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A CANONICAL LIFT OF FROBENIUS IN MORAVA E-THEORY

NATHANIEL STAPLETON

Abstract. We prove that the pth Hecke operator on the Morava E-cohomology of a
space is congruent to the Frobenius mod p. This is a generalization of the fact that the
pth Adams operation on the complex K-theory of a space is congruent to the Frobenius
mod p. The proof implies that the pth Hecke operator may be used to test Rezk’s
congruence criterion.

1. Introduction

The pth Adams operation on the complex K-theory of a space is congruent to the Frobe-
nius mod p. This fact plays a role in Adams and Atiyah’s proof [AA66] of the Hopf invariant
one problem. It also implies the existence of a canonical operation θ on K0(X) satisfying

ψp(x) = xp + pθ(x),

when K0(X) is torsion-free. This extra structure was used by Bousfield [Bou96] to de-
termine the λ-ring structure of the K-theory of an infinite loop space. There are several
generalizations of the pth Adams operation in complex K-theory to Morava E-theory: the
pth additive power operation, the pth Adams operation, and the pth Hecke operator. In
this note, we show that the pth Hecke operator is a lift of Frobenius.

In [Rez09], Rezk studies the relationship between two algebraic structures related to
power operations in Morava E-theory. One structure is a monad T on the category of E0-
modules that is closely related to the free E∞-algebra functor. The other structure is a form
of the Dyer-Lashof algebra for E, called Γ. Given a Γ-algebra R, each element σ ∈ Γ gives
rise to a linear endomorphism Qσ of R. He proves that a Γ-algebra R admits the structure
of an algebra over the monad T if and only if there exists an element σ ∈ Γ (over a certain
element σ̄ ∈ Γ/p) such that Qσ is a lift of Frobenius in the following sense:

Qσ(r) ≡ rp mod pR

for all r ∈ R.
We will show that Qσ may be taken to be the pth Hecke operator Tp as defined by Ando

in [And95, Section 3.6]. We prove this by producing a canonical element σcan ∈ Γ lifting
the Frobenius class σ̄ ∈ Γ/p [Rez09, Section 10.3] such that Qσcan

= Tp. This provides us
with extra algebraic structure on torsion-free algebras over the monad T in the form of a
canonical operation θ satisfying

Tp(r) = rp + pθ(r).

Let GE0
be the formal group associated to E, a Morava E-theory spectrum. The Frobe-

nius φ on E0/p induces the relative Frobenius isogeny

GE0/p −→ φ∗GE0/p
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over E0/p. The kernel of this isogeny is a subgroup scheme of order p. By a theorem of
Strickland, this corresponds to an E0-algebra map

σ̄ : E0(BΣp)/I −→ E0/p,

where I is the image of the transfer from the trivial group to Σp. This map further cor-
responds to an element in the mod p Dyer-Lashof algebra Γ/p. Rezk considers the set of
E0-module maps [σ̄] ⊂ hom(E0(BΣp)/I, E0) lifting σ̄.

Proposition 1.1. There is a canonical choice of lift σcan ∈ [σ̄].

The construction of σcan is an application of the formula for the K(n)-local transfer
(induction) along the surjection from Σp to the trivial group [Gan06, Section 7.3].

Let X be a space and let

Pp/I : E
0(X) −→ E0(BΣp)/I ⊗E0

E0(X)

be the pth additive power operation. The endomorphism Qσcan
of E0(X) is the composite

of Pp/I with σcan ⊗ 1.

Proposition 1.2. For any space X , the following operations on E0(X) are equal:

Qσcan
= (σcan ⊗ 1)(Pp/I) = Tp.

This has the following immediate consequence:

Corollary 1.3. Let X be a space such that E0(X) is torsion-free. There exists a canonical
operation

θ : E0(X) −→ E0(X)

such that, for all x ∈ E0(X),

Tp(x) = xp + pθ(x).

Acknowledgements It is a pleasure to thank Tobias Barthel, Charles Rezk, Tomer Schlank,
and Mahmoud Zeinalian for helpful discussions and to thank the Max Planck Institute for
Mathematics for its hospitality.

2. Tools

Let E be a height n Morava E-theory spectrum at the prime p. We will make use of
several tools that let us access E-cohomology. We summarize them in this section.

