NOTES ON
COBORDISM THEORY

BY
ROBERT E. STONG

PRINCETON UNIVERSITY PRESS
AND THE
UNIVERSITY OF TOKYO PRESS

PRINCETON, NEW JERSEY
1968
Preface

These notes represent the outgrowth of an offer by Princeton University to let me teach a graduate level course in cobordism theory. Despite the fact that cobordism notions appear in the earliest literature of algebraic topology, it has only been since the work of Thom in 1954 that more than isolated results have been available. Since that time the growth of this area has been phenomenal, but has largely taken the form of individual research papers. To a certain extent, the nature of cobordism as a classificational tool has led to the study of many individual applications rather than the development of a central theory. In particular, there is no complete exposition of the fundamental results of cobordism theory, and it is hoped that these notes may help to fill this gap.

Being intended for graduate and research level work, no attempt is made here to use only elementary ideas. In particular, it is assumed that the reader knows algebraic topology fairly thoroughly, with cobordism being treated here as an application of topology. In many cases this is not the fashion in which development took place, for ideas from cobordism have frequently led to new methods in topology itself.

An attempt has been made to provide references to the sources of most of the ideas used. Although the main ideas of these sources are followed closely, the details have frequently been modified considerably. Thus the reader may find it helpful to refer to the original papers to find other methods which are useful. For example, the Adams spectral sequence gives a powerful computational tool which has been used in determining some theories and which facilitates low dimensional calculations, but is never used here. Many of the ideas which appear are of the "well known to workers in the field - but totally unavailable" type and a few ideas are my own.
The pattern of exposition follows my own prejudices, and may be roughly described as follows. There are three central ideas in cobordism theory:

1) Definition of the cobordism groups,
2) Reduction to a homotopy problem, and
3) Establishing cobordism invariants.

This material is covered in the first three chapters. Beyond that point, one must become involved with the peculiarities of the individual cobordism problem. This is begun in the fourth chapter with a survey of the literature, followed by detailed discussion of specific cobordism theories in the later chapters. Finally, two appendices covering advanced calculus and differential topology are added, this material being central to the 'reduction to a homotopy problem', but being of such a nature as to overly delay any attempt to get rapidly to the ideas of cobordism.

I am indebted to many people for leading me to this work and developing my ideas in this direction. Especially, I am indebted to Greg Brumfiel, Peter Landweber, and Larry Smith for numerous suggestions in preparing these notes, and to Mrs. Barbara Duld for typing. I am indebted to Princeton University and the National Science Foundation for financial support. Finally, I am indebted to my wife for putting up with the foul moods I developed during this work.
<table>
<thead>
<tr>
<th>Chapter I.</th>
<th>Introduction-Cobordism Categories</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter II.</td>
<td>Manifolds With Structure-The Pontrjagin-Thom Theorem</td>
<td>14</td>
</tr>
<tr>
<td>Chapter III.</td>
<td>Characteristic Classes and Numbers</td>
<td>27</td>
</tr>
<tr>
<td>Chapter IV.</td>
<td>The Interesting Examples-A Survey of the Literature</td>
<td>40</td>
</tr>
<tr>
<td>Chapter V.</td>
<td>Cohomology of Classifying Spaces</td>
<td>59</td>
</tr>
<tr>
<td>Chapter VI.</td>
<td>Unoriented Cobordism</td>
<td>90</td>
</tr>
<tr>
<td>Chapter VII.</td>
<td>Complex Cobordism</td>
<td>110</td>
</tr>
<tr>
<td>Chapter VIII.</td>
<td>σ_1 - Restricted Cobordism</td>
<td>147</td>
</tr>
<tr>
<td>Chapter IX.</td>
<td>Oriented Cobordism</td>
<td>176</td>
</tr>
<tr>
<td>Chapter X.</td>
<td>Special Unitary Cobordism</td>
<td>237</td>
</tr>
<tr>
<td>Chapter XI.</td>
<td>Spin, Spinc and Similar Nonsense</td>
<td>283</td>
</tr>
</tbody>
</table>

Appendix I. Advanced Calculus

Appendix II. Differentiable Manifolds

Bibliography
CHAPTER I

Introduction - Cobordism Categories

In order to place the general notion of cobordism theory in mathematical perspective recall that differential topology is the study of the category of differentiable manifolds and differentiable maps, primarily in relation to the category of topological spaces and continuous maps. From a slightly less theoretical point of view, it is the study of differentiable manifolds by topologists using any methods they can find. The guiding principle is that one does not study imposed structures such as Riemannian metrics or connections and this distinguishes differential topology from differential geometry.

As in any subject, the primary problem is classification of the objects within isomorphism and determination of effective and computable invariants to distinguish the isomorphism classes. In the case of differentiable manifolds this problem is not solvable, since for any finitely presented group S one can construct a four dimensional manifold $M(S)$ with fundamental group S in such a way that $M(S)$ and $M(T)$ will be homeomorphic if and only if S and T are isomorphic, but one cannot solve the word problem to determine whether two finitely presented groups are isomorphic (Markov [76]). In special cases one can solve the problem, but cobordism theory works in another way - by introducing an equivalence relation much weaker than isomorphism.

Briefly, two manifolds without boundary are called 'cobordant' if their disjoint union is the boundary of some manifold. It is worthwhile to note that every manifold M with empty boundary is the boundary of $M \times [0,\infty)$. To get a nontrivial theory it is standard to restrict attention to compact manifolds.
The first description of this equivalence relation was by H. Poincaré: Analysis Situs, Journal de l'École Polytechnique, 1 (1895), 1-121 (section 5, Homologies). His concept of homology is basically the same as the concept of cobordism used today.

The next development of cobordism theory was by L. S. Pontrjagin: Characteristic cycles on differentiable manifolds, Math. Sb. (N.S.), 21 (63) (1947), 233-284 (Amer. Math. Soc. translations, series 1, no. 32). This paper shows that the characteristic numbers of a closed manifold vanish if the manifold is a boundary (providing the invariants for classification).

The cobordism classification of manifolds is reasonably elementary in dimensions 0, 1, and 2, since manifolds are themselves classified in the dimensions. Using geometric methods the cobordism classification problem in dimension 3 was solved by V. A. Rohlin: A 3-dimensional manifold is the boundary of a 4-dimensional manifold, Doklady Akad. Nauk. S.S.S.R., 81 (1951), 355.

The first application of cobordism was by L. S. Pontrjagin: Smooth manifolds and their applications in homotopy theory, Trudy Mat. Inst. im Steklov no. 45, Izdat. Akad. Nauk. S.S.S.R. Moscow, 1955 (Amer. Math. Soc. translations, series 2, vol. 11, 1959). Pontrjagin attempted to study the stable homotopy groups of spheres as the groups of cobordism classes of 'framed' manifolds. This amounts to the equivalence of a homotopy problem and a cobordism problem. The lack of knowledge of manifolds has prevented this from being of use in solving the homotopy problem.

The major development of cobordism theory is the paper of R. Thom: Quelques propriétés globales des variétés différentiables, Comm. Math. Helv 28 (1954), 17-86. This paper showed that the problem of cobordism is
Equivalent to a homotopy problem. For many of the interesting manifold classification questions the resulting homotopy problem turns out to be solvable. Thus, Thom brought the Pontrjagin technique to the study of manifolds, largely reversing the original idea.

Cobordism Categories

In order to formalize the notion of cobordism theory, it seems useful to set up a 'general nonsense' situation. As motivation, one may consider the properties of differentiable manifolds.

Let \(\mathcal{C} \) denote the category whose objects are compact differentiable manifolds with boundary (of class \(C^\infty \)) and whose maps are the differentiable maps (again \(C^\infty \)) which take boundary into boundary. This category has finite sums given by the disjoint union and has an initial object given by the empty manifold. For each object of \(\mathcal{C} \) one has its boundary, again an object of \(\mathcal{C} \), and for each map the restriction of it to the boundary.
Further, the boundary of the boundary is always empty. This defines an additive functor $\mathfrak{A} : \mathcal{C} \to \mathcal{D}$. For any manifold M, the boundary of M is a subset whose inclusion is a differentiable map $i(M) : \partial M \to M$. This inclusion gives a natural transformation $1 : \mathfrak{A} \to I$ of additive functors, $I : \mathcal{C} \to \mathcal{D}$ being the identity functor. Finally, the Whitney imbedding theorem shows that each differentiable manifold is isomorphic to a submanifold of countable dimensional Euclidean space. Thus \mathcal{C} has a small subcategory \mathcal{D}_0 (submanifolds of \mathbb{R}^∞) such that each object of \mathcal{C} is isomorphic to an object of \mathcal{D}_0.

Abstracting these properties, one has:

Definition: A cobordism category $(\mathcal{C}, \mathfrak{A}, 1)$ is a triple in which:

1) \mathcal{C} is a category having finite sums and an initial object;
2) $\mathfrak{A} : \mathcal{C} \to \mathcal{C}$ is an additive functor such that for each object X of \mathcal{C}, $\mathfrak{A}(X)$ is an initial object;
3) $1 : \mathfrak{A} \to I$ is a natural transformation of additive functors from \mathfrak{A} to the identity functor I; and
4) There is a small subcategory \mathcal{C}_0 of \mathcal{C} such that each object of \mathcal{C} is isomorphic to an object of \mathcal{C}_0.

As noted in motivating this definition, $(\mathcal{D}, \mathfrak{A}, 1)$ is a cobordism category. There are many more examples, and in fact the purpose of cobordism theory is to study the interesting examples. The precise choice of this formulation is based, somewhat vaguely, on the definition of 'adjoint functors'.

The purpose of this definition is not to establish a general nonsense structure; rather the definition will be used to follow the framework of previously developed theory and to try to unify the ideas. To begin, one has in any cobordism category the idea of a 'cobordism relation'.
Definition: If \((C, o, i)\) is a cobordism category, one says that the objects \(X\) and \(Y\) of \(C\) are cobordant if there exist objects \(U\) and \(V\) of \(C\) such that the sum of \(X\) and \(oU\) is isomorphic to the sum of \(Y\) and \(oV\). This will be written \(X \equiv Y\).

One has easily:

Proposition:

a) \(\equiv\) is an equivalence relation on the objects of \(C\).
b) \(X \equiv Y\) implies \(oX \equiv oY\).
c) For all \(X\), \(oX \equiv o\emptyset\) where \(\emptyset\) is an initial object.
d) If \(X \equiv X', Y \equiv Y'\) and \(Z\) and \(Z'\) are sums of the pairs \((X, Y)\) and \((X', Y')\) respectively, then \(Z \equiv Z'\).

Proof:

a) \(X + o\emptyset \equiv X + o\emptyset\);

\[X + oU \equiv Y + oV \implies Y + oV = X + oU;\] and

\[X + oU \equiv Y + oV, Y + oW \equiv Z + oT \implies X + o(U+V) \equiv X + oU + oW \equiv Y + oV + oW \equiv Z + oV + oT \equiv Z + o(V+T).

b) \(X + oU \equiv Y + oV\) implies \(oX \equiv oX + o\emptyset \equiv oX + oU \equiv oY + oU \equiv oY + oV \equiv oY + o\emptyset \equiv oY\).

c) \(oX + o\emptyset \equiv o\emptyset + oX\) since \(o\emptyset\) is initial.

d) \(X + oU \equiv X' + oU', Y + oV \equiv Y' + oV'\) gives \(Z + o(U+V) \equiv Z' + o(U'+V')\)

NOTE: In all of the above \(A + B\) denotes an object which is a sum for \(A\) and \(B\). **

Note: If one is unhappy with equivalence relations on a category, one may reduce to considering \(\equiv\) as an equivalence relation on the set of isomorphism classes of objects of \(C\). This is the reason for the assumption about existence of \(C_0\).
Definition: An object X of \mathcal{C} is closed if $\exists X$ is an initial object. An object X of \mathcal{C} bounds if $X \equiv \emptyset$ where \emptyset is an initial object.

Proposition:

a) X closed and $Y \equiv X$ implies Y closed.
b) X and X' closed implies their sum is closed.
c) X bounds implies X is closed.
d) X and Y bound implies their sum bounds.
e) X bounds and $Y \equiv X$ implies Y bounds.

Proof:

a) follows directly from b) above.
b) $\exists X \equiv \emptyset$, $\exists X' \equiv \emptyset$ implies $\exists (X+X') \equiv \emptyset + \emptyset \equiv \emptyset$.
c) $X \equiv \emptyset$ implies $\exists X \equiv \emptyset \equiv \emptyset$.
d) $X \equiv \emptyset$, $Y \equiv \emptyset$ implies $X + Y \equiv \emptyset + \emptyset \equiv \emptyset$.
e) is immediate since \equiv is an equivalence relation. **

Proposition: The set of equivalence classes of closed objects of \mathcal{C} (under \equiv) has an operation induced by the sum in \mathcal{C}. This operation is associative, commutative, and has a unit (the class of any object which bounds).

Proof: The existence of \mathcal{C}_0 implies that the equivalence classes form a set. That the sum in \mathcal{C} gives rise to an operation on this set follows immediately from the propositions. Associativity and commutativity hold for isomorphism classes of objects, hence also here. **
Definition: The cobordism semigroup of the cobordism category \((\mathcal{C}, \emptyset, i)\) is the set of equivalence classes of closed objects of \(\mathcal{C}\) with the operation induced by the sum in \(\mathcal{C}\). This semigroup will be denoted \(\Omega(\mathcal{C}, \emptyset, i)\).

Remarks: 1) \(\Omega(\mathcal{C}, \emptyset, i)\) may also be described as the semigroup of homomorphism classes of closed objects of \(\mathcal{C}\) modulo the sub-semigroup of homomorphism classes of objects which bound.

2) The semigroup \(\Omega(\mathcal{O}, \emptyset, i)\) is quite easily identifiable as Thom's cobordism group \(\gamma_{\mathcal{O}}\) of unoriented cobordism classes of closed manifolds.

In order to clarify this slightly, in the usual expression for equivalence one has \(X\) equivalent to \(Y\) if there is a \(V\) with \(\emptyset V = X \cup Y\). Then \(X \cup \emptyset V = Y \cup \emptyset (X \times I)\) giving \(X \equiv Y\). The implication \(X \cup \emptyset U = Y \cup \emptyset V\) implies \(X \equiv Y \equiv \emptyset T\) is an easy geometric argument by looking at components and gluing together manifolds with boundary by means of tubular neighborhoods of their boundary components.

Within the literature of cobordism there are a few standard constructions performed. These may be generalized to the categorical situation as will now be shown.

Construction I: Let \((\mathcal{C}, \emptyset, i)\) be a cobordism category, \(\mathcal{X}\) a category with finite sums and an initial object, and \(F : \mathcal{C} \rightarrow \mathcal{X}\) an additive functor. For any object \(X\) of \(\mathcal{X}\), form a category \(\mathcal{C}/X\) whose objects are pairs \((C, f)\) with \(C\) an object of \(\mathcal{C}\) and \(f \in \text{Map}(F(C), X)\) and whose maps are given by letting \(\text{Map}((C, f), (C', f'))\) be the set of maps \(f' \circ \text{Map}(C, C')\) such that the diagram
commutes.

If \(\emptyset \) is an initial object of \(\mathcal{C} \) and \(\phi : F(\emptyset) \to X \) is the unique map, then \((\emptyset, \phi)\) is an initial object of \(\mathcal{C}/X \). If \((D, g)\) and \((D', g')\) are objects of \(\mathcal{C}/X \) and \(D+D' \) is a sum for \(D \) and \(D' \) in \(\mathcal{C} \), then \(F(D+D') \) is a sum for \(F(D) \) and \(F(D') \) in \(\mathcal{X} \). The maps \(g \) and \(g' \) give a well defined map \(g+g' : F(D+D') \to X \), and \((D+D', g+g')\) is the sum of \((D, g)\) and \((D', g')\) in \(\mathcal{C}/X \).

Let \(\tilde{\delta}(C, f) = (\exists C, f \circ F(i_C)) \) and \(\tilde{\phi} = \psi \circ i_C \) to define the functor \(\tilde{\delta} : \mathcal{C}/X \to \mathcal{C}/X \). Define the natural transformation \(\tilde{\iota} : \tilde{\delta} \to \iota \) by

\[
\tilde{\iota}(C, f) = i_C : \exists C \to C.
\]

Then \((\mathcal{C}/X, \tilde{\delta}, \tilde{\iota})\) is a cobordism category.

Remarks: 1) This is the algebraic-geometric (Grothendieck style) notion of the category of objects over a given object.

2) If one begins with the category \((\mathcal{C}, \delta, \iota)\) and takes \(F : \mathcal{C} \to \mathcal{X} \) to be the forgetful functor to the category of topological spaces and continuous maps, then \(\Omega(\mathcal{C}/X, \tilde{\delta}, \tilde{\iota}) \) is the unoriented bordism group \(\Omega(X) \) as originally formulated by M. F. Atiyah: Bordism and cobordism, Proc. Camb. Phil. Soc., 57 (1961), 200-208.

Construction II: Let \(\mathcal{C} \) be a small category, \((\mathcal{C}, \delta, \iota)\) a cobordism category, and let \(\text{Fun}(\mathcal{C}, \mathcal{C}) \) be the category whose objects are functors \(\phi : \mathcal{C} \to \mathcal{C} \) and whose maps are the natural transformations.
If \(\emptyset \) is an initial object of \(\mathcal{C} \), the constant functor \(\mathcal{C} : A \rightarrow \emptyset \) is an initial object of \(\text{Fun}(\mathcal{C}, \mathcal{C}) \). If \(F \) and \(G \) are functors, let \(H : \mathcal{C} \rightarrow \mathcal{C} \) by letting \(H(A) \) be a sum for \(F(A) \) and \(G(A) \) and let \(j_{F,A}^F = j_{F(A)} : F(A) \rightarrow H(A) \) and \(j_{G,A}^G = j_{G(A)} : G(A) \rightarrow H(A) \) be the maps exhibiting \(H(A) \) as the sum. Then \(j_F \) and \(j_G \) are natural transformations which exhibit \(H \) as a sum for \(F \) and \(G \).

Let \(\tilde{\tau} : \text{Fun}(\mathcal{C}, \mathcal{C}) \rightarrow \text{Fun}(\mathcal{C}, \mathcal{C}) \) : \(F \rightarrow \tilde{\tau}(F) : \lambda \rightarrow \tilde{\tau}(\lambda) \) and let \(\tilde{\iota} : I \rightarrow I \) be the natural transformation given by the map \(\tilde{\iota}_F : \tilde{\tau}(F) \rightarrow F \) whose evaluation at any object \(A \) of \(\mathcal{C} \) is \(\tilde{\iota}_F(A) : \tilde{\tau}(F(A)) \rightarrow F(A) \).

Then \((\text{Fun}(\mathcal{C}, \mathcal{C}), \tilde{\tau}, \tilde{\iota}) \) is a cobordism category.

Remark: Many standard examples fit this construction. Suppose \(\mathcal{C} \) is the category with one object \(A \) whose maps are a finite group \(G = \text{Map}(A,A) \). A functor \(F : \mathcal{C} \rightarrow \mathcal{C} \) is given by selecting a manifold \(Y = F(A) \) and a homomorphism \(G \rightarrow \text{Map}(X,X) \). Since \(G \) is finite, the induced map \(G \times X \rightarrow X \) is a differentiable action of \(G \) on \(X \). Thus \((\text{Fun}(\mathcal{C}, \mathcal{C}), \tilde{\tau}, \tilde{\iota}) \) is the unoriented cobordism group of (unrestricted) \(\text{Cob} \) as defined by P. E. Conner and E. E. Floyd: "Differentiable Periodic Maps", Springer, Berlin, 1964 (section 21).

Relative Cobordism

In order to study the relationship between two cobordism categories it is convenient to have available a 'relative cobordism' semigroup. In the geometric case this is made possible by joining together two manifolds with the same boundary to form a closed manifold. In the categorical situation, the idea is to replace a pair of objects having the same boundary
by a pair of closed objects. For this one needs the idea of the Grothendieck group construction.

Recall that for any category with finite sums for which the isomorphism classes of objects form a set, \mathcal{X}, one defines $K(\mathcal{X})$, the Grothendieck group of \mathcal{X}, to be the set of equivalence classes of pairs (X,X') of objects of \mathcal{X}, where (X,X') is equivalent to (Y,Y') if there is an object A of \mathcal{X} such that $X + Y + A = X' + Y + A$. $K(\mathcal{X})$ is an abelian group under the operation induced by the sum in \mathcal{X}.

Let $(\mathcal{C}, \mathcal{C}, i)$ and $(\mathcal{C}', \mathcal{C}', i')$ be two cobordism categories, $F: \mathcal{C} \to \mathcal{C}'$ an additive functor, and $t: \mathcal{C}' \to \mathcal{C}'$ a natural equivalence of additive functors such that the diagram

\[
\begin{array}{ccc}
\mathcal{C}'F(A) & \xrightarrow{t(A)} & \mathcal{C}'F(A) \\
\downarrow i'F(A) & & \downarrow i'F(A) \\
\mathcal{C}'F(A) & \xrightarrow{F(i_A)} & \mathcal{C}'F(A)
\end{array}
\]

commutes. Let \mathcal{P} be the category whose objects are triples (X,Y,f) with $X \in \mathcal{C}'$, $Y \in \mathcal{C}$, Y closed, and $f: \mathcal{C}'X \to FY$ an isomorphism and with $\text{Map}((X,Y,f), (X',Y',f'))$ the set of $(\phi, \psi) \in \text{Map}(X,X') \times \text{Map}(Y,Y)$ such that

\[
\begin{array}{ccc}
\mathcal{C}'X & \xrightarrow{f} & FY \\
\downarrow \mathcal{C}'\phi & & \downarrow F\psi \\
\mathcal{C}'X' & \xrightarrow{f'} & FY'
\end{array}
\]

commutes. Then \mathcal{P} has finite sums and a small subcategory $\mathcal{P}_0(X \in \mathcal{C}_0', Y \in \mathcal{C}_0)$ such that each object of \mathcal{P} is isomorphic to an object of \mathcal{P}_0.
Let \mathcal{D} be the collection of pairs $((X,Y,f), (X',Y',f'))$ of objects of \mathcal{C} for which $Y = Y'$. Let $(x,x')-(y,y')$ if there are objects u and v of \mathcal{C} such that $x + u \cong y + v$ and $x' + u \cong y' + v$. Then the set of equivalence classes \mathcal{D}/\sim forms an abelian group under the operation induced by the sum.

One has a homomorphism $\beta : K(C_{cl}') \rightarrow \mathcal{D}/\sim$, where C_{cl}' is the subcategory of closed objects of \mathcal{C}' by sending (X,X') into $((X,\emptyset,j), (X',\emptyset,j'))$ where \emptyset is an initial object of \mathcal{C} and j,j' are the unique isomorphisms of initial objects.

If one has a homomorphism

$$\alpha : \mathcal{D}/\sim \rightarrow K(C_{cl}')/(3 \ast K(C') + F_3 K(C_{cl}'))$$

such that the composition with β is the quotient homomorphism of $K(C_{cl}')$.

Then one can define a relative cobordism semigroup as follows:

For objects (X,Y,f) and (X',Y',f') of \mathcal{D}, one writes

$$(X,Y,f) \equiv (X',Y',f')$$

if there exist objects U and U' of \mathcal{C} with

$$Y + 3U \equiv Y' + 3U'$$

and for which $\alpha((X+FU,Y+3U,f+tU),(X'+FU',Y'+3U',f'+tU')) = 0$.

Using the fact that α is a homomorphism one easily sees that \equiv is an equivalence relation. The relative cobordism semigroup $\Omega(F,t,\alpha)$ is the set of equivalence classes under \equiv of elements of \mathcal{D} with the sum induced by the sum in \mathcal{D}.

One has homomorphisms

$$\beta : \Omega(F,t,\alpha) \rightarrow \Omega(C,\emptyset,i) : (X,Y,f) \rightarrow Y,$$

$$F_3 : \Omega(C,\emptyset,i) \rightarrow \Omega(C',\emptyset,i') : Y \rightarrow FY,$$

and

$$i : \Omega(C',\emptyset,i') \rightarrow \Omega(F,t,\alpha) : X \rightarrow (X,\emptyset,j).$$
and the triangle
\[\Omega(C, \partial, i) \xrightarrow{F_{\ast}} \Omega(C', \partial', i') \]
\[\cong \Omega(F, t, a) \]
is easily seen to have period 2 (i.e. \(\partial i = iF_{\ast} = F_{\ast}\partial = 0 \)).

In order to clarify the relationship between the homomorphism \(\alpha \) and the joining of two manifolds along their common boundary, consider elements \((X, Y, f)\) of \(\mathcal{C} \) as a manifold with boundary together with additional structure on its boundary. For \(((X, Y, f), (X', Y', f')) \in \mathcal{C}\) choose an isomorphism \(g : Y \xrightarrow{\simeq} Y' \) and let \(\alpha(x, x') \) be the class of \(X \cup_k (-X') \), where \(-X'\) is \(X' \) with its opposite structure (e.g. orientation), and the boundaries of \(X \) and \(X' \) are identified via \(k = f^{-1}, F(g)f \). This class does not depend on the choice of \(g \), for if \(g' \) is another isomorphism one may attach \(X' \times I \) to \((X \cup_k (-X')) \times I \cup \{X \cup_k'(-X')\} \times I \) so that the difference of two representatives is cobordant to \(X \cup_k''(-X) \), where \(k'' = f^{-1}, F(g^{-1}g')f \). Identifying \(3X \times 0 \) with \(3X \times 1 \) using \(k'' \) in \(3X \times I \) gives a cobordism of \(X \cup_k''(-X) \) and \(3X \times I \) with ends identified by \(k'' \) but this is isomorphic via \(f \) to the image under \(F \) of \(Y \times I \) with ends identified using \(g^{-1}g' \). Thus \(\alpha \) does not depend on the choice of \(g \).

With this choice of \(\alpha \), suppose one has \((X, Y, f) \cong (X', Y', f')\). One may then find a cobordism of \(Y \) and \(Y' \), say \(\delta V = Y-Y' \) so that \(X \cup (-V) \cup (-X') \) is cobordant to a closed manifold \(D \) with additional structure. Thus one may find a cobordism of \(Y \) and \(Y' \), \(U = V \cup D \), \(\delta U = Y-Y' \), so that \(X \cup (-U) \cup (-X') \) bounds. This is the usual geometric description for cobordism of manifolds with boundary.
Remark: One may let \(\mathcal{C} \) be the subcategory of \(\mathcal{C}' \) consisting of initial objects, with \(F \) the inclusion. Then \(B \) is epic, uniquely detemining \(\alpha \). The relative cobordism semigroup in this case is then identifiable with the cobordism semigroup of \(\mathcal{C}' \).
Chapter II

Manifolds With Structure - The Pontrjagin-Thom Theorem

The standard cobordism theories are based on manifolds with additional structure on the tangent or normal bundle. The exposition given here is taken from the paper: R. K. Lashof: Poincaré duality and cobordism, Trans. Amer. Math. Soc., 109 (1963), 257-277.

Denote by $G_{r,n}$ the Grassmann manifold of unoriented r-planes in \mathbb{R}^{r+n} and let γ^r_n be the r-plane bundle over $G_{r,n}$ consisting of pairs: an r-plane in \mathbb{R}^{r+n} and a point in that r-plane. Then $B_0 = \lim_{n \to \infty} G_{r,n}$ with universal r-plane bundle $\gamma^r = \lim_{n \to \infty} \gamma^r_n$.

Definition: Let $f_n : B_n \to B_0_n$ be a fibration. If ξ is an n-dimensional vector bundle over the space X classified by the map $\xi : X \to B_0_n$, then a (B_n, f_n) structure on ξ is a homotopy class of liftings to B_n of the map ξ; i.e. an equivalence class of maps $\tilde{\xi} : X \to B_n$ with $f_n \circ \tilde{\xi} = \xi$, where $\tilde{\xi}$ and $\tilde{\xi}$ are equivalent if they are homotopic by a homotopy $H : X \times I \to B_n$ such that $f_n \circ H(x,t) = \xi(x)$ for all $(x,t) \in X \times I$.

Note: A (B_n, f_n) structure depends on the specific map into B_0_n. There is no way to make (B_n, f_n) structures correspond for equivalent bundles, since the correspondence is dependent upon the choice of the equivalence.

Let M^n be a compact differentiable (C^∞) manifold (with or without boundary) and let $i : M^n \to \mathbb{R}^{n+r}$ be an imbedding. The normal bundle of i is the quotient of the pullback of the tangent bundle of \mathbb{R}^{n+r}, $i^*(\mathbb{R}^{n+r})$ by the subbundle $\tau(M)$. Giving $\tau(\mathbb{R}^{n+r}) = \mathbb{R}^{n+r} \times \mathbb{R}^{n+r}$ the Riemannian metric obtained from the usual inner product in Euclidean space, the total
\(N \) of the normal bundle may be identified with the orthogonal complement of \(\tau(M) \) in \(i^*\tau(R^{n+r}) \), or the fiber of \(N \) at \(m \) may be identified with the subspace of \(R^{n+r} \times R^{n+r} \) consisting of vectors \((m,x) \) with \(x \) orthogonal to \(i_*\tau(M)_m \). The normal map of \(i \) is given by sending \(\bar{m} \) into \(\bar{m} \in G_{r,n} \), covered by the bundle map \(n : M \rightarrow \gamma^r_n : (m,x) \rightarrow (\bar{m},x) \) commuting with the inclusion into \(\gamma^r \) provides a map \(\nu(\bar{m}) : M \rightarrow BO_r \) which classifies the normal bundle of the imbedding \(i \).

Lemma: If \(r \) is sufficiently large (depending only on \(n \)), there is a one-to-one correspondence between the \((B_r, f_r) \) structures for the normal bundles of any two imbeddings \(i_1, i_2 : M^n \rightarrow R^{n+r} \).

Proof: For \(r \) sufficiently large, any two imbeddings \(i_1, i_2 \) of \(M^n \) in \(R^{n+r} \) are regularly homotopic and any two such regular homotopies are homotopic through regular homotopies leaving endpoints fixed. (A regular homotopy is a homotopy \(H : M \times I \rightarrow R^{n+r} \) such that each \(H(\cdot, t) \) is an immersion and such that the differentials \(H(\cdot, t)_x : \tau(M) \rightarrow \tau(R^{n+r}) \) define a homotopy.) See M. Hirsch: Immersions of manifolds, Trans. Amer. Math. Soc., 93 (1959), 242-276. Then a regular homotopy from \(i_1 \) to \(i_2 \) gives a homotopy from \(\nu(i_1) \) to \(\nu(i_2) \), and two homotopies defined in this way are themselves homotopic relative to endpoints. Thus one has a well-defined equivalence for the two bundles. Applying the homotopy lifting property for the map \(f_r \) then establishes the correspondence quite easily. **

Definition: Suppose one is given a sequence \((B, f) \) of fibrations \(f_r : B_r \rightarrow BO_r \) and maps \(g_r : B_r \rightarrow B_{r+1} \) such that the diagram
commutes, \(j_r \) being the usual inclusion. A \((B^r, f_r)\) structure on the normal bundle of \(M^n \) in \(R^{n+r} \) defines a unique \((B^r+1, f^r+1)\) structure via the inclusion \(R^{n+r} \subset R^{n+r+1} \). A \((B, f)\) structure on \(M^n \) is an equivalence class of sequences of \((B^r, f_r)\) structures \(\xi = (\xi_r) \) on the normal bundle of \(M \), two such sequences being equivalent if they agree for sufficiently large \(r \). A \((B, f)\) manifold is a pair consisting of a manifold \(M^n \) and a \((B, f)\) structure on \(M^n \).

If \(W^w \) is a manifold and \(N^w_m \) is a submanifold of \(W \) with trivialized normal bundle, one may imbed \(M \) in \(R^{m+r} \), \(r \) large, and extend by means of the trivialization to an imbedding of a neighborhood of \(M \) in \(W \) into \(R^{w+r} = R^{m+r} \times R^{w-m} \) so that the neighborhood meets \(R^{m+r} \) orthogonal along \(M \). This may then be extended to an imbedding of \(W \) in \(R^{w+r} \). The normal planes to \(M \) in \(R^{m+r} \) are then the restriction to \(M \) of the normal planes to \(W \) in \(R^{w+r} \). If \(\tilde{\nu} : W \to B^r \) is a lifting of the norm map, then \(\tilde{\nu} | M \) is a lifting for the normal map of \(M \). Thus a \((B, f)\) structure on \(W \) induces a well-defined \((B, f)\) structure on \(M \).

Remarks: 1) The induced \((B, f)\) structure depends only on the equivalence class of the trivialization, not on the specific choice of trivialization.

2) If \(f : M \to W \) is an isomorphism of manifolds, the normal bundle is trivialized, being zero dimensional. If \(i : M \to W \) is the inclusion,
of the boundary, there are two choices of trivialization, via the choice of inner or outer normal. If \(j : M \to W \) is the inclusion of a direct summand, then the normal bundle is again zero dimensional, so trivialized.

Definition: The cobordism category of \((B,f)\) manifolds is the category whose objects are compact differentiable manifolds with \((B,f)\) structure and whose maps are the boundary preserving differentiable imbeddings with trivialized normal bundle such that the \((B,f)\) structure induced by the map coincides with the \((B,f)\) structure on the domain manifold. The functor \(\mathcal{A} \) applied to a \((B,f)\) manifold \(W \) is the manifold \(\mathcal{A}W \) with \((B,f)\) structure induced by the inner normal trivialization, and \(\mathcal{A} \) on maps is restriction. The natural transformation \(i \) is the inclusion of the boundary with inner normal trivialization.

The cobordism semigroup of this category will be denoted \(\Omega(B,f) \).

The sub-semigroup of equivalence classes of \(n \)-dimensional closed manifolds will be denoted \(\Omega_n(B,f) \). Clearly \(\Omega(B,f) \) is the direct sum of the \(\Omega_n(B,f) \).

Proposition: The cobordism semigroup \(\Omega(B,f) \) is an abelian group.

Proof: Let \(M^n \) be a closed manifold imbedded in \(\mathbb{R}^{n+r} \) for some large \(r \) with \(\tilde{\mathcal{A}} : M \to B_r \) a lifting of the normal map. Extend to an imbedding of \(M \times I \) in \(\mathbb{R}^{n+r} \times \mathbb{R} = \mathbb{R}^{n+r+1} \) by the usual inclusion of \(I \) in \(\mathbb{R} \). The normal map for \(M \times I \) is the composition of the projection on \(M \) and the normal map of \(M \). Thus the lifting for \(M \) defines a \((B,f)\) structure on \(M \times I \) which induces the given structure on \(M \times 0 \). The inner normal along \(M \times 1 \) gives rise to an induced structure on \(M \times 1 \), and with these structures one has \(M + M \times 1 \equiv \mathcal{A}(M \times I) \) in the category. Thus the structure on \(M \times 1 \) is an inverse for the structure on \(M \) in \(\Omega_n(B,f) \). **
Considering BO_r as the space of r-planes contained in some finite dimensional subspace R^s of R^∞ and taking the usual inner product on the subspace of R^∞ consisting of vectors with only finitely many non-zero components, one obtains a Riemannian metric on the universal bundle γ^r. If ξ is an r-plane bundle over a space X classified by the map $\xi : X \to BO_r$, one has induced a Riemannian metric on ξ. (Note: For the normal bundle of a manifold this coincides with the metric obtained from the splitting.) The Thom space of ξ, $T\xi$, is the space obtained from the total space of ξ by collapsing all vectors of length at least one to a point, denoted ∞. If ξ is the bundle induced from a bundle $\eta : Y \to BO_r$, by a map $g : X \to Y$, then the usual bundle map $\xi = g^*\eta : X \to \eta$ induces a map $Tg : T\xi \to T\eta$.

The map $j_r : BO_r \to BO_{r+1}$ induces a vector bundle $j_r^*(\gamma^{r+1})$ over BO_r which may be identified as the Whitney sum of γ^r and a trivial line bundle. Then $Tj_r^*(\gamma^{r+1})$ may be identified as the suspension of $T\gamma^r$.

One then has a commutative diagram

\[
\begin{array}{ccc}
S^B_r & \xrightarrow{Tg_r} & TB_{r+1} \\
\downarrow S^F_r & & \downarrow T_{r+1} \\
S^B_0 & \xrightarrow{Tj_r} & TB_{r+1}
\end{array}
\]

and a homomorphism $Tg_r \circ \xi : \pi_{n+r}(TB_r, \infty) \to \pi_{n+r+1}(TB_{r+1}, \infty)$ of the homotopy groups, where I denotes suspension, and TB_0, TB_r denote the Thom spaces $T\gamma^r$ and $T\gamma^r$.

The main theorem is the generalized Pontrjagin-Thom theorem:

Theorem: The cobordism group of n-dimensional (B, r) manifolds $Q_n(B, r)$ is isomorphic to $\lim_{r \to \infty} \pi_{n+r}(TB_r, \infty)$.
Proof:

A) Definition of the homomorphism \(\theta: \Omega_n(B,f) \to \lim_{r \to \infty} \pi^{n+r}(TB_r,\infty) \).

Let \(\sigma \in \Omega_n(B,f) \) be represented by a \((B,f)\) manifold \(M^n \). Let \(M \to \mathbb{R}^{n+r} \) be an imbedding with a lifting \(\bar{v}: M \to B_r \) which defines the given \((B,f)\) structure on \(M \). Let \(N \) denote the total space of the normal bundle of \(M \), thought of as a subspace of \(\mathbb{R}^{n+r} \times \mathbb{R}^{n+r} \). Under the evaluation map \(e: \mathbb{R}^{n+r} \times \mathbb{R}^{n+r} \to \mathbb{R}^{n+r}: (a,b) \mapsto a+b \), the subspace \(N \) is mapped differentiably and on \(M = M \times 0 \subset N \) this map restricts to the imbedding \(i \). For some sufficiently small \(\epsilon > 0 \), the subspace of \(N \) consisting of vectors of length less than or equal to \(\epsilon \), \(N_\epsilon \), is imbedded by this map \(e|_{N_\epsilon} \).

To define a map \(S^{n+r} \to T_r^*F \), begin by considering \(S^{n+r} \) as \(S^{n+r} \cup \{0\} \) and let \(c: S^{n+r} \to N_\epsilon / 3N_\epsilon \) by collapsing all points of \(S^{n+r} \) outside or on the boundary of \(N_\epsilon \) to a point. Multiplication by \(1/\epsilon \) induces a map \(N_\epsilon / 3N_\epsilon \to TN \), denoted by \(\epsilon^{-1} \). The map \(\bar{n} \times (\bar{v} \circ i): N \to F \times G \) where \(\bar{n} \) is the composition of \(n \) with the inclusion of \(F \) in \(G \) and \(\bar{v} \) is the projection of \(N \) on \(M \), is a bundle map into \(f^*F \) and induces the map \(T(\bar{n} \times (\bar{v} \circ i)): TN \to TB_r \). The composition \(T(\bar{n} \times (\bar{v} \circ i)) \circ \epsilon^{-1} \) is a map of pairs \((S^{n+r},\infty) \to (TB_r,\infty) \).

Replacing \(\epsilon \) by a smaller value does not change the homotopy class of \(\theta \) since the maps \(\epsilon^{-1} \) will be homotopic. Replacing \(\bar{v} \) by an equivalent lifting simply gives a homotopy of \(T(\bar{n} \times (\bar{v} \circ i)) \) and so does not change the homotopy class of \(\theta \). Clearly, the map \(M \to \mathbb{R}^{n+r} \subset \mathbb{R}^{n+r+1} \) gives rise to \(T_g \circ \theta \) and thus one has defined an element of \(\lim_{r \to \infty} \pi^{n+r}(TB_r,\infty) \) represented by the map \(\theta \).
To show that this element depends only on the cobordism class of the manifold M and not on the choice of the imbedding, let W be a (B, f) manifold and $j : M + \partial W \to R^{n+r}$ an imbedding with a lift
\[\overline{v} : M + \partial W \to R_r \]

\[\text{giving the same } (B_r, f_r) \text{ structure on } M \text{ (here } r \text{ is assumed large). Let } H : M \times I \to R^{n+r} \text{ be a regular homotopy of the imbeddings } i \text{ and } j|_M \text{ chosen so that } H(x, t) = i(x) \text{ if } t < \delta_1 \]
and is $j(x)$ if $t > 1 - \delta_2$ and let $k : W \to R^{n+r} \times (0, 1]$ be a map agreeing with $j \times 1$ on ∂W and imbedding a tubular neighborhood of ∂W orthogonally along $j(\partial W) \times 1$. The map $(H \times \pi_2) + k : M \times I + W \to R^{n+r}$ is an imbedding on a closed neighborhood of the boundary and may be homotoped to an imbedding $F : M \times I + W \to R^{n+r} \times I$ by a homotopy fixing that neighborhood of the boundary. $F|_{M \times I}$ is a regular homotopy and corresponding to its normal map one may find a covering map $M \times I \to B_r$ agreeing with \overline{v} on $M \times 0$. Since the normal map is constant near $M \times 1$, one may modify the lift to agree with \overline{v} on $M \times 1$. Since the (B, f) structure on ∂W is induced from that of W one may find a lift of W agreeing with \overline{v} on ∂W. Following the previous construction with the imbedding $F : M \times I + W \to R^{n+r} \times I$, one has a collapse
\[S^{n+r} \times I \to N / \partial N \] where N is a neighborhood of (image F), a map $\varepsilon^{-1} : N / \partial N \to TN$ and the map $T(n \times (\overline{w})) : TN \to TB_r$ which composes to give a map $S^{n+r} \times I \to TB_r$. This provides a homotopy for the maps defined by i and j.

Taking W empty shows that the class of θ is independent of the imbedding of M. Further, if $M = M'$ with $M + \partial W = M' + \partial W'$, then
\[\theta(M) - \theta(M + \partial W) = \theta(M' + \partial W') - \theta(M') \] so that the class of the map θ depends only on the cobordism class of M.
B) θ is a homomorphism.

If M_1 and M_2 represent two classes in $\Omega_n(B, F)$, choose imbeddings $i_1: M_1 \rightarrow \mathbb{R}^{|n+r|}$ for which the last coordinate is positive for i_1 and negative for i_2. If tubular neighborhoods are chosen small enough to lie in the same half spaces then $\theta([M_1] + [M_2])$ is represented by $\mathbb{R}^{|n+r|} \to \mathbb{R}^{|n+r|} \to \mathbb{T}_B$, where d collapses the equator of $\mathbb{S}^{|n+r|}$ and θ_0 represents $\theta([M_1])$. Since this map represents the sum of the homotopy classes, θ is a homomorphism.

C) θ is epic.

Let $\theta: (\mathbb{S}^{|n+r|}, P) \to (\mathbb{T}_B, \omega)$, r large, represent a class in $\Omega_0(\mathbb{S}^{|n+r|}, P) = (\mathbb{T}_B, \omega)$. Then $\mathbb{T}_B \xrightarrow{\theta} \mathbb{T}_B$, and since $\mathbb{T}_B = \lim_{s \to \infty} \mathbb{T}_B$ with $\mathbb{S}^{|n+r|}$ compact, $\mathbb{T}_B \xrightarrow{\theta} \mathbb{T}_B$ for some $s \to \infty$.

The map $\mathbb{T}_B \xrightarrow{\theta}$ may be deformed to a map h_∞ so that

1) h_∞ is differentiable on the preimage of some open set of \mathbb{T}_B containing $\mathbb{S}^{|n+r|}$ and is transverse regular on $\mathbb{S}^{|n+r|}$. Note: $\mathbb{T}_B = \lim_{s \to \infty} \mathbb{T}_B$.

2) If $N^2 = h_\infty^{-1}(\mathbb{S}^{|n+r|})$, h_∞ is a bundle map on a normal tube of M^2.

3) The map $\mathbb{T}_B \xrightarrow{\theta}$ agrees with h_∞ on the preimage V of a closed neighborhood of ω.

Since $h_\infty |_{M^2}$ classifies the normal bundle of M, one may assume (by a further homotopy if necessary) that $h_\infty |_{M^2}$ is the normal map $\nu: M^2 \to \mathbb{S}^{|n+r|}$ that h_∞ is given by the usual translation of vectors to the origin on a normal tubular neighborhood of M.

Now $T_{r} \times B_{r} \rightarrow TB_{r}$ is a fibration except at the point e, and since $T_{r} \circ \theta(S^{n+r} - \text{interior } V)$ does not contain e, the covering homotopy theorem applies so that the deformation of $T_{r} \circ \theta$ to h_{r} on $S^{n+r} - \text{interior } V$ may be covered by a homotopy of θ on $S^{n+r} - \text{interior } V$ which is pointwise fixed on the boundary of V. Taking the homotopy to be constant on V, one may cover the homotopy of $T_{r} \circ \theta$ to h_{r} by a homotopy of θ to a new map θ_{1}. The inverse image of B_{r} under θ_{1} is the inverse image of B_{r} under h_{r}, which is M. Further $\theta_{1}|_{M}$ is a lift of the normal map $h_{r}|_{M}$.

Thus one has a (B_{r}, f_{r}) structure on M in R^{n+r} and hence a (B, f) structure on M. Using the given imbedding of M in R^{n+r} with the lift $\theta_{1}|_{M}$, the resulting map θ_{2} agrees with θ_{1} on a neighborhood N_{ε} of M and since $T_{r} \times B_{r}$ deforms to e, one may homotope θ_{1} to agree with θ_{2} by pushing the complement of N_{ε} to e. Then $\theta([M])$ is the class of θ.

D) θ is monic.

Let M be a (B, f) manifold such that $\theta([M]) = 0$. Thus for some large r the standard map $\theta_{0} : S^{n+r} \rightarrow TB_{r}$ defined by M is homotopic to the trivial map $\theta_{1} : S^{n+r} \rightarrow e$. One may choose the homotopy $L : S^{n+r} \times I \rightarrow TB_{r}$ so that $L_{t} = \theta_{0}$ for $t \in [0, 1]$. By compactness $T_{r} \circ L(S^{n+r} \times I) \subseteq TB_{r}$ for some $s (> n)$. As above, one may homotope $T_{r} \circ L$ (relative to $N_{\varepsilon}(M) \times [0, 1]$) in a neighborhood of $G_{r,s}$ to a map H_{r} which is differentiable near and transverse on $G_{r,s}$.

$W = H^{\varepsilon}_{r}(g_{r,s})$ is a submanifold of $R^{n+r} \times I$ with $\partial W = M$ meeting $R^{n+r} \times 0$ orthogonally along M. One may also assume $H_{r}|_{W}$ is the normal map and H_{r} agrees with the usual translation of vectors map on
A neighborhood of W. Applying covering homotopy, one may deform L

with a map $\theta : S^{n+r} \times I \to T_\theta x$ with $\theta_t = \theta_0$ for small t, $\theta_1 = \theta_1|S^{n+r} \times$

covering the normal map K_θ of W. This defines a (B, f)
structure on W which induces the original (B, f) structure on M.

Thus $M + 2\theta \to \theta + 3\theta W$ and $[M]$ is the zero class of $\Omega_n(B, f)$.

**

Tangential Structures

It is frequently desirable to define (B, f) structures on manifolds by means of structures on the stable tangent bundle. Let $B = \lim (B_\theta, g_\theta)$
and $BO = \lim (BO_\theta, J_\theta)$, with $f = \lim f_\theta : B \to BO$. The map

$[B] : G_n, N \to G_{N, n}$ obtained by assigning to each n plane its orthogonal N plane induces a map $I : BO \to BO$, with I^2 the identity.

$[B] : BO \to BO$ is a fibration and one has the induced fibration

$[B]^* : \mathbb{R}^n \to I*B \to BO$. Since $I^2 = 1$, $I*B^*$ is again B. The induced bundle maps give a diagram

```
B \xrightarrow{I} B^* \xrightarrow{I^*} B
```

with $I^* I'$ and $I' I^*$ both being identity maps.

If M^n is imbedded in R^{n+N}, N large, the maps $\nu_N : M^n \to G_{N, n}$

and $\nu' : M^n \to G_{n, N}$ obtained by translation of normal and tangent

vectors are related by $\nu_N = I_{N, \nu} \nu'$. Following these by the inclusions

one has maps $\tau : M \to BO$ and $\nu : M \to BO$ with $\tau = IV$.
A \((B,f)\) structure on \(M\) as previously defined is precisely a homotopy class (through liftings) of liftings to \(B\) of the map \(\nu : M \to M\). The maps \(I^r\) and \(I^s\) define an obvious equivalence between these classes of liftings of \(\nu\) and the homotopy classes (through liftings) of liftings to \(B^s\) of \(\tau : M \to BO\). Such a class of liftings of \(\tau\) is a \((B^s,f^s)\) structure on the stable tangent bundle of \(M\).

Structures For Sequences Of Maps

If instead of fibrations one is given only spaces \(C_r\) and maps \(f_r : C_r \to BO, g_r : C_r \to C_{r+1}\) such that \(f_{r+1}g_r\) is homotopic to \(j_{r+1}f_r\) one may replace the maps \((C_r,f_r)\) by homotopy equivalent fibrations. The resulting maps \(g_r\) may be deformed inductively to give commutative diagrams by means of covering homotopy. A \((C,f)\) structure is then a structure for some such fibration sequence (chosen). Since the cobordism group is given by homotopy of the Thom complex, which depends only on the homotopy type of the fibrations, the resulting cobordism group does not depend on the choice of equivalent fibration sequence.

Ring Structure

If one has an \(r\) plane in \(r+s\) space and an \(r'\) plane in \(r'+s'\) space, they span an \(r+r'\) plane in \(R^{r+r'+s+s'} = R^{r+s} \times R^{r'+s'}\). This defines a map \(G_r,s \times G_{r',s'} \to G_{r+r',s+s'}\) and induces a map \(BO_r \times BO_{r'} \to BO_{r+r'}\), corresponding to the Whitney sum of vector bundles. \(G_{0,0}\) is a point and provides a base point in each \(G_r,s\) (the usual \(R^r \subset R^{r+s}\)) so that \(BO_r \vee BO_{r'}\) is mapped via standard inclusions.
The twisted map \(\mathcal{B}_r \times \mathcal{B}_r \to \mathcal{B}_r \times \mathcal{B}_r \to \mathcal{B}_r \) is homotopic to the usual map \(\mathcal{B}_r \times \mathcal{B}_r \to \mathcal{B}_r \) by a rotation of \(\mathbb{R}^{r+r'+s+s}' \) to interchange factors. This gives the usual homotopy commutative \(\mathcal{H} \)-space structure on \(\mathcal{B}_r \).

Having similar multiplications \(\mathcal{B}_r \times \mathcal{B}_s \to \mathcal{B}_{r+s} \) so that the maps \(f_r \) preserve products up to homotopy, one may define a ring structure in the cobordism, for the multiplication defines a \((B,f)\) structure on the product manifold \(\mathbb{R}^n \times \mathbb{R}^{n'} \subset \mathbb{R}^{n+n'} = \mathbb{R}^{n+n'+n+n'} \).

The map \(\mathcal{B}_r \times \mathcal{B}_s \to \mathcal{B}_{r+s} \) induces a map \(TB_r \times TB_s \to TB_{r+s} \) giving a product in the stable homotopy, making it into a ring. This ring structure is the same as that of the cobordism groups.

Relative Groups

If one has commutative diagrams

\[
\begin{array}{c}
\begin{array}{c}
\mathcal{B}_r \downarrow h_r \downarrow \downarrow k_r \\
\mathcal{C}_r \downarrow \downarrow d_r \\
\mathcal{B}_0 \end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\mathcal{B}_r \downarrow g_r \downarrow \downarrow j_r \\
\mathcal{C}_r \downarrow \downarrow \downarrow d_{r+1} \\
\mathcal{B}_0 \end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\mathcal{B}_{r+1} \downarrow h_{r+1} \\
\mathcal{C}_{r+1} \\
\mathcal{B}_{0+1}
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\mathcal{B}_{r+1} \downarrow g_{r+1} \\
\mathcal{C}_{r+1} \\
\mathcal{B}_{0+1}
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\mathcal{B}_{r+1} \downarrow h_{r+1} \\
\mathcal{C}_{r+1} \\
\mathcal{B}_{0+1}
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\mathcal{B}_{r+1} \downarrow g_{r+1} \\
\mathcal{C}_{r+1} \\
\mathcal{B}_{0+1}
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\mathcal{B}_{r+1} \downarrow h_{r+1} \\
\mathcal{C}_{r+1} \\
\mathcal{B}_{0+1}
\end{array}
\end{array}
\end{array}
\]

in which \(h_r \) and \(d_r \) are fibrations and \(g_r \) and \(k_r \) are fibre preserving maps, a \((B,f)\) structure induces a \((C,d)\) structure by means of the 'reduction' \(h \). This gives a functor \(h \) from the cobordism category of \((B,f)\) manifolds to that of \((C,d)\) manifolds. An \((n+1)\) dimensional manifold \(W \) with boundary having a \((B,f)\) structure on its boundary inducing \(h \) the same \((C,d)\) structure on \(\partial W \) as is induced by a \((C,d)\)
structure on \(W\) is a relative manifold. Using the standard 'piecing together' homomorphism one has defined a relative cobordism semigroup.

If one imbeds \(\partial W\) in \(R^{n+r}\) (\(r\) large) with lifting of the normal map to \(B_r\), extends to an imbedding of \(W\) (orthogonally along the boundary using a tubular neighborhood) in \(R^{n+r} \times \{0, \infty\} = R^{n+r+1}\), selecting a lifting of the normal map of \(W\) to \(C_r\) which agrees with the \(h\)-induced lifting on \(\partial W\), then one may apply the tubular neighborhood map to this imbedding-lifting situation to construct a map

\[
\Theta : (D^{n+r+1}, S^{n+r}, \infty) = \left(\overline{R^{n+r+1}} \cup \infty, R^{n+r} \cup \infty, \infty\right) \longrightarrow (T_{C_r}, TB_{C_r}, \infty).
\]

If \(W\) is cobordant to \(W'\) (relatively) one may find a \((B,f)\) manifold \(U\) giving a cobordism of \(\partial W\) and \(\partial W'\) so that with proper boundary identifications the closed \((C,d)\) manifold \(W \cup (-U) \cup (-W')\) bounds.

One may imbed \(U\) in \(R^{n+r} \times I\) to give the proper identifications at \(\partial W \times 0\) and \(\partial W' \times 1\), with a lifting of the normal map to \(B_r\) and fill in the manifold with \((C,d)\) structure in \(R^{n+r+1} \times I\) along its boundary \(W \cup (-U) \cup (-W') \subset R^{n+r+1} \times 0 \cup R^{n+r} \times I \cup R^{n+r+1} \times 1\). Ignoring corners (which don't affect the homotopy situation, but rather involve the identification of \(D^{n+r+1} \times I\)) the normal maps and their liftings define a homotopy

\[
L : (D^{n+r+1} \times I, S^{n+r} \times I, \infty \times I) \longrightarrow (T_{C_r}, TB_{C_r}, \infty)
\]

of the maps for \(W\) and \(W'\).

Ignoring lots of details one sees easily that the \((n+1)\) dimensional relative cobordism group (\(-W\) being constructed from \(W \times I\)) is isomorphic to the stable homotopy group \(\lim_{r \to \infty} n+r-1(T_{C_r}, TB_{C_r}, \infty)\). Further, the cobordism triangle is identifiable as the exact homotopy sequence of the 'pair' (}
Chapter III

Characteristic Classes and Numbers

As mentioned in the introduction, the determination of invariants which
distinguish manifolds in one of the principal aims of differential topology.
in the framework of cobordism theory, the use of characteristic classes
provides invariants called characteristic numbers which are cobordism
invariants. In order to set up the machinery for these invariants, the
ideas of generalized cohomology theory play a central role, and for this
basic reference is G. W. Whitehead: Generalized homology theories, Trans.

Definition: A spectrum \(E \) is a sequence \(\{ E_n | n \in \mathbb{Z} \} \) of spaces with
base point together with a sequence of maps \(e_n : E_n \rightarrow E_{n+1} \), \(E \) being
the suspension. If \(\mathcal{E} = \{ F_n, f_n \} \) is another spectrum, a map \(h \) from \(\mathcal{E} \) to
\(\mathcal{E} \) is a sequence of maps \(h_n : E_n \rightarrow F_n \) with \(h_{n+1} \circ e_n = f_n \circ h_n \).

Examples: 1) The sphere spectrum \(\mathbb{S} = \{ S^n, \sigma_n \} \) where \(\sigma_n : E^n \rightarrow S^{n+1} \)
is the identity map.

2) If \((B, f) \) is a sequence of fibrations \(f_r : B_r \rightarrow B_0 \) with
maps \(g_r : B_r \rightarrow B_{r+1} \) as in Chapter II, then \(T_B = \{ T_{B_r}, T_{g_r} \} \) is
a spectrum, known as the Thom spectrum of the family \((B, f) \). In particular,
the maps \(T_{f_r} : T_{B_r} \rightarrow T_{B_0} \) define a map of spectra
\(T_T : T_B \rightarrow T_{B_0} = \{ T_{B_0}, T_{g_0} \} \).

If one chooses base points \(b_r \in B_r \) such that \(g_r b_r = b_{r+1} \), then the
bundle \(T_{f_r}(\gamma_r^F) \) induces a trivial \(r \)-plane bundle \(S_r^F \) over \(b_r^F \), defining
a map \(T_{b_r} : T_{b_r} \rightarrow T_{b_{r+1}} \). Since \(T_{b_r} = S_r^F \), this gives a map of spectra
\(T_{b_r} : S_r^F \rightarrow T_{b_r} \). Note: The identification of \(T_{b_r} \) with \(S_r^F \) requires a
choice of framing of the fiber over \(b_r \).
Definition: The homology and cohomology groups with coefficients in the spectrum \tilde{E} are defined by

$$H_n(X; \tilde{E}) = \lim_{i \to \infty} \pi_{n+1}((X/A) \wedge \tilde{E}_i)$$

$$H^n(X; \tilde{E}) = \lim_{i \to \infty} \Gamma^n (X/A) \wedge \tilde{E}_{n+i}$$

where X/A is the space obtained from X by collapsing A to a point (the base point), \wedge is the smash product $U \wedge V = U \times V/((U \times *) \cup (\ast \times V))$ and $[\ , \]$ denotes homotopy classes of maps.

$H^*(\ ; \tilde{E})$ and $H_*(\ ; \tilde{E})$ are functors satisfying all the axioms of Eilenberg-Steenrod as cohomology and homology theories with the exception of the dimension axiom.

One defines $H_*(X; \tilde{E})$ to be $H_*(X, \emptyset; \tilde{E})$ where \emptyset is the empty set and X/\emptyset is the disjoint union of X and a point. If Y is a space with base point p, one writes $H_*(Y; \tilde{E})$ for $H_*(Y, p; \tilde{E})$.

Definition: A ring spectrum is a spectrum $\tilde{A} = \{ A_p \}_{p \in \mathbb{Z}}$ with a map $a : \tilde{E} \to \tilde{A}$ and a pairing $m : (A_p, A_q) \to A_{p+q}$, i.e. a collection of maps $m_{p,q} : A_p \wedge A_q \to A_{p+q}$ such that the maps of the diagram

represent classes of the group $[\Sigma(A_p \wedge A_q), A_{p+q+1}]$ related by

$$[m_{p+1,q} \circ (a_{p} \cdot 1 \circ \lambda)] = [a_{p+q} \circ \Sigma m_{p,q}] = (-1)^p[m_{p,q+1} \circ (1 \cdot a) \circ \mu];$$
 Recall that the diagram

\[
\begin{array}{c}
\xymatrix{ \mathcal{A}_p \ar[r]^{\alpha_p} & \mathcal{A}_p \ar[d] \ar[l] & \mathcal{A}_p \ar[d] \\
\mathcal{A}_p \ar[r]^{\beta} & \mathcal{A}_p \ar[u] & \mathcal{A}_p \\
\mathcal{A}_p \ar[r]^{\gamma} & \mathcal{A}_p \ar[u] & \mathcal{A}_p
\end{array}
\]

where \(\alpha \) is the multiple composition of the suspensions of maps \(\alpha_j \)
and \((-1)^{pq} \alpha \) is a map whose class in the group \([\mathcal{A}_p, \mathcal{A}_p]\) is \((-1)^{pq} \)
the class of \(\alpha \). [Note: If \(q = 0 \) this is not a group, but \((-1)^{pq} = 1 \)
so that one does not need the group structure to find a map.]

Example: Let \(R \) be a ring with unit, \(K(R, n) \) an Eilenberg-MacLane
space (the only non-zero homotopy group being \(R \) in dimension \(n \)) and
\(H_n : K(R, n) \rightarrow K(R, n+1) \) be a map corresponding to the identification
\(K(R(n)) \rightarrow K(R(n+1)). \) The spectrum \(K(R) = \{ K(R, n), \kappa_n \} \) is a ring spectrum
and \(H^n(X; K(R)) \) is the usual cohomology with coefficients in \(R \).

With a ring spectrum one has the usual sorts of products, such as cup
products in cohomology making \(H^n(X; K) \) into a commutative ring with unit.

Definition: Let \((B, f) \) be a sequence of fibrations \(f_\infty : B_\infty \rightarrow BO_\infty \).
A **class** is a map of spectra \(U : T^\infty \rightarrow A^\infty \), where \(A^\infty \) is a ring spectrum.

Now let \(M \) be a \((B, f) \) manifold, \(i : M \rightarrow H^{n+1} \) an imbedding
\(BM \) imbedded in \(H^{n+1} \) with the usual orthogonal framing along a
singular neighborhood of \(BM = BM \times 0 \) (denoting the neighborhood by \(BM \times [0, 1] \))
\(M \) be the normal bundle of \(M \) and \(N \) the normal bundle of \(BM \). Let
\(\psi : M \rightarrow B_\infty \) be a lifting defining the \((B, f) \) structure on \(M \) with
\(\psi : TM \rightarrow TB_\infty \) the induced map on the Thom complex.
Consider the map

\[\begin{array}{cccc}
N & \xrightarrow{\Delta} & N \times N & \xrightarrow{w \times p} & M \times TN & \xrightarrow{r} & (M/\partial M) \cdot TN \\
\end{array} \]

where \(\Delta \) is the diagonal map, \(w \) the bundle projection, \(p \) is the collapsto the Thom complex, and the last map is the obvious collapse. Under this map the vectors of norm at least one are sent to the base point, as are all vectors over \(\partial M \), i.e. \(N' \). Thus one induces a map

\[\emptyset : TN/\partial TN' \rightarrow (M/\partial M) \cdot TN. \]

Letting \(c : H^{n+r} \rightarrow TN \) be the standard (scaled) collapse, the projection into \(TN/\partial TN' \) sends \(r^{n+r-1} \) into the base point also and hence defines a collapse \(c : S^{n+r} = (H^{n+r} U^m)/(r^{n+r-1} U^m) \rightarrow TN/\partial TN' \).

Letting \(U = \{ U \} : TB \rightarrow A \) be a Thom class, one has a composite map \n\[\begin{array}{cccc}
S^{n+r} & c & TN/\partial TN' & \emptyset & (M/\partial M) \cdot TN & 1 \cdot U & (M/\partial M) \cdot TB & \xrightarrow{1 \cdot U} & (M/\partial M) \cdot A \end{array} \]

which represents an element of \(\pi_{n+r}((M/\partial M) \cdot A) \). Letting \(r \) go to infinity defines a class \([M, \partial M] \in H_n(M, \partial M; A) \). This element is easily seen to depend only on the \((B, f)\) structure of \(M \).

