows that the third row and all of

the columns are exact in S·, and ZI(M')S = (U).

Define 00: Mil (U) HI (M') E Mor S· in the

usual way. Thus if x E M"(U) = HO(M"), choose
S

Y E CM(U)

with S(y) = Since 6
1
(no(y» = e , there is a unique

z E ZI (M') S with 0.
1
(z) = no (y). Let 0° (x) = {z}. It is

immediate that 00 is independent of the choice of y and

is natural for maps

M' a M
(3 Mil;;. :)

) "
f'l £1 fill

N' ex
N S "",. Nil;;. )

where f', f E Mor S(§.) and fll is the induced map. We

already have exactness in SG at HO(M') and HO(M). Since

we are forming left quotients in the third row, if g E GHO(M)

and x E HO(M"), then oO(x) = 00(6(9) . x). On the other

hand, if 00 (x) = 00 (x') for x, x' E HO (Mil) S = MS(U),
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then we can choose y, y' E CM(U) with TIo(y} = TIo(y') and

S(y) = j (x) , S(y') = j (x' ). Since TI°(y' . y-l) = e •

y' . y-l E M(U), and so 8(y' . y-l) . X = x' as desired.

Exactness in S· at Hl(M') follows from the transitive

action of CMG(U) on CMS(U) and the exactness in S' of

the third column••

The next theorem provides a boundary map

0 1 : HI (Mil) H2 (M') for a central extension of sheaves

of groups.*

Theorem 3.2

Let M' >4 M Mil be a short exact sequence

of sheaves of groups with a (M' ) contained in the center of

M . Then 0° is a homomorphism, and there is a natural

transformation 0 1 : HI (Mil) H2 (M') in S· such that

1) 1 HO(M') HO(M) HO(M II
)

Hl(M') Hl(M) HI (Mil)

is an exact sequence of groups at the first three terms and

exact in SG at the other terms.

2) HI (M) HI (Mil) H2 (M') is an exact sequence of

pointed sets.

* Using a slightly different definition of Q (a), the exis-
tence of 01 for a short exact sequence of sheaves of groups
can be shown. However, with this definition only 1) - 3)
(suitably modified in the non-central case) of the exactness
properties below can be proven.
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3) HI (Mil) H2 (M') H2 (M) is an exact sequence of

sets with neutral elements, i.e. 81 (HI (M")S)

4) H2 (M') H2 (M) H2 (Mil) is an exact sequence

of sets with neutral elements under the right group action;

that is, for all - H2 (M' ) H2(M)S we haveg E . G , x E ,

(x) (x 2 - and if (x) E H2 (Mil) , then there= . a*(g», ,
S

is g E H2 (M' ) with x . (g) E H2 (M) , .
G S

Proof: The proof is based on the following diagram

where the maps are the obvious ones:

M' (U) :::: a M(U) s M"(U))

j;l j,1
13

j 1
CM' (U) :; a CM(D) CM" (D)»

'01
a j

TI 01
'<

::- 2£(j(j)(U)
1

Q (jill (U)) •-£ 0

j;l
Cl
1

j,I
S 1

j '; I
CQ.£ (j l (U l .::: ) C2

t
(j (j) (uJ 2)0)0 C2£ (j (U)

TI;1 'll "1'" 1

(;(2 B')
.Q.r ( j (U) :::: ) s, (j 1) (U) 2r ( j j ) (U )

The first row is an exact sequence of groups, and the second

row is a central extension of CM"(U) by CM' (U). The

third row comes from short exact sequence of sets in

by 2.8 (regard Mil = Q (a» and so is an exact sequence of
-r

t . SG b 22M Mse s y.. oreover, a l , SI E or
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8 E Mor S(sG) is onto, and the sheaves of groups acting on
1 -

the right act transitively. Thus by 2.7 the fourth row is a

G - G Gshort exact sequence of sets in S , a , 8
1
E Mor S , the

- 1

groups acting on the right act transitively, and 8
1
E Mor SG

is onto. Then 2.8 shows that the fifth row comes from a

short exact sequence of sets in S(sG) (since

E S(Ab)) and a 2, 82 E Mor by earlier remarks.

So by Proposition 2.2 it is an exact sequence of sets in SG.

Moreover, the first two arrows in each of the three columns define

exact sequences of sets in Gs as do the last two arrows in

the first column.

Since the sheaves of groups acting on the left,

right act transitively on the corresponding sheaves of sets

defining the first, third row respectively, the sets in these

rows are the 0 and I cocyles. Moreover, the last two arrows

in the two columns on the right form exact sequences in S·

by 2.2. Finally for convenience we will identify H1(M'),

H2(M') E Ab with Hl(M')S ' H2(M')S or H1(M')G' H2(M')G'

etc.

Since S E Mor and TID E Mor SG , it is

clear that 0 0 is a homomorphism. A straightforward diagram

chase using E Mor SG gives exactness of sets in sG at

HI (M'). Exactness at HI (M) follows since

8
1
(x . a

1
(g ) )

If 8.1 ({x}) =

x, Y E Z 1 (M) S

= 8 (x) for all g E Qn(j') (U) and x E ZI(M)S •
1 0

then we can choose representatives

for {x}, {y} respectively such that
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SI (x) = SI (y) since S, SI' no' E Mor SG and 8 is onto.

Then there is g E (U) with x = Y • a l (g). Hence

(x ) = {y} • ({g}).

Define 0 1 : HI (Mil) H2(M') in the usual way.

Thus if x E ZI(M II)S ' choose y E CQ.9,(jo)s(U) with

SI (y) = j II (x) • Since the fifth row is exact in S· and
1

n"j" is trivial, there is a unique z E Z2 (M' ) with
1 1 S

a 2 (z) = n 1 (y) • Let ol({x}) = {z I . Altering the choice

of y does not alter the cohomology class of z since

n la l E Mor GSG and the action of (U) on

C2£(jo)s(U) is independent of the side it acts on. Altering

the cohomology class of x alters y by an element in

jlnO(CMG(U» and so doesn't change {z}. The exactness of

jl n l• > and the above remark about the action of

CQ.Q, (j (U) on

S· at H l(M").

CQ.Q,(jo)S(U) immediately gives exactness in

3) follows immediately by using the exact-

ness of
j II II

) n 1 ); in S· .

Since 82 factors through the first part

of 4) is trivial. Suppose x E Z2 (M) S = 0e (G2r (j 1» (U)

represents {x} E H2(M)S with = {8 2(x)} E H2(M")S .

Then, since SI is onto in S· , there is y' E CQ.Q,(jo) (U)

with 82n 1(y') = 82 (x) . Let y = n l(y')· Since

82 (y) = 82 (x) , there is g E s, (j (U) with x . a 2 (g) = Y .
Thus {x} . ({g}) = {y} E H2 (M) I as desired. •S

Finally we must relate this cohomology theory to
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the usual ones. If M E peG)
V

= {g E TI M(U.
1 IxI 1 1

and {Ui--.U} E Cov T , let

xU. ) Ip*2(g)
U 1 2

gl g2

p* (h- 1 ) •
2

all but the

= p*(g) . p*(g) E TI M(U. x U. xU. )},
1 3 I3 1 1 U 1 2 U 1 3

V V
HI ({U.--.U}iM) = ZI where

1 1

h E TIM(U.) with g = p*(h) . g
I 1 1 1 2

comes from the projection map onto

if there is

Given {Ui--.U} E Mor J U '

there is an obvious induced map
v v
HI HI ({Vj--.U};M) which depends only on

and define

As usual
1

i t h factor.

the domain and range [10, Proposition 1.2]. Let

V VI
HI (U;M) = lim H Then it defines a functor

1
J u

V V
HI (U; ): S· which together with HO(UiM) give

a different cohomology theory. In particular for M E S(G},
v
Hl(U;M} is the set of "locally trivial principal homogeneous

spaces for M in the topology over U."

Theorem 3.3

1) Let M E S (Ab) • Then Hn(M) is the thn-e--

derived functor of f U: SCAb) Ab evaluated at M where

fUCA} = A(U) for all A E SCAb}.
v

2) H1(U;M) is naturally isomorphic to H1(M)S .

Proof: 1) Since the canonical resolution is

indeed a resolution in the usual sense for M E S(Ab},

it suffices to show that CM E SCAb} is flask
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<:Pi
[1, II, Corollary 4.4]. Given E Cov T , we

cp'
must show that the complex S*{CM) defined just

1.

before Theorem 2.7 where the boundary map dn is

n+l i
L (-I) has trivial cohomology. If
i= 1 1.

X E Ker (dn) IT CM(U. x··.x U. ), then
I n + 1 1. 1 U U 1.n + 1

pi (x) =
n+l i
L: (-I)
i=2 1.

Theorem 2.7 shows that

Pl*pi = pi-l Pl* for i > 1 where in the right hand term

U.
1.
n

IT CM (U . x· •• xU. )
I n +1 1. 1 U U 1.n+1

and goes in the other direction.

d n
- 1 (-p * (x) )

1

Moreover,

as desired.

2) For M E S{Q), consider M CM Qr{j).

Since M and CM are groups Qi{j) satisfies (+) and
v v

so HO{UiQi{j» = HO{Ui2r{j» by definition of #. It

is an easy argument to prove the results of Proposition 3.1

for a short exact sequence of presheaves in P{sG) using
V v
HO{UiM) and HI (UiM) instead of HO{M) and HI (M)

(see [10] for the definition of 0° and most of the argument

or [5, Chapter I, Theorem 3.1]). Thus if we can show that
v
HI (UiCM) and HI (CM) are trivial for M E S{Q), then

the above sequence shows that
v v
HI (UiM) GCM{U)\HO{UiQi{j»s GCM{U)\Qr{j)s{U) HI {M)S
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as desired.

But for any
V
HI ({Ui -.U} ; CM) = e , for given x E II CM (U . xU.)

Ix! 1 1 U 1 2

such that P*2(X) = p*(x) • p*(x), Theorem 2.7 shows that
1 3

x = PI *p! (x) = PI (x) • PI (x)-1

= pt (PI * (x) • (PI * (x) -1 . Thus x,.., e since

Pl*(x) E IICM(U.). Moreover HI (CM) is computed from
I 1

CM(U) C(CM) (U)..!...+ QR, (j) (U). But j E Mor S (G) has a

left inverse J: C(CM) CM by GR4. Hence C(CM) (U) is

a semi-direct product of (Ker J) (U) and (CM) (U), and a

straightforward argument shows that the composite

(Ker j) (U) C(CM) (U) (U) is a set isomorphism.

Since Ker j is a sheaf, this shows that n is onto. Thus

HI (CM)S = e as desired••
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FONCTEURS DERIVES ET K-THEORIE

par

Max Karoubi

On expose dans cet article certains resultats

obtenus en appliquant des techniques connues d'algebre homolo-

gique a la K-theorie. Des resultats plus complets accompagnes

de leurs demonstrations paraitront prochainement [4].

Pour ne citer que cet example, on sait que la cohomo-

logie avaleurs dans un faisceau Hn (X; F), n 0, F variable,

est caracterisee par les axioms suivants:

HO (X;F) = r (X;F), (I)

groupe des sections globales du faisceau F.

Hn(X;F) = 0, Vn > 0 (2)

si Ie faisceau Fest flasque. A toute suite exacte de fais-

ceaux

o F' _ ....... F F" 0 ( 3)

est associee une suite exacte de cohomologie
rn-l n

••• Hn - 1 (X; F) Hn- 1 (X; F" ) Hn (X; F ' ) H (X; F) •••

Nous avons essaye d'adapter ce formalisme a la K-

theorie des categories additives et, plus generalement, a celIe

des categories en groupes de Banach (Definition 1.2). On a pu

ainsi aboutir a une definition axiomatique des foncteurs Kn,

n 0, de telles categories. Dans certains cas, la periodicite

de ces foncteurs a pu etre demontree (Theoreme 2.3).
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Cet article est divise en deux parties. Dans la

premiere nous developpons la notion de "suite exacte de cate­

gories" en nous inspirant de la theorie des operateurs com­

pletement continus dans les espaces de Hilbert. Dans la se­

conde partie nous definissons les "categories flasques" et

donnons une caracterisation axiomatique de la K­theorie sem­

blable a celIe de la cohomologie a valeurs dans un faisceau.

I CATEGORIES EN GROUPES DE BANACH

SUITES EXACTES

Definition 1.1

Soit M groupe abelien. Une guasi­norme sur M

application M dans m+. notee x II xII jouissant

des proprietes suivantes:

II xII = 0 x = 0 (1)

Ilx + yll s IIxll + llyll (2)

II­xii = IIxll (3)

On appelle groupe quasi­norme un groupe abelien M

muni d'une quasi­norme. Le groupe M est alors de maniere

nature lIe un espace metrique pour la distance invariante par

translation d(x,y) = IIx­yll. Reciproquement tout groupe abelien

muni d'une distance invariante par translation est quasi­norm{

si on pose IIxll = d(x,O). Un groupe de Banach est un groupe

quasi­norm{ complet pour la distance definie par la quasi­norme.



- 367 -

Exemples. Un espace de Banach est evidemment un

groupe de Banach. II en est de meme d'un groupe abelien quel-

conque muni de la quasi-norme suivante (dite "discrete"):

II xII = 0 si x = 0

IIx ll = 1 si x f 0

Un espace de Frechet dont la topologie est definie par une

famille denombrable de semi-normes Pi est aussi un groupe de

Banach pour la quasi-norme

Ilxll = L2- i Inf (l,Pi (x) )

Tous les sorites developpes pour les espaces de

Banach se demontrent aussi bien pour les groupes de Banach. On

pourra par exemple faire Ie quotient d'un groupe de Banach par

un sous-groupe ferme. Si M et N sont deux groupes de Banach,

les applications bornees de M dans N forment un groupe de

Banach pour la quasi-norme

11£11

Definition 1.2

IIxII

Une categorie en groupes de Banach une categorie

additive T ou Hom (M,N) est muni d'une structure de groupe
T

de Banach de telle sorte gue, guels que soient les objets

M, N et P... de et les morphismes u: M-+ N, v: N --+ P,

Q!!. ait l'inegalite IIVeUIi s: Cllvllxllull, c etant une constante

ne dependant gue de M, N et P.
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Exemples. L'exemple Ie plus important en K-theorie

est sans doute celui de la categorie T = des fibres

vectoriels (reels ou complexes) de rang fini sur un espace com-

pact X. En effet, si E et F sont deux fibres vectoriels,

Hom (E,F) s'identifie a l'espace de Banach des sections du
T

fibre en homomorphismes HOM{E,F). Plus generalement, toute

categorie prebanachique dans Ie sens de [3] est une categorie

en groupes de Banach. Enfin une simple categorie additive en

est aussi un exemple, Hom (M,N) etant muni de la quasi-norme
T

discrete.

Remarque l. Dans une categorie en groupes de Banach,

l'application definie par la composition des morphismes

est continue.

Hom (M,N) x Hom ,(N,P)
T T

Hom (M,P)
T

Comme pour les espaces de Banach, on

convient d'identifier deux quasi-normes sur un groupe abelien

lorsque celles-cisont equivalentes.
A

La meme remarque s'appli-

que aux categories en groupes de Banach.

Si Vest une categorie quelconque et si E et F

sont deux objets de V on appelle morphisme direct de E

dans F la donnee de deux fleches s: E F et p: E

telles que peS = IdE' On voit aisement que s (resp. p) est

un monomorphisme (resp. un epimorphisme) et que les mor-

phismes directs sont les fleches d'une categorie dont les

objets sont les objets de V. On notera (s,p): E ---. F



- 369 -

une telle fleche. Supposons maintenant que V soit une cate-

gorie en groupes de Banach et considerons une sous-categorie

additive pleine , de V. Si E est un objet de V on

appelle ,-filtration de E la donnee d'objets E.
].

de 't ,

i E I ensemble d'indices quelconque, et de V-morphismes

directs f. = (s. ,p.): E satisfaisant a l'axiome sui-
]. ].]. ].

vant:

F 1. Si Ei et E
j

sont deux objets de la fil-

tration de E, il existe un troisieme objet Ek de la fil-

tration qui rend commutatif Ie diagramme

E.
].

E.
J

Soient {E.}
].

,
et {E.,} deux filtrations de E.a

On

{E. }
].

dira que la filtration est moins fine que la filtration

{E , }
a, si, pour tout indice i, on peut trouver un indice

. ,
a

et des morphismes directs

diagramme

h., .
]. ].

qui rendent commutatif Ie

E

/....\
.1. 1. I

E. • E.,
]. l

On dira que les deux filtrations sont equivalentes si l'une

est plus fine que l'autre et reciproquement.
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Diagramme Commutatif a e::-pres. Soit de nouveau V

une categorie en groupes de Banach et soit 6 un diagramme

quelconque dans V. Nous dirons que Ie diagramme 6 est com-

mutatif a e::-pres si, pour tout couple d'objets (E,F) de ce

diagramme et pour tout couple de morphismes (f,g) joignant

E a F dans ce diagramme on a Ilf - gil < e:: dans Hom(E,F).

Par exemple, dire que Ie diagramme

E

G

f

k

est commutatif a -pres signifie que lion a l'inegalite

IIg.f - k.hll < e: dans Hom(E,F).

Def'ini tion 1.3

Soit V une categorie groupes de Banach et soit

Tune sous-categorie additive pleine de £. Une T-fil-

tration sur la categorie V (1) est la donnee, pour objet E

de £, d'une T-filtration E., i E I, sur
1.

E (I

dant que de E) verifiant les axiomes suivants:

F 2. Soient E un objet de L, F un objet de V

It f: E -----'.'> F un V-morphisme. Alors, 'fie > 0, il existe

un objet F. de la filtration de F et un T-morphisme-- J -- --
g. : F. tels que Ie diagramme
J J

(1) On dit aussi que Test sous-categorie ideale de V.
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soit commutatif a -pres.