For the remainder of this paper, let E(X) = E0(X) for any space X . We will also write
E for the coefficients E0 unless we state otherwise.

Character theory Hopkins, Kuhn, and Ravenel introduce character theory for E(BG)
in [HKR00]. They construct the rationalized Drinfeld ring C0 and introduce a ring of
generalized class functions taking values in C0:

Cln(G,C0) = {C0-valued functions on conjugacy classes of map from Zn
p to G}.

They construct a map

E(BG) −→ Cln(G,C0)

and show that it induces an isomorphism after the domain has been base-changed to C0

[HKR00, Theorem C]. When n = 1, this is a p-adic version of the classical character map
from representation theory.

Good groups A finite group G is good if the character map

E(BG) −→ Cln(G,C0)
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is injective. Hopkins, Kuhn, and Ravenel show that Σpk is good for all k [HKR00, Theorem
7.3].

Transfer maps It follows from a result of Greenlees and Sadofsky [GS96] that there are
transfer maps in E-cohomology along all maps of finite groups. In [Gan06, Section 7.3],
Ganter studies the case of the transfer from G to the trivial group and shows that there is
a simple formula for the transfer on the level of class functions. Let

TrC0
: Cln(G,C0) −→ C0

be given by the formula f 7→ 1
|G|

∑

[α] f([α]), where the sum runs over conjugacy classes of

maps α : Zn
p → G. Ganter shows that there is a commutative diagram

E(BG)
TrE //

��

E

��
Cln(G)

TrC0 // C0,

in which the vertical maps are the character map.
Subgroups of formal groups Let GE = Spf(E(BS1)) be the formal group associated to

the spectrum E. In [Str98], Strickland produces a canonical isomorphism

Spf(E(BΣpk )/I) ∼= Subpk(GE),

where I is the image of the transfer along Σ×p
pk−1 ⊂ Σpk and Subpk(GE) is the scheme that

classifies subgroup schemes of order pk in GE. We will only need the case k = 1.
The Frobenius class The relative Frobenius is a degree p isogeny of formal groups

GE/p −→ φ∗GE/p,

where φ : E/p→ E/p is the Frobenius. The kernel of the map is a subgroup scheme of order
p. Using Strickland’s result, there is a canonical map of E-algebras

σ̄ : E(BΣp)/I −→ E/p

picking out the kernel. In [Rez09, Section 10.3], Rezk describes this map in terms of a
coordinate and considers the set of E-module maps [σ̄] ⊂ hom(E(BΣp), E) that lift σ̄.

Power operations In [GH04], Goerss, Hopkins, and Miller prove that the spectrum E
admits the structure of an E∞-ring spectrum in an essentially unique way. This implies a
theory of power operations. These are natural multiplicative non-additive maps

Pm : E(X) −→ E(BΣm)⊗E E(X)

for all m > 0. For m = pk, they can be simplified to obtain interesting ring maps by further
passing to the quotient

Ppk/I : E(X) −→ E(BΣpk )⊗E E(X) −→ E(BΣpk)/I ⊗E E(X),

where I is the transfer ideal that appeared above.
Hecke operators In [And95, Section 3.6], Ando produces operations

Tpk : E(X) −→ E(X)

by combining the structure of power operations, Strickland’s result, and ideas from character
theory. Let T = (Qp/Zp)

n, let H ⊂ T be a finite subgroup, and let D∞ be the Drinfeld ring
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at infinite level so that Spf(D∞) = Level(T,GE) and Q ⊗ D∞ = C0. Ando constructs an
Adams operation depending on H as the composite

ψH : E(X)
Pp/I
−→ E(BΣp)/I ⊗E E(X)

H⊗1
−→ D∞ ⊗E E(X).

He then defines the pkth Hecke operator

Tpk =
∑

H⊂T

|H|=pk

ψH

and shows that this lands in E(X).

3. A canonical representative of the Frobenius class

We construct a canonical representative of the set [σ̄]. The construction is an elementary
application of several of the tools presented in the previous section.

We specialize the transfers of the previous section to G = Σp. Let

TrE : E(BΣp) −→ E

be the transfer from Σp to the trivial group and let

TrC0
: Cln(Σp, C0) −→ C0

be the transfer in class functions from Σp to the trivial group. This is given by the formula

TrC0
(f) =

1

p!