Definition: If \(M^B \) is a \((B, f)\) manifold and \(U : TB \rightarrow A \) is a Thom class, then the fundamental class of \((M, \partial M)\) is the class \([M, \partial M] \in H_n(M, \partial M; A) \). If \(\partial M \) is empty, this class will be denoted \([M] \in H_n(M; A) \).

If one collapses the complement of the tubular neighborhood of the boundary by \n\[d : M/\partial M \rightarrow M/(\partial M \cup (M-\partial M \times (0,1))) = \Sigma(M/\partial) \]
has the map which defines the boundary homomorphism in homology

\[\partial : H_k(M, \partial M; A) \to H_{k-1}(\partial M; A). \]

If one composes the map defining \([M, \partial M]\) with the map \(d \cdot 1\), it is immediate that the resulting map is the suspension of the one which defines \([\partial M]\). Thus:

Proposition: Under the boundary homomorphism in \(\sim\)-homology, the fundamental class of \((M, \partial M)\) is sent into the fundamental class of \(\partial M\).

Definition: A universal characteristic class with \(\sim\) coefficients for \((B, f)\) bundles is a class \(x \in H^*(B; A)\) where \(B = \lim_{r \to \infty} \left(B_r, \mathbb{G}_r \right)\). If \(\xi\) is an \(x\)-plane bundle over a space \(X\) with a \((B_r, \mathbb{G}_r)\) structure given by a lifting \(\xi : X \to B_r\), then the \(x\)-characteristic class of the \((B_r, \mathbb{G}_r)\) bundle is the class \(\tilde{x}(\xi) = \tilde{x}_r^* \mathbb{G}_r(x) \in H^*(X; A)\), where \(\mathbb{G}_r : B_r \to B\) is the usual map into the limit space. If \(M^n\) is a \((B, f)\) manifold, the \(x\)-normal characteristic class of \(M\) is the class \(x(M) \in H^*(M; A)\) defined by \(x(M) = x(v)\) where \(v : M \to B_r\) is a lift of the normal map (of some imbedding defining the \((B, f)\) structure on \(M\)).

Definition: If \(M^n\) is a closed \((B, f)\) manifold and \(x \in H^P(B; A)\), then the \(x\)-characteristic number of \(M\) is the class in \(H^{P-n}(pt; A)\) obtained by evaluating \(x(M)\) on the fundamental class of \(M\). Thus if \(x(M) \in H^P(M; A)\) is represented by a map \(x : \Sigma^i(M/\emptyset) \to A_{p+1}\) and \([M] \in H_n(M; A)\) is represented by a map \(\mu : S^{n+r} \to (M/\emptyset) \cdot A_{\chi}\), then \(\mu[M] = (x(M), [M]) \epsilon H^P(M; A)\) is represented by the map \(S^{n+r+1} \xrightarrow{\Sigma^i \mu} \Sigma^i(M/\emptyset) \cdot A_{\chi} \xrightarrow{\chi} A_{p+1} \cdot A_{\chi} \xrightarrow{\mu P \cdot 1} A_{p+1+r}\).
The usefulness of characteristic numbers in cobordism theory arises from the result of L. S. Pontrjagin: Characteristic cycles on differentiable manifolds, Math. Sb. (N.S.), 21 (63) (1947), 233–284; Amer. Math. Soc. translation 32.

Theorem: If \(x \in H^p(B;A) \) and \(M^n \) is a closed \((B,f)\) manifold, then the \(x\)-characteristic number of \(M \) depends only on the \((B,f)\) cobordism class of \(M \).

Proof: Since \(x\)-characteristic numbers are clearly additive, it suffi
to show that for \(M = \partial W \) one has \(x[M] = 0 \). Letting \(i : M \hookrightarrow W \) be the inclusion one has \(x(M) = i^*x(W) \), so

\[< x(M), [M] > = < i^*x(W), \partial[W, \partial W] > = < \delta i^*x(W), [W, \partial W] > \]

where \(\delta \) is the cohomology coboundary homomorphism induced by the collapse \(d : W/\partial W \to \Sigma(\partial W/\emptyset) \). Since the cohomology sequence

\[H^p(W;A) \xrightarrow{i^*} H^p(\partial W;A) \xrightarrow{\delta} H^{p+1}(W,\partial W;A) \]

is exact, \(\delta i^*x(W) = 0 \); hence \(x[M] = 0 \). **

Remark: Being given fibration sequences \(\overline{E} \xrightarrow{h} B \xrightarrow{r} B_0 \), one may th\(y \in H^*(B,\overline{E};A) \) as a relative characteristic class. Being given a \((\overline{E},f;\text{coh})\) structure on \(\partial M \), one has defined a relative characteristic number \(y[M,\partial M] \in H^*(pt;A) \) since the normal map gives \((M,\partial M) \to (B,\overline{E}) \). To see that such numbers are relative cobordism invariants, one may suppose by additivity that there is a \((B,f)\) manifold \(W \) with \(\partial W = M \cup (-U) \) joined along \(\partial M = \partial U \), with \(U \) a \((\overline{E},f;\text{coh})\) manifold. One
Then has

\[(\omega, \omega W) \xrightarrow{\partial} \Sigma(\omega W/\emptyset) \xrightarrow{\partial} \Sigma(\omega W/U) \xrightarrow{\partial} \Sigma(M/\omega M)\]

Giving \(p_u[M, \omega M] = J_\omega \omega [W, \omega W]\) by the orientation assumption in the

decomposition of \(\omega W\) and \(y(M, \omega M) = \eta^*q_\omega y(W, U)\) where

\[(M, \omega M) \xrightarrow{\partial} (\omega W, U) \xrightarrow{\partial} (W, U)\]

\(y[M, \omega M] = \langle q^*y, J_\omega \omega [W, \omega W]\rangle = \langle \delta J^\omega q_\omega y, [W, \omega W]\rangle\). However, from the exact

sequence of the triple \((\omega W, U, \omega W)\) the composition

\[H^\omega(W, U) \xrightarrow{\partial} H^\omega(\omega W, U) \xrightarrow{\partial} H^\omega(W, \omega W)\]

is zero, so \(y[M, \omega M] = 0\). Note: Taking \(\emptyset\) empty, this reduces precisely to

the closed case.

In addition to the manifold theoretic treatment of characteristic

numbers by using the Thom class to construct fundamental classes, one may

also give homology and cohomology theoretic descriptions of characteristic

numbers which are frequently useful. In particular, these will be needed

later.

As in the construction of the map \(\emptyset\), one has for any \(r\)-plane bundle

\(\gamma\) over a space \(X\) the composition

\[\gamma \xrightarrow{A} \gamma \times \gamma \xrightarrow{ND} X \times T\gamma \longrightarrow (X/\emptyset)_\gamma\]

giving a map \(\emptyset : T\gamma \longrightarrow (X/\emptyset)_\gamma\).

Applying this to the bundle \(f^\omega_r(\gamma^r)\) over \(B_r\), and composing with the

Thom class and inclusion of \(B_r\) in \(B\) gives

\[(1 - U_r) \circ (\overline{g_r} - 1) \emptyset : TB_r \longrightarrow (B/\emptyset)_r\]
inducing on homotopy the homomorphism

$$\Omega_n(B, f) = \lim_{r \to \infty} \pi_{n+r}(\text{TB}_r; A) \to \lim_{r \to \infty} \pi_{n+r}((B/\emptyset)_r A) = H_n(B; A).$$

If \mathcal{M} is a closed (B, f) manifold, so that M/\emptyset maps into B_r/\emptyset under the normal map, one has the commutative diagram

Thus the homotopy homomorphism is the homomorphism sending the cobordism class of a manifold \mathcal{M} into the image under the normal map of the fundamental class of \mathcal{M}. Thus the pairing of homology and cohomology of B into the cohomology of a point gives

$$\Omega_n(B, f) \otimes H^p(B; A) \to H_n(B; A) \otimes H^p(B; A) \to H^{p-n}(pt; A)$$

which coincides with the evaluation of characteristic numbers.

In addition, the composition

$$\text{TB}_r \cdot A_s \xrightarrow{\emptyset, 1} (B_r/\emptyset)_r A_s \xrightarrow{1, \text{U}_r - 1} (B_r/\emptyset)_r A_r A_s \xrightarrow{1, \text{m}_r, \emptyset} (B_r/\emptyset)_r A_{r+s}$$

gives rise to the Thom homomorphism in homology

$$\phi_U : H_j(\text{TB}_r; A) \to H_{j-r}(B_r; A)$$

$$\lim_{s \to \infty} \pi_{j+s}(\text{TB}_r \cdot A_s) \xrightarrow{1} \lim_{s \to \infty} \pi_{j+s}((B_r/\emptyset)_r A_{r+s})$$

determined by the Thom class U. (Note: This is given by $\pi_{*} \circ (\psi U)$ since the map \emptyset is the composition of ψ with the map used in defining c.)

The homomorphism \(\tilde{\Omega}_n(B, f) \to H_n(B; A) \) may then be interpreted as the composition of the Hurewicz homomorphism in \(A \)-homology

\[\tilde{\Omega}(TB; iA) \to H_{n+r}(TB, iA) \]

given by \(TB = TB \to S^0 \to TB \to A_0 \) and the Thom homomorphism determined by \(U \) (at least after letting \(r \) go to infinity).

It is more common to consider the Thom homomorphism in cohomology theory. If one begins with the map

\[TB \to (B_r/\partial B_r) \to (B_r/\partial B_r) \cdot A_r \]

and chooses a map \(\chi : \tau^1(B_r/\partial B_r) \to A_{r+1} \) representing a class \(x_r \in H^p(B_r, iA) \) then the composition

\[\tau^1(TB_r) \to \tau^1(B_r/\partial B_r) \cdot A_r \to A_{r+1} \cdot A_r \to A_{r+1+r} \]

represents a class in \(H^{p+r}(TB, iA) \). This defines the cohomology Thom homomorphism

\[U^* : H^p(B_r, iA) \to H^{p+r}(TB, iA) \]

The construction of \(\phi \) shows that \(U^*(x) = \tau^*(x) \cup U_r \), where \(\tau : \tau^r(B_r) \to B_r \) is the projection and \(U_r : TB \to A_r \) is interpreted as a class \(U_r \in H^r(TB, iA) \).

In particular, for \(x \in H^p(B; A) \) one has the sequence of elements

\[\tau^*(x) \in H^p(B_r, iA), \quad \tau^*(x) \cup U_r \in H^{p+r}(TB, iA). \]

If \(M \) is a closed \((B, f)\) manifold with cobordism class represented by the map \(\phi : S^{n+r} \to TB \), then \(x[M] = \phi^*(\tau^*(x) \cup U_r) \in H^{p+r}(S^{n+r}, iA) = H^p(pt, A) \). (Note: It is immediate that this agrees with the previous \(H^* \) interpretation. All interpretations are really based on the naturality of the map \(\phi \)).
Definition: The Thom class $U : TB \to A$ is said to be an A-oriented if for each point b_x of B_x there is a framing of s^x so that the class determined by $U \circ T_b$ and $\alpha : S^x \to A_x$ are the same in $\tilde{H}^x(S^x; A)$.

Remarks: 1) This is the assertion that the bundles $f^*(s^x)$ are (uniformly) A-oriented in the sense of A. Dold: Relations between ordinary and extraordinary cohomology, Notes, Aarhus Colloquium on Algebraic Topology, Aarhus, 1962.

2) If the class of $\alpha : S \to A$ as an element of $\tilde{H}^0(S^0; A)$ does not have order 2, this gives a preferred orientation to the fiber s^x. If this class has order 2, then all A cohomology is of order 2 and orientation doesn't enter the situation.

Proposition: Let $U : TB \to A$ be an A-orientation, ξ an r-plane bundle over a finite complex X with $\tilde{\xi} : X \to B_x$ a (B_x,f_x) structure on ξ. Then the Thom homomorphism

$$\phi^U : H^p(X; A) \to H^{p+r}(T\xi; A)$$

is an isomorphism.

Proof: The composition $U \circ T_{\xi} : T\xi \to A_x$ defines an A-orientation of ξ. Over any cell D^n of X the bundle ξ is trivial, and D^n being path connected and simply connected the class $U \circ T_{\xi}$ orient the bundle ξ over D^n. Over D^n one then has the Thom space equivalent to $D^n.S^r$, with the Thom homomorphism being just the suspension isomorphism. Thus the Thom homomorphism defines a homomorphism of the A spectral sequence of X into the reduced cohomology A spectral sequence of $T\xi$ which is an isomorphism on E_2, hence also on E_∞. **
Corollary: If $U : T^B \to A$ is an A orientation and M^R is a (B,f) manifold, then the Thom homomorphisms ϕ^U

$$H^p(M;A) \to H^{p+R}(TN;A),$$

$$H^p(\partial M;A) \to H^{p+R}(TN';A), \text{ and}$$

$$H^p(M,\partial M;A) \to H^{p+R}(TN, TN';A)$$

are isomorphisms.

Let N^R be a manifold, and let M be imbedded in H^{n+r} with

$N \subseteq H^{n+r-1}$ in the usual way, and let ν be the normal bundle of M, ν' the normal bundle of ∂M.

Theorem: (Atiyah [14]) The pairs

a) $(M,\partial M)$ and $T\nu$, or
b) (M,∂) and $(T\nu/T\nu')$

are dual in S^{n+r+1}.

[B and C in S^k are dual if B and C are disjoint and each is a strong deformation retract of the complement of the other.]

Proof: Let N be a tubular neighborhood of M in H^{n+r}. Consider H^{n+r+1} as $H^{n+r} \times R$ with $(H^{n+r-1} \cup \ast) \times R \cup H^{n+r} \times \{\ast,\ast\}$ collapsed to a base point \ast.

Consider $(T\nu/T\nu')$ as $(N \times 0 \cup \partial N \times [0,\infty) \cup \ast)$ and then one may collapse the complement which is

$(H^{n+r} \times (\infty,0) \cup (-N) \times [0,\infty)) \cup \text{interior}(N) \times (0,\infty)$

on \ast pt $\cup (M,\partial M) \times 1$ by a strong deformation retract, and conversely, the complement of a point inside $H^{n+r} \times (\infty,0) \cup (-N) \times [0,\infty)$ and $(M,\partial M) \times 1$ may be collapsed onto $(T\nu/T\nu')$ by a strong deformation retraction.
Considering \((M/\partial M)\) as \((M \times 1) \cup = \) one may collapse the complement a strong deformation retract onto the subset
\(\bar{\mathbb{N}} \times 0 \cup \partial \bar{\mathbb{N}} \times [0,2] \cup c,\) where \(c\) is the cone on \(\partial \bar{\mathbb{N}} \times 2\) with vertex some point with last coordinate larger than 2, where
\(\bar{\mathbb{N}} = N - N \cap R^{n+r-1}\). This subset is clearly just \(Tv\). Similarly, removal of this set \(Tv\) gives a set collapsing onto \(M/\partial M\).

Note: All deformations are obtained by radial deformations toward \(p\) in question, and scalar multiplication expansions in the fibers of the normal bundles of \(M\).

If \(B, C \subset S^k\) are disjoint sets as above, let \(p_0 \in S^{k-B} \cup C\) and stereographic projection to map \(B, C\) into \(R^k\) as disjoint subsets. Let
\(f : B \times C \rightarrow S^{k-1}\) by \(f(b, c) = (b-c)/\|b-c\|\). Letting \(b, c\) be base point of \(B, C\) respectively, \(f(B \times C) \cup f(b \times C)\) is a proper subset of \(S^{k-1}\) and \(f\) factors homotopically through a map
\(\tilde{f} : B \cdot C \rightarrow S^{k-1}\).

One then has defined a duality as follows: For \(a \in \widetilde{H}_p(B; A)\) choose representative map \(a : S^{p+1} \rightarrow B - A_1\) and then
\[S^{p+1} \xrightarrow{a} B - A_1 \xrightarrow{\tilde{f}} S^{k-1} \xrightarrow{A_1} A_1^{+k-1}\]
defines a class in \(\widetilde{H}^{k-1-p}(C; A)\), denoted \(D_a\).

Lemma: Let \(b \in B \subset R^k\) with \(B\) an imbedded disc. Then
\(H^*(R^k-b, R^k-B; A) = 0\).

Proof: \(H^*(R^k-b, R^k-B) = H^*(S^k-b, S^k-B)\) by excision. Since \(S^k-b\) and \(S^k-B\) are contractible, \(\widetilde{H}^*(S^k-b) = \widetilde{H}^*(S^k-B) = 0\) and the exact sequence the pair gives the result. **
Corollary: If \(B \subset R^k \) is an imbedded disc then
\[
\| \ M_p(R^k, R^k\setminus B; A) \rightarrow H^{k,p}(B; A) \text{ is an isomorphism.}
\]

Proof: One has the diagram
\[
\begin{array}{cccc}
H_p(R^k, R^k\setminus B) & \rightarrow & H_p(R^k, B') & \rightarrow & H_p(R^k, b) & \rightarrow & H_p(R^k, R^k) \\
D' & \downarrow & D & \downarrow & D'' & \downarrow & D' \\
H^{k-p}(B, b) & \rightarrow & H^{k-p}(B) & \rightarrow & H^{k-p}(b) & \rightarrow & H^{k-p+1}(B, b)
\end{array}
\]

In which the end maps are both isomorphisms since the groups are zero, and to complete the proof one need only check \(D'' \), which is clearly an isomorphism. **

Theorem: (Alexander Duality) For any polyhedral pair \((B, B')\) in \(R^k \),
\[
\| \ M_p(R^k\setminus B', R^k\setminus B; A) \rightarrow H^{k-p}(B, B'; A) \text{ is an isomorphism.}
\]

Proof: By naturality it suffices to consider the case \(B' = \emptyset \), and then may apply a Mayer-Vietoris argument using induction on the number of elements of \(B \), the corollary and the five lemma. **

Theorem: (Spanier-Whitehead duality) For any pair \(B, C \subset S^k \) as above
\[
\| \ M_p(B; A) \rightarrow H^{k-1,p}(C; A) \text{ is an isomorphism.}
\]

Proof: \(D \) is given by the composition of isomorphisms
\[
\tilde{H}(B; A) \cong \tilde{H}(S^k, C; A) \cong \tilde{H}(S^k, S^k, C; A) \cong \tilde{H}(R^k, C; A) \cong \tilde{H}(R^k, R^k, C; A) \cong \tilde{H}(R^k, R^k, C; A) \cong \tilde{H}(R^k, R^k, C; A). \quad \star
\]

Note: See Spanier [110], pages 295 and 462.

Theorem: (Hsiang and Wall [58]) A class \(\alpha \in \tilde{H}^*(T_v; A) \) is a Dold orientation if and only if the class \(D^{-1}(\alpha) \in H_*(M, \partial M; A) \) is an \(A \) orientation in the sense of Whitehead; i.e. for each point \(q \in M - \partial M \) the class in \(H^*(M, \partial M; R) \) obtained by collapsing \(M/\partial M \) onto \(D^N/\partial D^N \) where \(D^N \) is a disc
neighborhood of \(q \) and the class \(D^{-1}(q) \) have Kronecker product the class defined by the unit in \(H^0(\text{pt}; A) \).

Proof: The map \(D^n \to M - \partial M \) given by taking the disc neighborhood \(q \) defines the collapse \(M/\partial M \to D^n/\partial D^n \) which is patently dual to the inclusion of \(TD^n \) in \(T\nu \), but \(TD^n \) is homotopy equivalent to the Thom of a fiber. **

Note: Similarly, the collapse \(S^{n+r} \to \nu/\nu' \) is dual to the map \(q \) to a point.

Corollary: If the Thom class \(U : T\nu \to A \) is an \(A \) orientation, for any \((B,\tau)\) manifold \(M^n \), the fundamental class \([M,\partial M] \in H_n(M,\partial M; A)\) an \(A \) orientation in the sense of Whitehead.

Theorem: (Poincaré-Lefschetz duality) If \(U : T\nu \to A \) is an \(A \)-orientation, then for any \((B,\tau)\) manifold \(M^n \) one has isomorphisms

\[
\begin{align*}
H^q(M; A) & \to H_{n-q}(M,\partial M; A) \\
H^q(M,\partial M; A) & \to H_{n-q}(M; A)
\end{align*}
\]

given by the cap-product with the fundamental class \([M,\partial M]\).

The cap-product relation is given by

\[
\begin{array}{c}
u: S^{n+r} \to TH/\nu' \to (M,\partial M)_A \to (M,\partial M)_A \to (M,\partial M)_A
\end{array}
\]

where \(A \) is the map given from the diagonal. If \(\xi^1(M/\partial) \to A_{q+1} \) represents a class in \(H^1(M; A) \), the cap product is represented by

\[
\begin{array}{c}
S^{n+r+1} \to (M,\partial M) \to (M,\partial M) A \to (M,\partial M) A \to (M,\partial M) A
\end{array}
\]

A similar formula defines the other homomorphism.

Proof: These isomorphisms are just the composite of Spanier-Whitehead duality and the Thom isomorphisms. **
Chapter IV

The Interesting Examples - A Survey of the Literature

Since cobordism theory is a classificational tool, the interest really lies in the investigation of specific classification problems. Numerous examples have been considered and hence a vast literature exists, with few truly central theoretical tools, largely due to the idiosyncrasies inherent in the examples. The purpose of this chapter is to list many of these examples and indicate briefly what is known and where to find it in the literature.

Example 1: Framed cobordism: \(\Omega^r_n \).

Historically: First application of cobordism theory, intended to study the homotopy of spheres.

Objects: Framed manifolds, i.e. manifolds with an equivalence class of trivializations of the normal bundle.

Determination: \((B,f)\) cobordism with each \(B_r \) contractible (classifying \(G(r) \) for the identity subgroup \(1_r \) of \(G_r \)), so \(\Omega^r_n = \lim_{r \to \infty} \Omega^{n+r}(S^r) \) is the stable homotopy of spheres (Pontrjagin [101]).

Results: A vast literature exists but is largely unrelated to cobordism. Of surgery (Milnor [83], Wallace [137]) to construct framed cobordisms that representatives frequently may be taken to be homotopy spheres (Novvaire-Milnor [61]). Recent work of Conner and Floyd [41] has placed the \(e \)-invariant of Adams [4] in a cobordism framework.

Example 2: Unoriented cobordism: \(\Omega_n \).

Historically: The turning point for cobordism theory.

Objects: All compact manifolds, i.e. the category \((\mathcal{O}, 3, 1)\).
Determination: Equivalent to \((B,f)\) cobordism with \(B_r = B_{0r}\) and \(f_r\) the identity map. (Thom [127]).

Calculation: \(\Gamma_\ast\) is the polynomial ring over \(\mathbb{Z}_2\) on classes \(x_i\) of dimension \(i\) for each integer \(i\) not of the form \(2^g - 1\). Even dimensional generators may be taken to be the classes of real projective spaces. (Thom [127]). Odd dimensional generators were constructed by Dold [143].

Characteristic numbers: \(\mathbb{Z}_2\) cohomology characteristic numbers give complete invariants (Thom [127]). All relations among these numbers (expressed tangentially) are given by Wu's formulae (Wu [142]) relating to the action of the Steenrod algebra (Dold [144]).

Example 3: Complex cobordism: \(\Omega^U_\ast\).

Objects: Stably almost complex manifolds – manifolds with an equivalence class of complex vector bundle structures on the normal bundle.

Determination: \((B,f)\) cobordism with \(B_r = B_{2r+1} = BU\) the classifying space for the unitary group \(U\) (limit of complex Grassmann manifolds).

Calculation: \(\Omega^U_\ast\) is the integral polynomial ring on classes \(x_i\) of dimension \(2i\) for each integer \(i\), with \(x_i\) represented by a projective complex algebraic variety (Milnor [82], Novikov [92, 93]). In fact, every class is represented by such a variety (Milnor; see Hirzebruch [54] or Thom [129]).

Characteristic numbers: Cobordism is determined by integral cohomology characteristic numbers (Milnor [82]). All relations among these numbers are given by the Atiyah-Hirzebruch [17] form of Riemann-Roch theorem relating complex K-theory to rational cohomology (Stong [117], Hattori [52]).

Relation to \(\Gamma_\ast\): \(\Omega^U_\ast\) maps onto the squares of classes of \(\Gamma_\ast\) (Milnor [87]).
Relation to Ω_*^R: Every framed manifold bounds a complex manifold. The class homomorphism $\Omega_*(BU, f), (Bl, f)) \rightarrow Q$ of the relative cobordism group induces the Adams ϵ homomorphism (Conner and Floyd [44]).

Example 4: Oriented cobordism: Ω_*^{SO}.

Objects: Oriented manifolds.

Determination: (B, f) cobordism with $B = BSO$ the classifying space for the special orthogonal group SO (limit of Grassmannians of oriented planes) (Thom [127]).

Calculation: $\Omega_*^{SO} \oplus Q$ is the rational polynomial ring on classes x_{4i} of the complex projective spaces $CP(2i)$ (Thom [127]). Ω_*^{SO} has no odd torsion (Milnor [84], Averbuh [21]) and $\Omega_*^{SO}/\text{Torsion}$ is a polynomial ring over Z on i dimensional generators (Milnor [84], Novikov [92, 93]). $\Omega_*^{SO}/\text{Torsion}$ has only torsion of order two and the quotient $\Omega_*^{SO}/2\Omega_*^{SO}$ may be described as follows: Let \mathcal{W}_* be a Z_2 polynomial ring on classes x_{2k-1} for k not a power of 2, and x_2^{i+2}. Let $\Omega_*^{SO}/2\Omega_*^{SO}$ be a derivation given by $\partial x_{2k} = x_{2k-1}$, $\partial x_{2k-1} = 0$, $\partial x_2^{i+2} = 0$. Then $\Omega_*^{SO}/\text{Torsion}$ is the kernel of ∂ and the image of $\Omega_*^{SO}/2\Omega_*^{SO}$ will be the image of $\Omega_*^{SO}/\text{Torsion}$ (Wall [136]).

Characteristic numbers: Cobordism is determined by Z and Z_2 homology, all relations among the Z_2 numbers being given by the relations of W_* together with the vanishing of the first Stiefel-Whitney class (Wall [130]). All relations among the Z numbers are given by the Riemann-Roch theorem (Stong [117]).

Relation to Ω_*^U: Ω_*^U maps onto $\Omega_*^{SO}/\text{Torsion}$ (Milnor [82]).

Relation to γ_*^U: $\gamma_*^{SO}/2\gamma_*^{SO}$ is mapped isomorphically to the subring $\gamma_*^{SO}/2\gamma_*^{SO}$ described above, the γ_i being (well-chosen) generators of γ_*^U (Wall [130]).
Example 5: \(w_1 \) spherical cobordism: \(\mathcal{W}_n \)

Historically: This cobordism theory arises in Wall's determination of oriented cobordism, and was completely determined by Wall [130].

Objects: Manifolds for which the first Stiefel-Whitney class \(w_1 \) is the reduction of an integral cohomology class; is induced by a map into the sphere \(S^1 \).

Determination: \((\mathcal{B},f)\) cobordism with \(\mathcal{B} \) the total space of the fibration over \(BO_\tau \times S^1 \) induced from the path fibration over \(K(Z_2,1) \) by the map realizing the cohomology class \(w_1 \sigma \) \(\in H^1(S^1; Z_2) \) being the generator.

Calculation: Given by the polynomial ring \(\mathcal{W}_n \) described above.

Characteristic numbers: \(Z_2 \) cohomology determines cobordism, all relations being given by those of \(\mathcal{W}_n \) together with the vanishing of \(w_2 \).

Relation of \(\gamma_n \) and \(\Omega_\tau \): Maps monomorphically into \(\gamma_n \), with describing the image of \(\Omega_\tau \) as above.

Example 6: Bordism: \(\Omega_n(\mathcal{B},f)[X,A] \).

Objects: Let \(F : (\mathcal{B},f) \rightarrow \mathcal{X} \) be the forgetful functor from the cobordism category of \((\mathcal{B},f)\) manifolds to the category of topological spaces which takes the underlying topological space. One then has the cobordism category of \((\mathcal{B},f)\) manifolds 'over' a space \(X \). If \(A \subset X \) is a subspace one has a functor \(J : (\mathcal{B},f)/A \rightarrow (\mathcal{B},f)/X \) induced by the inclusion.

Determination: \((\mathcal{B},f)/X\) cobordism is just the cobordism theory based on the fibration \(\mathcal{B}_\tau \times X \overset{f}{\longrightarrow} \mathcal{B}_\tau \rightarrow BO_\tau \), \(\tau \) being the projection. The relative bordism group of the pair \((X,A)\) is \(\Omega_n(\mathcal{B},f)[X,A] = \Omega_n(\mathcal{J},\mathcal{A}) \), where is the piecing together previously described, and is given by

\[
\lim_{n \rightarrow \infty} \Omega_n(T_B \tau^r(X/A)) = H_n(X,A;\mathbb{T}_B)
\]
Historically: These groups were originally defined by Atiyah [13], who called them the \((B,f)\) bordism groups of the pair \((X,A)\). He observed the name cobordism for the dual cohomology theory with coefficients in the spectrum \(E_2\).

\(\tilde{\gamma}_\ast(X,A)\): The unoriented bordism of a pair \((X,A)\) is essentially trivial, being isomorphic as \(\tilde{\gamma}_\ast\) module to \(\tilde{\gamma}_\ast \otimes H_\ast(X,A;\mathbb{Z}_2)\). Cobordism is determined by \(\mathbb{Z}_2\) cohomology. (See Conner and Floyd [36]). Operations in this theory were determined by Landweber [63, 64]. Used by Brown and Peterson [29] to study relations among Stiefel-Whitney classes.

\(\Omega_{SO}^\ast(X,A)\): Studied extensively by Conner and Floyd [36]. One has \(\Omega_{SO}^\ast(X,A)\) isomorphic to \(H_\ast(X,A;\mathbb{Z}_2)\) modulo the Serre class of finite groups of odd order. If all torsion of \(H_\ast(X;\mathbb{Z})\) is of order 2, then \(\mathbb{Z}_2\) cohomology characteristic numbers determine cobordism class in \(\Omega_{SO}^\ast(X)\). Künneth theorems for this homology theory are studied in Landweber [61]. An interesting application is the use of \(\Omega_{SO}^\ast(BU)\) in the proof of the Atiyah-Singer index theorem (Atiyah-Singer [20], Palais [97]).

\(\Omega_{U}^\ast(X,A)\): Studied by Conner and Floyd [35, 37]. If \(X\) has no torsion in its homology \(\Omega_{U}^\ast(X) = \Omega_{U}^\ast \otimes H_\ast(X;\mathbb{Z})\) and cobordism is determined by natural cohomology characteristic numbers. The relation of \(\Omega_{U}^\ast(X)\) to the complex K-theory of \(X\) is studied in Conner and Floyd [41]. Operations in \(\Omega_{U}^\ast\) theory are studied in Novikov [96].

Example 7: Special unitary cobordism: \(\Omega_{SU}^{SU}\).

Objects: Manifolds with an equivalence class of special unitary structures on the normal bundle.

Determination: (\(B,f\)) cobordism in which \(B_{2r} = B_{2r+1} = BSU_r\) is the classifying space for the special unitary group \(SU_r\).
Calculation: First partial results were by Novikov [33]. The main structure was determined by Conner and Floyd [39], who proved that Ω^SU_n is torsion free except for $n \equiv 1$ or 2 modulo 8, and $\Omega^\text{SU}_{8k+1} \rightarrow \Omega^\text{SU}_{8k+2}$ is a \mathbb{Z}_2 vector space whose dimension is the number of partitions of k. The multiplicative structure has been described by Wall [135].

Characteristic numbers: KO-theory characteristic numbers determine cobordism class (Anderson, Brown, and Peterson [6]). Ignoring torsion, integral cohomology suffices, and all relations among these follow from appropriate Riemann-Roch theorems (Stong [117]).

Relation to Ω^U_+: The kernel of $\Omega^\text{SU}_* \rightarrow \Omega^U_*$ is the torsion subgroup.

The image was described by Conner and Floyd.

Relation to Ω^fr_*: The image of Ω^fr_* in Ω^SU_* is zero except in dimensions $3k+1$ and $8k+2$ where it is \mathbb{Z}_2 (Anderson, Brown, and Peterson [6]).

Relation to \mathcal{T}_*: The image of Ω^SU_* in \mathcal{T}_* is the squares of classes containing an oriented manifold all of whose Pontrjagin numbers divisible by $\frac{T}{7}$ are even. (Conner and Landweber [42]).

Example 8: c_1 spherical manifolds: \mathcal{W}^U_*.

Historically: The analog in the complex case of \mathcal{W}_*, used by Conn and Floyd in computation of Ω^SU_*.

Objects: Stably almost complex manifolds for which the first Chern class c_1 is induced by a map into a sphere.

Determination: (B,f) cobordism in which $B_{2r} = B_{2r+1}$ is the total space of the fibration over $S^2 \times BU_r$ induced from the path fibration over $K(\mathbb{Z},2)$ by the map realizing $c_1 = 1 - 1 \otimes c_1$.

Calculation: Conner and Floyd determine \mathcal{W}^U_* in [39].
Characteristic numbers: Integral cohomology characteristic numbers determine cobordism class.

Relation to u_*^U: W_*^U maps monomorphically into u_*^U with image all classes for which numbers divisible by c_1^2 are zero.

Relation to T_7: W_*^U has image in T_7 precisely the squares of classes of W_* (Stong [118], Conner and Landweber [143]).

Example 9: Spin cobordism: u_*^{Spin}.

Objects: Manifolds with an equivalence class of Spin structures on the normal bundle. ($Spin_n$ is the simply connected covering group of SO_n; see Atiyah, Bott, and Shapiro [16] and Milnor [85]).

Determination: (B,r) cobordism with B^r the classifying space of $Spin$: i.e. the two-connective covering space of BSO_r.

Calculation: Preliminary results were by Novikov [93]. The main calculation is due to Anderson, Brown, and Peterson [7, 8] who showed that all torsion is of order 2, being of two types: that arising by products with a framed S^1 (similar to the SU case) and that which maps monomorphically into unoriented cobordism. $u_*^{Spin}/$Torsion is the subring of an integral polynomial ring on classes x_{4i} (dimension $4i$) consisting of all classes of dimension a multiple of 8 and twice the classes whose dimension is not a multiple of 8.

Characteristic numbers: Cobordism is determined by Z_2 cohomology and KO-theory characteristic numbers. The relations in integral cohomology all follow from the Riemann-Roch theorem.

Relation to u_*^{fr}: The image of framed cobordism is the same as the image of framed in SU cobordism.
Relation to \mathbb{S}_0: The kernel of the map $\Omega_*^{\text{Spin}} \to \Omega_*^{\text{SO}}$ is in dimension $8k + 1$ and $8k + 2$ only and is the part generated by framed manifolds.

Relation to \mathcal{N}_*: The image in \mathcal{N}_* is all classes for which the characteristic numbers divisible by w_1 and w_2 are zero. Preliminary work in this direction was done by Milnor [87], P. G. Anderson [9], and Stong showing that the class of the square of an oriented manifold is the class of a Spin manifold.

Example 10: Spinc, Pin, and Pinc cobordism: $\Omega_*^{\text{Spin}^c}$, Ω_*^{Pin}, and $\Omega_*^{\text{Pin}^c}$

Objects: Manifolds with an equivalence class of Spinc, Pin, or P structures (see Atiyah, Bott, and Shapiro [16]).

Determination: (B,f) cobordism with the obvious classifying spaces (BSpinc is BSO with w_2 made reduced integral, BPinc is BO with made reduced integral, and BPin is BO with w_2 killed).

Calculation: Due to Anderson, Brown, and Peterson (announced in [8]) largely as a byproduct in the study of Spin. $\Omega_*^{\text{Spin}^c}$/Torsion is discussed in Stong [117].

Remarks: Results have not yet been published for Pin and Pinc. Groups are 2 primary, having elements of arbitrarily large order. Images \mathcal{N}_* are those classes for which the appropriate Stiefel-Whitney numbers.

Note: Pin gives the first example of a theory for which the tangent and normal structures are not of the same type. Specifically, if M has Pin normal bundle, then the tangent bundle has $w_2 = w_1^2$ and hence the tangent bundle does not necessarily have a Pin structure.
Example 11: Complex-Spin cobordism: Ω^c_{n}.

Objects: Manifolds with both a stably almost complex and a Spin structure.

Determination: (B,f) cobordism with B the fibration over BU issued from the fibration of $B\text{Spin}$ over $B\text{SO}$.

Calculation: Ω^c_{n} is the direct sum of Ω^SU_{n} and a free abelian group (Stong [123]).

Remark: Useful in trying to understand the relationship between SU and Spin cobordism.

Example 12: Symplectic cobordism: Ω^Sp_{n}.

Objects: Manifolds with an equivalence class of quaternionic vector bundle structures on the normal bundle.

Determination: (B,f) cobordism with $B_{4i} = B_{4i+1} = \ldots = B_{4i+3}$ the classifying space $B\text{Sp}_r$ of the symplectic group Sp_r of unitary quaternionic $r \times r$ matrices (limit of quaternionic Grassmann manifolds).

Calculation: Novikov [93] showed that $\Omega^\text{Sp}_{n} \otimes \mathbb{Z}[1/2]$ is polynomial in 41 dimensional generators and calculated the low dimensional groups. Šnurevičius [75] calculated more low groups using the Adams spectral sequence and computations are still in progress using that method.

Relation with γ_4: The image in unoriented cobordism is zero in dimensions less than 24 (Stong [123]).

Remark: The corresponding bordism theory is studied in Landweber [69].

Example 13: Quasi-symplectic cobordism.

Objects: Manifolds for which the normal bundle is a sum of tensor products of quaternionic vector bundles. (Note: The tensor product of quaternionic bundles in only a real bundle.)
Remark: Introduced by Landweber [67], this cobordism is the subgroup of \mathcal{T}_s consisting of the fourth powers of all classes. This was intended to fill the gap left by the fact that Ω^4_p maps into the fourth powers but not onto them (as one might at first guess). In particular, quaternionic projective spaces are quasi-symplectic but not symplectic (see Hirzebruch [54], Conner and Floyd [39], and Kraines [62]).

Example 14: Clifford algebra cobordism: $\Omega^p_{s,q}$.

Objects: Manifolds together with an equivalence class of actions of a Clifford algebra associated with the quadratic form $\sum_{i=1}^{p} x_i^2 - \sum_{i=p+1}^{q} x_i^2$ on the normal bundle (see Atiyah, Bott, and Shapiro [16]).

Determination: (B,f) cobordism for an appropriate classifying space. These may be decomposed into somewhat more standard objects.

a) $(p,q) = (0,0)$ is \mathcal{T}_s.

b) $(p,q) = (0,1)$ is Ω^0_s.

c) $(p,q) = (0,2)$ is Ω^{Sp}_s.

d) $(p,q) = (0,3)$ is $\Omega^{Sp}(BSp)$.

e) $(p,q) = (1,0)$ is $\mathcal{T}_s(BO)$.

f) $(p,q) = (2,0)$ is cobordism of manifolds for which the normal bundle is the complexification of a real bundle.

g) $(p,q) = (1,1)$ coincides with $(2,0)$.

Remarks: The odd primary structure is easily computable. One can get upper bounds for images in \mathcal{T}_s, describable as at most 2^k-th powers of elements of \mathcal{T}_s. An unstable version of the case (f) has been studied by R. Wells, the unstable form occurring in an exact sequence with immersion cobordism (see below).
Example 15: Self-conjugate cobordism: \(\Omega_*^{SC} \).

Objects: Manifolds having a stably almost complex structure, together with an isomorphism of that structure with its complex conjugate.

Determination: \((B,f)\) cobordism in which \(B\) is the classifying space for self-conjugate \(K\)-theory, \(BSC\), defined by Anderson [5] and Green [51].

Calculation: When tensored with \(\mathbb{Z}[1/2]\) this coincides with the symplectic bordism of \(Sp\) (studied in Landweber [68]) which is the symplectic self-conjugate cobordism analog. Except for low dimensions the 2-primary structure is unknown. (Smith and Stong [108]).

Remark: This provides a synthesis of symplectic and Clifford algebra \((2,0)\)-type cobordism.

Example 16: Exotic theories associated with classical groups.

Objects: \((B,f)\) manifolds with \(B\) formed as follows: Let \(G\) and \(H\) be topological groups, and \(\theta : G \rightarrow H\), \(\rho : G \rightarrow 0\) representations (0 being the orthogonal group). Let \(H/G\) denote the generalized homogeneous space which is the fiber of \(H/G \rightarrow BG \rightarrow BH\). Then \((B,f) = (H/G, \pi)\) where \(\pi\) is the composite \(H/G \rightarrow BG \rightarrow BO\).

Calculation: If \(\rho\) and \(\theta\) are inclusions of classical groups, this reduces to the framed bordism of the space \(H/G\). The case in which \(\theta\) is given by complexification is studied in Smith and Stong [109]. The 0-primary structure tends to be the framed bordism of \(H/G\) while the 2-primary structure is a direct summand of \(\Omega_*^{G}\).

Remarks: Many standard cases may be expressed in this form, as for example \(SO\) cobordism. When \(G = H = U\) is the unitary group and \(\theta\) is complexification \(H/G\) is the second loop space of \(BSC\), so that one obtains theories related to self-conjugate cobordism.
Example 17: \(k \)-connective and \(k \)-parallelizable cobordism.

Objects: \(k \)-connected and oriented manifolds.

Determination: When connectivity is large with respect to dimension these are groups of homotopy spheres (see Kervaire–Milnor [61]). In the other cases they coincide with \(k \)-parallelizable cobordism, given by \((B, f) \) cobordism in which \(B_x \) is the \(k \)-connective cover of \(BO_x \). Relative groups and images for one group in the others are particularly intriguing.

Remarks: Next to nothing is known, and the problem is hard (the case \(k = 2 \) is Spin cobordism which isn’t easy). Images in unoriented cobordism are zero in low dimensions (but higher than might be expected) (Stong [115, 116]). The complex analog is studied in Lashof [71].

Example 18: Wu class cobordism: \(\Omega_{s} v_{k} \).

Objects: Manifolds with a 'reduction' killing the Wu class \(v_{k} \).

Determination: \((B, f) \) cobordism with \(B_x \) the total space of the fibration over \(BO_x \) induced from the path fibration over \(K(Z_2, k) \) by the map realizing the Wu class \(v_{k} \).

Remarks: Defined and used by W. Browder [25] in work on the Arf-Kervaire invariant. Similar questions of killing classes are studied in Lashof [71] and Peterson [98].

All of the above examples are basically given by manifolds, and there has been no significant problem involved in determination of the theory.

The next group of examples are not in this pattern.

Example 19: Cobordism of pairs: \(\Omega_{n, k}(B, f; G_{n, k}) \).

Objects: A \((B, f) \) manifold \(M^n \) with a submanifold \(V^k \) of \(M \) whose normal bundle in \(M \) is reduced to the group \(G_{n, k} \).
Determination: Studied by Wall [131], the problem requires only a \((B,f)\) cobordism of \(M\) and a \((B \times BG_{n-k}, f \times 1)\) cobordism of \(V\) separately. This may be phrased as \((B,f)\) bordism of the space \(TBG_{n-k}\).

If \(G_{n-k}\) is the identity group \(1_{n-k}\) this is the cobordism of the category \(\text{Fun}(\sigma \mathcal{C}, (B,f))\) where \(\sigma \mathcal{C}\) has two objects \(D\) and \(R\) and with \(\text{Map}(D,D) = \{1_D\}, \text{Map}(R,R) = \{1_R\}, \text{Map}(D,R) = \{x\},\) and \(\text{Map}(R,D) = \emptyset\); i.e., the category of maps in the category \((B,f)\) (recall that maps are embeddings with trivialized normal bundle).

Example 20: Cobordism of immersions: \(\mathcal{N}_k(k)\)

Objects: Manifolds together with an immersion in Euclidean space moving codimension \(k\).

Determination: Studied by Wells [137]. Using Hirsch's work [53] on immersions this reduces to the stable homotopy of Thom spaces of finite classifying spaces; i.e., \(\mathcal{N}_n(k) \cong \pi^S_{n+k}(TB_{n+k})\). This is \((B,f)\) cobordism in which \(B_r = BO_k\) for all \(r \geq k\).

Calculation: Results are available in low dimensions; i.e., near \(n = k\).

The case \(k = 1\) is the stable homotopy of projective space, which has been studied by Liulevicius [74].

Example 21: Cobordism of maps: \(\mathcal{N}(m,n)\).

Objects: Maps of \(m\)-dimensional manifolds into \(n\)-dimensional manifolds

Determination: Cobordism of \(\text{Fun}(\sigma \mathcal{C}, \emptyset)\) with \(\sigma \mathcal{C}\) as in example 19. This reduces to the bordism group \(\lim_{r \to \infty} \mathcal{N}_n(\mathbb{R}^m, TB_{r+n})\), \(r\) being loop space. This is computable and cobordism is determined by \(Z_2\) cohomology characteristic numbers easily obtained from the map itself. (Stong [119]).
Remarks: One may impose additional structure on the manifolds. Interesting variants are self-maps (σ has one object X with Map(X,X)) and diffeomorphisms (σ has one object X with Map(X,X) = Z). The latter is cobordism of fibrations over S¹ (take the mapping torus), which has been studied by Conner and Floyd [36], Burdick [31], Browder and Levine [26], and Farrell [49]. (These all take a slightly different point of view; nothing is known about these cobordism problems).

Example 22: Cobordism with group action: \(\Omega \sigma (\mathfrak{F}(\sigma, G), \Omega \sigma (G)) \).

 Objects: Manifolds on which one has a differentiable action of the group G (finite or compact Lie group).

 Determination: As previously noted, if \(\sigma \) has one object X with Map(X,X) = G, a finite group, then \(\mathfrak{F}(\sigma, G) \) gives the cobordism category of unrestricted G actions. If G is assumed to act freely on a manifold M (gx = x implies g = 1) one has a principal differentiable G-bundle \(G \rightarrow M \rightarrow M/G \) which is classified by a map \(M/G \rightarrow BG \). Conversely, if \(M \rightarrow BG \) is any map of a manifold into the classifying space, one has induced a principal differentiable G-bundle over M, G acting freely on the total space. The cobordism of free G actions, \(\Omega \sigma \), is then identified with the bordism groups of \(BG \). Variants may be found by restricting the isotropy groups \(G_x = \{ g \in G | gx = x \} \) to lie in some family of subgroups.

 Remarks: The groups \(\Omega \sigma (G) \) may be handled by bordism methods. Less restrictive group actions are usually treated by means of exact sequences relating theories. The standard method involves the cobordism analysis of the fixed point sets and their normal bundles.
The primary workers in this area are Conner and Floyd [35, 36, 37, 40] (see also Conner [33]), who initiated this method of studying group actions. Other work may be found in Anderson [10], Boardman [22], Hoo [57], Landweber [69, 70], Stong [120, 122], and Su [124].

In all of the preceding examples the manifolds used have been differentiable. Many of the easy ideas carry over at once to non-differentiable manifolds, but there are technical problems to be overcome.

Example 23: Piecewise linear cobordism: $\Omega^a_{PL}, \Omega^a_{SPL}$.

Objects: Piecewise linear manifolds.

Remarks: Every differentiable manifold is triangulable (J. H. C. Whitehead [139], see also Munkres [91]), but a given PL manifold may have distinct differentiable structures (Milnor [77]) or no differentiable structure (Kervaire [60]). This leads one to consider cobordism of PL manifolds.

Determination: The notion of vector bundle is replaced by microbundles (Milnor [86]), giving a Pontrjagin-Thom construction analogous to the differentiable case (Williamson [140]). Thus unoriented and oriented cobordism groups are the stable homotopy groups of Thom spectra TEPL and TESPL.

Calculation: Explicit computation of cobordism groups have been made by Wall [133] (oriented and unoriented in dimensions ≤ 8) and Williamson [140] (oriented in dimensions ≤ 18, ignoring 2-primary difficulties above dimension 9). Browder, Milgram, and Peterson [27] have shown that $\Omega^a_{PL} \cong \pi_0 \mathcal{C}$, \mathcal{C} being the dual of a Hopf algebra factor of the Ω^a_{PL} cohomology of BPL. The groups $\Omega^a_{SPL} \otimes \mathbb{Q}$ form a polynomial ring on 41-dimensional generators and $\Omega^a_{SPL}/\text{Torsion}$ is conjectured to be a polynomial ring over \mathbb{Z} (true in dimensions ≤ 12).
Characteristic numbers: $\widetilde{\nu}_s^\text{PL}$ is detected by its \mathbb{Z}_2 cohomology characteristic numbers (Browder, Liulevicius, and Peterson [27]). Stiefel Whitney classes were defined in the combinatorial case by Wu and Thom [126], but do not give all \mathbb{Z}_2 characteristic classes. Adams [2] showed that there are no new relations among Stiefel-Whitney numbers. Rational characteristic classes (called Pontrjagin classes) were defined in the combinatorial case by Thom [128] and Rohlin and Švarc [106]. Recent work has been done on the integral (non-torsion) cohomology of BSPL by Brunfie and Sullivan (unpublished).

Example 24: Topological cobordism: $\tilde{\nu}_s^\text{Top}, \nu_s^\text{STop}$.

Objects: Topological manifolds.

Remarks: Of great interest, but practically nothing is known. This primarily due to lack of transversality, hence of a Pontrjagin-Thom construction. What is known follows from the existence of classifying spaces BTop and BSTop for topological microbundles, giving a homomorph $\tilde{\nu}_s^\text{Top} \to \nu_s^\text{S(TBTop)}$, hence characteristic numbers. The \mathbb{Z}_2 characteristic classes are known to include Stiefel-Whitney classes (Thom [126]) with no new relations among their numbers (Adams [2]) so that γ_γ is a direct summand of $\tilde{\nu}_s^\text{Top}$. Rational characteristic classes exist to map onto Pontrjagin classes (Novikov [95]), so that $\bar{\nu}_s^\text{SPL} \otimes \mathbb{Q} = \nu_s^\text{SO} \otimes \mathbb{Q}$ is a direct summand of $\nu_s^\text{STop} \otimes \mathbb{Q}$.

Example 25: Cobordism of Poincaré duality spaces: $\bar{\nu}_s^F, \nu_s^\text{SF}$.

Objects: Finite CW pairs satisfying Poincaré-Lefschetz duality.

Remarks: Initiated by Wall's question (see Novikov [94] page 152) at the Seattle conference, 1963. One has normal spherical fibrations (Spivak [111]) and hence maps into a classifying space BF, BSF (Stasheff [112]).
In the map from cobordism to the homotopy of the Thom spectrum is not an isomorphism (in the oriented case the index is an invariant of infinite order, but the homotopy groups are finite). The cohomology of BF has been studied by Milnor [59] and Gitler and Stasheff [50]. Examples are known of Poincaré duality spaces not having the homotopy type of manifolds (Gitler and Stasheff [50]).

Example 26: Cobordism of manifolds with singularity: Ω_\ast^C.

Objects: Manifolds with boundary and a decomposition of the boundary in the form $A \cup (B \times C)$, A and B being manifolds with boundary and C being a closed manifold ($\partial A = \partial (B \times C)$), the boundary of this object being A with boundary decomposition given by $\partial B \times C$.

Remarks: Introduced by Sullivan in studying the Hauptvermutung [125], and called 'introduction of a singularity of type C'. Successions of this operation may be performed (interpreting the term manifold above as 'object!')

The main result is an exact sequence relating the theories before and after adding the singularity. Of particular interest is the case when C has n points ($C = \mathbb{Z}_n$) on oriented manifolds, when this becomes the usual cobordism with \mathbb{Z}_n coefficients (as homology theory).

Finally, there is an example of a cobordism category involving no spaces, which is of interest in that one need not think of cobordism as a manifold theoretic phenomenon.

Example 27: Cobordism of algebras with duality: \mathcal{M}_\ast^{alg}.

Objects: Let C be the category whose objects are 7-tuples $(M, M', H, \mu, \nu, i, j, \delta)$ in which H and H' are finite dimensional (as \mathbb{Z}_2 vector spaces) graded unstable left algebras (commutative with unit) over the Steenrod algebra \mathcal{A}_2, H' is a graded unstable left \mathcal{A}_2 module
(finite dimensional over \mathbb{Z}_2) and an H' module such that

$$\text{Sq}^i(h'h'') = \sum_{j+k=i} \text{Sq}^j(h')\text{Sq}^k(h'')$$

if $h' \in H'$, $h'' \in H''$; i,j,k are

A_2 module homomorphisms of degree $0,0,1$ such that

$$
\begin{array}{ccc}
H' & \overset{i}{\rightarrow} & H \\
\downarrow & & \downarrow \\
H'' & \overset{j}{\rightarrow} & \delta
\end{array}
$$

is exact, i being an algebra homomorphism, j an H' module homomorphism and $\delta(h(h')) = \delta h' h$, $h \in H$, $h' \in H'$; and $\mu : H'^k \rightarrow \mathbb{Z}_2$ (k is called the dimension) is a vector space homomorphism so that the pairings

$$H' \otimes H'' \rightarrow H'' \overset{j}{\rightarrow} \mathbb{Z}_2$$

and $H \otimes H \rightarrow H \overset{\delta}{\rightarrow} \mathbb{Z}_2$ are non-singular.

A map $f : (H, H', H'') \rightarrow (H_0, H'_0, H''_0)$ (ignoring the maps) is a triple (f, f', f'') of homomorphisms $f : H_0 \rightarrow H$, $f' : H'_0 \rightarrow H'$, $f'' : H''_0 \rightarrow H''$ (with all algebraic structures preserved) such that the maps of the diagram commute.

The boundary of the septuple $(H, H', H'', i, j, \delta, \mu)$ is $(0, H, H, 0, 1, 0, i, 0)$ and its inclusion is $(0, i, 0)$.

Determination: This cobordism category was studied by Brown and Peterson [29]. It is analogous to the cohomology of a pair consisting of a manifold and its boundary. In fact, the cohomology functor

$H^* : (\mathcal{C}, \partial, i) \rightarrow (\mathcal{C}, \partial, i)$

is a good cobordism functor (Note: This is covariant since maps in \mathcal{C} are reversed from the usual direction).

Following Adams [2] one has a classifying algebra for the characteristic classes defined by the Steenrod algebra (isomorphic to the \mathbb{Z}_2 cohomology of BO). Brown and Peterson have shown that H^* induces isomorphisms of the cobordism groups.
Although not properly cobordism theories in the cobordism category sense, there are similar equivalence relations obtained by defining two manifolds to be equivalent if they bound (jointly) some manifold with additional structure. Two examples of this are:

Pseudo-example 1: h-cobordism

Two compact manifolds V and V' are h-cobordant if there is a compact manifold W with $3W = V \cup V'$ such that both V and V' are deformation retracts of W. See Milnor [88] for details of this theory.

Pseudo-example 2: Cobordism with vector fields

Two (oriented) closed manifolds V and V' are equivalent if there is a compact (oriented) manifold W with $3W = V \cup (-V')$ and a non-Singular tangent vector field on W which is interior normal along V and exterior normal along V'. This was studied by Reinhart [102] who introduced this cobordism in order to make the Euler class a 'cobordism' invariant.

In the unoriented case, two manifolds are 'cobordant' if and only if they have the same Stiefel-Whitney numbers and Euler characteristic. In the oriented case, two manifolds V^n and V'^n are 'cobordant' if and only if they have the same Stiefel-Whitney numbers and Pontrjagin numbers and

a) $(n \neq 4k+1)$ the same Euler characteristic

b) $(n = 4k+1)$ the manifold W with $3W = V \cup (-V')$ has even Euler characteristic. [This only depends on V and V', not on the choice of W.]

It should be noted that in both of these examples the additional structure on the manifolds with boundary is not inherited by the boundary.
Chapter V

Cohomology of Classifying Spaces

In order to study the interesting examples of cobordism theories it is essential to have a detailed knowledge of the cohomology of the classifying spaces for the classical Lie groups.

Vector Bundles

Let K be one of the fields \mathbb{R} (real numbers), \mathbb{C} (complex numbers), \mathbb{H} (quaternions). Let k be the dimension of K as vector space over the reals.

Definition: A K vector bundle ξ is a 5-tuple $(B,E,p,+,\cdot)$ in which B and E are topological spaces, $p : E \to B$ is a continuous function and

$$ + : E \times E = \{(e,e') \in E \times E | pe = pe'\} \to E $$

$$ \cdot : K \times E \to E $$

continuous functions such that $p(e,+e') = p(e) = p(e')$ and $p(\cdot)(k,e) = p(e)$ such that for each $b \in B$, the operations induced by $+$ and \cdot on $p^{-1}(b)$ make $p^{-1}(b)$ into a vector space over K.

B is called the base space of ξ, E the total space of ξ, and p the projection of ξ. For $b \in B$, $p^{-1}(b)$ is the fiber of ξ over b.

Definition: A section of the bundle ξ is a continuous map $s : B \to E$ such that $ps = 1$.

Definition: A vector bundle ξ is locally trivial (of dimension n) if for each point $b \in B$ there is an open set U of B containing b and sections s_1, \ldots, s_n of ξ such that the map $\pi_U : K^n \times U \to p^{-1}(U)$ given
by \(w_U((k_1, \ldots, k_n), x) = \prod_{i=1}^n k_is_i(x) \) is a homeomorphism.

Proposition: Let \(\xi \) be a locally trivial vector bundle over a compact Hausdorff space \(B \). There exists a finite dimensional vector space \(V \) over \(K \) and a surjective bundle map \(e : V \times B \rightarrow E \). There is also an injective bundle map \(i : E \rightarrow V \times B \) with \(ei = 1 \).

Proof: Let \(\Gamma = \Gamma(E) \) be the vector space of sections of \(\xi \) and \(e : \Gamma \times B \rightarrow E : (s, b) \mapsto s(b) \). Since \(\xi \) is locally trivial this is surjective and for each point \(b \) of \(B \) there is an open neighborhood \(U_b \) of \(b \) and a finite dimensional subspace \(V_b \) of \(\Gamma \) (spanned by \(n \) sections) so that \(e : V_b \times U_b \rightarrow p^{-1}(U_b) \) is surjective. Since \(B \) is compact, a finite number of the \(U_b \) cover \(B \), and let \(V \) be the span of the corresponding \(V_b \). Then \(V \) is finite dimensional and \(e : V \times B \rightarrow E \) is surjective.

Let \(V \) be given an inner product (over \(K \)) and let \(E^\perp \) be the orthogonal complement of the kernel of \(e \). Then \(e|_{E^\perp} : E^\perp \rightarrow E \) is an isomorphism and one may let \(i = (e|_{E^\perp})^{-1} : E \rightarrow V \times B \). **

Corollary: A locally trivial vector bundle over a compact Hausdorff space admits a Riemannian metric.

Corollary: A locally trivial vector bundle over a compact Hausdorff space has an inverse.

Remark: To each point \(b \) of \(B \) one may assign the subspace \(i(E_b) \) which defines a map \(B \rightarrow \mathbb{G}_n(V) \) of \(B \) into the Grassmannian of \(n \) planes of \(V \). The usual \(n \)-plane bundle over \(\mathbb{G}_n(V) \) then induces the bundle \(\xi \) over \(B \), so this is a classifying map for \(\xi \).

Let \(\xi = (B, E, p, +_p) \) be a locally trivial \(n \)-dimensional \(K \) vector bundle with \(B \) a finite CW complex and let
\(\pi : P(\xi) \rightarrow B \) sending the one dimensional subspaces of \(P^{1}(b) \)

\(b \) is the projection of a locally trivial bundle with fiber \(P^{(n-1)} \)

The map \(\lambda : \xi(\xi) \rightarrow P(\xi) \) sending \((\sigma, e)\) into \(\sigma \) is a one dimensional \(K \) vector bundle over \(P(\xi) \),

which restricts to precisely the canonical line bundle over each fiber \(P^{(n-1)} \).

One then has commutative diagrams

\[
\begin{array}{c}
\begin{array}{ccc}
E_b & \rightarrow & E \\
\downarrow & & \downarrow \pi_E \\
b & \rightarrow & B
\end{array}
\end{array}
\]

\[
\begin{array}{c}
\begin{array}{ccc}
P(n-1) = P(E_b) & \rightarrow & P(E) \\
\downarrow & & \downarrow \pi_E \\
b & \rightarrow & B
\end{array}
\end{array}
\]

Where \(b \in B \). The bundle \(\xi(\xi) \) is the restriction to \(P(E) \) of the line bundle over \(P(V \times B) \), which is induced from the canonical bundle over \(P(V) \),

hence \(\lambda : P(E) \rightarrow P(V) \) classifies \(l(\xi) \). The induced map

\(P(E_b) \rightarrow P(V) \) is just the inclusion induced by the inclusion \(\xi : E_b \rightarrow V \).

Definition of Characteristic Classes

Suppose: \(A = \{ A_1, A_2 \} \) is a ring spectrum such that for each finite dimensional vector space \(V \) over \(K \) there is a class \(a_V \in H^{k}(P(V); A) \) so that \(H^{\ast}(P(V); A) \) is the free \(H^{\ast}(pt; A) \) module on \(1, a_V, \ldots, a^{\dim V-1} \).
\(\dim V = 0 \) and such that:

1) If \(i : T \rightarrow V \) is the inclusion of a subspace, then \(i^*(a_V) = a_T \)

and

2) If \(q : P(K^{n+1}) \rightarrow P(K^{n+1})/P(K^n) = S^{kn} \) is the collapse, then the

image under \(q^* \) of \((-1)^n \in H^{kn}(S^{kn}; A) \) is \(a^n \).

Note: This choice of sign is made to try to get the "usual" sign

conventions. Unfortunately, signs vary wildly in the literature.

Note: If \(K = \mathbb{R} \), one has a cofibration \(S^1 \rightarrow P(S^2) \rightarrow S^2 \) and in

cohomology exact sequence the induced map on \(H^*(pt; A) = H^*(S^2; A) \) is

multiplication by 2. In order that such classes \(a \) exist it is necessary

that the unit class in \(H^*(pt; A) \) have order 2; hence \(H^*(X; A) \) has every

element of order 2 for all \(X \). (See Araki and Toda [11]).

Examples: If \(K = \mathbb{R}, A = \mathbb{K}(Z_2); \) if \(K = \mathbb{E}, A = \mathbb{K}(Z) \) or

(\(BU, U \)) the spectrum for complex K-theory; if \(K = \mathbb{H}, A = \mathbb{K}(Z) \) or the

spectrum for real K-theory.

Theorem: Let \(c \in H^*(P(E); A) \) be the class \(i^*(a_V) \). Then \(H^*(P(E); A) \)

is the free \(H^*(B; A) \) module (via \(i^* \)) on the classes \(1, c, \ldots, c^{n-1} \) and

there exist unique classes \(a_i(\xi) \in H^{n+i}(B; A), a_0(\xi) = 1, \) such that

\[c^n - c^{n-1}i^*(a_1(\xi)) + \ldots + (-1)^{n-1}c_{n-1}i^*(a_{n-1}(\xi)) + (-1)^{n-1}i^*(a_n(\xi)) = 0. \]

Proof: One has two spectral sequences \(E_r \) and \(E'_r \) with

\(E_2 = H^*(B; H^*(pt; A)) \) converging to \(H^*(B; A) \) and \(E'_2 = H^*(B; H^*(P(E); A)) \)

converging to \(H^*(P(E); A) \). The direct sum of \(n \) copies of \(E_2 \) is mapped

into \(E'_2 \) by sending \((x_1) \rightarrow \sum_{i=0}^{n-1} c_i^*(x_1) \). Since \(1, c, \ldots, c^{n-1} \) restrict

to a base for \(H^*(P(E); A) \) as \(H^*(B; A) \) module, this is an isomorphism at

\(E_2 \) level, so that \(\bigoplus_{i=0}^{n-1} H^*(B; A) \rightarrow H^*(P(E); A) \) is an isomorphism.
The relation exists since \(c^n \) is uniquely expressible in terms of
the base \(1, c, \ldots, c^{n-1} \).