F 3. Soient E un objet de un objet de T

et f: E F V-morphisme . Alors, \r! > 0, il existe-
un objet E. de la filtration de E et un T-morphisme

1. -- - - --
g. : F tel que Ie diagramme
1. 1.

E

P.
1.

E.
1.

soit commutatif a -pres.

F 4. Si E et F sont des objets de ...!!.J la fil-

tration E. e F. de E e Fest equivalente a la filtration
1. J

Exemples

1. Soit H la categorie des espaces de Hilbert

et soit la categorie des espaces de dimension finie. On

peut alors considerer H cornrne de la maniere sui-

vante: pour tout espace de Hilbert E, E.
1.

sera la collection
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de ses sous-espaces de dimension finie, s.: E etant
1. 1.

l'injection canonique, p.: E E. la projection orthog-
1. 1.

onale. Plus generalement, si X est un espace compact on

voit aisement (en utilisant une partition de l'unite) que

est une sous-categorie ideale de HT(X), (resp.

HT(X» designant la categorie des fibres vectoriels triviaux

de dimension finie (resp. hilbertiens).

2. Soit A un anneau de Banach (i.e., un groupe

de Banach muni d'une multiplication telle que IIxyll:s; cllxllxllyll

exemples: une algebre de Banach ou un anneau discret) et soit

L(A) la categorie des modules libres de type fini sur A.

Soit (M I , ••• , M
n
, ••• ) une suite infinie d'objets de L(A)

les M. etant choisis parmi un nombre fini d'objets de L(A).
1.

On definit leur LI-somme comme Ie sous-ensem-

ble du produit MI x ••• x M
n

x ••• forme des suites

x = (Xl' ••• , x , ••• )
n telles que Ce sous-en-

semble est en fait un groupe de Banach pour la "quasi-norme"

On designe

par LI(A) la categorie dont les objets sont de telles

LI-somme, les morphismes etant les homomorphismes bornes de

A-modules. Ceci dit, soit , une categorie en gronpes de

Banach quelconque. Nous allons definir une categorie en

groupes de Banach V qui sera ,'-filtree,,' etant une

categorie equivalente a V. Les objets de V sont les suites

(E
I,

••• , E , ••• )n "ou E. E Ob r les
1.

E.
1.

etant (pour chaque

suite) choisis parmi un nombre fini H, K, ••• , L d'objets de
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T. En particulier, chaque objet E. de la suite est facteur

direct de H $ K $ ••• $ L. De plus, pour tout couple (i, j),

Hom(E., E.) s'identifie a un sous-groupe ferme de l'anneau
J

de Banach A = End(H $ K $ ••• $ L) • Soit maintenant

F = (F l, ••• , Fn, ••• ) un deuxieme objet de V. Quitte a

changer les objets H, K, ••• , L, on peut supposer que les

objets ••• , F ,
n • • • sont aussi choisis parmi

H, K, ••• , L. Done

un facteur direct de

infinie

Hom(E., F.) est pour les memes raisons
J

A. Considerons a present une matrice

existe une bijection k: N telle que

f = (f .. )

ou f .. E Hom(E., F.). Cette matrice peut etre interpretee
J

d'apres la discussion precedente comme une application de

A $ ••• $ A $ ••• dans A x A ••• x A x... . On dira que

fest "Ll-bornee" si f se prolonge en une application de

la somme Ll de de A dans elle-meme.

D'autre part, la matrice fest dite "permutante" si elle

est Ll-bornee et si, sur chaque ligne et sur chaque colonne,

il y a au plus un element non nul: en d'autres termes il

f .. = ok (. ) . f ..
J1. 1. J1.

ou ° designe le symbole de Kronecker. La matrice fest

dite "L-permutante" si elle est somme finie de matrices per-

mutantes. Enfin la matrice est dite 1
k -permutante s'il

existe une suite f r de matrices L-permutantes qui converge

vers f pour la quasi-norme Ll definie precedernment. Les
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morphismes de V sont alors les matrices Ll-permutantes

qu'on vient de decrire. On verifie aisement que cette defi-

nition des morphismes est independante du choix des objets

H, K, ••• , L qui ont servi a definir la quasi-norme Ll et

que lion obtient ainsi une categorie (pour Ie produit des

matrices). On definit egalement la quasi-norme d'une fleche

de V comme la quasi-norme de la fleche Ll(A) qu'elle

definite Celle-ci depend evidemment du choix de A

mais sa "classe d'equivalence" n'en depend pas. Pour cette

quasi-norme, la categorie Vest bien une categorie en

groupes de Banach. Soit maintenant .' la sous-categorie

pleine de V dont les objets sont les suites (El,··· ,En'···)

nulles a partir d'un certain rang. Alors un calcul facile

montre que .' est equivalente a • et que la categorie V

est .'-filtree. Pour des raisons qui apparaitront plus loin,

on notera la categorie V.

Proposition et Definition 1.4

Soit V une categorie .-filtree et soit

f: E F un V-morphisme. Les deux assertions suivantes

sont alors equivalentes:

¥£ > 0, 11 existe objet(i)

tration de F

diaqramme

et 1Y1 morphi§me f. :
J

F.
J

J

de la fil----
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soit comrnutatif a -pres.

(ii) ¥ > 0, il existe objet E.a, de la fil-

tration de E et morphisme

diagramme

E

f.: E. ..... F tel sue
]. ].

p.
1

F

E. l.
].

A ....

soit de meme comrnutatif a c-pres.

Un morphisme f verifiant l'une des conditions

equivalentes (i) ou (ii) est dit completement continuo

Remarque. Cette definition est evidemrnent inspiree

de celIe des operateurs completement continus (ou compacts)

dans les espaces de Hilbert (cf. exemple I des categories fil-

trees) .

Soit Tune sous-categorie ideale de V. On peut

alors definir une categorie quotient VIT de la maniere

suivante: les objets de VIT sont les objets de V, les mor-

phismes sont ceux de V modulo les morphismes completement

continus. En d'autres termes on a
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Homv/.(E,F) = HomV(E,F)/K(E,F), K(E,F)

designant Ie sous-groupe ferme des morphismes completement

continus de E dans F. La categorie V/. est evidemment

la solution d'un probleme universel dont nous laissons la

formulation au lecteur.

Definition 1.5

Soient • et .' deux categories en groupes de

Banach. Un foncteur additif cp: r r ! est dit "de

Serre" (2) si l'application de Hom (M,N)/Kercp
• *

dans

Hom., (cpM,cpN) une bijection bornee ainsi que son inverse.

Le foncteur est dit borne si l'application

cp*: Hom. (M,N) Hom
T

, (cpH.,cpN) est boznee ,

Pour pouvoir parler maintenant de suites exactes

de categories il nous faut introduire la "categorie" B sui-

vante: les objets de B sont les categories en groupes de

Banach; un morphime cp: r r ' de B es t un foncteur de

Serre.

Definition 1. 6

Soit

x
T"

6
-----):;.. TT I

(2) Cette terminologie est justifiee par Ie fait que l'appli-

cation naturelle Iso (M,N) > Iso ,(cpM,cpN) est une
T T

fibration de Serre dans Ie cas des categories de Banach

classiques.
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une suite d'objets et de morphismes de B. Cette suite est

dite exacte si Ie noyau de l'application

Hom (E,F)
T

Hom" (XE,XF)
T

est l'ensemble des T-morphismes de E dans F completement

continus pour une filtration de T par la "categorie image"
-

(3).

Soit T une categorie en groupes de Banach que lcon-

que. On peut munir la categorie T de deux filtrations evi-

dentes. La premiere (dite grossiere) consiste a prendre comme

filtration d'un objet E de T l'objet E seulement. Dans

la seconde (dite discrete) la filtration de E se reduit a

l'objet nul 0 de la categorie T. Dans Ie premier cas

(resp. Ie second) la sous-categorie ideale est egale a T

(resp. a 0).

Application. Avec cette definition, la suite

o T V 0

est bien exacte, la categorie T (resp. V/T) etant munie de

la filtration discrete (resp. grossiere). Reciproquement, si

on a une suite exacte

o T'
e

T T" --0;.;> 0

la categorie T" s'identifie i la categorie quotient T/e(T').

(3) La categorie image e(T') est la sous-categorie pleine de
T dont les objets sont isomorphes aux images des objets
de T' par 6. On demontre en fait que la filtration de
T par e(T') est unique (i equivalence pres).
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II CARACTERISATION AXIOMATIQUE DE LA K-THEORIE

Definition 2.1

Soit V une categorie en groupes de Banach. La

categorie Vest dite flasque s'il existe un foncteur borne

1"; V V tel que les foncteurs , et ,m IdV soient

isomorphes.

Exemples. La categorie des espaces de Hilbert est

flasque. En effet, il suffit de poser ,(E) = Em ••• mE $ •••

(somme hilbertienne de de E). On demontre de

meme que la categorie '1 (exemple 2 des categories filtrees

au § 1) est une categorie flasque.

Theoreme 2. 2

Soit , une categorie en groupes de Banach. II

existe alors une suite exacte (dependant canoniquement de ,)

o ---.. ,

ou Vest une categorie flasque.

En effet, on choisit V = '1 (cf. exemple 2 des

categories filtrees au § 1) et = Ie foncteur defini par

(E) = (E, 0,0, ••• i ,

Application. Le theoreme 2.2 nous permet ainsi

d'affirmer, par des raisonnements standard, l'existence d'une

"resolution flasque canonique"
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•••

de toute categorie en groupes de Banach T. II est a noter

que si Test une categorie prebanachique dans Ie sens de [3],

il en est de meme des categories T ••
1.

Dans Ie cas general on

definit la suspension de T comme la categorie

Rappelons (cf. [3] §1.2) que si

est une categorie additive on a designe par

quotient T /0. 1 h 1) •n n- n-
.....
T

T

la categorie

pseudo-abelienne associee a

Definition et Theoreme 2.3

IV

T.

Soit T une categorie groupes de Banach. On

nK (T), n 0, Ie groupe de Grothendieck dedesigne par

..-n-S (T). Dans Ie cas ou T est categorie prebanachique,

ces groupes sont periodiques de periode dans Ie cas reel et

2 dans Ie cas complexe.

La demonstration de ce theoreme est delicate et

necessite l' introduction des algebres de Clifford (cf. [3],[ 4] ) .

Definition 2.4

theorie de lacohomologie B par defini-

donnee de foncteurs de la categorie B dans la

categQrie des qroupes abeliens et d'homomorEhismes natureIs

definis pour toute suite exacte

o T' ---+ T --+ Til ---+ 0



- 380 -

On suppose que Fn{T) = 0 si Test flasque et que la suite

suivante est exacte

Theoreme 2.5

II existe une theorie de la cohomologie et une seule

a isomorphisme pres sur B telle gue
o I">J

F (T) = K{T).

1 Fn (T)groupes coincident avec les groupes Kn{T) definis

Le demonstration de ce theoreme n'est pas non plus

tres evidente. On doit se servir du groupe Kl introduit par

Bass dans [1] et remarquer que Ie foncteur K est Ie "premier

foncteur derive" du foncteur K
l.

Considerons maintenant un foncteur de Serre essen-

tiellement surjectif T T' entre deux categories en

groupes de Banach. Pour simplifier les raisonnements, on

supposera que ObT ObT' est bijectif. On associe

alors a la categorie suivante: les objets de

sont les objets de

done aussi de
,

"I .

Tl (categorie flasque associee a T),

Les fleches de sont les classes

de fleches de Tl pour la relation d'equivalence suivante:

a ,.." 0 a est compLe t.ement; continu (pour la T-filtration)

et = o. On a alors un foncteur evident

e

defini par e{E) = (E,O,O, ••• ) sur les objets et par
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f 0 0 • • • •

0 0 0 • • • •
8 (f) =

0 0 0 ·...
•
•
•

avec = f, sur Ies morphismes. Le foncteur 8 est

d'ailleurs filtrant pour la filtration induite par celIe de

de telle sorte qu10n a la suite exacte

o __... 1 --.,... V 0

Definition et Theoreme 2.6

Pour tout foncteur de Serre essentiellement surjec-

tif T

=

si n 0 (4). On a alors la suite exacte

Kn-l(T) Kn(T) Kn(T'), n 1,

Oll Ies homomorphismes sont naturels l'exception

n-lo qui induit par Ie foncteur T' -----..

Remarque. Ce theoreme s'applique en particulier au

foncteur "restriction des fibres" .. Oll X

est un espace compact et Y un sous-espace ferrne. On en

deduit la suite exacte de cohornologie en K-theorie topologique

groupe

(4) Si T' = 0 on retrouve bien (a isomorphisrne pres) Ie

Kn+l(T) = Kn(SlT).
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Kn- l (X) --+ Kn- l (Y) --+ Kn (X,Y) Kn (X) --+ Kn (Y) I n 1 I

sans evoquer les algebres de Clifford ou la periodicite de

Bott. Il resulte une construction relativement elementaire de

la K-theorie en tant que theorie cohomologique sur les espaces

compacts. Bien entendu la periodicite des groupes Kn

(theoreme 2.3) n'est pas evidente avec ce point de vue et doit

etre demontree separement.
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RELATIVE FUNCTORIAL SEMANTICS:

ADJOINTNESS RESULTS*

by

F. E. J. Linton

INTRODUCTION

Central to any exposition of the theory of triples

are the Godement construction [4] of the triple arising from

an adjoint functor situation, the Eilenberg-Moore construction

[3] of the category of algebras over a triple, with the asso-

ciated adjoint pair of "free" and "underlying" functors, and

the Kleisli construction [6] of the clone of tripleary tuples

of operations [8], along with the various adjointness

relations available among these constructions and their co-

triple analogues. If the usual base category S of sets and

functions is replaced by an arbitrary closed or monoidal

category V, one expects to develop a satisfactorily parallel

exposition at the level of V-categories [2]. Bunge [1] and

Kock [7] have, indeed, gone far in this direction; unfortunately,

however, both these treatments add the assumption of a com-

patible symmetric monoidal structure on V whenever they

* Research supported by N.S.F. grant NSF-GP 6325, Wesleyan
Faculty Research Grant 5427-143, and Battelle Memorial
Institute, Seattle Research Center.
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deal with the case that the base category Vis closed.

In what follows, therefore, we shall present the

rudiments of two separate but parallel (and, when V is

closed monoidal, equivalent) V-theories of triples, one

for monoidal V, the other for V closed - no symmetry

assumptions are needed in either case. Just as in the work

[1] of Bunge, however, one must assume, in either case, that

V has difference kernels (equalizers) in order to get any

theory at all; moreover, when V is closed, one must know

that each left represented endofunctor LA = V(A,-): V V

of V preserves difference kernels (as it automatically

will in the closed monoidal case). These assumptions shall

therefore be in force throughout the paper, except in the

first paragraph of §l and in Lemma 2.

An awkward consequence of our refusal to use sym-

metry is the minor nuisance that the cotriple theory cannot

be obtained simply by carrying out the triple theory on the

duals of all the V-categories involved - there are no such

duals, in general. This is no real difficulty, however: one

merely reverses enough arrows in the ensuing triple theory

exposition to obtain a valid exposition of the cotriple

theory. This exercise in judicious arrow reversal will be

left to the reader; a good time for him to engage in it is

immediately before §3.
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Throughout this work, we assume familiarity with

the elementary notions of closed and monoidal categories,

and categories, functors, and natural transformations over

them: see [2] for full information. The indispensable

adjointness notions relevant to this setting are presented

in [ 1 ] and [5 ] •

The definition of V-triple is found in §l of the

present work, along with the Eilenberg-Moore construction of

the V-category of algebras over a V-triple and the V-adjoint-

ness between the "free" and "underlying" V-functors. These

matters also appear in Bunge's work [1], at least in the

case of monoidal V; however, the argument presented here

centers around a split difference kernel phenomenon (Lemma 1)

which seems not to have been publicly recorded even in the

case V = s.

The V-triple analogue of the structure-semantics ad-

jointness, which is the concern of §2, goes through without a

hitch. The main tool is the fact that, unlike most ordinary func-

tors between V-categories, a functor P: AT satisfying

UT 0 P = U (*)

at the level of ordinary functors, where U is a fixed

V-functor X A, admits at most one enrichment to a

V-functor compatible with the validity of equation (*) at the

level of V-functors. A general form of this fact, accompanied
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by a manageable criterion for such an enrichment to exist, is

recorded as Lemma 2, and is used all through the remainder of

the paper.

Assuming familiarity with the V-cotriple analogues

of the results of the preceding sections, § 3 exposes the V-cate-

gory generalization of Lawvere's as yet unpublished triple-co-

triple, (Kleisli category)-(Eilenberg-Moore construction)

adjointness theorem presented in his lectures at Battelle.

A description, as in [8], of algebras over a

V-triple T in terms of V-valued V-functors from the Kleisli

category of 'Jr, which was originally intended for inclusion

here, has been omitted, for the reason that neither an adequate

background in contravariant V-functors nor any V-valued Yoneda

lemmas are yet available without use of symmetry (cf. [2]) or

smallness of the domain (cf. [1], Theorem 4.7), respectively.

It is hoped to remedy these omissions elsewhere.

§ 1 ALGEBRAS OVER A V-TRIPLE-
A V-triple T = on a V-category A consists

of a V-functor T: A and V-natural transformations

n s idA T, TT T satisfying the familiar triple iden-

tities

0 nT = 0 Tn = idT '

0 = 0 •
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A structure a on A E obj A is, as usual, an

A-morphism a: TA A for which

a 0 = a 0 Ta •

The usual set of T-algebra maps f: (A,a) that is,

the set of all those A-morphisms f: A B making the diagram

Tf

A >B
f

commute, can be viewed as the difference kernel (or equalizer)

of the pair of functions

Ao(ct,B)
Ao (TA, B)

Ao(TA,TB)

When T is a V-functor, this diagram can be lifted to V, and

its difference kernel, if any, makes a lovely candidate for a

V-object of maps from (A,a) to We there-

fore henceforth assume V has difference kernels and define the

V-object II
A «A,a), frequently abbreviated as 'JlA

to be the difference kernel of the lifted diagram

A(a,B)
A(A,B) A(TA,B)

A(TA,TB)
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, or simply for the (monic)
(A,a.) , (B,S)

V-morphism

,(B,S» = A'I(a.,s) A(A,B)

canonically associated with this difference kernel.