∑

[α]

f([α]).

Recall that T = (Qp/Zp)
n and let Subp(T) be the set of subgroups of order p in T.

Lemma 3.1. [Mar, Section 4.3.6] The restriction map along Z/p ⊆ Σp induces an isomor-
phism

E(BΣp)
∼=
−→ E(BZ/p)Aut(Z/p).

After a choice of coordinate x,

E(BΣp) ∼= E[y]/(yf(y)),

where the degree of f(y) is

| Subp(T)| =
pn − 1

p− 1
=

n−1
∑

i=0

pi,

f(0) = p, and y maps to xp−1 in E(BZ/p) ∼= E[[x]]/[p](x).

Lemma 3.2. [Qui71, Proposition 4.2] After choosing a coordinate, there is an isomorphism

E(BΣp)/I ∼= E[y]/(f(y)),

and the ring is free of rank | Subp(T)| as an E-module.

After choosing a coordinate, the restriction map E(BΣp) → E sends y to 0 and the map

E(BΣp) → E(BΣp)/I

is the quotient by the ideal generated by f(y).

Lemma 3.3. The index of the E-module E(BΣp) inside E × E(BΣp)/I is p.
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Proof. This can be seen using the coordinate. There is a basis of E(BΣp) given by the set
{1, y, . . . , ym}, where m = | Subp(T)|, and a basis of E × E(BΣp)/I given by

{(1, 0), (0, 1), (0, y), . . . , (0, ym−1)}.

By Lemma 3.1, the image of the elements {1, y, . . . , ym−1, p− f(y)} in E(BΣp) is the set

{(1, 1), (0, y), . . . , (0, ym−1), (0, p)}

in E × E(BΣp)/I. The image of ym is in the span of these elements and the submodule
generated by these elements has index p. �

Lemma 3.4. [Rez09, Section 10.3] In terms of a coordinate, the Frobenius class

σ̄ : E(BΣp)/I −→ E/p

is the quotient by the ideal (y).

Now we modify TrC0
to construct a map

σcan : E(BΣp)/I −→ E.

By Ganter’s result [Gan06, Section 7.3] and the fact that Σp is good, the restriction of TrC0

to E(BΣp) is equal to TrE . It makes sense to restrict TrC0
to

E × E(BΣp)/I ⊂ Cln(Σp, C0).

Lemma 3.3 implies that this lands in 1
pE. Thus we see that the target of the map

p! TrC0

∣

∣

E×E(BΣp)/I

can be taken to be E. We may further restrict this map to the subring E(BΣp)/I to get

p! TrC0

∣

∣

E(BΣp)/I
: E(BΣp)/I −→ E.

From the formula for TrC0
, for e ∈ E ⊂ E(BΣp)/I, we have

p! TrC0

∣

∣

E(BΣp)/I
(e) = | Subp(T)|e.

Note that | Subp(T)| is congruent to 1 mod p (and therefore a p-adic unit). We set

σcan = p! TrC0

∣

∣

E(BΣp)/I
.

Remark 3.5. One may also normalize σcan by dividing by | Subp(T)| so that e is sent to e.

We now show that σcan fits in the diagram

E

��
E(BΣp)/I σ̄

//

σcan

99
s
s
s
s
s
s
s
s
s
s
s

E/p,

where σ̄ picks out the kernel of the relative Frobenius.

Proposition 3.6. The map

σcan : E(BΣp)/I −→ E

is a representative of Rezk’s Frobenius class.
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Proof. We may be explicit. Choose a coordinate so that the quotient map

q : E(BΣp) −→ E(BΣp)/I

is given by

q : E[y]/(yf(y)) −→ E[y]/(f(y)).

We must show that

E(BΣp)/I
σcan // E

mod p
// E/p

is the quotient by the ideal (y) ⊂ E(BΣp)/I.
There is a basis of E(BΣp) (as an E-module) given by {1, y, . . . , ym}, where m =

| Subp(T)|. We will be careful to refer to the image of yi in E(BΣp)/I as q(yi). For
the basis elements of the form yi, where i 6= 0, the restriction map E(BΣp) → E sends yi

to 0. Thus

TrE(y
i) = TrC0

∣

∣

E(BΣp)/I
(q(yi)) ∈ E.