Remarks:
1) The structure of \(H^\bullet(\mathcal{F}(\mathcal{E}); A) \) as \(H^\bullet(\mathcal{B}; A) \) algebra is completely determined by the relation for \(c^n \).
2) The class \(\sigma(\xi) = 1 + \sigma_1(\xi) + \ldots + \sigma_n(\xi) \in H^\bullet(\mathcal{B}; A) \) is the total 'characteristic' class of \(\xi \). These classes are given the following names:
 a) \(K = \mathbb{R} \): Stiefel-Whitney class \(w(\xi) \).
 b) \(K = \mathbb{C} \): Chern class \(c(\xi) \), and
 c) \(K = H \): (Symplectic) Pontrjagin class \(\varphi^S(\xi) \).

Theorem: The total characteristic class \(\sigma(\xi) \in H^\bullet(\mathcal{B}; A) \) has the following properties:
1) \(\sigma_{i}(\xi) = 0 \) if \(i \geq \dim \xi \); \(\sigma_0(\xi) = 1 \);
2) \(\sigma(\xi) \) is natural; i.e. if \(f : \mathcal{B}' \to \mathcal{B} \) is a map, then \(\sigma(f^*\xi) = f^*\sigma(\xi) \);
3) (Whitney sum formula) If \(\xi \) and \(\eta \) are two vector bundles over \(\mathcal{B} \), then \(\sigma(\xi \oplus \eta) = \sigma(\xi) \cup \sigma(\eta) \); and
4) If \(\xi \) is the canonical line bundle over \(P(V) \), then \(\sigma_1(\xi) = \sigma_0 \).

Proof: 1) is immediate from the definition. For 2), one has the commutative diagram

\[
\begin{array}{ccc}
P(\mathcal{E}) & \longrightarrow & P(V \times B) \\
\uparrow f & & \uparrow \\
P(f^*\mathcal{E}) & \longrightarrow & P(V \times B') \\
\end{array}
\]

so that \(c' = \overline{f}^* c \) and hence \(0 = \sum_{i=0}^{n} (-1)^i c_{i-1} \overline{f}^* \pi^*_i \sigma_0(\xi) = \sum_{i=0}^{n} (-1)^i c_{i-1} \overline{f}^* \pi^*_i (f^* \sigma_0(\xi)) \) which by uniqueness gives \(\sigma_1(f^*\xi) = f^*\sigma_1(\xi) \).
To prove 3), recall that $E(\xi \otimes \eta)$ is $\{(x,y) \in E(\xi) \times E(\eta)|\pi_\xi(x) = \pi_\eta(y)$ so that one has subspaces $E(\xi) \times 0$ and $0 \times E(\eta)$ of $E(\xi \otimes \eta)$ and hence may consider $P(\xi)$ and $P(\eta)$ as subspaces of $P(\xi \otimes \eta)$ with $1(\xi \otimes \eta)$ restricting to $1(\xi)$ on $P(\xi)$ and to $1(\eta)$ on $P(\eta)$. Let $U = P(\xi \otimes \eta) - P(\xi)$, $V = P(\xi \otimes \eta) - P(\eta)$. Then $P(\eta)$ is a deformation retract of U and $P(\xi)$ is a deformation retract of V, while $P(\xi \otimes \eta) = U \cup V$.

Consider the class in $H^*(P(\xi \otimes \eta); A)$ given by:

$$\theta = \sum_{j=0}^{m+n} (-1)^j c^{m+n-j} \sum_{r+s=j} \pi^*(c^r(\xi) \cup c^s(\eta)) = \sum_{k=0}^m (-1)^k c^{m-k} \pi^*(c_k(\eta)).$$

[Note: If $k = R$ signs don't matter, while for $k \neq R$, k is even so c^p and $\pi^*(c_j(\xi))$ commute]. The factor $\theta_1 = \sum_{j=0}^n (-1)^j c^{n-j} \pi^*(c_j(\xi))$ is to zero in $H^*(P(\xi); A)$, hence also in $H^*(V; A)$ so θ_1 comes from $H^*(P(\xi \otimes \eta), V; A)$. Similarly, $\theta_2 = \sum_{k=0}^m (-1)^k c^{m-k} \pi^*(c_k(\eta))$ comes from $H^*(P(\xi \otimes \eta), U; A)$ and hence $\theta = \theta_1 \theta_2$ comes from $H^*(P(\xi \otimes \eta), U \cup V; A) = H^*(P(\xi \otimes \eta), P(\xi \otimes \eta); A) = 0$. Since $\theta = 0$, it is the relation for $H^*(P(\xi \otimes \eta)$ and $c_1(\xi \otimes \eta) = \sum_{r+s=j} c^r(\xi) \cup c^s(\eta)$. To prove 4), let $\xi = (b, E, p, +, \cdot)$ be any line bundle. Then since E_b is one dimensional there is only one one-dimensional subspace in each fiber and $\pi: P(E) \longrightarrow B$ is a homeomorphism.

Further $1(E)$ is identified with E. The relation of $H^*(P(E); A)$ is to $c - \pi^*(c_1(\xi)) = 0$, and with π interpreted as identification, $c_1(\xi) = j : B \longrightarrow P(V)$ classifies E. **

Remark: The non-standard part of this proof is part 3), this part being taken from Conner and Floyd [34], page 437. (See also Conner and [41], page 47).
Proposition: If ξ is a trivial bundle then $\sigma_i(\xi) = 0$ for $i > 0$. Consequently, if ξ and η are stably equivalent then $\sigma(i) = \sigma(\eta)$.

Proof: Since every trivial bundle is induced by a map into a point, it suffices by naturality to prove $\sigma_i(\xi) = 0$, $i > 0$, for the trivial bundle $p : X^i \to \text{pt}$. For this one has $\sigma_i^{(i)}(X^i) = 0$ in $H^*(X^i; A)$ which is the usual relation and hence $\sigma_i(\xi) = 0$ if $i > 0$.

If ξ and η are stably equivalent, $\xi \oplus \sigma^p \cong \eta \oplus \sigma^q$ for some trivial bundles σ^p and σ^q, so $\sigma(\xi) = \sigma(\xi) \cdot 1 = \sigma(\xi \oplus \sigma^p) = \sigma(\eta + \sigma^q) = \sigma(\eta) \cdot 1 = \sigma(\eta)$. **

Proposition: (Splitting Lemma) Let $\xi = (B,E,p,+,*')$ be an n-dimensional vector bundle. There is a space B' and a map $f : B' \to B$ such that

1) $f^*\xi$ splits as a Whitney sum of line bundles, and

2) $f^* : H^*(B; A) \to H^*(B'; A)$ is a monomorphism.

Proof: Let $B_0 = B$, $E_0 = E$ and suppose for $i \leq k$ one has defined spaces B_i, maps $f_i : B_i \to B_{i-1}$ and bundles E_i over B_i so that $f_i^*(E_{i-1}) \cong E_i \oplus l_i$, l_i a line bundle and $f_i^* : H^*(B_{i-1}; A) \to H^*(B_i; A)$ is monic. Let $B_{k+1} = P(E_k)$, f_{k+1} the projection π. Then $f_{k+1}^*(E_k)$ has the Riemannian metric induced from E and $l(E_k)$ is a subbundle of $f_{k+1}^*(E_k)$, so that one may take E_{k+1} to be the orthogonal complement of $f_{k+1}^*(l_k)$. Since π^* is monic in cohomology this completes the induction.

Then let $B' = B_{n-1}$, $f = f_1 \circ \cdots \circ f_{n-1}$ so that f^* is trivially monic on cohomology, while $f^*(E)$ splits as the sum of the line bundles E_{n-1}, $E_{n-2} = l_{n-1}$, and $(f_i \circ \cdots \circ f_{n-i})^*(l_i)$ for $1 \leq i \leq n-2$. **
Remarks: 1) Taking the properties of $\sigma(\xi)$ from the principal theorem as axioms, the splitting lemma permits one to see that these characterize the characteristic classes σ_1. By knowledge of σ_1 for the canonical bundle, one knows $\sigma(\xi)$ for any line bundle by naturality, but the Whitney sum formula and the splitting lemma show that $\sigma(\xi)$ is known for all ξ once it is known for line bundles.

2) If $\xi = l_1 \oplus \ldots \oplus l_n$ is a sum of line bundles, $\sigma(\xi) = \sum_{i=1}^{n} (1 + \sigma_1(l_i))$ so $\sigma_j(\xi)$ is the j-th elementary symmetric function of the k-dimensional cohomology classes $\sigma_1(l_i)$. The splitting principle permits one to consider the class $\sigma_j(\xi)$ as the j-th elementary symmetric function of (formal) classes of dimension k when ξ is an arbitrary vector bundle.

Thom Spaces

Let $\xi = (B,E,p,+,*)$ be given the Riemannian metric from V and denote by $D(\xi)$ the disc bundle $\{ e \in E \mid \| e \| = 1 \}$ and $S(\xi)$ the sphere bundle $\{ e \in E \mid \| e \| = 1 \}$. Let $\varphi : D(\xi) \rightarrow P(\xi \otimes 1)$ by sending e_x into the one-dimensional subspace of $(E \otimes K)_x$ generated by $e_x - \frac{1}{\| e_x \|^2} \| e_x \|^2 1_x$, where as before one thinks of ξ and 1 as subspaces of the total space of $\xi \otimes 1$. Then φ is a homeomorphism of $D(\xi) - S(\xi)$ with $P(\xi \otimes 1) - P(\xi)$ and maps $S(\xi)$ onto $P(\xi)$ by the usual identification map. Thus one may consider $P(\xi \otimes 1)/P(\xi)$ as the Thom space of ξ by means of φ.

Theorem: In cohomology with \mathcal{A} coefficients there is an exact sequence

$$0 \rightarrow H^*(P(\xi); \mathcal{A}) \xrightarrow{\alpha} H^*(P(\xi \otimes 1); \mathcal{A}) \xrightarrow{\beta} H^*(TE; \mathcal{A}) \rightarrow 0$$

and the image of β is the ideal generated by the class

$$\tilde{U} = \sum_{j=0}^{n} (-1)^{n-j} c_n \cdot x_j^*(\sigma_j^*(\xi)) \in H^k(P(\xi \otimes 1); \mathcal{A})$$
Proof: One has the exact sequence

\[\begin{array}{c}
H^*(P(x); A) \\ \downarrow \\
H^*(P(x); A) \\
\downarrow \\
\tilde{H}^*(T_x; A) \\
\end{array} \]

and since \(\lambda(x) \) restricts to \(\lambda(x) \) on \(P(x) \), \(\alpha \) is an epimorphism, giving the desired short exact sequence. The class \(\tilde{U} \) clearly lies in the kernel of \(\alpha \) (since it maps into the defining relation: Note: \(c\tilde{U} = 0 \) is the defining relation in \(H^*(P(x); A) \)), and clearly generates the kernel as \(H^*(B_1; A) \) module.

Denote by \(U \) the class \(\beta^{-1}(U) \in H^n(T_x; A) \). The class \(U \) is clearly natural and its restriction to a fiber of \(x \) is the generator \(\tilde{\ell} \) of \(H^n(\mathbb{R}^n; A) \) as a module over \(H^*(pt; A) \). (Note: This restriction gives \(\beta = (-1)^n \alpha \) in \(H^n(P(\mathbb{R}^n); A) \) which pulls back to \(\tilde{\ell} \in H^n(S_{\mathbb{R}^n}; A) \).

It should be noted that the class \(U \) is multiplicative, in the sense that \(U(x \circ y) = U(x) \cup U(y) \) where \(T(x \circ y) \) is identified with \(T(x).T(y) \).

This is immediate from the Whitney sum formula.

For computations involving the Thom spaces, it is convenient to have:

Proposition: a) \(U \cup U = \pi^*(\gamma_n(x)) \cup U = \phi^U(\gamma_n(x)) \), where \(\phi^U \) is the Thom isomorphism defined by \(U \).

b) If \(i : B \to T(x) \) is the map given by the zero section of \(x \), then \(\Delta^*(U) = \gamma_n(x) \).

Proof: For a), one has \(\tilde{U} \cup \tilde{U} = \xi \pi^*(\gamma_{j-1} \circ \gamma_{j-1})(\gamma_j(x)) \cdot 0 \), but \(c\tilde{U} = 0 \) as \(\tilde{U} \cup \tilde{U} = \pi^*(\gamma_n(x)) \cup \tilde{U} \). For b) one has the commutative diagram
from which $s^*j^*s_{V \times K} = s^*c = 0$ for the section defined for pt may be thought of as the inclusion of $P(K)$ and $\alpha_K = \alpha_K^1 = 0$. Thus

$$i^*U = s^*U = s^*\pi^*(\sigma_n(\xi)) = \sigma_n(\xi).$$

** Proposition: ** Let V be a vector space over K and $\mathcal{L} \to P(V)$ the canonical line bundle. Then the Thom space of \mathcal{L} may be identified with $P(V \times K)$ so that the zero section inclusion is the standard map given by the inclusion of V in $V \times K$. Further, the Thom class U is identified with

** Proof: ** Let $\pi: P(\mathcal{L}) \to P(V)$ be the projection. Then $\mathcal{L}(\Theta)$ is a subbundle of $\pi^*(\mathcal{L}) = \pi^*(\Theta) \Theta$. Denote the orthogonal complement of $\mathcal{L}(\Theta)$ by σ. If $p \in P(\mathcal{L})$ then p is a line in $V \times K$ which lies in the space $\pi(p) \times K$ and the orthogonal complement p^\perp of p in $\pi(p)$ is a line in $V \times K$. The correspondence $p \to p^\perp$ defines a map

$$f: P(\mathcal{L}) \to P(V \times K)$$

with σ induced from the canonical bundle. If p is in the image of $P(\mathcal{L})$ then p^\perp is the line K and so $P(\mathcal{L})$ is mapped into the point $P(K)$. Thus f induces a map $\hat{f}: P(\mathcal{L}) \to P(V \times K)$. If $u \in P(V \times K) - P(K)$, let q be the point of $P(\mathcal{L})$ given by the line orthogonal to u in $u + K$, and then $f(q) = u$. Thus \hat{f} is a homeomorphism. If $x \in P(V)$ then $\phi(x)$ is the line generated by K in $x \times K$ so $\phi(x)^\perp = x$, so the zero section map is just the inclusion of $P(V)$ in $P(V \times K)$. Finally, $f^*(c) = c_1(c)$ and $c_1(\sigma) = c_1(\pi^*(\mathcal{L}) \Theta - \Theta(\Theta)) = \pi^*U_{\Theta}$ so $\alpha = U$. **
Cohomology of Grassmann Manifolds

Let $G_{n,r}$ denote the Grassmann manifold of n planes in K^{n+r}. One
has bundles γ_r^n (n-plane, point in it) and γ_r^m (n-plane, point of the
orthogonal r-plane) over $G_{n,r}$ with $\gamma_r^n \otimes \gamma_r^m$ trivial. One then has the
cohomology classes $\sigma_i = \sigma_i(\gamma_r^n) \in H^k(G_{n,r};\mathbb{A})$ and $\sigma_i = \sigma_i(\gamma_r^m) \in H^k(G_{n,r};\mathbb{A})$,
related by the equation $\sigma \cup \overline{\sigma} = 1$.

Proposition: $H^*(G_{n,r};\mathbb{A})$ is the quotient of the polynomial algebra
over $H^*(pt;\mathbb{A})$ on σ_i, $1 \leq n$, by the relations imposed by $\overline{\sigma}_j = 0$ for $j > r$. (Note: $\overline{\sigma}_j$ is the polynomial of degree j in the σ_i given by
formal inversion of σ.)

Proof: The asserted polynomial algebra is certainly mapped into
$H^*(G_{n,r};\mathbb{A})$, and to prove an isomorphism one may induct on n. For $n = 1$,
$G_{1,r} = P(K^{r+1})$ so that $H^*(G_{1,r};\mathbb{A})$ is generated by $a = a_1$ with relation $a^{r+1} = 0$, but $\overline{\sigma} = 1 - a + a^2 - \ldots + (-1)^r a^r + (-1)^{r+1} a^{r+1} + \ldots$ and all
relations are given by $\overline{\sigma}_j = 0$ if $j > r$.

If the result holds for all $G_{n,r}$ with $n < s$, then consider $G_{s,t}$. A point in $P(\gamma^s_t)$ is a line a in an s-plane ν. The orthogonal complement
of a in ν is an $s-1$ plane a^\perp, hence a point of $G_{s-1,t+1}$. The points
of $P(\gamma^s_t)$ mapping into $\nu \in G_{s-1,t+1}$ are precisely those lines orthogonal
to ν. Thus $P(\gamma^s_t)$ is exactly $P(\gamma^{s-1}_{t+1})$ giving the diagram

$$
P(\gamma^s_t) \xrightarrow{\pi} P(\gamma^{s-1}_{t+1}) \xrightarrow{\pi} G_{s-1,t+1}.
$$
Letting \(\xi = \xi(\gamma_t^{s-1}) = \xi(\gamma_{t+1}^{s-1}) \) one has \(\pi(\xi, \gamma_{t+1}^{s-1}) = \xi \otimes \eta \), \(\pi(\gamma_{t+1}^{s-1}) = \xi \otimes \eta \) trivial. Now noting that \(c = \sigma_1(\xi) \), the relation

\[
\Sigma (-1)^{i-s} \pi(\xi, \gamma_t^{s-1}) = 0
\]

is precisely \(\sigma_s(\xi) = 0 \). Looking at \(P(\gamma_t^s) \)
as a bundle over \(G^{s-1}_{s-1,t+1} \) one has that \(H^*(P(\gamma_t^s)) \) is generated by the characteristic classes of \(\xi, \xi, \) and \(\eta \) subject only to the relations imposed by the dimensions of \(\xi, \xi, \) and \(\eta \) and that their sum is trivial. Then looking at \(P(\gamma_t^s) \) as a bundle over \(G^s_{s,t+1} \) one sees that \(H^*(G^s_{s,t+1}) \)
must be generated by the characteristic classes of \(\gamma_t^s \) subject only to the relation imposed by the dimension of \(\gamma_t^s \). This completes the induction.

Using \(B_n = \lim_{r \to \infty} G_{n,r} \), \(B = \lim_{r \to \infty} B_n \) and inverse limit cohomology (this being all that affects characteristic numbers) one has

Proposition: a) \(H^*(B^\sim_n; A) \) is the formal power series algebra over \(H^*(pt; A) \) generated by the universal characteristic classes \(\sigma_i \), \(1 \leq i \leq n \)

b) \(H^*(B^\sim; A) \) is the formal power series algebra over \(H^*(pt; A) \) generated by the universal characteristic classes \(\sigma_i \), \(1 \leq i \).

The Whitney sum of vector bundles induces a map \(B_n \times B_m \to B_{n+m} \) or \(B \times B \to B \). Applying the Whitney sum formula for characteristic classes gives

Proposition: \(H^*(B^\sim; A) \) is a Hopf algebra over \(H^*(pt; A) \), which as an algebra is formal power series on classes \(\sigma_i \), \(i \geq 1 \), and has diagonal given by \(\Delta(\sigma) = \sigma \otimes \sigma \); i.e. \(\Delta(\sigma_i) = \sum_{j+k=i} \sigma_j \otimes \sigma_k \).

Note: If one wishes to be thorough, one notes that the Klinneth theorem \(H^*(X \times Y; A) = H^*(X; A) \otimes H^*(pt; A) H^*(Y; A) \) holds if \(H^*(Y; A) \) is a free \(H^*(pt; A) \) module. For a proof see Conner and Floyd [36], page 131. In particular, one should note that \(H^*(B \times B; A) \) is the completed tensor product \(H^*(B; A) \hat{\otimes} H^*(B; A) \).
It is frequently convenient to use other characteristic classes, formed from the σ_i. For any set $\omega = (\omega_1, \ldots, \omega_r)$ of positive integers, called a partition of $n(\omega) = \sum_{\beta \in \omega} i_\beta$, one defines the s_ω symmetric function of variables t_j, $1 \leq j \leq s$, to be the smallest symmetric function in the t_j which contains the monomial $t_1^{i_1} \cdots t_r^{i_r}$ ($s_j = 1$). Then $s_\omega(t)$ is expressible uniquely as a polynomial with integral coefficients in the elementary symmetric functions $s_i = s_{(1, \ldots, 1)}(t)$ of the t's. If $s \geq n(\omega)$, the polynomial is independent of s, and write $s_\omega(t) = P_\omega(s_1, \ldots, s_n(\omega))$.

One defines classes $s_\omega(\sigma) \in H^k(\mathbb{B}^n; \mathbb{A})$ by $s_\omega(\sigma) = P_\omega(\sigma_1, \ldots, \sigma_n(\omega))$.

Thus the splitting principle one may consider σ_i as the i-th elementary symmetric function of k dimensional classes $s_1(t_j)$ (t_j being line bundles), $s_\omega(\sigma)$ is represented as the s_ω symmetric function of these classes.

The usefulness of these classes follows from

Proposition: In $H^*(\mathbb{B}; \mathbb{A})$ one has $\Delta s_\omega(\sigma) = \sum_{\omega' \cup \omega'' = \omega} s_{\omega'}(\sigma) \cup s_{\omega''}(\sigma)$, the sum being over all pairs of partitions ω' and ω'' for which $\omega = \omega' \cup \omega''$.

In particular, for each integer i, $s(i)(\sigma)$ is primitive. The dual $\text{Hom}_{H^*(\mathbb{B}; \mathbb{A}), H^*(\operatorname{pt}; \mathbb{A}))}$ is the polynomial algebra over $H^*(\operatorname{pt}; \mathbb{A})$ on classes x_i, $i \geq 1$, of degree $(-k_i)$, where x_i is dual to $s_i(\sigma)$ with respect to the base consisting of the $s_\omega(\sigma)$ (i.e. $s_\omega(\sigma)[x_i] = 0$ if $\omega \neq (i)$ and $s_\omega(\sigma)[x_i] = 1 \in H^0(\operatorname{pt}; \mathbb{A})$). $\text{Hom}_{H^*(\mathbb{B}; \mathbb{A}), H^*(\operatorname{pt}; \mathbb{A}))}$ denotes homomorphisms vanishing on all but a finite number of monomials $\sigma_1^{i_1} \cdots \sigma_r^{i_r}$.

Proof: If $\{u_i\}$ is the union of two collections of classes $\{u_i\}$ and $\{v_k\}$ then $\sum z_1^{i_1} \cdots z_r^{i_r}$ splits into symmetric functions in u's and v's, and this is given by $s_\omega(z) = \sum_{\omega' \cup \omega'' = \omega} s_{\omega'}(u) s_{\omega''}(v)$. If bundles ξ and η split as sums of line bundles l_i and m_k, then $\xi \otimes \eta$ splits into the
union of the two collections, or

\[s_\omega(\sigma(\xi,\eta)) = \sum_{\omega', \omega'' = \omega} s_{\omega'}(\sigma(\xi))s_{\omega''}(\sigma(\eta)) \]

giving the diagonal formula. If as above \(x_i \) is dual to \(s_1(\sigma) \), then by
the diagonal formula one has

\[s_\omega(\sigma)[x_{i_1} \ldots x_{i_r}] = \delta_{\omega', \omega''} = 0 \text{ if } \omega \neq \omega', 1 \text{ if } \omega = \omega'. \]

Thus the products of the \(x_i \) form
a base over \(H^*(\text{pt} \sim_{\sim}) \) for the dual of \(H^*(B; A) \). **

Note: \(\text{Hom}_{H^*}^\text{finite}(H^*(B; A), H^*(\text{pt} \sim_{\sim})) \) is clearly identifiable with
the direct limit of the groups \(\text{Hom}_{H^*}^\text{finite}(H^*(C_{r,s}; A), H^*(\text{pt} \sim_{\sim})) \). It is clear
that the characteristic number homomorphism defined by a manifold belongs
to this set of homomorphisms.

Remark: There is another construction frequently used in determining
\(H^*(G_{r,s}; A) \) provided \(\sim_{\sim} \) is a "good" theory (i.e. a theory for which one
can compute the cohomology of sphere bundles). One considers the \(K^r \) bundle
\(E(\gamma_s^r) \rightarrow G_{r,s} \) with \(E_0(\gamma_s^r) \) the unit sphere bundle. To each point
\(x \in E_0(\gamma_s^r) \) one may associate the \(r-1 \) plane orthogonal to \(x \) in \(\pi(x) \).
This defines a projection \(E_0(\gamma_s^r) \rightarrow G_{r-1,s+1} \) and one may identify \(E_0(\gamma_s^r) \)
with \(E_0(\gamma_{s+1}^{r-1}) \). The bundle \(\pi^*G_{s+1}^r \) splits off a line bundle by means of the
section \(x \rightarrow (x,x) \) over \(E_0 \) with the orthogonal complement of this section
being identifiable to \(\pi^*G_{s+1}^{r-1} \).

Letting \(s \) become arbitrarily large one has

\[
\begin{align*}
E_0(\gamma^r) &\rightarrow E(\gamma^r) \rightarrow T(\gamma^r) \\
\pi' &\downarrow \pi \downarrow \pi' \\
B_{r-1} &\rightarrow B_r & B_r
\end{align*}
\]

The map \(\pi \) is a homotopy equivalence, with the zero section as inverse, \(\pi' \)
\(\pi' \) is a weak homotopy equivalence, the "infinite" sphere being contractible.
One then has an exact sequence

$$H^*(B_{r-1};A) \leftarrow H^*(B_{r-1};A) \leftarrow \mathcal{O} \rightarrow H^*(K^r;A)$$

and since \(\alpha \) corresponds to pulling \(\gamma^r \) back to \(\gamma^{r-1} \) \(\cdot 1 \), \(\alpha \) is epic.

Further \(\beta \) being identified with the zero section, \(\beta \mathcal{U} = \sigma_r(\gamma^r) \) identifying \(H^*(K^r;A) \) with the ideal generated by \(\sigma_r \) in \(H^*(B_r;A) \).

Relationship Between Fields

Let \(K \) and \(K' \) be two of the fields \(R, C, \) and \(H, \) with \(K \subset K' \) and let \(\mathcal{A} \) be a ring spectrum for which projective spaces over \(K \) have proper cohomology. Let \(r \) be the dimension of \(K' \) over \(K(r=K'/K) \) and choose a base \(1, x_1, \ldots, x_{r-1} \) for \(K' \) over \(K \) with \(x_i^2 = -1 \) (from among the standard \(1, i, j, k \)) so that \(\phi_i : K \rightarrow K \) defined by \(x_i \cdot t = \phi_i(t) \cdot x_i \) is an automorphism of \(K \) (\(\phi_i^2 = 1 \)).

Let \(V \) be an \(n \)-dimensional vector space over \(K' \) — hence also a vector space over \(K \) of dimension \(rn \). The assignment to a one dimensional \(K \)

subspace \(p \) of \(V \) of the one dimensional \(K' \) subspace \(K'p \) containing it defines a map \(\pi : KP(V) \rightarrow K'P(V) \). If \(q \) is a \(K' \) line of \(V \), \(\pi^{-1}(q) \)

consists of all \(K \) lines in \(q \), hence of all \(K \)-lines in the fiber of the canonical \(K' \) line bundle \(\lambda' \) of \(K'P(V) \). Thus \(KP(V) \) is identified with \(KP(\lambda') \). In addition, the \(K \)-line bundle \(i(\lambda') \) is trivially the canonical bundle \(\lambda \) of \(KP(V) \).

Thus \(H^*(KP(V);A) \) is the free \(H^*(K'P(V);A) \) module (via \(\pi^* \)) on the classes \(1, \alpha_V, \ldots, \alpha_V^{r-1} \) and has relation \(\sum_{i=0}^{r-1} (-1)^i \alpha_V^{r-1} \pi^*(\alpha_V(\lambda')) = 0. \)
The map $\theta_i : V \to V : v \mapsto x_i v$ is \mathbb{R} linear and semi-linear over K.

In particular θ_i sends one dimensional K subspaces into one dimensional K subspaces and so defines a map $\hat{\theta}_i : KP(V) \to KP(V)$ ($\hat{\theta}_i^2 = 1$) which pulls the canonical bundle λ back to a bundle $\theta_i^* \lambda$. Pulling the bundle λ' back over $KP(V)$ by π^* one has $\pi^* \lambda' = \sum_{i=0}^{r-1} \theta_i^* \lambda$; i.e., λ is a subbundle of $\pi^* \lambda'$ and the subsets $x_i' \lambda$ decompose $\pi^* \lambda'$ into a Whitney sum over K.

Thus $\pi^*(\sigma_i(\lambda')) = \sigma_i(\pi^* \lambda')$ is the i-th elementary symmetric function of the variables $\sigma_i(\theta_i^* \lambda) = \theta_i^* \sigma_i(\lambda)$.

Case I: $K = \mathbb{R}$. Then K is central in K' so all ϕ_i are the identity and $\pi^* \lambda' = r \lambda$. In particular $\pi^* \sigma_r(\lambda') = \sigma_r^r$, all lower classes being zero since $r = 2$ or 4 and all elements of \mathbb{A} cohomology have order 2.

Since $(\sigma_r^r)^n = \sigma_r^n = 0$, $H^*(K'P(V);\mathbb{A})$ contains the free $H^*(pt;\mathbb{A})$ module on 1, $\sigma_r(\lambda')$, \ldots, $\sigma_r(\lambda')^{n-1}$ with $\sigma_r(\lambda')^n = 0$, and since $H^*(KP(V);\mathbb{A})$ is the free module on 1, \ldots, σ_r^{n-1} over this one has that $H^*(K'P(V);\mathbb{A})$ is the free module on the powers of $\sigma_r(\lambda')$.

Under the map $KP(K'P(n+1)) \to KP(K'P(n+1))$ one has $KP(K'P(n+1))/KP(K^{n}) = S^1$ by a map of degree 1 and so $(-1)^{n-1} \varepsilon \hat{\sigma}_r(\hat{\epsilon}^{\infty};\mathbb{A})$ pulls back to $\sigma_r(\lambda')$ (since it pulls back to σ_r). Since r is even, $\hat{\epsilon}$ maps to $\sigma_r(\lambda')$ but $\hat{\epsilon} \neq -\hat{\epsilon}$ since every element has order 2.

Thus $H^*(K'P(V);\mathbb{A})$ has proper cohomology, and with this theory the i-th K' characteristic class $\sigma_i^{K'}$ reduces to the ir-th characteristic class σ_{ir}^{K}.

Case II: $K = \mathbb{C}$, $K' = \mathbb{H}$. In this case one must consider the effect of action by $x_1 = j$, the automorphism ϕ_1 being complex conjugation. Under
Map \(\theta_1 : \mathbb{K}P(V) \rightarrow \mathbb{K}P(V) \) the bundle \(\lambda \) pulls back to its complex conjugate bundle \(\overline{\lambda} \), the problem being to compute \(\theta_1^*(a_\overline{\nu}) \).

Since \(\theta_1 \) is natural for inclusion of vector spaces, there is a power series \(h(x) = \sum_{i=0}^{\infty} a_i x^i \), \(a_i \in H^{2i-2\lambda}(pt; A) \), such that \(\theta_1^*(a_\overline{\nu}) = h(a_\overline{\nu}) \).
(This is a finite sum in \(H^*(\mathbb{K}P(V); A) \)).

Since \(a_\overline{\nu} = 0 \) if \(\dim V = 1 \), one must have \(a_0 = 0 \). If \(\dim V = 2 \), \(CP(V) \) is just the two sphere \(S^2 \) and the map \(\theta_1 \) is of degree \(-1\), so \(a_1 = -1 \).

In higher dimensions one can say nothing except under restrictions on \(A \).
Since in particular one can make different choices for \(a_\overline{\nu} \). (It will be shown later that for complex K-theory the behaviour is not good).

If \(a_i = 0 \) for \(i > 1 \), then \(\theta_1^*(a_\overline{\nu}) = -a_\overline{\nu} = \sigma_1(\overline{\lambda}) \). Thus \(\pi_*(\sigma_1(\overline{\lambda})) = 0 \).
\(\sigma_1(\overline{\lambda}) \) maps to \(\sigma_2(\overline{\lambda}) \) in \(H^*(\mathbb{K}P(V); A) \), and hence \(\sigma_2(\overline{\lambda}) \) maps to \(\sigma_2(\overline{\lambda}) \) in \(H^*(\mathbb{K}P(V); A) \).

There are two interesting cases for which \(a_i = 0 \) if \(i > 1 \). Trivially this holds when \(H^j(pt; A) = 0 \) for all \(j < 0 \). Another case in which the result is valid is when \(1/2 \in H^0(pt; A) \); for in this case one may take \(a_1 = 1/2(a_\overline{\nu} - h(a_\overline{\nu})) \), which is another acceptable generator, with \(\theta_1^*(a_\overline{\nu}) = -a_\overline{\nu} \).

Characteristic Numbers of Manifolds

Proposition: For \(K = \mathbb{R} \) or \(C \), the tangent bundle of \(\mathbb{K}P(n) = \mathbb{K}P(\mathbb{C}^{n+1}) \) is a \(K \) vector bundle satisfying \(r \otimes 1 = (n+1)\xi \) where \(\xi \) is the canonical bundle if \(K = \mathbb{R} \) and the complex conjugate of the canonical bundle if \(K = C \).
Proof: Let $<,>$ denote the usual K inner product on K^{n+1}, with $\text{Re} <,>$ (its real part) being the usual R inner product. One may consider $KP(n)$ as the quotient of the sphere $S^{kn+k-1} = \{ u \in K^{n+1} \mid |u| = 1 \}$ under the action of $S^k = \{ t \in K \mid |t| = 1 \}$. The tangent bundle to S^{kn+k} has total space identifiable with $\{(u,v) \in K^{n+1} \times K^{n+1} \mid |u| = 1, \text{Re} <u,v> \}$, and the pullback of the tangent bundle of $KP(n)$ may be identified with those tangent vectors (u,v) orthogonal to the orbits of the action of S^k; hence those (u,v) with $<u,v> = 0$. This is a K-vector bundle by $s(u,v) = (u,v)$.

Under the action of S^k the total space of the pull-back collapses τ, and thus $E(\tau)$ may be represented as pairs $(u,v) \in K^{n+1} \times K^{n+1}$ with $|u| = 1$, $<u,v> = 0$, where (tu,tv) is identified with (u,v) if $t \in S^k$. This is compatible with the K-vector bundle structure since K is commutative.

Let $c: P(V) \rightarrow P(V)$ be the map induced by conjugation. Then the total space of $c^*(\xi) = \xi$ may be identified with the pairs $(x,s) \in K^{n+1}$ with $|x| = 1$ and (x,s) identified with (tx, st) for $t \in S^k$ (Note: (x,s) represents the point of $c^*(\xi)$ given by the line through x and the point sx in the image of that line.). The total space of $(n+1)\xi$ may be thought of as pairs $(u,v) \in K^{n+1} \times K^{n+1}$ with $|u| = 1$ with (u,v) identified with (tu,tv) for $t \in S^k$ and with scalar multiplication given by $s(u,v) = (u,sv)$. Thus τ is a subbundle of $(n+1)\xi$, and may be considered as the fiberwise orthogonal complement of the set of all pairs (u,sv), which is a trivial line bundle. Thus $(n+1)\xi = \tau e_1$. **

Thus the normal bundle of $KP(n)$ admits a stable K-vector bundle structure, given by the 'negative' of the tangent bundle, giving a (B,f) structure to $KP(n)$. Since the A cohomology of B is known, and since orientation class U has been constructed, it should be possible to compute the characteristic numbers of $KP(n)$.
Let \(KP(n) \subset S^{r+nN} \) be an imbedding with normal bundle \(v \) having a \(K \)
vector bundle structure, and let \([KP(n)] \in H_{kn}(KP(n); A) \) be the fundamental
homology class of \(KP(n) \) defined by the orientation \(U \) of \(Txv \).

Lemma: \(a^n[KP(n)] = (-1)^n \in H^0(pt; A) \).

Proof: One has the diagram

\[
\begin{array}{c}
S^{r+nN} \xrightarrow{c} T_v \xrightarrow{f} (KP(n)/f)_v \xrightarrow{a^n} A \\
\downarrow \gamma \downarrow \downarrow k \downarrow \downarrow l \downarrow \downarrow l \\
S^{r} \xrightarrow{1} S^{r+t} \xrightarrow{1} S^{r+t} \xrightarrow{(-1)^n} A \\
\downarrow \downarrow \downarrow \downarrow \\
S^{r} \xrightarrow{1} S^{r+t} \xrightarrow{(-1)^n} A
\end{array}
\]

in which the maps given by cohomology class names properly exist after
\(n \) suspension, and after suspension the diagram commutes up to homotopy. Thus
the map representing \(a^n[KP(n)] \) (the top line) gives the same class as \((-1)^n \)
(the bottom line). **

Proposition: The tangential characteristic numbers of \(KP(n) \) are given
by

\[
\sigma_\omega(\tau)[KP(n)] = \sum_{i_1}^{n+1} \cdots \sum_{i_r}^{n+1} \in H^0(pt; A)
\]

if \(\omega = (i_1, \ldots, i_r) \) is a partition of \(n \), where \(\sigma_\omega = \sigma_{i_1} \cdots \sigma_{i_r} \). In addition
\(s_n(\sigma(\tau))[KP(n)] = n+1 \).

Proof: Letting \(c : KP(n) \rightarrow KP(n) \) be given by conjugation, one has
\(a^n = -a + \sum_{a \geq 2} a_i a_i \) and \(\sigma(\tau) = (1+a(a))^{n+1} \). Thus
\(\sigma_\omega(\tau) = \sum_{i_1}^{n+1} \cdots \sum_{i_r}^{n+1} a(a)^n \) and \(s_n(\sigma(\tau)) = (n+1)a(a)^n \). Since \(a^{n+1} = 0 \),
a\(a(a)^n = (a)^n = (-1)^n a(a)^n \) and \((a(a))^n[KP(n)] = 1 \). **
If \(n(w) > n \), \(c_\omega(\tau)[KP(n)] = 0 \) since \((c^w(a))^{n+1} = 0 \). For \(n(w) < \)
the difficulty lies in evaluation of \(a^k \) on \(KP(n) \). Since \(a^k \) does not
come from the map into the sphere, this evaluation is not feasible without
additional assumptions.

Using projective spaces one may construct other manifolds for which characteristic numbers are computable and which will be needed later.

Let \(K = R \) or \(C \) and let \(B \) be the classifying space for \(K \) vector bundles. Suppose \(M^n \) is a closed \((B,f)\) manifold and \(\rho \) is a \(K \) line
bundle over \(M \) with characteristic class \(\sigma(\rho) = 1 + \theta, \theta \in H^k(M;A) \).

Let \(f : M \to KP(N) \) for some \(N \) be a map for which \(f^*(\xi) = \rho \). By
deforming \(f \) if necessary one may assume \(f \) is transverse regular on
\(KP(N-1) \). Then \(L = f^{-1}(KP(N-1)) \subset M \) is a closed submanifold of codimension
\(k \); the normal bundle of \(L \) in \(M \) being induced from that of \(KP(N-1) \)
in \(KP(N) \) (i.e. \(\xi|_{KP(N-1)} \)), the normal bundle is \(\rho|_L \).

The stable normal bundle of \(L, \nu_L \), admits a \((B,f)\) structure
identifying it with \(\iota^*(\rho \otimes \nu_M) \), \(\iota \) being the inclusion of \(L \) in \(M \). Thus
\(\sigma(\nu_L) = (1+1^*\theta)i^*(\sigma(\nu_M)) \) or \(\sigma(\nu_L) = i^*(\sigma(M))/\theta \).

Let \(x \in H^*(L;A) \) be given by \(x = i^*y, y \in H^*(M;A) \) (for example a
characteristic class) and consider the number \(x[L] \in H^*(pt;A) \). Imbedding
and with \(K \) normal bundle in \(R^{n+r} \), Imbeds \(L \) also, with \(T_M \) collapsed
to \(T_L \) to give a commutative diagram

\[
\begin{array}{ccc}
S^{n+r} & \xrightarrow{c} & T_M^M \\
\downarrow{c'} & & \downarrow{\pi} \\
& T_L & \\
\end{array}
\]

The number \(x[L] \) is represented by the composition
The collapse diagram

\[M \xrightarrow{\tau} \text{KP}(N) \]
\[\pi_1 \downarrow \quad \downarrow \pi_2 \]
\[T_p |_L \quad \xrightarrow{T} \quad T|_\text{KP}(N-1) \]

commutes, with \(\pi_2(U) = \sigma_1(\xi) \). Thus \(x[L] \) is represented by

\[p^\ast \mathcal{C} \xrightarrow{\mathcal{C}} T_v \xrightarrow{\mathcal{C}} (L/\mathcal{C}) \xrightarrow{\mathcal{C}} (M/\mathcal{C}) \xrightarrow{\mathcal{C}} (M/\mathcal{C}) \xrightarrow{\mathcal{C}} (M/\mathcal{C}) \xrightarrow{\mathcal{C}} (M/\mathcal{C}) \xrightarrow{\mathcal{C}} (M/\mathcal{C}) \xrightarrow{\mathcal{C}} (M/\mathcal{C}) \xrightarrow{\mathcal{C}} \text{KP}(N-1) \]

\[y_\ast \sigma_1(\xi) \xrightarrow{A,A,A} m \xrightarrow{A} \]

which is \((y \cup \theta)[M]\), or \(x[L] = (y \cup \theta)[M] \). (Note: This is commonly referred to as 'naturality of Poincaré duality'.)

The above construction is called 'dualization of the cohomology class \(\xi \)', but is more properly 'dualization of the line bundle \(\rho \).'

As an example one has:

Proposition: Let \(\pi_i : \text{KP}(n_1) \times \text{KP}(n_2) \longrightarrow \text{KP}(n_1) \), \(i = 1, 2 \), with \(n_1 > 1 \) and let \(\xi \) be the line bundle \(\pi_1^\ast(\xi) \otimes \pi_2^\ast(\xi) \), with \(I_{n_1,n_2} \subset \text{KP}(n_1) \times \text{KP}(n_2) \) the submanifold dual to \(\sigma_1(\xi) \). Then

\[\sigma_{n_1+n_2-1}(\xi)[H_{n_1,n_2}] = -(n_1^{n_2}) \]

Proof: Since the cohomology of \(\text{KP}(n_1) \) is free over that of a point, one has \(H^*(\text{KP}(n_1) \times \text{KP}(n_2); A) \cong H^*(\text{KP}(n_1); A) \otimes H^*(\text{KP}(n_2); A) \). The
inclusion $\text{KP}(n_1) \rightarrow \text{KP}(n_1) \times \text{KP}(n_2)$ pulls ξ back to ξ so

$s_1(t) = \pi_1^{n_1} + \pi_2^{n_2} + \sum_{i,j} b_{ij}(\pi_1^{n_1})(\pi_2^{n_2})^{n_i n_j}$, where $\bar{a} = c^*(a)$ of the previous discussion of projective spaces, $b_{ij} \in \mathbb{R}^{k_i k_j}([p, A])$. Then $\sigma(\hat{r})$ is the restriction to H of

\[
\frac{(1 + \pi_1^{n_1})(1 + \pi_2^{n_2})^{n_1 n_2}}{1 + s_1(t)}
\]

or $s_1^{n_1 + n_2 - 1}(\sigma(\hat{r}))$ is the restriction of

\[
(n_1 + 1)(\pi_1^{n_1 - 1} + (n_2 + 1)(\pi_2^{n_2 - 1} - (s_1(t)))^{n_1 n_2 - 1}
\]

(\text{for since } n_i > 1, \bar{a}^{n_1 n_2 - 1} = 0). \text{ Hence}

\[
s_1^{n_1 + n_2 - 1}(\sigma(\hat{r}))[H] = -(s_1(t))^{n_1 + n_2} [\text{KP}(n_1) \times \text{KP}(n_2)],
\]

\[
= -（\pi_1^{n_1} + \pi_2^{n_2})^{n_1 n_2} [\text{KP}(n_1) \times \text{KP}(n_2)]
\]

since all other terms are of degree greater than $n_1 n_2$ in the π_i^a and are zero. But this is

\[
-（\frac{n_1}{n_1 + n_2})(n_1 - 1)\frac{n_2}{\bar{a}}(\pi_1^{n_1})(\pi_2^{n_2})^{n_1 n_2} [\text{KP}(n_1) \times \text{KP}(n_2)] = -（\frac{n_1}{n_1 + n_2})^{n_1 n_2} [\text{KP}(n_1)]^{n_2} [\text{KP}(n_2)]
\]

\[
= -（\frac{n_1}{n_1 + n_2}),
\]

\text{Remarks: The manifold } H_{m, n} \text{ is the non-singular hypersurface of degree (1,1) in KP(m) \times KP(n). If one uses homogeneous coordinates } (w_0, \ldots, w_n)

(\bar{z}_0, \ldots, \bar{z}_n) \text{ this can be defined as the locus of points satisfying}

w_0 z_0 + \ldots + w_r z_r = 0, \text{ where } r = \inf(m, n). \text{ If one considers KP(m+1)(n+1)}
With homogeneous coordinates u_{ij}^1, $0 \leq i \leq m$, $0 \leq j \leq n$ and imbeds $\mathbb{P}(m) \times \mathbb{P}(n)$ by $u_{ij}^1 = v_i^1 z_j^1$, then H is the hyperplane section given by $\sum_{i=0}^m u_{ii} = 0$ and for this imbedding ξ pulls back to $\pi_1^1 \otimes \pi_2^1$. The use of these manifolds was the idea of Milnor (see Milnor [87]) or Hirzebruch [84])

Ordinary Cohomology of BO and BSO

For $K = \mathbb{R}$, the only cohomology theories to which the previous methods are applicable are the 2-primary theories. Unfortunately, this does not give sufficient information to describe the spaces BO_n and T^n. The object of this section is to conquer this technical difficulty by computing the cohomology of BO with other coefficients.

Proposition: Let ξ be a real vector bundle over B. Then $\xi \otimes \xi$ admits a complex vector bundle structure given by

$$i(x,y) = (-y,x), \quad (x,y) \in \xi \otimes \xi.$$

This complex vector bundle is the complexification of ξ, denoted $\xi \otimes \mathbb{C}$, and $\xi \otimes \mathbb{C}$ is isomorphic to its complex conjugate.

If ξ is itself a complex bundle, then $\xi \otimes \mathbb{C}$ is isomorphic as complex vector bundle with $\xi \otimes \bar{\xi}$, $\bar{\xi}$ the conjugate of ξ. In fact, $\xi \otimes \mathbb{C}$ admits a quaternionic vector bundle structure given by

$$i(x,y) = (-y,x) \quad \text{and} \quad j(x,y) = (ix,-iy).$$

Proof: $i^2(x,y) = i(-y,x) = (-x,-y)$ so $i^2 = -1$, giving a complex structure. Let $\phi: \xi \otimes \xi \to \xi \otimes \xi : (x,y) \mapsto (-x,y)$. Then $\phi i = -i\phi$, so ϕ is an isomorphism of $\xi \otimes \mathbb{C}$ with its complex conjugate. If ξ is a complex
bundle, let \(f : \xi \to \xi \otimes \mathbb{C} \) by \(f(x) = (x,-ix) \) and \(g : \xi \to \xi \otimes \mathbb{C} \) by \(g(x) = (x,ix) \). Then \(f^* = f \) and \(g^* = -ig \), so that \(f \) and \(g \) are maps of \(\xi \) and its complex conjugate into \(\xi \otimes \mathbb{C} \). This is a direct sum decomposition since \((x,y) = 1/2 f(x+iy) + 1/2 g(x-iy)\). Finally with the given maps \(i^2 = j^2 = -1 \) and \(ij = -ji \), so that \(i \) and \(j \) give a quaternionic structure on \(\xi \otimes \mathbb{C} \). **

Now suppose \(A \) is a ring spectrum for which \(\mathbb{F} \) has proper cohomology and such that \(c^*(a) = -a \). For \(\xi \) a real vector bundle over \(B \), one then has the Chern class \(c(\xi \otimes \mathbb{C}) \in H^*(B; A) \). Since \(\xi \otimes \mathbb{C} \) is isomorphic to its conjugate

\[
c_1(\xi \otimes \mathbb{C}) = c_1(\xi \otimes \mathbb{C}) = (-1)^*c_1(\xi \otimes \mathbb{C})
\]

so \(2c_{2j+1}(\xi \otimes \mathbb{C}) = 0 \). Since the odd Chern classes have order 2, and are amenable to 2-primary structure theorems, one ignores these and considers

Definition: If \(A \) is a ring spectrum for which \(\mathbb{F} \) has proper cohomology and such that \(c^*(a) = -a \), and \(\xi \) is a real vector bundle over \(B \), then the \(i \)-th Pontrjagin class \(\mathcal{P}_i(\xi) \) is defined by

\[
\mathcal{P}_i(\xi) = (-1)^*c_{2i}(\xi \otimes \mathbb{C}) \in H^{4i}(B; A).
\]

The total Pontrjagin class is the 'formal' sum

\[
\mathcal{P}(\xi) = 1 + \sum_{i=1}^{\infty} \mathcal{P}_i(\xi) \in H^*(B; A).
\]

Lemma: If \(\xi \) is a complex vector bundle with \(c(\xi) = \sum_{i=1}^{\infty} (1+x_1^i) \), \(\dim x_1 = 2 \), then \(\mathcal{P}(\xi) = n_i \sum_{i=1}^{\infty} (1+x_1^i)^2 \).

Proof: \(c(\xi) = \sum_{i=1}^{\infty} (1-x_1) \) so \(c(\xi \otimes \mathbb{C}) = \sum_{i=1}^{\infty} (1-x_1^2) \). **
Lemma: If A is a ring spectrum as above and if $1/2 \in H^0(pt; A)$ then

$$\varphi(\xi \otimes \eta) = \varphi(\xi) \cup \varphi(\eta).$$

Proof: Since $1/2 \in H^0(pt; A)$, $H^*(B; A)$ has no 2-primary torsion, so

$$\partial \varphi_0(\xi \otimes \eta) = 0.$$

From $c(\xi \otimes \xi \otimes n \otimes c) = c(\xi \otimes \xi) \cup c(n \otimes c)$ one has this formula after making the proper sign modifications. **

Proposition: If A is a ring spectrum for which $\text{CP}(V)$ has proper homology and $1/2 \in H^0(pt; A)$ with $c^*(a) = -c$, then $H^*(B_0; A)$ contains a subring isomorphic to the polynomial algebra over $H^*(pt; A)$ on the universal Pontrjagin classes φ_i for $1 \leq i \leq [n/2]$, ([] denotes 'integral part'.

Proof: The classes φ_i are defined for $2i \leq n$, and it suffices to show this ring maps monomorphically into $H^*(B_0_{n/2}; A)$. For this one has the map $f : BU_{[n/2]} \to B_0_n$ obtained by considering a complex $[n/2]$-plane bundle as a real bundle, with $f^*(\varphi) = c \cup \bar{c}$. Thus

$$f^*(\varphi_i) = 2c_{2i} - 2c_{2i-1}c_1 + 2c_{2i-2}c_2 - \ldots + 2c_{i+1}c_{i-1} + c_i^2$$

and these generate a polynomial subalgebra of $H^*(BU_{[n/2]; A})$. **

In order to prove equality, one needs further restrictions on A. Thus, it will be assumed throughout the remainder of this section that $A = K(S)$ where S is a commutative ring containing $1/2$. The proof in this case is fairly involved and depends upon a study of oriented vector bundles.

Definition: If V is an n-dimensional vector space over R with inner product $\langle \ , \ \rangle$, an orientation of V is a unit vector σ in the n-th exterior power of V, $\Lambda^n(V)$. If e_1, \ldots, e_n is an orthonormal base of V
such that \(e_1, \ldots, e_n = \mathcal{O} \); then \(\{e_1, \ldots, e_n\} \) as an ordered base may be thought of as defining the orientation of \(V \).

Lemma: If \(W \) is a complex vector space with inner product then \(W \) has a canonical orientation given by \(f_1, f_1, \ldots, f_n, f_n \) where \(f_1, \ldots, f_n \) is any orthonormal base for \(W \) over \(\mathbb{C} \).

Definition: An oriented vector bundle \(\xi \) is a vector bundle together with a consistent choice of orientations in the fibers; i.e., a bundle \(\xi \) together with a cross section of the unit sphere bundle of the determinant bundle \(\det \xi = \Lambda^n(\xi) \), \(n = \dim \xi \).

Proposition: Let \(\xi = (B, \pi, p, +, \cdot) \) be an oriented \(n \)-plane bundle. There is a unique class \(U \in H^n(T_b \mathbb{S}^2) \) such that for each point \(b \in B \) and orientation preserving isomorphism \(f : H^0 \to E_b \), the induced class \((\pi f)^*(U) \in H^n(S_b^2; \mathbb{Z}) \) is the standard generator.

Proof: Let \(S \) be the unit sphere bundle of \(\xi \otimes L \). Then \(S \) is an oriented sphere bundle; i.e., if \(\phi : [0, 1] \to B \), \(\phi(0) = \phi(1) = b \) and \(\phi \) is trivialized then the maps of the fibers over \(0 \) and \(1 \) into the fiber of \(S \) over \(b \) are homotopic (rel base points).

Thus \(\pi_b(B) \) acts trivially on the cohomology of the fiber of \(S \). In the Serre spectral sequence one has \(E_2^{p, q} = H^p(B, \mathbb{H}_q(S^2)) = H^p(B; \mathbb{Z}) \otimes H^q(S^2) \).

Let \(s : B \to S : b \to (0, b, 1) \in E_b \times \mathbb{R} \). Then \(s \) is a section, and the spectral sequence collapses. If \(V \in H^p(S) \) represents \(1 \in H^n \mathbb{Z} \), then \(V \) restricts to a generator of the cohomology of each fiber. Since \(V \) is determined only up to image \(\pi^* \), \(\pi : S \to B \) the projection, one may assume \(s^*V = 0 \) (which characterizes \(V \) completely). Then \(H^*(S) \) is the free \(H^*(B) \) module on \(1 \) and \(V \).
Using the section $s : B \to S$, one may form S/B which is identifiable with $T\xi$ and one has the exact sequence of the pair (S,B) giving

$$0 \to H^*(B) \xrightarrow{s^*} H^*(S) \xrightarrow{\chi} \tilde{H}^*(T\xi) \to 0$$

Identifying $\tilde{H}^*(T\xi)$ with kernel s^*, the free $H^*(B)$ module on V. Let $U \cdot \chi^{-1}(V)$. Since $H^0(\text{pt}; Z) = Z$, U is unique except for sign, i.e. choice of orientation over the components of B. **

Definition: If $\xi = (B, E, p, +, *)$ is an oriented n-plane bundle, with $\iota : B \to T\xi$ the map induced from the zero section of ξ, then the *Ruler Map* $e(\xi)$ is $t^*(U) \in H^n(B; Z)$.

Note: If $\tilde{s} : B \to S$ is the section $b : (0, -1)$, the map into $B/T\xi$ is t. Thus $e(\xi) = \tilde{s}^*V$. Unless ξ admits a nonzero cross section it is not clear that s and \tilde{s} should be homotopic, so \tilde{s}^*V may be H^n-zero.

Lemma: $U \cup U = p^*(e(\xi)) \cdot U$.

Proof: Let D and D_0 denote the disc and sphere bundles of ξ.

$D \to D/D_0$ the collapse and $z : B \to D$ the zero section. Identifying with D/D_0, $p^*(e(\xi))U = (p^*z^*U)U$. Since B is a deformation retract of D, z^p is homotopic to the identity and $p^*z^* = 1$. Thus $p^*(e(\xi))U = (i^*U)U$ with the external product $(i^*U)U$ coincides with the internal product $U \cup U$. **

Corollary: If n is odd, $e(\xi)$ is of order 2, hence is zero in $H^n(B; Z)$ if $1/2 \in Z$.

Proof: $U \cup U = (-1)^{\dim U} U \cup U$. **
Lemma: If ξ is the underlying oriented bundle of a complex n-plane bundle ω, then $e(\xi) = c_n(\omega)$.

Proof: This assumes the fact (which will be verified later) that $\text{CP}(V)$ has proper integral cohomology. Then the orientation classes consist for the oriented bundle and the complex bundle coincide by uniqueness, and hence the images under the zero section map must coincide. **

For a Whitney sum of oriented bundles, the product orientation class is again an orientation class, and by the same uniqueness argument:

Lemma: The Euler class of a Whitney sum of oriented bundles is the product of the Euler classes.

Corollary: If ξ is an oriented $2n$ plane bundle, then $e(\xi)^2 = \hat{0}$.

Proof: If e_1, \ldots, e_{2n} is an ordered base of the fiber over x defining the orientation, the fiber of $\xi \oplus \xi$ has orientation given by the base $(e_1,0), \ldots, (e_{2n},0), (0,e_1), \ldots, (0,e_{2n})$ while $\xi \oplus \xi$ has orientation given by $(e_1,0), (0,e_1), \ldots, (e_{2n},0), (0,e_{2n})$. Thus $\xi \oplus \xi = (-1)^n (\xi \oplus \xi)$ as oriented bundles $[n(2n-1)$ sign changes]. Thus

$$\mathcal{G}_n(\xi) = (-1)^n c_{2n}(\xi \oplus \xi) = (-1)^n e(\xi \oplus \xi) = e(\xi)^2.$$ **

Definition: $\mathcal{G}_{n,r}$ is the Grassmannian of oriented n planes in \mathbb{R}^r, i.e. pairs consisting of an n-plane and an orientation of that plane.

(Equivalently $\mathcal{G}_{n,r}$ is the sphere bundle of the determinant bundle of γ^n.)

The limit space is $\text{BSO}_n = \lim_{r \to \infty} \mathcal{G}_{n,r}$.

BSO_n is the classifying space for oriented n-plane bundles, which coincides with the sphere bundle of the determinant bundle of γ^n over \mathbb{R}^r. The pullback of γ^n to BSO_n is an oriented bundle γ^n.

Proposition: If \(S \) is a commutative ring containing \(1/2 \), then
\[\mathbb{H}^*(\text{BSO}_n; S) \] is the polynomial ring over \(S \) on
\[P_1, \ldots, P_k \] for \(n = 2k+1 \),
\[P_1, \ldots, P_{k-1}, e(\gamma^n) \] for \(n = 2k \)

and in the latter case \(P_k = e(\gamma^n)^2 \), where \(P_1 \) is the Pontryagin class \(\gamma_1(\gamma^n) \).

Proof: Let \(h : BU_{[n/2]} \to \text{BSO}_n \) be the map obtained by ignoring a complex structure. The classes listed map to algebraically independent elements of \(H^*(BU_{[n/2]}, S) \) and hence \(H^*(\text{BSO}_n; S) \) contains this polynomial subring. Equality is proved by induction.

For \(n = 1 \), \(\text{BSO}_1 \) is the double cover of \(\text{RP}(\infty) \) which is the infinite sphere, hence contractible.

For \(n = 2 \), an oriented \(n \)-plane bundle is just a complex line bundle. In fact, if \(V \) is an oriented 2-plane with orientation \(\gamma' \), and \(v \in V \), there is a unique vector \(w \) with \(w \) orthogonal to \(v \), with \(|w| = |v| \) and such that \(v \cdot w = k \gamma' \) with \(k \geq 0 \) (\(k = |v|^2 \)). This \(w \) is \(i \cdot v \). Since \(w \cdot v = -v \cdot w, i^2 = -1 \). The orientation given by a complex structure gives back what complex structure back. Thus \(\text{BSO}_2 = BU_1 \) and
\[\mathbb{H}^*(\text{BSO}_2; S) = S[e(\gamma^2)] = S[\gamma_1]. \]

To make the induction step one has
\[S(\gamma^n) \to D(\gamma^n) \to T(\gamma^n). \]

At a point of \(S(\gamma^n) \) one has a non-zero vector in an oriented \(n \)-plane and the complementary \(n-1 \) plane is then oriented. This defines a fibration
\[S(\gamma^n) \to \text{BSO}_{n-1} \] with fiber an infinite sphere. The pullback to \(S(\gamma^n) \) of
\(\gamma^n \) splits off a section to give \(\gamma^{n-1} \oplus 1 \). The projection and zero section of \(D(\gamma^n) \) give a homotopy equivalence of \(\text{BSO}_n \) and \(D(\gamma^n) \). Thus the exact sequence of the pair \((D(\gamma^n), S(\gamma^n)) \) gives an exact sequence

\[
\begin{align*}
H^*(S(\gamma^n)) & \leftarrow H^*(D(\gamma^n)) \leftarrow H^*(T\gamma^n) \\
\text{by} & \\
H^*(\text{BSO}_{n-1}) & \leftarrow H^*(\text{BSO}_n) \leftarrow H^*(\text{BSO}_n)
\end{align*}
\]

where \(\phi \) is the Thom isomorphism. The homomorphism \(a \) has degree \(n \), as since \(\text{BSO}_n \) is identified with \(D(\gamma^n) \) by the zero section, \(a \) is multiplication by the Euler class. The homomorphism \(b \) sends \(\mathcal{F}_1(\gamma^n) \) to \(\mathcal{F}_1(\gamma^{n-1}) \) since under the identifications \(\gamma^n \) pulls back to \(\gamma^{n-1} \oplus 1 \). Computation for the induction is then straightforward, giving the exact sequences

\[
(n = 2k)
0 \leftarrow S[\mathcal{F}_1, \ldots, \mathcal{F}_{k-1}] \leftarrow S[\mathcal{F}_1, \ldots, \mathcal{F}_{k-1}, e] \leftarrow S[\mathcal{F}_1, \ldots, \mathcal{F}_{k-1}, e] \leftarrow 0
\]

in which the equality for \(H^*(\text{BSO}_n) \) is proved inductively using dimension

\[
(n = 2k+1)
0 \leftarrow S[\mathcal{F}_1, \ldots, \mathcal{F}_k] \leftarrow S[\mathcal{F}_1, \ldots, \mathcal{F}_{k-1}, e] \leftarrow S[\mathcal{F}_1, \ldots, \mathcal{F}_k] \leftarrow 0
\]

since \(e(\gamma^n) = 0 \) implies \(a = 0 \), so that \(H^*(\text{BSO}_n) \) is a subring of \(H^*(\text{BSO}_{n-1}) \) containing \(S[\mathcal{F}_1, \ldots, \mathcal{F}_k] \), but equality must hold by rank of \(S[\mathcal{F}_1, \ldots, \mathcal{F}_{k-1}, e] \) having a base over \(S[\mathcal{F}_1, \ldots, \mathcal{F}_k] \) given by 1 and...
Proposition: If \mathbb{S} is a commutative ring containing $1/2$, then $H^*(BO_n;\mathbb{S})$ is the polynomial ring over \mathbb{S} on the Pontrjagin classes ψ_i, $1 \leq i \leq [n/2]$.

Proof: BSO_n is a double cover of BO_n, so $H^*(BO_n;\mathbb{S})$ is the subring of $H^*(BSO_n;\mathbb{S})$ consisting of the classes fixed under the homomorphism induced by the map $x:BSO_n \rightarrow BSO_n$ which interchanges the sheets of the cover. Since $x^*(\psi_1) = \psi_1$ (ψ_1 comes from BO_n) while $x^*(e(\gamma)) = e(x^*(\gamma)) = -e(\gamma)$ since $x^*(\gamma)$ is just γ with reversed orientation, the result is clear.