Proposition 1

Assume that V is closed catego;y with difference

kernels preserved left-represented functor

V(X,-): V V (resp., V monoida1 category

difference kernels). Let be a V-triple V-category A.

(a) There precise1x: V-morphism

j (A,a.): I AT «A,a.) , {A, a.»

makinS commutative triangle

'll'A «A,a.), (A,a.»

j (A, o ) , (A, a.)\

I

(A,A)

(b) There precisely map

(A,a.) AT 'll' W
L( ) ( ): (S,y) V(A (a.,8),A (a.,y»

B,S , e,y

M(B , S ) • A'I' (6 , y ) 0 A'I' ( a. , 6) A'Jr ( a. , y) )
(A,a.), (e,y)·



- 390 -

makin2 commutative diagram

'll'A (S,y)

A(B,C)

(A, a)
L
(B,S), (CtY) V(AI'(a,S) ,A'I'(a,y»

V(A'I'(a,S),A(A,C»
V(U ,id)

'Jr 'If
M (B, S)

'D'(resp. A (S,y) @ A (a,S)
(A,a), (C,y) ) A (a,y)

U.. 9 u..1 1
A(B,C) @ A(A,B) > A{A,C»

(c) structure provided e,y (a) and (b),

'I'I-algebras V-objects A «A, a), (B,a» 2! I'-morphisms

between

eassa2e (A, a) I ) A

A'I', while the V-moEPhisms u"
a V-functor u'l': A'F A •

Proof. (a) It suffices to show that the diagram

A(a ,A)
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commutes. Since TAA 0 jA = jTA,TA ' however, it's merely a

matter of knowing that A(TA, Il) 0 jTA,TA = A (Il ,A) 0 jA,A ,
which is elementary (see [2] , Chapter I, diagram (9.10 ) and

Chapter II, diagram (8.10».

(b) In the case that V is monoidal, it suffices

to prove that the perimeter of the diagram

A(A,C)
v

e AI'«A,a) ,(B,13»

lU'D'GU'JI['

A(B,C) @ A(A,B)

ii) i)

III :1
A(13,C)@TA B

, A(B,C) A(TA,TB)

@A (TA,TB) .yI
@ (TA,TB)]

II IV

MTB A(B,C) @
A(TA,TC)

, .. )-.J

A(TA,C)

I

A(A,C)

A(B,C) @

commutes. Indeed, square I commutes because T is a V-func-

tor. Squares and triangles II, III, IV, and V commute because

A is a V-category. Region i) is obtained from the difference
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kernel definition of by tensoring with

UT: ,(C,y» A{B,C), and therefore commutes; similarly,

region ii) commutes, because it is obtained from the difference

kernel definition of ,(C,y» by tensoring with

T ATA,B 0 U: ({A,a) , (B , S» (TA/TB).

In the case V closed, the assumption that V{X,-)

preserves difference kernels ensures that it suffices to estab-

lish the commutativity of the perimeter of the diagram on the

next page. And indeed, pentagons I and III commute by defini-

tion of AT{_,_), while pentagon II commutes because T is a

V-functor; squares iv), v), vi), and vii) commute because V(-,-)

is a bifunctor, while the commutativity of squares i), ii), and

iii) is a reflection of properties of the composition rule in a

V-category • (Incidentally, this diagram is just what one would

obtain from the previous diagram if V were closed monoidal and

one set about, using the adjointness of 0 to V(-,-), to remove

all occurrences of 0 from the monoidal proof.

(c) The conditions VC n (resp. VC n ') of [2] for

the V-category structure candidates j,L (resp. j,M) on

provided by parts (a) and (b) are a consequence of the corre-

Sponding diagrams for A, the fact that each is

a monomorphism, and the commutativity of the diagrams estab-

lished in (a) and (b) {these commutativities are essentially the

conditions VF 1 and VF 2 (or VF 2 ') of [2], so that the



w
CD
W

I

LA

u'

A'Ir(S,y)
uT LA

A{B/C) ): V{A(A,B) ,A(A,C))

ITBC II V(id,T
AC

) "V(UT,id)
TA v)

A (TB, TC) v(A (TA,TB) ,A (TA,TC)) V {AT. (a, S) ,A (A,C»

1A (id, y) V (TAB' I V (id,TAC)
V (id I A (TA, y) ) V (A

LTA iii) iv)
A(E,C).

A(B,C) i) V(A{TA,TB),A(TA,C) V(AT.(a,S):A(TA,TC»

V(id,A(TA,y))
,id) III V(A(A,B

A A( V (U'Il',id) AT ( )·A( »V ( (A, B), TA, C) ) • • . )0 V ( a ,S, TA, C

vii)
., V(UT 'd) 'Il';f v

V(A(A,B),A(A,C) V(A (,:.,6),A(A , C»
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V-functor assertion regarding is automatic as soon as

is known to be made a V-category). For example, when V is

monoidal, draw a large picture of VC n r for within it,

draw a smaller, similar picture of VC n r for A. Now maps

each outer vertex to the similarly located inner vertex, the

inner VC n r diagram commutes, and so does each square along

the perimeter. Since the from the last outer vertex to the

last inner vertex is a monomorphism, the perimetric VC n r dia-

gram must also commute. Full details, as well as the analogous

arguments in case V is closed, are left to the reader.

To construct a (left) V-adjoint to uT, we use the

following lemma, which appears not to have been recorded even in

the classical case V = s.

Lemma 1

If (B,S) i! T-al2ebra (T a V-triple on A) and

A E obj A, then the diagram

A(A,B) TA,B A(TA,TB)
A(lJA,B)

A(TA,B) ) A (TTA,B)

S )

A(TTA,TB)

becomes a selit dia9ram, with aid gf the

maps

A (A,B) A (TA,B) A(TTA,B) •
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Proof. Four identities must be established:

The proof of a) resides in the diagram

The triangle commutes (condition VN of [2]) because n is

V-natural; the square commutes because A(-,-) is a bifunctor;

the base is A(A,BnB) = A(A,idB) = idA(A,B) •

The proof of b) resides in the diagram

A(A,B)

A(TA,TB) AhJA,TB) /A (TA1,TB)

A(TAts)l A(TTA'"B) / A(TA,B)
A(TTA,TTB) A(TTA,TB)

A(TA,B) 1 A(TA,B)

T
.......... A(TTA,TB) A(TTA, B) /_R'"

TAtB A(TTA,TB) ) A(TTA,B)
A(TTA,B)
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A(A,B)
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The pentagon commutes because is V-natural. The left

hand diamond commutes because T is a V-functor, the central

square, because a is a structure on B (B 0 TB =
= S 0 and the commutativity of the right hand diamond

follows from the bifunctor character of A(-,-).

Relation c) follows easily from the triple identity

0 Tn
A

= idTA ' while relation d) results from the commuta-

tivity of both squares in the diagram

T
TA,B

the first commuting because T is a V-functor, the second

because A(-,-) is a bifunctor. The proof of Lemma 1 is

thus comp1ete •

Recalling now that TTA TA is aT-algebra
A

structure on TA, whatever A E obj A, let us write

pW(A) = Lemma 1 asserts that the pair of V-morphisms

,B)
A(TA,B) A ) A(TTA,B)

A(TTA,TB)

whose difference kernel is, by definition,

u'l' A'R( , (B,S)) A(TA,B)
p'H (A) , (B, a)

,
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fits, in fact, in a split equalizer diagram with difference

kernel A(A,B). There result isomorphisms

A(A,U'l'(B,S» = A(A,B) A'lIr«TA,J.1
A),(B,S»

= A'J1.(F'lIrA,(B,S»

which can be used (see [1] or [5]) to endow F'J1. with the

structure of a V-functor for which these isomorphisms con-

stitute a V-adjointness relation between u'1' and FW• It

is, however, equally simple to describe this V-functor

structure on F'J1. directly. Referring back to the diagram

used in the proof of Lemma I to establish identity b), com-

mutativity of the upper pentagon indicates that the map

TA,B: A(A,B) A(TA,TB)

uniquely factors, by a map we shall call F'I' , through
A,B

U'J1.: A'1'(F'J1.A,F'J1.B) A(TA,TB) :

A(A,B) F!,B

By the use of Lemma 2 below (see §2), the proof that

F'1' is a V-functor is negligible; the identity that T = U'1'pW

and the naturality of the above isomorphisms

A(A,UW(B,S» A(F'J1.A, (B,S»

being easy (associated front adjunction is the V-natural

transformation n: id T = U'1'F'I', while the back adjunction

satisfies

the proof of

'1' 'DI.' =
U E (A,a.) a) , we have essentially completed
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Theorem 1

The V-functor A is (right) V-adjoint

to the V-functor A determined as follows:

•

The f,ront adjunction n: id T =

adjunction E'JIl' effect ET = a: (A,a),
(A, a)

adjunction isomorEhism is that induced the fact

registered Lemma 1 A(A,B) is difference kernel of

Eair 2! maEs whose difference kernel AT (F'JIl'A, (B,S» is

defined to be.

Remarks on Lemma i , If 'I = (T,ntl-I) is a V-triple

A,
v v v V

on a cotriple 'lIl' = (T,n,lJ) is obtained on the functor

category
AOP

by the followingV means:

v
T(X) =

v
«n)X)A = X(nA)
v

( ( lJ) x) A = X(lJA)

(X: AOP V, A E obj A)

Lemma 1 may be interpreted as asserting that, for

each T-algebra (B,6), the objects A(A,B) are the values

v
of the 'JIl'-coalgebra obtained by associating with the functor

R
B

= A(-,B): AOP V the natural transformation

RB whose components are = A(TA,B) 0 TA,B:

RB(A) = A(A,B) A(TA,TB) A(TA,B) = RBTA = (A).
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v
It must, of course, be verified that S really is a natural

transformation; the coa1gebra structure, however, is then

fully guaranteed by Lenuna 1.

This remark can be extended, and the converse to

the extension proved, as soon as the necessary Yoneda Lemma

machinery for contravariant V-valued V-functors (needed e1se-

where as well, as noted at the end of the introduction) has

been constructed.

§2. V-STRUCTURE AND V-SEMANTICS

Although an ordinary functor P: X Y between

V-categories may, in general, carry several enrichments to a

V-functor, if any, we have already met (in F'I), and shall in

what follows continue to meet instances in which, subject to

minimal side conditions, the V-functor structure, if any, of

P is unique. To isolate the ideas, we state the following

1enuna, for which the usual standing hypotheses on V are

relaxed.

Lenuna 2

Let X, Y, A V-categories, let U: X A

and V: Y A V-functors. Assume each V-morphism

Vy,z: Y(Y,Z) A(VY,vz) is a monomorphism if V is

assumed monoida1, that each V(X,Vy,z) is monomorphism,

• functor P: X -+ Y, satisfying
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v 0 P = U (2.1)

level £! ordinaEY functors, admits one enrich-

!£ V-functor satisfying (2.1) level of V-functors;

moreover, it admits enrichment !! of course,

only g) the dotted arrow in diagram

X(W,X) -->

Ow. xl
A(uw,ux) =

Y (PW ,PX)

lvpw,px
A(VPW, VPX)

filled in !?X. V-mo;phism P
W,X

rendering the square

commutative.

Proof. An enrichment of P to a V-functor

satisfying (2.1) involves precisely such fillings in, subject

to the side conditions named VF n (resp. VF n') (n = 1,2)

in [2]. Since each VpW,PX is monic, there can be at most

one such system of fillings in, hence at most one such enrich-

mente So much for the uniqueness (and the "only if" assertion).

Now ass ume such maps Pw, X are indeed avai lab Le , Then we

have the diagrams

,

.-.
A(VPW , VPW) 1<..1!' ,

Y (PW ,PW)

I

kk.uw) =

X(W,W)

and, if V is monoida1,



x(X, Y) o X(W,X)
M

JX(W,YJ

M
A(UX,UY) 0 A(UW,UX) ) A(UW,UY)

P@PI II II IP

A(VPX,VPY) 0 A(VPW,VPY)

f f.I"WV V

Y(PX,PY) 0 Y(PW,PX) ) Y(PW,PY)
M

or, if V is closed,

o.....

V(X(W,X) ,Y(PW,PY»

V(PW,X,id)

V(UW,X,id)

LVl

PX,y PW
X(X,Y) ) Y(PX,PY) L ) V(Y(PW,PX) ,Y(PW,PY»

1
x, y V

PX,PY V(id V ), PW,PY
A(UX,uY) = A(VPx,VPY)

1LOW 1LVPW
V(A(UW,UX) ,A(UW,UY»-=V(A(Vpw,VPX) ,A(Vpw,vPY))

V (VPW PX' i d) /

'1/
V(Y(PW,PX) ,A(VPW,VPY»

V(Pw,X'id\

V(X(W,X)

V(id,VpW,PY) ""

V(X(W,X),X(W,Y» V('d)
1 ,P'ii' Y,
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in each of which each small region commutes and the north-

westwards map of type V from the lower right hand corner

is a monomorphism. It follows that the perimeters commute,

as is required for P to be a V-functor. The proof of

Lemma 2 is thus complete.

We now develop the V-analogue of the familiar

structure-semantics adjointness for triples on A and

adjoint A-valued functors, building on the usual develop-

ment (e.g., [8]) with the aid of the preceding lemma.

By analogy with the classical situation, we define

a V-triple map ,: T' T from a V-triple = (T' ,n'

to another T = to be a V-natural transformation

T: T' T compatible with the units and multiplications,

in that the diagrams

T'
,

T

Ti' n "'1 i"
idA T'TI TTT,

both commute. Thus, , is also a triple map in the usual

A' : AT --0.. A'Jl'sense and hence provides an ordinary functor

(defined by = 0 T
A),

A'(f) = f) satisfying

U'Jl' 0 AT = U'I

at the level of ordinary functors. Using the standing

t ' V th t f U'Jl
I

d A' d hassump on , e na ure 0 an an t e

definition of the V-structure on the preceding lemma
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guarantees a unique V-functor structure for AT such that

(2.2) holds at the level of V-functors, provided only the

A(A,B)

commutes. Now the left hand pentagon commutes by definition

of A!, V-naturality of T guarantees that the upper right

hand square commutes, and either leg of the lower right hand

square is A(TA, 6) . So the perimeter does commute, and we

have proved the first part of

proposition 2

Each functor

V-triple map) is in a unique way a V-functor satisfying

UT'A T = UT at the level of V-functors. Moreover, the

familiar relations

TT I
A

idTA = id T
A

expressing the functionality of triple semantics, are valid

even at the level of V-functors when T and T'

maps and T is a V-triple.

are V-triple
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Proof. The validity of the displayed relations at the

level of V-functors is a simple consequence of the uniqueness

assertion of Lemma 2.

Let us then gather together, on the one hand, all

V-triples on the V-category A, along with all V-triple maps

between them - forming a category V-Trip (A) - and, on the other

hand, all V-adjoint A-valued V-functors (that is, V-functors

U: X --..+ A equipped with a V-functor F: A X and V-natural

front and back adjunctions making U V-adjoint (on the right) to

F), with all V-functors between their domains making commutative

triangles

X ;) X'

\)'
A

as morphisms - forming a category V-Adj (V-Cat, A). Propo-

sition 2 then asserts that the passages

L..-.....",. 'I' A'I' A T 'I]= '1'] [U: ;F ,n,e: ,

constitute a contravariant functor - V-triple semantics - from

V-Trip(A) to V-Adj(V-Cat, A).

The V-triple structure functor (also contravariant) in

the other direction is easier: if U: X --> A and F: A X

are V-adjoint V-functors with (V-natural) front and back adjunc-

tions n: idA ---? UF, e:: FU idX ' there is no trouble to see
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that (UF,n,U£F) is a V-triple. If U': X' A and

F': A X' is another pair of V-adjoint V-functors, with

front and back adjunctions n' and £' , respectively, and if

P: X X' is a V-functor for which U' 0 P = U, it is well

known how to construct an ordinary natural transformation

T p : U'F' UF that actually is a triple map from

(U'F' ,n' ,U'£'F') to (UF,n,U£F). In fact, however, Tp is a

V-natural, and hence a V-triple map, being given explicitly as

the composition

U'F' > U'F'UF
U'F'n = U'F'U'PF U'£'PF > U'PF = UF

of V-natural transformations. The functoriality of the ordinary

contravariant triple structure functor then guarantees that the

passages

(U; F , n , c ) (UF, n , U£F)

P--? Tp ,

,

constitute a contravariant functor - V-triple structure - from

V-Adj(V-Cat, A) to V-Trip(A).

In Theorem 2 below, we shall prove that V-triple seman-

tics and V-triple structure are adjoint on the right. To this

end, we observe first that the V-triple structure of the

'Dr 'Jr IJI'V-adjoint V-functor (U;F ,n,£) arising from the V-triple

T = is quite obviously nothing other than T itself

again. For, u'DrFW = T, n = n, and = (for this recall

This identification is one of
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the adjunction maps for the advertised adjointness between

V-structure and V-semantics. The other is described as follows.