Now the definition of σcan implies that σcan(q(y
i)) is divisible by p. So

σcan(q(y
i)) ≡ 0 mod p.

It is left to show that, for e in the image of E → E(BΣp)/I,

σcan(e) ≡ e mod p.

We have already seen that

p! TrC0

∣

∣

E(BΣp)/I
(e) = | Subp(T)|e.

The result follows from the fact that | Subp(T)| ≡ 1 mod p. �

4. The Hecke operator congruence

We show that the pth additive power operation composed with σcan is the pth Hecke
operator. This implies that the Hecke operator satisfies a certain congruence.

The two maps in question are the composite

E(X)
Pp/I

// E(BΣp)/I ⊗E E(X)
σcan⊗1

// E(X)

and the Hecke operator Tp described in Section 2.

Proposition 4.1. The pth additive power operation composed with the canonical repre-
sentative of the Frobenius class is equal to the pth Hecke operator:

(σcan ⊗ 1)(Pp/I) = Tp.

Proof. This follows in a straight-forward way from the definitions. Unwrapping the defini-
tion of the character map, the map σcan is the sum of a collection of maps

E(BΣp)/I −→ C0,

one for each subgroup of order p in T. These are the maps induced by the canonical
isomorphism

C0 ⊗ Subp(GE) ∼= Subp(T).

In other words, they classify the subgroups of order p in T. �
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Since σcan ∈ [σ̄], the following diagram commutes

E(X)
Pp

// E(BΣp)⊗E E(X) //

Res⊗1

��

E(BΣp)/I ⊗E E(X)

σ̄⊗1

��

σcan⊗1
// E(X)

vv♥♥♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥

E(X) // E(X)/p

and this implies that
(σcan ⊗ 1)(Pp/I)(x) ≡ xp mod p.

Corollary 4.2. For x ∈ E(X), there is a congruence

Tp(x) ≡ xp mod p.

Let X be a space with the property that E(X) is torsion-free. The corollary above implies
the existence of a canonical function

θ : E(X) −→ E(X)

such that
Tp(x) = xp + pθ(x).

Example 4.3. When n = 1, GE is a height 1 formal group,

E(BΣp)/I

is a rank one E-module, and σcan is an E-algebra isomorphism. The composite

E(X)
Pp/I

// E(BΣp)/I ⊗E E(X)
σcan⊗1

// E(X)

is the pth unstable Adams operation. In this situation, the function θ is understood by work
of Bousfield [Bou96].

Example 4.4. At arbitrary height, we may consider the effect of Tp on z ∈ Zp ⊂ E. Since
Tp is a sum of ring maps

Tp(z) = | Subp(T)|z.

This is congruent to zp mod p.

Example 4.5. At height 2 and the prime 2, Rezk constructed an E-theory associated to a
certain elliptic curve [Rez]. He calculated P2/I, when X = ∗. He found that, after choosing
a particular coordinate x,

E(BΣ2)/I ∼= Z2[[u1]][x]/(x
3 − u1x− 2)

and
P2/I : Z2[[u1]] −→ Z2[[u1]][x]/(x

3 − u1x− 2)

sends u1 7→ u21 + 3x − u1x
2. In [Dri74, Section 4B], Drinfeld explains how to compute the

ring that corepresents Z/2× Z/2-level structures. Note that in the ring

Z2[[u1]][y, z]/(y
3 − u1y − 2),

y is a root of z3 − u1z − 2 and

z3 − u1z − 2

z − y
= z2 + yz + y2 − u1.

Drinfeld’s construction gives

D1 = ΓLevel(Z/2× Z/2,GE) ∼= Z2[[u1]][y, z]/(y
3 − u1y − 2, z2 + yz + y2 − u1).
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The point of this construction is that x3 − u1x − 2 factors into linear terms over this ring.
In fact,

x3 − u1x− 2 = (x− y)(x− z)(x+ y + z).

The three maps E(BΣ2)/I → D1 ⊂ C0 that show up in the character map are given by
sending x to these roots. A calculation shows that

σcan(x) = 0

and that
Tp(u1) = (σcan ⊗ 1)(P2/I)(u1) = u21.
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