Note: In the fibration $\pi:BO_{n-1} \rightarrow BO_n$ with fiber S^{n-1}, BO_{n-1} being $S(\gamma)$, the homotopy group $\pi_1(BO_n) \approx \mathbb{Z}_2$ acts non-trivially on the cohomology of the fiber.
Chapter VI

Unoriented Cobordism

In many respects the most interesting cobordism theory is unoriented cobordism; i.e. the cobordism problem associated to the category \((\mathcal{C}, \mathcal{D}, 1)\) of all compact differentiable manifolds. It has additional interest in that its solution by Thom [17] illustrates all of the basic techniques for dealing with cobordism problems, without encountering excessive technical difficulty.

First note that \(\mathcal{N}(\mathcal{C}, \mathcal{D}, 1)\) decomposes as a direct sum of semigroups \(\mathcal{N}_n(\mathcal{C}, \mathcal{D}, 1)\), \(n\) being the dimension of the manifold. This semigroup is usually denoted \(\mathcal{N}_n\), with \(\mathcal{N}_n^*\) denoting the direct sum. The first strong theorem is:

Proposition: \(\mathcal{N}_n\) is an abelian group in which every element has order 2. \(\mathcal{N}_n^*\) is a graded commutative ring, multiplication being induced by the product of manifolds, with unit, given by the cobordism class of a point.

Proof: For any closed \(M\), \(M + M + \emptyset \overset{\sim}{=\emptyset} + \emptyset(M \times I)\) where \(I = [0, 1]\), so the class of \(M\) is its own inverse. If \(M, N_1\) and \(N_2\) are closed with \(N_1 \cong N_2\), say \(N_1 + 3U_1 \cong N_2 + 3U_2\), then \(M \times N_1 + 3(M \times U_1) \cong M \times N_2 + 3(M \times U_2)\), and so \(M \times N_1 \cong M \times N_2\). Since \(M \times (N_1 + N_2) \cong M \times N_1 + M \times N_2\) and \(M \times N \cong N \times M\) this gives \(\mathcal{N}_n\) the structure of a graded commutative ring. If \(p\) is a point, \(M \times p \cong p \times M \cong M\), so the class of \(p\) is a unit.

The next standard step is to replace the cobordism problem by a homotopy problem. This is accomplished for unoriented cobordism by noting that every manifold has a unique \((BO, \mathbb{I})\) structure (\(\mathbb{I}\) being the sequence of identity maps \(1_x : BO_x \rightarrow BO_x\)). The forgetful functor from the category of \((BO, \mathbb{I})\) manifolds to \((\mathcal{C}, \mathcal{D}, 1)\) which ignores the \((BO, \mathbb{I})\) structure for objects and the normal trivialization for maps induces an isomorphism of cobordism.
semigroups. (Note: Isomorphisms, inclusions of boundaries, and summands are preserved). If \(M_1 \subset R_{1+r_1}^n \) and \(M_2 \subset R_{2+r_2}^n \) are imbeddings, then the normal bundle of the product imbedding \(M_1 \times M_2 \subset R_{1+r_1+2+r_2}^n \) is the Whitney sum of the normal bundles of the factors. Thus one has the determination theorem:

Theorem: The cobordism group \(\mathcal{N}_n \) is isomorphic to \(\lim_{r \to \infty} \pi_{n+r}(TBO_{r,s}) \).

The ring structure in \(\mathcal{N}_n \) is induced by the maps \(TBO_{r+s} \to TBO_{r+s} \) obtained from the Whitney sum operation on vector bundles.

The next step is clearly to try to solve the homotopy problem. It is here that the most ingenuity is required since the various cobordism theories differ widely at this point. The guidance one obtains from Thom's work is:

Make use of the cohomology theories for which the manifolds in question are orientable.

For unoriented cobordism one makes use of ordinary cohomology with \(\mathbb{Z}_2 \) coefficients; i.e., the cohomology theory for the spectrum \(K(\mathbb{Z}_2) \). One needs a knowledge of the operations in this theory, which may be summarized:

The mod 2 Steenrod algebra \(A_2 \) is the graded algebra defined by

\[
(A_2)^i = H^{n+i}(K(\mathbb{Z}_2); \mathbb{Z}_2) \quad 1 \times n.
\]

Then:

a) \(A_2 \) is the associative graded algebra over \(\mathbb{Z}_2 \) generated by symbols \(Sq^i \) of dimension 1, and all relations are given by the Adem relations

\[
Sq^a Sq^b = \sum_{i=0}^{[a/2]} \binom{b-1}{a-2i} Sq^{a+b-i} Sq^i
\]

if \(a < 2b \) (\(Sq^0 = 1 \)).
b) For any pair \((X,A)\) there is a natural pairing
\[\mathcal{A}_2 \otimes \mathbb{H}^*(X,A;\mathbb{Z}_2) \rightarrow \mathbb{H}^*(X,A;\mathbb{Z}_2)\]
such that

1) \(\text{Sq}^i : \mathbb{H}^n(X,A;\mathbb{Z}_2) \rightarrow \mathbb{H}^{n+i}(X,A;\mathbb{Z}_2)\) is additive;

2) \(\text{Sq}^0 u = u\) for all \(u\),
 \(\text{Sq}^1 u = u^2\) if dimension \(u = d\), and
 \(\text{ Sq}^d u = 0\) if dimension \(u < d\); and

3) (Cartan formula) \(\text{Sq}^d(a \cup b) = \sum_{e+f=d} (\text{Sq}^e a) \cup (\text{Sq}^f b)\).

(See Steenrod and Epstein [114]).

Following Milnor [79] one defines a diagonal map \(\Delta : \mathcal{A}_2 \rightarrow \mathcal{A}_2 \otimes \mathcal{A}_2\)
by \(\Delta(\text{Sq}^i) = \sum_{j+k=i} \text{Sq}^j \otimes \text{Sq}^k\), which makes \(\mathcal{A}_2\) into a connected Hopf algebra
over \(\mathbb{Z}_2\). (Connected means that the unit defines an isomorphism of \(\mathcal{A}_2\)
with the ground field \(\mathbb{Z}_2\)).

It is well known that the \(\mathbb{Z}_2\) cohomology of real projective space \(P^n\)
is the truncated polynomial algebra over \(\mathbb{Z}_2\) on the unique non-zero class \(\alpha\) of dimension one, \(\alpha^n = 0\), and that \(\alpha^{n-1}\) is the image of the non-zero class \(\zeta \in \mathbb{H}^{n-1}(S^{n-1};\mathbb{Z}_2)\). From Chapter V, one then knows the full cohomology
structure of \(BO_r\) and \(TB_0\) using \(\mathbb{Z}_2\) coefficients. The following line
of proof is due to Browder, Liulevicius, and Peterson [27]. (See also
Liulevicius [73]).

Denote by \(\tilde{H}^*(TB_0;\mathbb{Z}_2)\) the direct sum of the groups
\[\tilde{H}^*(TB_0;\mathbb{Z}_2) = \lim_{r \to \infty} \tilde{H}^{*+r}(TB_0;\mathbb{Z}_2).\]

Lemma: The maps \(TB_0 \rightarrow TB_0\) obtained from the Whitney sum of
vector bundles induce a diagonal map
\[\psi : \tilde{H}^*(TB_0;\mathbb{Z}_2) \rightarrow \tilde{H}^*(TB_0;\mathbb{Z}_2) \otimes \tilde{H}^*(TB_0;\mathbb{Z}_2)\]
making \(\tilde{H}^*(TB_0;\mathbb{Z}_2)\) into a connected coalgebra over \(\mathbb{Z}_2\) with counit.
$U \in \overline{H^0(TBO;\mathbb{Z}_2)}$. $\overline{H^*(TBO;\mathbb{Z}_2)}$ is a left module over the Hopf algebra A_2 with ψ a homomorphism of A_2 modules such that the homomorphism

$$\nu : A_2 \rightarrow \overline{H^*(TBO;\mathbb{Z}_2)} : a \rightarrow a(U)$$

is a monomorphism.

Proof: This is all obvious with the exception of the assertion that ν is monic. For this one may apply the splitting principle and the calculation of the Thom class of a line bundle to express U formally as the product

$$V = x_1 x_2 x_3 \ldots$$

of one dimensional classes x_i, $i \geq 1$. By the Adem formulæ A_2 has a base consisting of operations $Sq_i = Sq_i Sq_{i-1} \ldots Sq_1$ with

$$i > 2i+1$$

and evaluation of such an operation on V gives a sum of monomials $x_1 x_2 \ldots$ with only a finite number of $r_1 \neq 1$. Order such monomials by

$$x_1 x_2 \ldots x_1 x_2 \ldots$$

if for some j, $r_j = s_j$ for all $i < j$ and $r_j > s_j$. Since $Sq_i^i x^i = x^{i^2}, x^{i^2+1}$, or 0 as $i = 0, 2^i$ or any other if dim $x = 1$, one has that the largest monomial of $Sq_i^i V$ is $x_1^{r_1} x_2^{r_2} \ldots$ where $r_1 \geq r_2 \geq \ldots$

and the sequence of r_i has $a - 2a + 1$ copies of the integer 2^a.

In addition, each sequence of r_i occurring consists of powers of 2. Thus $Sq_i^i U = s_{2^a} U$ where $s_{2^a} U$ contains $a - 2a + 1$ copies of 2^a and s_{2^a} runs through a set of partitions into integers of the form $2^a - 1$ with $w' < w$ in lexicographic order (if $\omega = (j_1, \ldots, j_k)$ with $j_1 > j_2 > \ldots$, say $\omega > \omega'$ if for some $\omega > J_\beta = J'_\beta$ for all $\beta < \gamma$ and $\gamma J_\gamma > J'_\gamma$). Since the partitions $\omega(I)$ are distinct ($\omega(I)$ determines I) ν is monic. (Note: This is the standard argument needed to determine the dual of A_2. See Steenrod and Epstein [114], Chapter I, 3.3). **

One then has the result of Milnor and Moore [90], Theorem 4.4:
Lemma: Let A be a connected Hopf algebra over a field F. Let M be a connected coalgebra over F with counit $1 \in M_0$ and a left module over A such that the diagonal map is a map of A modules. Suppose $\nu : A \rightarrow M : a \mapsto a \cdot 1$ is a monomorphism. Then M is a free left A module.

Proof: Let $\bar{A} \subseteq A$ be the elements of positive degree and let $\pi : M \rightarrow N = M/\bar{A}M$ be the projection. Let $f : N \rightarrow M$ be any vector space splitting $\pi f = 1_N$ and define $\phi : A \otimes N \rightarrow M : a \otimes n \mapsto af(n)$. ϕ is a homomorphism of A modules.

1) ϕ is epic: $\phi : A \otimes N \rightarrow M$ is the identity map of F for $(\bar{A}M) \cap M_0 = 0$. Suppose $\phi : (A \otimes N)_1 \rightarrow M_1$ is epic if $i < k$. If $c \in M_k$, $c - \phi(1 \otimes wc)$ maps to zero under π for $c - \phi(1 \otimes wc) = \sum_i x_i c_i$ with $x_i \in \bar{A}$, $c_i \in M$. Since $\dim c_i < k$, $c_i = \phi(x_i)$ for some x_i and $c = \phi(1 \otimes wc) + \sum_i x_i \phi(x_i) = \phi(1 \otimes wc + \sum_i x_i x_i)$. Thus $\phi : (A \otimes N)_k \rightarrow M_k$ is epic.

2) ϕ is monic: Consider

$$
\begin{array}{c}
A \otimes N \xrightarrow{1 \otimes f} A \otimes M \xrightarrow{\text{mult}} M \xrightarrow{\Delta} M \otimes M \xrightarrow{1 \otimes \nu} M \otimes N.
\end{array}
$$

Clearly ϕ, Δ, and $1 \otimes \nu$ are A module homomorphisms (Δ by assumption; $1 \otimes \nu$ is an A module homomorphism since $a(m \otimes n) = am \otimes n$, while if $mm' = n$ then $(1 \otimes \nu)(a(m \otimes m')) = (1 \otimes \nu)(a'm \otimes a''m') = (1 \otimes \nu)(am \otimes lm')$ $= am \otimes n$ since $\nu(a''m') = 0$ if deg $a'' > 0$; here $\Delta a = \Sigma a' \otimes a''$).

Then $1 \otimes n \rightarrow 1 \otimes f(n) \rightarrow f(n) \rightarrow f(n) \otimes 1 + 1 \otimes f(n) +$ other $\rightarrow f(n) \otimes 1 + 1 \otimes n +$ other, or $a \otimes n \mapsto a \cdot 1 \otimes n + e$ where $e \in \bigcup_{p \leq \dim n} M \otimes N$. Projection of $M \otimes N$ on $M \otimes N$ gives

$A \otimes N \rightarrow M \otimes N$: $a \otimes n \mapsto a(1) \otimes n$ which is monic since ν is monic. Thus $1 \otimes \phi$ is monic and so ϕ is monic.
3) Thus \(\phi : A \otimes N \cong M \) is an isomorphism of \(A \) modules, so \(M \) is a free \(A \) module. **

Combining these lemmas one gets

Theorem: In dimensions less than or equal to \(2r \), \(H^\ast(\text{B}O_r; \mathbb{Z}_2) \) is a free module over the Steenrod algebra \(A_2 \) and, in fact, in dimensions less than \(2r \) \(\text{B}O_r \) has the homotopy type of a product of Eilenberg-MacLane spaces \(K(\mathbb{Z}_2, n) \).

Thus \(\gamma_n \) is a \(\mathbb{Z}_2 \) vector space whose rank is the number of non-dyadic partitions of \(n \) \((\omega = (i_1, \ldots, i_r) \) is non-dyadic if none of the \(i_\beta \) are of the form \(2^s - 1 \) and two manifolds are unoriented cobordant if and only if they have the same Stiefel-Whitney numbers.

Proof: The free module structure follows from the stability \(H^{i+1}(\text{B}O_r; \mathbb{Z}_2) \cong H^{i+1}(\text{B}O_{r+1}; \mathbb{Z}_2) \) for \(i \leq r \). There is then a map of \(\text{B}O_r \) into a product of spaces \(K(\mathbb{Z}_2, n), n \geq r \), inducing an isomorphism of \(\mathbb{Z}_2 \) cohomology in dimensions less than or equal to \(2r \), and by the generalized Whitehead theorem (Spanier [110] page 512) the homomorphism on homotopy is an isomorphism modulo odd torsion in dimensions less than \(2r \). For \(p \) an odd prime, one has the exact sequence \(0 \rightarrow H^\ast(\text{B}O_{r-1}; \mathbb{Z}_p) \rightarrow H^\ast(\text{B}O_r; \mathbb{Z}_p) \rightarrow H^\ast(\text{B}O_r; \mathbb{Z}_p) \rightarrow 0 \) arising from the pair \((\text{D}y^r, \text{S}y^r)\) from which \(H^\ast(\text{B}O_r; \mathbb{Z}_p) = 0 \) in dimensions less than \(2r \). Thus the map into the product of \(K(\mathbb{Z}_2, n) \)'s is a homotopy equivalence in dimensions less than \(2r \). Since the rank of \(H^n(\text{B}O_r; \mathbb{Z}_2) \) is the number of partitions of \(n \), while the rank of \(A_2^1 \) is the number of dyadic partitions of \(1 \), the rank of \(\pi_{n+1}(\text{B}O_r; \mathbb{Z}_2) \) is the number of non-dyadic partitions of \(n \) if \(r > 1 \). Since this homotopy group is isomorphic to \(\gamma_n \) for \(r \) large, the rank of \(\gamma_n \) is as asserted.
Since the Hurewicz homomorphism is monic for a product of $K(Z_2, n)$'s it is monic for \mathcal{B}_r below dimension $2r$, and hence cobordism class is determined by Z_2 cohomology characteristic numbers. **

The complete structure theorem is then:

Theorem: \mathcal{A}_r is a polynomial algebra over Z_2 (with unit) on classes x_i of dimension i, i not of the form $2^k - 1$; the class x_i may be chosen to be the cobordism class of any closed manifold M^i for which the s-number $s_{(1)}(w(v))[M] = s_{(1)}(w(\tau))[M] \neq 0$.

Note: With v the normal bundle and τ the tangent bundle, $v \oplus \tau$ trivial, and since $s_{(1)}$ is primitive, $s_{(1)}(v) + s_{(1)}(\tau) = 0 = s_{(1)}(v)$ trivial and $s_{(1)}(v) = -s_{(1)}(\tau) = s_{(1)}(\tau) \pmod 2$.

Note: One may prove this as did Thom by showing that the $s_{(1)}U$ for a non-dyadic form a base of $\tilde{H}^*(\mathcal{B}_r; Z_2)$ over \mathcal{A}_2 (see also Wall [130] pages 301-302). Since one wishes to have explicit constructions of generators an indirect proof will be given here, in a sequence of lemmas. This will in fact show that these $s_{(1)}U$ form a base over \mathcal{A}_2.

Lemma: Suppose there are manifolds M^i of dimension i $(i \neq 2^k - 1)$ such that $s_{(1)}(w(v))[M^i] \neq 0$. Then \mathcal{A}_r is the polynomial algebra on the classes of the M^i. If manifolds $M^i (i \neq 2^k - 1)$ also give a system of generators, then $s_{(1)}(w(v))[N^i] \neq 0$.

Proof: Totally order the non-dyadic partitions of n by an order \prec compatible with the partial ordering $\omega \prec \omega'$ if ω' refines ω (i.e. if $\omega = (i_1, \ldots, i_r)$ then $\omega' = \omega_1 \cup \ldots \cup \omega_r$ where ω_β is a partition of i_β).

If $\omega = (i_1, \ldots, i_r)$ let $\tilde{M}_\omega = M_{i_1} \times \ldots \times M_{i_r}$. Then $s_{(1)}(w(v))[\tilde{M}_\omega]$ is zero if ω' does not refine ω and is nonzero if $\omega = \omega'$. (For this
\[s_{\omega, (v)}[M_{\omega}] = \sum_{\omega_1 \cup \ldots \cup \omega_r = \omega} s_{\omega_1}(v)[M_{\omega_1}^{-1}] \ldots s_{\omega_r}(v)[M_{\omega_r}^{-1}] \] and since \(s_{\omega}(v)[M_{\omega}] = 0 \) if \(n(\omega) \neq i \), this must be zero unless there is some expression \(\omega' = \omega_1 \cup \ldots \cup \omega_r \) with \(n(\omega_\beta) = i_\beta \). If \(\omega' = \omega \), this gives \(s_{\omega}(v)[M_{\omega}] = \Pi s_{(i_\beta)}(v)[M_{i_\beta}] \neq 0 \). Considering the matrix \(\|s_{\omega}(v)(w(v))[M_{\omega}]\| \) for \(\omega, \omega' \) non-dyadic partitions of \(n \), one has \(s_{\omega'}(w(v))[M_{\omega}] = 0 \) if \(\omega' < \omega \) since \(\omega' \) cannot then refine \(\omega \), so the matrix is triangular, and since \(s_{\omega}(w(v))[M_{\omega}] \neq 0 \) the diagonal entries are all one (in \(Z_2 \)). Thus the manifolds \(M_{\omega} \) are linearly independent over \(Z_2 \) and having the proper number they are a base for \(\gamma_n \), which gives the polynomial structure.

If \(\{N^i\} \) is another family of generators then \(N^i \) cannot be decomposable so one must have \(N^i = M^i + 1 \) \(a_{\omega} M_{\omega} \), \(a_{\omega} \in Z_2 \), \(\omega = (i_1, \ldots, i_r) \) with \(r > 1 \). Since \(s(i_\omega)(w(v)) \) vanishes on decomposable elements, this gives

\[s(i_\omega)(w(v))[N^i] = s(i_\omega)(w(v))[M^i] \neq 0 \] **

Lemma: If \(i = 2k \), then \(s(i_\omega)(w(\tau))[\text{RP}(1)] \neq 0 \).

Proof: By the computations of Chapter V, \(s(i_\omega)(w(\tau))[\text{RP}(1)] = 1 + 1 \neq 0 \) mod 2. **

Lemma: If \(i \) is odd and not of the form \(2^q - 1 \), write \(i = 2^p(2q+1)-1 \) with \(p > 1 \), \(q > 1 \) and let \(H \subset \text{RP}(2^{p+1}q, 2^p) \times \text{RP}(2^p) \) be the hypersurface of degree \((1,1)\). Then

\[s(i_\omega)(w(\tau))[H_{2^{p+1}q, 2^p}] \neq 0. \]

Proof: From Chapter V the value of this \(s \)-class is \(-\langle 2^p(2q+1) \rangle_{2^p}\). This is
\[(2^{P+1} q + 2^P)(2^{P+1} q + 2^P - 1) \ldots (2^{P+1} q + 1) \quad \text{and} \quad 2^{P+1} q + 2(2b+1) = 2^{P+1 - a} q + 2b+1 \]

so that factors of 2 divide out, making this an odd integer. **

Note: This choice of generators is due to Milnor [87]. The first construction of odd dimensional generators was by Dold [43].

To complete the determination of \(\gamma_n \) it is desirable to know the complete set of relations among the Stiefel-Whitney numbers. This problem was solved by Dold [44] who showed that all relations follow from formulas of Wu [44] relating the characteristic classes with the action of the Steenrod algebra. A thorough study of this situation appears in Atiyah and Hirzebruch [19].

Let \(H^p \) be a closed \(n \)-dimensional manifold and let \([M] \in H^n(M; \mathbb{Z}_2)\) be the orientation class. Since \(\mathbb{Z}_2 \) is a field, the universal coefficient theorem (Spanier [110], page 243) shows that \(H^k(M; \mathbb{Z}_2) \cong H^k(M; \mathbb{Z}_2) \) while Poincaré duality gives that the cap product with \([M]\) is an isomorphism of \(H^{n-k}(M; \mathbb{Z}_2) \) with \(H^k(M; \mathbb{Z}_2) \). Thus the pairing

\[
H^k(M; \mathbb{Z}_2) \otimes H^{n-k}(M; \mathbb{Z}_2) \longrightarrow \mathbb{Z}_2 : a \otimes b \longrightarrow (a \cup b)[M]
\]

is a dual pairing. (Note: This characterizes \([M]\) for on a component \(M\) of \(M \) there will be a unique nonzero class in \(H^p(M; \mathbb{Z}_2) \) or \(H^n(M; \mathbb{Z}_2) \) and \([M]\) must restrict to this class. Thus \([M]\) is a homotopy type invariant.

The operation \(H^{n-k}(M; \mathbb{Z}_2) \longrightarrow \mathbb{Z}_2 : a \longrightarrow (\text{Sq}^k a)[M] \) is a homomorphism and so by the dual pairing there is a unique class \(v_k \in H^k(M; \mathbb{Z}_2) \) such that for all \(a \in H^{n-k}(M; \mathbb{Z}_2) \) one has \((\text{Sq}^k a)[M] = (v_k \cup a)[M] \). Since \(\text{Sq}^k a = 0 \) if \(k \geq \dim a \), one has \(v_k = 0 \) if \(k > n - k \) or \(2k > n \). The class \(v(M) = 1 + v_1 + \ldots + v_{[n/2]} \) in \(H^*(M; \mathbb{Z}_2) \) is called the total Wu class of \(M \).
It is useful to form the total Steenrod operation $\text{Sq} = 1 + \text{Sq}^1 + \text{Sq}^2 + \ldots$ so that for $x \in H^*(M; \mathbb{Z}_2)$ one has $(\text{Sq} \cdot x)[M] = (v \cup x)[M]$.

Remarks: For computations to be performed it is desirable to have a few properties of the total Steenrod operation. By linearity of Sq^i, one has $\text{Sq}(x + y) = \text{Sq}x + \text{Sq}y$. From the Cartan formula, $\text{Sq}(x \cup y) = (\text{Sq}x) \cup (\text{Sq}y)$. Considering Sq as a formal power series beginning with 1, one may invert Sq to define an operation Sq^{-1}. By dimension considerations $\text{Sq}^i x = 0$ if $i > 0$ or $\text{Sq}^i x = x$ if $i = 0$ for $x \in H^*(S^n; \mathbb{Z}_2)$ so for $x \in H^*(S^n; \mathbb{Z}_2)$, $\text{Sq}x = x$. (In the terminology of Atiyah and Hirzebruch, Sq is a cohomology automorphism.)

In order to relate the Wu class to characteristic classes one needs the result of Thom [142]:

Theorem: Let $U \in H^7(TBO; \mathbb{Z}_2)$ be the Thom class. Then

$$\text{Sq}^1 U = (v_1 \cup w_1) \cup U,$$

i.e. $\text{Sq}^1 U = (v_1 \cup w_1) \cup U$.

Proof: By the splitting principle one may write U as a product $x_1 \ldots x_r$ of one-dimensional classes. Then $\text{Sq}^1(x_1 \ldots x_r)$ is the sum of all monomials $x_1^{j_1} \ldots x_i^{j_i} \ldots x_r^{j_r}$ for $1 \leq j_1 < \ldots < j_i \leq r$. This is the i-th elementary symmetric function of the x_i multiplied by $x_1 \ldots x_r$, and hence $\text{Sq}^1 U = (v_1 \cup w_1) \cup U$. **w**

One then has the result of Wu [142]:

Theorem: If M^n is a closed differentiable manifold with Wu class v and tangential Stiefel-Whitney class $w(\tau)$, then

$$w(\tau) = \text{Sq} v \quad \text{or} \quad v = \text{Sq}^{-1} w(\tau).$$
In particular, the Stiefel-Whitney classes are homotopy type invariants and the Wu class is a characteristic class. If one expresses \(w(\tau) = \prod_{i=1}^{n} (1 + x_1^i + x_2^i + x_3^i + \ldots) \) then \(v = \prod_{i=1}^{n} (1 + x_1^i + x_2^i + x_3^i + \ldots) \).

Proof: Let \(\tilde{w} = Sq \, v \), \(w(v) \) the normal Stiefel-Whitney class of \(M \), \(U \in H^*(Tv;\mathbb{Z}_2) \) the Thom class, \(c : S^{n+r} \to Tv \) the collapse given by an imbedding, and \(y \) any class in \(H^*(M;\mathbb{Z}_2) \). Let \(x \in H^*(M;\mathbb{Z}_2) \) be \(Sq^{-1} y \) so \(y = Sq \, x \). Then

\[
\tilde{w}w(v)[M] = c^*(\pi^*(\tilde{w}w(v))U)[S^{n+r}],
\]

\[
= c^*(Sq_x \cdot Sq_v \cdot Sq_U)[S^{n+r}],
\]

(dropping \(\pi^* \) notation)

\[
= c^*(Sq(xvU))[S^{n+r}],
\]

\[
= Sq^*(xvU)[S^{n+r}],
\]

\[
= c^*(xvU)[S^{n+r}],
\]

\[
= (x \cup v)[M],
\]

\[
= (Sq \, x)[M],
\]

\[
= y[M].
\]

Since this holds for all \(y \in H^*(M;\mathbb{Z}_2) \), one has from the dual pairing that \(\tilde{w}w(v) = 1 \). Since \(w(\tau)w(v) = 1 \), this gives \(\tilde{w} = w(\tau) \). Since \([M] \) and \(S \) are homotopy invariant, so is \(w(\tau) = Sq \, v \). Finally, \(v = Sq^{-1} w \) is given by a universal class in \(H^*(\mathbb{R}^n;\mathbb{Z}_2) \), while the formula in one dimensional classes follows from \(Sq(\sum_{i=0}^{m} x_i) = \sum_{i=0}^{m} (x_i^{2i} + x_i^{2i+1}) = x (\dim x = 1) \).

Corollary: Homotopy equivalent manifolds are unoriented cobordant.

With this machinery one can prove the Dold theorem:

Theorem: All relations among the Stiefel-Whitney numbers of closed \(n \)-dimensional differentiable manifolds are given by the Wu relations; i.e.
if $\phi : \tilde{H}^*(BO; \mathbb{Z}_2) \rightarrow \mathbb{Z}_2$ is a homomorphism, there is an n dimensional closed manifold N^n with $\phi(a) = (\tau^*(a))[M]$ for all a ($\tau : M \rightarrow BO$ classifying the tangent bundle of M) if and only if $\phi(Sq b + vb) = 0$ for all $b \in \tilde{H}^*(BO; \mathbb{Z}_2)$ where $v = Sq^{-1}w$.

Proof: By Wu's theorem $\tau^*(Sq b + vb)[M] = 0$ so the condition $\phi(Sq b + vb) = 0$ is necessary. To prove sufficiency, let $\chi : BO \rightarrow BO$ be the map classifying the negative of the universal bundle (for any M, $\chi \circ \tau$ classifies the normal bundle) and let $\rho = \phi \circ \chi^* \circ \phi^{-1} : \tilde{H}^*(TBO; \mathbb{Z}_2) \rightarrow \mathbb{Z}_2$ where ϕ is the Thom homomorphism. From the calculation of γ_u, ϕ is the tangential characteristic number homomorphism of some manifold if and only if $\rho(\tilde{\gamma}^*_u \tilde{H}^*(TBO; \mathbb{Z}_2)) = 0$, or for all $y \in \tilde{H}^*(BO; \mathbb{Z}_2)$, $\rho(Sq(yU) + yU) = 0$. But one has

$$\rho[Sq(yU) + yU] = \rho[Sq y Su + yU],$$
$$= \rho[Sq y Su U + yU],$$
$$= \rho[Sq(y \cdot Sq^{-1}w) U + yU],$$
$$= \phi[x^* [Sq(y \cdot Sq^{-1}w) U] + y],$$
$$= \phi[Sq(x^* y \cdot Sq^{-1}w) + x^* y],$$
$$= \phi[Sq(x^* y \cdot Sq^{-1}(1/w)) + x^* y],$$
$$= \phi[Sq x + x \cdot Sq^{-1}w],$$
$$= \phi[Sq x + vx],$$
$$= 0$$

(where $x = x^* y \cdot Sq^{-1}(1/w) = x^* y \cdot (1/Sq^{-1}w)$).

This completes the analysis of the unoriented cobordism ring. Beginning the pattern which will be followed throughout, one wishes to know the relationship with other cobordism theories and the structure of the related bordism theory.
Relation to framed cobordism: The Hopf invariant

Recall that a framed manifold is a manifold together with an equivalence class of trivializations of the stable normal bundle. The cobordism corresponding is \((B, r)\) cobordism with \(B_r\) a point and the cobordism group \(\Gamma_n^{fr}\) are identified with \(\lim_{r \to \infty} \pi_{n+r}(B^r, \sigma)\). (Pontryagin [101]).

The forgetful functor \(F\) which ignores framing defines a homomorphism \(F_n : \Gamma_n^{fr} \to \Gamma_n\) and a relative cobordism semigroup \(\Gamma_n(F)\) (obtained by joining manifolds along common boundaries). As with any pair of \((B, r)\) theories one then has an exact sequence

\[
\begin{align*}
\Gamma_n^{fr} & \xrightarrow{F_n} \Gamma_n \\
\Omega_n & \xrightarrow{\Omega_n(F)}
\end{align*}
\]

which is the homotopy exact sequence

\[
\begin{align*}
\lim_{r \to \infty} \pi_{n+r}(B^r, \sigma) & \xrightarrow{F_n} \lim_{r \to \infty} \pi_{n+r}(BO_r, \sigma) \\
\lim_{r \to \infty} \pi_{n+r}(BO_r, B^r, \sigma) & \xrightarrow{\Omega_n(F)}
\end{align*}
\]

where \(F_n\) is induced by the inclusion of a sphere which is the Thom space of the fiber over a base point in \(BO_r\).

Making use of the calculation of \(\Gamma_n\) one may analyze this relationship.

One has:

Proposition: A framed manifold of positive dimension bounds in the unoriented sense, i.e., \(F_n : \Gamma_n^{fr} \to \Gamma_n\) is the zero homomorphism if \(n > 0\). Further \(F_0 : \Gamma_0^{fr} = \mathbb{Z} \to \Gamma_0 = \mathbb{Z}_2\) is epic.
Proof: If M^n is framed, the stable normal bundle is trivial, so $w(v) = 1$. Thus for $n > 0$ all Stiefel-Whitney numbers of M are zero and M bounds. In dimension zero, M is a union of points (with signs = orientations) and $w_0(v)[M]$ is the cardinality of M modulo 2. **

The homotopy exact sequence then splits up into short exact sequences giving the diagrams

\[
0 \rightarrow \mathcal{F}_n \rightarrow \Omega_n(F) \rightarrow \Omega_{n-1}^{fr} \rightarrow 0
\]

\[
\begin{array}{ccc}
\hat{H}_n(S; Z_2) & \rightarrow & \hat{H}_n(TB_0; Z_2) \\
q_n & \downarrow & r_n \\
\hat{H}_n(TB_0; Z_2) & \rightarrow & \hat{H}_n(TB_0, S; Z_2)
\end{array}
\]

for $n - 1 > 0$, and

\[
0 = \mathcal{F}_1 \rightarrow \Omega_1(F) \rightarrow \Omega_0^{fr} \rightarrow \mathcal{T}_0 \rightarrow 0
\]

\[
\begin{array}{ccc}
\hat{H}_1(S; Z_2) & \rightarrow & \hat{H}_1(TB_0; Z_2) \\
q_1 & \downarrow & r_1 \\
\end{array}
\]

in which the vertical maps are the Hurewicz homomorphisms (and notationally $\hat{H}_n(S; Z_2) = \lim_{r \to \infty} H_{n+r}(S^{r}; Z_2)$, etc.). Since \mathcal{T}_n and $\hat{H}_n(TB_0; Z_2)$ are Z_2 vector spaces with q_n monic, one has a splitting homomorphism $u_n : \hat{H}_n(TB_0; Z_2) \rightarrow \mathcal{T}_n$, and the homomorphism

\[
\begin{array}{cccc}
\Omega_n(F) & \rightarrow & \hat{H}_n(TB_0, S; Z_2) & \rightarrow \\
r_n & & u_n^{fr} & \\
\end{array}
\]
gives a splitting of the short exact sequences for \(n > 1 \). This defines in turn a homomorphism \(\nu_n : \Omega_{n-1} \longrightarrow \Omega_{n}(\mathbb{P}) \) also splitting the sequence (for \(n > 1 \)).

Note: One could choose a splitting by choosing for any framed manifold \(M^{n-1} \) a manifold \(V^n \) with \(3V = M \) and \(s_\omega(\nu)[V, 3V] = 0 \) if \(\omega \) is non-dyadic. This corresponds to writing \(\mathbb{T}E_{\mathbf{B}} \) as a product \(\mathbb{X}(Z, n(\omega)) \) for \(\omega \) non-dyadic. Suppose the splitting has been chosen in this fashion.

Let \(M^{n-1} \) be a framed manifold with \(M^{n-1} = 3V^n \) and \(s_\omega(\nu)[V, 3V] = 0 \) if \(\omega \) is non-dyadic. The imbedding in some space \(H^{n+r} \) defines the map \(\nu : (V, M) \longrightarrow (\mathbb{T}B_{\mathbf{B}}^r, \mathbb{S}) \) (the framing being interpreted as a specific equivalence class of deformation of \(M \) to the base point). The Pontrijagin-Thom construction defines a map \((H^{n+r}, \mathbb{R}^{n+r-1}) \longrightarrow (\mathbb{T}E_{\mathbf{B}}, \mathbb{S}) \) which will be considered as a map \(f : (D^{n+r}, S^{n+r-1}) \longrightarrow (\mathbb{T}E_{\mathbf{B}}, \mathbb{S}) \) representing the homotopy class corresponding to \((V, M) \). Let \(X \) denote the two-cell complex formed by attaching \(D^{n+r} \) to \(\mathbb{S}^r \) by the map \(f : S^{n+r-1} \longrightarrow \mathbb{S}^r \). One then has the diagram of cofibrations

\[
\begin{array}{ccc}
S^r & \xrightarrow{i} & X \\
\downarrow{l} & & \downarrow{f} \\
\mathbb{S}^r & \xrightarrow{g} & \mathbb{T}E_{\mathbf{B}} \\
\end{array}
\xrightarrow{\mathbb{S}/S^r = D^{n+r}/S^{n+r-1}}
\]

in which \(f \) is just \(f \) on the quotient spaces and \(g \) is induced by \(f \).

Recall that \(H^*(X; \mathbb{Z}) \) is a vector space over \(\mathbb{Z} \) with base \(1 \in H^0(X; \mathbb{Z}) \), \(a \in H^r(X; \mathbb{Z}) \) and \(b \in H^{n+r}(X; \mathbb{Z}) \) (the nonzero classes in these dimensions) with \(j^*(a) = i \in H^r(S^r; \mathbb{Z}) \) and \(b = \pi^*(i') \) where \(i' \in H^{n+r}(D^{n+r}, S^{n+r-1}; \mathbb{Z}) \).
From the relationship between the Pontrjagin-Thom construction and characteristic numbers, one has \(T^*(w)U = w_{\omega}(\nu)[V,M] \cdot 1 \) or \(g^*(w,U) = (w_{\omega}(\nu)[V,M]) \cdot b \). Writing \(T_{B_r} \) as \(K(Z_2^r + n(\omega)) \), \(\omega \) non-dyadic corresponding to the \(A_2 \) generators \(s^U \omega \) one has \(g^*(s^U \omega) = 0 \) if \(n(\omega) > 0 \) (by dimension if \(n(\omega) = n \), by choice for \(n(\omega) = n \)) so that the only possibly non-zero numbers are of the form \(g^*(\text{Sq}^r U) \). If \(I = (i_1, \ldots, i_r) \) with \(r > 1 \), \(g^*(\text{Sq}^r U) = 0 \). Thus the only nonzero characteristic number would be \(g^*(\text{Sq}^r U) = g^*(\nu, U) = w_{\omega}(\nu)[V,M] \cdot b \). Now \(j^* g^*(U) = l^* i^*(U) = 1 \) so \(g^*(U) = a \). Thus \(\text{Sq}^n a = w_n(\nu)[V,M] \cdot b \).

Following Steenrod [113], page 983, the element \(H(f) \in Z_2 \) for which \(\text{Sq}^n a = H(f) \cdot b \) is called the Hopf invariant of \(f \).

Note: For any framed \(M^{n-1} \) and any \(W \) with \(3W = M \), one may form the characteristic number \(w_n(\nu)[W,M] \). There is a closed manifold \(T \) with \(s^u(\nu)[T] = s^u(\nu)[V,M] \) for all non-dyadic \(\omega \). Then \(V = T \cup W \) satisfies the above conditions. Since \(w_n(\nu)[T] = 0 \) for any closed \(T \), one has \(w_n(\nu)[W,M] = w_n(\nu)[V,M] = H(f) \). One did not need the assumption \(s^u(\nu)[V,M] = 0 \) to get that this is the Hopf invariant, but only to show that this is the only additional characteristic number arising.

Combining the above one has:

Theorem: For \(n > 1 \), \(\Omega_n(f) \cong T^1_n \circ \pi^{fr}_{n-1} \) and \(\Omega_1(f) \cong Z = 2H_o^{fr} \). If \(M^{n-1} \) is a closed framed manifold and \(M = 3W \), then the characteristic number \(w_n(\nu)[V,M] \) coincides with the Hopf invariant of a map \(f : S^{n+r-1} \to S^r \) representing the framed cobordism class of \(M \). This is the only possibly nonzero homomorphism from \(\Omega^{fr}_{n-1} \to Z_2 \) obtainable from Stiefel-Whitney numbers.

From Adams' work [1] on the nonexistence of maps of Hopf invariant one, one knows that there is a map \(f : S^{n+r-1} \to S^r \) with \(H(f) \neq 0 \) if and only
if \(n = 1, 2, 4, \) or \(8 \). In the above notation this may be phrased

Corollary: For \(n \neq 1, 2, 4, \) or \(8 \) the image of \(T^n \) in \(\mathbb{Z}_2 \) coincides with that of \(\mathcal{N}_n(F) \). For \(n = 1, 2, 4, \) or \(8 \) the image of \(T^n \) has codimension \(1 \) in that of \(\mathcal{N}_n(F) \). Equivalently, the homomorphism \(\omega_n(v) : \mathcal{N}_n(F) \rightarrow \mathbb{Z}_2 \) is nontrivial if and only if \(n = 1, 2, 4, \) or \(8 \).

Unoriented bordism : Steenrod representation

Let \(\mathcal{O} \) denote the category of topological spaces and continuous maps and \(F : \mathcal{O} \rightarrow \mathcal{T} \) the forgetful functor assigning to each differentiable manifold its underlying topological space. For any space \(X \) one may form the cobordism category \(\mathcal{O}/X, \mathcal{I}, \mathcal{I} \), obtained by Construction I. This gives rise to a cobordism semigroup \(T^\mathcal{I}(X) \) which was first defined by Atiyah [13] and which is called the *bordism group of* \(X \).

Let \((B, f) \) be the sequence of spaces and maps given by \(B_x = X \times BO \) and \(f_x : B_x \rightarrow BO \) the projection on the second factor. A \((B, f) \) structure on a manifold is then a \((BO, I) \) structure together with a homotopy class of maps into \(X \). Since homotopic maps define the same class in \(T^\mathcal{I}(X) \) one has induced a homomorphism \(\Omega_n(B, f) \rightarrow T^\mathcal{I}(X) \) which is clearly an isomorphism.

If \(A \hookrightarrow X \) is a subspace, the inclusion map defines a functor \(\mathcal{O}/A, \mathcal{I}, \mathcal{I} \rightarrow \mathcal{O}/X, \mathcal{I}, \mathcal{I} \) and a map of sequences \((A \times BO, \mathcal{I}) \rightarrow (X \times BO, \mathcal{I}) \) giving rise to relative bordism groups \(T^\mathcal{I}(X, A) \). **Note:** If \(f : (M, \partial M) \rightarrow (X, A) \) is a map, the fact that \(f \big|_{\partial M} \) factors through the inclusion of \(A \) into \(X \) may be thought of as an additional structure on the boundary. The standard joining together along common boundaries permits definition of the relative groups.

From the relative Pontrjagin-Thom construction one then has
Theorem: \(\mathcal{H}_n(X, A) = \lim_{r \to \infty} (T(X \times \mathcal{B}_r), T(A \times \mathcal{B}_r), \omega), \)
\[= \lim_{r \to \infty} ((X/A) \cdot \mathcal{TBO}_r, \omega), \]
\[= H_n(X/A; \mathcal{TBO}). \]

In particular, \(\mathcal{H}_n(X, A) \) is the homology theory defined by the ring spectrum \(\mathcal{TBO}. \)

Since \(\mathcal{TBO} \) is a ring spectrum, \(H_n(X, A; \mathcal{TBO}) \) is an \(H_n(pt; \mathcal{TBO}) = \mathcal{H}_n \)
module. If \(f : (V, \partial V) \to (X, A) \) represents a class in \(\mathcal{H}_n(X, A) \) and \(M \)
is a closed manifold representing a class in \(\mathcal{H}_n \), then
\[f \circ \tau_1 : (V \times M, \partial V \times M = \partial(V \times M)) \to (X, A) \]
represents the product class.

The structure of \(\mathcal{H}_n(X, A) \) is given by:

Theorem: For every CW pair \((X, A) \), \(\mathcal{H}_n(X, A) \) is a free graded \(\mathcal{H}_n \)
module isomorphic to \(H_n(X, A; \mathbb{Z}_2) \otimes_{\mathbb{Z}_2} \mathcal{H}_n \).

Proof: Let \(c_{n, i} \in H_n(X, A; \mathbb{Z}_2) \) be an additive base with dual base
\(c_{n, i}^* \in H^n(X, A; \mathbb{Z}_2). \) Applying the Künneth theorem
\(H_n((X/A) \cdot \mathcal{TBO}; \mathbb{Z}_2) = \lim_{r \to \infty} H^{n+r}((X/A) \cdot \mathcal{TBO}_r; \mathbb{Z}_2) \)
has a \(\mathbb{Z}_2 \) base consisting of elements
\(c_{n, i} \otimes \text{Sq}^i_\omega(s U) \) for \(I \) admissible and \(\omega \) nondyadic and in particular is
a free \(A_\omega \) module on the classes \(c_{n, i} \otimes s U \) since
\(\text{Sq}^I(c_{n, i} \otimes s U) = c_{n, i} \otimes \text{Sq}^i_\omega(s U) \) plus terms having second factor of lower
degree.

One may then choose homotopy classes \(a_{n, i} \in \pi_{n+r}((X/A) \cdot \mathcal{TBO}_r, \omega) \) (\(r \) large)
for which \(c_{n, i} \otimes U \) pulls back to a generator if \(i = j \) and to zero otherwise.
Applying the Pontrjagin-Thom procedure, the class \(a_{n, i} \) is represented by a
manifold \(V_1^n \subset H^{n+r} \) with map \(f : V_1^n \to X, f(\partial V_1^n) \subset A \) and one has
\(s^{n+r} \to T_V/T_{\partial V} \to (V_1^n/\partial V_1^n) \cdot T_V \xrightarrow{f_*} (X/A) \cdot \mathcal{TBO}_r \xrightarrow{c_{n, i} \cdot U} K(\mathbb{Z}_2), K(\mathbb{Z}_2) \to K(\mathbb{Z}_2). \)
so that \(a_{n,i}^* (c_{n,j}^* \circ \psi) = \delta_{ij} \), \(f_{n+r}^* \) is equivalent to \(f^* (c_{n,j}^* \circ \psi)_{V_1^n, \partial V_1^n} = \delta_{ij} \)
or \(f_2^* [V_1^n, \partial V_1^n] = c_{n,i}^* \).

For any closed \(M, (f \circ \pi_1)^* (c_{n,j}^* \circ \psi)_{\omega} [V_1^n \times M, \partial V_1^n \times M] = \delta_{ij} \omega (v) [M], \)
that if \([M] \in \mathcal{H}_n \) form a base, the classes \((V_1^n \times M, \partial V_1^n \times M; f \circ \pi_1)\)
are a \(\mathbb{Z}_2 \) base for the 2 primary part of the limit of the homotopy groups. Since \(\mathcal{H}_n (X, A) \) is 2 primary, these form a base of \(\mathcal{H}_n (X, A) \). This is precisely the assertion that the \((V_1^n, \partial V_1^n; f)\) form a base for \(\mathcal{H}_n (X, A) \) as \(\mathcal{H}_n \) module. **

This proof has several immediate consequences:

Corollary: The natural evaluation homomorphism \(e : \mathcal{H}_n (X, A) \to \mathbb{H}_n (X, A; \mathbb{Z}_2) \)
which sends the class represented by \(f : (V, \partial V) \to (X, A) \) into \(f_2^* [V, \partial V] \)
is an epimorphism.

This is often phrased: Every mod 2 homology class is Steenrod representable. (See problem 25 in Eilenberg [48]). This is, of course, very close to Poincaré's original concept of homology as given by submanifolds of a space.

Corollary: Unoriented bordism theory is determined by \(\mathbb{Z}_2 \) cohomology characteristic numbers.

In particular, for each \(x \in \mathbb{H}_n (X, A; \mathbb{Z}_2) \) and partition \(\omega \) of \(n - m \),
one has a generalized "Stiefel-Whitney number" which is defined for a map \(f : (V^n, \partial V^n) \to (X, A) \) by \(\omega (\tau) \cup f^* (x) [V, \partial V] \). Since the classes \(x \in \mathbb{H}_n (X, A; \mathbb{Z}_2) \)
form a base of \(\mathbb{H}_n ((X/A) \times BO; \mathbb{Z}_2) \) the associated characteristic numbers give a complete set of invariants.
It is clear from the free a_2 module structure of $\tilde{H}^*(X/A; \mathbb{Z}_2)$ that all relations among these generalized Stiefel-Whitney numbers arise from the Wu relations.

References: In addition to Atiyah's paper [13], one may find a discussion of unoriented bordism in Conner and Floyd [36]. The Steenrod representability is due to Thom [127].
Chapter VII

Complex Cobordism

Historically the next cobordism problem to be completely solved was the cobordism of stably almost complex manifolds. This was defined and completely determined by Milnor [82] and by Novikov [93]. Specifically this is \((B,f)\) cobordism in which \(B_{2r} = B_{2r+1}\) is the classifying space \(BU_r\) for complex \(r\)-plane bundles. Since a complex vector bundle has a unique stable inverse, the objects are then manifolds with a chosen complex vector bundle structure on the normal or stable tangent bundle.

Since one has, essentially by definition, \(\Omega^U_n \cong \lim_{r \to \infty} n+2r(TBU_r;\mathbb{Z})\) the cobordism problem is ready for homotopy theoretic analysis. It is well known that the integral cohomology ring of \(\mathbb{CP}(n)\) is the truncated polynomial ring on a 2 dimensional generator (make use of the multiplicative structure in the Serre spectral sequence of the fibration \(S^{1} \to \mathbb{C}P^{n+1} \to \mathbb{CP}(n)\)) and thus the integral cohomology ring \(\tilde{H}^*(BU_r;\mathbb{Z})\) is the polynomial ring over \(\mathbb{Z}\) on the universal Chern classes \(c_i\) (of dimension \(2i\)) with \(1 \leq i \leq r\).

Theorem: The groups \(\Omega^U_n\) are finitely generated and \(\Omega^U_n \otimes \mathbb{Q}\) is the rational polynomial ring on the cobordism classes of the complex projective spaces, the product corresponding to the Whitney sum of complex vector bundles.

Proof: By the Thom isomorphism theorem \(H^n(TBU_r;\mathbb{Z}) = \lim_{r \to \infty} H^{n+2r}(TBU_r;\mathbb{Z})\) is torsion free with rank the number of partitions of \(n\) if \(n = 2m\) and rank zero if \(n\) is odd. By the universal coefficient theorem, \(\tilde{H}_n(TBU_r;\mathbb{Z})\) is also torsion free of the same rank. Since \(TBU_r\) is 2r-1 connected one has by Serre's theorem [107] that the Hurewicz homomorphism \(\Omega^U_n \to \tilde{H}_n(TBU_r;\mathbb{Z})\) is an isomorphism modulo the class of finite groups. Thus \(\Omega^U_n\) is finitely generated.
and $\Omega_{\ast}^{U} \otimes Q$ has the same rank as a polynomial algebra on even dimensional generators. The Whitney sum of complex vector bundles gives a complex vector bundle structure to the normal bundle of the product of two stably almost complex manifolds, making Ω_{\ast}^{U} into a ring. Since
\[s_{n}(c(v))[\mathbb{CP}(n)] = -s_{n}(c(t))[\mathbb{CP}(n)] = -(n+1) \neq 0 \]
the monomials
\[\mathbb{CP}(n_{1}) \times \ldots \times \mathbb{CP}(n_{r}) = \mathbb{CP}(w) \text{ (for } w = (n_{1}, \ldots, n_{r}) \text{)} \]
are linearly independent in $\Omega_{\ast}^{U} \otimes Q$ (as in the unoriented case). Thus $\Omega_{\ast}^{U} \otimes Q$ is the polynomial ring on the cobordism classes of the complex projective spaces by dimension count. **

In order to study the torsion subgroup, one makes use of \mathbb{Z}_{p} cohomology for all primes p. Since $H_{\ast}(BU_{r};\mathbb{Z})$ is torsion free one has by the universal coefficient theorem that $H_{\ast}(BU_{r};\mathbb{Z}_{p}) = H_{\ast}(BU_{r};\mathbb{Z}) \otimes \mathbb{Z}_{p}$ is the \mathbb{Z}_{p} polynomial algebra on the mod p Chern classes c_{i} (reductions of the integral classes coincide with the direct definition using mod p cohomology).

In order to proceed one needs a knowledge of the operations in mod p cohomology. Briefly:

The mod p Steenrod algebra \mathcal{A}_{p} for p an odd prime is the graded algebra defined by
\[
(\mathcal{A}_{p})^{i} = H^{ni}(K(\mathbb{Z}_{p}, n); \mathbb{Z}_{p}) \quad i < n.
\]

Then:

a) \mathcal{A}_{p} is the associative graded algebra over \mathbb{Z}_{p} generated by symbols β of degree 2 and \mathcal{O}^{i} of degree $2i(p-1)$ with all relations given by

\[
\beta^{2} = 0,
\]

\[
\mathcal{O}^{a} \mathcal{O}^{b} = \sum_{t=0}^{a+b} (-1)^{a+t(p-1)(b-t)} \mathcal{O}^{a+b-t} \mathcal{O}^{t}
\]
if \(a < p^b \), and

\[
\sigma^a \sigma^b = \sum_{t=0}^{\lfloor a/p \rfloor} (-1)^{a+t} \binom{a-1}{b-1} \sigma^{a-t} \sigma^t + \sum_{t=0}^{\lfloor (a-1)/p \rfloor} (-1)^{a+t-1} \binom{a-1}{b-1} \sigma^{a-t} \sigma^t
\]

if \(a \leq p^b \). \((\sigma^0 = 1) \).

b) For any pair \((X,A)\) there is a natural pairing

\[
A_p \otimes H^*(X,A; Z_p) \rightarrow H^*(X,A; Z_p)
\]

such that:

1') \(\beta \) is the Bockstein coboundary operator associated with the

coefficient sequence

\[
0 \rightarrow \mathbb{Z}_p \rightarrow \mathbb{Z}_2 \rightarrow \mathbb{Z}_p \rightarrow 0
\]

2') \(\beta(xy) = (\beta x)y + (-1)^{\text{dim} x} x(\beta y) \),

and

1) \(\sigma^i : H^*(X,A; Z_p) \rightarrow H^{*+2i}(X,A; Z_p) \) is additive;

2) \(\sigma^0 u = u \) for all \(u \),

\(\sigma^i u = u^p \) if \(\text{dim} u = 2i \), and

\(\sigma^i u = 0 \) if \(\text{dim} u < 2i \); and

3) (Cartan formula) \(\sigma^i(xy) = \sum_{j+k=i} \sigma^j x \sigma^k y \).

(See Steenrod and Epstein [114]).

One may define a diagonal map \(\Delta : A_p \rightarrow A_p \otimes A_p \) by

\[
\Delta(a) = \beta \otimes 1 + 1 \otimes \beta, \quad \Delta(\sigma^i) = \sum_{j+k=i} \sigma^j \otimes \sigma^k
\]

which makes \(A_p \) into a connected Hopf algebra over \(\mathbb{Z}_p \) (Milnor [79]).

One then has:

Lemma: Let \(p \) be any prime. The maps \(TBU_r \rightarrow TBU_s \rightarrow TBU_{r+s} \) obtain from the Whitney sum of vector bundles induce a diagonal map \(\psi \) on

\[
H^*(X; Z_p) = \lim_{r \rightarrow \infty} H^{*-2r}(X; Z_p)
\]

making it into a connected coalgebra over \(\mathbb{Z}_p \).
Z_p with counit $U \in \tilde{H}^0(\mathcal{F}_p)$. Under the natural action of A_p on \(\tilde{H}^*(\mathcal{F}_p) \) the Bockstein operator Q_0 ($Q_0 = \beta$ for p odd, $Q_0 = Sq^1$ for $p = 2$) is trivial and $\tilde{H}^*(\mathcal{F}_p)$ is a left module over the Hopf algebra $A_p/(Q_0)$, the Steenrod algebra mod the two sided ideal generated by Q_0, with ψ a homomorphism of $A_p/(Q_0)$ modules. Further, the homomorphism $\nu : A_p/(Q_0) \rightarrow \tilde{H}^*(\mathcal{F}_p) : a \mapsto a(U)$ is a monomorphism.

Proof: Since Q_0 has degree 1 while $\tilde{H}^*(\mathcal{F}_p)$ has only elements of even degree, the ideal (Q_0) acts trivially, making $\tilde{H}^*(\mathcal{F}_p)$ an $A_p/(Q_0)$ module. To prove ν is monic one applies the splitting principle and calculation of the Thom class of a line bundle to write U formally as the product $V = x_1 x_2 \ldots$ of two dimensional classes x_i, $i \geq 1$. Letting $i = Sq^{2i}$ if $p = 2$, the Adem formulae show that $A_p/(Q_0)$ has a base consisting of operations $\mathcal{F}^i_{1, \ldots, i} \mathcal{F}^1 \ldots \mathcal{F}^1$ with $i_{\alpha} \geq 2^\alpha + 1$ (Note: For $p = 2$, $Sq^{2i+1} = Sq^i Sq^2 \in (Q_0)$ so all odd terms vanish in the Adem formulae). Since $\mathcal{F}^1 x^p = x^p x^{p+1}$, or 0 as $i = 0$, p, or any other if $\dim x = 2$ (and if in addition $Sq^1 x = 0$ if $p = 2$; this holds for all x_i above since $x_i = q_i(1)$ for some line bundle 1), one may duplicate the proof of monicity of ν given in studying $\tilde{H}^*(\mathcal{F}_p)$ for this case. **

Corollary: $\tilde{H}^*(\mathcal{F}_p)$ is a free $A_p/(Q_0)$ module.

One also has:

Lemma: Let X be a convergent spectrum such that $\tilde{H}^*(X)$ has no p-primary torsion and such that $\tilde{H}^*(X)$ is a free $A_p/(Q_0)$ module. Then the homotopy of X has no p-primary torsion.

Remark: This was first proved by Milnor [82] using the Adams spectral sequence. Another proof was given by Brown and Peterson [30] by constructing a spectrum whose Z_p cohomology is free on one generator. The result given
here is weaker than that of Brown and Peterson, but admits a reasonably
elementary proof since one need not become involved with the \(k \)-invariants.

Proof: Let \(E_p \) be the 2 cell complex formed by attaching a 2 cell \(e_2 \) to a circle \(S^1 \) by a map of degree \(p \), giving a cofibration

\[
S^1 \to E_p \to S^2.
\]

After smashing with \(X \) one has an exact sequence

\[
\pi_k(X) \xrightarrow{p} \pi_k(X) \xrightarrow{\partial} \pi_k(X \wedge E_p).
\]

Since \(X \) is a convergent spectrum the Hurewicz homomorphism \(\pi_k(X) \to \tilde{H}_k(X) \) is an isomorphism modulo torsion and \(p \) maps \((\pi_k(X) / \text{Torsion}) \otimes \mathbb{Z}_p \to \tilde{H}_k(X \wedge E_p) \) monomorphically into a \(\mathbb{Z}_p \) vector space \(P_\ast \subseteq \pi_\ast(X \wedge E_p) \).

If the lemma is true then \(P_\ast = \pi_\ast(X \wedge E_p) \), i.e. \(p \) is epic and \(\pi_k(X \wedge E_p) \) is a \(\mathbb{Z}_p \) vector space. If one can show directly that

\[
P_\ast = \pi_\ast(X \wedge E_p)
\]

then \(p \) would be epic so multiplication by \(p \) would be monic on \(\pi_k(X) \) - hence \(\pi_k(X) \) could have no \(p \)-primary torsion. The remainder of the proof is devoted to showing \(P_\ast = \pi_\ast(X \wedge E_p) \).

One needs a knowledge of the Steenrod algebra as described by Milnor [7]

Let \(\mathcal{R} \) be the set of sequences of integers \((r_1, r_2, \ldots)\) such that \(r_i \geq 0 \) and \(r_1 = 0 \) for all but a finite number of \(i \). If \(U, V \in \mathcal{R} \), \(U - V \in \mathcal{R} \) is defined if \(u_i \geq v_i \) for all \(i \), and is equal to \((u_1 - v_1, u_2 - v_2, \ldots) \). \(\lambda_j \in \mathcal{R} \) denotes the sequence with 1 in the \(j \)-th place and zeros elsewhere.

There exist elements \(Q_i \) and \(\mathcal{Q}^R \) in \(\mathcal{A}_p \) for \(i = 0, 1, 2, \ldots \), and \(R \in \mathcal{R} \) such that:

1) \(\dim Q_i = 2^{i-1} \), \(\dim \mathcal{Q}^R = \dim R = 1 + 2r_1(p^i - 1) \) if \(R = (r_1, r_2, \ldots) \).
2) \{Q_i\} generate a Grassmann subalgebra \(A_0\) of \(A_p\); i.e., \(Q_i Q_j = 0\) and \(Q_i Q_j + Q_j Q_i = 0\) for \(i \neq j\).

3) \(A_p\) has a \(Z_p\) base given by \(\{Q_0 \ldots Q_i \ldots 0\}\) where \(\varepsilon_i = 0\) or \(1\), and \(\theta^{R} Q_k - Q_k \theta^{R} = \sum_{i=1}^{m} Q_k+1 \theta^{R-p} A_i\).

Assertion: \(\check{H}^*(X, E_p; Z_p) = \check{H}^*(X; Z_p) \otimes Z_p(u_0, u_0)\), where \(\otimes\) denotes "vector space spanned by", \(\text{dim } u = 1\), and is a free \(A_p/\mathcal{I}\) module where \(\mathcal{I}\) denotes the two sided ideal generated by the elements \(Q_i\), \(i > 0\). If \(\{x_a\}\) is a base of \(\check{H}^*(X; Z_p)\) as \(A_p/(q_0)\) module, then \(x_a \otimes u\) is a base of \(\check{H}^*(X, E_p; Z_p)\) as \(A_p/\mathcal{I}\) module.

To see this, \(\check{H}^*(E_p; Z_p) = Z_p(1, u, Q_0 u)\) and so by the K"unneth theorem \(\check{H}^*(X \times E_p; Z_p)\) is as asserted. Then \(Q_0(x \otimes u) = x \otimes Q_0 u\), \(\theta^R(x \otimes u) = \theta^R x \otimes u\) gives the action of the Steenrod algebra. Since \(Q_{k+1} = \theta^R Q_k - Q_k \theta^R\), while the operator \(Q_0\) commutes with the \(\theta^R\) in \(\check{H}^*(X, E_p; Z_p)\), this is an \(A_p/\mathcal{I}\) module. A base of \(A_p/\mathcal{I}\) is given by the \(Q_0^e \theta^R\), \(e = 0, 1\), and the \(\{\theta^R x_a \theta^R u\}\) are clearly a \(Z_p\) base for the cohomology.

For a sequence \(R = (r_1, r_2, \ldots)\) let \(i(R) = \Sigma r_1\). Let \(V_s\) be the \(Z_p\) vector space generated by \(R \in \mathcal{R}\) for which \(i(R) = s\). Let \(M_s = A_p \otimes V_s\) and \(d_s : M_s \rightarrow M_{s-1}\) the \(A_p\) homomorphism of degree +1 given by

\[
d_s(1 \otimes R) = \sum_{j=1}^{m} Q_j \otimes (R-A_j) .
\]

Let \(d_0 : M_0 \rightarrow A_p/\mathcal{I}\) by \(d_0(1 \otimes (0, 0, \ldots)) = 1\). Just as in Brown and Peterson [30] one has:

Assertion: The sequence

\[
\ldots \rightarrow M_s \xrightarrow{d_s} M_{s-1} \rightarrow \ldots \rightarrow M_0 \xrightarrow{d_0} A_p/\mathcal{I} \rightarrow 0
\]

is exact.
To see this, let B be the Grassmann algebra on the Q_i, $i > 0$. Then

$$
\cdots \longrightarrow B \otimes V_s \xrightarrow{d_s} B \otimes V_{s-1} \longrightarrow \cdots \longrightarrow B \otimes V_0 \xrightarrow{d_0} Z_p \longrightarrow 0
$$

with homomorphisms as above is exact, being the standard resolution of a field over a Grassmann algebra. Since A_p is a free B module and $A_p \otimes_B Z_p \cong A_p/\mathcal{J}$, tensoring with A_p gives the exact sequence.