Let (U;F,n,e) be as before, and let

The well known "semantical comparison functor"

defined by 4>X = (UX,Uex)' = Uf, satisfies

'lIl' = (UF,n,UeF).

l'4>: A ,

u" 0 4> = U at

the level of ordinary functors. We use Lemma 2 to prove

The usual semantical comparison functor X AT

arisins V-adjoint V-functor situation (U: X A; F,n, )

with W= (UF,n,UeF), admits a unique enrichment to a V-functor

X AT satisfyinsz

UI' 0 4> = U

the level of V-functors; moreover, is the only

V-functor satisfyin2 (2.3), in addition, have

0 F = FI'

and

T 4> = id'll' •

Proof. The first part of Proposition 3 is proved,

using Lemma 2, by showing that the exterior of the diagram

(2.3)

(2.4)
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A(UX, UY) <, UY

FUX,UY A(UFUX,UFUY)

X(FUX,FUY) A(id,U y)

!X(id, y)

A(
.) >A(UFUX,UY)

commutes. But the two upper triangles commute by the definition

of the V-functor structure of a composition of V-functors1 the

remaining triangle commutes because is V-natural 1 and the

other regions commute for even easier reasons.

Since the ordinary semantical comparison functor

the only functor for which (2.3) holds at the lowest level, the

second uniqueness statement now follows from the first.

Since (2.4) is known at the level of ordinary functors

and since both $F and are V-functors to AT, the uniqueness

portion of Lemma 2 establishes the validity of (2.4) at the level

of V-functors. Finally, since relation (2.5) is well known for

ordinary triple-structure-semantics, it is true here as well.

To give the reader two strategy options for proving

Theorem 2, and to make our exposition more complete, we state
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Lemma 3

Let (U: A; F,n,e) V-adjoint V-functor

situation, be a V-triple A, and let W = (UF,n,UeF)

be V-structure triple of (U;F,n,e). Then given a V-functor

P: X /F' satisfying

W'U 0 p = U

level of V-functors, the unique ordinaEX triple map

r e '1" W, solving the esuation

P = A' 0 q,

(2.6)

2! ordinarx functors (available ordinary triple-structure-

.emantics adjointness), is in V-triple map, and (2.7) is

valid the level of V-functors as

Proof. , is, of course, just 'p which we have

already observed is a V-triple map. The validity of (2.7) at the

level of V-functors is a by now familiar consequence of Lemma 2.

With this lemma behind us, nothing can prevent two

proofs of

Theorem 2 (Adjointness of V-structure and V-semantics)

The contravariant functors V-triple-structure

V-tri:ele-semantics adjoint the right, with adjunction

transformation given the system of V-semantical comparison
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V-functors and the other iiven £l identifica-

tions

(2. 8)

First Proof in Outline. First verify that the

systems of V-semantical comparison functors and of iden-

tifications (2.8) are natural; then relations (2.5) and (2.8)

deliver the adjointness.

Second Proof in Outline. Lemma 3 provides one-one

correspondence between V-Trip{A) ,T) and the class of all

V-functors P: X --. AT' satisfying (2.6). That delivers

the adjointness, and the information that the family of

semantical comparison functors constitutes one of the

adjunctions; there remains only the easy verification that

the identifications (2.8) constitute the other.

§3. LAWVERE'S KLEISLI-EILENBERG-MOORE ADJOINTNESS

Since we never suppose the base category V to be

symmetric, we cannot blindly apply duality to obtain counter-

part results for cotriples. Nevertheless, diligent mimicry

of the first sections of this paper will produce all that we

shall assume known about V-cotriples on a V-category A,

al:out the V-category of and about the

structure-semantics adjointness relations appropriate to
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V-coadjoint V-functors versus V-cotriples.

Bearing V-cotriples in mind, let us reconsider the

V-triple semantics functor. Given the V-triple T =

on a V-category A, we have produced the V-category AW

T T Twith a new V-adjointness situation (U: A Ai F ,n,£ ).

Clearly (FTUT,£T,FTnUT) is a V-cotriple on AT, which we

shall designate briefly as This passage from a V-triple

on one category to a V-cotriple on another is, as we shall

see, actually part of a functor from the category V-Trip

(whose objects are all pairs (A,W) with A a V-category

and T a V-triple on A, where as rnorphisms (A,T) (AI,TI)

we allow all V-functors X: A ---+ AI such that

T'X = XT,

nIX = Xn: X ----+ T'X = XT,

and = T'T'X = XTT XT = T'X)

(3.1)

to the analogously defined category V-Cotrip of all V-cotriples

on various V-categories and strictly V-cotriple-preserving

V-functors.

To describe the effect on a morphism X: A AI

from (A,T) to (Al,T'), we shall once again have recourse

to Lemma 2. To begin with, we define an ordinary functor

X: AT satisfying
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xu'lll' = U X

'3tF'Jll' = F'Il" X

'!l'Xt = s X

Namely, if (A, a: A) is a 'lIl'-algebra in A, let

(3.2)

,..,
X(A,a) = (XA,Xa: T'XA = XA). It is left to the reader

to decide that X(A,a) is in fact a T'-algebra - all he needs is

relations (3.1) and the defining properties of algebra structure

maps. In much the same way, the reader can easily verify that,

Whatever the 'If-algebra map f: (A,a) (B,B), the A'-morphism

Xf: XA XB is actually a 'Jr'-algebra map, call it Xf, from

X(A, a) to X(B, 13) •

.....
It should then be clear that X is a functor and that

relations (3.2) are at least satisfied at the level of ordinary

functors.
.....

In fact, X is easily the only functor having these
,..,

properties. Now an application of Lemma 2 enriches X uniquely

to a V-functor satisfying the first of the equations (3.2) at the

level of V-functors, and another application of Lemma 2 guarantees

the validity of the second of these equations at the level of

V-functors as well. The validity of the third equation not being

interfered with, it now follows that X is in fact a V-Cotrip

morphism from (A'lIl',mT) to (A''lIl'' ,m'lf'). Since there is no problem

in seeing that - ...-..YX = YX and that id7A,;) = idA 'I' ' the passages

(A,'F) (AI' ,a'!') I

X

constitute a functor EM: V-Trip V-Cotrip.
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The purpose of this section is to describe the left

adjoint to EM.

Consider, therefore, a V-triple = on a

V-category A. Let Kl(T) be the usual Kleisli category for T,

with objects those of A and Kl(T)-morphisms from A to Ball

A-morphisms from A to TB. We make into a V-category

by setting Kl(T) (A,B) = A(A,TB), and using the iso-

morphisms

(3.3)

to find (uniquely) units and composition rules for in

such a way that the (iso-) morphisms (3.3) make the passage

a (V-fully faithful) V-functor IT: Explicitly,

the units are

I A (A,A)
jA

A(A,TA) = Kl(T) (A,A) ,
A(A, nA)

and the composition rules are

Kl('Jl') (B,C) 0 Kl('JI') (A,B) - - - - Kl('Jl') (A,C)
I

A(B,TC) A(A,TB)0

1
TB/ Te @ id

A(TB,TTC) 0 A(A,TB) > A(A,TTC) • A(A,TC)
H A(A,

,

or, if V is closed,
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----->K.t(I') (B,C) V(K.t('Jl') (A,B) ,Kl(l') (A,C»

A(B !tc> v(A (A,TB) A(A,TC) >

ITB'TC V(id,A(A'"C»l

A (TB,TTC) V(A (A,TB) ,A (A,TTC»

By Lemma 2, the passages

A(A,B) ) A(A,TB) = Kl('Jl') (A,B)
A(A, nB)

constitute a V-functor fT: K.t('Jl'} satisfyinq ITfT = FT.

The V-fully faithfulness of I'Jl' shows that UI'II' = def uT

serves as (right) V-adjoint to fT, with front adjunction n and

back adjunction (I'Jl')-l(EI'F'll'). It follows that the V-triple

structure of (uTifT,n,(IT)-l(ETF'Jl'» is just T again.

On the other hand, if (U: X A; F,n ,E) is a

V-adjoint V-functor situation, with 'Jl' = (UF,n,UEF) the associ-

ated V-triple, there is a canonical V-functor Kl('Jl') X

satisfying = u'll' - indeed, K.t('Jl') is clearly V-isomorphic

wi th the full image V-category of F: A X. Horeover,

= F and the V-triple map induced by''!' is obviously idU'.

This shows that the system of 's is one of the adjunction

transformations making the Kleisli V-category construction and

V-triple structure adjoint on the left. Alternatively, viewing

V-triple structure as a covariant functor

(V-Adj(V-Cat, A)}oP Trip(A) ,
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it has V-triple-semantics - the Eilenberg-Moore construction

of et al - as left adjoint, and the above described

Kleisli V-category construction as right adjoint.

As earlier in this section, we wish to let A vary.

Clearly, each Trip-morphism

V-functor X: A'lIl' A''II''

inducing

X: (A ,'11') {A' ,T'}, inducing a

satisfying (3.2), actually winds up

/\
a unique V-functor X: Ki('II'} Ki('lIl") satisfying

Xu'l = u X

'*f'lll' = f'lll"X

XI'lIl' '1'/\= I X •

Furthermore, actually turns out to be a Cotrip-morphism from

(Ki(T) , (flI'ulI', (I'll') -1 (e;R'F'JIl') ,f'fnu'l'» to

(Kl{T') , (f'll"u'll' ,fl"n'u'll"» •

Thus, passage to the Kleisli V-category along with the

V-adjointness cotriple for u'lll' f'lll' becomes a functor

V-Trip V-Cotrip.

Actually, we must dualize the above considerations, by

the mimicry procedure mentioned at the head of this section, to

obtain another Kleisli-type functor KL: V-Cotrip V-Trip.

Theorem 3

KL: V-Trip has as (right) adjoint

EM: V-Trip V-Cotrip.
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Proof Sketch. We content ourselves with presenting the

front and back adjunctions. Let G be a V-cotriple on the

V-category Form the Kleisli V-category Kl(G) for G. We

have the V-triple on Kl(G) coming from the V-adjoint pair

of V-functors at the left in the inset diagram. There is then

the V-semantical comparison V-functor from X to the V-cate-

gory of '1<t-algebras on Kl (G) • makes both triangles commute,

as was seen before. It can then easily be seen to be a

V-Cotrip morphism from (X,G) to EM(KL(X,G» = •

For the back adjunction, let be a V-triple on the

V-category A. Form the V-category of W-algebras in A.

This bears the cotriple whose Kleisli V-category we now form.

There is then the V-functor A making both triangles

commute, indeed, giving a V-Trip morphism from (next page)

KL(EM(A,T» = (Kl(G'I),T T) to (A,'I). We leave to the reader
a;

the verifications that, using these adjunctions, KL is left

adjoint to EM.
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Incidentally, the same sort of thing can be done re-

placing EM by EM: V-cotrip V-Trip, assigning to (X,m) the

canonical V-triple on the V-category XG of m-coa1gebras. Then

EM has KL as left adjoint. Once again, purely formal mimicry

delivers the proof.
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MINIMAL SUBALGEBRAS FOR DYNAMIC TRIPLES 1

by

Ernest Manes

This paper is a pre liminary report on a larger

project dedicated to the proposition that universal algebra

and compact topological dynamics have a lot to learn from

each other. The author has tried so hard to make this paper

accessible to topological dynamicists (as opposed to cate-

gorists) that the work "adjoint" doesn't seem to come up.

The reader is referred to [Eb] and the references there for

the dynamical origin of the algebra we study here. The

prerequisite for reading the paper is a knowledge of uni-

versal algebra in the language of triples in sets such as

may be found in [Ma] or [Mb]. It is hoped that the meaning

of the main theorems is clear without knowledge of triple-

theory, in such a case think of a "'I-algebra" as just a

"universal algebra", which is entire ly accurate though

sufficiently non-classical to include exotic infinitary

examples such as compact transformation groups, the envelop-

ing semigroup of algebra (as defined in 2.1) is the set

of all derived unary operations7 ''(IT,lll)'' is the free

algebra on one generator.

lResearch supported by Harvey Mudd College.
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1. DYNAMIC MONOIDS

Let E be an abstract monoid with unit e. For

pEE, {Lp} {Rp} denotes the {left} {right} multiplication

function induced by p.

1.1 Definition

E is a dynamic monoid if E possesses a minimal

right ideal I such that I, qua semigroup, is left cancella­

tive (i.e. all left multiplications of I are injective).

1.2 Definition

C E is a division set in E if is non­empty

and if for all p,q E E there exists x E E such that

opx = oq for all 0 E 6.

1. 3 Theorem

Assume that E possesses a minimal right ideal I

and a maximal division set Then the following statements

are valid.

a. is a left ideal in E.

b. There exists u E I n such that OU = 0 (0 E

and up = p (p E I); (in particular, uu = u).

c. I n = and I n is a group.

d. I is a left cancellative semigroup (and hence E is

a dynamic monoid).
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Proof. a. This is clear from the maximality of

b. Let a E I. There exists x E E such

that oax = oe = 0 (0 E Define u = ax. Then u E I

and ou = 0 (0 E Let p,q E E. There exists x E E

with opx = oq (0 E As upxI = I there exists y E I

with upxy = uq , For 0 E = c5upxy = aug = oq.

By the maximality of u In particular uu = u. That

up = p (p E I) is a general fact about idempotents in a

minimal right ideal: as uI = I there exists q E I with

uq = p and then up = uuq = uq = p.

c. c I n since I is a right ideal

and is a left ideal. If p E I n then p = up E

Clearly I n is a subsemigroup with u as two-sided unit.

Let p E I, 0 E so that po is a typi ca1 e lemen t of

I There exists x E I with pox = u and then there

exists y E I with xpoy = x. Since x = xpoy = xupoy

= xpoxpoy = xpox = xu, x To see x is also a left

inverse let z E I wi th xp s z = u; then u = xp s z = xp cxpS z

= xp su = xps ,

d. Let a,p,q E I with ap = ag. As

u,au E I n there exists 0 E I n with ou = au. Hence

p = uup = o-loup = o-laup = o-lap = o-laq = q. The proof is

complete.

1.4 Definition

E is compactible if there exists a compact Hausdorff
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topology on E with respect to which Lp is continuous for

all pEE.

1. 5 Defini tions

For sets X, r , the fine-power x f is

the cartesian power topology induced by the discrete topology

on X. For r 4E any E-valued function define EY to

be the subset t r 4 E: pEE} of s", E is a

quasi cOmpactible monoid if E has a minimal right ideal and

if for every r E, EY is closed in the fine-power

topology on E f
•

1.6 Hierarchy Theorem

Each of the following four conditions on E implies

those beneath it.

a. E is compactible.

b. E is quasicompactible.

c. E has a minimal right ideal and a maximal division set.

d. E is dynamic.

Proof. a implies b. Let T be a compact Hausdorff

topology on E making each Lp continuous. By Zorn's Lemma

and compactness, E has a minimal closed right ideal I. For

P E I, pE is closed since Lp is closed, so pE = I. Hence

I is a minimal right ideal.

continuous map f defined by

Let
y

r ---+ E. Consider the
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(E,T) ! > (E,T)r

(E, T)

As EY is the image of f, EY is closed in (E,T)r and

hence is closed in the fine-power topology on Er•

b implies c. Let I be a minimal right ideal

and let a E I. If p,q E E then aEE = I = aE so that

apx = aq for some x E E. Hence {a} is a division set.

Let (60:) be a chain of division sets and set 6 = U60:.

Let 6 4 E be the inclusion function. Let F be a

finite subset of 6. There exists 0: with F c 60:. There

exists x E E with opx = oq (0 E 60:). We have shown that

for every finite subset of 6 there exists some E EYFp

(i.e. , = YRpRx) such that agrees with 'fRq on F.

This says that YRq is in the fine-power closure of EYRp.

By the hypothesis, YRq E EYRp so that YRq = yRpRy for some

Y E E. Hence 6 is a division set. By Zorn's Lemma, there

exists a maximal division set.

c implies d. This is 1.3d. The proof is complete.

Examples 1.8, 1.9 and 1.10 below show that none of

the implications in the hierarchy theorem 1. 6 have true con-

verses.
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1.7 Theorem

Let E be any lattice which has all suprema (including

0), and provide E with its binary infimum monoid mUltipli-

cation. Then E is quasicompactible.

Proof. {O } is a minimal right ideal. Let r 4 E,

and let be in the fine-power closure of EY• Define

x = A E f}. If A E f then there exists pEE

with = AYRp = inf{AY,p} so that =

inf{AY,x} = AyRx• Let A' E f. There exists q E E with

= AYRq and = A'YRq. Therefore

= inf{Ay,A' y,q} inf{Ay,q} = As A' is arbitrary,

inf{AY,x} Hence = yRx• The proof is complete.

1. 8 Example

A quasicompactible monoid that is not compactible.

Let E be the disjoint union. of the real intervals A = [0, [0

and B = [0,1]. Defining p g if and only if (p,q E A or

p,g E B or pEA, q E B) and p q as numbers, E is a

complete lattice. As in 1.7, E is a quasicompactible monoid.

Since any compact topology on A with respect to which closed

rays are closed sets must contain- hence be equal to- the

usua.L topology on [0,1], A is not compactible. Since [0

A = {p E E: PLx = OJ, where x = inf(B), it follows that E is

not compactible.
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1.9 Example

A monoid with a minimal right ideal and a maximal

division set that is not quasicompactible. Let X be an

infinite set and set E = {f E XX: f is the identity func-

tion or f is not injective}. E is a submonoid of XX. For

x E X let x denote the corresponding constant function.

I = 6c x E X} is a minimal right ideal. Let 0 E X. Then

f::,. = {o } is a division set. Suppose Iji E E were such that

-
{ 0 ,Iji } is a division set with Iji ::f o. Let x E X with Xlji ::f o.

-There exist f,g,h E E such that xljif = of, xljig ::f og, 6fh = 6q,

\jifh = \jig. But then og = 6fh = xljifh = xljig, a contradiction.

To prove that E is not quasicompactible, let X E be

the function xy = x and let f E xX be any function not in

E. It is easy to check that fy is in the fine-power closure

1. 10 Examp Ie

A dynamic monoid that has no maximal division set.

Let X be an infinite set with xO,x I distant elements of X.