Now let $\{x_a, a \in I\}$, be a base of $\tilde{H}^*(X; Z_p)$ as $A_p/(Q_a)$ module and let T be the graded Z_p vector space on the $x_a \otimes u$. Using the resolution constructed above for A_p/\mathcal{J} one can build a modified Postnikov tower for $X \wedge E_p$ using products of $K(Z_p,n)'s$. Specifically, one has a sequence of fibrations

$$
Y_{i+1} \xleftarrow{\pi_i} Y_i \xrightarrow{f_i} K(T \otimes V_i)
$$

induced from the path fibrations, with $Y_0 = X \wedge E_p$, $\tilde{H}^*(Y_i; Z_p) \cong T \otimes \text{image } T \otimes \ker d_{i-1}$, $\tilde{H}^*(K(T \otimes V_i); Z_p) = T \otimes M_i$ and f_i being given by $1 \otimes d_i$.

(Note: For brevity of notation dimension shifts involved are ignored here).

Thus the homotopy of $X \wedge E_p$ is built up by exact sequences from the Z_p vector spaces $T \otimes V_i$.

On the other hand, $P_s = \Theta (T \otimes V_s) \subset \pi_s(X \wedge E_p)$ so that by dimension count one must have $\pi_s(X \wedge E_p) = P_s$, proving the lemma. **

Remark: One may consider this as computing the Adams spectral sequence for $X \wedge E_p$. Since $\pi_*(X \wedge E_p)$ contains the vector space P_s isomorphic to the E_1 term, this spectral sequence must collapse and all extensions must be trivial.
Theorem: The group Ω_n^U is zero for n odd and for $n = 2m$ is free abelian of rank equal to the number of partitions of m. In addition, two stably almost complex manifolds are cobordant if and only if they have the same integral cohomology characteristic numbers.

Proof: Since $H^*(TH_n; \mathbb{Z})$ has no torsion and the mod p groups are free over $\mathbb{Z}_p/(q_p)$ for every prime p, the homotopy groups Ω_n^U are torsion free. Since the kernel of the Hurewicz homomorphism $\Omega_n^U \rightarrow H_n(TH_n; \mathbb{Z})$ is a torsion group, while Ω_n^U is torsion free, complex cobordism is determined by integral cohomology characteristic numbers. **

In order to get the remaining structure use will be made of complex K theory. References for this are: Atiyah and Hirzebruch [16], Bott [24], Atiyah [15], and Husemoller [59]. Briefly, there is a multiplicative cohomology theory K^* indexed by the integers (positive and negative) for which $K^0(X)$ is the Grothendieck group of isomorphism classes of complex vector bundles over X. This cohomology theory is periodic of period 2, the periodicity isomorphism $p : K^i(X) \rightarrow K^{i-2}(X)$ being given by multiplication by a generator $p(1) \in K^2(pt) = K^0(S^2) = \mathbb{Z}$.

For a complex vector bundle ξ over X one defines the Chern character of ξ, $ch(\xi) \in H^*(X; \mathbb{Q})$ by $ch(\xi) = \dim \xi + \sum_{i=1}^{\infty} (s_i(c(\xi))) / i!$. If $\xi = \xi_1 \oplus \cdots \oplus \xi_n$ is a sum of line bundles with $c_1(\xi_i) = x_i$, then $ch(\xi) = \sum_{i=1}^{n} x_i$. By primitivity of the s-classes, $ch(\xi \oplus n) = ch(\xi) + ch(n)$ so that ch extends to a homomorphism $K^0(X) \rightarrow H^*(X; \mathbb{Q})$. Using the tensor product of bundles, which induces the product in $K^0(X)$ one has $ch(\xi \oplus n) = ch(\xi) \cdot ch(n)$ for if $\xi = \xi_1 \oplus \cdots \oplus \xi_n$, $n = m_1 \oplus \cdots \oplus m_p$ then $\xi \oplus n = \Sigma \xi_i \oplus m_j$, but $c_1(\xi_i \oplus m_j) = c_1(\xi_i) + c_1(m_j)$ so
\[\text{ch} (\xi \otimes \eta) = \sum_{i,j} x_i y_j = (\sum_i x_i) \cdot (\sum_j y_j) = \text{ch}(\xi) \cdot \text{ch}(\eta), \]
and hence by the splitting principle in rational cohomology the formula holds for any pair of vector bundles. Thus \(\text{ch} : K^0(X) \to H^*(X; \mathbb{Q}) \) is a ring homomorphism.

For \(\xi \) a vector bundle over \(S^2 \), \(\text{ch} (\xi) = \dim \xi + c_1 (\xi) \in H^2(S^2; \mathbb{Z}) \) or \(\text{ch} : K^0(S^2) \to H^2(S^2; \mathbb{Z}) \). In particular, one may consider \(S^2 \) as \(\mathbb{C}P(1) \) and then \(\text{ch}(1-\lambda) = 1 - e^\alpha = -\alpha \). Thus \(\text{ch} : K^0(S^2) \to H^2(S^2; \mathbb{Z}) \) is an isomorphism and one choose the generator \(p(1) \in K^0(S^2) \) to be such that \(\text{ch}(p(1))[S^2] = 1 \) (Simply take \(p(1) = 1 - \lambda \)). \textbf{Note:} This is the same as \(1 - 1 \) on \(S^2 \), which is Bott's choice.)

One may then extend the Chern character to a ring homomorphism \(\text{ch} : K^*(X) \to H^*(X; \mathbb{Q}) \) so that \(\text{ch}(p(x)) = \text{ch}(x) \). For \(K^{2i}(X) \) one could use that as definition, leaving one to check the compatibility condition of commutativity in

\[
\begin{array}{ccc}
K^0(X) & \xrightarrow{\text{ch}} & H^*(X; \mathbb{Q}) \\
p \downarrow & & \downarrow \text{L}^2 \\
K^{-2}(X) = K^0(S^2 - X) & \xrightarrow{\text{ch}} & H^*(S^2 - X; \mathbb{Q}) = H^*(X; \mathbb{Q})
\end{array}
\]
which is immediate since \(\text{ch}(p(1)) = 1 \in H^2(S^2; \mathbb{Z}) \), \(\text{L}^2 \) being suspension. Then suffices to define \(\text{ch} \) on \(K^{-1}(X) \) and for this one takes

\[
K^{-1}(X) \cong K^0(S^1 - X) \xrightarrow{\text{ch}} H^*(S^1 - X; \mathbb{Q}) \cong H^*(X; \mathbb{Q}).
\]

In order to apply \(K \)-theory to complex cobordism, let \(\tilde{\alpha} = p^{-1}(\lambda-1) \) in \(K^2(\mathbb{C}P(n)) \) where \(\lambda \) is the canonical line bundle. Then \(K^*(\mathbb{C}P(n)) \) is the free \(K^*(pt) \) module on \(1, \tilde{\alpha}, \ldots, \tilde{\alpha}^n \) and \(\tilde{\alpha}^{n+1} = 0 \), with \(\tilde{\alpha}^n \) the image of \((-1)^n \), \(\tilde{\alpha} \in K^{2n}(S^{2n}) \) being the generator. Thus, by the general theory of characteristic classes one has defined \(K \)-theoretic Chern classes, denoted \(\gamma_1(\xi) \in K^{2i}(X) \), for \(\xi \) a complex vector bundle over \(X \).
Note: Following Atiyah [12], if ξ is a vector bundle over X, let $\lambda^i_t(\xi) = \sum_{i=0}^{\infty} t^i \lambda^i(\xi)[t] \in K^0(X)[[t]]$ where λ^i denotes the i-th exterior power. Then $\lambda^i_t(\xi \otimes \eta) = \lambda^i_t(\xi)\lambda^i_t(\eta)$ and one may extend λ^i_t to a homomorphism from $K^0(X)$ into $K^0(X)[[t]]$. Then $\lambda^i_{t/(1-t)}(\xi) = \sum_{i=0}^{\infty} t^i p_i(\xi(t))$.

Thus the K-theory Chern classes are the Atiyah γ functions of stable vector bundles except for a periodicity factor. It should be noted that this does not coincide with the K-theory Chern classes of Bott [24] which use $1 - \lambda$ rather than $\lambda - 1$, these being related by $p^{-1}(1 - \lambda) = -c_*(\alpha)$ where $c : SP(V) \to GP(V)$ is given by complex conjugation.

The previous difficulty with c^* really exists in complex K-theory. Since $\lambda^i = 1$, $\lambda = 1/\lambda = 1/[1 + (\lambda - 1)] = 1 - (\lambda - 1) + (\lambda - 1)^2 + ...$ or $\lambda - 1 = -(\lambda - 1) + (\lambda - 1)^2 + ...$. Thus $c^*(\alpha) = -\alpha + p(1) \cdot \alpha^2 + ...$.

If one could choose a generator β for which $c_*(\beta) = -\beta$, then $\alpha = \beta + \sum_{i>2} \phi_i \beta^i$ so $c^*(\alpha) = -\beta + \sum_{i>2} \phi_i (-\beta)^i = -\alpha + 2 \sum_{i \equiv 0(2)} \phi_i \beta^i$ or $c^*(\alpha) \equiv -\alpha \mod 2$. On the other hand $p(1) \not\equiv 0 \mod 2$ so $c^*(\alpha) \not\equiv -\alpha \mod 2$. Thus one cannot choose generators well in complex K theory.

Combining the periodicity phenomenon with the Chern character permits the calculation of K-theoretic characteristic numbers. Specifically:

Lemma: Let M^2 be a compact stably almost complex manifold and $x \in K^*(M, \mathbb{A}M)$. Then $x[M, \mathbb{A}M] = \begin{cases} 0 & \text{if } n-i \text{ is odd}, \\ \{ch(x), g(M)[M, \mathbb{A}M], p(l)^s \in K^{-2s}(pt) & \text{if } n-i = 2s, \end{cases}$

where $g(M) \in H^*(M; \mathbb{Q})$ is the class given by $\sum_{j=1}^{k} x_j / (x_j - 1)$ when $c_1(\tau(M))$ are expressed formally as the i-th elementary symmetric functions of two dimensional classes x_1, \ldots, x_k.
Proof: If λ is the canonical bundle over $\mathbb{C}P(n)$, then the Thom class $\tilde{U}_\lambda \in K^2(\mathbb{C}P(n+1))$ is \tilde{a} so $\text{ch}(\tilde{U}_\lambda) = e^\tilde{a} - 1$. Thus $\text{ch}(\tilde{U}_\lambda) = (e^{\alpha} - 1)U_\lambda$, where $U_\lambda = \alpha$ is the \mathbb{Z} cohomology Thom class. If for any bundle ξ one defines $\mathcal{S}(\xi)$ to be $\prod_{j=1}^k x_j/(c_j \cdot 1)$ when formally $c(\xi) = \prod_{j=1}^k x_j/(1 + x_j)$, via the splitting principle and multiplicativity of Thom classes one has

$\text{ch}(\tilde{U}_\xi) = \mathcal{S}(\xi) - 1 \cdot U_\xi = \mathcal{S}(\xi) - U_\xi$ for all ξ.

If M is a stably almost complex manifold with $x \in K^1(M, \mathbb{R})$ then one has

$$S^r \overset{x}{\longrightarrow} TN/\mathbb{R}^n \rightarrow (M, \mathbb{R}M) \cdot TN$$

for which

$$X[M, \mathbb{R}M] = c^t \mathcal{S}^t (x \otimes \tilde{U}) \in K^{i+2r}(S^{n+2r}) = K^{i-n}(pt).$$

This is zero if $i - n$ is odd, and if $n - i = 2s$, this is of the form $\theta \cdot p(1)^s = c^t \mathcal{S}^t(x \otimes \tilde{U})$. Then $\theta = \text{ch}(c^t \mathcal{S}^t (x \otimes \tilde{U}))[S^{n+2r}] = c^t \mathcal{S}^t (\text{ch} \cdot \text{ch}\tilde{U})[S^{n+2r}] = (\text{ch} \cdot \mathcal{S}^t(M))M, \mathbb{R}M].$ $**$

In order to compute characteristic numbers for specific manifolds consider first $\mathbb{C}P(n)$. Since for $\mathbb{C}P(n)$ one has $(\tau \otimes 1) \cong (n+1)\xi$ when $\xi = \lambda$, one has $\gamma_i(\tau) = (n+1)[p^{-1}(\xi^{-1})]$. Thus one needs the evaluation:

Lemma: $[p^{-1}(\xi-1)]^j[\mathbb{C}P(n)] = (-1)^{n-j}p(1)^{n-j}$.

Proof: By the previous lemma

$$[p^{-1}(\xi-1)]^j[\mathbb{C}P(n)] = [\text{ch}(\xi-1)]^j[\mathbb{C}P(n)][\mathbb{C}P(n)]p(1)^{n-j}.$$

Then $c(\xi) = 1-\alpha$ and $(-\alpha)^n[\mathbb{C}P(n)] = 1$ so
\[-1(\xi_1-\xi_j)[\mathbb{P}(n)] = (e^{-\alpha - 1})^{n+1}[\mathbb{P}(n)] \cdot p(1)^{n-j},\]
\[
= \{\text{coefficient of } (-\alpha)^n \text{ in } (-\alpha)^{n+1}/(e^{-\alpha - 1})^{n+1-j} \} \cdot p(1)^{n-j},
\]
\[
= (1/2\pi i) \oint_{z=0} \frac{dz}{z^{n+1-j}} \cdot p(1)^{n-j},
\]
\[
= (1/2\pi i) \oint_{u=0} \frac{du}{u^{n+1-j}(1+u)} \cdot p(1)^{n-j}, \quad (u = e^z - 1),
\]
\[
\int (-u)^k du
\]
\[
= (1/2\pi i) \oint_{u=0} \frac{k=0}{u^{n+1-j}} \cdot p(1)^{n-j},
\]
\[
= (-1)^{n-j} p(1)^{n-j}. \quad **
\]

In addition to the manifolds previously constructed it is convenient to consider the manifolds $H_{s, \ldots, s} \subset \mathbb{P}(q^s) \times \ldots \times \mathbb{P}(q^s)$ (with q factors dual to the line bundle $\pi_1^* \otimes \pi_2^* \otimes \ldots \otimes \pi_q^*$, where q is a prime. This is a hypersurface of degree $(1, \ldots, 1)$ in the product of q copies of $\mathbb{P}(q^s)$ and may be taken to be a projective algebraic variety. One has:

Lemma: The complex K theoretical characteristic numbers
\[
s_\omega(\gamma(\tau))[H_{s, \ldots, s}]
\]
are all congruent to zero modulo q if $n(\omega) \geq q^{s+1} - q$ unless $n(\omega) = q^{s+1} - q$ and ω refines $(q^{s-1}, \ldots, q^{s-1})$ (q copies of q^{s-1}). In particular,
\[
(s, q^{s-1}, \ldots, q^{s-1}) (\gamma(\tau))[H_{s, \ldots, s}] = p(1)^{q-1}
\]
modulo q.

Proof: Denote $H_{q, \ldots, q}$ simply by H, $\mathbb{P}(q^s) \times \ldots \times \mathbb{P}(q^s)$ simply by \mathbb{P}, and let $\xi_1 = \pi_1(\xi)$ and $\beta_1 = p^{-1}(\xi_1 - 1)$. Then (ignoring restriction homomorphisms in notation),
\[\gamma(H) = \prod_{j=1}^{q} (1 + \beta_j)^{q^2+1}/l + p^{-1}(\xi_1 \cdots \xi_q - 1) \]

and \(H \) is dual to \(p^{-1}(\xi_1 \cdots \xi_q - 1) \).

One has

\[\xi_1 \cdots \xi_q = [l+(\xi_1-1)] \xi_2 \cdots [l+(\xi_q-1)] = (l+p\beta_1) \xi_2 \cdots (l+p\beta_q) \]
or

\[p^{-1}(\xi_1 \cdots \xi_q - 1) = \xi_1 + p\xi_1 \beta_2 + \cdots + p^{k-1} \xi_1 \beta_2 \cdots \beta_k + \cdots + p^{q-1} \beta_1. \]

where \(\xi_1, \ldots, \beta_k \) is the \(k \)-th elementary symmetric function in the \(\beta \)'s.

Thus letting \(\nu_i \) be the \(i \)-th elementary symmetric function of the \(\beta \)'s,

\[\gamma(H) = (1 + \nu_1 + \cdots + \nu_q)^{q^2+1}/(1 + \nu_1 + p\nu_2 + \cdots + p^{q-1}\nu_q) \]

and \(H \) is dual to \(\nu_1 + p\nu_2 + \cdots + p^{q-1}\nu_q \).

Noting that \(p^{t-1}v_t = p(l)^{t-1}v_t \) any characteristic class \(s_{\omega}(\gamma)(H) \) be expressed as a polynomial with coefficients in \(K^*(pt) \) in the variables \(\nu_1, \ldots, \nu_q \) and the polynomial in question has degree in the \(\nu \)'s or \(\beta \)'s at least \(n(\omega) \), the terms \(p^{t-1}v_t, t > 1 \), in the denominator giving rise to terms of degree greater than \(n(\omega) \).

Thus \(s_{\omega}(\gamma)(H)[H] = P_{\omega}(\nu_1, \ldots, \nu_q) \nu_1 + p\nu_2 + \cdots + p^{q-1}\nu_q)[CP] \) where \(P_{\omega} \) is the polynomial just discussed. Now if \(\sigma \) is a permutation of \(1, \ldots, q \), one has

\[p^{t-1}P_{\omega} \beta_1 \cdots \beta_q = p^{t-1}P_{\omega} \beta_1 \cdots \beta_q[CP] \]
in \(K^*(pt) \) by symmetry among the factors. Since \(p^{t-1}v_t \) has precisely \(\sigma \) terms \(p^{t-1} \beta_1 \cdots \beta_t \), the numbers \(P_{\omega}p^{t-1}v_t[CP] \) are all divisible by \(q \) if \(1 \leq t < q \). By exactly the same argument, the terms of \(P_{\omega} \) involving \(\nu_1, \ldots, \nu_{q-1} \) contribute zero in \(\text{mod } q \) characteristic numbers.
Thus the mod \(q \) characteristic numbers are the same as if \(\gamma(H) \) was
\[
(l + v_1 + \ldots + v_q) q^{s+1}/(l + p^{q-1} v_q)
\] and \(H \) were dual to \(p^{q-1} v_q \).

One then has \(s_\omega(\gamma)[H] = Q_i(v_1, \ldots, v_q, p^{q-1} v_q) q^{s+1} v_q \) \([\text{CP}]\) where \(Q_i \) is
an integral polynomial of degree \(n(\omega) \) in \(v_1, \ldots, v_q, p^{q-1} v_q \) (the latter
having degree 1). Any monomial \(a = v_1^{k_1} \ldots v_q^{k_q} p^{q-1} v_q \) of \(Q_i \) of degree
\(n(\omega) \) makes \(a \cdot p^{q-1} v_q \) of degree \(n(\omega) + q + k_{q+1}(q-1) \) in the \(\beta_i \)'s, and
since \(\beta_i^{s+1} = 0 \), \(a \cdot p^{q-1} v_q = 0 \) if \(n(\omega) + q + k_{q+1}(q-1) > q^{s+1} \). If
\(n(\omega) > q^{s+1} - q \), this occurs so \(s_\omega(\gamma)[H] \equiv 0 \mod q \). For \(n(\omega) = q^{s+1} - q \) this
occurs if \(k_{q+1} > 0 \).

For characteristic numbers mod \(q \) of degree \(q^{s+1} - q \), the numbers are
the same as if \(\gamma(H) \) were \(q \)
\[
\beta^{s+1} \ldots \beta_q \] and \(H \) were dual to \(p^{q-1} \beta_1 \ldots \beta_q \).

Then \(s_\omega(\gamma)(H) \) is the sum of monomials \(\beta^{s+1} \ldots \beta_q \) with \(\omega = \omega_1 \cup \ldots \cup \omega_q \),
deg \(\omega_i = i_i \), \(i_i = q^{s+1} - q \) and to be nonzero one must have
\(i_1 = \ldots = i_q = q^{s-1} \).

Thus for \(s_\omega(\gamma)[H] \not\equiv 0(q) \) with \(n(\omega) > q^{s+1} - q \) one must have
\(n(\omega) = q^{s+1} - q \) and \(\omega \) refining \((q^{s-1}, \ldots, q^{s-1}) \). In particular
\[
s(\gamma)[H] = (q^{s+1}) \beta^{s+1} \ldots \beta_q \cdot p(l)^{q-1} \cdot [\text{CP}] = (q^{s+1}) \cdot p(l)^{q-1} \cdot (q^{s-1}, \ldots, q^{s-1})
\] if \(q^{s-1} > 0 \), i.e. \(q^s > 1 \) so \(q^s \equiv 0 \) (\(q \)) and this is \(p(l)^{q-1} \). If
\(q^{s-1} = 0 \) so \(s = 0 \), then
\[
s(\gamma)[H] = l^t \cdot p^{q-1} \beta^{s+1} \ldots \beta_q \cdot [\text{CP}] = p(l)^{q-1} \cdot (q^{s-1}, \ldots, q^{s-1})
\]

Returning now to \(BU \), recall from Chapter V that \(H^*(BU; \mathbb{Z}) \) is the formal
power series ring over \(\mathbb{Z} \) on the universal Chern classes \(c_i \) of dimension \(2i \),
and \(H^*(BU; \mathbb{Q}) \) is the rational power series algebra on these classes. One may
consider \(H_*(BU; \mathbb{Z}) = \text{Hom}(H^*(BU; \mathbb{Z}); \mathbb{Z}) \) as a subring of
\[H_\ast(BU;Q) = \text{Hom}(H^\ast(BU;Q);Q), \] being respectively the polynomial ring over \(Z \) or \(Q \) on classes \(a_1 \) of dimension 2, where \(a_1 \) is dual to \(s_1(c) \) with respect to the base consisting of the \(s_w(c) \). \[s_w(c)(a_1) = \delta_w(1). \]

Writing the Chern classes formally so that \(c_i \) is the \(i \)-th elementary symmetric function in variables \(x_j \) of dimension 2, let \(s_w(c) \in H^\ast(BU;Q) \) the \(s_w \) symmetric function of the \(x_j \) and let \(J \in H^\ast(BU;Q) \) be the product of the \(x_j/(e_j^{j-1}) \). Under the diagonal homomorphism \[\Delta : H^\ast(BU;Q) \rightarrow H^\ast(BU;Q) \otimes H^\ast(BU;Q) \] one has \(\Delta s_w(c) = \sum_{\omega' \omega'' = \omega} s_{\omega'}(c) \otimes s_{\omega''}(c) \) and \(\Delta J = J \otimes J \).

Define a function \(\rho : H_\ast(BU;Q) \rightarrow Q[\beta_1] \) by \(\rho(a) = \sum_{\omega} s_\omega(c) J[a] \cdot \beta_\omega \) where for \(\omega = (i_1, \ldots, i_r) \), \(\beta_\omega = \beta_{i_1} \cdots \beta_{i_r} \). By the diagonal formulae this is a ring homomorphism. (Note: \(e^{x-1} = x + \text{higher terms in } x \), so \(s_\omega(c) J = s_\omega(c) + \text{higher terms, and the sums involved are finite}. \)

Let \(B_n \subset H_\ast(BU;Q) = \text{Hom}(H^n(BU;Q);Q) \) be the set of elements \(a \in H_\ast(BU;Q) \) with \(\rho(a) \in \mathbb{Z}[\beta_1] \), and let \(B_n = B_n \subset H_\ast(BU;Q) \). \(B_n \) is a subring of \(H_\ast(BU;Q) \). Since \(H_{2k}(BU;Z) = \{ a \in H_{2k}(BU;Q) \mid s_\omega(c)[a] \in \mathbb{Z} \text{ if } n(\omega) = k \} \) and for \(u \in B_{2k} \), \(n(\omega) = k \) gives \(s_\omega(c)[u] = s_\omega(c) J[u] \in \mathbb{Z} \), one has \(B_{2k} \subset H_{2k}(BU;Z) \). Trivially \(B_{2k+1} \subset H_{2k+1}(BU;Z) \) since both groups are zero.

Let \(\rho_q : B_n \rightarrow \mathbb{Z}[\beta_1] \) be the composition of \(\rho : B_n \rightarrow \mathbb{Z}[\beta_1] \) and reduce mod \(q \), \(q \) a prime.

If \(M^n \) is a closed stably almost complex manifold, let \(\tau(M) : H^\ast(BU;Q) \rightarrow Q \) be the homomorphism which sends \(x \) to the value of the tangential characteristic class \(x(1) \) on the fundamental homology class of \(M \). This defines a ring homomorphism \(\tau : H^\ast(BU;Q) \rightarrow H_\ast(BU;Q) \) which was previously shown to be monic. Since for any bundle \(\eta \) one has \(s_w(c)(\eta) = \text{ch}(s_w(\gamma(\eta))) \) one has for all \(\omega \)
\begin{align*}
\{s_{\omega}(c)G\}[\tau M] &= \text{ch}(s_{\omega}(\gamma(\tau))) \cdot J(M)[M], \\
&= \begin{cases}
0 & \text{if } n-n(\omega) \text{ is odd}, \\
\omega(\gamma(\tau))[M] \cdot p(1)^{-t} & \text{if } n-n(\omega) = 2t,
\end{cases}
\end{align*}

which is integral and thus \(\tau M \in B_n \). Thus one has inclusions

\[\tau U_n \subset B_n \subset H_n(BU;Z). \]

\textbf{Definition:} If \(P \in Z_q[\beta_1, \ldots] \) is any polynomial in variables \(\beta_i \), \(P \) is said to have largest monomial \(\beta_{i_1} \cdots \beta_{i_r} \) if

\begin{enumerate}
\item the coefficient of \(\beta_{i_1} \cdots \beta_{i_r} \) in \(P \) is nonzero, and
\item if the coefficient of \(\beta_{j_1} \cdots \beta_{j_s} \) is nonzero, with \(\beta_{j_1} \cdots \beta_{j_s} \neq \beta_{i_1} \cdots \beta_{i_r} \), then either
\begin{enumerate}
\item \(j_1 + \cdots + j_s < i_1 + \cdots + i_r \), or
\item \(j_1 + \cdots + j_s = i_1 + \cdots + i_r \) and \(s > r \).
\end{enumerate}
\end{enumerate}

(Note: A polynomial need not have a largest monomial).

If \(P, Q \in Z_q[\beta_1, \ldots] \) have largest monomials \(\beta_{\omega} \) and \(\beta_{\omega'} \), then \(P \cdot Q \) has largest monomial \(\beta_{\omega} \cdot \beta_{\omega'} = \beta_{\omega} \cup \omega' \). If \(P_i \in Z_q[\beta_1, \ldots], i = 1, \ldots, n, \) are polynomials having distinct largest monomials, then the polynomials \(P_i \) are linearly independent over \(Z_q \).

\textbf{Proposition:} There exist almost complex manifolds \(M^p_i \) of dimension \(2i \) for each prime \(p \) and each integer \(i \) such that \(p^p(M^p_1) \) has largest monomial \(\beta_i \) if \(i + 1 \neq p^s \) for any \(s \) or \(\{\beta_{p^s-1}\}^p \) if \(i + 1 = p^s \) for some \(s \).

\textbf{Proof:} If \(i + 1 \neq 0 \) (p) let \(M^p_1 = GF(1) \). Then \(\{s(1)(c)G\}[\tau M^p_1] = \}^p(1)(c)[GF(1)] = i + 1 \neq 0 \) (p).
If \(i + 1 \equiv 0 \pmod{p} \) but \(i + 1 \not\equiv 0 \pmod{p^s} \) for any \(s \), then one may write

\[i + 1 = \frac{r}{p^r} \left(pu + v \right) \pmod{p^r} \]

for \(r > 0 \) and \(0 < v < p \). If \(u = 0 \), \(v > 1 \) and let

\[M^p_1 = H_{p^r, p^r(v-1)} \]

for which \(\{ s_{(i)}(e) \} \{ \varepsilon M^p_1 \} = s_{(i)}(c) \{ \varepsilon M^p_1 \} = -\left(\frac{r}{p^r} \right) \not\equiv 0 \pmod{p} \).

If \(u > 0 \), let \(M^p_1 = H_{p^r, p^r+1} \), and then \(\{ s_{(i)}(e) \} \{ \varepsilon M^p_1 \} = s_{(i)}(c) \{ \varepsilon M^p_1 \} = -\left(\frac{r}{p^r} \left(pu + v \right) \right) \not\equiv 0 \pmod{p} \).

If \(i + 1 = p^s \) for some \(s \), let \(M^p_1 = H_{p^{s-1}, \ldots, p^{s-1}} \) (\(p \) subscripts)

Then \(\{ s_{(e)} \} \{ \varepsilon M^p_1 \} = s_{(e)}(v(\tau)) \{ \varepsilon M^p_1 \} \) which is zero mod \(p \) if \(n(\omega) \geq p^{s-p} \) unless \(n(\omega) = p^{s-p} \) and \(\omega \) refines \((p^{s-1}, \ldots, p^{s-1}) \).

Corollary: If \(\omega = (i_1, \ldots, i_r) \) let \(M^p_\omega = M^p_1 \times \cdots \times M^p_1 \). Then for each prime \(p \) and each integer \(n \), the polynomials

\[p_p(\varepsilon M^p_\omega) = p_p(\varepsilon M^p_1) \cdots p_p(\varepsilon M^p_1) \]

in \(\mathbb{Z}_{p^n, \ldots, p^n} \) with \(\omega \in \pi(n) \) are linearly independent.

Proof: The polynomials \(p_p(\varepsilon M^p_\omega) \) with \(\omega \in \pi(n) \) have distinct largest monomials.

Lemma: Let \(\mathcal{R}_\omega \) be a graded subring of the graded polynomial ring \(\mathbb{Z}[a_1, a_2, \ldots,] \), degree \(a_i = 1 \), and suppose that for each prime \(p \) there are elements \(b_i \in \mathcal{R}_\omega \), \(i \geq 1 \), with \(\mathcal{R}_\omega / p \mathcal{R}_\omega \cong \mathbb{Z}_p [c_1^p] \). Then \(\mathcal{R}_\omega \) is the integral polynomial ring on classes \(b_i \in \mathcal{R}_\omega, i \geq 1 \). If \(\mathcal{R}_\omega \subseteq \mathcal{R}_\omega \) is a subring containing all of the \(c_i^p \) then \(\mathcal{R}_\omega = \mathcal{R}_\omega \).

Note: All rings here are assumed to have the unit 1. To say that \(\mathcal{R}_\omega \) is a graded subring means that the homogeneous components of elements of \(\mathcal{R}_\omega \) themselves belong to \(\mathcal{R}_\omega \).
Proof: Let $R_n = \mathbb{Z}[\omega_1, \ldots]$. Since $\mathcal{R}_n \subseteq R_n$, \mathcal{R}_n is a free abelian group of rank at most $|\pi(n)|$ (the number of partitions of n). Since $\mathcal{R}_n \otimes \mathbb{Z}_p = (\mathcal{R}_n/p \mathcal{R}_n)_n$ has dimension $|\pi(n)|$ over \mathbb{Z}_p, \mathcal{R}_n has rank exactly $|\pi(n)|$.

Let $a^i = \sum \lambda^i_\omega \omega^i$, $\omega, \omega' \in \pi(n)$, $\lambda^i_\omega \in \mathbb{Z}$ be any base of \mathcal{R}_n. Applying the usual triangularization process (as for integral matrices) one may form from $\{a^i\}$ a new base $a = \sum \lambda^i_\omega \omega^i$, $\omega, \omega' \in \pi(n)$, $\lambda^i_\omega \in \mathbb{Z}$ in which $\lambda^i_\omega = 0$ if $\omega \neq (n)$. (λ^i_ω) is the greatest common divisor of the $\lambda^i_\omega(n)$. For each n, let $b_n \in \mathcal{R}_n$ be any one of the $a(n)$ obtained in this way. Since $\lambda^i_\omega(n) \neq 0$ by rank, one may solve inductively to write a^i as a rational polynomial in the b^j $(j \leq i)$, and hence a base of \mathcal{R}_n is given by b_n and elements $a_\omega = \sum \mu^i_\omega \omega^i$, $\omega, \omega' \in \pi(n)$; $\omega, \omega' \neq (n)$, $\mu^i_\omega \in \mathbb{Q}$.

Suppose inductively that in dimensions less than n, \mathcal{R}_n is the integral polynomial ring on the classes b^i, $i < n$. Let L be the free group generated by the a_ω and M the free group generated by the b_ω, $\omega \in \pi(n)$, $\omega \neq (n)$. Since M consists entirely of decomposable elements of \mathcal{R}_n, $M \subseteq L$, and since they have the same rank, the index of M in L is finite.

Let p be any prime. Since \mathcal{R}_n is the integral polynomial ring on the b^i in dimensions less than n, c^i_1 is an integral polynomial in the b^i's of degree i (if $i < n$), so $c^i_1 \in M$ for all $\omega \neq (n)$, $\omega \in \pi(n)$. Thus the image of M in $\mathcal{R}_n \otimes \mathbb{Z}_p$ has the same rank as the image of L (equal to $|\pi(n)|-1$) and the index of M in L cannot be divisible by p.

Since this is true for all primes $M = L$. Hence \mathcal{R}_n has a base consisting of the b_ω, $\omega \in \pi(n)$. Hence \mathcal{R}_n is the integral polynomial ring on the classes b^i, $i < n + 1$ in dimensions less than $n + 1$, and by induction $\mathcal{R}_n = \mathbb{Z}[b^1, b^2, \ldots]$.
To show that \(J_n = Q_n \), \(J_n \subset Q_n \), is a free abelian group and for a prime \(p \), \(J_n \) maps onto \(Q_n \otimes Z_p \), so the rank of \(J_n \) is \(|\pi(n)| \) and the index of \(J_n \) in \(Q_n \) is not divisible by \(p \). Thus \(J_n = Q_n \) for each \(n \).

Theorem: \(U_n \) is the integral polynomial ring on classes \(x_1 \) of dimension \(21 \). A stably almost complex manifold \(M^{21} \) may be taken to be the \(21 \)-dimensional generator if and only if

\[
s_{(i)}(c(r))[M^{21}] = \begin{cases}
\pm 1 & \text{if } i + 1 \neq p^s \\
\pm p & \text{if } i + 1 = p^s
\end{cases} \text{ for any prime } p
\]

Proof: Let \(Z[a_1, \ldots] = H_n(\mathbb{H}; Z) \), \(Q_n = B_n \), and \(J_n = \alpha_n \) in the lemma, and let \(c_1^P = \alpha_1^P \) as defined above. Then \(J_n = \alpha_n \) is the integral polynomial ring on classes \(b_i \) of dimension \(21 \). Further, a generator is characterized by its \(s \)-class. Under reduction mod \(p \) one has

\[
U_n \otimes Z_p = Z_p[b_i] = Z_p[c_1^P],
\]
so that \(b_i = x \cdot c_1^P + u + pv \) with \(x \in Z \), \(x \) u decomposable, \(u, v \in U_1 \). Thus \(s_{(i)}(c)[b_i] \equiv x \cdot s_{(i)}(c)[c_1^P] \mod p \), so\(s_{(i)}(c)[b_i] \equiv 0 \mod p \) if \(i + 1 = p^s \) and \(s_{(i)}(c)[b_i] \not\equiv 0 \mod p \) if \(i + 1 \neq p^s \). Thus if \(i + 1 \neq p^s \) for any \(p \), \(s_{(i)}(c)[b_i] \) is not divisible by any prime so must be \(\pm 1 \). If \(i + 1 = p^s \), then \(p \) is unique so \(s_{(i)}(c)[b_i] \) is divisible by only the prime \(p \). Since

\[
\begin{align*}
\sum_{p^{s-1}}^{p^{s-1}} & (c)[H_{p^{s-1}}, \ldots, p^{s-1}] = \\
\left(\prod_{i=1}^{p} \left((\pi_1^Q)^{p^{s-1}} - (\sum_{i=1}^{p} \pi_1^Q)^{p^{s-1}} \right) \right) & = - \left(\prod_{i=1}^{p} \pi_1^Q \right)^{p^s} \sum_{i=1}^{p} \pi_1^Q = \left(\prod_{i=1}^{p} \pi_1^Q \right)^{p^s} \sum_{i=1}^{p} \pi_1^Q
\end{align*}
\]
is not divisible by p^2, one must have $s^1(c)[b^1_i] = \mp p$. (Note: This is the same type of computation as in Chapter V. Here $s \geq 1$ so $p^s - 1 > p^{s-1}$ and $(\pi_{i}^\ast a)^{p^{s-1}} = 0$ provided $p \neq 2$ or $s > 1$. For $p = 2$, $s = 1$, this becomes $(2 \pi_{1}^a - 2 \pi_{1}^a)(2 \pi_{1}^a)[\mathbb{CP}]$ which changes the sign but not the divisibility by p^2.) **

Theorem: All relations among the integral cohomology Chern numbers of closed stably almost complex manifolds come from complex K theory. Specifically, if $\phi : H^n(BU; \mathbb{Q}) \rightarrow \mathbb{Q}$ is a homomorphism, there is a closed stably almost complex manifold M^n with $\phi(x) = x(\tau)[M^n]$ for all $x \in H^n(BU; \mathbb{Q})$ if and only if ϕ sends the n-dimensional component of each $s^\omega(e) \mathcal{G}$ into an integer.

Proof: This is the fact that $B_{\ast} = \tau_{\ast}U$ proved above. **

Remarks: 1) This may also be phrased: The image of the Hurewicz homomorphism $\pi_{2k+2n(NBU)} \rightarrow \tilde{K}_{2k+2n}(BU)$ is a direct summand (N large with respect to k) (Hattori [52]).

2) The completeness of these relations was conjectured by Atiyah and Hirzebruch [17].

Now suppose $i + 1 = p^s$ for some prime p (unique) and write

$$b^i = xc^p_i + u + pv, \quad x \in \mathbb{Z}, \quad x \neq 0 \ (p), \quad u \text{ decomposable}, \quad u, v \in \Omega^U_{2i}. \quad$$

One may then replace b^i by $b^i_1 = b^i - u = xc^p_i + pv$ giving another acceptable generator. For $\omega \in \pi(i)$, this gives

$$s^\omega(c)[b^i_1] = x_{s^\omega}(\gamma(\tau))[M^p_i] + ps^\omega(c)[v]$$

which is divisible by p. Thus one has:

Theorem: One may choose generators $x_1 \in \Omega^U_{2i}$ such that if $i + 1 = p^s$, all integral cohomology Chern numbers of x_1 will be divisible by p.
Remark: That this is possible was first noted by Conner and Floyd [36], section 41, who called such generating manifolds "Milnor manifolds".

This gives the following relationship with integral homology pointed out by Joel M. Cohen [32].

Corollary: There exist polynomial generators x_i, $i \geq 1$, of \tilde{H}_n and z_i, $i \geq 1$, of $H_*(BU;\mathbb{Z})$ such that $tx_i = m_i z_i$ where m_i is p if $i + 1 = p^s$ for some prime p and is 1 otherwise. If $\omega = (i_1, \ldots, i_r)$, let $m_\omega = m_{i_1} \cdots m_{i_r}$. Then $H_{2k}(BU;\mathbb{Z})/\tau_2^U$ is the direct sum of the cyclic groups $\mathbb{Z}/m_\omega \mathbb{Z}$ for $\omega \in \pi(k)$.

Proof: Choose x_i to be the classes of Milnor manifolds with $s_1(c)[x_i] = m_i$. If $i + 1 = p^s$, $tx_i \in H_{2i}(BU;\mathbb{Z})$ maps to zero in $H_{2i}(BU;\mathbb{Z})/\tau_2^U$ so is divisible by p and uniquely so since $H_{2i}(BU;\mathbb{Z})$ is torsion free. Let $z_i = (1/m_i) \cdot tx_i$ in $H_{2i}(BU;\mathbb{Z})$. Since $s_1(c)[x_i] = 1$, z_i is an acceptable generator for $H_*(BU;\mathbb{Z})$.

One also has the result of Milnor (see Hirzebruch [54] or Thom [129]):

Theorem: Every class $\omega \in \tilde{H}_n$ contains a non-singular algebraic variety (not necessarily connected) if $n > 0$.

Proof: Let $U^U_{\ast} \subseteq \tilde{H}_n^U$ be the set of cobordism classes represented by non-singular algebraic varieties. U_{\ast} is closed under sums (disjoint unions) and products, but not necessarily under additive inverses. (Note: If one could sensibly interpret $-1 \in \tilde{H}_{0,0}$ as a variety inverse would exist trivially).

Now U_{\ast} contains the classes of the $\mathbb{CP}(n)$ and $\mathbb{H}_{1,n}$ which generate U_{\ast} (Note: $s_{n-1}(H_{s-1} \mathbb{P}p, P_{s-1}) = -\left(\frac{p^s}{p^{s-1}}\right)$ if $p^{s-1} > 1$ while $p_{s-1} = \left(\frac{p^s}{p^{s-1}}\right)$).
\(s_{p-1}(\text{GP}(p-1)) = p\) so these are not divisible by \(p^2\); hence \(\{\text{GP}(n), H_{n_1, n_2}\}\)
generate \(\mathcal{U}_p^U\) for all primes \(p\), and hence the subring they generate coincides with \(\mathcal{U}_p^U\).

If one can show that there exist classes \(x_1, x_1' \in \mathcal{U}_{21}\) with
\[s_{1}(c)[x_1] = m_1\] and \(s_{1}(c)[x_1'] = -m_1\) then one is done, for then suppose inductively that \(\mathcal{U}_{2j} = \mathcal{U}_{2j}^U\) if \(j < k\). If \(x \in \mathcal{U}_{2k}^U\) then \(s_{1}(c)[x] = \tau m_1\), \(t \in Z\), and if \(t > 0\), \(x = tx_1 + v\), if \(t < 0\), \(x = |t|x_1' + v\), where \(v\) is decomposable and hence \(v \in \mathcal{U}_n\) (inductively). Thus also \(x \in \mathcal{U}_n\).

For \(\mathcal{U}_{2i}^U\), \(i \geq 1\), one has \(s_{\text{GP}(i)} = i + 1 > 0\). Let \(M_i \subset \text{GP}(i+1)\)
be the hypersurface defined by \(\sum_{j=0}^{i+1} z_j^{i+1} = 0, t \geq 1\), where \(\{z_0, \ldots, z_{i+1}\}\)
give local coordinates. The derivative of \(u = \sum z_j^{i+1}\) with respect to \(z_k\) is \((t+1)z_k^t\) not all partials can vanish simultaneously, and \(M_i\) is a non-singular hypersurface. Letting
\[f : \text{GP}(i+1) \xrightarrow{\Delta} \prod_{j=1}^{i+1} \text{GP}(i+1) \xrightarrow{\pi} \text{GP}((t+1)(i+2)-1)\]
be the composition of the diagonal \(\Delta(z) = (z, \ldots, z)\) and the map given in local coordinates by \(u_j^1 \ldots u_{j+1}^{i+1} = z_1^{(1)} \ldots z_j^{(i+1)}, f\) is transverse regular on the hyperplane section \(\sum u_j = 0\) with preimage \(M_i\). Since
\[g^*(\xi) = \xi \oplus \ldots \oplus \xi, f^*(\xi) = \xi^{t+1}\) and \(M_i\) is dual to \(\xi^{t+1}\). Thus
\[c(M_i) = (1+\xi)^{i+1}/(1+(t+1)\xi)\] and \(s(M_i) = (t+1)[(i+1)-(t+1)i]\) and this is negative if \(1 \leq i < t\).

Consider \(A_{2k} = \{x \in Z| x = s_{\{k\}}(c)[u]\) for some \(u \in \mathcal{U}_{2k}\}\). If \(x, y \in A_{2k}\) then \(x+y \in A_{2k}\). The above constructions show that \(A_{2k}\) contains both positive and negative elements. Let \(p\) be the least positive element of \(A_{2k}\) and \(n\) the largest negative element of \(A_{2k}\). Then \(p+n = 0\) (if \(p+n > 0\), \(p > p+n > 0\) contradicts the choice of \(p\); if \(p+n < 0\),
n < p + n < 0 contradicts the choice of n). If \(q \in A_{2k} \), \(q = tp + s \) with \(t, s \in \mathbb{Z}, 0 \leq s < p \), but then \(s = q + (-t)p \in A_{2k} \) if \(t < 0 \) and \(s = q + tn \in A_{2k} \) if \(t > 0 \) and since \(s < p \), \(s = 0 \). Thus \(A_{2k} \) is the set of multiples of \(p \). Since the greatest common divisor of the elements \(A_{2k} \) is \(m_k \), one has \(p = m_k \), \(n = -m_k \). **

Open question: (Hirzebruch [34]) Which classes of \(U_n^k \) contain connected non-singular algebraic varieties?

Remarks: 1) One may obtain the polynomial structure and the completeness of K-theoretic relations in other ways. The proof given here is based on Stong [117] and is simplified based upon Conner and Floyd [41], Chapter III. One may prove the polynomial structure using the Adams spectral sequence as was done by Milnor and Novikov (an exposition appears in Conner and Floyd [36], section 41 - for a similar situation) and then use the proof for completeness of relations given by Hattori [52].

2) If one uses the Bott choice for Chern classes with \(p^{-1}(1-x) \) as generator for \(K^e(\mathbb{P}(\nu)) \) one obtains a different orientation class \(U_{\xi}^e \in K^e(T_{\xi}) \) for which \(\text{ch} U_{\xi}^e = T(\xi)^{-1}U_{\xi} \), where \(T(\nu) \) is the universal T-structure class given by \(\pi(x_1/1-e^{-x_1}) \) if \(c(\nu) = \pi(1+x_1) \). The classes \(U_{\xi}^e \) and \(\eta_{\xi}^e \) are related by \(U_{\xi}^e = \text{det}^{-1} U_{\xi}^e \) (\(\text{det} \) being the determinant bundle), and \(\text{det} \) is an invertible element in \(K^0(\text{Base space}) \) which restricts to 1 at each point. The literature is very confused in that the choices of Chern classes and orientation are frequently made with opposite conventions. The choice made here was intended to keep the Atiyah Chern classes and keep a consistent universal orientation, avoiding complex conjugation whenever possible.
Relation to framed cobordism: The Adams invariant e.

Just as with unoriented cobordism one has a forgetful functor F from the category of framed manifolds to that of stably almost complex manifolds giving a homomorphism of cobordism groups and a relative group, denoted Ω_n^{fr}. As with any pair of (B,f) theories, the sequence

$$
\xymatrix{ \Omega_n^{fr} \ar[r] & \Omega_n^U \ar[d] \ar[l] & \\
\Omega_n^{fr} \ar[r] & \Omega_n^U \ar[l] & \\
\Omega_n^{fr} \ar[u] & \\
}$

is exact. One then has:

Proposition: A framed manifold of positive dimension bounds a stably almost complex manifold; i.e. $F_*: \Omega_n^{fr} \to \Omega_n^U$ is the zero homomorphism if $n > 0$. Further $F_*: \Omega_n^{fr} \to \Omega_n^U$ is an isomorphism.

Proof: For $n > 0$, Ω_n^U is torsion free while Ω_n^{fr} is a finite group so $F_* = 0$. For $n = 0$ both groups are isomorphic to \mathbb{Z}, given by oriented points. **#

The homotopy exact sequences on the Thom spaces then split into short exact sequences giving the diagrams:

$$
\xymatrix{ 0 & \ar[r] & \Omega_n^U & \ar[r] & \Omega_n^{fr} & \ar[r] & 0 \\
\ar[r] & \ar[r] & \ar[r] & \ar[r] & \ar[r] & 0 \\
0 = \tilde{H}_n(S;\mathbb{Z}) & \ar[r] & \tilde{H}_n(TBU;\mathbb{Z}) & \ar[r] & \tilde{H}_n(TBU_S;\mathbb{Z}) & \ar[r] & \tilde{H}_{n-1}(S;\mathbb{Z}) = 0 \\
\ar[r] & \ar[r] & \ar[r] & \ar[r] & \ar[r] & 0 \\
}

for $n-1 > 0$, and
where the vertical arrows are the Hurewicz homomorphisms.

For n odd, $\tilde{H}_n = 0$ so if $n > 1$, $\Omega_n \tilde{=}_n \tilde{=}$ which is a finite group.

Also $h_n(TBU;2) = 0$ and no information is available using Chern numbers.

For n even, $n > 1$, $h_n(\Omega_n^{U,fr})$ is a free abelian group, containing the subgroup $k_n(\tilde{\Omega}_n^U) \tilde{=}_n \Omega_n^U$. Thus $h_n(\Omega_n^{U,fr})$ has rank equal to the number of partitions of $n/2$ and contains $k_n(\tilde{\Omega}_n^U)$ as a subgroup of finite index.

Let $\alpha \in \Omega_n^{U,fr}$ be represented by a stably almost complex manifold V^{2k} with a compatible framing of $\mathbb{A}V = M^{2k-1}$. Let $\tau : (V,M) \to (BU,*)$ be a map classifying the stable tangent bundle of V, the framing of M being interpreted as a specific equivalence class of deformation of M to the base point. One then has defined Chern numbers $\tau^*(c_\omega)(V,M)$ which completely determine $h_{2k}(\alpha)$.

In order that $h_{2k}(\alpha) = k_{2k}(\tilde{\Omega}^U_{2k})$ it is necessary and sufficient that $\tau^*(s_\omega(e)\langle V,M \rangle) \in \mathbb{Z}$ for all ω. Since $s_\omega(e) = ch(s_\omega(\gamma))$ given by the K-theoretic Chern classes $\gamma_i \in K^{2i}(BU,*)$ for $i > 0$, $\tau^*(s_\omega(e)\langle V,M \rangle) = \tau^*s_\omega(\gamma)(V,M)p(1)^{n(\omega)} \in \mathbb{Z}$ where $\tau^*s_\omega(\gamma) \in K^{2n(\omega)}(V,M)$ for $n(\omega) > 0$.

Thus one has:

Theorem (Conner and Floyd [41]): A necessary and sufficient condition that a stably almost complex manifold with framed boundary have the same Chern numbers as a closed stably almost complex manifold is that the class be integral.
Since the homomorphism \(\partial : \Omega_{2k}^{U,fr} \rightarrow Q : \alpha \rightarrow \ast \partial [V,M] \) sends \(\Omega_{2k}^{U} \) into \(Z \) one has defined a quotient homomorphism \(E : \Omega_{2k-1}^{fr} \rightarrow Q/Z \). One has the result of Conner and Floyd [41]:

Theorem: The homomorphism \(E : \Omega_{2k-1}^{fr} \rightarrow Q/Z \) coincides with the Adams invariant \(e_c : \lim_{s \rightarrow +} \Omega_{2k-1+s}(S^s) \rightarrow Q/Z \).

Remarks: The Adams invariant is defined in Adams [41]. The proof given here is due to F. S. Landweber.

Proof: Let \((V,M)\) be imbedded in \((H^{2k+2r},R^{2k-1+2r})\) with complex normal bundle trivialized over \(M\), defining the normal map \(v : (V,M) \rightarrow (BU_r,\ast)\). (trivialization determining the deformation of \(M\) to a point). Applying the Pontryagin-Thom construction defines a map \(f : (D^{2k+2r},S^{2k+2r-1},T_r,\ast) \rightarrow (TB_r,\ast)\) and as with the unoriented case one has a diagram of cofibrations

\[
\begin{array}{ccc}
S^{2r} & \rightarrow & X \\
\downarrow & & \downarrow \\
S^{2r} & \rightarrow & \frac{X}{S^{2r}} = \frac{D^{2k+2r}}{S^{2k+2r-1}}
\end{array}
\]

where \(X\) is the two cell complex formed by attaching \(D^{2k+2r}\) to \(S^{2r}\) by the map \(f : S^{2k+2r-1} \rightarrow S^{2r} = T_r\), \(g\) and \(\bar{f}\) being induced by \(f\). In particular the class of \(f\) in the stable homotopy of spheres is the element corresponding to \([M] \in \Omega_{2k-1}^{fr}\).

The cohomology groups of \(X\) are free abelian with base \(1 \in H^0(X;\mathbb{Z})\), \(a \in H^{2r}(X;\mathbb{Z})\), and \(b \in H^{2r+2r}(X;\mathbb{Z})\) characterized by \(j^*(a) = \ast \in H^{2r}(S^{2r};\mathbb{Z})\) and \(b = \pi^*(\bar{c}')\) with \(\bar{c}' \in H^{2k+2r}(D^{2k+2r},S^{2k+2r-1};\mathbb{Z})\).

To define the Adams invariant of the class of \(f\) one chooses any element \(u \in \tilde{K}(X)\) with \(ch(u) = a + \phi \cdot b\), \(\phi \in Q\) (possible from the Atiyah-Hirzebruch [18] spectral sequence for \(K\) theory) and let \(e_c([f]) = \phi\) in \(Q/Z\).
From the relation between the Thom homomorphism and characteristic
numbers one has $\tau \mathcal{J} [V, M] \cdot 1^* = \mathfrak{F}(\mathcal{J}^{-1} U)^{2k+2r}$ so
$\tau \mathcal{J} [V, M] \cdot b = g^* (\mathcal{J}^{-1} U)^{2k+2r}$, $U \in H^{2r} (TB_U; \mathbb{Z})$ being the Thom class. On
the other hand $\mathcal{J}^{-1} U = \text{ch}(\tilde{U})$ where $\tilde{U} \in K^{2r} (TB_U)$ is the K-theoretic Thom
class. Since $\int g^* U = i^* U = \zeta$, $g^* U = g^* (\mathcal{J}^{-1} U)^{2r} = a$ and one has
$\text{ch}(g p(1)^* \tilde{U}) = g^*(\text{ch}(\tilde{U})) = a + \tau \mathcal{J} [V, M] \cdot b$ with $g^* p(1)^* \tilde{U} \in \tilde{K}(X) = \tilde{K}^0(X)$.
Thus $e_C([f]) = \tau \mathcal{J} [V, M] = E(a)$. **

From Adams' computations with e_C one has:

Corollary: The homomorphism $\mathcal{J}: \Xi_u^{fr} \to \mathbb{Q}$ maps precisely onto the
integral multiples of the numbers:

a) $1/d_{2t}$ for Φ_{0t}^{fr}

b) 1 for Φ_{0t-2}^{fr}

c) $1/d_{2t-1}$ for Φ_{0t-4}^{fr}

d) $1/2$ for Φ_{0t-6}^{fr}

where $d_{2t} = a_{2t}$, $2d_{2t+1} = a_{2t+1}$ and a_n is the denominator of B_n/n, B_n
being the n-th Bernoulli number.

For facts concerning Bernoulli numbers, see Milnor [36] or Adams [3].

That the Bernoulli numbers enter into the result is not surprising since

$$x/(e^x - 1) = \sum_{t=0}^{\infty} \beta_t \frac{x^t}{t!}$$

where

$$\beta_{2s} = (-1)^{s-1} \frac{B_s}{s}, \beta_1 = \frac{1}{2}, \text{ and } \beta_{2s+1} = 0 \text{ if } s > 0.$$
Relation to unoriented cobordism

The relation of complex cobordism to unoriented cobordism was completely explored by Milnor [87]. As with any pair of (B, f) theories one has the homomorphism $F_* : \Omega^U_* \to \Omega^Q_*$ which is obtained by ignoring the complex structure.

Proposition: Let M^n be a stably almost complex manifold. Then the Stiefel-Whitney classes w_{2i+1} of M are zero and the classes w_{2i} are the mod 2 reductions of the Chern classes c_i. In particular, all Stiefel-Whitney numbers of M having an odd Stiefel-Whitney class as a factor must be zero.

Proof: This follows at once from the change of fields theorem of Chapter V. **

Proposition: A closed manifold M^n has all Stiefel-Whitney numbers with an odd class as a factor zero if and only if there is a manifold M' with M cobordant to $M' \times M'$.

Proof: If $M = M' \times M'$, M has the same Stiefel-Whitney numbers as $M' \times M'$. Under the comultiplication $\Delta(v_i) = \sum_{j+k=1} v_j \Theta v_k$ so

$$w_1 \ldots w_r [M' \times M'] = \sum_{j+k=1} v_{j} \ldots v_{j} [M'] \cdot w_{k} \ldots w_{k} [M'].$$

If $J = (j_1, \ldots, j_r)$, $K = (k_1, \ldots, k_r)$ and $J \neq K$, then the terms $v_J [M'] w_K [M']$ and $w_K [M'] v_J [M']$ are paired, having the same value and so add to zero in \mathbb{Z}_2. In particular, if any i_α is odd, this pairs all terms and the number $w_1 \ldots w_r [M' \times M']$ is zero. If every i_α is even, then $w_1 [M' \times M'] = (v_I [M'])^2 = v_I [M'].$
Suppose all numbers of M^n divisible by an odd class are zero. If n

is odd M^n must bound; this being interpreted as being a product vacuously.

If $n = 2k$, consider the homomorphism $\phi : H^k(BO; Z_2) \rightarrow Z_2$ with

$\phi(v_1 \cdots v_i) = v_{2i} \cdots v_{2k} [M]$ obtained by composing the doubling

homomorphism $\psi : H^*(BO; Z_2) \rightarrow H^*(BO; Z_2)$ which sends v_1 into v_{2i} with

the evaluation on M. Let $\lambda : H^*(BO; Z_2) \rightarrow H^*(BO; Z_2)$ by sending v_1 into

$\sum_{j+k=i} v_j w_k$. λ is induced by maps of spaces $BO \rightarrow BO_{2r}$ classifying

$\gamma_r \otimes \gamma_r$, so λ commutes with all Sq^1. Further $\lambda(v_{2i+1}) = 0$, $\lambda(v_{2i}) = v_i$, so the kernel of λ is precisely the ideal generated by elements of odd degree. The composition $\lambda \cdot \psi : H^*(BO; Z_2) \rightarrow H^*(BO; Z_2)$ is the homomorphism
given by $x \rightarrow x^2$.

Then $\lambda(Sq^{2i}\psi x) = Sq^{2i}(\lambda \psi x) = Sq^{2i}(x^2) = (Sq^1x)^2 = \lambda(\psi^1x)$ and

$\lambda(\psi x) = v \cdot v \cdot \lambda \psi x = v^2 \cdot x^2 = (\psi x)^2 = \lambda(\psi x)$, where $v = 1 + v_1 + \ldots$ is

the Wu class. Comparing terms of equal degree $\lambda(v_{2i}\psi x) = \lambda(\psi v_i x)$. Thus

for all $x \in H^{k-1}(BO; Z_2)$, $\psi(Sq^1x + v_1x) + Sq^{2i}\psi x + v_{2i}\psi x$ is in the kernel

λ, hence vanishes on the fundamental class of M. Then $\phi(Sq^1x + v_1x) =

(Sq^{2i}\psi(x) + v_{2i}\psi(x))[M] = 0$. Thus there is a manifold M' with $\phi(x) = x$ for

all $x \in H^k(BO; Z_2)$, and $v_1[M] = v_1[M' \times M'] = v_{1/2}[M']$ for all I, $M - M' \times M'$.

One then has:

Theorem: The homomorphism $F_* : H_* \rightarrow \gamma_*$ has image $\gamma_*^2 = \{x^2 | x \in \gamma_*\}$, i.e. precisely those classes for which the Stiefel-Whitney numbers having an odd degree factor are zero. Further, one may find generators b_i of H_i and $x_i (i \neq 2^g - 1)$ of γ_* for which $F_*(b_i) = x_i^2$ if $i \neq 2^g - 1$ and $F_*(b_{2^g - 1}) = 0$.
Proof: Since $x \mapsto x^2$ is a homomorphism in an algebra over Z_2 one need only map onto generators. Let $x_{21} = [\mathbb{RP}(21)]$, $b_{21}' = [\mathbb{GP}(21)]$, and for $i = 2^{p}(2q+1)-1$, let $x_i = [H_{2^{p+1}q, 2^{p}}(\mathbb{R})]$, $b_i' = [H_{2^{p+1}q, 2^{p}}(\mathbb{C})]$ while for $i = 2^{s}-1$, let $b_i' = [H_{2^{s-1}, 2^{s-1}}(\mathbb{C})]$. It has already been shown that $\gamma_2 = Z_2[x_1]$, $\omega_s \otimes Z_2 = Z_2[b_1']$. The characteristic number computations give $c_\omega[b_1'] = v_{2\omega}[b_1'] \pmod{2}$ by exactly the same formulae as the computations of $v_\omega[x_1]$. Hence $F_s(b_1') = x_1^2$.

Further all Chern numbers (=K-theoretic numbers) of b_1' are even, so $F_s(b_1') = 0$. Since one may choose $b_i' \in \omega_s$ which generate and which reduce to $b_i' \pmod{2}$, the result is clear.

If one then considers the relative group $\omega_s^{0, U} = \pi_s(\mathbb{TBO}, \mathbb{TBU})$ one has an exact triangle

\[\begin{array}{ccc} \omega_s^{U} & \xrightarrow{F_s} & \gamma_s \\ \downarrow & & \downarrow \\ \omega_s^{0, U} & \xrightarrow{d} & \gamma_s \\ \end{array} \]

Since $\omega_s^{U}_{2k+1} = 0$, this gives rise to an exact sequence

\[\begin{array}{ccc} \omega_s^{U}_{2n+1} & \xrightarrow{F_{2n+1}} & \gamma_{2n+1} \\ \downarrow & & \downarrow \\ \omega_s^{0, U}_{2n+1} & \xrightarrow{d_{2n+1}} & \omega_s^{U}_{2n+1} \\ \downarrow & & \downarrow \\ \gamma_{2n} & \xrightarrow{d_{2n}} & \omega_s^{0, U}_{2n} \\ \downarrow & & \downarrow \\ \tilde{H}_{2n+1}(\mathbb{TBU}) & \xrightarrow{\tilde{c}_{2n}} & \tilde{H}_{2n+1}(\mathbb{TBO}) \\ \downarrow & & \downarrow \\ \tilde{H}_{2n}(\mathbb{TBU}) & \xrightarrow{\tilde{c}_{2n}} & \tilde{H}_{2n}(\mathbb{TBO}) \end{array} \]

\[\begin{array}{ccc} \gamma_{2n} & \xrightarrow{d_{2n}} & \omega_s^{0, U}_{2n} \\ \downarrow & & \downarrow \\ \tilde{H}_{2n}(\mathbb{TBO}) & \xrightarrow{\tilde{c}_{2n}} & \tilde{H}_{2n}(\mathbb{TBO}, \mathbb{TBU}) \\ \end{array} \]

\[\begin{array}{ccc} \omega_s^{0, U}_{2n-1} &=& 0 \\ \end{array} \]

\[\begin{array}{ccc} \tilde{H}_{2n}(\mathbb{TBO}) & \xrightarrow{\tilde{c}_{2n}} & \tilde{H}_{2n-1}(\mathbb{TBU}) = 0 \end{array} \]
in which the vertical arrows are the Burewicz homomorphisms. From the
knowledge of F_{2n} one may decompose this still further.

First, image $F_{2n} = \mathcal{H}_{2n}^2$, so $\Omega_{2n}^{0, U} = \mathcal{H}_{2n}^2 / \mathcal{H}_{2n}^2$ is a \mathbb{Z}_2 vector space
(of known dimension). Further, this group is clearly detected by the Stiefel-
Whitney numbers with an odd factor.

Next, kernel F_{2n} is the ideal in Ω_{2n}^U generated by the elements b_{2^k}
(letting $b_0 = 2$) and since this is a free abelian group,

$\Omega_{2n+1}^{0, U} \cong \mathcal{H}_{2n+1} / \ker F_{2n}$, \mathcal{H}_{2n+1} being precisely the torsion subgroup. The
torsion-free part of this group, $\Omega_{2n+1}^{0, U}/\text{Torsion}$, may be characterized by
mapping into Ω_{2n}^U, so that the class is determined by the Chern numbers of
the boundary. The torsion subgroup is $d_{2n+1} \mathcal{H}_{2n+1}$ and is detected by
Stiefel-Whitney numbers. In mod 2 homology $\tilde{H}_{2n}^{\mathcal{W}(\mathcal{B}, \mathcal{W})} \to \tilde{H}_{2n}^{\mathcal{W}(\mathcal{B}, \mathcal{W})}$ is
monic (the cohomology map being epic), so that in fact the Hurewicz map defines
a splitting

$$\Omega_{2n+1}^{0, U} \to H_{2n+1}(\mathcal{B}, \mathcal{W}) \cong \tilde{H}_{2n+1}(\mathcal{B}, \mathcal{W}) \to \mathcal{H}_{2n+1},$$

the latter map being a projection.

The interesting question is how much of $\Omega_{2n}^{0, U}$ may be detected by \mathbb{Z}_2
cohomology characteristic numbers. For this one has:

Proposition: Under the product of manifolds $\Omega_{2n}^{0, U}$ is an Ω_{2n}^U module
Writing $\Omega_{2n}^U = \mathbb{Z}[b_1]$ and letting $b_0 = 2$, $\Omega_{2n}^{0, U}$ is generated over Ω_{2n}^U by
the elements

$$a_{2^s+1-1} \in \Omega_{2^s+1-1}^{0, U} \quad \text{with} \quad a_{2^s+1-1} \cdot a_{2^s+1-1} = b_{2^s-1} \quad (s \geq 0)$$

and

$$d_\pi(x_{i_1} \ldots x_{i_r}) \in \Omega_{1^r}^{0, U} \quad 0 < i_1 < \ldots < i_r$$
where $\mathcal{T}_s = \mathbb{Z}_2[x_i]$, the complete set of relations being given by

$$b^{s-1}d_s(x_1 \ldots x_r) = 0$$

and

$$b_t a^{s+1} = b_{s-1} a_{t+1}.$$

In addition, the kernel of the Hurewicz homomorphism $\eta_*^{0,U} \to H_*^{\mathcal{Q}_0}(TBO;\mathbb{Z}_2)$ is precisely the submodule consisting of multiples of the $b_{s-1}^{2^s-1}$ (i.e. the image is the free $\mathcal{T}_s^{2^s-1}$ module on the classes $a_{s+1}^{2^s-1}$ and $d_s(x_1 \ldots x_r)$).

Proof: The first part is obvious. Since $\partial(b^{s-1} a_{s+1}^{2^s-1} = 2^s \partial b^{s-1} a_{s+1}^{2^s-1})$, one must have $\partial(b^{s-1} a_{s+1}^{2^s-1} = 2^s \partial b^{s-1} a_{s+1}^{2^s-1})$ in the torsion subgroup, but all Stiefel-Whitney numbers of u are zero since those of the b's are, and hence $u = 0$. Further the $b_{s-1}^{2^s-1}$ having zero mod 2 numbers implies that the submodule $\mathcal{E}b_{s-1}^{2^s-1}$ is annihilated by the Hurewicz homomorphism. To see that this is the entire kernel one considers $\tilde{H}^*(TBO) \to \tilde{H}^*(TBU)$ (using \mathbb{Z}_2 coefficients unless otherwise noted), which maps a free \mathcal{A}_2 module onto a free $\mathcal{A}_2/(\mathcal{Q}_0)$ module. By a good choice of generators this may be written $(T \otimes S) \otimes \mathcal{A}_2 \to T \otimes \mathcal{A}_2/(\mathcal{Q}_0)$ where T, S are \mathbb{Z}_2 vector spaces (by proper choice of characteristic numbers S to detect cokernel F_2^s and T to detect image F_2^s). Writing $TBO = K(T) \times K(S)$ one may project onto $K(T)$, splitting $K(S)$ out of the problem.

Letting $X = TBU$, one has $f : X \to K(T)$ with cohomology map $T \otimes \mathcal{A}_2 \to T \otimes \mathcal{A}_2/(\mathcal{Q}_0)$ and one wishes to know how much of the homotopy of $K(T)/X$ is detected by mod 2 cohomology. Since $\tilde{H}^*(X;\mathbb{Z})$ is torsion free the classes of T are the reduction of integral classes, and letting \tilde{T} be a
free abelian group in $π_*(X)$ (direct summand) with $T ⊗ Z_2 = T$, $π^+$ a complementary summand, one has the diagram

$$
\begin{array}{c}
\Sigma X \longrightarrow \Sigma K(T) \longrightarrow G \\
\downarrow \quad \downarrow \\
\Sigma X \longrightarrow \Sigma K(T) \longrightarrow G \\
\downarrow \quad \downarrow \quad \downarrow
\Sigma \Sigma \\
X \otimes Z_2 \longrightarrow \Sigma K(T) \longrightarrow F
\end{array}
$$

with homotopy and cohomology diagrams

$$
\begin{array}{c}
π^+ \longrightarrow π^+ ⊗ T \longrightarrow T \quad 0 \quad π^+ \\
\downarrow \quad \downarrow \quad \downarrow \\
π^+ \longrightarrow π^+ ⊗ T \longrightarrow T \quad 0 \quad π^+
\downarrow \quad \downarrow \quad \downarrow
\downarrow
\pi^+ ⊗ Z_2 \longrightarrow π^+ ⊗ Z_2 ⊗ T \longrightarrow T \quad 0 \quad π^+ ⊗ Z_2
\end{array}
$$

From the analysis of spectra of the type of X, one knows that the summand $T ⊗ V_1$ of $π^+ ⊗ Z_2 = τ_*(F)$ is detected by mod 2 cohomology ($T ⊗$ image), while the quotient $ΣT$ of $ΣT = τ_2 K(T)$ is detected by $T ⊗ 1 ⊗ T ⊗ A_2/A_2Sq^1$; i.e. in $H^*(K(T)/X)$ there is a summand mapping to $T ⊗ Sq^1 ⊗ T ⊗ d_1(V_1) ⊂ T ⊗ A_2 = H^*(K(T))$, and detecting homotopy classes
the form \(\mathcal{E}(S \Theta \mathcal{E} \Theta \mathcal{V}_1) \subset \pi_*(K(T)/X) \).

Thus under the Hurewicz homomorphism \(\Omega_*^U \to H_*(\mathcal{J}_B;\mathcal{J}_B;\mathbb{Z}_2) \) the image is at least as large as \(S \Theta \mathcal{E} \Theta \mathcal{E} \Theta \mathcal{V}_1 \). Since this has exactly the right dimension, the result is proven. **

Note: By the analysis above, one may if desired detect a \(2^{s+1-1} \mod 2 \) by the Stiefel-Whitney class \(w^{s+1}(v) \), corresponding to \(\text{Sq}^{s+1-1}U \) in \(H^*(\mathcal{J}_B;\mathcal{J}_B;\mathbb{Z}_2) \), these numbers annihilating the image of \(\gamma_\mathcal{J}_B \).

In particular, \(a_1 \) comes from \(\Omega_1^U \) and is related to the Hopf invariant, corresponding to \(\Omega_0^U \). The other classes \(a_1 \) do not come via framed cobordism.

Complex Bordism

Corresponding to the forgetful functor from stably almost complex manifolds to topological spaces one has defined relative bordism groups \(\Omega_*^U(X,A) \cong \lim_{r \to \infty} \pi_{s+2r}(X/A;\mathcal{J}_B) \). The product of manifolds makes \(\Omega_*^U(X,A) \) a module over \(\Omega_*^U \). These modules have been studied by Conner and Floyd [35], [37], or [39] by analysis of the spectral sequence from \(H_*(X,A;\mathcal{J}_B) \) to \(\Omega_*^U(X,A) \). One can also obtain these results as was done for \(\Omega_*^U \).

Theorem: For every CW pair \((X,A)\), \(\Omega_*^U(X,A) \otimes \mathbb{Q} \) is a free \(\Omega_*^U \otimes \mathbb{Q} \) module isomorphic to \(H_*(X,A;\mathbb{Q}) \otimes (\Omega_*^U \otimes \mathbb{Q}) \).

Proof: \(\pi_*(X/A;\mathcal{J}_B) \to H_*(X/A;\mathcal{J}_B;\mathbb{Z}) \) is an isomorphism modulo torsion. **
Theorem: If \((X, A)\) has no torsion in its integral homology then \(\Omega^U_u(X, A)\)
is a free \(\Omega^U_u\) module isomorphic to \(H^*_u(X, A; \mathbb{Z}) \otimes \Omega^U_u\). In particular, the
evaluation homomorphism \(\varepsilon : \Omega^U_u(X, A) \to H^*_u(X, A; \mathbb{Z})\) is epic. If \(\{x_i\}\) is
a homogeneous base of \(H^*_u(X, A; \mathbb{Z})\) and \(f_1 : (M^i, \partial M^i) \to (X, A)\) is a map of a
stably almost complex manifold into \((X, A)\) with \(f_1^*(\{[M, \partial M]\}) = x_1\), then
\(\Omega^U_u(X, A)\) is the free \(\Omega^U_u\) module with base the classes of the \((M^i, f_1)\).

Proof: Since \((X, A)\) has no \(p\)-torsion, \(Q_0\) acts trivially in \(\tilde{H}^*(X, A; \mathbb{Z})\)
making \(\tilde{H}^*((X, A) \times \text{BU}(\mathbb{Z}))\) a free \(\mathcal{A}_p/(Q_0)\) module on the classes \(\{x_i^* \otimes u_a\}\),
where \(x_i^*\) are a base dual to the \(x_i \mod p\) and \(\{u_a\}\) is a base of \(\tilde{H}^*(\text{BU}(\mathbb{Z}))\) as \(\mathcal{A}_p/(Q_0)\) module. Thus \(\Omega^U_u(X, A)\) is torsion free and maps monomorphically
into \(\tilde{H}^*_u((X, A) \times \text{BU}(\mathbb{Z}))\). Further, the map \(\Omega^U_u(X, A) \otimes H^*_u(X, A; \mathbb{Z}) \to H^*_u(X, A; \mathbb{Z})\)
is epic for each prime \(p\), so the index of \(\Omega^U_u(X, A)\) in \(H^*_u(X, A; \mathbb{Z})\) is not
divisible by \(p\). Thus \(\varepsilon\) is epic. Choose classes \((M^i, f_1)\) mapping to \(x_i\).

By the Atiyah-Hirzebruch [18] spectral sequence for \(K\)-theory, there exist elements
\(z_j \in K^*(X, A)\) with \(\text{ch}(z_j) = x_j^* + \text{higher terms}\), \(\{x_i^*\}\) being dual
to the \(x_i\). Let \(B_u \subset H_u((X, A) \times \text{BU}(\mathbb{Z}))\) be the ring of homogeneus elements
\(x\) for which \(\text{ch}(z_j)s_{\omega}(e)[x] \in \mathbb{Z}\) for all \(i\) and \(\omega\). If \(f : (M, \partial M) \to (X, A)\)
then \(\text{ch}(z_j)s_{\omega}(e)f((f \times \tau)_*([M, \partial M])) = f^* z_i^* s_{\omega}(\gamma(\tau))([M, \partial M])\)
which is integral, so \(\Omega^U_u(X, A) \to H_u((X, A) \times \text{BU}(\mathbb{Z})); (M, F) \to (f \times \tau)_*([M, \partial M])\)
maps into \(B_u\). The elements \(\omega \cdot (M^i, f_1)\) have linearly independent mod \(p\) characteristic
numbers \(\text{ch}(z_j)s_{\omega}(e)f\) and hence \(B_u\) is the image of the free \(\Omega^U_u\) module on
the \((M^i, f_1)\). In particular the \((M^i, f_1)\) generate \(\Omega^U_u(X, A)\) freely as
\(\Omega^U_u\) module. **

Corollary: If \((X, A)\) has no torsion in its integral homology, then
integral cohomology characteristic numbers determine bordism class in
\(\Omega^U_u(X, A)\). Further, all relations among these numbers come from \(K\)-theory.
Briefly, for $f : (M, \mathbb{R}M) \to (X,A)$ one has generalized Chern numbers $f^*(x) \cdot c_\omega(\tau)[M, \mathbb{R}M]$ for $x \in H^n(X,A;\mathbb{Z})$. All relations among these are given by $\text{ch}(f^*)s_\omega(e)\mathcal{J}[M, \mathbb{R}M] \in \mathbb{Z}$ for $z \in K^n(X,A)$.

This result may be modified slightly to give results in the presence of limited torsion.

Theorem: If (X,A) has no torsion which is p-primary for $p \not\in P'$ (P' a set of primes) and $Q' \subset Q$ is the set of rational numbers which have denominators relatively prime to the elements of P' (when expressed in lowest terms) then $\Omega^U_*(X,A) \otimes Q'$ is a free $\Omega^U_\ast \otimes Q'$ module isomorphic to $\Omega^U_*(X,A;\mathbb{Z}) \otimes \Omega^U_\ast \otimes Q'$. In particular, the cokernel of the evaluation is finite, of order not divisible by p for any $p \in P'$.

Proof: One proceeds exactly as above using only the primes p belonging to P', showing that $\Omega^U_*(X,A)$ has no p torsion and that coker(e) is finite of order prime to p. One then chooses classes $x_i \in H_*(X,A)$ which freely generate $H_*(X,A) \otimes Q'$ and can select maps (M^i, f_1) which realize $n_i x_i$, $1/n_i \in Q'$. To prove that these generate $\Omega^U_*(X,A) \otimes Q'$ one may assume that (X,A) is a finite complex (to prove freeness up through dimension n one may restrict to the $n+1$ skeleton of X and A. This introduces no new torsion and induces isomorphisms of $\Omega^U_*(X,A)$ in dimensions less than or equal to n). Noting that all differentials in the Atiyah-Hirzebruch [18] spectral sequence have finite order, which cannot be p primary for any $p \in P'$, one may find elements $z_i \in K^n(X,A)$ for which ch(z_i) has least component of degree equal to $\dim x_i$ and with ch$(z_i)[x_i] = m_i \in \mathbb{Z}$, $1/m_i \in Q'$ (and annihilating all other x_j of the same or lower dimension). One lets $B_* \subset H_*((x/A) \times BU;\mathbb{Z})$ be defined by $\text{ch}(z_i)s_\omega(e)\mathcal{J}[x] \in \mathbb{Z}$ and proceeds as above to prove $\Omega^U_* \otimes Z((M^i, f_1)) \subset \Omega^U_*(X,A) \subset B_*$ having index of order prime to p for each $p \in P'$. **
Corollary: If \((X,A)\) has no \(p\) primary torsion in its homology then
\(\Omega_*^U(X,A) \otimes \mathbb{Z}_p\) is a free \(\Omega_*^U \otimes \mathbb{Z}_p\) module isomorphic to \(H_*(X,A) \otimes \Omega_*^U \otimes \mathbb{Z}_p\).

Corollary: If \((X,A)\) has no \(p\) primary torsion in its homology for all \(p \in P'\), then generalized Chern numbers determine bordism class up to torsion of order prime to all such \(p\). Further, all \(p\) primary relations among these numbers follow from the \(K\)-theory of the finite skeleta of \((X,A)\).

Note: It has been assumed throughout (implicitly) that \((X,A)\) has finite type. Notice that the \(K\)-theory of \((X,A)\) may be zero, while that of its finite skeleta is not. In the above one takes a large skeleton to determine the relations (which are independent of the skeleton chosen) with respect to the prime \(p\) and its powers. See Hodgkin [56] in which it is shown that inverse limit \(K\)-theory vanishes for many spaces (homotopy class of maps theory factors through inverse limit theory for characteristic numbers). The important point is that the \(K\)-theory is not closely related to skeletal decomposition, while homology and bordism are.

It is to be noted that the results concerning the \(p\)-primary situation are valid for spaces with \(p\) torsion provided one remains below the dimension in which that torsion occurs, since one may restrict to a skeleton.

Landweber [66] has examined the homomorphism \(\Omega_*^U(X) \rightarrow H_*(X;\mathbb{Z})\) for \(X = K(\mathbb{Z},n), K(\mathbb{Z},n),\) or \(BU(2q,\ldots,\infty)\) (the connective cover of \(BU\)) in the stable range, the interest being entirely in torsion elements. He completely determines the image, but this does not determine the bordism since there are nontrivial extensions involved.
Chapter VIII

σ₁ - Restricted Cobordism

Let K be one of the fields R or C. If μ is an n-dimensional K vector bundle, the determinant bundle of μ, $\det \mu$, is the K line bundle $\Lambda^n_K(\mu)$ given by the n-fold exterior power over K of the bundle μ. If μ' has dimension n', then $\Lambda^n_K(\mu \otimes \mu') \cong \Lambda^n_K(\mu) \otimes \Lambda^n_{K}(\mu')$ so the determinant takes Whitney sums to products. Combining this with the fact that $\det \rho = \rho$ if ρ is a line bundle, one has $\det(\mu \otimes 1) \cong \det \mu \otimes 1 = \det \mu$, extending the determinant to stable K vector bundles.

For any integer $r \geq 1$ one may form a cobordism category of manifolds with "$P(K^r)$ structure" as follows:

1) An object consists of:

 a) A compact manifold M with a chosen K vector bundle structure on its stable tangent bundle (equivalently normal bundle; i.e. a (BG, g) manifold, where $G = O$ or U);

 b) A map $f : M \to P(K^r)$; and

 c) An equivalence of $f^*(\xi)$ with the determinant bundle of the K-tangent bundle τ of M (i.e. a bundle isomorphism of K line bundles). Note: For $r = 1$, ξ is the trivial line bundle and the equivalence is a trivialization.

2) A map $\phi : (M', f') \to (M, f)$ is an imbedding ϕ with trivialized normal bundle for which the K tangent bundles are compatible (a (BG, g) map) such that $f' = f \cdot \phi$ with the equivalence given by restriction.

3) The boundary functor assigns to M its boundary with inner normal trivialization to define the induced structure, and the 'inclusion' natural transformation is the inclusion map with inner normal trivialization.
The cobordism semigroup corresponding will be denoted $\mathcal{V}(K,r)$.

Letting M be a (BG,g) manifold with $\iota : M \to BG$ defining the normal structure and letting $\psi : BG \to P(K^\infty)$ be a map with $\psi^*(\lambda) = \det \mathcal{U}$ where λ is the canonical bundle over $P(K^\infty)$ and \mathcal{U} is the universal stable bundle over BG, one has $(\psi \cdot \iota)^*(\xi) = \det r$. Any two maps obtained in this way are homotopic and one has a canonical choice of homotopy defined by the isomorphism of (BG,g) structures for different imbeddings and choice of homotopy for the maps ψ. If $f : M \to P(K^r)$ is any map, an equivalence of $f^*(\xi)$ with $\det r$ may be interpreted as a homotopy of the maps f and $\psi \cdot \iota$. Thus a $"P(K^r)$ structure" on M may be interpreted as a deformation of the canonical map $\psi \cdot \iota$ into $P(K^r)$.

Interpreting a homotopy as a cobordism, it is clear that within cobordisms only the homotopy class of the equivalence matters and also that homotopic maps f give isomorphic families of structures (the isomorphism depending on the choice of homotopy). Further, a structure on M defines by projection a structure on $M \times I$ with the "opposite end" defining an inverse to M.

In order to make this more precise and to determine this cobordism category as a (B,f) theory, one constructs a classifying space as follows. Let $p : BG \times P(K^r) \to P(K^\infty)$ be a map for which $p^*(\lambda) = (\det \mathcal{U}) \otimes \xi$. Let BK^r be the total space of the induced fibration of the sphere $S(K^\infty)$ over the projective space $P(K^\infty)$, giving

$$
\begin{array}{ccc}
BK^r & \xrightarrow{p} & S(K^\infty) \\
\pi \downarrow & & \downarrow \\
BG \times P(K^r) & \xrightarrow{\mathcal{U}} & P(K^\infty)
\end{array}
$$

and let $\theta : BK^r \to BG$ be the composition of π and the projection on 1.
Being given a manifold \((M,f)\) with \(P(K^r)\) structure with \(v : M \to BG\)
the normal map, \(v \times f : M \to BG \times P(K^r)\) pulls \((\det f) \theta \xi\) back to
\((\det v) \theta f^*\xi\) \(\equiv (\det v) \theta (\det f)\) which is trivial. Thus \(v \times f\) lifts to
\(BK(r)\), the choice of lifting being equivalent to the choice of homotopy of
\(p \cdot (v \times f)\) to a point map or to the choice of equivalence of \(f^*(\xi)\) and \(\det f\).

(Note: \(\tau\) is a principal \(G_\lambda\) bundle.)

Conversely if \(\tilde{v} : M \to BK(r)\) is a lifting of the normal map \(v : M \to BG\),
the composition \(f = \pi_2 \cdot \pi_1 \tilde{v}\) where \(\pi_2\) projects on \(P(K^r)\) maps \(M\) into \(P(K^r)\)
with \(\det v \theta f^*(\xi)\) trivialized \((S(K^\infty))\) is the sphere bundle of \(\lambda\) and the
pullback of \(\lambda\) to it is naturally trivialized) and the trivialization may be
interpreted as an equivalence of \(\det f\) and \(f^*(\xi)\).

Letting \(BK_n\) denote the pullback of \(BK(r)\) over \(BG_n\), one has

Theorem: \(\mathcal{U}_n(K,r) \cong \lim_{s \to \infty} \pi_{n+k+s}(TK^r_s,\mu_s)\), where \(k = \dim K\).

The interest in these cobordism theories is primarily that they provide
intermediate levels between the "unoriented" theories \((r = \infty)\) and the
"oriented" theories \((r = 1)\). Briefly, one has:

1) For \(r = \infty\), the space \(BK(r)\) may be identified with \(BG\) by means of
\(BG \xrightarrow{\psi} BG \times P(K^\infty)\) for then \(p \cdot (1 \times \psi)^*(\lambda) = (\det f) \theta (\det \psi)\) which is
trivial. In fact, if \(\dim M = n\) then the classifying map \(\psi \cdot v\) for \(\det f\)
sending \(M\) into \(P(K^\infty)\) may be deformed into the \(n\)-skeleton and the homotopy
given by two different deformations may be pushed into the \((n+1)\)-skeleton
giving a unique \(P(K^r)\) structure provided \((n+1) \leq k(r-1)\). Thus for
\(r \geq (n+1)/k + 1\), \(\mathcal{U}_n(K,r) = \mathcal{U}_n(K,\infty)\) is the "unoriented" cobordism group
\(\mathcal{U}_n\) or \(\Omega^U_n\). This will be denoted \(\Omega^G_n\) in this chapter.

2) For \(r = 1\), a "\(P(K^r)\) structure" on \(M\) is a trivialization of \(\det f\).

If \(\tau\) is represented as an \(n\)-plane bundle with an inner product, each fiber
V becomes an n-dimensional inner product space. This extends to an inner product on the graded algebra \(\Lambda(V) = \bigoplus_{k=0}^{\infty} \Lambda^k(V) \) by letting \(\Lambda^j V \) be orthogonal to \(\Lambda^k V \) if \(j \neq k \) and setting

\[
\langle X, Y \rangle = \det |\langle x_i, y_j \rangle|.
\]

if \(X = x_1 \cdots x_s \), \(Y = y_1 \cdots y_s \). Giving the exterior power bundles these inner products, a trivialization of \(\text{det} \tau \) may be thought of as choosing (continuously) a unit vector in the n-th exterior power of each fiber. Thus, the structure group of \(\tau \) is reduced to those linear transformations of \(V \) fixing a unit vector in \(\Lambda^n(V) \). If \(T : V \to V \), the induced transformation on \(\Lambda^n(V) \) is multiplication by the determinant of \(T \), and the transformations of determinant one are the special orthogonal or special unitary groups.

Note: The groups \(\mathcal{W}_a(K,1) \) will be denoted \(\Omega_a \), and the space \(EK(1) \) is denoted \(ESG \). Although the main reason for interest in the \(\mathcal{W}_a(K,r) \) is the calculation of the \(r = 1 \) case, there will be few results in this chapter directly concerned with that calculation.

3) The first analysis of the groups \(\mathcal{W}_a(K,r) \) for \(r \neq 1, \infty \) was by Wall [130] for the case \(K = \mathbb{R} \). Making use of the case \(r = 2 \), which may be thought of as "\(q_1 \) - spherical" cobordism, he exploited the various interrelationships to determine the 2 primary structure of \(\Omega_a \). Additional material may be found in Atiyah [131] and Wall [133]. The complex case was studied by Conner and Floyd [39] patterned closely on the work of Wall (but using the methods of Atiyah). It has been noted by Novikov in conjunction with his study of the Adams spectral sequence with "unoriented" cobordism coefficients (Novikov [96]) that the \(\mathcal{W}_a(K,2) \) arise naturally in the calculation of the "oriented" theories.
The relationship of "\(P(K^2)\)" theory and "\(\sigma_1\) - spherical" theory may be seen as follows.

If \(Z_K\) denotes \(Z_2\) for \(K = R\) or \(Z\) for \(K = \mathbb{C}\) then the first characteristic class \(\sigma_1(M) = \sigma_1(\tau) \in H^1(M; Z_K)\) coincides with the characteristic class \(\sigma_1(\text{det}\tau)\). (To see this one has \(\sigma_1(\rho) = \sigma_1(\text{det}\rho)\) if \(\rho\) is a line bundle and as mentioned in discussing \(R_{m,n}\) in Chapter V, \(\sigma_1(a \otimes b) = \sigma_1(a) + \sigma_1(b)\) if \(a, b\) are line bundles, so that applying the splitting principle and induction establishes \(\sigma_1(\tau) = \sigma_1(\text{det}\tau)\) for general bundles).

Since \(P(K^2) = S^k\) with \(\sigma_1(\xi) = i \in H^k(S^1; Z_K)\) one has for an object \((M, \varphi)\) with "\(P(K^2)\)" structure a map \(f : M \rightarrow S^k\) with \(f^*(i) = \sigma_1(M)\). Thus \(\sigma_1(M)\) is spherical. Conversely, being given a manifold \(M\) for which \(\sigma_1(M)\) is spherical there is a map \(f : M \rightarrow P(K^2)\) with \(f^*(i) = \sigma_1(M)\). Since \(P(K^\infty) = K(Z_K, \mathbb{K}) = B\mathbb{G}_1\), equivalence classes of \(K\) line bundles are determined by the first \(Z_K\)-characteristic class. Hence there is an equivalence of \(f^*(\xi)\) and \(\text{det}\tau\).

4) The general case \(r > 2\) is not of special interest. Results in the real case have been obtained by J. B. Minkus and by C. T. C. Wall, but nothing appears in the literature. The use of the Atiyah bordism approach makes the computation an exercise.

Semi-geometric methods: \(W_w(K, 2)\)

Let \((X, A)\) be any pair, and define a homomorphism \(\phi : n^0_w(X, A) \rightarrow W_w(K, 2)(X, A)\) as follows. If \(a \in n^0_w(X, A)\) choose a map \(g : (M, \partial M) \rightarrow (Y, A)\) representing \(a\) and let \(\psi \cdot v : M \rightarrow P(K)\) be the map inducing \(\text{det}\tau\). By compactness of \(M\), there is an integer \(Q\) such that \(\psi \cdot v(M) \subset P(K)\). Let \(\beta : P(K) \times P(K^2) \rightarrow P(K^n)\) be the usual imbedding
(N = 2Q, given in local coordinates by \(u_{ij} = x_i y_j \)) so that

\[\theta = \theta^\cdot (\psi \cdot x \cdot 1) : M \times P(K^2) \rightarrow P(K^N) \text{ classifies } \det \theta \psi ; \text{ i.e.} \]

\[\theta^\cdot(\xi) = \det \theta \xi. \text{ By means of a homotopy } \theta \text{ may be deformed so that} \]

\(\theta|\partial M \times P(K^2) \) is transverse regular on \(P(K^{N-1}) \), and then to make \(\theta \) transverse regular on \(P(K^{N-1}) \) keeping \(\partial M \times P(K^2) \) fixed. Then

\[\theta^{-1}(P(K^{N-1})) = L \subset M \times P(K^2) \text{ with } \partial L = L \cap (\partial M \times P(K^2)). \]

The tangent bundle of \(L \) is isomorphic to the pullback of \(\tau_M \otimes \tau_{P(K^2)} - \det \tau_M \otimes \xi \), giving an isomorphism \(\det(\tau_L) = \det(\tau_M \otimes \xi^2) \otimes (\det \tau_M)^{-1} \otimes \xi^{-1} = \xi \). Thus the composite

\[f : L \rightarrow M \times P(K^2) \rightarrow P(K^2) \text{ defines a "P(K^2)" structure on } L. \]

The composition \(\phi : (L, \partial L) \rightarrow (M \times P(K^2), \partial M \times P(K^2)) \rightarrow (M, \partial M) \rightarrow (X, A) \) then gives \((L, f, \phi)\), which is an \(\mathcal{W}_*(K, 2) \)-bordism element of \((X, A)\). That defines a homomorphism \(\phi : \mathcal{W}_*(X, A) \rightarrow \mathcal{W}_*(K, 2)(X, A) \) is an easy consequence of transversality (think of different homotopies as cobordisms and for a cobordism \(G : (V, U) \rightarrow (X, A) \) with \(\partial V = M \cup (-M') \cup U \), first apply transversality on \(U \times P(K^2) \) keeping the boundary fixed, and then keeping \(\partial V \times P(K^2) \) fixed make the map transverse regular on all of \(V \times P(K^2) \).

Lemma: Let \(f : M \rightarrow P(K^2) \) be a differentiable map. Then \(f \times 1 : M \times P(K^2) \rightarrow P(K^2) \times P(K^2) \) is transverse regular on

\[H_{1,1} = \{(x, y) \in P(K^2) \times P(K^2) \mid x_0 y_0 + x_1 y_1 = 0 \}. \]

Proof: Let \(\mu : P(K^2) \rightarrow P(K^2) : (y_0, y_1) \rightarrow (-y_1, y_0) \). Then \(\mu \) is differentiable involution \((\mu^2 = 1) \). Then \(f \times 1 \) is transverse regular on \(H_{1,1} \) if and only if \((1 \times \mu) \cdot (f \times 1) \) is transverse regular on \((1 \times \mu)(H_{1,1}) = \{(x, y) \in P(K^2) \times P(K^2) \mid x_0 y_1 = x_1 y_0 \} \) which is the diagonal \(\Delta \) in \(P(K^2) \times P(K^2) \). This is the case if and only if \((1 \times \mu) \cdot (f \times 1) \cdot (1_{P(K^2)} \times \mu) \) is transverse regular on \(\Delta \), and so it suffices to prove \(f \times 1 \) is transverse regular on \(\Delta \). Write

\[\tau_{M \times P(K^2)}(m, x) = \tau_M^m \otimes \tau_P^x \]

for \((f \times 1)(m, x) \in \Delta \), \((f \times 1)_* \) maps...
(0 \times (\tau_P(K^2)_x) \text{ onto } 0 \times (\tau_P(K^2)_x) \subset (\tau_P(K^2)_x) \# (\tau_P(K^2)_x) \text{ which is transverse to } (\tau_{\Delta}(x,x)). \text{ Thus } f \times 1 \text{ is transverse to } \Delta, \text{ completing the proof. **}

(I am indebted to W. Browder for the above proof, which considerably simplifies my own proof.)

One then has:

Proposition: The composition

$$\mathcal{W}_*(K,2)(X,A) \xrightarrow{F_*} \mathcal{C}_*(X,A) \xrightarrow{\theta} \mathcal{W}_*(K,2)(X,A)$$

is the identity, where F_* is the homomorphism induced by the forgetful functor which ignores "$P(K^2)$" structure.

Proof: Let $((M,f),\phi)$ represent a class in $\mathcal{W}_*(K,2)(X,A)$ with $f : M \to P(K^2)$ a differentiable map having $f^*(\xi) = \text{detr}$, and $\phi : (M,\mathcal{M}) \to (X,A)$. Let $\theta : M \times P(K^2) \to P(K^2)$ be the composite

$$M \times P(K^2) \xrightarrow{f \times 1} P(K^2) \times P(K^2) \xrightarrow{\beta} P(K^2),$$

where $\beta((x_0,x_1),(y_0,y_1)) = (x_0y_0,x_0y_1,x_1y_0,x_1y_1)$. Then $\theta^*(\xi) = \text{detr} \theta \xi$. Further, θ is transverse regular on the subspace $P(K^2)$ given by $u_0 + u_3 = 0$, with preimage $H_{1,1}$ and $f \times 1$ is transverse regular on $H_{1,1}$ by the lemma, so that θ (and its restriction to $\mathcal{M} \times P(K^2)$) is transverse regular on $P(K^3)$.

Then $L = \theta^{-1}(P(K^3)) = \{(m,\mu f(m)) | m \in M\}$ with the composite

$v : L \to M \times P(K^2) \to M$ a diffeomorphism. The map

$f' : L \to M \times P(K^2) \to P(K^2)$ may be considered as $uf : M \to P(K^2)$ and since μ is induced by $K^2 \to K^2 : (a,b) \to (-b,a)$ which is a rotation
through 90°, \(\mu \) is easily homotoped to the identity, with a chosen isomorphism of \(\xi \) and \(\mu^* \xi \). The tangent bundle of \(L \) is the pullback of
\[
\tau^p_\mathcal{M} \otimes \tau^p_\mathcal{P}(K^2) - \det \tau_\mathcal{M} \otimes \xi \quad \text{and} \quad \tau^p_\mathcal{P}(K^2) \otimes 1 \cong \xi \otimes \xi \quad \text{or equivalently}
\]
\[
\tau^p_\mathcal{P}(K^2) \cong \xi \otimes \xi, \quad \text{while} \quad \det \tau_\mathcal{M} \cong \xi, \quad \text{so that} \quad \tau_\mathcal{L} \cong \tau_\mathcal{L}.
\]

Thus with only "universal identifications" \(((L,f'), \phi', \psi')\) coincides with \(((M,f), \phi), \text{ and } \Phi_{\mathcal{L}} = 1. \quad \star\star\]

Corollary: \(\mathcal{W}_\mathcal{L}(X,2)(X,A) \) is a direct summand of \(\Omega^\mathcal{L}_\mathcal{L}(X,A) \) for every pair \((X,A)\).

Remark: From this one has: \(\mathcal{W}_\mathcal{L}(X,2)(X,A) \) is isomorphic (via \(F_\mathcal{L} \)) to the subset of \(\Omega^\mathcal{L}_\mathcal{L}(X,A) \) consisting of those classes which are represented by manifold-map \((M,g)\) for which \(g_\mathcal{L}(M) \) is spherical. This is Wall's original definition [430], having eliminated dependence on the choice of map to \(\mathcal{P}(K^2) \) and bundle equivalence.

Proposition: For any pair \((X,A)\) the diagram

\[
\begin{array}{ccc}
\Omega^\mathcal{L}_\mathcal{L}(X,A) & \xrightarrow{\phi} & \mathcal{W}_\mathcal{L}(X,2)(X,A) \\
e & \downarrow & \downarrow e \\
H^\mathcal{L}_\mathcal{L}(X,A; \mathbb{Z}_K) & & \\
\end{array}
\]

commutes. In particular, a \(\mathbb{Z}_K \) homology class is representable by a manifold with "\(\mathcal{P}(K^2) \)" structure if and only if it is representable by an "unoriented" manifold.

Proof: It suffices to show that for every \(M \), the map

\[
v : L \to M \times \mathcal{P}(K^2) \xrightarrow{\iota} M \text{ has } v_\mathcal{L}[L, \partial L] = [M, \partial M]. \quad \text{This is basically a consequence of Poincaré-Lefschetz duality. Letting } n = \dim M = \dim L,
\]

\(H^n(M, \partial M; \mathbb{Z}_K) \) is a free \(\mathbb{Z}_K \) module (by duality) and hence is isomorphic to
\[\text{Hom}(K_n(M, 3M; \mathbb{Z}_p), \mathbb{Z}_p) \] (universal coefficient theorem) and thus it suffices to show \(v^*(x)[L, 3L] = x[M, 3M] \) for all \(x \in H^n(M, 3M; \mathbb{Z}_p) \). Then

\[
v^*(x)[L, 3L] = v^*(x) \cdot (v^*\alpha_1(M) + v^*\beta)[M \times P(2^2), 3M \times P(2^2)],
\]

\[
= v^*(x) \cdot v^*\beta[\mathbb{A} \times P(2^2)] \]

since \(x \cdot \alpha_1(M) \) has dimension greater than that of \(M \), but this is then equal to

\[
x[M, 3M] \cdot v[\mathbb{A}] = x[M, 3M].
\]

In order to determine \(\mathcal{W}_n(K, 2)(X, A) \), it is standard to use an exact sequence of Atiyah [13] (the proof here being due to Wall [43]). For this one needs to generalize the notion of submanifold dual to a line bundle.

Let \(M^2 \) be a compact \((BG, \rho)\) manifold and \(\sigma \) a \(K \)-line bundle over \(M \). Let \(h : M \to P(K^3) \) with \(h^*(\xi) \equiv \sigma \), and by compactness, \(h : M \to P(K^3) \) for some large \(S \). One may then deform \(h|\partial M \) to be transverse regular to \(P(K^{S-2}) \) and keeping the map fixed on \(\partial M \) continue this deformation to make the map \(h \) transverse regular on \(P(K^{S-2}) \). Then \(h^{-1}(P(K^{S-2})) = N \) is a submanifold of \(M \) of codimension \(s \cdot k \) with normal bundle in \(M \) isomorphic to \(s \cdot \sigma \) (as real vector bundles). For any \(0 \leq t \leq s \) one may give this normal bundle the \(K \) vector bundle structure given by \(t \cdot \sigma + (s-t) \cdot \sigma \), and this gives \(N \) a \((BG, \rho)\) structure.

\(N \) is known as "the" submanifold dual to \(t \sigma + (s-t) \sigma \). The manifold \(N \) is of course not unique, but is well defined up to choice of various homotopies used in making \(h \) transverse regular. Two such transverse regular maps being homotopic, one may make the homotopy \(H : M \times I \to P(K^3) \) transverse regular, keeping ends fixed to define a \((BG, \rho)\) submanifold \(V \) of \(M \times I \). The map
\(V \xrightarrow{\pi} M \times I \xrightarrow{\eta} M \) gives a \((BG, \rho)\) bordism of the two representatives. Thus the class of \(N \) in \(\Omega^G_*(M, \partial M) \) is well-defined.

Proposition: There is a homomorphism

\[
d : \Omega^G_*(X, A) \rightarrow \Omega^G_*(X, A)
\]

of degree \(-2k\) which sends the class of \(f : (M, \partial M) \rightarrow (X, A) \) into the class of the composite

\[
\tilde{f} : (N, \partial N) \xrightarrow{i} (M, \partial M) \xrightarrow{f} (X, A)
\]

where \(N \) is the submanifold dual to \(\det \gamma_M \otimes \overline{\det \gamma_M} \). Further, the sequence

\[
0 \rightarrow \mathcal{W}_* (K, 2)(X, A) \xrightarrow{F_*} \Omega^G_*(X, A) \xrightarrow{d} \Omega^G_*(X, A) \rightarrow 0
\]

is exact.

Proof: One first needs to see that \(d \) is well defined, but if \(H : W \rightarrow 3W = M \cup T \cup (-M') \) and \(H|_M = f, H|_{M'} = f', H(T) \subset A, 3T = 3M \cup (-3M') \) then \(\det \gamma_W \) restricts to \(\det \gamma_M \) on \(M \) and \(\det \gamma_{M'} \) on \(M' \). Thus a submanifold of \(W \) dual to \(\det \gamma_W \otimes \overline{\det \gamma_W} \) gives a cobordism of the representatives defined by \(M \) and \(M' \).

Since the construction may be performed separately in each summand of a disjoint union, \(d \) is clearly a homomorphism.

To prove exactness of the sequence one has:

1) \(F_* \) is monic by the previous results.

2) \(d \cdot F_* = 0 \), for if \(f : (M, \partial M) \rightarrow (X, A) \) and \(\det \gamma_M \) is induced by a map into \(P(K^2) \), then \((N, \partial N)\) is the preimage of \(P(K^0) \) which is empty.

3) If \(d(\alpha) = 0 \), \(\alpha \) being represented by \(f : (M, \partial M) \rightarrow (X, A) \), let \(h : M \rightarrow P(K^2) \), \(s \) large, with \(h^s(t) \not\in \det \gamma_M = \mu \) be made transverse regu...
on $P(K^{s-2})$ with inverse image N dual to $\mu \oplus \bar{\mu}$, and also on $P(K^{s-1})$ with inverse image L dual to μ. [First make it transverse regular on $P(K^{s-2})$ giving N as inverse image. A neighborhood T of N is then mapped by a bundle map into a neighborhood S of $P(K^{s-2})$. By a deformation of h on $M-T$ one may push $M-T$ out of interior(S). Since $h_{|T}$ is transverse regular on $P(K^{s-1})$ one may make a small homotopy of h fixed on T to get h transverse regular on $P(K^{s-1})$ and by a proper choice of "small" assure that $h(M-T)$ does not intersect $P(K^{s-2})$].

Since $\delta(0) = 0$, $\tilde{F} : (N, \partial N) \rightarrow (X, A)$ bounds and there is a map $\tilde{F} : \tilde{N} \rightarrow X$, \tilde{N} a (B_ε, ρ) manifold, $\partial \tilde{N} = N \cup \partial N \cup \partial P$, $\tilde{F}_{|N} = \tilde{F}$, $\tilde{F}(P) \subseteq A$.

The normal bundle of N in L is $\text{det}_{\partial N}^{\delta_{\partial N}, N}$, but

$$\text{det}_{\partial N} \oplus \text{det} = (\text{det}_{\partial N}^{\delta_{\partial N}, N})_{|N},$$

where $\nu = \mu \oplus \bar{\mu}$ is the normal bundle of N in M. $\text{det} = \text{det} \oplus \text{det} \bar{\mu} = \mu \oplus \bar{\mu}$ is trivial so the normal bundle of N in L is $\text{det}_{\partial N}^{\delta_{\partial N}, N}$.

Let U be the manifold formed from $L \times I$ and D, the disc bundle of $\text{det}_{\partial N}^{\delta_{\partial N}, N}$, by identifying the part of D over N with a tubular neighborhood of $N \times 1$ in $L \times 1$. Let $U' \subseteq U$ be the subset $L \times I \cup \tilde{N}$, where \tilde{N} is the zero section of D.

Since N has a neighborhood of the form $N \times [1,2)$ in \tilde{N}, there is a strong deformation retraction of U onto U' projecting D onto \tilde{N} over $N - N \times [1,2)$ and collapsing $D|_{N \times [1,2)}$ onto $D|_{N \times 1} \cup N \times [1,2)$ by pushing
out radially from the sphere bundle of $2D_{N \times 2}$.

The tangent bundle of D is the pullback from N of $\tau_N \otimes \det r_N$ (If $p : X \to Y$ is a differentiable vector bundle, $\tau_X \cong p^*X \otimes p^*Y$, p^*X being the bundle along the fibers = kernel of the differential, and its orthogonal complement in some metric being identifiable under the differential with p^*Y). Thus U admits a (BG, ρ) structure coinciding with that of $L \times I$ and D (agreeing on $D_{N \times 1}$). Further $f \cdot \nu : L \times I \to X$ and $\tilde{F} : N \to X$ agree on $N \times I$ and so define a map $U' \to X$. Composition with the retraction gives a map $\tilde{F} : U \to X$ extending the map on U'.

The boundary of U has three pieces: $L \times 0$, $2L \times I \cup D_{L}'$, and $L \times 1 - (\text{nbhd of } N) \times 1 \cup (\text{sphere bundle of } D) = L'$

and $2L \times I \cup D_{L}'$ maps into A, giving a cobordism of $f|_{L'}$ with $\tilde{F}|_{L'}$.

Since s is large, one may assume that $\det r_N$ is induced by a map of D into $P(\mathbb{R}^{s-2})$ agreeing on N with $h|_N$, and hence this extends to a bundle map $D \to P(\mathbb{R}^{s-1})$ sending D to a tubular neighborhood of $P(\mathbb{R}^{s-2})$ and
agree with $h'x^L : L \times I \rightarrow P(K^{s-1})$ where both are defined. This gives a map $\tilde{h} : U \rightarrow P(K^{s-1})$ which is transverse regular on $P(K^{s-2})$ (with inverse image $\tilde{h}(U \times I)$). Let $\tilde{\mu}$ denote the bundle over U induced from ξ by \tilde{h}.

Thus $f \times h : (L, N) \rightarrow (X \times P(K^{s-1}), A \times P(K^{s-1}))$ is (BG, ρ) cobordant to the map $\tilde{f} \times \tilde{h} : (L', N') \rightarrow (X \times P(K^{s-1}), A \times P(K^{s-1}))$ and the line bundle $\tilde{\mu}$ over L' induced by that over $P(K^{s-1})$ is trivial ($\xi|_{P(K^{s-1})-P(K^{s-2})}$ is trivial).

Now the normal bundle of L in M is $\det_{M|L} \cong \mu_L$ and one may attach the disc bundle E of $\tilde{\mu}$ to $M \times [-1,0]$ by identifying $E|_{L \times 0}$ to a tubular neighborhood of $L \times 0$ in $M \times 0$ to form a manifold W.

As before, W retracts to $M \times [-1,0] \cup U$, where U is the zero section of E; W admits a (BG, ρ) structure given by that of $M \times [1,0]$ and E (agreeing on the intersection) and $\tilde{h} : U \rightarrow P(K^{s-1})$ extends to a bundle map of E to a tubular neighborhood of $P(K^{s-1})$ in $F(K^s)$, hence giving a map $h : W \rightarrow P(K^s)$.

The map h is transverse regular on $P(K^{s-1})$ with inverse image $U \cup L \times [-1,0]$, and on $P(K^{s-2})$ with inverse image $\tilde{h} \cup N \times [0,1] \cup N \times [-1,0]$ and the map h classifies $\det_{M|L}$. (This is clear on $M \times [-1,0]$, while on E, $\det_{E} \cong \pi^* \mu \otimes \pi^* \det_{U}$ but on the part of U over \tilde{h} one has $\det_{U} = p^* \det_{\tilde{h}} \otimes p^* \det_{\tilde{h}}$ - which is trivial, while on $L \times I$ one has $\det_{L} = \det_{L \times I}$ which is trivial since the normal bundle of L in M is $\det_{M|L}$ and hence $\det_{L|L} \otimes \det_{M|L} = \det_{M|L}$ on L.)

Thus one has a cobordism of $f : (N, \partial N) \rightarrow (X, A)$ to $f' : (N', \partial N') \rightarrow (X, A)$ with N' empty and $\det_{M'|L'}$ trivial.

Now let $h' : M' \rightarrow P(K^s)$ be transverse regular on $P(K^{s-1})$ with preimage L' and $h'|_{L'}(x)' \rightarrow P(K^{s-1})$ trivial. Since $P(K^s) = T(\xi)$ and $T(\xi)|_{P(K^{s-1})}$ contractible one may homotope h' to coincide with the map $M' \overset{\xi}{\rightarrow} T_N'$ to T_k'.\end{proof}
where \(\nu' \) is the normal bundle of \(L' \) in \(M' \) and \(h'' : L' \to P(K^{k-1}) \) classifies \(h''(\xi) \mid_{L'} \). Since this bundle is trivial, \(h'' \) may be deformed to a point map, so \(h' \) is homotopic to a map into the Thom space of a point, i.e., a \(k \) sphere.

Thus the class of \(f : (M, \partial M) \to (X, A) \) is in the image of \(F_\# \).

4) Finally, \(d \) is epic.

To begin, one considers a differentiable \(K \) vector bundle \(\xi \) over a manifold \(M \). \(p : P(\xi) \to M \) is then a differentiable bundle and
\[
\Gamma_p(\xi) \cong p^*T_M \oplus \theta
\]
where \(\theta = \text{kernel}(p^\#) \) is the bundle tangent to the fibers.

The bundle \(\theta \) is the quotient of the bundle tangent to the fibers of \(S(\xi) \) by the action of \(S^{k-1} \) or
\[
((x, y) \in S(\xi) \times E(\xi) | p(x) = p(y); \frac{x - y}{(x, y)} = (tx, ty)).
\]

If \(\lambda \) is the canonical line bundle over \(P(\xi) \), \(E(\lambda) \) may be identified with pairs \((x, s) \in S(\xi) \times K \) representing \(sx \) in the line \([x]\) where \((x, s) - (tx, st) \), and \(E(\lambda) \) is pairs \((x, s) \in S(\xi) \times K \) with \((x, s) - (tx, ts)[(x, s) \to (x, \bar{s}) \text{ is a conjugate linear isomorphism}]. \)

Then \(E(\lambda \otimes p^\# \xi) \) is pairs \(\{(x, s), y \in E(\lambda) \times E(\xi) \mid p(x) = p(y) \} \) and \(\{(x, ts), y \} - \{(x, s), ty \} \) or equivalently pairs \((x, y) \in S(\xi) \times E(\xi) \) with \((tx, ty) - (x, y) \) via \(\{(x, s), y \to (x, sy) \}. \) Thus \(\theta \otimes \lambda = \lambda \otimes p^\# \xi \).

\(\theta \) is the orthogonal complement of the section \(x \to (x, x) \).

Now suppose \(\xi = \xi' \otimes 1 \), and then \(P(\xi') \subset P(\xi) \) with normal bundle given by \(\lambda \), since \(\theta \otimes 1 = \lambda \otimes p^\# (\xi') = \lambda \otimes p^\# (\xi') \otimes \lambda \otimes 1 \). \(P(\xi') \) is the quotient of \(S(\xi') \subset S(\xi) \subset E(\xi') \times K \), and the complement of a tubular neighborhood of \(P(\xi') \) is the quotient of \((E(\xi') \times S^{k-1}) \cap S(\xi) \), which is the image of \(M \times 1 \). Over this subspace \(\lambda \) has a section, given by
\[
m \to [(0, 1)] \]. Thus \(\lambda \) is induced from the Thom space of the normal bundle.
$P(\xi')$. Finally then $P(\xi')$ is the submanifold of $P(\xi)$ dual to λ (or λ, depending on choice of structure).

Now let $f : (M, 3M) \to (X,A)$ be any map and let $\mu = \det_{M}$ (with τ_{M} the stable K tangent bundle) and $U = P(\mu \oplus 2)$, $V = P(\mu \oplus 1)$, $W = P(\mu)$ with projections $\pi : U \to M$, $\pi' : V \to M$, $\pi'' : W \to M$. Let τ_{U} be given the stable K vector bundle structure of $\pi^{*}\tau_{M} \oplus \lambda \oplus \pi^{*}(\overline{\mu}) \oplus \lambda \oplus \lambda$ (isomorphic as real bundles with $\pi^{*}\tau_{M} \oplus \lambda \oplus \pi^{*}(\overline{\mu}) \oplus \lambda \oplus \lambda$), and τ_{V} as $\pi^{*}\tau_{M} \oplus \lambda \oplus \pi^{*}(\overline{\mu}) \oplus \lambda$, τ_{W} as $\pi^{*}\tau_{M} \oplus \lambda \oplus \pi^{*}(\overline{\mu})$.

Then $f \cdot \pi : (U, 3U) \to (X,A)$ with $d([U, f \cdot \pi])$ represented by $f \cdot \pi'' : (W, 3W) \to (X,A)$, since \det_{U} is $\pi^{*}\mu \oplus \lambda \oplus \pi^{*}(\overline{\mu}) \oplus \lambda \oplus \lambda = \lambda$. Now $\pi'' : W \to M$ is a diffeomorphism and $\pi''^{*}\mu = \lambda$, so $\lambda \oplus \pi''^{*}(\overline{\mu}) = 1$ and π'' is an isomorphism of (BG, ρ) manifolds.

This determines $\mathcal{W}_{\omega}(K, 2)(X,A)$ as the kernel of the homomorphism d. In particular, if $f : (M, 3M) \to (X,A)$ represents a class in $\Omega_{\omega}(X,A)$ with $(N, 3N)$ dual to $\det_{M} \oplus (\overline{\det_{M}})$, then in Z_{K} cohomology, the characteristic class of N is

$$\sigma(N) = \sigma(M)/(1 - \sigma_{1}^{2}(M))$$

and $(N, 3N)$ is dual to $\sigma_{1}(M)^{2}$. For $x \in H^{*}(X,A; Z_{K})$, $\{x \cdot \sigma_{\omega}(N)\}[N, 3N] = \{P_{\omega}(\sigma_{1}(M)) \cdot \sigma_{1}(M)^{2} \cdot x\}[M, 3M]$ where P_{ω} is some integral polynomial and $P_{\omega}(\sigma_{1}(M)) = \sigma_{\omega}(M)$ plus terms with $\sigma_{1}(M)$ as a factor. Thus all characteristic numbers of $((N, 3N), f)$ are zero if and only if all characteristic numbers of $((M, 3M), f)$ with a factor $\sigma_{1}(M)^{2}$ are zero. [Use induction on the number of σ_{1} factors in σ_{ω}]. Hence if Z_{K}-characteristic numbers determine bordism class in (X,A) one can characterize $\mathcal{W}_{\omega}(K, 2)(X,A)$ in terms of numbers.
More generally, let $\mathcal{W}_1(K,r)(X,A) \subset \mathcal{W}_2(x,A)$ denote the set of cobordism classes $[M,g]$ for which all generalized Z_K characteristic numbers

$$\sigma_{\omega}(\tau_M) \cup g^*(x)[M,\mathbb{Z}],$$

$x \in H^*(X,A;Z_K)$, which have a factor σ_{ω}^2 are zero. Since $\sigma_{\omega}^2(\xi)^F = 0$ in $P(K^2)$ one has $F_*[\mathcal{W}_1(K,r)(X,A)] \subset \mathcal{W}_2(K,r)(X,A)$. One then has:

Proposition: If $x \in \mathcal{W}_2(K,2)(X,A)$ then $\varphi(\alpha)$ and α have the same generalized Z_K characteristic numbers. In particular, if $H_*(X,A;Z_K)$ is a free Z_K module, then $\mathcal{W}_2(K,2)(X,A)$ is equal to $F_*\mathcal{W}_2(K,2)(X,A)$.

Remarks:
1) The difficulty lies entirely in the case $K = \mathbb{Z}$, where Z characteristic numbers do not determine bordism class for spaces with torsion.
2) That the following proof was valid in the complex case was pointed to me by Wall. This proof was used in Stong [118].

Proof: Let $f : (M,\partial M) \to (X,A)$ with $\{c^2, c_{\omega}^2, f^*(x)\}[M,\mathbb{Z}] = 0$ for all $x \in H^*(X,A;Z)$ and $M' \subset M \times P(K^2)$ dual to $c_{\omega}(M) + \bar{\alpha}$, with $\bar{\alpha} \in H^*(P(K^2))$, the usual generator, $\bar{\alpha}[P(K^2)] = 1$, and let

$$g : M' \hookrightarrow M \times P(K^2) \xrightarrow{\pi_1} M \xrightarrow{f} X.$$

Then $\sigma(M') = \sigma(M)(1 + \bar{\alpha})^2/(1 + \bar{\alpha} + \sigma_1(M))$ while $g^*(x) = f^*(x)$ Θ $1 = f^*(x)$, dropping useless Θ's and restrictions.

Now $\bar{\alpha}^2 = 0$ and mod σ_{ω}^2 one has

$$(1 + \bar{\alpha})^2/(1 + \bar{\alpha} + \sigma_1) = (1 + 2\bar{\alpha})(1 - \bar{\alpha} - \sigma_1 + 2\bar{\alpha}\sigma_1),$$

$$= 1 + (\bar{\alpha} - \sigma_1).$$
Thus $\sigma_1(M') = \sigma_1(M) + (\tilde{a} - \sigma_1)c_1(M) \mod a_1^2$ or
$\sigma_2(M') = \sigma_2(M) + (\tilde{a} - \sigma_1)u_\omega + a_1^2 v_\omega$ where u_ω, v_ω are polynomials in \tilde{a} and the $\sigma_i(M)$. Then

$$\{\sigma_\omega \cdot g^*(x)[M', 3M']\} = \{\sigma_\omega (\tilde{a} + \sigma_1)f^*(x) + (\tilde{a} - \sigma_1)u_\omega f^*(x) + a_1^2 (\tilde{a} + \sigma_1)v_\omega f^*(x)\}.$$

$$\cdot [M, 3M] \times [P(K^2)]$$

and deleting numbers with σ_1^2, which are zero, this is

$$\{\sigma_\omega \cdot f^*(x)(\tilde{a} + \sigma_1)[M, 3M] \times [P(K^2)].$$

Since $\{\sigma_\omega \cdot f^*(x)\} \Theta 1$ evaluates to zero, this is

$$\{\sigma_\omega \cdot f^*(x)) [M, 3M] - [P(K^2)] = \{\sigma_\omega \cdot f^*(x)) [M, 3M]$$

so that $((M, 3M), f)$ and $((M', 3M'), g)$ have the same characteristic numbers. **

In order to compute $W_*(X, 2)$, it is convenient to give this group an algebraic structure. For $K = R$, this is very easy since $P(R^2) = S^1$ is an abelian group. Letting $m : S^1 \times S^1 \to S^1 : (z, w) \mapsto z \cdot w$, be multiplication of complex numbers of norm 1, $m^* \xi$ is a line bundle restricting to ξ on $S^1 \times 1$ and $1 \times S^1$ so $m^* \xi = \pi_1^* \xi \Theta \pi_2^* \xi$. Thus if $f : M \to S^1$, $g : M' \to S^1$

pull ξ back to det_M and $det M'$, then $\tau_{M \times M'} \Theta \tau_M \Theta \tau_{M'}$, so

$$M \times M' \xrightarrow{f \times g} S^1 \times S^1 \xrightarrow{m} S^1$$

realizes $det(\tau_{M \times M'})$. This gives immediately:

Proposition: $W_*(R, 2)(X, A)$ is a free $W_*(R, 2)$ module isomorphic to $H_*(X, A; Z_2) \Theta W_*(R, 2)$ and $W_*(R, 2)$ is a Z_2 subalgebra of T_ω.

Proof: From the multiplication on \(S^1, W_*(R,2)(X,A) \) is a \(W_*(R,2) \)
module and since generators of \(H_*(X,A;\mathbb{Z}_2) \) may be taken to be images of
\(W_*(R,2)(X,A) \) classes, a dimension count using the Atiyah sequence of \((X,A) \),
and a point suffices to give the free module structure. **

For \(K = \mathbb{C} \), \(W_*(K,2) \) is not a subring of \(\Omega_*^G \); for \(P(\mathbb{C}^2) \) has \(c_1 \)
spherical (by a map of degree 2 of \(S^2 \) into itself) while \(c_1^2[\mathbb{C}^2 \times P(\mathbb{C}^2)] \)
\((2\alpha_1 + 2\alpha_2)[P(\mathbb{F}^2) \times P(\mathbb{C}^2)] = 8 \neq 0 \). Noting that 2 is the only prime dividing
8, it is not surprising that a best possible result is:

Proposition: \(W_*(K,2) \otimes \mathbb{Z}_2 \subset \Omega_*^G \otimes \mathbb{Z}_2 \) is a \(\mathbb{Z}_2 \) subalgebra. In fact, if \(a, b \in W_*(K,2) \) then

\[
\Phi(a \cdot b) = a \cdot b + 2[V^{2k}] \cdot \eta a \cdot \eta b
\]

where \([V^{2k}] = [P(K^2) \times P(K^2)] - [P(K^2)] \), and if \(M \in a \), then \(\eta a \) is
represented by the submanifold of \(M \) dual to \(\det M \).

Proof: Since \(W_*(K,2) \) is a direct summand of \(\Omega_*^G \),
\(W_*(K,2) \otimes \mathbb{Z}_2 \subset \Omega_*^G \otimes \mathbb{Z}_2 \). If \(p, q \in W_*(K,2) \otimes \mathbb{Z}_2 \), represented by \(x, y \in \Omega_*^G \),
then \(x = a + 2u, y = b + 2v \), with \(a, b \in W_*(K,2) \), \(u, v \in \Omega_*^G \). Then
\(p \cdot q \in \Omega_*^G \otimes \mathbb{Z}_2 \) is represented by \(a \cdot b \) or \(\Phi(a \cdot b) \in W_*(K,2) \) from the formula.
Thus it suffices to prove the formula for \(\Phi(a \cdot b) \).

To prove the formula, note that \(P(K^\infty) \) has \(H_*^K \) homology a free \(H_*^K \) module
and hence \(\Omega_*^G(P(K^\infty)) \) is a free \(\Omega_*^G \) module with base given by the inclusion
maps \(i : P(K^r) \hookrightarrow P(K^\infty) \), \(r \geq 1 \). Let \(x_j = (P(K^{j+1}), i) \).

Let \(\Delta : \Omega_*^G(P(K^\infty)) \longrightarrow \Omega_*^G(P(K^\infty)) \) by sending \((M, f)\) to \((N, f \cdot j)\) where
\(j : N \leftarrow M \), \(N \) being dual to \(f^*(\xi) \). \(\Delta \) is clearly an \(\Omega_*^G \) module
homomorphism and \(\Delta x_j = x_{j-1} \) since the normal bundle of \(P(K^j) \) in \(P(K^{j+1}) \)
is \(\xi \).
Let \(\varepsilon : \Omega^G_* (P(K^\infty)) \rightarrow \Omega^G_* : (M, f) \rightarrow [M] \) be the augmentation. Then \(\varepsilon \) is an \(\Omega^G_* \) module homomorphism. Let \(\mu : \Omega^G_* \rightarrow \Omega^G_* (P(K^\infty)) \) by sending \([M]\) into \((M, f)\) where \(f^*(\xi) = \det_M \).

If \(P(K^\infty) \times P(K^\infty) \rightarrow P(K^\infty) \) classifies the tensor product \(\xi \otimes \xi \), one has induced a multiplication in \(\Omega^G_* (P(K^\infty)) \).

Since \(\det_{M \times M} = \det_M \otimes \det_{M^t} \), \(\mu \) is a ring homomorphism with this product.

If \(x \in \mathcal{W}_* (K, 2) \), then \(\mu x \) comes from \(\Omega^G_* (P(K^2)) \) so \(\mu x = \alpha x_0 + \beta x_1 \), \(\alpha, \beta \in \Omega^G_* \). Then \(x = \varepsilon \mu x = \alpha + \beta (\varepsilon x_1) \), and \(\exists x = \varepsilon \Delta \mu x = \varepsilon (\beta x_0) = \beta \varepsilon x_0 = \beta \).