Set E = {f E XX: f induces a bijection of X - {xO,x I } onto

- -
X - {xO,x

I
} and xof = Xo = xlf} U {xo,xl,lx}. E is a submonoid

of XX. I = {xO,x
I
} is a minimal right ideal which qua

semigroup is left cancellative, so E is dynamic. Suppose

-
f::,. were a maximal division set. By 1.3b, f::,. = {xc} or t:. = {x I}.

- -But {xO'x l} is a division set. For let f ,g E E. If f fJ I,

ff-lg = g (what we mean by "f-lll being clear). If g E I,
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fg = g. Finally, if f E I, g I then fg = g on {xO,x 1}.

1.11 Theorem

Let E be a left cancellative monoid. Then EY is

closed in the fine-power topology for all r E

Proof. Let r 4 E and let ljJ be in the fine-

power closure of EY. Let a E E. If F is a finite subset

of r then there exists pEE with AljJ = AYRp (A E F).

Hence AljJLa = AYRpLa = (A E F). This shows that ljJLa

is in the fine-power closure of EYLa. Let AO E f. For each

A E r there exists p (A) E E with AoljJLa = AoyLaRp (A) and

AljJLa = AyLaRp (A) • For all A E r we have a(Aoy)p(A)

= a(AoljJ) = a(Aoy)p(A o) ; It follows from the hypothesis on E

that peA) = p(A O) for all A E r. Therefore ljJLa = yLaRp(A o)

= YRp(Ao)La• Therefore ljJ = E EY. The proof is

complete.

L 12 Corollary

Every group is quasicompactible.

We remark that E is a group if and only if E is

left cancellative and possesses a minimal right ideal (so that

to prove E is quasicompactible using 1.11, 1.12 must apply).

For let E be left cancellative and let I be a minimal right

ideal in E. There exists p E I. Since pI = I, pu = p for
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some u E I. By left cancellativity, u is the unit of E,

so that I = E. But then pE = E for all pEE. It follows

from [L, II.2.l8] that E is a group.

The tollowing theorem provides many examples of

quasicompactible, non-compactible monoids.

1.13 Theorem

A countably infinite abelian group is not compactible.

Proof. To begin with, suppose X is a countable set

and that T is a compact Hausdorff topology on X. Letting S

be the topology generated by choosing a pair of separating open

sets for each two-element subset of X, S = T (as T is com-

pact and S is Hausdorff). It follows that T must be second

countable.

Now, let A be a countably infinite abelian group

and suppose A were compactible via the compact Hausdorff

topology T. Then T is second countable and addition is

separately continuous. By the theorem of [W], A is a compact

Hausdorff topological group. Let h be the unique Haar

measure on A with h(A) = 1. By countable additivity and

invariance we have the absurd equation h({O}) • 1. The

proof is complete.
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1.14 Example

Let X be a set. Then E = XX is compactible.

For there exists a compact Hausdorff topology on X (e.g.,

remove a point, discretify, and restore the point with the

one-point compactification topology). Let E have the

induced cartesian power topology. If pEE then Lpprx

= prxp for all x E Xi this proves Lp is continuous.

1.15 Theorem

Let E be a dynami c monoid and let I be a

minimal right ideal in E which qua semigroup is left

cancellative. Then the following statements are valid.

a. For all p E I the unique u E I with pu = p

is an idempotent.

b. {Iu . u E I and uu = u} partitions I into groups..
c. If u,v E I are idempotents then if Iu n Iv is

nonempty, u = v ,

Proof. If pu = p let q E I with uq = Ui then

pq = puq = pu so that q = u. This proves (a) • If u,v E I

are idempotents and p E Iu n Iv then pu = p = pv and so

u = v. That Iu is a group doesn't require cancellability,

since any semigroup S with a right unit such that pS = S (p E S)

is a group (e.g., see [L, 11.2.18]). The proof is complete.
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1. 16 Examp Ie

A monoid with a minimal right ideal that has no

idempotents (and so which is not dynamic). Let X be an

infinite set. Define E = {f E XX: f = Ix or f is

injective and X - im f is countably infinite} • E is a

submonoid of XX. Define I = {f E E . f :I Ix} • It is.
trivial to check that I is a minimal right ideal with no

idernpotents.

1.17 Definition

Let E be a monoid. The left compactification of

E is the set, ES, of all ultrafilters on the set E with

the binary multiplication

u • V = {A c E : :iIV E V Vv E V au E U • uv c A}

1.18 Theorem

Let E be a monoid with left compactification ES.

Then the following statements are valid.

a. E8 is a monoid with unit e (where e E E is

the unit of E and for pEE, P denotes the principal

ultrafilter induced by p).

b. The map E E8 sending p to P is a monoid

homomorphism.

c. ES, with its usual compact Hausdorff topology (making

it the free compact space on E generators) becomes a
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compactible monoid.

d. For U E E8 and pEE, U • P = URp and p . U = ULp.

Proof. a. Let U,V,W E E8. To begin with we must

show U V is an ultrafilter. That A n B E U • V when

A,B E U • V is trivial. Suppose A U • V. Define

v = {p E E : VU E U • Up ¢ A}; c Lear ly V E V. Le t v E V.

Define U = {p E E : pv A}; in view of the definition of

v, U E U. This shows that E - A U • V. For the associative

law, let A E (U • V) • W. aW E W Yw E W aaw E U • V with

BwW c A. For each w E W avw E V vv E Vw au E U. UV c Ew.

Define re = U Vww E V • W. Let c For some w E W,
wEW

v E Vw' c = VW. There exists U E U with UV c Bw• Then

Uc = uvw c Eww C All Hence A E U • (V • W).

The proofs of (b) and (d) are trivial. To prove
.

(c) we must recall that {A: ACE} is a base for the

topology of E8, where A = {V E E8 : A E V}. Let U,V E E8,

ACE with U· V E A. av E V Vv E V aU E U. UV C A. It

is obvious that U· W E A whenever W E V. This proves

that LU is continuous at V. The proof is complete.

1. 19 Theorem

Let E be a compactible monoid via the compact

Hausdorff topology T. Let D be any submonoid of

{p E E : is continuous}. Let D8 -4 E be the unique
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continuous extension of the inclusion map of 0 into E

(i.e., Ut is the unique point o.f E to which U converges

in T). Then is a monoid homomorphism.

Proof. Let UE 08 andset F= {VE 0: (U·

= • i. Let P E D. Since 11> is continuous, the diagram

08 08>

E > E

commutes. By 1.lSd, P E F. Since F is the equalizer of

the continuous maps F is closed. Hence

F = 08, which completes the proof.

1.20 Theorem

8 is a functor from the category of monoids into

the category of compact Hausdorff monoids with continuous

left mUltiplications.

Proof.

We mus t show that

be a monoid homomorphism.

is a monoid homomorphism.

That f8 preserves the unit is clear. Let U,V E EI8

and let A E (U • V)f. There exists Al E U • V with

Al f C A. av E V, vv E V, au., E U. Uvv CAl. Then

Vf E Vf and for all v E V, (Uvf) vf = (Uvv) f C Al f C A.

Hence A E Uf • Vf. The proof is complete.
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2. DYNAMIC TRIPLES

Let T = be a triple in the category of sets.

2.1 Definition

The structure monoid of we denote E
T,

is

the set of natural transformations from the identity functor

to T equipped with the binary mUltiplication g. h

= 1 TT T.

For a T-algebra and g E define

= X a XT -'+ X. The enveloping semigroup of (X, is

the set g E E
T}.

2.2 Theorem

The following statements are valid.

a. ET is a monoid with unit n.

b. For every algebra (X,O, E(X,O is both a

submonoid of XX and the subalgebra of (X,OX generated by

c. For every algebra is a monoid

epimorphism of onto and an algebra homomorphism

(whereof onto E
(X,O

by the Yoneda correspondence).

is identified with IT

d. If = the homomorphisms of (c)

are isomorphisms.
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Proof. Let be a W-algebra. Reviewing some

generalities about T-algebras, the structure map of

is defined by = (x E X) and the

unique homomorphism IT X sending 1 to the constant

functLon i x is The diagram

pr T
(XX)T x JI XT

and the Yoneda lemma shows that gljJ = for all 9 E IT.

Hence (lK) = 1m ljJ = E The remaining details follow

easily from the diagrams

X(g.h)
X }' XT ) X

xl:" !
'1.3 \ XTh::.::r <, t; T

\1
X

and IT ITg
:) ITT IV IT

lIn 111 T1/
1 19

) IT

the second of which shows how to recover 9 from (Lu) g.
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2.3 Remark

Let be a E = Then for

all x E X, (x) = xE. For (x) = (IXprx) = (lx)prx = E prx

= xE.

2.4 Theorem

Let be a T-algebra, set E =
let I be a non-empty subset of E. The following

statements are valid.

and

a. If I is a subalgebra of E, I is a right

ideal of E.

b. If I is a right ideal in E then for all

pEl, (p) c I.

Proof. a. The map E EI which sends p to

the I-restriction of Rp is easily checked to be a T­

homomorphism. Since I is a subalgebra, the inclusion

II .... EI is a T-homomorphism. Hence the pullback

P = {p E E: Ip c I} is a subalgebra of E. Since IX E P,

P = E.

b. It is easy to check that if A is any sub-

algebra of X then EA = pEE i, Using 2.3 we

have for p E I that (p) = pEE = {PRq: q E E} c I.

2.5 Corollary

Let be a set E = and let
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IcE. Then I is a minimal (i.e., minimal non-empty) sub-

algebra of E if and only if I is a minimal right ideal of

E.

2.6 Theorem

The following statements are equivalent.

a. Every non-empty has a minimal subalgebra.

b. ET has a minimal right ideal.

Proof. a imElies b. By 2.5, the enveloping semi-

group E of has a minimal right ideal. By 2.2d,

is isomorphic to E.

b imElies a. By reversing the argument of "a implies

b", has a minimal subalgebra r-1. If (X,S) is a non-

empty T-algebra, there exists a homomorphism $ from

to M$ is a minimal subalgebra of The proof

is complete.

2.7 Definition,

A universal minimal is aT-algebra M

satisfying the following three properties.

UMI. M is a minimal

UM2. If N is a minimal then there exists

a T-homomorphism of M onto N.

UM3. Every T-endomorphism of M is an automorphism.

It is clear that if a universal minimal M exists,



- 436 -

it is isomorphic to any algebra satisfying UMI and UM2. Hence

we should speak of universal minimal algebra. Any minimal

subalgebra of the product of a representative set of all

minimal algebras will satisfy UMI and UM2 and hence will be

the universal minimal algebra when it exists.

2.8 Definition

is a dynamic triple if

2.9 Theorem

E is a dynamic monoid.
'lit'

The following conditions on are equivalent.

a. is dynamic.

b. Every non-empty T-algebra contains a minimal

T-algebra and there exists a universal minimal T-algebra.

Proof. a implies b. 2.6 is half the work. Let E

be the enveloping semigroup of and let M be a

minimal right ideal of E which qua semigroup is left

cancellative. M is a minimal algebra by 2.5. Since E is

isomorphic to M admits a homomorphism onto every

minimal algebra. Suppose M M is a

Of course f is onto. As remarked in the proof of 2. 4b,

EM = {Rp : p E E} • Let P E E. If MT M is the

structure map of M, there exis ts g E with sg =

In the diagram
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M
Mg

): MT
(

): M

If
Mg

fT
t;
1f

M ): MT ): M

both squares commute. Hence fRp = Rpf for all p E E. By

1.13a M has an idempotent u. For x E M we have xf = (ux)f

= URxf = ufRx = (uf)x, so f = L u f which proves that f is

injective.

b implies a. Let E be the enveloping semigroup of

Let M be a minimal subalgebra of E. Since M

satisfies UMl, UM2, M is the universal minimal algebra4 By 245,

M is a minimal right ideal. Let p E M. is a '1-

endomorphism of since tp.prx = prxp for all

x E IT. In particular, Le is a T-endomorphism of M, hence

a T-isomorphism. As E'F is isomorphic to E, ET is dynamic.

The proof is complete.

2.10 Definition

is distal if is a group.

2.11 Theorem

The following conditions on 'F are equivalent.

a. T is distal.

b. is the universal minimal algebra.

c. is a minimal algebra.

Proof. Let E be the enveloping semigroup of
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a implies b. Since E is already a minimal right

ideal, E is the universal minimal algebra in view of the

proof of 2.9.

c implies a. Since E is a minimal right ideal

with a riqht unit, E is a group. The proof is complete.

2 .12 Definition

A is homogeneous if whenever

x,y E X there exists a with

xf = y.

2.13 Definition

A T-algebra is gartially free

generator if there exists a triple $ = (S,n' and an

algebraic functor

such that =

2.14 Theorem

Let be a minimal Then the

following statements are equivalent.

a. is partially free on one generator.

b. is homogeneous.
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Proof. a implies b. Let be the algebraic

functor of 2.13. Let x,y E X and let 1 E X be the free

generator of There exist $-endomorphisms - and

hence - f,g with If = x, 19 = y. Since

is minimal, f is onto so Zf = 1 for some Z E X.

Using partial freeness again, there exists a

h with lh = Z. By minimality, the equalizer of fh, Ix

is all of X so fh = Ix. Hence f is injective. f- 1g

is the desired endomorphism.

b implies a. Since this result is not crucial

for the rest of the paper, we lapse into language recognizable

only to dyed-in-the-wool categorists. Let A be the full

subcategory of S'lll'. The functor A S'll' --... S

is tractable because A is small, and so has Linton structure

triple $. Let S'lll' be the unique algebraic functor

induced by the reflectivity of the semantics comparison

functor A S$. Using the definition of $ it is not

hard to show that (IS, ) = [(1 ,i) ---. S'll'] where i

is the inclusion functor A S'lll'. using the sort of

reasoning that appeared in the proof of II a implies b " we

know that for all x,y E X there exists a unique 'lll'-

automorphism sending x to y. That lim[(l,i)
o4ii--

= is then clear. The proof is complete.

2.15 Remark

The proof of 2.14 lib implies all shows that if
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(X,s) is minimal then is partially free On one gen-

erator where n is the set of homogeneous components of (X,s).

2.16 Definition

T is homoseneous if possesses a minimal right

ideal which is a group. Notice that R' is dynamic if 'I'

is homogeneous.

2.17 Theorem

Let T be dynamic. The following conditions on

are equivalent.

a. T is homogeneous.

b. The universal minimal se t is homogeneous.

c. The universal minimal set is partially free on

one generator.

Proof. a implies b. Let M be a minimal right ideal

in the enveloping semigroup of which is a group.

Then M is the universal minimal T-algebra. If x,y E M

there exists p E M with px = Y» But Lp is a

endomorphism of M.

b implies a. Let M be as above. Let x,y E M.

Then there exists aT-endomorphism f with xf = y. By the

proof of 2.9 there exists p E M wi th f = Ip. Hence px = Y»

Hence M is a group. In view of 2.14, the proof is complete.
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3. EXAf.1PLE8

3.1 Definition

is compactible if is compactible.

3.2 Theorem

Let be any triple in sets and let $ be the

triple corresponding to any Birkhoff subcategory B of

the category S'F '8 of compact Let X = (18,1\.1)

and let E be the enveloping semigroup of X. Then $ is

compactible and there exists a continuous monoid epimorphism

Proof. E = 18 (noting that there is no

ambiguity with respect to "subalgebra generated by" since

B is closed under subalgebras and products). Hence

As in the proof ofis a dense submonoid ofE 1 = <Ix>,
2.4b, E E

E.

is in the 'I-enveloping semigroup of E for

all p E E1• By the defini tion of e 18, is continuous

for all p E E1• By 1.19, E is a continuous monoid quotient of

E1S (onto because E
1 is dense; also E is compactible,

since Lp is even a e IS-homomorphism for all p E E) • But

E1 is a monoid quotient of by 2.2c so that E1S is

a continuous quotient of by 1.20 (8 preserves outoness

since it is also a functor from sets to compact spaces). The
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proof is complete.

3.2 is potentially a powerful structure theorem for

a large class of universal minimal algebras. The associated

algebraic problem is to determine the nature of the closed

subsemigroups of ES x ES which are equivalence relations I

for an arbitrary monoid E.

3.3 Theorem

Let T be a triple in sets such that there exists

an algebraic functor (this includes all the $'s

of 3.2, but conceivably there are others). Then T is com-

pactible.

Proof. Let X = and let E be the envel-

oping semigroup of X. As E = (1 ) , is a closed subset
X T

of and so becomes a compact Hausdorff space. For

pEE, Lp is a T-homomorphism and, hence, is a continuous

endomorphism of The proof is complete.

3.4 Theorem

Let E be any monoid and let T(E) be the associ-

ated triple (whose algebras are right E-sets). Then ET(E)

is isomorphic to E. Hence, any monoid can be the structure

monoid to a triple.

Proof. The free T(E)-algebra on one generator is

just E. (lE) = the orbit of lx in EE = {Rp: pEE} - E.
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The proof is complete.

3.5 Example

Le t E be the monoid of 1. 16 Then is not

dynamic, but every E-set has a minimal E-invariant subset

(2.6). By 2.7, there is no universal minimal E-set.

3.6 Theorem

Let be any triple in sets. Then there exists

an algebraic functor ET-sets which sends every

minimal T-algebra to a minimal Hence, in some

sense, all questions concerning minimal algebras reduce to

questions about minimal monoid actions.

Proof. For each define

to be the action

It is easy to check that is well-defined on objects and

sends to equivariant maps. For x E X we

have from 2.2c and 2.3 that (x)T = = =

which completes the proof.

3.7 Theorem

Let be any triple in sets. Then there exists

0 Ie .
an algebraic functor > compact whLch
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sends every minimal compact to a minimal compact

E'JI'-set.

Proof. If X is a compact make X an

E,-set as in 3.6, and leave the topology alone. Since each

is continuous, the action is continuous being con-

sidered discrete, of course). If x E X, we have 0 .8

= <(X)'!>,e = «x>E (If) >'13 = {x>E ('II') @ '13 which completes the

proof.