For any \(c \in \Omega^G_* \), \(\phi (c) = \varepsilon \Delta (\mu (c)) x_1 \). Thus if \(a, b \in \mathcal{W}_* (K, 2) \),

\[
\phi(ab) = \varepsilon \Delta (a \beta x_0 + (\alpha \beta' + \beta \alpha') x_1^2 + a' \beta' x_1^3).
\]

Now \(\varepsilon \Delta x_1 = x_1 \) for the submanifold \(H_1 \) of \(P(K^2) \times P(K^2) \) dual to \(\xi \otimes \xi \) is \(P(K^2) \). \([\sigma (H)] = [(1 + x)^2 (1 + y)^2] / (1 + x + y) \) and \(H \) is dual to \(x + y \), so \(\sigma_1 [H] = (x + y)^2 [P(K^2) \times P(K^2)] = 2 = \sigma_1 [P(K^2)] \). Also \(\varepsilon \Delta x_1 = 3 \varepsilon x_1^2 - 2 \varepsilon x_2 \). For if \(H \subset P(K^2) \times P(K^2) \times P(K^2) \) is dual to \(\xi \otimes \xi \otimes \xi \), then

\[
\sigma (H) = (1 + x)^2 (1 + y)^2 (1 + z)^2 = 1 + (x + y + z) + 2(x + y + z)
\]

and \(H \) is dual to \(x + y + z \), so

\[
\sigma_1^2 [H] = \sigma_2 [H] = 2(x + y + z)(x + y + z)[P(K^2) \times P(K^2) \times P(K^2)],
\]

\[
= 6
\]

with

\[
\sigma_1^2 [P(K^3)] = 9, \sigma_2 [P(K^3)] = 3, \sigma_1 [P(K^2)^2] = 8, \sigma_2 [P(K^2)^2] = 4.
\]

Thus

\[
\phi(ab) = a \beta \varepsilon x_0 + (a \beta' + \beta a') \varepsilon x_1 + a' \beta' (3 \varepsilon x_1^2 - 2 \varepsilon x_2),
\]

\[
= (a + a' \varepsilon x_1)(\beta + \beta' \varepsilon x_1) + a' \beta' (2 \varepsilon x_1^2 - 2 \varepsilon x_2),
\]

\[
= ab + 2 [V^{2k}] \beta a \beta b. \]

**
For later use, one also has:

Lemma: If \(a, b \in \mathcal{V}_s(K, 2) \), then

\[
\mathfrak{a}(a \cdot b) = a \cdot \mathfrak{a}b + b \cdot \mathfrak{a}a - [\mathcal{P}(K^2)] \cdot \mathfrak{a}a \cdot \mathfrak{a}b.
\]

Proof: Let \(\mu a = ax_0 + a'x_1 \), \(\mu b = bx_0 + b'x_1 \). Then

\[
\mathfrak{a}(ab) = \varepsilon \Delta \mu(ab) = \varepsilon \Delta (\mu a' \mu b),
\]

\[
= \varepsilon \Delta (a \beta x_0 + (a \beta' + b \alpha')x_1 + a' \beta' x_2),
\]

\[
= (a \beta' + b \alpha') \varepsilon x_0 + a' \beta' \varepsilon x_1,
\]

\[
= (a + \alpha \varepsilon x_1) \beta' + (\beta + \beta' \varepsilon x_1) a' - a' \beta' \varepsilon x_1,
\]

\[
= a \cdot \mathfrak{a}b + b \cdot \mathfrak{a}a - (\varepsilon x_1) \mathfrak{a}a \cdot \mathfrak{a}b. \quad **
\]

Theorem: One may choose generators \(x_i, i \neq 2^s-1 \), of \(\mathcal{N}_s \) and \(b \)

\[
\mathcal{N}_s^{U} \quad \text{so that}
\]

\[
\mathcal{W}_s^U(R, 2) = \mathbb{Z}_2[x_j, (x_2^s)^2 \mid j \neq 2^t, 2^t-1],
\]

and

\[
\mathcal{W}_s^U(c, 2) \otimes \mathbb{Z}_2 = \mathbb{Z}_2[x_j, (b_{2^s+1})^2 + c_{2^s+2} \mid s \geq 0, j \neq 2^{t+1}, t \geq 0]
\]

where \(c_{2^s+2} \) belongs to the ideal in \(\mathcal{N}_s^{U} \) generated by \(b_{2^t-1} \) having a further property that \(b_j \) maps to \(x_j^2 \) in \(\mathcal{N}_s \) if \(j \neq 2^t-1 \), and \(b_{2^t-1} \) maps to zero.

Proof: First, any elements \(b_j \) and \((b_{2^s+1})^2 + c_{2^s+2} \) of the given form generate a polynomial subalgebra of \(\mathcal{N}_s^{U} \otimes \mathbb{Z}_2 \) as is easily verified by finite

by powers of the ideal generated by the \(b_{2^t-1} \). Letting \(Q \) be one of the

polynomial algebras above, \(Q = \mathbb{Z}_2[y_j \mid j \neq 2^s, 2^s-1] \) or \(Q = \mathbb{Z}_2[y_j \mid j \neq 2^s] \)
respectively. Thus \(\mathcal{C}_* \otimes \mathbb{Z}_2 \) has the same rank over \(\mathbb{Z}_2 \) as \(\mathbb{Q}[z] \) where \(\dim z = 2k \). From the exact sequence

\[
0 \rightarrow \mathcal{W}_*(\mathbb{K}, 2) \otimes \mathbb{Z}_2 \rightarrow \mathcal{C}_* \otimes \mathbb{Z}_2 \rightarrow \mathcal{D}_* \otimes \mathbb{Z}_2 \rightarrow 0
\]

it follows that \(\mathbb{Q} \) has the same rank as \(\mathcal{W}_*(\mathbb{K}, 2) \otimes \mathbb{Z}_2 \) (\(\mathcal{D} \) has degree \(-2k \)). Since \(\mathcal{W}_*(\mathbb{K}, 2) \otimes \mathbb{Z}_2 \) is closed under multiplication, it suffices to construct the generators.

Define manifolds \(M_i \) as follows

1) If \(i = 2^t \), let \(M_i = \mathbb{KP}(2^t) \).

2) If \(i \) is odd, not of the form \(2^t - 1 \), let \(i = 2^p(2q+1) - 1 \), \(p, q > 1 \)
and let \(M_i \subset \mathbb{KP}(2^q) \times \mathbb{KP}(2^q+1) \) be dual to \(\sigma_1 = (2^p+1)\bar{a}_1 + (2^q+1)\bar{a}_2 \).

3) If \(i \) is even, not a power of \(2 \), let \(i = 2^p(2q+1) \), \(p, q > 1 \)
and let \(M_i \subset \mathbb{KP}(1) \times \mathbb{KP}(2^p) \times \mathbb{KP}(2^q+1) \) be dual to \(\bar{a}_1 + (2^p+1)\bar{a}_2 + (2^q+1)\bar{a}_3 \).

4) If \(i = 2^t + 1 \), \(t > 1 \), let \(M_1 \subset \mathbb{KP}(2^t) \times \mathbb{KP}(2^t) \) be dual to
\(\sigma_1 = (2^t+1)(\bar{a}_1 + \bar{a}_2) \).

The manifolds \(M_i \) provide acceptable generators for the cobordism ring mod 2 since one has:

1) \(\sigma(M_i) = (1 + \bar{a}_1)2^t + 1 \) so \(s[M_i] = 2^t + 1 \) which is odd for \(t > 0 \) and nonzero mod 4 if \(t = 0 \). Further \(M_i^C \) has \(c_1 = 2\bar{a} \) spherical by a map of degree 2, and \(M_i^C \) bounds in \(T_i^C \).

2) \(\sigma(M_i) = (1 + \bar{a}_1)2^p+1(1 + \bar{a}_2)2^q+1/[1 + (2^p+1)\bar{a}_1 + (2^q+1)\bar{a}_2] \) has
\(\sigma_1 = 0 \), hence spherical and \(s[M_i] = -[(2^p+1)\bar{a}_1 + (2^q+1)\bar{a}_2]^{i+1}[KP] =
- (2^p+1)^2(2^p+1)^i \bar{a}_1^{i+1}[KP] =
(2^p+1)^2(2^q+1)^i \bar{a}_2^{i+1}[KP] \) which is odd.
3) \(\sigma(M_1) = (1+\bar{\alpha}_1)^{2^P+1}(1+\bar{\alpha}_3)^{2^P+1}Q_1^+/[1+\tilde{\alpha}_1+(2^P+1)\tilde{\alpha}_2+(2^P+1)Q_1^+] \)
so \(\sigma_1 = \tilde{\alpha}_1 \) is spherical and \(s[M_1] = -(\bar{\alpha}_1+(2^P+1)\bar{\alpha}_2+(2^P+1)\bar{\alpha}_3)^{1+1}[KP] = -(1+\bar{\alpha}_1)^t((2^P+1)\bar{\alpha}_2+(2^P+1)\bar{\alpha}_3)^{1}[KP] = -(2^P(2^P+1)\bar{\alpha}_2+(2^P+1)\bar{\alpha}_3)^{2^P}[K] \),
\(2^P(2^P+1) \) which is odd.

4) \(\sigma(M_1) = (1+\bar{\alpha}_1)^{2^t+1}(1+\bar{\alpha}_2)^{2^t+1}/(2^t+1)(\tilde{\alpha}_1+\tilde{\alpha}_2) \) has \(\sigma_1 = 0 \), hence spherical and \(s[M_1] = -(2^t+1)^2(2^t+1) \) which is nonzero mod 4. Further, b symmetry in \(\tilde{\alpha}_1, \tilde{\alpha}_2 \), all numbers of \(M_1 \) are even (the dual class \(\tilde{\alpha}_1 + \tilde{\alpha}_2 \) gives equal terms with each summand \(\tilde{\alpha}_1 \)) so \(M_1^C \) and \(M_1^R \) are zero in \(T \).

One may let \(x_1 = [M_1^R] \) for \(i \neq 2^t-1 \) and let \(b_1 \) be a generator reducible to \([M_1^C] \mod 2 \). Then it suffices to show that \((x_2^s)^2 \) and \((b_2)_{2^t+1}^2 + (c_2)_{2^t+2}^2 \) belong to \(\mathcal{W}_{s}(K,2) \otimes \mathbb{Z}_2 \).

Let \(N \subset KP(1) \times KP(2^t+1) \times KP(2^t+1) \), \(t \geq 0 \), be dual to \(\bar{\alpha}_1 + (2^t+1)(\bar{\alpha}_2+\bar{\alpha}_3) \). Then \(\sigma_1(N) = \bar{\alpha}_1 \) is spherical so \([N] \in W_s(K,2) \).

Since \(KP(2^t+1)^2 - CP(2^t+1) \) which has \(\omega_1 = 0 \), \(N^R = \#(KP(2^t+1)^2) \times KP(2^t+1) \).

Since \([N^C] = [N^R]^2 \) in \(T \), \(N^C - CP(2^t+1)^2 \) maps to zero in \(T \) and hence belongs to the ideal generated by \(2 \) and the \(b_2^{2^t-1} \). Thus \([N^C] = [CP(2^t+1)]^2 + [N^C - CP(2^t+1)^2] \) has the desired form. **

Corollary: Under the natural homomorphism \(F_* : \mathcal{W}_s(K,2) \rightarrow \mathcal{T}_s \), the direct summand \(\mathcal{W}_s(0,2) \) maps precisely onto the squares of elements in \(\mathcal{W}_s(R,2) \).

Relation between \(\mathcal{W}_s(K,2) \) and \(\mathcal{W}_s^{SG} \): Semi-geometric methods.

The importance of the groups \(\mathcal{W}_s(K,2) \) is their relationship with the groups \(\mathcal{W}_s^{SG} \). This is expressed in the fashion:
Theorem: For every pair \((X,A)\) there is an exact sequence

\[
\begin{array}{c}
\eta^\text{SO}(X,A) \xrightarrow{t} \eta^\text{SO}(X,A) \\
\downarrow \alpha \downarrow \rho \downarrow \\
\mathcal{W}_*(X,2)(X,A)
\end{array}
\]

in which \(\rho\) considers an oriented \(G\) manifold as a \(\mathcal{W}_*(X,2)\) manifold (degree 0), \(\alpha\) sends \((M,f)\) into \((N,f\cdot j)\) where \(j : N \hookrightarrow M\) is the inclusion of the submanifold dual to \(\det_{N^*}\) and \(\det_{N^*}\) is trivialized via the identification \(\det_{N^*} \otimes \det_{M^*} = \det(\tau^*_N \otimes \nu) = \det_{M^*}\) where \(\nu\) is the normal bundle of \(N\) in \(M\) (degree \(-k\)), and \(t\) is the homomorphism of degree \(k - 1\) obtained by multiplication by a fixed class \([s^{k-1}, \sigma] \in \Omega^*_{\text{SO}}, \sigma\) being an \(\text{SG}\) structure.

Remarks: The first proof of this type theorem was due to Rohlin [104] who showed \(\eta^\text{SO}_* \xrightarrow{2} \eta^\text{SO}_{\text{H}} \xrightarrow{2} \mathcal{W}_*\) was exact. This proof was improved by Dold [43]. Wall [130] proved exactness of \(\eta^\text{SO}_* \xrightarrow{2} \eta^\text{SO}_* \xrightarrow{2} \mathcal{W}_*(\mathbb{R},2)\), with an improved proof in Wall [133]. The bordism analog of Rohlin's result was proved in Conner and Floyd [36] giving exactness of \(\eta^\text{SO}_*(X,A) \xrightarrow{2} \eta^\text{SO}_*(X,A) \xrightarrow{2} \mathcal{W}_*(X,A)\). The exactness of the complex sequence was proved by Conner and Floyd [39] using a modification of a proof due to Atiyah [13] for the real case.

Proof: 1) If \(\beta = 0\). If \(f : (M,3M) \rightarrow (X,A)\) and \(\det_{M^*}\) is trivialized, then \(N\) is empty, so represents zero.

2) If \(\beta = 0\), then let \(f : (M,3M) \rightarrow (X,A)\) represent \(x\). Let \(j : N \hookrightarrow M\) be dual to \(\det_{M^*}\) by making the map \(h : M \rightarrow P(K^2)\) transverse on a point \(P(K^3)\). Thus \(\det_{M^*}|_N\) is trivialized. Letting \(L : U \rightarrow X\) be a
map of an oriented G manifold into X, \(\mathcal{U} = N \cup (-P)/(\partial N \cong \partial P) \), \(L|_N = f^*j \)

$L(P) \subset A$, let V be formed from $M \times I$ and D, where D is the disc bundle of the trivial K line bundle over U, by identifying $D|_M$ with a tubular neighborhood of $N \times 1$ in $M \times 1$. Exactly as before, V has a BG-manifold structure, V maps into X extending $f \cdot \pi_1$ and L by means of a retraction and \det_V is induced by the map into $P(K^2)$ sending $M \times I$ by $h \cdot \pi_1$ and $D = U \times D^k$ by the map into a disc neighborhood of $h(N)$. This gives a cobordism of $f : (M, \partial M) \to (X, A)$ to a map for which N is empty. Since $P(K^2) - pt$ is contractible, this gives a trivialization of the determinant bundle, and so x is represented by an SG manifold.

3) If $\rho y = 0$ with y represented by $f : (M, \partial M) \to (X, A)$ with M oriented, then there is a BG manifold U such that $\partial U = M \cup (-P)/(\partial M \cong \partial P)$ a map $F : U \to X$ extending f and sending P into A, and a map $h : U \to P(K^2)$ with $h^*(\xi) = \det_U$ sending M into a point $q \in P(K^2)$. Define the trivialization of \det_U. Let $u \in P(K^2)$ be some other point and deform h to be transverse regular to u, using a deformation which keeps u fixed. Let $L = h^{-1}(u)$. Then $L \subset U$ is a submanifold with trivialized normal bundle, ∂L being contained in P. Let $L \times D^k$ be a tubular neighborhood of L mapped into the disc D^k with center u (by projection) under h, where $D^k \subset P(K^2)$ does not contain q, and let $W = U - \text{interior}(L \times D^k)$. Since ξ is trivial over $P(K^2) - u$, W has an SG structure given by this trivialization. By a homotopy of F one may assume $F|_{L \times D^k}$ coincides with the composition of projection on L and $F|_L$, since the neighborhood $L \times D^k$ may be deformed into L. Thus $F|_W : W \to X$ gives an SG cobordism from $f : (M, \partial M) \to (X, A)$ to a map $g : (L \times S^{k-1}, \partial L \times S^{k-1}) \to (X, A)$ which factors through the projection onto L. The trivialization of the normal bundle of L in U and of $\det_U|_L$ gives L an SG structure, and each fiber
S^{k-1} is given the SG structure obtained as follows: Let $\phi : I^k \to P(K^2)$ be an imbedding and give S^{k-1} the SG structure obtained by trivializing the stable normal bundle $\phi^*\xi$ by deforming S^{k-1} to a point in $P(K^2) - \phi(0)$. Thus $y = tz$, where z is represented by $F|_L : (L, 3L) \to (X, A)$.

Note: In Wall's proof it is not known that det_U is induced by a map into $P(K^2)$, hence he gets $M \times V$ where V double covers $L = h^{-1}(u)$, $h : U \to P(K^2)$. It is then necessary to show $V \cong U$.

4) $\rho t = 0$ for $\rho'([S^{k-1}, \xi], (M, f)) = \rho'([S^{k-1}, \xi], \rho'(M, f))$ where $\rho' : \Omega^G_*(X, A) \to \Omega^G_*(X, A)$ is reduction, while $[S^{k-1}, \xi]$ bounds in Ω^G_\ast. Thus $\rho'tx = 0$, but the map $\Omega_\ast(K, 2)(X, A) \to \Omega^G_\ast(X, A)$ is monic and hence $\rho'tx = 0$.

5) If $f : (M, \partial M) \to (X, A)$ is a $\Omega_\ast(K, 2)$ map and $h : M \to P(K^2)$ is transverse regular on $P(K^2)$ with $j : N \hookrightarrow M$ the submanifold $h^{-1}(P(K^1))$, let D^k be a neighborhood of $P(K^1)$ and $N \times D^k$ a tubular neighborhood of N mapped by projection onto D^k under h. Deform f so that $f|_{N \times D^k}$ coincides with the composition of projection on N and $f|_N$. Let $W = M - \text{interior}(M \times D^k)$ and then trivialize det_W by deforming $h|_W$ to a point in $P(K^2) - P(K^1)$. Then $(W, f|_W)$ gives a cobordism in $\Omega^G_*(X, A)$ of $[S^{k-1}, \xi], (N, f|_N)$ and the empty map.

6) If $f : (M, \partial M) \to (X, A)$ is an SG bordism element and $f \cdot \pi : [S^{k-1}, \xi], (M, \partial M) \to (X, A)$ represents zero, let $F : U \to X$, $3U = M \times S^{k-1} \cup (-P)$, $F|_{\partial M \times S^{k-1}} = f \cdot \pi$, $F(P) \subseteq A$ be a cobordism to zero.

Beginning with a point map $h : U \to P(K^2)$ (into $P(K^2) - D^k$, D^k a neighborhood of $P(K^1)$) trivializing det_U, one may homotope h in $P(K^2) - D^k$ to coincide with the standard map $M \times S^{k-1} \to S^{k-1} \to S^k$ (using a tubular neighborhood). Let W be formed from U and $M \times D^k$ by joining the copies of $M \times S^{k-1}$ and extend $F : U \to X$ by $f \cdot \pi|_M$ on $M \times D^k$ to define
The usual map $M \times D^k \to D^k$ and H fit together to define a map $h : W \to P(K^2)$ inducing det_{W}. Since $3W = P \cup 3M \times D^k$ is mapped into A, $F' : (W, 3W) \to (X, A)$ is a $W_s(K, 2)$ bordism element in (X, A). Since $h : W \to P(K^2)$ is transverse on $P(K^1)$, $3(W, F') = (M, f)$, and thus (M, f) is in the image of 3. **

Relation to bordism groups

Rather than continue to attack the structure of the oriented cobordism groups, which will be relegated to later chapters, it seems better to study the Atiyah [13] approach to the above sequence.

Proposition: For $r > 1$, $W_n(K, r)(X, A) \cong \pi_{n+k}^SG(P(K^{r+1}) - (X/A))$.

Proof: Let $f : BSG \times P(K^r) \to BK(r)$ classify $\mathcal{U} \otimes \xi$, $p : BK(r) \to$ classify $det_{\mathcal{U}}$ and $q : BK(r) \to BSG$ classify $\mathcal{U} - det_{\mathcal{U}}$. If $g = (q \times p) \cdot 1 : BK(r) \to BSG \times P(K^r)$, then fg and gf are both homotopic to 1 since they classify the universal bundles. Thus $BK(r)$ is identified to $BSG \times P(K^r)$ and the universal bundle to $\mathcal{U} \otimes \xi$. The Thom space of ξ $P(K^{r+1})$ so $TBK(r)$ is equivalent to $TS_{s-1} \cdot T\xi = TS_{s-1} \cdot P(K^{r+1})$ in the limit. Thus

$W_n(K, r)(X, A) \cong \lim_{s \to \infty} \pi_{n+k}^{TBK_s}(X/A)$,

$\cong \lim_{s \to \infty} \pi_{n+k}^{TBG_{s-1}} P(K^{r+1}) - (X/A))$,

$\cong \pi_{n+k}^SG(P(K^{r+1}) - (X/A))$. **

One has a cofibration sequence

$$S^k = P(K^2) \to P(K^3) \to S^{2k} = P(K^3)/P(K^2) \to \Sigma S^k = S^{k+1}$$
and smashing this with \((X/A)\) and applying \(\tilde{\Omega}_{m}^{SG}(\)\) gives an exact sequence

\[
\tilde{\Omega}_{m}^{SG}(S^{k} \wedge (X/A)) \longrightarrow \tilde{\Omega}_{m}^{SG}(P(K^{3}) \wedge (X/A)) \longrightarrow \tilde{\Omega}_{m}^{SG}(S^{2k} \wedge (X/A)) \longrightarrow \cdots
\]

where the outer identifications are suspension isomorphisms. This gives the Rohlin-Wall exact sequence. One may then recognize the homomorphism \(t\) as multiplication by the framed cobordism class represented by \(a : S^{2k} \longrightarrow S^{k+1}\) which suspends the attaching map used to form \(P(K^{3})\) by attaching a \(2k\) cell to \(S^{k}\).

In order to obtain the Atiyah sequence, one first needs two results:

Lemma 1: \(P(K^{m+n})/P(K^{m})\) is the Thom complex of the bundle \(mE\) over \(P(K^{n})\).

Proof: Let \(f : S^{k+1} \times D^{m} \longrightarrow S^{k(m+n)-1} : (x,y) \longrightarrow (\sqrt{1-|y|^{2}},x,y)\) where \(S^{k+1} = \{x \in K^{n} | |x| = 1\}\), \(D^{m} = \{y \in K^{m} | |y| \leq 1\}\), and \(S^{k(m+n)-1} = \{(x,y) \in K^{n} \times K^{m} | |x|^{2} + |y|^{2} = 1\}\). If \(t \in K^{1}\), \(|t| = 1\), then \(f(tx,ty) = t \cdot f(x,y)\) so \(f\) is compatible with the usual action of \(S^{k+1}\). If \((u,z) \in S^{k(m+n)-1}\) and \(u \neq 0\), then \(f^{-1}(u,z) = \{((\sqrt{1-|z|^{2}},u/|u|,z)\}. This gives a homeomorphism \(\overline{f} : T(mE) \longrightarrow P(K^{m+n})/P(K^{m})\) where \(P(K^{m})\) is given as the image of pairs \((u,z)\) with \(u = 0\).

Lemma 2: Let \(\xi\) be the dual of the canonical bundle over \(P(K^{m})\). Then

\[
\tilde{\Omega}_{n}^{SG}(X/A) \otimes T(\xi \otimes \xi \otimes \xi) \cong \mathcal{W}_{n-3k}^{n}(K_{m})(X,A).
\]

Proof: Since \(\xi \otimes \xi\) is naturally oriented one has

\[
f : BS_{m} \times P(K^{m}) \longrightarrow BS_{m+2} \times P(K^{m})\] with \(f^{*}(2\lambda) = \xi \otimes \xi \otimes \xi\), \(f^{*}(\xi) = \xi\) and by stability of \(BS_{t}\), this is a homotopy equivalence up to dimension \(ks\).
(Note: Being an induced fibration, stability follows for BSG_ℓ. The maps
$\text{BSG}_s \to \text{BSG}_s \times P(K^m) \to \text{BSG}_{s+2} \times P(K^m) \to \text{BSG}_{s+2}$ and
$P(K^m) \to \text{BSG}_s \times P(K^m) \to \text{BSG}_{s+2} \times P(K^m) \to P(K^m)$ then give homotopy
isomorphisms in low dimensions.) Thus in the limit

$$
\omega_{n}^{SG}((X/A) \wedge T(\xi \otimes \xi \otimes \xi)) = \lim_{n \to \infty} \pi_{n+k}(TBSG_s \wedge T(\xi \otimes \xi \otimes \xi) \wedge (X/A)),
$$

$$
= \lim_{n \to \infty} \pi_{n+k}(TBSG_{s+2} \wedge T(\xi) \wedge (X/A)),
$$

$$
= \omega_{n-2k}^{SG}((X/A) \wedge P(K^{n+1})),
$$

$$
= \mathcal{W}_{n-3k}(K,n)(X,A). \quad **
$$

Now consider the cofibration

$$
P(K^3) \to P(K^{n+3}) \to P(K^{n+3})/P(K^3),
$$

smash with (X/A) and apply $\omega_{m}^{SG}(\quad)$ to obtain the exact sequence

$$
\omega_{m}^{SG}((X/A) \wedge P(K^3)) \to \omega_{m}^{SG}((X/A) \wedge P(K^{n+3})) \to \omega_{m}^{SG}((X/A) \wedge T(\xi \otimes \xi \otimes \xi)) \to ...
$$

$$
\mathcal{W}_{m-k}(K,2)(X,A) \to \mathcal{W}_{m-k}(K,n+2)(X,A) \to \mathcal{W}_{m-3k}(K,n)(X,A) \to ...
$$

and letting n go to ∞, this gives a long exact sequence

$$
\mathcal{W}_{m-k}(K,2)(X,A) \to \omega_{m-k}(X,A) \to \omega_{m-3k}(X,A) \to \mathcal{W}_{m-k-1}(K,2)(X,A) \to ...
$$

since for n large $\mathcal{W}_{m}(K,n)(X,A) = \omega_{m}^{G}(X,A)$. This sequence splits up to the Atiyah sequence, but the splitting requires one of the previous arguments.

Remark: If \mathbb{F} is any spectrum and E_p is the two cell complex S^1 one may form a new spectrum $E_p \wedge \mathbb{F}$, where $(E_p \wedge \mathbb{F})^s = E_p \wedge \mathbb{F}^{s-1}$. This
a homology theory

\[H_\ast(X;A; \mathbb{F}_p) = \lim_{s \to \infty} \pi_{s+1}((X/A) \times_{\mathbb{F}_p} \mathbb{F}_{s-1}), \]

\[= H_{s+1}((X/A) \times_{\mathbb{F}_p} \mathbb{F}). \]

From the cofibration \(S^1 \to E_p \to S^2 \) one has an exact sequence

\[\delta \]

where \(\delta \) has degree \(-1\). This is one way to introduce \(\mathbb{Z}_p \) coefficients into spectral homology theory. (Another possibility is to use homotopy with \(\mathbb{Z}_p \) coefficients rather than ordinary homotopy). With the given definition, \(E_2 = P(\mathbb{R}^3) \) and thus one may think of \(W_\ast(\mathbb{R},2) \) homology as oriented bordism with \(\mathbb{Z}_2 \) coefficients. This was pointed out to me by D. Sullivan, and seems to explain the usefulness of \(W_\ast(\mathbb{R},2) \) theory, which at first glance appears extremely artificial.

Remark: From the Atiyah bordism approach, one has an exact sequence

\[\begin{array}{ccc}
W_\ast(K,2) & \to & W_\ast(K,n+2) \\
\downarrow J & & \downarrow \Delta \\
W_\ast(K,n). & & \\
\end{array} \]

Then

\[\begin{array}{ccc}
W_\ast(K,2) & \to & W_\ast(K,n+2) & \to & W_\ast(K,2) \\
& & \oplus & & \\
& & \oplus & & \\
\end{array} \]

is the identity, so this sequence splits. Thus \(W_\ast(K,n+2) \cong W_\ast(K,2) \oplus W_\ast(K,n) \) and these groups are then known inductively.
Chapter IX

Oriented Cobordism

With the exception of the unoriented cobordism problem, the most interesting manifold theoretic cobordism problem is the classification problem for "oriented" manifolds, where "oriented" is taken in the classical sense.

There are many equivalent descriptions of an "orientation" of a manifold, which may be given by:

a) A trivialization of the determinant bundle of the tangent (or normal) bundle;

b) A reduction of the structural group of the tangent (or normal) bundle to the special orthogonal group;

c) An integral cohomology orientation of the tangent (or normal) bundle in the sense of Dold; or

d) A fundamental integral homology class giving an orientation in the sense of Whitehead.

In addition to the desire to classify "oriented" manifolds because of their classical interest, definition (d) indicates a relation between "oriented" bordism and integral homology and full exploration of this relationship is desirable for geometric understanding of integral homology.

The analysis of "oriented" cobordism is a very complicated problem, the major outline of its solution having been:

1) Reduction to a homotopy problem and rational structure by Thom [1,27];

2) Calculation of odd primary and mod torsion structure by Milnor [66], Averbuh [21], and Novikov [93];

3) Calculation of 2 primary structure by Wall [130]; and

4) Analysis of oriented bordism by Conner and Floyd [36].
Using either definition (a) or (b) one has a classifying space BSO_n for oriented n-plane bundles and from the Pontrjagin-Thom theorem, the "oriented" cobordism ring Ω_n^{SO} is given by the stable homotopy ring

$$\Omega_n^{SO} = \lim_{s \to \infty} \Omega_n^{SO} \otimes \mathbb{Z}(s).$$

From the analysis of the cohomology structure of BSO_n, one obtains:

Theorem: The groups Ω_n^{SO} are finitely generated and $\Omega_n^{SO} \otimes \mathbb{Q}$ is the rational polynomial ring on the cobordism classes of the complex projective spaces $\mathbb{C}P(2i)$.

Proof: As noted in Chapter V, there are unique orientation classes $U_r \in H^r(BSO_{r};\mathbb{Z})$ which combine to define a \mathbb{Z} cohomology orientation $U : BSO_r \to \mathbb{Z}$. By the Thom isomorphism theorem $H^r(BSO_{r};\mathbb{Z}) \cong H^{n+r}(BSO_{r};\mathbb{Z})$ is finitely generated, being isomorphic to $H^r(BSO_{r};\mathbb{Z})$ for sufficiently large r by stability of these groups. Since BSO_{r} is $(r-1)$-connected, Serre's theorem shows that $\Omega_n^{SO} \to H_n(BSO_{r};\mathbb{Z})$ is an isomorphism modulo the class of finite groups. Thus Ω_n^{SO} is finitely generated.

Since $H^*(BSO;\mathbb{Q}) = \mathbb{Q}[t_1, \ldots, t_i]$, Ω_n^{SO} has rank equal to the number of partitions of $(n/4)$ if n is a multiple of 4, and is a finite group otherwise. In fact, $\Omega_n^{SO} \otimes \mathbb{Q} \to H_n(BSO;\mathbb{Q})$ is a ring isomorphism. From the diagonal formula $\delta \varphi_i = \sum_{j+k=1} \delta_j \otimes \delta_k$, $\Omega_n^{SO} \otimes \mathbb{Q}$ is a polynomial ring on generators x_{4i} of dimension $4i$, characterized by $s(1)(\varphi)[x_{4i}] \neq 0$ where $s(1)(\varphi)$ is the primitive class of dimension $4i$.

For the manifold $\mathbb{C}P(2i)$, $\tau \otimes 1 = (2i+1)t$ giving $c(\mathbb{C}P(2i)) = (1+t)^{2i+1}$ and $c(\tau \otimes 1) = (1+t)^{2i+1}(1-t)^{2i+1} = (1-t)^{2i+1}$ so $\varphi(\mathbb{C}P(2i)) = (1+t)^{2i+1}$.

In general, if φ is written so that φ_j is the j-th elementary symmetric
function in classes s_t^2, \(\dim s_t^2 = 2 \), the primitive class \(s_1(\varphi) \) is \(\sum s_t^2i \). Thus

\[
s_1(\varphi)(v)[\mathbb{CP}(21)] = -s_1(\varphi)(\tau)[\mathbb{CP}(21)], \tag{primitivity}
\]

\[
= -(2i+1)a^{2i}[\mathbb{CP}(21)],
\]

\[
= -(2i+1)
\]

for by uniqueness of the Thom space orientation, the SO induced fundamental class must agree with the fundamental class arising from the complex structure. Thus $\mathbb{CP}(21)$ represents an acceptable generator of dimension $4i$. **

Proposition: The homomorphism

\[
\gamma : \Omega^n_{4n} \xrightarrow{S_*} \Omega^n_{4n} \xrightarrow{\pi} \Omega^n_{4n}/\text{Torsion}
\]

with S_* induced by the forgetful functor, and π the quotient map, has kernel the ideal generated by the classes of dimension not a multiple of four and has cokernel a finite group of odd order (in each dimension).

Proof: Since Pontrjagin numbers are integer valued invariants, they annihilate the torsion subgroup and the homomorphism

\[
\mathcal{G} : \Omega^n_{4n} \xrightarrow{\pi(n)} \mathbb{Z}_2^n ; [M] \mapsto (\mathcal{G}_\tau[M])
\]

obtained by reducing the Pontrjagin numbers mod 2 factors through π. Then since \(s_1(\varphi)(\tau)[\mathbb{CP}(21)] \) is odd, the map

\[
\Omega^n_{4n} \xrightarrow{U} \Omega^n_{4n} \xrightarrow{\mathcal{G}} \mathbb{Z}_2^n \xrightarrow{\pi(n)}
\]

is epic.

Since $\Omega^n_{4n}/\text{Torsion}$ has rank $|\pi(n)|$, this means $(\im \gamma_{4n})$ has rank $|\pi(n)|$ and is a subgroup of odd index. Since $\Omega^n_{4n+2}/\text{Torsion} = 0$, the kernel of γ
contains the ideal generated by classes of dimension not congruent to zero
mod 4, and by rank this must be the precise kernel. **

In order to examine the odd primary situation, one has:

Proposition: The map $f : BS_p \to BSO$, obtained by considering a
Quaternionic vector bundle simply as an oriented vector bundle, is a homotopy
equivalence mod the Serre class of 2 primary finite groups.

Proof: One has $H^s(\mathcal{B}Sp; \mathbb{Z}) = \mathbb{Z}[\mathcal{P}_1^s]$, where \mathcal{P}_1^s is the i-th symplectic
Pontrjagin class of the universal bundle \mathcal{U}, and considering \mathcal{U} as a
complex bundle, $\mathcal{P}_1^s(\mathcal{U}) = c_{2i}(\mathcal{U})$. Thus $\mathcal{P}_1(\mathcal{U}) = (-1)^i c_{2i}(\mathcal{U} \otimes c)$ and
c(\mathcal{U} \otimes c) = c(\mathcal{U})^2$, so

$$\mathcal{P}_1(\mathcal{U}) = (-1)^i 2 \mathcal{P}_1^s(\mathcal{U}) + \text{decomposables}.$$

Thus the homomorphism

$$f^* : H^s(\mathcal{B}SO; \mathbb{Z}_p) = \mathbb{Z}_p[\mathcal{P}_1^s] \to H^s(\mathcal{B}Sp; \mathbb{Z}_p) = \mathbb{Z}_p[\mathcal{P}_1^s]$$

is an isomorphism for all odd primes p. **

Corollary: The forgetful homomorphism

$$f_* : \Omega^s_{Sp} \to \Omega^s_{SO}$$

is an isomorphism modulo the Serre class of 2 primary finite groups.

Proof: The map $Tf : TBSp_n \to TBSp_{4n}$ induces isomorphisms on \mathbb{Z}_p
cohomology for any odd prime p in dimensions less than $8n$, using the
knowledge of f^* and the Thom isomorphism. Thus by the generalized Whitehead
theorem, $(Tf)_*$ is an isomorphism on homotopy modulo 2 primary finite groups,
and the Pontrjagin-Thom theorem completes the result. **
One then has the composition of homomorphisms defined by forgetful functors

\[\Omega^U_s \xrightarrow{S^*} \Omega^SO_s \xrightarrow{\pi} \Omega_s \]

with \(S^*T_s = F_s \), from which:

Theorem: All torsion in \(\Omega^SO_s \) is 2 primary.

Proof: Since \(F_s \) is an isomorphism mod 2 primary torsion, while \(\Omega^U_s \) is torsion free, neither \(\Omega^SO_s \) nor \(\Omega^SO \) can have odd torsion. **

Theorem: The homomorphism

\[\gamma : \Omega^U_s \xrightarrow{S^*} \Omega^SO_s \xrightarrow{\pi} \Omega^SO/\text{Torsion} \]

is epic.

Proof: Since \(\pi \) is an isomorphism mod 2 primary torsion, \(\pi F_s = \gamma T_s \) has finite 2 primary cokernel in each dimension, so that the same holds for \(\gamma \), but it was previously noted that \(\gamma \) has finite odd order cokernel in each dimension. Thus \(\gamma \) is epic. **

Theorem: \(\Omega^SO/\text{Torsion} \) is a polynomial ring over \(\mathbb{Z} \) on classes \(x_i \) of dimension 41, and the classes \(x_i \) are characterized by

\[a(1)(j(\tau))[x_i] = \begin{cases}
\pm 1 & 2i+1 \neq p^s \text{ for any prime } p \text{ and } s \in \mathbb{Z}, \\
\pm p & 2i+1 = p^s \text{ for some prime } p \text{ and } s \in \mathbb{Z}.
\end{cases} \]

Proof: \(\Omega^SO/\text{Torsion} \) is isomorphic to \(\Omega^U_s \) mod the ideal generated by the classes having dimension not congruent to zero mod 4. Being a polynomial ring, generators are characterized by the \(s \)-number. The given values follow at once from the knowledge of the \(s \)-numbers of generators of complex cobordism, for if
M^n is a stably almost complex manifold with $c(M) = \Pi(1+x_0)$ formally, then $\mathcal{P}(M) = R(1+x_0^2)$ and so $s_k(\mathcal{P}(\tau))(M) = \sum x_j^{2k} = s_{2k}(c(\tau))(M)$. **

To determine the two primary structure one uses the exact sequence

$$\mathfrak{N} \to \mathfrak{N} \to \mathfrak{W}(R,2)$$

in which t becomes multiplication by 2 ($[s^0, \sigma]$ is two points, both positively oriented).

Let

$$\mathfrak{a} = \rho \cdot \mathfrak{a} : \mathfrak{W}(R,2) \to \mathfrak{W}(R,2)$$

be the composite homomorphism.

Lemma: $\mathfrak{a} : \mathfrak{W}(R,2) \to \mathfrak{W}(R,2)$ is a derivation with $(\mathfrak{a}^2)^2 = 0$, and choosing generators x_j, $i \neq 2^s - 1$, for \mathfrak{T}_s such that

$$\mathfrak{W}(R,2) = \mathbb{Z}_2 [x_j, (x_2^s)^2 | j \neq 2^t, 2^t - 1]$$

as in Chapter VIII, one has

$$\begin{cases}
\mathfrak{a} x_{2^m - 1} = 0, \\
\mathfrak{a} x_{2^m} = x_{2^m - 1}, \\
\mathfrak{a} ((x_2^s)^2) = 0.
\end{cases}$$

Proof: From Chapter VIII, one has $\mathfrak{a} (ab) = \mathfrak{a} a \cdot b + a \cdot \mathfrak{a} b - [P(R)] \cdot \mathfrak{a} a \cdot \mathfrak{a} b$ but $[P(R)] = 0$ in \mathfrak{T}_s, so \mathfrak{a} is a derivation. Since $\mathfrak{a} \mathfrak{a} = 0$ and $\mathfrak{a} = 0$, $(\mathfrak{a}^2)^2 = 0$. Examining the generators of $\mathfrak{W}(R,2)$, the manifold N representing $(x_2^s)^2$ is cobordant to $\rho[CP(2^s)]$ and $\mathfrak{a} \rho = 0$ so $\mathfrak{a}[N] = 0$. For x_{2^m}, one chose a representative
\[M \subseteq \text{RP}(1) \times \text{RP}(2^P) \times \text{RP}(2^{P+1}q) \]
dual to \(\tilde{a}_1 + (2^P+1)\tilde{a}_2 + (2^{P+1}q+1)\tilde{a}_3 \), so that \(w_1(M) = \tilde{a}_1 \). Then \(\delta'[M] \) is represented by the submanifold dual to \(w_1(M) \), i.e. the submanifold of \(\text{RP}(1) \times \text{RP}(2^P) \times \text{RP}(2^{P+1}q) \) dual to
\[\tilde{a}_1(\tilde{a}_1 + (2^P+1)\tilde{a}_2 + (2^{P+1}q+1)\tilde{a}_3) = \tilde{a}_1((2^P+1)\tilde{a}_2 + (2^{P+1}q+1)\tilde{a}_3), \]
since \(\tilde{a}_1^2 = 0 \). Since the submanifold dual to \(\tilde{a}_1 \) is \(\text{RP}(2^P) \times \text{RP}(2^{P+1}q) \), this is precisely the representative chosen for \(x_{2m-1} \). Since \((\delta')^2 = 0 \), this also gives \(\delta'x_{2m-1} = 0 \). **

Corollary: \(\ker \delta'\!/\!\text{im } \delta' = \mathbb{Z}_2[(x_{2t})^2] \).

Proof: \(\mathcal{W}_s(R,2) \) is the tensor product of algebras of the form:

a) \(\mathbb{Z}_2[x_{2m-1},x_{2m}] \) is not a power of 2, with \(\delta'x_{2m} = x_{2m-1} \), \(\delta'x_{2m-1} = 0 \), which has homology isomorphic to \(\mathbb{Z}_2[(x_{2m})^2] \); and

b) \(\mathbb{Z}_2[(x_s)^2] \) with \(\delta'(x_s^2) = 0 \); isomorphic to its homology.

The Künneth theorem for the homology of a tensor product completes the computation. **

Proposition: \(\rho_{SO}^s = \ker \delta = \ker \delta' \).

Proof: The composite \(\ker \delta \hookrightarrow \ker \delta' \rightarrow \ker \delta'\!/\!\text{im } \delta' \) is epic, for if \(a \in \ker \delta \), there is a class \(b \in \mathcal{W}_s(\mathbb{R}) \) such that \(b^2 \) maps to \(a \). Since \(b^2 \) is the class of a stably almost complex manifold, which is oriented, \(b^2 \in \text{im } \delta = \ker \delta \). Then if \(a \in \ker \delta' \), there is an \(x \in \Omega^s \) with \(a - px \) mapping to zero in \(\ker \delta'\!/\!\text{im } \delta' \) or \(a - px \in \text{im } \delta = \ker \delta' \subseteq \text{im } \delta \), so \(a \in \text{im } \delta \). Thus \(\text{im } \delta = \ker \delta \subseteq \ker \delta' \subseteq \text{im } \delta \). **

Theorem: All torsion in \(\Omega^s \) has order 2.
Proof: Suppose Ω^0_m has some element of finite order which is not of order 2. There is then a class $x \in \Omega^0_m$ with $2x \neq 0$, $4x = 0$. Then $t(2x) = 2t(2x)$ is zero, so $2x = 3y$ for some y. Since $\Upsilon_m(R, 2)$ is a Z_2 vector space, $3'y = \rho3y = \rho(2x) = 2\rho(x) = 0$ and $y \in \ker3' = \ker3$. Thus $2x = 3y = 0$, contradicting the choice of x. **

Corollary: Under the homomorphism $\rho: \Omega^0_\ast \to \Upsilon_\ast(R, 2)$, the torsion subgroup maps isomorphically onto image $3'$.

Proof: If $x \in \text{Torsion}(\Omega^0_\ast)$, $2x = 0$ so $x = 3y$ and $\rho x = 3'y \in \text{im}3'$. Thus $\rho(\text{Torsion}(\Omega^0_\ast)) \subseteq \text{im}3'$. Conversely, $3'z = \rho3z \Rightarrow \text{im}3' \subseteq \rho(\text{Torsion}(\Omega^0_\ast))$. If $x \in \text{Torsion}(\Omega^0_\ast)$ and $\rho x = 0$, then $x = 2y$, but $y \in \text{Torsion}(\Omega^0_\ast)$ and hence $x = 2y = 0$. **

Corollary: The homomorphism $\Omega^0_\ast \to \ker3'/\text{im}3'$ induces an isomorphism of $(\Omega^0_\ast/\text{Torsion}) \otimes Z_2$ with the polynomial algebra $\ker3'/\text{im}3'$.

Proof: The given homomorphism has kernel containing $\text{Torsion}(\Omega^0_\ast)$ and defines a homomorphism $\Omega^0_\ast/\text{Torsion} \to \ker3'/\text{im}3'$. This clearly sends $2(\Omega^0_\ast/\text{Torsion})$ to zero, giving $(\Omega^0_\ast/\text{Torsion}) \otimes Z_2 \to Z_2[\langle x_2 \rangle^2]$. By the proposition this is epic and by the ranks must be an isomorphism. **

Theorem: Two oriented manifolds are cobordant if and only if they have the same Pontrjagin and Stiefel-Whitney numbers.

Proof: By Pontrjagin's theorem, cobordant manifolds have the same characteristic numbers. Conversely, suppose $x, x' \in \Omega^0_m$ have the same Z and Z_2 cohomology characteristic numbers. Since all Z cohomology characteristic numbers of $y = x - x'$ are zero, y is a torsion class. Thus $2y = 0$ and $y = 3z$ for some z. Since x and x' have the same Stiefel-Whitney numbers, all Z_2 cohomology characteristic numbers of py are zero,
and thus \(s'z = \rho z = \rho y = 0 \). This gives \(z \in \ker \partial' \), so \(y = \partial z = 0 \) and \(x = x' \). **

Turning to the two primary relationships among the characteristic numbers, one has:

Proposition: a) The homomorphism \(\mathcal{O}'_\omega : H_{4m}^{SO} \to \mathbb{Z}_2 \) which sends the class of \(M \) into the mod 2 reduction of the Pontrjagin number \(P_i \cdots P_r(\tau)[M] \) (\(\omega = (i_1, \ldots, i_r) \)) coincides with evaluation of the Stiefel-Whitney number \(w_{2\omega}^2 = (w_{2i_1} \cdots w_{2i_r})^2 \).

b) The homomorphisms \(\mathcal{O}'_\omega \) for \(\omega \in \pi(m) \) form a base of \(\text{Hom}(H_{4m}^{SO}/\text{Torsion}) \otimes \mathbb{Z}_2 \times \mathbb{Z}_2 \).

c) There are no two primary relations among the Pontrjagin numbers of oriented manifolds.

Proof: a) If \(M \) is an oriented manifold, then reducing mod 2, \(\mathcal{G}_1(\tau) \equiv c_{2i}(\tau \otimes \xi) \) and \(c(\tau \otimes \xi) \equiv w(\tau \otimes \tau) = w(\tau)^2 \), so \(\mathcal{G}_1(\tau) = w_{2i}(\tau) \) since the integral orientation reduces to the mod 2 orientation, \(\mathcal{O}'_\omega([M]) = \mathcal{O}_\omega(\tau)[M] \mod 2 = w_{2\omega}(\tau)[M] \).

b) For any \(\omega = (i_1, \ldots, i_r) \), let \(\mathcal{G}(2\omega) = \mathcal{G}(2i_1) \times \cdots \times \mathcal{G}(2i_r) \) be ordering partitions of \(m \) compatibly with refinement, the matrix

\[
||s_\omega(\mathcal{G}(\omega))[\mathcal{G}(2\omega')]||_{\omega, \omega'} \in \pi(m)
\]

is triangular with odd diagonal entries. Thus

\[
\mathcal{O}' = \prod_{\omega \in \pi(m)} \mathcal{O}'_\omega : H_{4m}^{SO} \to \mathbb{Z}_2^{\frac{1}{|\pi(m)|}}
\]

is epic, hence giving an isomorphism \((H_{4m}^{SO}/\text{Torsion}) \otimes \mathbb{Z}_2 \cong \mathbb{Z}_2^{\frac{1}{|\pi(m)|}} \).
c) If \(\sum a_\omega C_\omega \), \(\omega \in \pi(m) \), \(a_\omega \in \mathbb{Z} \), always takes even values on \(\Pi_m \) manifolds, then \(\sum a_\omega C_\omega' = 0 \) so \(a_\omega = 0 \) in \(\mathbb{Z}_2 \) for all \(\omega \).

Alternatively phrased, \(\Omega^S_*/\text{Torsion} \rightarrow \text{Hom}(\mathcal{O}_1, \mathbb{Z}) \) has image of odd index. **

Relations among the Stiefel-Whitney numbers are given by:

Proposition: The image of the forgetful homomorphism

\[
F_* : \Omega^S_* \rightarrow \mathcal{T}_*
\]

consists precisely of those classes for which all Stiefel-Whitney numbers with a factor \(v_1 \) vanish. Equivalently all relations among the Stiefel-Whitney numbers of oriented manifolds follow from the Wu formulae and the vanishing of \(v_1 \); explicitly, if \(\phi : H^m(BO; \mathbb{Z}_2) \rightarrow \mathbb{Z}_2 \) is a homomorphism, then \(\phi(x) = x(\tau)[M] \) for some oriented \(m \)-manifold if and only if \(\phi(S^4 \alpha + v_1 \alpha) = 0 \) for all \(i \) and all \(\alpha \in H^{m-i}(BO; \mathbb{Z}_2) \) and \(\phi(v_1 \beta) = 0 \) for all \(\beta \in H^{m-1}(BO; \mathbb{Z}_2) \).

Proof: If \(M \) is an oriented manifold, \(w_1(M) = w_1(\det M) \) is zero, since \(\det M \) is trivial, and thus all Stiefel-Whitney numbers of \(M \) with \(w_1 \) as a factor must vanish. If \(z \in \mathcal{T}_* \) has all numbers divisible by \(w_1 \) vanishing (\(\phi(x) = x(z) \) for some such \(z \)), then \(z \in \mathcal{W}_*(\mathbb{R}, 2) \) for all numbers with \(w_1^2 \) as a factor vanish. If \(N \) represents \(z \) and \(K \subset N \) is dual to \(w_1 \), then

\[
w(K) = w(N)/(1 + w_1(N))
\]

so \(w_1(K) = w_1(N) + w_{1-1}(N)w_1(N) \) and \(w_\omega(K)[K] = \{w_\omega(N) + w_1u_\omega\}w_1(N)[N] = w_1w_\omega(N)[N] \). Since Stiefel-Whitney numbers determine class in \(\mathcal{W}_*(\mathbb{R}, 2) \), \(3'z = [K] \) is zero and thus \(z = \rho([M]) \) for some oriented \(M \). **
Having described the two primary relations, one wishes to know the odd primary relations among the Pontrjagin numbers. From the study of complex cobordism, one knows that K-theory is a reasonable place to get relations. Unfortunately, oriented manifolds are not K-theory orientable. To circumvent this problem one has first a general construction.

Let K be one of the fields \mathbb{R} or \mathbb{C}, and let K' be \mathbb{C} or \mathbb{H} respectively.

Let M^n be a closed, n-dimensional manifold with tangent bundle t, t being a K vector bundle over M^n so that $t = t + u \cdot 1 \ (u \in \mathbb{Z}, \ n+u \equiv 0 \ mod \ 2)$ as real vector bundles, defining a K structure on M.

Then the total space E_t is a differentiable manifold and if $\pi : E_t \to M$ is the projection, then the tangent bundle of E_t is $\pi^*(t) \oplus \pi^*(\tau)$, $\pi^*(\tau)$ being the bundle along the fibers and $\pi^*(t)$ its orthogonal complement. Thus the stable tangent bundle of E_t admits a K' vector bundle structure as $\pi^*(t) \oplus \pi^*(\tau) = \pi^*(t) \oplus \mathbb{C}$.

Letting D_t and S_t denote the disc and sphere bundles of t, D_t has an induced stable K' structure as manifold with boundary, its boundary being S_t.

Now suppose one is given a ring spectrum \mathbb{A} for which K' vector bundles are naturally oriented and suppose $U \in \pi^{n+u}(T^*_t; \mathbb{A}) = H^{n+u}(D_t, S_t; \mathbb{A})$ is a fixed class. Then for $x \in H^1(M; \mathbb{A})$ one may define a number

$$x_U[M] = (\pi^*(x) \cdot U)(D_t, S_t) \in \pi^{4-2u}(pt; \mathbb{A}).$$

Notes: 1) These numbers may not be meaningful invariants of M unless the class U is stable [i.e. replacing t by $t \oplus 1$ gives $T(t \oplus 1) = 1^2$, and $U(t \oplus 1)$ should be the suspension of $U(\tau)$] or is defined for the tangent bundle t directly so that one need not make a choice of t.
2) It is not at all clear that such numbers are cobordism invariants; indeed they won't be in the general case.

If M is imbedded in R^{n+kq} with K normal bundle ν such that $\nu \otimes \tau$ is trivial, the induced map on tangent spaces gives an imbedding

$E_t \hookrightarrow R^{n+kq} \times R^{n+kq}$ and hence imbeddings

$E_t \hookrightarrow R^{n+kq} \times R^{n+kq} \times R^u,$

$D_t \hookrightarrow R^{n+kq} \times D^{n+kq+u},$

$S_t \hookrightarrow R^{n+kq} \times S^{n+kq+u-1},$

and the normal bundle may be taken isomorphic to $\pi^*(\nu \otimes \bar{\nu}).$

Note: One has

$$M \times M \rightarrow R^{n+kq} \times R^{n+kq} \rightarrow R^{n+kq} \times R^{n+kq}$$

$$\Delta \uparrow \quad \quad \uparrow (x,y) \rightarrow (x,y-x) \quad \uparrow$$

$$M \rightarrow \Delta \rightarrow R^{n+kq} \times 0$$

corresponding to identification of $D(t)$ with a neighborhood of the diagonal in $M \times M$ or D_t with a neighborhood of $\Delta(M) \times 0$ in $M \times M \times R^u.$

One has the collapse map

$$c : S^{2n+2kq+u} \rightarrow T(\pi^*(\nu \otimes \bar{\nu})) / T(\pi^*(\nu \otimes \bar{\nu})) \Big|_{S_t} = X$$

and thinking of M imbedded in D_t as the zero section, with normal bundle $\bar{\tau} \otimes \nu \otimes \bar{\nu}$ (its K structure) one has a collapse d of X onto $T(\bar{\tau} \otimes \nu \otimes \bar{\nu}) = S^{n+kq+u}T(v).$ Using the given imbedding of $D_t,$ the composite

$$S^{2n+2kq+u} \xrightarrow{c} X \xrightarrow{d} S^{n+kq+u} T(v)$$

is the $n+kq+u$-fold suspension of the map defined by the imbedding of M in $R^{n+kq}.$
Note: \(d \) can be thought of as a homeomorphism since \(X = T(\bar{r} \oplus \bar{v} \oplus \bar{w}) \).

Suppose \(A \) is a ring spectrum for which the bundles \(r, \bar{r}, v, \bar{v} \) all have a natural, stable, multiplicative orientation, and \(U \) is the orientation class \(U_r \). Then one has the map

\[
\beta : X \longrightarrow (\mathbb{M}/\emptyset) \cdot T(\bar{r}) \cdot T(v) \cdot T(\bar{v}) = Y
\]

generalizing the usual \(\emptyset \) to a \(k \) fold diagonal map. The cohomology class \(x \otimes U_r \otimes U_v \otimes U_w = y \) may be pulled back to \(X \) in several different ways.

First one has

\[
X = T(\bar{r} \oplus U_r \oplus \bar{v}) \longrightarrow T(\bar{r} \oplus \bar{v}) \cdot T(\bar{r} \oplus \bar{v}) \cdot T(\bar{v}) \longrightarrow (\mathbb{M}/\emptyset) \cdot T(\bar{r} \oplus \bar{v}) \cdot T(\bar{v}) \longrightarrow Y
\]

and \(T(\bar{r} \oplus \bar{v}) \) is just the suspension of \((\mathbb{M}/\emptyset) \) with \(U_r \otimes U_v \) pulling back to the suspension class. Thus

\[
c^*\beta^*(y)[S] = x[M].
\]

Further one has

\[
X \longrightarrow T\bar{r} \cdot X \otimes_{T\bar{r}}^{\mathbb{M}/\emptyset} \longrightarrow (\mathbb{M}/\emptyset) \cdot T\bar{r} \cdot T(v \oplus \bar{v}) \longrightarrow Y
\]

in which \(x \otimes U_r \) pulls back to \(x \otimes U \) and then to \(\#x \cdot U \) while \(U_v \otimes U_w \) pulls back to the orientation class of \(X \) as a bundle over \(Dr \). Thus

\[
c^*\beta^*(y)[S] = \{\#(x) \cdot U\}[Dr, St].
\]

Thus \(x_U[M] \) coincides with \(x[M] \) when everything makes sense, and thus \(x_U \) numbers give a natural generalization of ordinary characteristic numbers.

In order to make use of the above process of constructing "numbers" one must find a class \(U \in H^{rtu}(Dr, St; \mathbb{A}) \). The reasonable theory to use is bundle-theoretic cohomology, following Conner and Floyd [41] or Palais [97], p. 1.
Let K be \mathbb{R} or \mathbb{C} and let V be a K inner product space of dimension n, with inner product $<\cdot,\cdot>$ which is K linear in the first factor and conjugate linear in the second factor (the conjugate of α being denoted by $\overline{\alpha}$).

Recall that the exterior algebra over K of V, $\Lambda(V) = \bigoplus_0^n \Lambda^k(V)$ has an inner product given by

1) $\Lambda^j(V) \perp \Lambda^k(V)$ if $j \neq k$

2) If $X = x_1 \ldots x_k$, $Y = y_1 \ldots y_k$, then $<X,Y> = \det |x_i y_j|$

If e_1, \ldots, e_n is an orthonormal base of V, then $(e_{i_1} \ldots e_{i_k} | i_1 < \ldots < i_k)$ forms an orthonormal base of $\Lambda^k(V)$.

There is a canonical antisymmetrization of $\Lambda(V)$, $\alpha : \Lambda(V) \rightarrow \Lambda(V)$, defined by

$$\alpha(v_1 \ldots v_k) = v_k \ldots v_1 = (-1)^{k(k-1)/2} v_1 \ldots v_k$$

which is K linear and preserves inner products.

Finally, recall that an orientation of V is a unit vector $\sigma \in \Lambda^n(V) = \det(V)$.

Being given an orientation σ of V, one may define a function $\tau : \Lambda^k(V) \rightarrow \Lambda^{n-k}(V)$ as follows: $\tau X \in \Lambda^{n-k}(V)$ is the unique vector such that for all $Y \in \Lambda^{n-k}(V)$, one has

$$<\tau X, Y> = <\sigma X, \overline{Y}>$$

Lemma 1: τ is conjugate linear.
Proof:

\[\langle \tau(aX), Y \rangle = \langle \sigma, aX \cdot Y \rangle, \]
\[= \langle \sigma, X \cdot Y \rangle, \]
\[= \langle \tau X, Y \rangle, \]
\[= \langle \tau^2 X, Y \rangle \]
for all \(Y \). **

Fix an orthonormal base \(e_1, \ldots, e_n \) of \(V \) with \(\sigma = e_1 \ldots e_n \). A monomial \(X \) is an element \(\pm e_{r_1} \ldots e_{r_k} \) with \(r_1 < \ldots < r_k \). Then for \(X \) and \(Y \) monomials:

\[\langle X, Y \rangle = \begin{cases}
1 & \text{if } X = Y, \\
-1 & \text{if } X = -Y, \\
0 & \text{otherwise}.
\end{cases} \]

Further, for any monomial \(X \) there is a unique monomial \(\tilde{X} \) with \(X \cdot \tilde{X} = \sigma \).

For \(X \) a monomial, \(\tau X \) is exactly \(\tilde{X} \), for if \(Y \) is a monomial,

\[\langle \tau X, Y \rangle = \langle \sigma, X \cdot Y \rangle \]

is given by \(\{1, -1, 0\} \) as \(Y \) is \(\{\tilde{X}, -\tilde{X}, \text{ other}\} \).

\[\tau X \cdot X = (-1)^{k(n-k)} \sigma \quad \tau X = (-1)^{k(n-k)} \tau X \cdot \tau^2 X \text{ if } X \in \Lambda^k(V) \]
a monomial, so one has

Lemma 2: If \(X \in \Lambda^k(V) \), then \(\tau^2 X = (-1)^{k(n-k)} X \).

Note: \(\tau = * \) as defined in Palais [97]. If \(a, b \in \Lambda^k(V) \),

\[\langle a, b \rangle = \det(a \cdot \sigma) = \langle a \cdot \sigma, b \rangle \text{ defines } * \text{. Then } \]
\[\langle b, a \rangle = \langle a, b \rangle = \langle a \cdot \sigma, b \rangle = \langle \sigma, a \cdot \sigma \rangle = (-1)^{k(n-k)} \langle \sigma, \sigma \rangle = (-1)^{k(n-k)} \tau \text{ if } X \in \Lambda^k(V). \]

\[\tau b = (-1)^{k(n-k)} b \text{ or } \tau b = (-1)^{k(n-k)} \tau^2 b = \sigma \text{ for } \tau^2 = (-1)^{k(n-k)} \text{ on } \Lambda^{n-k}(V). \]
Definition: Let \(\mu : \Lambda(V) \rightarrow \Lambda(V) : X \mapsto \tau aX \).

Definition: If \(K = \mathbb{R} \) and \(\text{dim}_R V = 2n' \), let \(\theta : \Lambda(V) \otimes \mathbb{C} \rightarrow \Lambda(V) \otimes \mathbb{C} \) by letting \(\theta(x) = i^{k(k-1)+n'}(\tau \otimes 1)(x) \) if \(x \in \Lambda^k(V) \otimes \mathbb{C} \).

Lemma 3: \(\mu \) is conjugate linear and \(\mu^2 = (-1)^{n(n-1)/2} \), while \(\theta \) is complex linear and \(\theta^2 = 1 \).

Proof: If \(X \in \Lambda^k(V) \), \(\sigma X = (-1)^{k(k-1)/2}X \), \(\alpha \tau X = (-1)(n-k)(n-k-1)/2 \tau X \) so \(\mu^2 X = (-1)^{r}X \) where

\[
\begin{align*}
 r &= k(k-1)/2 + (n-k)(n-k-1)/2 + k(n-k), \\
 &= k(n-1)/2 + (n-k)(n-1)/2, \\
 &= n(n-1)/2.
\end{align*}
\]

Letting \(n = 2n' \), \(x \in \Lambda^k(V) \),

\[
\begin{align*}
 \theta^2 x &= i^{(n-k)(n-k-1)+n'}i^{k(k-1)+n'}(-1)^{k(n-k)}x, \\
 &= i^{(n-k)(n-k-1)+k(k-1)+n+2k(n-k)}x, \\
 &= i^{n(n-1)+n-2k(n-k)+2k(n-k)}x, \quad \text{(by the above identity)} \\
 &= i^n x, \\
 &= i^{4n'} x, \\
 &= x. \quad \#
\end{align*}
\]

Lemma 4: If \(SG(V) \) denotes the inner product preserving \(K \) linear transformations of \(V \) which fix \(\sigma \), then for \(g \in SG(V) \), \(g\tau = \tau g \), \(g\mu = \mu g \), and \(g\theta = \theta g \).
Proof:

\[< g \tau X, gY > = < \tau X, Y > = < \sigma, X \cdot Y > = < g\sigma, gX \cdot gY >, \]

\[= < \sigma, gX \cdot gY > = < \tau gX, gY > \]

for all \(gY \), so \(g\tau X = \tau gX \) for all \(X \). Since clearly \(g\alpha = \alpha g \), \(ug = gu \), while \(ig = gi \) gives \(g\theta = \theta g \). **

If \(V \) and \(W \) are \(K \) inner product spaces of dimensions \(n \) and \(m \), inclusions \(V \rightarrow V \otimes W, W \rightarrow V \otimes W \) induce homomorphisms \(\Lambda(V) \rightarrow \Lambda(V \otimes W) \)
\(\Lambda(W) \rightarrow \Lambda(V \otimes W) \) and then

\[\beta : \Lambda(V) \otimes_K \Lambda(W) \rightarrow \Lambda(V \otimes W) \otimes \Lambda(V \otimes W) \rightarrow \Lambda(V \otimes W) \]

is an isomorphism of graded algebras. \(V \otimes W \) may be oriented by means of \(\sigma = \beta(\sigma_V \otimes \sigma_W) \).