The following example arose in conversation with

J.F. Kennison.

3.8 Example

Let If be the triple corresponding to the equational

class of algebras X equipped with binary operation m and

unary operations u l,u2 subject to the equations

xUlxu2m = x

xymu l = x

xymu2 = y

A 'II'-algebra amounts to being a set X, together with a speci-

fied bijection X x X X. A If o Ie-algebra, then, amounts

to being a compact Hausdorff space X, together with a speci-

fied homeomorphism X x X X. The cantor set becomes a

minimal If 0 re-algebra as follows: let 2 = {O,l} and define

2 2 by 0 = 1, I = O. Let be the positive integers

{1,2, ••• }. Define a homeomorphism x iN 2N by
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be an even integer. We show, by induction on n, that given

any (Yi) E 2N some element of agrees with (Yi)

for 1 i n r for then (Yi) E <<(xi) )1t)IS = < @ IS

for all (Yi) E iN and (2N,m) is minimal. The proof for

n = 2 is clear:

(x I ••• )

(x I ••• )

(x I ••• )

(x I ••• )

(x I ••• ) m = (x x ... )
I I

(x I ••• ) m = (Xlx I · · · )

(x I ••• ) m = (xlx I • •• )

(x I ••• ) m = (xlx I · · · )

For n > 2 , let (y. ) E .p. By the induction hypothesis, therea,

exist (ai) , (b. ) E ( (xi) 'Il' with a· = y. , b. = Y2ia, I a

(1 i n .
T)· But then (ai) (bi)m E agrees with

In particular, acts minimally on the cantor set,

by 3.7.

3.9 Theorem

Let E be any monoid. Then ES, with action

ES x E -+ ES ,

U, U • P
is the free compact E-set on one Igenerator.

Proof. Since U . P = Rp= RpS is indeed

continuous for all p E E. Let X x X be another
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dompact E-set and let x E X. Let
f be the unique

equivariant map sending e E E to x (i.e., pf = xp). Let

f be the unique continuous extension of f to EB:

E En) EI3

x

Since the map x xp is continuous for all pEE, f

is equivariant, the proof being entirely similar to that of

1.19. The uniqueness of t follows from the uniqueness of

f. The proof is complete.

It follows from 3.6 and the proof of 2.9, that any

minimal closed E-invariant subset of ES is the universal

minimal compact E-set.



- 447 -

REFERENCES

[Ea] Ellis, Robert, "A Semigroup Associated With a Transfor-

mation Group", Trans. ArneI'. Math. Boa." 94; 272-281,-
(1960) •

[Eb] Ellis, Robert, "Universal Minimal Sets", Proa." ArneI'.

Math. Boa." !l; 540-543, (1960).

[L] :J;,japin, E. S., "Semigroups", ArneI'. Math. Boa. Trans.

Math. Mon." (1960).

[Ma] Manes, Ernest, A Triple Misaellany: Borne Aspeats of the

Theory of Algebras Over a Triple" dissertation, Wesleyan

University, (1963).

[Mb] Manes, Ernest, A Triple-Theoretia Construation of Compaat

Algebras" to appear in the proceedings of the 1966-67

Zurich Conference on Categorical Algebra.

[W] Wu, Ta-sun, "Continuity in Topological Groups ", Pro o ,

ArneI'. Math. Boa." 1]) 452-453, (1962).



- 448 -

CATEGORIES OF SPECTRA AND INFINITE LOOP SPACES

by

J. Peter May

At the Seattle conference, I presented a cal-

culation of H*(F;Zp) as an algebra, for odd primes p,

where F = lim F(n) and F(n) is the topological monoid

of homotopy equivalences of an n-sphere. This computation

was meant as a preliminary step towards the computation of

H*(BF;Zp). Since then, I have calculated H*(BF;Zp)' for

all primes p, as a Hopf algebra over the Steenrod and

Dyer-Lashof algebras. The calculation, while not difficult,

is somewhat lengthy, and I was not able to write up a co-

herent presentation in time for inclusion in these proceed-

ings. The computation required a systematic study of

homology operations on n-fold and infinite loop spaces.

As a result of this study, I have also been able to compute

n nH*(Q S X;Zp), as a Hopf algebra over the Steenrod algebra,

for all connected spaces X and prime numbers p. This

result, which generalizes those of Dyer and Lashof [3] and

Milgram [8], yields explicit descriptions of both

H*(QnSnX;Zp) and H*(QX;Zp)' QX = QnSnX, as functors

of H* (X; Zp) •

An essential first step towards these results was

a systematic categorical analysis of the notions of n-fold

and infinite loop spaces. The results of this analysis will
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be presented here. These include certain adjoint functor

relationships that provide the conceptual reason that

n n
S X;Zp) and H*(QX;Zp) are functors of H*(X;Zp)

and that precisely relate maps between spaces to maps

between spectra. These categorical considerations moti-

vate the introduction of certain non-standard categories,

1 and L, of (bounded) spectra and n-spectra, and the

main purpose of this paper is to propagandize these cate-

gories. It is clear from their definitions that these

categories are considerably easier to work with topolog-

ically than are the usual ones, but it is not clear that

they are sufficiently large to be of interest. We shall

remedy this by showing that, in a sense to be made pre-

cise, these categories are equivalent for the purposes

of homotopy theory to the standard categories of (bounded)

spectra and n-spectra. We extend the theory to unbounded

spectra in the last section.

The material here is quite simple, both as category

theory and as topology, but it turns out nevertheless to

have useful concrete applications. We shall indicate two

of these at the end of the paper. In the first, we observe

that there is a natural epimorphism, realized by a map of

spaces, from the stable homotopy groups of an infinite loop

space to its ordinary homotopy groups. In the second, by

coupling our results with other information, we shall con-

struct a collection of interesting topological spaces and
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maps; the other infor.mation by itself gives no hint of the

possibility of performing this construction.

I THE CATEGORIES Ln AND HOMOLOGY

In order to sensibly study the homology of iterated

loop spaces, it is necessary to have a precise categorical

framework in which to work. It is the purpose of this sec-

tion to present such a framework.

We let T denote the category of topological

spaces with base-point and base-point preserving maps, and

we let

lJ: HomT (x,nY) HOrny (SX, Y) (1.1)

denote the standard adjunction homeomorphism relating the

loop and suspension functors.

We define the category of n-fold loop sequences,

Ln , to have objects B = {BiIO i n} such that

Bi = nBi + 1
E T and maps g = {gilo i n} such that

gi = ngi + 1
E T; clearly Bo = niBi and go = nigi for

o i n. We define L = L to be the category with ob-
ec

jects such that B. = nB.+ E T
111

and maps

g = {g. [L :<!: O} such that g. = ngi + 1 E T; clearly
1 1

B = niB. and go = nig. for all i :<!: O. We call L<Xl
0 J. 1

the category of perfect n-spectra (or of infinite loop

sequences). For all n, we define forgetful functors

Un: Ln T by lInB = Bo and lIng = go. Of course, if

n < <Xl, UnB and Ung are n-fold loop spaces and maps. We
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say that a space X E T is a perfect infinite loop space

if X = UeoB for some object B E Leo and we say that a

map f E T is a perfect infinite loop map if f = u""g

for some map g E Lco •

We seek adjoints On: T -+ Ln, n "" I to

the functors Un· For n < "" , define

OnX= {nn-isnxlo i n} and Onf = {nn-iSnflo i n l ,

Clearly, QnX and Qnf are objects and maps in Ln· For

the case n = co , we first define a functor Q: T T by

letting QX = nnsnx, where the limit is taken with re-

spect to the inclusions

(lsn+l
x):

nnSnX nn+lSn+lx

For f: X....... Y, we define Qf = lij!\ nnSnf: QX QY. It

is clear that QX = sosx and Qf = nQSf. We can therefore

define a functor Qco : T ....... L"" by Q""X = {QsiXli o} and

Q""f = {QSif[i OJ.

tion 1.

For each n, 1 n co , there is an adjunction

<Pn : HomT(X,UnB) HomL (OnX,B).
n

Proof. Observe first that the following two com-

posites are the identity.

n -n (lnnsnx)SnX
S (lsnx) snnnsnx snx, T! X E

-n (lnnx)
nnX

u (lsnnnx)
nnSnnnX nnx, X E T) it

(1.2)

(1.3)
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In fact, since (f) = u (lnz) • Sf for any map f: y -+ nz

in T, • = = lSnx ; this

proves (1. 2) and the proof of (1.3) is similar. Nmv define

natural transformations IPn: OnUn -+ lin and

\{In: IT UnOn by

IPn (B) = (lB ) 10 i n l : OnUnB B if n < ""; (1.4)
0

IP",,(B) = { 1 im nj i +j (IB ) Ii O}: O""U""B --+- B if n = "".,
0

(1.5)

We claim that (1.2) and (1.3) .imply that the following two com-

posites are the identity for all n.

On Ii' (X) IPn (OnX)
OnX n OnUnOnX OnX, X E T

\{In (UnB) Un IPn (B)
UnB UnOnUnB UnB, B E Ln

For n < "", (1.6) follows from (1.2) by application of

(1.6)

(1.7)

n-in

for 0 i nand (1.7) is just (1.3) applied to X = Bo,

since Bo = UnB = nnBn • For n = "", observe that \{I",,(X)

factors as the composite

u-1 (1 ) )
X SX nsx n\{l",,(SX nosx = QX

It follows that li'oo(X) = for all

= • (lsi+1
X)}

=
Observe also that

nj\{loo(si+jX}: njsi+jx --+- njos i+jx =

•

i 0 since

(i+1) \{I"" (Si+1 X) •
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is just the natural inclusion obtained from the definition

of as We therefore have that:

• aoo'¥oo(x)i

= lim njIJi+j(lax} • lim nksi+kIJ-(i+k)'¥oo(Si+kX)

= lim n j IJ i+j (lax) • njsi+jIJ-(i+j)'¥oo(Si+jx)

= lim nj'¥oo(si+jX) = lasix ;

In both calculations, the second equality is an observation

about the limit topology. The third equalities follow from

formulas (1.2) and (1.3) respectively. Finally, define

= • Onf if f: X UnB is a map in T (1.8)

= Ung • '¥n(X) if g: Qnx B is a map in Ln (1.9)

It is a standard fact that is an adjunction with inverse

since the composites (1.6) and (1.7) are each the identity.

If B E Ln , we define H*(B) = H*(UnB), where hom-

ology is taken with coefficients in any Abelian group IT. We

regard H* as a functor defined on Ln , but we deliberately

do not specify a range category. Indeed, the problem of

determining the homology operations on n-fold and (perfect)

infinite loop spaces may be stated as that of obtaining an

appropriate algebraic description of the range category. It
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that this is the case if 1T = zp and have

functor. By the previous proposition, if
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follows easily from (1.2) and (1.5) of the proof above that

H*(X) H*(UnOnX) is a monomorphism. Since

is adjoint to un, the objects QnX are, in a well-defined

sense, free objects in the category Ln. It is therefore

natural to expect H*(QnX) to be a functor of H*(X), with

I have proven

computed the

B E Ln then any

map f: X UnB in T induces a map QnX B

in Ln , and the functor describing H*(QnX) is geometrically

free in the sense that H*(QnX) H*(B) is deter-

mined by f* = H*(X) H*(UnB) in terms

of the homology operations that go into the definition of

the functor. In this sense, we can geometrically realize

enough free objects since H*(QnUnB) H*(B) is

an epimorphism. All of these statements are analogs of well-

known facts about the cohomology of spaces. The category

of unstable algebras over the Steenrod algebra is the appro-

priate range category for cohomology with zp-coefficients.

Products of K(Zp,n) 's play the role analogous to that of

the QnX and their fundamental classes play the role anal-

ogous to that of H*(X) c H*(QnX).

By use of Proposition 1, we can show the applica-

bility of the method of acyclic models to the homology of

iterated loop spaces. The applications envisaged are to

natural transformations defined for iterated loop spaces but
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not for arbitrary spaces. The argument needed is purely

categorical. Let r temporarily denote any category, let

A denote the category of modules over a commutative ring

A , and let M be a set of model objects in r. Let

F: S A be the free A-module functor, where S is the

category of sets. If R: r A is any functor, define a

functor
,.....
R: A by R(X) = F[ U Homr(M,X) x R(M)]

MEM
on

,.....
objects and R(f) (v,r) = (f • v,r) on morphisms, where if

f: X Y, then v E Homr(M,X) and r E R(M). Define a nat-

ural transformation A: R R by A(X) (v,r) = R(v) (r). Re-

call that R is said to be representable by M if there exists

a natural transformation E;: R R such that A· E;: R R

is the identity natural transformation. With these notations,

we have the following lemma.

Lemma 2

Let cjl : Homr(X,UB) Hom L (QX,B) be an adjunction

and let R: A be a functor representab Le by M. Define

QM = {QM[M E M} and let S = R • U: A. Then S is

representable by QM.

Proof. Define a natural transformation

n s R. S by n(B) (v,r) = (cjl(v),Rcjl-1(lQM)(r» for

v: M UB, r E R(M). Write AI for the natural transforma-

tion 'S S defined as above for R. We have

AIn = AU: RU RU = S since AI n (B) (v , r)

-1= R[Ucjl ( v ) • cjl ( lQM) ] (r) = R(v ) (r) •
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Therefore, if "" satisfies: R = 1: R R, then

A' = AU • = 1: S -. S, and this proves the result.

Of course, if ep is an adjunction as in the lemma

and if T
j

denotes the product of j factors T, then

epj: HOmTj(X,UjB) HOmLj(QjX,B) is also an adjunction

(X E T
j,

B E L
j
) . Thus the lemma applies to functors

R: T
j A and RUj: Lj -. A.

Returning to topology, let C*: T A be the

singular chain complex functor, with coefficients in A. The

lemma applies to C*Un: Ln A for 1 n 00 and, by the

remark above, to the usual related functors on (tensor

and Cartesian products of singular chain complexes). With

M= the standard set of models in T, we have

= if n < 00 and = these spaces

are contractible and the model objects c Lo are

therefore acyclic. We conclude that the method of acyclic

models [4] is applicable to the study of the homology of

n-fold and perfect infinite loop spaces.

2 COMPARISONS OF CATEGORIES OF SPECTRA

The work of the previous section shows that the

category L is a reasonable object of study conceptually, but

it is not obvious that L is large enough to be of topological

interest. For example, it is not clear that the infinite

classical groups are homotopy equivalent to perfect infinite

loop spaces. We shall show that, from the point of view of
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homotopy theory, L is in fact equivalent to the usual cate-

gory of (bounded) n-spectra. To do this, we shall have to

proceed by stages through a sequence of successively more

restrictive categories of spectra.

By a spectrum, we shall mean a sequence

where B.a is a space and B. ----+ nB.

is a map. By a map g: B B 1 of spectra we shall mean a

sequence of maps g.: B. B! such that the following dia-

grams are homotopy commutative, i o.

g,
B, 1. >

.i,

fil 1 fi (2.1)

rlg'+l
11B '+ ): riB'

1 i+l

We call the resulting category s. We say that B E S is an

inclusion spectrum if each f. is an inclusion. We obtain

the category 1 of inclusion spectra by letting a map in 1

be a map in S such that the diagrams (2.1) actually com-

mute on the nose for each i o. (Thus, 1 is not a full

subcategory of S.) We say that B E S is an n-spectrum

if each f.a is a homotopy equivalence. We let be the

full subcategory of S whose objects are the n-spectra, and

we let nl = 1 n nS be the full subcategory of 1 whose

objects are the inclusion n-spectra. A spectrum B E nl

will be said to be a retraction spectrum if B·a is a defor-

mation retract of nBi +1
for all i. We let R denote the
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full subcategory of nl whose objects are the retraction

spectra. Clearly, L is a full subcategory of R, since if

BEL we may take f. = 1 and then any map in R between

objects of L will be a map in L by the commutativity of

the diagrams (2.1). Thus we have the following categories and

inclusions

L eRe nr c nS and 1 c S • (2.2)

For each of these categories C, if g,g': B B'

are maps in C, then we say that g is homotopic to g' if

gi is homotopic to g! in T for each i. We say that g

is a (weak) homotopy equivalence if each g. is a (weak) homo-
a,

topy equivalence. Now each C has a homotopy category HC

and a quotient functor H: C HC. The objects of HC are

the same as those of C and the maps of HC are homotopy

equivalence classes of maps in C. Note that each of the in-

elusions of (2.2) is homotopy preserving in the sense that if

C c V and g g' in C, then g g' in V. We therefore

have induced functors HC HV and these are still inclu-

sions since if g,g' E C and g g' in V, then g g' in

C.

The following definitions, due to Swan [11], will be

needed in order to obtain precise comparisons of our various

categories of spectra.

Definitions 3

(i) A category C is an H-category if there is an
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equivalence relation -, called homotopy, on its hom sets

such that f - f' and g - g' implies fg - f' g' whenever

fg is defined. We then have a quotient category HC and a

quotient functor H: C -+ HC.

(ii) Let C be any category and V an H-category.

A prefunctor T: C V is a function, on objects and maps,

for each C E C and T(fg) - T(f)T(g)

such that HT: C-+ HV

quiring T(lc) - IT(C)

whenever fg is defined

we say that a prefunctor

is a functor. This amounts to re-

in C. If C is also an H-category,

T: C V is homotopy preserving

if f - g in C implies T(f) - T(g) in V. Clearly, T

is homotopy preserving if and only if T determines a functor

T*: HC HV such that HT = T*H.

(iii) Let S,T: C V be prefunctors. A natural

transformation of prefunctors n: S T is a collection of

maps n(C): S(C) T(C), C E C, such that T(f)n(C) - n(C')S(f)

in V for each map f: C C' in C. n is said to be a

natural equivalence of prefunctors if there exists a natural

transformation of prefunctors S such that

- IT(C) and - lS(C) for each C E C. A

natural transformation of prefunctors n: S T determines

a natural transformation of functors Hn: HS HT and, if

Sand T are homotopy preserving, a natural transformation

of functors n*: T* such that n*H = Hn; if n is a

natural equivalence of prefunctors, then Hn and, if defined,

n* are natural equivalences of functors.
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(iv) If S: V C and T: C V are homotopy

preserving prefunctors between H-categories, we say that T

is adjoint to S if there exist natural transformations of

prefunctors TS IV and lC ST such that for

each D E V the composite SD SD is homo-

topic in C to the identity map of SD and for each C E C the

composite • TC TC is homotopic in V to

the identity map of TC. If Sand T are adjoint prefunc-

tors, then S*: HV HC and T*: HV HC are adjoint

functors, with adjunction =

We can now compare our various categories of spectra.

The following theorem implies that r is equivalent to S

for the purposes of homotopy theory in the sense that no homo-

topy invariant information is lost by restricting attention to

spectra and maps of spectra in I, and that nI is equivalent to

nS in this sense. Under restrictions on the types of spaces con-

sidered, it similarly compares R to nS. To state the

restrictions, let C denote the full subcategory of S whose

objects are those spectra {B.,f.} such that each B. is a
111

locally finite countable simplicial complex and each

11 (f;): SB. B. is simplicial. Observe that if W is
... 1 1+1

the full subcategory of S whose objects are those spectra B

such that each B. has the homotopy type of a countable
1

CW-complex, then every object of W is homotopy equivalent

(in S) to an object of C. In fact, if {B.,f.} E W, then
1 1

each B.
1

is homotopy equivalent to a locally finite simplicial



complex B!a

- 461 -

by [9, Theorem I}; if f !
a,

is the composite

f.
Bi Bi -4 determined by chosen homotopy

equivalences Bi E > Bi and if is a simplicial approxi-

mation to then {Bi,fi} is homotopy equivalent to

{Bi,fI} and therefore to {BI,fi} E C.

Theorem 4

There is a homotopy preserving prefunctor M: S I

such that

(i) There exists a natural equivalence of prefunc-

tors n: IS JM, with inverse JM IS' where

J: r S is the inclusion. Therefore J*M* is naturally

equivalent to the identity functor of HS.

(ii) MJ: I I is a functor, JMJB JB

is a map in I if B E I, and if r;;: MJ ---? II is defined

by r;;(B) = then r;; is a natural transformation of

functors.

(iii) nand r;; establish an adjoint prefunctor

relationship between J and M. Therefore

HomHI(M*A,B) is an adjunction, where

(f) = r;;* (B)M*f, f: A J*B, and (g) = J*g • n, (A),

g: M*A B.

(iv) By restriction, M induces a homotopy pre-

serving prefunctor which satisfies (i) through

(iii) with respect to the inclusion

(v) By restriction, M induces a homotopy
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preserving prefunctor QS n C ----+ R n C which satisfies (i)

through (iii) with respect to the inclusion R n C QS n c.

Proof. We first construct M and prove (i) and

(ii) simultaneously. Let B = {Bi,f i} E S. Define

MB = {MiB,Mif} E r by induction on i as follows. Let

MoB = Bo• Assume that MjB, j i, and Mjf, j < i, have been

constructed. Let no = 1 = and assume further that

nj: M'B and M·B Bj have been constructedJ J J
such that

(a) = 1: B. ----+ B. and QrII 1: M.B M.B
J J J J J J J J

(b) and Qn. • f. 1 .... M. fJ J- J-l • n. •J-l

the standard inclusion, and define

k.: SM.B M.+ 1B denote
1. 1. 1.

Mif = (ki ) : MiB -+ QMi+1B.

Define Mi+1B to be the mapping cylinder of the map

• SMiB Bi+ 1 , let

Clearly M.f
1.

is then an inclusion. Consider the diagram

SMiB -<
1. > SB.

Sn'
1.

1.

1" (f i )k.-" (M·f)11. 1.

I';i+l
Mi+1B <

) Bi+l
TJi+l

Here and are the inclusion and retraction ob-

tained by the standard properties of mapping cylinders, hence

(a) is satisfied for j = i + 1. It is standard that

• = and • Mif = fi';i follows by
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application of -1lJ • Now nn'+ l • f. - M.f • n· is ob-

tained by a simple chase of the diagram. This proves (b) for

j = i + 1 and thus constructs M on objects and constructs

maps n (B): B JMB and t;. (B): JMB ----;. B in S. If

B E 1, then c;.(JB) is a map in 1 by (b) and we can define

= t;.(JB): MJB B. We next construct M on maps. Let

g: B I be a map in S. Define Mag = go and assume

that M.g have been found for j i such that (with
J

n' = n (B ' ), etc.)

(c) = M.g. n.; c;.! • M.g - g.t;.. with equality if g E 1;
JJ J J J J JJ

(d) nM .g • M. f = M· f'. M. 1g •J J-l J-1 J-

Then, by (c) and the definition of maps in the categories S

and 1, fit;.iMig - figic;.i - ngi+1f it;.i: nBi+1, with

equalities if g E 1. Applying lJ, we see that there exists

from ]J (f ! ) S c;. ! SM . g to

gi+llJ(fi)St;.i' and we agree to choose

homotopy if g E 1. Write [x,t] and

h·a to be the constant

[y] for the images of

fio g[x,t]

(x,t) E SMiB x I and y E Bi+ 1
in the mapping cylinder

Mi+1B of ]J(fi)Sc;.i' and similarly for Mi+ 1B'. Define

Mi+lg: Mi+l B Mi+1B' by

= {[SMig(X) ,2t], 0 t 1/2

[hi(x,2t - 1)], 1/2 t 1.
(e)

It is trivial to verify that M g is well-defined and con-i+ 1

tinuous. Now consider the following diagram:
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): B I

i+l

Since ni+l (y) = [y], ni+l • gi+l = Mi+1g • ni+l is obvious,

and • Mi+1g - then follows from (a) and a

simple chase of the right-hand square. If the map g is in

I, then = is easily verified by explicit

computation since hi(x,t) = for all t.

This proves (c) for j = i + 1. To prove (d) for j = i + 1,

merely observe that the left-hand square clearly commutes,

since fl(Mif) (x) = [x,O], and apply -1u to this square. Of

course, (d) proves that Mg is a map in I, and (c) completes

the proof of (ii) of the theorem since MJ: I I is clearly

a functor. If i: Mi+1B Mi+1B 1 is any map whatever such

that ini+l - ni+1 gi+l ' then

M. g - n' M· g - n' g' _ on' _ °.(.. .(...

It follows that the homotopy class of Mi+1g is independent

of the choice of hi' and from this it follows easily that

M: S I is a prefunctor. M is homotopy preserving since

if g - g I: B B I in S, then

M M i l I I M I
i g - i g• niE:.i = - nigiE:.i = Mig • niE:.i - i g ,

i O. Now (i) of the theorem follows immediately from (a),

(b), and (c).

(iii) To prove (iii), we must show that the following
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two composites are homotopic to the identity map.

(f) JB n (JB) ) JMJB J z; (B) ) JB, B E I

(g) ME Mn(B) ) MJME Z;(MB) > ME, B E S.

By (a) and Z;(B) = the composite (f) is the identity

map. For (g), note that = 1 - JMB JMB.

By the uniqueness proof above for the homotopy class of Mi+1g

applied to the case g = we have - = Z;(MB).

Since - 1 by the fact that M is a prefunctor,

this proves that the composite (g) is homotopic to the iden-

tity.

(iv) Since nS and nI are full subcategories of

S and I, it suffices for (iv) to prove that MB E nI if

B EnS, and this follows from (a) and (b) which show that if

gj: nBj+1 Bj is a homotopy inverse to f j, then

nMj+1B MjB is a homotopy inverse to Mjf.

(v) Again, it suffices to show that MB ERn c
if B E nS n c. By induction on i, starting with MaB = B

and no = 1 = we see that each M.B
1.

is a locally finite

countable simplicial complex and that each map ni'

and .
1. is simplicial, since Mi+1B is the mapping cylinder

of the simplicial map SMiB Bi+l [10, p. 151).

By Hanner [5, Corollary 3.5), every countable locally finite

simplicial complex is an absolute neighborhood retract (ANR)

and, by Kuratowski [7, p. 284), the loop space of an ANR is

an ANR. Since the image of M.f
1.

is a closed subspace of the
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ANR nMi+1B, Mif has the homotopy extension property with

respect to the ANR MiB [6, p. 861, and therefore M·B is

a deformation retract of nMi+lB [10, p. 311. This proves

that ME ERn C, as was to be shown.

The category 1 is not only large and convenient.

It is also conceptually satisfactory in view of the following

observation relating maps in T to maps in 1. We can de-

fine a functor E: T 1 by letting EX be the suspension

spectrum of If

g: X Y is a map in T, define E.g = sig; it is clear

that Eg is in fact a map in 1. Let U = U1 : 1 T be

the forgetful functor, UB = Bo and Ug· go. Observe that

UE: T--+ T is the identity functor. With these notations,

we have the following proposition.

Proposition 5

U: Hom1(EX,B) HomT(X,UB) is an adjunction.

Proof.

inductively by

If B = {Bi,fi} E 1, define fi: Bo

fa = 1, fl = f ,and fi+l = nif .• fi ifa
i > O. Define a natural transformation EU It by

= {lli(fi)}: EUB B. Since nll i+ 1 (fi+l) • ll-l (lsi+l
B

)
a

= lli(fi+l) = lli(nif .• fi) = f.lli(f i), is a map in 1. For

g: X UB, define = Clearly = 110 (fO)Eog

= g. Now fi for EX is easily verified to be

ll-i(lsi
x>:

X nisix. Therefore = 1: EX; since
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we obviously have EU(lEX) = 1: = rx, this implies

that cpU = 1.

Finally, we compare L to the categories 1, nI, and

R. The following theorem shows that L is nicely related

conceptually to 1 and is equivalent for the purposes of weak

homotopy theory to nI in the sense that no weak homotopy in-

variant information is lost by restricting attention to spectra

and maps of spectra in L; coupled with the remarks preceding

Theorem 4, it also shows that L n W is equivalent to R n W

for the purposes of homotopy theory.

Theorem 6

There is a functor L: 1 L and a natural trans-

formation of functors n: 1
1

KL, where K: L 1 is the

inclusion, such that

(i) LK: L L is the identity functor and

L: HomI(A,KB) HomL(LA,B)

is an adjunction with L- 1 (g) = Kg • neAl for g: LA B.

(ii) If g - g' in 1, then Lg is weakly homotopic

to Lg' in L, and if B E nI, then n(B): B KLB is a

weak homotopy equivalence.

(iii) Let B ERn C; then n(B): B KLB is a homo-

topy equivalence and if g - g': B B' in I, then

Lg - Lg': LB LB' in L.

Proof. Since each f.a, is an

inclusion, we can define L.B = lim niB.+., where the limit is
J
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taken with respect to the inclusions
, ' '+1

nJf i+j: nJBi+ j nJ Bi+ j+1•

If g: B B' is a map

in 1, define L;g = lim njg,+,: L,B L.B' ; the limit makes
...

sense since njfi+jnjgi+j = nj+lgi+j+lnjfi +j by the definition

of maps in 1. Clearly nLi+1g = Lig, hence Lg E L. Define

n s 11 KL by letting n, (B): B, L,B be the natural in-

if j > o. Since ri+jfi+j = 1, we have

We can therefore define maps

elusion; n (B) is obviously a map in 1 since nn i+l (B) • f i

= ni(B). Now (ii) of the theorem is a standard consequence

of the definition of the limit topology. The fact that LK is

the identity functor of L is evident, and nK: K KLK and

Ln: L LKL are easily verified to be the identity natural

transformations. This implies (i) and it remains to prove (iii).

If B E R, with retractions ri: nBi+ 1
Bi' define maps

r i j. njB, inductively by riO = 1, r i 1 = r;, and. ...

ri,j+l = rijnjr,+,
J

ri,j+lnjf, , = r i j•

= lim r i j: L, B B,. Obviously B, B, is the

identity map. Suppose further that B E C. Then we claim

that - 1:: L,B L,B. As in the proof of (v) of Theorem

4, each njB '+' is now an ANR. Let us identify njB,+, with
J J

its image under njf '+' in j+l for all i and j
J n Bi + j+ 1

and omit the inclusion maps njf '+' from the notation. Then
J

the inclusion

j '+1 • j+ln Bi+ j x I U nJ Bi + j+1 x I c n Bi+ j+1 x I

is that of a closed subset in an ANR, and it therefore has the

homotopy extension property with respect to the ANR
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In particular, by [10, p. 311, each B, is a strong deforma-

tion retract of nBi+1, and we assume given homotopies

k , • nBi+1 x nBi+1, k . : 1 .... r, reI B, • The k,

homotopies: k , ,. j+1B '+1
n i+j+1 x nJ B, , ,

k , , • 1 .... njr,+, reI njB'+' , in the obvious fashionJ J

(k , t = njki+j,t) • We claim that, by induction on,

induce

j, we can

choose homotopies h i j: njB,+' x njB'+' ,
J J

h i j: 1 .... r i j reI B, , such that h i, j+1 = h .. on njB,+, x I.
J

To see this, let hio be the constant homotopy, let

hi! = ki = kio , and suppose given

sider the following diagram:

h, , for some j > O. Con-

-j+1B

Y
.. " i+j+l ", H. ,

l] ... ... ... ... ... ...
'+1 ' ...

(n J Bi+ j+1 xl) xO > (n J+1Bi+ j+1xl) xl

The unlabeled arrows are inclusions, and "'"h , . is defined by

hi]' (x, s, t) = h , , (x, st) if x E njB, +' ; and h" (y, 0, t) = Y ,a J
""'h ( ) = (j j+l. 'Iy,l,t h i j n ri+j(y) ,t) if yEn Bi+ j+1 • It y

verified that h" is well-defined and continuous and that

It is trivial to verify that

such that the diagram commutes.

,..,
h , = k , ,

fore obtain

on the common parts of their domains.

H, '+1

hi,j+l (x,s) = Hi,j+l (x,s,l).

We can there-

Define
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h, '+1 has the desired properties. Now

hij: LiB x I LiB is defined and is clearly a homotopy

from 1 to n, • Finally, if g .... gl: B B ' in r and

B ERn C, then

L.g .... = .... = .... L.g ' , i 0 •

This completes the proof of (iii) and of the theorem.

We remark that the categorical relationships of

Propositions 1 and 5 and of the theorem are closely related.

In fact, the composite functor LE: L is precisely

, and the adjunction

of Proposition 1 factors as the composite = U)

U-1 L
Homy(X,UKB) Homr(EX,KB)

The verification of these statements requires only a glance at

the definitions.

3 INFINITE LOOP SPACES

We shall here summarize the implications of the work

of the previous section for infinite loop spaces and give the

promised applications. We then make a few remarks about the

extension of our results to unbounded spectra and point out

an interesting collection of connective cohomology theories.

It is customary to say that X E T is an infinite

loop space if X is the initial space Bo of an Q-spectrum B.

If X is given as an H-space, it is required that its product



- 471 -

be homotopic to the product induced from the homotopy equi-

valence QB1 • Sbnilarly, a map f E T is said to be

an infinite loop map if f is the initial map go of a

map of n-spectra g. The functor M: QS nI of Theorem

4 satisfies Mel B = Bo and Ma g = go. We therefore see that

the identical infinite loop spaces and maps are obtained if

we restrict attention to inclusion Q-spectra and maps in I.

If f: X' is any infinite loop map, then Theorem 6

bnplies the existence of a commutative diagram of infinite

loop maps

X g .. y

£1 k (3.1)

,
x' g .. y'

such that f' is a perfect infinite loop map between perfect

infinite loop spaces and g and g' are weak homotopy equi-

valences.

If X is an infinite loop space of the homotopy

type of a countable CW-complex, then it follows from arguments

of Boardman and Vogt [1, p. 151 that there is an infinite loop

map g: X Y such that g is a homotopy equivalence and

Y is the initial space of a spectrum in QS n W. Combining

this fact with (v) of Theorem 4, the remarks preceding that

theorem, and (iii) of Theorem 6, we see that if f: X'

is any infinite loop map between spaces of the homotopy type

of countable CW-complexes, then there is a homotopy commutative
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diagram of infinite loop maps, of the form given in (1), such

that f' is a perfect infinite loop map and g and g' are

homotopy equivalences.

Therefore nothing is lost for the purposes of weak

homotopy theory if the notions of infinite loop spaces and

maps are replaced by those of perfect infinite loop spaces and

maps, and similarly for homotopy theory provided that we re­

strict attention to spaces of the homotopy type of countable

CW­comp1exes.

The promised comparison of stable and unstable homo­

topy groups of infinite loop spaces is now an easy consequence

of Proposition 1. In fact, if Y is an infinite loop space,

say Y = Bo where B EnS, then that proposition gives a map

<1>"" (LMB): O""LoMB LMB in L, and Theorem 6 gives a map

n (MB): MB LB in 1. Define maps

QY QLoMB LoMB Y

by a = Ono (MB), S = <1>"" 0 (LMB), and, y = no (ME) • y is clearly

a weak homotopy equivalence, and therefore so is a since

Q: T is easily verified to preserve weak homotopy equi­

valences. Since <1>"",o(LMB) • is the identity map of

LoMB, S* is an epimorphism on homotopy. If X E T, then

ITn(QX) = the nth stable homotopy group of X. There­

fore p(Y) = y­I S a : IT (OY) IT (Y) gives an epimorphism
* * * * *

IT*(Y). It is clear that if f: Y Y' is any

infinite loop map, then

p(Y') (Of)* = f*p(Y): ITn(Y') •
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It should be observed that the notions of infinite

loop spaces and maps are not very useful from a categorical

point of view since the composite of infinite loop maps need

not be an infinite loop map. In fact, given infinite loop maps

f: Y and g: Y Z, there need be no spectrum B with

BO = Y which is simultaneously the range of a map of spectra

giving f and the domain of a map of spectra giving g. One

can get around this by requiring infinite loop spaces to be

topological monoids and using a classifying space argument to

allow composition of maps, but this is awkward. These condi-

tions motivate the use of L in the definition of homology

in section 1.

The following application of our results, which will

be used in the computation of H*(BF), illustrates the technical

convenience of the category L. Let
,.., n n
F(n) = Homr(S ,S ) and

,.., ,..,
let F = F(n), where the limit is taken with respect to

suspension of maps S: F (n) F (n+l). F (n) and Fare

topological monoids under composition of maps. If X E T, de-

fine y: QnX x F(n) QnX by y(x,f) = • f),

. nonthat as , with Q X identified with HomT(S ,Q X), by the com-

posite

HomT(Sn,X) xP(n) composition) QnX•

This defines an operation of F(n) on QnX• Now let

B = {Bi,fi} E QS, and let gi: QB i+ 1
Bi be a homotopy in-

verse to f i• Define homotopy equivalences fn: Bo QnBn

and gn: Bo in the obvious inductive manner and define
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Observe that fails to define an operation of F(n)

since the associativity condition (xf)g = x(fg) is lost. Of

course, Yn coincides with Y on if BEL, and associ-

ativity is then retained. Now consider the following diagram:

,.., Y >- QnBx F(n)n n

fn+1xl

InnfnX1
F(n) Qn+l B

n+l
Bo x ) x F (n) Qn+lB g ) Bn+l n+l 0

11XS fn+lxl 1
1 XS ..

Bo x F (n) > Qn+l B x F (n+l)n+l

The left-hand triangle and square commute trivially. Clearly

Y is natural on n-fold loop maps, hence Qnfny = y(Qnf xl).

y(l x S) = y since

ll-n(lln(x)f) = ll-(n+l)ll(lln(x)f) = ll-(n+l) (lln+l (x) • Sf) •

is homotopic to B E R and the g. are

chosen retractions, then gn = gn+1Qnfn. Thus if B E R we

have Yn = Yn+] (1 x S) and we can define

y = Yn: Bo x Ba • Since the right-hand triangle is

not transformed naturally by maps in R, the map y iR not

natural on R. For BEL, the fls and g's are the identity

maps, and the diagram trivializes. Therefore, for each BEL,

we have an operation y: Bo x F Bo and if h: B B'

is a map in L, then ho (xf) = ho (x)f for x E Bo and f E F'.
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Stasheff [unpublished] has generalized work of Dold and

Lashof [2] to show that if a topological monoid M operates on a

space X, then there is a natural way to form an associated

quasifibration XXMEM BM to the classifying principal

quasifibration EM BM. As usual, let F c F consist

of the homotopy equivalences of spheres. By restriction, if

BEL and Y = Bo ' we have an operation of F on Y and we can

therefore form YXFEF. Of course, this construction is natural

on L.

Boardman and Vogt [1] have proven that the standard

inclusions U c 0 c PL c Top c F are all infinite loop maps

between infinite loop spaces with respect to the H-space struc-

tures given by Whitney sum (on F, this structure is weakly

homotopic to the composition product used above). We now know

that we can pass to L and obtain natural operations of F on

(spaces homotopy equivalent to) each of these sub H-spaces G of

F. The same is true for their classifying spaces BG. Observe

that the resulting operation of F on F is not equivalent to

its product. (In fact, if E Bo is the identity under the loop

product of nB 1 , where BEL, then = for all f E F
since composing any map with the trivial map gives the trivial

map.) It would be of interest to understand the geometric sig-

nificance of these operations by F on its various sub H-spaces

and of the spaces GXFEF and BGxFEF.

I shall show elsewhere that, with mod p coefficients,
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algebra over H (F) for BEL (and, a fortiori, for B E as);
*

where H*(B) = H*(Bo) as in section 1. H*(B) is also a Hopf

algebra over the opposite algebra of the Steenrod algebra and

over the Dyer-Lashof algebra; which is defined in terms of the

homology operations introduced by Dyer and Lashof in [3]. These

operations are all natural on L. The appropriate range cate-

gory for H*: L is determined by specifying how these

three types of homology operations commute, and, coupled with

known information; these commutation formulas are all that is

required to compute H*(BF).

Finally; we observe that there is a natural way to

extend our results of section 2 to unbounded spectra. Let

denote the category whose objects are sequences {B. ,f. [L E Z}
J. J.

f· " aBi+l is the identity map for i < o. The maps inJ." J.

S- are sequences g = {gi [L E Z} such that {gili o} E S

and g. = ngi+l if i < o. We have an obvious completion func-
J.

tor C: S defined on objects by C.B = B. if i 0 and
J. J.

C·B = n-iB if i < 0, with C.f = f. for i 0 and C·f = 1
J. a J. J. J.

for i < 0, and defined similarly on maps. C is an isomorphism

of categories with inverse the evident forgetful functor S S.

For each of our previously defined subcategories V of S define

V to be the image of V under C in S. r is of particular

interest. Its objects and maps are sequences {Bili E Z} and

{gili E Z} such that Bi = nBi+ 1
for all i and gi = ngi+ 1

for
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all i. Clearly all of the results of section 2 remain valid for

the completed categories.

Our results show that any reasonable cohomology theory,

by which we mean any cohomology theory determined by a spectrum

B E ns n liJ; is isomorphic to a cohomology theory determined by a

spectrum in T n liJ and that any transformation of such theories

determined by a map g: B B' in nS n liJ is naturally equi-

valent to a transformation determined by a map in T n W. Recall

that

=

defines the cohomology theory determined by B E ns on CN pairs

(X,A). Call such a theory connective if Hn(P;B) = ° for n> 0,

where P is a point. Of course, H-n(P;B) = TI o (nnBo) = TIn(BO) .

Any infinite loop space Y determines a connective (additive)

cohomology theory since, by a classifying space argument, we can

obtain CB E ns such that Bo is homotopy equivalent to Y and

TIo(Bn) = ° for n> 0; according to Boardman and Vogt [1], any

such cohomology theory is so obtainable and determines Y up to

homotopy equivalence of infinite loop spaces. If X E T, then

determines a connective cohomology theory; since

= QSnx for n > 0, and = TIn (QX) = if

n 0. In view of Proposition 1, these theories playa privileged

role among all connective cohomology theories, and an analysis of

their properties might prove to be of interest. Observe that if

BEL, then CQ.,.,B o CB determines a natural transforma-
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tion of cohomology theories H*(X;A;CB) and;

if the theory determined by CB is connective, this transformatlon

is epimorphic on the cohomology of a point.
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*HOMOLOGY OF SQUARES AND FACTORING OF DIAGRAMS

Paul Olum

1. Introduction

Our purpose here is to present some technique in the study of

mappings of spaces which seems to have a number of useful applica-

tions and which should generalize to other categories than the

topological. We shall illustrate the use of the method by apply-

ing it to derive some well-known results in §4 below; more

extensive applications will appear in a later work.

Let us look at the diagram (of solid

where commutativity holds everywhere. We want to know under what

circumstances there will exist a map h: X Y, shown by the dotted

arrow, such that the diagram with h present will continue to be

commutative or, at least, as nearly so as possible. Such a map

h will be said to "factor" diagram (1.1).

In a systematic treatment' of this problem we would first give

a precise definition of what require of this h in order that

it be a factorization. We would then develop an obstruction theory

for the existence of h and study the properties of these obstruc-

tions. We will not do this here, however, but will defer the

systematic account and all proofs to a later work.

What we shall do in the present discussion is give the princi-

pal consequences of the definition of a factorization and indicate
*A portion of this work was done under NSF grant GP-7905.
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the groups in which the obstructions lie as well as their (cus­

tomary) main properties. For the applications we have presently

in mind this is all that will be needed.

2. Some properties of a factorization

All of the spaces in diagram (1.1) are taken to be path­

connected and to have a base point *; all mappings and homotopies

are to preserve base points. Apart from this we make only the

following assumptions:

(2 .Ta ) Each of A', A, X·', X has the homotopy type of a

CW­complex and the base points are non­degenerate.

(2.1b) Either : or Wl# :

is onto.

By way of notation, a homotopy r : X x I Y will be called

"reI al" or "reI if r(alxl) or is stationary. Given two

homotopies r l, r 2 : X x I Y with rl(x,l) = r 2(x,o), we write

r l­r2 for the homotopy which results from r l followed by r 2. We

adopt also the following convention:

(2.2) A homotopy of homotopies, e.g., r l r 2 will always

be assumed to be proper, that is, to be stationary on Xx0 U XxI.

As indicated in §l, we will not give the definition of a

factorization here, but the following two theorems contain its

main properties:

Theorem 2.3 A factorization of (1.1) gives rise in a canon­

ical way to a mapping h : X 7 Y and four homotopies

(2.4)
AI: f o hal A2: go hCPI

r 2: gl Woh

such that in the diagram
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all mapping squares are properly homotopy commutative (in the

sense of (2.2)). (We shall say the factorization

8: rrl(X) rrl(Y) if h induces this 8.)

For the next theorem, "fibration"means regular Hurewicz fi-

bration, that is, the homotopy lifting property for any space,

with the lifted homotopy stationary wherever the original one is.

IT the spaces A', A, X', X are CW-complexes and the maps, ao' al,

are cellular, then fibration may be taken to mean weak

(or "Serre") fibration.

Theorem 2.6 For each of the conditions listed below, if (1.1)

can be factored then the factorization can be so chosen as to make

the accompanying properties hold in addition to those given in

Theorem 2.3. For any combination of the conditions this can be

done so that the corresponding properties hold simultaneously:

(a) a l cofibration: f o = hal and 11.1 is stationary; rland

r 2 are reI a l and the is reI (alXl)

(b) ao and a l cot'Lbr-at.Lonar 11. 2 is reI ao
(c) f30 fibration: f l = f30h and r l is stationary; 11. 1 and 11. 2

are reI f30 and the homotopy 1I. 2(aoXl) is reI f30
(d) f30 and fibrations: r 2 is reI f3 1 .

Remark 2.7 We can replace ao' ap f o in (a) and (b) above

by this is clear from the symmetry of the diagram;

similarly for *Q' WI' gl instead of f30' f l in (c) and (d).
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But we can not add these to the theorem since, for example, if

a l and are both cofibrations it need not be true that f o = hal

and go = for the same h.

Remark 2.8 There is, as one would expect, an appropriate

notion of the homotopy of two factorizations of (1.1), and ana­

logues of Theorems 2.3 and 2.6 for this notion. We shall omit

this here; it will be found in the later account promised in the

introduction.

3. Cohomology and homotopy of squares; obstructions

Let 81 denote the mapping square ao' al' and 82 the

mapping square Vo' Vl. As a setting for our obstructions

we shall need the cohomology groups Hk(81; G)(where G is a coef­

ficient group) and the homotopy groups For our purposes

the most important property of these groups is that there are

exact sequences (we omit coefficients):

and the same with ao' a l replaced by and replaced

by Vo ' Vl .

Definitions of these groups and proofs of exactness for (3.1)

and (3.2) are due to Eckmann­Hilton; see [2,Chap.9].

It is easy to see that the homotopy groups Kk ( 82
) are local

groups at the base point in Y (Le., operates on and

any homomorphism e: TIl(Y) induces as a local group

in X and hence in the square 8
1;

we denote this induced local group

*in 81 by e As indicated in §l, we shall omit the defi­

nition of the obstructions, but the following theorem gives all
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the information we need about them here:

Theorem 3.3 For n >3, the n-th obstruction to a factoriz-

ation of (1.1) inducing a given e: 7Tl(X) 7Tl(Y) is a subset

(possibly void) of Hn(Sl; e*7Tn+l(S2))' It has the following

properties:

(i) O if and only if is non-void

(ii) Suppose Hn(Sl; e*7Tn+l(S2)) = 0 for all sufficiently large

n. Then there is a factorization of (1.1) inducing e if and only

if for all n >3.

To complement this theorem we need conditions which will

imply is not void. Proposition 3.5 below gives some

sufficient conditions which are adequate for our present needs.

We require some notation for this. Let J (a ,cp ) be the freeo 0

trl (X' )*7Tl (A) modulo the normal subgroup N generated by
. 1

the set (ao(a)cpo(a- ) I aE7Tl(A')}, Le., the "reduced" free

product. The maps CPl' a l together clearly define a homomorphism

Then we have

Proposition 3,5 Suppose that either (a) or (b) holds for

diagram (1.1):

(a) (CP1,al)* in (3.4) is an isomorphism; CPl*(7T2(X')) and

al*(7T2(A')) together generate 7T2(X).

(b) 7Tl(B) is an epimorphism;

is an isomorphism for i = 2 and an epimorphism for i = 3. (Re-

call also 2. lb.)

Then there is a unique e: 7Tl(X) 7Tl(Y) for is
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non-void.

Remark 3.6 For the homotopy problem (see Remark 2.8) the

obstructions lie in the groups Hn(Sl; and there are

obvious analogues of Theorem 3.3 and Proposition 3.5.

4. Examples

We give three examples to illustrate the application of the

material above.

1) Our first example is a theorem of James. For this we

recall that a loop is a "non-associative group", that is, a set

M with.multiplica.tion and a two-sided identity, and such that the

equations

xa = b, ay = b a, b in M

admit one and only one pair of solutions x, y in M. The follow-

ing is Theorem 1.1 of [4].

Theorem 4.1 Let X have the homotopy type of a CW-complex

and let Y be a connected H-space. Then the homotopy classes of

maps of X into Y form a loop with mUltiplication inherited from Y.

Proof. The diagram is the following special case of (1.1):

(4.2)
* ----I

!
where f and g are given maps, is the multiplication in Y and PI

is projection on the first factor. It is clear that what has

to be proved is the existence of a factorization h of this dia-

gram, unique up to homotopy, and the same for (4.2) with PI re-

placed by projection P2 on the second factor.
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Obviously IJ induces an Lsomo.rph.l am tt (Pl) 7r (p) for all q
q q

and therefore (by (3.2)) 7rq (S2 ) = 0 for all q; similarly for P2'

The existence of the factorization now follows from Proposition

3.5 and Theorem 3.3. The uniqueness follows similarly from the

analogous results for the homotopy of two factorizations; see

Remarks 2.8 and 3.6 above.

The other theorems of [4, §4] follow in the same way from

similar diagrams.

2) Our second example is a result of Hilton [3]. We con-

sider maps of path-connected spaces:

where each of F,E, X has the homotopy type of a CW-complex, i is

a cofibration and pi = *; here * is a non-degenerate base point

in X. Let W be a l-connected space and suppose there is given a map

f: (E"F) -+ (W,*).

Denote by

* n+i ( () ) n-i-L ( ( ))Pi : H X; 7rn W -+ H E,F; 7rn W

the cohomology homomorphisms induced by p. The following then

contains the main theorem in Hilton [3,p.77]:

* *Theorem 4.4 (a) Suppose Po is an epimorphism and Pl a mono-

mpDphism for all n) 2. Then there is an h: X -+ Vi such that

hp f rel F.

* *(b) Suppose P-l is an epimorphism and Po a mono-

morphism for all n ) 2. Suppose h, h': X -+ W satisfy hp h 'p rel F.

Then h h'.

(An immediate consequence of (a) here is a well-known result
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proved by several authors (Ganea, Hilton, Meyer, Nomura) to the

effect that if (4.3) is a fibration with X (m l)-connected

(m >2) and with the homotopy groups of F = OW zero outside a

band of width m - 1, then the fibration is equivalent to one

induced by a map h: X W; see [3, p. 81].)

Proof. The diagram for 4.4 (a) is the following special case

of (1.1).

(4·5)

By Prop. 3.S(b), since W is l-connected, is non-void, where

e : vl(X) vl(W) is necessarily trivial. The vanishing of all

obstructions follows at once then from Theorem 3.3, the hypotheses

of (a) above and the exact sequences (3.1) and (3.2), so that

diagram (4.5) has a factorization h. By Theorems 2.3 and 2.6

(since i is a cofibration), hp f rel F.

Part (b) follows in corresponding fashion from the analogous

results for the homotopy of two factorizations; see Remarks 2.8

and 3.6 above.

The other theorems in [3] follow similarly from appropriate

specializations of diagram (1.1).

3) Finally, we look at a theorem of Dold [1] on fiber homotopy

equivalences:

Theorem 4.6 Let a be a map of one regular Hurewicz fibra-

tion into another over the same tlase
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F alF
) F I

il 1i '

(4.7) y a ) y'

1f3'
1B ) B

We suppose all spaces path-connected and also that Y and Y' have

the homotopy-type of CW-complexes. If alF : F F' induces iso-

morphisms Wj(F) Wj(F ') for all j, then a is a fiber homotopy

equivalence.

Proof. The diagram is now

* ) y 1 )y a )y I

(4.8) 1 1f3'

* )B
{31 1

Since we may identify wj +l ( f3 ) = wj(F), wj +l ( f3 I ) = wj(F'), a in-

duces isomorphisms wj (f3 ) Wj ( f3 I ) far all j, and therefore (by

(3.2)) all homotopy groups of right hand square vanish. The

existence of the factorization a' as shown by the dotted line

exists then by Prop. 3.5(b) and Theorem 3.3.

By (c) and (d) of Theorem 8.6, a' may be so chosen that

f3a ' = f3', a'a 1 reI f3 and aa' 1 reI f3'. This is precisely

the assertion of the theorem.

Remark 4.9 If Y and Y' are CW-complexes and a is cellular

then by the same argument (see the remarks preceding Theorem 2.6)

it is enough to suppose that f3 and f3' are weak fibrations here.
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