Lemma 5: If \(X \in \Lambda^r(V) \), \(Y \in \Lambda^s(W) \) then

\[\tau \beta(X \otimes Y) = (-1)^{s(n-r)} \beta(\tau_V X \otimes \tau_W Y), \]

\[\nu \beta(X \otimes Y) = (-1)^{rs} \beta(\nu_V X \otimes \nu_W Y), \]

\[\theta \beta(X \otimes Y) = \beta(\theta_V X \otimes \theta_W Y). \]

In particular, if \(\dim_K V \equiv 0 \pmod{2} \), then \(\nu \) may be identified with \(\theta \).

Proof: Fix a base \(e_1, \ldots, e_n \) for \(V \); \(e_{n+1}, \ldots, e_{n+m} \) for \(W \) with \(\sigma_V = e_1 \cdot \ldots \cdot e_n \); \(\sigma_W = e_{n+1} \cdot \ldots \cdot e_{n+m} \). Let \(X, Y \) be monomials, so that

\[\sigma = \beta((X \cdot \tau_V X) \otimes (Y \cdot \tau_W Y)), \]

\[= (-1)^{s(n-r)} \beta((X \otimes Y)) \cdot \beta(\tau_V X \otimes \tau_W Y) \]

and everything being monomials, \(\tau \beta(X \otimes Y) = (-1)^{s(n-r)} \beta(\tau_V X \otimes \tau_W Y) \). Now
as \(\theta \in \mathcal{A} \cap \mathcal{A} \) for \((-1)^{(r+s)(r+s-1)/2} = (-1)^{rs(-1)^{r-l}/2(-1)^{s-l}/2} \) since

\[
(r+s)(r+s-1) = r(r+s-1) + s(r+s-1),
\]

\[
= r(r-l) + rs + s(s-l) + sr,
\]

which gives the formula for \(\mu \). To get the formula for \(\theta \), one has

\[
\theta(X \circ Y) = i \left(r+s(n+\xi)(n+\eta) \right) \tau \theta(X \circ Y),
\]

\[
= i \left(r-r-l+2rs+2\xi+\eta \right) \left(2n-r \right) \beta(\nu \circ \nu),
\]

\[
= (-1)^{rs(2n-r-s)} \beta(\nu \circ \nu),
\]

\[
= \beta(\theta X \circ \theta Y). \quad \triangleright
\]

Now returning to \(V \), one has for each \(v \in V \) a map

\[
F_v : \Lambda(V) \rightarrow \Lambda(V) \quad \text{where} \quad x \rightarrow v \cdot x
\]

and its adjoint \((F_v)^* : \Lambda(V) \rightarrow \Lambda(V) \) defined by

\[
\langle X, F_v Y \rangle = \langle F_v^* X, Y \rangle \quad \text{for all} \quad X, Y \in \Lambda(V).
\]

Definition: \(\phi_v : \Lambda(V) \rightarrow \Lambda(V) \) for \(v \in V \) is the linear transformation

\[
F_v + (F_v)^*.
\]

Lemma 6: For vector spaces \(V, W \) with \(v \in V, w \in W, \)

\[
\phi_{v+w}(\theta(X \circ Y)) = \theta(\phi_v X \circ \phi_w Y).
\]

Proof:

\[
F_{v+w}(\theta(X \circ Y)) = \theta(v \circ 1 + 1 \circ w) \circ \theta(X \circ Y),
\]

\[
= \theta((v \cdot X) \circ Y + (-1)^{\dim X} \circ (w \cdot Y)),
\]

\[
= \theta(F_v(X) \circ Y + (-1)^{\dim X} \circ F_w(Y))
\]
giving $F_{v+w} \circ \phi = \beta [F_v \circ 1 + \text{sgn}(1 \circ F_w)]$ where

\[\text{sgn} : \Lambda(V) \oplus \Lambda(W) \rightarrow \Lambda(V) \oplus \Lambda(W) \text{ maps } \Lambda^k(V) \oplus \Lambda^k(W) \text{ by } (-1)^k. \]

Then

\[
F_{v+w}^* (\beta(x \circ y), \beta(u \circ v)) = \langle \beta(x \circ y), F_{v+w} \beta(u \circ v) \rangle,
\]

\[= \langle \beta(x \circ y), \beta[F_v \circ u \circ (-1)^{\text{dim}U} \circ F_w] \rangle,
\]

\[= \langle x, F_v \circ u \rangle \cdot \langle y, v \rangle + (-1)^{\text{dim}U} \langle x, u \rangle \cdot \langle y, F_v \circ v \rangle,
\]

\[= \langle F_{v+w}^* x, u \rangle \cdot \langle y, v \rangle + (-1)^{\text{dim}X} \langle x, u \rangle \cdot \langle F_{v+w}^* y, v \rangle,
\]

\[= \beta[F_{v+w}^* x \circ y + (-1)^{\text{dim}X} \circ F_{v+w}^* y], \beta(u \circ v) \rangle
\]

and thus $F_{v+w}^* \circ \phi = \beta [F_v^* \circ 1 + \text{sgn}(1 \circ F_w^*)].$

(Note: If $\langle x, U \rangle \neq 0$, then $\text{dim} X = \text{dim} U$).

Thus $\phi_{v+w} \circ \phi = \beta [\phi_v \circ 1 + \text{sgn}(1 \circ \phi_w)]. \quad \ast \ast$

Corollary: For each $v \in V$, $(\phi_v)^2 = \|v\|^2 \Lambda(V)$.

Proof: If this holds for both V and W, then

\[(\phi_{v+w})^2 \beta(x \circ y) = \phi_{v+w} \beta[\phi_v x \circ y + (-1)^{\text{dim}X} \circ \phi_w y],
\]

\[= \beta[\phi_v^2 x \circ y + (-1)^{\text{dim}X+1} \phi_v x \circ \phi_w y]
\]

\[+ (-1)^{\text{dim}X} \beta[\phi_v x \circ \phi_w y + (-1)^{\text{dim}X} \circ \phi_w^2 y],
\]

(Note: $\phi_v X$ has components of dimension $\text{dim} X + 1$ and $\text{dim} X - 1$, giving the same sign.)

\[= \beta[\|v\|^2 x \circ y + (-1)^{\text{dim}X+1} \phi_v x \circ \phi_w y +
\]

\[(-1)^{\text{dim}X} \phi_v x \circ \phi_w y + \|w\|^2 x \circ y],
\]

\[= (\|v\|^2 + \|w\|^2) \beta(x \circ y),
\]

\[= \|v+w\|^2 \beta(x \circ y).
\]
and the result also holds for \(V \oplus W \).

Thus, one need only check this result when \(\dim V = 1 \). Thus \(\Lambda(V) \) has a base \(1, \sigma \), and \(v = k\sigma \), so

\[
F_v(1) = k\sigma, \quad F_v(\sigma) = 0,
\]

\[
<F_v^*(1), \sigma> = <1, F_v(\sigma)> = 0,
\]

\[
<F_v^*(\sigma), 1> = <\sigma, F_v(1)> = <\sigma, k\sigma> = \bar{k},
\]

giving

\[
F_v^*(1) = 0, \quad F_v^*(\sigma) = \bar{k}.
\]

Thus \(\phi_v(1) = k\sigma, \phi_v(\sigma) = \bar{k}, \) and so

\[
\phi_v^2(1) = \phi_v(k\sigma) = k\bar{k} = \|k\|^2 \cdot 1,
\]

\[
\phi_v^2(\sigma) = \phi_v(\bar{k}) = \bar{k}k\sigma = \|k\|^2 \cdot \sigma. \quad \#
\]

Lemma 7: If \(g : V \longrightarrow V \) is an inner product preserving linear transformation, then \(g\circ \phi_v = \phi_v \circ g \).

Proof: Clearly \(gF_v(X) = g(v \cdot X) = gv \cdot gx = F_{g\circ g}X \) so \(gF_v = F_{g\circ g} \) or \(F_{g\circ g}^{-1} = g^{-1}F_v \), and then

\[
<F_v^*X, Y> = <F_v^*X, g^{-1}Y> = <X, F_v g^{-1}Y> = <X, g^{-1}F_g^{-1}Y>.
\]

\[
= <gX, g^{-1}F_{g^{-1}}Y> = <gX, F_{g^{-1}}Y> = <F_{g^{-1}}gX, Y>. \quad \#
\]

Lemma 8: For \(v \in V \), \(\phi_v \circ \mu = \mu \circ \phi_v \) and \(\phi_v \circ \theta = \theta \circ \phi_v \).
Proof: If $X \in \Lambda^k(V)$,

$$< \tau F_X Y > = < \sigma^* V : X \cdot Y >,$$

$$= (-1)^k < \sigma X : V \cdot Y >,$$

$$= (-1)^k < \sigma X : F V Y >,$$

$$= (-1)^k < \tau X : F V Y >,$$

$$= (-1)^k < F^* \tau X , Y >$$

so $\tau F_X = (-1)^k F^* \tau X$. Then

$$\tau F^*_X = \tau (-1)^{(k+1)/2} F^*_X,$$

$$= (-1)^{(k+1)/2} (-1)^{k+1} F^* \tau X,$$

$$= (-1)^{(k-1)/2} F^* \tau X,$$

$$= F^* \tau X$$

so $\mu F^*_X = F^* \mu$. Then $\mu^2 = (-1)^{(n-1)/2}$ so

$$\mu^2 = F^* \mu \mu^2 = \mu (F^* \mu)^2 = \mu F^* \mu^3 = \mu F^*.$$

Thus $\phi^* \mu = \mu \phi^*.$

Also

$$\theta F^*_X = i^{(k+1)k+n'} \tau F^*_X,$$

$$= \iota^{(k+1)k+n'} i^{2k} F^* \tau X,$$

$$= \iota^{k+1} (k-1)+n' F^* \tau X,$$

$$= F^* \theta X$$

and $\theta^2 = 1$, so

$$F \theta = \theta F \theta = \theta F^* \theta^2 = \theta F^*$$
Now returning to the geometric situation of interest, let ξ be an oriented $n = 2n'$ plane bundle over a space B, with Riemannian metric $\langle \cdot, \cdot \rangle$ and $\sigma : B \to S(\Lambda^m(\xi))$ a section of the sphere bundle of $\Lambda^m(\xi)$ defining the orientation. Let $\Lambda^e(\xi) = \sum_k \Lambda^k(\xi)^{\text{even}}$, $\Lambda^o(\xi) = \sum_k \Lambda^k(\xi)^{\text{odd}}$ and with $\pi : D\xi \to B$ the projection, let

$$\phi : \pi^*(\Lambda^e(\xi) \otimes \mathcal{C}) \to \pi^*(\Lambda^o(\xi) \otimes \mathcal{C})$$

be the bundle map defined at $e \in D\xi$ by sending (e, X) into (e, ϕ_X) [Lemma 7 says this makes sense]. The restriction of ϕ to $S\xi$ is an isomorphism, for $\phi^2 = 1$ by the Corollary to Lemma 6. Thus the triple $(\pi^*\Lambda^e(\xi) \otimes \mathcal{C}, \pi^*\Lambda^o(\xi) \otimes \mathcal{C}, \phi)$ defines an element $\pi^*\Lambda^e(\xi) \otimes \mathcal{C} \to \pi^*\Lambda^o(\xi) \otimes \mathcal{C}$ in $K(D\xi)$ with an isomorphism to zero in $K(S\xi)$, and therefore an element of $K(D\xi, S\xi)$.

In addition, one may define the operator θ in $\pi^*(\Lambda(\xi) \otimes \mathcal{C})$ [Lemma 4 says this makes sense] as a bundle map of square 1. Since $\theta : \Lambda^k(\xi) \otimes \mathcal{C} \to \Lambda^{n-k}(\xi) \otimes \mathcal{C}$, and n is even, θ takes $\pi^*(\Lambda^e(\xi) \otimes \mathcal{C})$ and $\pi^*(\Lambda^o(\xi) \otimes \mathcal{C})$ into themselves and by Lemma 8, the map θ commutes with ϕ.

Let $\Lambda^e_\dagger(\xi), \Lambda^o_\dagger(\xi)$ denote the subbundles of $\pi^*(\Lambda^e(\xi) \otimes \mathcal{C})$, $a = \text{ev}$ or od, on which θ is $+1$ and -1 respectively, and let

$$\Delta(\xi) = (\Lambda^e_\dagger(\xi), \Lambda^o_\dagger(\xi), \phi) - (\Lambda^e_\dagger(\xi), \Lambda^o_\dagger(\xi), \phi)$$

in $K(D\xi, S\xi)$. Applying periodicity, one then has:

Definition: $U(\xi) = p^{-n'} \Delta(\xi) \in K^{2n'}(D\xi, S\xi)$.

Assertion 1: $U(\xi)$ is multiplicative.
Proof: It really suffices to verify this just for vector spaces. One has
\[\beta : \Lambda(\xi \otimes \eta) \to \Lambda(\xi \otimes \eta) \] giving isomorphisms
\[
\Lambda^e(\xi \otimes \eta) \cong \Lambda^e(\xi) \otimes \Lambda^e(\eta) \otimes \Lambda^d(\xi) \otimes \Lambda^d(\eta),
\]
\[
\Lambda^d(\xi \otimes \eta) \cong \Lambda^d(\xi) \otimes \Lambda^e(\eta) \otimes \Lambda^e(\xi) \otimes \Lambda^d(\eta),
\]
while by Lemma 6, this decomposition is compatible with the map \(\phi \). By Lemma one also has
\[
\Lambda^+ \otimes \eta) \cong \Lambda^+ \otimes \eta \otimes \Lambda^+(\xi) \otimes \Lambda^-(\eta),
\]
\[
\Lambda^- \otimes \eta) \cong \Lambda^- \otimes \eta \otimes \Lambda^+(\xi) \otimes \Lambda^- \otimes \eta,
\]
being also compatible with the even-odd decomposition. Adding everything up with signs gives \(\Lambda(\xi \otimes \eta) = \Lambda(\xi) \cdot \Lambda(\eta) \), while periodicity is also multiplicative. **

Assertion 2: If \(\xi \) is a complex line bundle over \(B \), considered as an oriented bundle, then \(\Lambda(\xi) = \pi^* \xi - \pi^* \xi \) with \(\pi^* \xi \) and \(\pi^* \xi \) identified over \(S \xi \) by the standard trivializations over \(S \xi \).

Proof: Let \(V \) be a 1 dimensional complex vector space with inner product \(\langle \ , \ \rangle \) and \(v \in V \) a unit vector. Then as a real vector space \(\langle \ , \ \rangle = \text{Re} \langle \ , \ \rangle \) is an inner product and \(V \) has an oriented base \(\{ v \} \).

Thus \(\Lambda(V) \) has a basis \(\{ 1, v, iv, \sigma \} \), \(\sigma = v - iv \), and being monomials, one gets immediately
\[
1 = \sigma, \quad iv = iv, \quad iv = iv, \quad iv = iv.
\]

This gives
\[
\theta(1 \otimes 1) = \sigma \otimes 1, \quad \theta(v \otimes 1) = iv \otimes 1,
\]
\[
\theta(iv \otimes 1) = -v \otimes 1, \quad \theta(\sigma \otimes 1) = -1 \otimes 1.
\]
Thus $\Lambda^+(V)$ has a base $\{(1 \otimes 1 + \sigma \otimes i), (v \otimes 1 + iv \otimes i)\}$ and $\Lambda^-(V)$ has a base $\{(1 \otimes 1 - \sigma \otimes i), (v \otimes 1 - iv \otimes i)\}$. Then the maps

$$v \mapsto \Lambda^+(V) : x \mapsto x \otimes 1 + ix \otimes i,$$
$$v \mapsto \Lambda^-(V) : x \mapsto x \otimes 1 - ix \otimes i$$

are respectively conjugate linear and linear.

Thus, if ξ is a complex line bundle

$$\Lambda^+_{\text{ev}}(\xi) = 1, \quad \Lambda^+_{\text{od}}(\xi) = \pi_{\mathbb{R}}^\xi,$$
$$\Lambda^-_{\text{ev}}(\xi) = 1, \quad \Lambda^-_{\text{od}}(\xi) = \pi_{\mathbb{R}}^\xi.$$

To determine the map ϕ_x, let $x = (a + bi)v$, so that:

$$F_x(1) = x, \quad F_x(v) = x \otimes v = -bv, \quad F_x(i) = x \otimes iv = av, \quad F_x(\sigma) = 0,$$

and

$$< F_x^*, 1 > = < v, x > = a = < x' \otimes 1, 1 >,$$
$$< F_x^*, iv > = < iv, x > = b = < x' \otimes 1, 1 >,$$
$$< F_x^*, v > = < \sigma, x \otimes v > = -b = < \sigma' \otimes iv, v >,$$
$$< F_x^*, iv > = < \sigma, x \otimes iv > = a = < \sigma' \otimes iv, iv >.$$

So

$$F_x^*(1) = 0, \quad F_x^*(v) = a, \quad F_x^*(iv) = b, \quad F_x^*(\sigma) = (-b + ai)v = ix.$$

Thus

$$\phi_x(1 \otimes 1 + \sigma \otimes i) = x \otimes l + ix \otimes i,$$
$$\phi_x(1 \otimes 1 + \sigma \otimes i) = x \otimes l - ix \otimes i$$

and if $x \in S(V)$, $\phi_x^2 = 1$, so ϕ induces the standard trivialization by sending $ze \in \pi^*(\xi)_{\bar{z}}$ into z (or \bar{z} for the conjugate bundle). **
Corollary: If ξ is the conjugate of the canonical bundle over $\mathbb{CP}(n-1)$, then $U(\xi) = p^{-1}(\xi - \xi) \in \tilde{K}(\mathbb{CP}(n))$.

Proof: Identifying $\mathbb{CP}(n)$ with $T(\xi)$, the bundle ξ over $\mathbb{CP}(n)$ is precisely the pullback of the bundle ξ over $\mathbb{CP}(n-1)$ with the standard trivialization. **

Corollary: Let ξ be an oriented $2n$ plane bundle over B with Pontrjagin class $\mathcal{P}(\xi) = \prod_{i=1}^{n} (1 + x_i^2)$ and let $\psi^H: \tilde{H}^*(\xi;\mathbb{Q}) \to H^*(B;\mathbb{Q})$ be the Thom isomorphism defined by the orientation class of ξ. Then

$$\psi^H(\text{ch}(U(\xi))) = \prod_{i=1}^{n} (e_x^i - e_x^{-i})/x_i.$$

Note: $(e_x^i - e_x^{-i})/x = (\Sigma x^i_j / j! - \Sigma(-x)^j / j!) / x = (2\sum_{j\text{ odd}} x^j / j! / x$ is a power series in x^2. Thus $\psi^H(\text{ch}(U(\xi)))$ is a rational power series in the Pontrjagin classes of ξ.

Proof: Since the Thom homomorphism and U are multiplicative, it suffices to prove this when ξ is the conjugate of the canonical bundle over $\mathbb{CP}(n-1)$. If $\tilde{\alpha} = c_1(\xi) \in H^2(\mathbb{CP}(n);\mathbb{Z})$, $U(\xi) = p^{-1}(\xi - \xi) \in \tilde{K}(\mathbb{CP}(n))$, so $\text{ch}(U(\xi)) = e^{\tilde{\alpha}} - e^{-\tilde{\alpha}}$, while the orientation class is $\tilde{\alpha}$, so $\psi^H(\text{ch}(U(\xi))) = (e^{\tilde{\alpha}} - e^{-\tilde{\alpha}})/\tilde{\alpha}$. **

From this one has the integrality theorem:

Theorem: Let M^{2n} be an oriented manifold and let $x \in \mathcal{T}^2(M)$. Then

$$\text{ch}(x) \cdot \delta(\tau)[M] \in \mathbb{Z}$$

where $\delta(\tau) \in H^*(M;\mathbb{Q})$ is given by the polynomial in the tangential Pontrjagin classes of M such that when $\mathcal{P}(\tau) = \prod_{i=1}^{n} (1 + x_i^2)$ formally, then $\delta(\tau) = \prod_{i=1}^{n} (x_i / \tanh(x_i/2)).$
Proof: Since \(\pi^*(x) \cup u(t) \in K^{n+2n}(Dt, St) \),

\[
\{ \pi^*(x) \cup u(t) \}[Dt, St] = \text{ch}(\pi^*x \cdot u(t)) \cdot \mathcal{J}(Dt)[Dt, St] \cdot p(1)^{-n-3/2}
\]

so \(\text{ch}(\pi^*x \cdot u(t)) \cdot \mathcal{J}(Dt)[Dt, St] \in \mathbb{Z} \). Then \(c(Dt) = c(\pi^* \circ e) = \pi^*c(\tau \circ \alpha) \)

\[= \pi^* \prod_{i=1}^{n} (1 + x_i)(1 - x_i), \text{ so } \mathcal{J}(Dt) = \pi^*(\prod_{i=1}^{n} (x_i/e^{-x_i})(-x_i/e^{-x_i}) \text{ and })
\]

\[\text{ch}(\pi^*x \cdot u(t)) \cdot \mathcal{J}(Dt) = (\phi^H)^{-1}(\text{ch} \cdot \prod_{i=1}^{n} (e^{x_i} - e^{-x_i})(x_i/e^{-x_i})(-x_i/e^{-x_i}) \text{ while })
\]

\[\frac{e^y - e^{-y}}{y} \cdot \frac{y}{(e^y - 1)(e^{-y} - 1)} = y \left(\frac{e^y - e^{-y}}{(e^y - 1)(1 - e^{-y})} \right), \]

but

\[\frac{U - U^{-1}}{(U - 1)(1 - U^{-1})} = \frac{U^2 - 1}{(U - 1)^2} = \frac{U + 1}{U - 1} = \frac{U^{1/2} + U^{-1/2}}{U^{1/2} - U^{-1/2}}, \]

so

\[y \left(\frac{e^y - e^{-y}}{(e^y - 1)(1 - e^{-y})} \right) = y \left(\frac{e^{y/2} + e^{-y/2}}{e^{y/2} - e^{-y/2}} \right) = \frac{y}{\tanh(y/2)}. \]

Thus

\[\text{ch}(x) \cdot 8(t)][Dt, St] \in \mathbb{Z}, \]

and since oriented bundles are naturally and multiplicatively oriented for integral cohomology, this is precisely \(\text{ch}(x) \cdot 8(t)][M] \). **

Note: Since

\[\frac{x}{\tanh(x/2)} = x \left(e^{x/2} + e^{-x/2} \right)/(e^{x/2} - e^{-x/2}), \]

\[= x(2 + 2(x/2)^2/2! + \ldots)/(x + 2(x/2)^3/3! + \ldots), \]

\[= 2 + \ldots \]
the class \(\delta(\tau) = \prod_1^n (x_1/\tanh(x_1/2)) \) is far from stable. In order to eliminate the power of 2 which is causing the problem, one defines:

Definition: If \(\xi \) is a real vector bundle with Pontrjagin class \(\mathcal{P}(\xi) \) expressed formally as \(\prod_1^n (1 + x_1^2), \dim x_1 = 2 \), then the Hirzebruch \(L \) class of \(\xi \) is given by the formal product

\[
L(\xi) = \prod_1^n (x_1/\tanh(x_1)).
\]

Note: \(L(\xi) \) is a stable class and is closely related to \(\delta \). In particular, \(2y/\tanh y \) differs from \(y/\tanh(y/2) \) in that the component of \(y \) has been multiplied by \(2^y \). Thus

\[
2^n L(\tau)[M^{2n}] = \prod_1^n (2x_1/\tanh x_1)[M^{2n}],
\]

\[
= 2^n \prod_1^n (x_1/\tanh(x_1/2))[M^{2n}],
\]

\[
= 2^n \delta(\tau)[M^{2n}],
\]

giving

\[
L(\tau)[M^{2n}] = \delta(\tau)[M^{2n}].
\]

In order to find classes \(x \in K(M) \), one may make use of the \(K \) theory Chern classes of \(\tau \otimes \mathbb{C} \). Unfortunately, \(K \) theory is badly behaved for conjugation and one must make some modifications.

Let \(\xi \) be a real \(2n \) plane bundle over a space \(B \), and define \(K \) the Pontrjagin classes \(\pi^i(\xi) \in K(B) \) by

\[
\Sigma s^i \pi^i(\xi) = \pi_s(\xi) = \Sigma t^i p^i(\gamma_1(\xi \otimes \mathbb{C})),
\]

\[
= \lambda_t/(1-t)^j(\xi \otimes \mathbb{C} - 2n \mathbb{C})
\]
where \(s = t - t^2 \). \textbf{Note:} \(\pi^i(\xi) \) is a polynomial with integral coefficients in the Chern classes, hence belongs to \(K(B) \).

\textbf{Note:} If \(\eta \) is a complex line bundle, then

\[
\lambda_u(\eta \otimes \xi - 2) = \lambda_u(\eta \otimes \tilde{\eta} - 2),
\]

\[
= (1 + u)(1 + u\tilde{\eta})/(1 + u)^2,
\]

so

\[
\lambda_{t/(1-t)}(\eta \otimes \xi - 2) = \frac{(1 + (t/1-t)\eta)}{(1/1-t)} \cdot \frac{(1 + (t/1-t)\tilde{\eta})}{(1/1-t)},
\]

\[
= (1 - t + t\eta)(1 - t + t\tilde{\eta}),
\]

\[
= [1 + t(\eta - 1)][1 + t(\tilde{\eta} - 1)],
\]

\[
= 1 + t(\eta + \tilde{\eta} - 2) + t^2(2 - \eta - \tilde{\eta})
\]

since \(\eta \cdot \tilde{\eta} = 1 \).

If the Pontrjagin class of the bundle \(\xi \) is expressed formally as

\[
\prod_{j=1}^{n}(1 + x_j^2),
\]

so that \(c(\eta \otimes \xi) = \prod_{j=1}^{n}(1 + x_j)(1 - x_j) \), then

\[
\text{ch} \xi \prod_{j=1}^{n}(1 + x_j) = \prod_{j=1}^{n}(1 + t(e_j e^{x_j - 2}) + t^2(2 - e_j e^{x_j - 2}))
\]

so

\[
\text{ch} \n_s(\xi) = \prod_{j=1}^{n}(1 + s(e_j e^{x_j - 2}))
\]

and \(\text{ch}_n(\xi) \) is the \(i \)-th elementary symmetric function in the variables \(e_j e^{x_j - 2} \).

\textbf{Definition:} If \(\xi \) is a real vector bundle over \(B \) with \(e(\xi) \) expressed formally as \(\prod_{j=1}^{n}(1 + x_j^2) \), let \(s_s(e(\xi)) = H^*(B; \mathbb{Q}) \) be given as the \(s_s \) symmetric function in the variables \(e_j e^{x_j - 2} \).
Proposition: Let M be an oriented manifold. Then for all $x \in K^w(M)$,

$$\{ch(x)L(\tau)\}[M] \in Z[1/2].$$

In particular,

$$\{s_\omega L(\tau)\}[M] \in Z[1/2]$$

for all ω.

Proof: This will follow at once from $L(\tau) = ch(u)\delta(\tau)$ with $u \in K(M)[1/2]$. Let $(x/\tanh x) = v(x/\tanh(x/2))$, $a = e^x + e^{-x}$, and $b = e^x$ giving

$$v = \tanh(x/2)/\tanh(x),$$

$$= \frac{(e^x - 1)(1-e^{-x})}{e^x - e^{-x}} \cdot \frac{e^x - e^{-x}}{e^x + e^{-x}},$$

$$= \frac{(b-1)(1-b^{-1})(b+b^{-1})}{(b-b^{-1})^2} \cdot \frac{b^2}{b^2},$$

$$= \frac{(b-1)(b^2+1)}{(b-1)^2} \cdot \frac{b^{-1}}{b^{-2}},$$

$$= \frac{(b^{-1}+1)/(b^2+b^{-1}) = (a+2)/(a+4),}{(b-1)^2} \cdot \frac{b^{-1}}{b^{-1}},$$

$$= l - 2/(a+4),$$

$$= 1 - 1/2(1/(1+a/4)),$$

$$= 1 - 1/2[1 - a/4 + (a/4)^2 - ...],$$

$$= 1/2 + 1/2(a/4) - 1/2(a/4)^2 + 1/2(a/4)^3 - ...,$$

$$\in Z[1/2][e^x + e^{-x}].$$

Thus $L(\tau)/\delta(\tau) \in ch(K(M)[1/2])$, being a symmetric polynomial in the $e^x + e^{-x}$ with coefficients in $Z[1/2]$. **
In order to evaluate the expressions $s_{\omega}(e^{i\varphi})L$, one may use:

Lemma: If ξ is a complex n-plane bundle then

$$s_{\omega}(e^{i\varphi})(\xi) = s_{2\omega}(e^{i\varphi})(\xi) + \sum \lambda_a s_{\lambda}(e^{i\varphi})(\xi)$$

with $n(\lambda) > 2n(\omega)$, $\lambda_a \in \mathbb{Z}$.

Proof:

$$e^{x} + e^{-x} - 2 = (e^{x} - 1)(1 - e^{-x}),$$

$$= (e^{x} - 1)^2 \cdot e^{-x},$$

$$= (e^{x} - 1)^2 \cdot \frac{1}{(1 + (e^{x} - 1))},$$

$$= (e^{x} - 1)^2 - (e^{x} - 1)^3 + (e^{x} - 1)^4 + \ldots$$

Thus the s_{ω} symmetric function in variables $e^{x} + e^{-x} - 2$ given by

$$s_{2\omega}(e^{i\varphi}) + \sum \lambda_a s_{\lambda}(e^{i\varphi})$$

where $\lambda_a \in \mathbb{Z}$, $n(\lambda) > 2n(\omega)$, and $s_{\mu}(e)$ is the s_{μ} symmetric function in variables $e^{x} - 1$.

Lemma: If M is a stably almost complex manifold of real dimension $2n$ then

$$L(\tau) = \{1 + \sum \lambda_a s_{\lambda}(e)^{i\varphi}\} \cdot J(M)$$

where $\lambda_a \in \mathbb{Z}[1/2]$, $n(\lambda) > 0$.

Proof: If $c(M) = H(1 + x_1)$, then

$$L(\tau) = H((e^{x_1} - 1)/\tanh(x_1)) \cdot J(M)$$
and
\[
\frac{e^x - 1}{\tanh x} = \frac{(e^x - 1)(e^x + e^{-x})}{e^x - e^{-x}} \cdot \frac{e^x}{e^x},
\]
\[
= (u-1)(u^2+1)/(u^2-1), \quad (u = e^x)
\]
\[
= (u^2+1)/(u+1),
\]
\[
= \frac{[(u-1)+1]^2+1}{(u-1)+2},
\]
\[
= (2+2a+a^2)/(2+a), \quad (a = u-1 = e^x-1)
\]
\[
= \{1 + a + (a^2/2)\} \cdot \{1 - a/2 + (a/2)^2 - \ldots\},
\]
so \(L(r)/S(M) = 1 + \alpha\), where \(\alpha\) is symmetric of positive degree in the \(x^2\) with coefficients in \(\mathbb{Z}[1/2]\). **

In \(H^\bullet(BSO; \mathbb{Q})\) one writes the Pontrjagin class formally as \(\Pi(1+x^2_j)\), \(\dim x_j = 2\), and defines \(s^\omega(\mathcal{O})\) and \(s^\omega(e)\) as the \(s^\omega\) symmetric functions of the variables \(x^2_j + e^{x_j-2} \) respectively, and defines \(L\) as \(\Pi(x_j/\tanh(x_j))\). Then \(\Delta s^\omega(\mathcal{O}) = \sum_{\omega' \cup \omega'' = \omega} s^\omega(\mathcal{O}) \otimes s^\omega''(\mathcal{O})\), \(\Delta s^\omega(e) = \sum_{\omega' \cup \omega'' = \omega} s^\omega(e) \otimes s^\omega''(e)\), and \(\Delta L = L \otimes L\).

Let \(\rho : \mathbb{H}(BSO; \mathbb{Q}) \to Q[\beta_1] : z \mapsto \Sigma(s^\omega(\mathcal{O})L)[z] \cdot \beta_\omega\) and let \(\rho' : \mathbb{H}(BSO; \mathbb{Q}) \to Q[\alpha_1] : z \mapsto \Sigma s^\omega(\mathcal{O})[z] \cdot \alpha_\omega\). Then let

\[
B_n = \{z \in \mathbb{H}(BSO; \mathbb{Q}) \mid \rho(z) \in \mathbb{Z}[1/2][\beta_1], \rho'(z) \in \mathbb{Z}[\alpha_1]\}
\]

and

\[
B^\bullet = \bigcap_{n} B_n \subseteq H^\bullet(BSO; \mathbb{Q}).
\]

For \(p\) an odd prime, let \(\rho_p : B_p \to Z_p[\beta_1]\) by letting \(\rho_p(z)\) be reduced \(mod\ \ 1/2 \in Z_p\) and let \(\rho'_2 : B_2 \to Z_2[\alpha_1]\) by \(\rho'_2(z) = \rho'(z)\) reduced \(mod\ 2\).
One then has:

Lemma: There exist stably almost complex manifolds \mathcal{M}_{21}^p of dimension $4i$ for all primes p and integers i so that

a) For p odd, $\rho_p [\mathcal{M}_{21}^p]$ has largest monomial

1) β_i if $2i + 1 \neq p^s$ for any s,

2) $[\delta^{s-1}/(p^{s-1} - 1)]^p$ if $2i + 1 = p^s$ for some s.

b) $\rho_2 [\mathcal{M}_{21}^2]$ has largest monomial α_i.

Proof: For the 2 primary case, one has $s_{(1)}(\mathcal{O})[\mathcal{M}(2i)] = 2i + 1$, so let $\mathcal{M}_{21}^2 = \mathcal{C}(2i)$. In the odd primary case, let \mathcal{M}_{21}^p be as given in Chapter VII. From the computations for complex manifolds, for \mathcal{M}_{21}^p complex one has

$$(s_{\omega(e^\mathcal{O})}L)[M] = (s_{2\omega(e)^2})[M] + \sum_{\lambda} \alpha_{\lambda}(s_{\lambda}(e)^2)[M]$$

with $a_{\lambda} \in \mathbb{Z}[1/2]$, $n(\lambda) > 2n(\omega)$. For the manifolds \mathcal{M}_{21}^p the largest monomial is then known from Chapter VII.

Theorem: a) $\Omega_{\ast}/\text{Torsion}$ is a polynomial ring over \mathbb{Z} on classes x_i of dimension $4i$, and the classes x_i are characterized by

$$s_{(1)}(\mathcal{O}(r))[x_i] = \begin{cases} \pm 1 & \text{if } 2i + 1 \neq p^s \text{ for any prime } p \text{ and integer } s, \\ \pm p & \text{if } 2i + 1 = p^s \text{ for some prime } p \text{ and integer } s. \end{cases}$$

b) The forgetful homomorphism

$$F_{\ast} : \Omega_{\ast} \longrightarrow \Omega_{\ast}/\text{Torsion}$$

is epic.

c) All relations among the Pontrjagin numbers of oriented manifolds follow from the integrality of the Pontrjagin classes and the conditions

$$s_{\omega(e^\mathcal{O})}L[\mathcal{O}] \in \mathbb{Z}[1/2]$$

from K theory, i.e. $\Omega_{\ast} \cong \mathbb{B}_{\ast}$.
Proof: One considers $\tau F^0_{*} \subseteq B_{*}$ with $e_{21}^P = \tau F^0_{*}(M_{21})$ as in Chapter VII, showing that B_{*} is polynomial with $\tau F^0_{*} = \tau F_{*}^{SO} = B_{*}$. The condition on the characteristic numbers for generators in immediate since if $\dim M = 4$,

$$s_{(1)}(\mathcal{O})[M] = \{s_{(1)}(\mathcal{O})_{L}[M],$$

$$= \{s_{(21)}(e)_{L}[M],$$

$$= s_{(21)}(c)[M],$$

and the characterizing numbers for generators of \mathcal{U}_{*} are known. **

Note: The use of the Hirzebruch L class and relations arising as in the Atiyah-Singer index theorem was suggested to me by Hattori (private communication). It is also possible (as in Stong [17]) to use the \hat{A} class defined by $\Pi(x_i/2)/\sinh(x_i/2)$. To see that this is equivalent to the above, one has the following argument (of Dcm Anderson)

$$(x/2)/\sinh(x/2) = u x / \tanh(x)$$

gives

$$u = (\tanh x/2 \sinh(x/2)),$$

$$= (e^{-x} - e^{-x})/(e^x + e^{-x})(e^{x/2} - e^{-x/2}),$$

and squaring this

$$u^2 = (e^{2x} + e^{-2x} - 2)/(e^{2x} + e^{-2x} + 2)(e^x + e^{-x} - 2)$$

and letting $a = e^x - e^{-x} - 2$, $e^x + e^{-x} = a + 2$, so

$$u^2 = (a+2)^2 - 4/(a+2)^2 \cdot a = (a^2 + 4a)/(a+2)^2,$$

$$= (a+4)/(a+2)^2 = (1+a/4)(1 - a/2 + (a/2)^2 - ...)^2.$$
Thus \(u^2 \) is a power series over \(\mathbb{Z}[1/2] \) in \(a \), with leading term 1, and from the binomial theorem
\[
\sqrt{1 + v} = 1 + \sum_{k=0}^{\infty} \frac{1}{2(-1/2)} \ldots \left(\frac{-2k-1}{2}\right)v^{k+1},
\]
so \(u \) is a power series over \(\mathbb{Z}[1/2] \) in \(a \) with leading term 1. Thus
\[
\hat{A} = \text{ch}(\xi) \mathcal{L}
\]
with \(\xi \in K(BO)[1/2] \) an invertible class.

Oriented Bordism

As previously noted, one of the main reasons for interest in oriented cobordism is the realizability of integral homology. The main study of these bordism groups was made by Conner and Floyd [36].

Theorem: For every CW pair \((X,A)\), \(H^G_*(X,A) \otimes \mathbb{Q} \) is a free \(\mathbb{Q} \)-module isomorphic to \(H_*(X,A;\mathbb{Q}) \otimes (U^G_0 \otimes \mathbb{Q}) \).

Proof: \(\pi_*(X/A, \mathcal{TBR}) \rightarrow H_*(X/A, \mathcal{TBR}; \mathbb{Z}) \) is an isomorphism modulo torsion. **

Lemma: There is a 2 primary homotopy equivalence
\[
f : \mathcal{TBR} \rightarrow K(G_0^N).\]

Proof: Let \(\mathcal{TBR} \) be mapped into a product of spectra \(K(Z,n(\omega)) \) realizing the classes \(\mathcal{O}_\omega U \), and spectra \(K(Z_2,\mathfrak{n}_1) \) realizing classes dual to the torsion of \(H^G_0 \) to define a map \(f \). The induced homotopy homomorphism is monic, with finite odd order cokernel in each dimension. **
Theorem: For any CW pair \((X,A)\), there is an isomorphism mod the Steenrod class of finite groups of odd order

\[
f_* : \pi_*(X,A) \rightarrow H_*(X; \mathbb{Z}_2).
\]

Proof: By the lemma, the induced homomorphism

\[
f_* : \pi_*(X/A) \rightarrow \pi_*(X/A) \rightarrow \pi_*(\Sigma(X/A))
\]

is an isomorphism mod odd torsion. **

Theorem: Let \((X,A)\) be any CW pair. For each class \(c \in H_n(X,A;\mathbb{Z})\) there is an integer \(k\) with

\[(2k+1)c\text{ represented by } g_*([M,\mathbb{Z}]) \text{ with } g : (M,\mathbb{Z}) \rightarrow (X,A) \text{ an oriented bordism element of } (X,A).
\]

Proof: The evaluation homomorphism \(e_n : \Omega_n SO(X,A) \rightarrow H_n(X,A;\mathbb{Z})\) is induced by the composite

\[TBSO \rightarrow K(SO) \xrightarrow{\pi} K(SO) = K(\mathbb{Z}), \pi \text{ being the projection. By the previous theorem, } \text{coker } e_n \text{ is finite of odd order. **}

To determine the odd primary structure of \(\Omega_* SO(X,A)\), one has the homomorphisms

\[
\Omega_* SO(X,A) \xrightarrow{T_*} \Omega_* U(X,A) \xrightarrow{S_*} \Omega_* SO(X,A)
\]

with the composite being an isomorphism modulo 2 primary torsion.

Theorem: If \((X,A)\) has no torsion in its integral homology then

\(\Omega_* SO(X,A)\) is a free \(\Omega_* SO\) module isomorphic to \(H_*(X,A) \otimes \Omega_* SO\). In particular, the evaluation homomorphism \(e : \Omega_* SO(X,A) \rightarrow H_*(X,A;\mathbb{Z})\) is epic. If \(\{x_i\}\) is a homogeneous base of \(H_*(X,A;\mathbb{Z})\) and \(f_i : (M_1,\mathbb{Z}_1) \rightarrow (X,A)\) is a map of an oriented manifold into \((X,A)\) with \(f_i_*([M_1,\mathbb{Z}_1]) = x_i\), then

\(\Omega_* SO(X,A)\) is the free \(\Omega_* SO\) module on the classes of the \((M_1, f_i)\).
Proof: \(e': \Omega^U_n(X,A) \to H_n(X,A;\mathbb{Z})\) is epic, so \(e\) is epic. Choose a
collection of maps \((M_i,f_i)\) as above, defining a homomorphism

\[\gamma : H_n(X,A;\mathbb{Z}) \otimes \Omega^S_n \to \Omega^S_n(X,A).\]

Considering the composite \(f_\# \circ \gamma : H_n(X,A;\mathbb{Z}) \otimes \Omega^S_n \to H_n(X,A;\Omega^S_n)\), one
may write \(H_n(X,A;\Omega^S_n)\) as \(H_n(X,A;\mathbb{Z}) \otimes \Omega^S_n\) by the universal coefficient
theorem (since \(H_n(X,A;\mathbb{Z})\) is torsion free), with \(f_\# \circ \gamma(x_1 \otimes 1) = x_1 \otimes 1\).
In this form \(f_\# \circ \gamma\) is simply

\[1 \otimes f_\# : H_n(X,A;\mathbb{Z}) \otimes \Omega^S_n \to H_n(X,A;\mathbb{Z}) \otimes \Omega^S_n\]

where \(f_\#\) is the homotopy homomorphism induced by \(f\). The construction of \(f\)
shows that \(f_\#\) and hence \(f_\# \circ \gamma\) and \(\gamma\) are monic with odd primary cokernel.

Let \(g_i : (N_1, \partial N_1) \to (X,A)\) be complex bordism elements with
\(g_i([N_1, \partial N_1]) = x_1\) and use these to define homomorphisms giving a commutative
diagram

\[\begin{array}{cccc}
H_n(X,A;\mathbb{Z}) \otimes \Omega^S_n & \xrightarrow{1} & H_n(X,A;\mathbb{Z}) \otimes \Omega^S_n & \xrightarrow{\gamma} \\
\downarrow \cong & & \downarrow \gamma & \\
\Omega^U_n(X,A) & \xrightarrow{S_n} & \Omega^S_n(X,A) & \xrightarrow{\gamma} \\
\end{array}\]

Suppose \(\gamma\) maps onto \(\Omega^S_n(X,A)\) for \(j < n\). Then since \(S_n\) has 2
primary cokernel, there is an integer \(k\) with \(2^k a \in \text{im} \gamma \subseteq \text{im} \gamma\) for all
\(a \in \Omega^S_n(X,A)\). In particular, for all \(i\) with \(\dim x_i = n\),

\[2^k([M_i,f_i]) = \Sigma [N_j,g_j]P_j\]

with \(P_j = S_n Q_j \in \Omega^S_n\). Applying \(e\) gives at once

\[2^k([M_i,f_i]) = 2^k([N_j,g_j]) + \Sigma [N_j,g_j]P_j\]
with \(p_j \in \Omega^0 \) having positive dimension. By the inductive assumption, this gives \(2^k [N_j, s_j] \in \text{im}\, m \). In particular, for any \(\alpha \in \Omega^0_n(X,A) \)

\[
2^k \alpha = 1 [N_j, s_j] R_j
\]

with \(R_j \in S^U_n \) and \(\text{dim} \, N_j \leq n \). Thus \(2^k (2^k \alpha) \in \text{im}\, m \). Since \(m \) has odd primary cokernel, this gives \(\alpha \in \text{im}\, m \). Thus \(m \) is epic by induction. **

Theorem: Let \((X,A)\) be a finite CW pair such that all torsion of \(H_e(X,A;Z) \) has order 2. Then two classes in \(\Omega^0_n(X,A) \) are the same if and only if they have the same \(Z \) and \(Z_2 \) cohomology characteristic numbers.

Proof: One has \(\Omega^0_n(X,A) = H_e(X,A;\Omega^U_n) \) since neither group has odd torsion (the first by being a direct summand of \(\Omega^U_n(X,A) \) except for the prime 2, the second by the universal coefficient theorem) and thus all torsion in \(\Omega^0_n(X,A) \) has order 2. If all \(Z \) cohomology characteristic numbers of \(\alpha \) vanish, then \(\alpha \) is a torsion class so \(2\alpha = 0 \). If also all \(Z_2 \) characteristic numbers vanish, then \(\alpha \) maps to zero in \(W_e(R,2)(X,A) \) and thus \(\alpha = 2\beta \).

Since \(\beta \) is also a torsion class, \(0 = 2\beta = \alpha \). **

Making use of the arguments for \(\Omega^U_n(X,A) \) one also obtains:

Theorem: For any finite CW pair \((X,A)\) having no 2 primary torsion, there are no 2 primary relations among the integral characteristic numbers for \(\Omega^0_n(X,A) \). If \((X,A)\) has no \(p \)-primary torsion for an odd prime \(p \), then all \(p \) primary relations among the integral characteristic numbers for \(\Omega^0_n(X,A) \) are given by

\[
\{ f^*(\text{ch}(x)^{\omega} (e \gamma(\tau))L(\tau)) [M, \omega M] \in Z[1/2] \}
\]

(Where \(f : (M, \omega M) \to (X,A) \) for all \(\omega \) and all \(x \in K^*(X,A) \)). **
Relation to Framed Cobordism

Proposition: A framed manifold of positive dimension bounds an oriented manifold; i.e. the homomorphism \(F^n : \Omega_n^{fr} \to \Omega_n^{SO} \) induced by the forgetful functor is the zero homomorphism if \(n > 0 \). Further, \(F_0 : \Omega_0^{fr} \to \Omega_0^{SO} = \mathbb{Z} \) is an isomorphism.

Proof: Oriented cobordism class is determined by \(\mathbb{Z} \) and \(\mathbb{Z}_2 \) cohomology characteristic numbers which must vanish on positive dimensional framed manifolds. Note: One may also prove this by noting that \(F_\ast \) factors through complex cobordism. \(\ast \ast \)

Forming the relative cobordism theory \(\Omega_\ast(F) = \lim_{r \to \infty} \pi_r(\text{TBSO}_r, S^r, \ast) \), the resulting exact sequence will split up to give short exact sequences

\[
0 \to \Omega_n^{SO} \to \Omega_n(F) \to \Omega_{n-1}^{fr} \to 0
\]

for \(n-1 > 0 \), and

\[
0 \to \Omega_1^{SO} \to \Omega_1(F) \to \Omega_0^{fr} \to \Omega_0^{SO} \to 0.
\]

\[
\begin{array}{c|c|c|c}
\mathbb{Z} & \mathbb{Z} & \mathbb{Z} & \mathbb{Z} \\
0 & 0 & Z & Z
\end{array}
\]

The main questions are then the nature of the extension in these sequences and the invariants of framed cobordism obtainable by characteristic numbers.

First examining the torsion subgroup of \(\Omega_n^{SO} \), one notes that since Stiefel-Whitney numbers detect the torsion, this subgroup may be split.

In particular, the torsion subgroup may be analyzed by mapping this sequence into the relative sequence for framed and unoriented cobordism. The only invariant of framed cobordism arising from Stiefel-Whitney numbers is the 2 primary Hopf invariant obtained by evaluating the top dimensional
Stiefel-Whitney class. (Note: Since $w_1(v) = 0$ for an oriented manifold with framed boundary, this invariant will be non-zero only for $n = 2, 4,$ or 8.)

To see that no additional 2 primary information is obtainable, consider

$$S^n \overset{f}{\longrightarrow} TBSO \overset{r}{\longrightarrow} \Pi K(Z_2, \ast + r) \times \Pi K(Z_2, \ast + r)$$

where f_r is the unstable 2 primary homotopy equivalence similar to that of the previous section. The only 2 primary information obtainable from oriented cobordism is then the same as that obtained from the map $S^n \longrightarrow K(Z, r)$ realizing the fundamental class. In particular, since the \mathbb{Z}_2 cohomology map induced by $K(Z, r) \longrightarrow K(\mathbb{Z}_2, r)$ is epic, corresponding to the map $TBSO \longrightarrow TBO$, no new information can be obtained.

Turning to the torsion free structure, consider an oriented manifold V^n with framed boundary. Corresponding to an imbedding $V^n \hookrightarrow H^{n+r}_r$ one has the normal map $\hat{v} : (V, \mathcal{B}V) \longrightarrow (BSO_r, \ast)$ by interpreting the framing of the boundary as a deformation of the normal map of $\mathcal{B}V$ to a point. One may then form the Pontrjagin numbers of $(V, \mathcal{B}V)$ which will be integers. Since the only 2 primary relations among the integral characteristic numbers of oriented manifolds follow from integrality of the Pontrjagin numbers, this shows that the relative sequence splits insofar as the prime 2 is concerned and that no 2 primary information about framed cobordism is obtainable from integral cohomology characteristic classes.

Turning to the characteristic numbers $s_\omega(e^{\phi})L(\tau)[V, \mathcal{B}V]$, one has the class $U(\tau) \in K^*(\mathcal{B}Dr, St)$ and for any $x \in K^*(V, \mathcal{B}V)$, one has $\pi^*(x) \cdot U(\tau) \in K^*(\mathcal{B}Dr, \mathcal{B}3Dr)$. Note: $\mathcal{B}Dr \neq St$. In particular, $\chi(\mathcal{B}V) = \gamma$ is integral for all $x \in K^*(V, \mathcal{B}V)$. Since $\tau \in \mathcal{B}V$ and $n \in K(V, \mathcal{B}V)$ one has $s_\omega(e^{\phi})(\tau) \in \chi K(V, \mathcal{B}V)$ if $n(\omega) > 0$, and $L(\tau) = ((1/2)^{n/2} + \chi(\mathcal{B})) \delta(\tau)$ with
\[\theta \in K(V, 3V)[1/2]. \] Thus \(s_\omega(e_\theta)L(\tau)[V, 3V] \in Z[1/2] \) for all \(\omega \) if and only if \(L(\tau)[V, 3V] \in Z[1/2] \).

Since a closed oriented manifold has \(L(\tau)[M] = \delta(\tau)[M] \in Z \), this gives

Theorem: A necessary and sufficient condition that an oriented manifold with framed boundary have the same Pontrjagin numbers as a closed oriented manifold is that the \(L \) number be integral.

Note: If the class \(L(\xi)_h \) is expressed in the form of an integral polynomial in the Pontrjagin classes with relatively prime coefficients, divided by an integer \(\mu(L)_h \), then \(\mu(L)_h \) is odd. This is immediate from the lack of 2 primary relations.

Since the homomorphism \(L' : \Omega_\#(F) \to Q \) sends \(\Omega^{\text{SO}}_\# \) into \(Z \), one has induced a homomorphism \(L'' : \Omega^{\text{fr}}_\# \to Q/Z \). One then has:

Theorem: The homomorphism \(L'' : \Omega^{\text{fr}}_\# \to Q/Z \) coincides with the odd primary part of the Adams invariant \(e_\xi \); i.e., for \(\alpha \in \Omega^{\text{fr}}_\# \),
\[e_\xi(\alpha) = (a/b) + (c/2^k) \] for some integers \(a, b, c, \) and \(k \), with \(b \) odd, and \(L''(\alpha) = (a/b) \). In particular, \(L'' \) and \(e_\xi \) coincide when reduced to \(Q/Z[1/2] \).

Proof: If \(\alpha = [M] \), choose a stably almost complex manifold \(V \) with \(\partial V = M \). Then
\[L''(\alpha) = L(\tau)[V, M], \]
\[= \{1 + \sum b_\lambda s_\lambda(e)\}_\#(V)[V, M], \]
\[= e_\xi(\alpha) + \sum b_\lambda s_\lambda(e)S(V)[V, M], \]
where \(b_\lambda \in Z[1/2] \), \(n(\lambda) > 0 \). Since each \(s_\lambda(e)S(V)[V, M] \in Z \),
\[L''(\alpha) = e_\xi(\alpha) + (d/2^m) \] for some integers \(d \) and \(m \). Since the denominator of the \(L \) polynomial is odd, one also has \(L''(\alpha) = (a'/b') \) for some integers.
a' and b' with b' odd. The result is immediate by combining these expressions. **

Note: This shows that the L'' invariant gives less information than...

Relation to Unoriented Cobordism

Letting $G_n : \Omega^{SO}_n \to \zeta_n$ be the homomorphism induced by the forgetful functor, the two primary analysis of Ω^{SO}_n has given fairly complete knowledge of G_n. In particular, the kernel of G_n is the ideal generated by 2, which is free abelian and so the relative group splits. The knowledge of $\mathcal{W}(R, 2)$ gives essentially complete description of the cokernel of G_n, which is a vector space and equal to the torsion subgroup of the relative group.

There are several approaches to finding a description of the relative groups $\Omega^{0, SO}_n$.

One approach is to link the exact sequences

$$
\begin{align*}
\Omega^{SO}_n & \xrightarrow{2} \Omega^{SO}_{n-2} \\
& \xrightarrow{\zeta_n} \mathcal{W}(R, 2) \\
0 & \xrightarrow{\mathcal{W}(R, 2)} \mathcal{T}_n \xrightarrow{d} \mathcal{T}_n \to 0
\end{align*}
$$

to give a long exact sequence

$$
\cdots \to \Omega^{SO}_n \xrightarrow{F_2} \mathcal{T}_n \xrightarrow{(3, d)} \Omega^{SO}_{n-1} \xrightarrow{(2, 0)} \Omega^{SO}_{n-2} \xrightarrow{\mathcal{T}_n} \cdots
$$

where ζ is the homomorphism taking the submanifold dual to v_1. (Note: $\zeta = 30_4$.) From this sequence, it is clear that

$$
\Omega^{0, SO}_n = \Omega^{SO}_{n-1} \xrightarrow{\mathcal{T}_n} \cdots
$$

This exact sequence was first noticed by Dold [46].
A semigeometric argument may be given as follows: Let \((V, M) \) be a manifold with oriented boundary and let \(f : V \to \text{RP}(\mathbb{N}) \) be a map with \(f^*\xi = \text{det}_V \), sending \(M \) to a point not in \(\text{RP}(\mathbb{N}-1) \). Make \(f \) transverse regular on \(\text{RP}(\mathbb{N}-1) \) keeping \(M \) fixed, to obtain a closed manifold \(W = f^{-1}(\text{RP}(\mathbb{N}-1)) \) and map \(f|_W : W \to \text{RP}(\mathbb{N}) \). Letting \(\nu \) denote the normal bundle of \(W \) in \(V \), \(\text{det}_W \nu = \nu \equiv f^*\xi \equiv \text{det}_V \nu |_W \), so \(\text{det}_W \nu \equiv \text{det}_V \nu |_W \otimes \text{det}_V \nu \) is trivialized. Thus one has an oriented bordism element of \(\text{RP}(\mathbb{N}) \). Identifying \(Dv \) with a tubular neighborhood of \(W \) in \(V \), \(W-(Dv)^0 \) is an oriented manifold with boundary \(M-Sv \) and may be used to give a cobordism of \((V,M) \) to \((Dv,Sv) \) (the union of the three pieces bounds \(V \times I \)). Thus one has defined a homomorphism \(\Omega_{n-1}^{SO} \to \Omega_{n-1}^{SO}(\text{RP}(\mathbb{N})) \).

The inverse homomorphism may be described as follows: Let \(g : X \to \text{RP}(\mathbb{N}) \) be an oriented bordism element and to it assign the class of \((Dg^*\xi, Sg^*\xi) \) in \(\Omega_{n-1}^{SO} \). Since \(g \) extends to \(Dg^*\xi \to D\xi \subset \text{RP}(\mathbb{N}) = \text{RP}(\mathbb{N}) \), automatically transverse recovering \(X \), this is clearly an inverse to the above.

Thus \(\Omega_{n-1}^{SO,\xi} = \Omega_{n-1}^{SO}(\text{RP}(\mathbb{N})) \) and the isomorphism with \(\Omega_{n-1}^{SO} \oplus \gamma_{n-2}^{SO} \) is obtained by sending \((X,g) \) to \((X,Y) \) where \(Y \subset X \) is the submanifold dual to \(g^*\xi \). That this is an isomorphism may be seen by noting that \(\Omega_{n-1}^{SO}(\text{RP}(\mathbb{N})) \) is isomorphic to \(\Omega_{n-1}^{SO} \) plus the reduced group \(\Omega_{n-1}^{SO}(\text{RP}(\mathbb{N})) \oplus \gamma_{n-2}^{SO} \).

Another proof may be given by using the Atiyah bordism approach. One has the cofibration sequence \(\text{RP}(1) \to \text{RP}(\mathbb{N}) \to \text{RP}(\mathbb{N})/\text{RP}(1) \), and \(\text{RP}(\mathbb{N})/\text{RP}(1) \) may be identified as the Thom space of \(2\xi \) over \(\text{RP}(\mathbb{N}-2) \). Since \(2\xi \) is an oriented bundle, there is a Thom isomorphism for oriented bordism (Note: If \(f : X \to BSO_n \) is a map, then \(Tf : T\text{U}_n \to TBSO_n \) may be thought of as a cohomology class in \(TBSO_n \) theory, which defines the orientation.) and one has the exact sequence obtained by applying \(\Omega_{n+1} \) and letting \(N \) go to \(\infty \).
Since the map $\text{TB}_{\text{SO}} \cdot \text{RP}(1) = \Sigma \text{TB}_{\text{SO}} \longrightarrow \text{TB}_{\text{SO}} \cdot \text{RP}(\infty) = \Sigma \text{TB}_{\text{O}}$ is just the suspension of the inclusion $\text{TB}_{\text{SO}} \longrightarrow \text{TB}_{\text{O}}$ induced by G, the relative group is precisely the homotopy of the cofiber or the bordism of $T(2\xi)$ up to dimension shifts.

This situation has been generalized slightly by George Mitchell (thesis, University of Virginia) who considers the bordism theory defined by maps $(V, 3V) \longrightarrow (X, A)$ with $3V$ oriented. This is denoted $\Omega_{n_0}^{SO}(X, A)$, and is given by the homotopy of the cofiber of the map

$$(A/\emptyset) \cdot \text{TB}_{\text{SO}} \cdot \text{RP}(1) \longrightarrow (X/\emptyset) \cdot \text{TB}_{\text{SO}} \cdot \text{RP}(\infty)$$

given by suspending

$$(A/\emptyset) \cdot \text{TB}_{\text{SO}} \longrightarrow (X/\emptyset) \cdot \text{TB}_{\text{O}}.$$

Up to dimension shift, this is the oriented bordism of the pair $((X/\emptyset) \cdot \text{RP}(\infty), (A/\emptyset) \cdot \text{RP}(1))$ or $(X \times \text{RP}(\infty), A \times \text{RP}(1) \cup X \times \ast)$.

Relation to Complex Cobordism

The homomorphism $S_* : \Omega_*^{U} \longrightarrow \Omega_*^{SO}$ has previously been examined in considerable detail. In particular, the kernel of S_* is free abelian so that the relative group $\Omega_*(S)$ splits as the direct sum of kernel S_* and cokernel S_*.
If one considers the composite
\[\Omega^U \xrightarrow{\pi} \Omega^{SO} \xrightarrow{\exp} (\Omega^{SO}/\text{Torsion}) \oplus \mathcal{T}_g, \]
writing \(\Omega^U \cong \mathbb{Z}[b_1] \) in the usual way, then since \(\pi \times \rho \) is monic, the kernel of \(S_\ast \) is the intersection of the ideals \(\ker(\rho S_\ast) \), generated by 2 and the \(b^2 \), and \(\ker(\pi X_\ast) \), generated by the \(b_{2i+1} \). Thus \(\ker(S_\ast) \) is the ideal generated by the elements \(b^2 \) and \(2b_{2i+1} (2i+1 \neq 2^s-1) \).

Since \(\mathbb{Z}[b_{2i}] \) maps isomorphically to \(\Omega^{SO}/\text{Torsion} \), the subgroup \(S_\ast(\mathbb{Z}[b_{2i}]) \) of \(\Omega^{SO} \) forms a complementary summand for \(\text{Torsion}(\Omega^{SO}_\ast) \). Thus, the torsion subgroup maps onto cokernel \(S_\ast \), which is therefore a \(\mathbb{Z}_2 \) vector space and forms the torsion subgroup of \(\Omega_\ast(S) \). In particular, \(S_\ast \) maps onto \(2\Omega^{SO}_\ast \) so that cokernel \(S_\ast \cong (\Omega^{SO}_\ast/2\Omega^{SO}_\ast)/\mathcal{T}_g^2 \), where \(\Omega^{SO}_\ast/2\Omega^{SO}_\ast \) is thought of as a subgroup of \(\mathcal{T}_g \). Since cokernel \(S_\ast \) maps monomorphically into the torsion subgroup of \(\Omega^{SO}_\ast \), this subgroup is detected by \(\mathbb{Z}_2 \) cohomology characteristic numbers, while the torsion free part is detected by integral cohomology characteristic numbers.

The Index

Let \(M^n \) be a closed oriented manifold of dimension \(n = 4k \). By Poincaré duality and the universal coefficient theorem, the pairing
\[H^{2k}(M; \mathbb{R}) \otimes_{\mathbb{R}} H^{2k}(M; \mathbb{R}) \to \mathbb{R} : x \otimes y \mapsto x \cup y[M] \]
where \(\mathbb{R} \) denotes the reals, is a nondegenerate pairing. Since \(\dim x = \dim y = 2k \) is even, one has \(x \cup y[M] = y \cup x[M] \), and this pairing is symmetric. One may then choose a base for \(H^{2k}(M; \mathbb{R}) \) so that the matrix of the pairing is diagonal. One then defines the index of \(M \), \(I(M) \), to be
the number of positive diagonal entries minus the number of negative diagonal entries. This function is extended to manifolds of dimension not divisible by 4 by letting \(I(M) = 0 \) in these cases.

Recalling that the only invariants of symmetric bilinear forms over the reals are the rank and the index, while an orientation preserving homotopy equivalence of closed manifolds must preserve the pairing, one has:

Theorem: The index of \(M \) is an invariant of the oriented homotopy type of \(M \). **

Theorem: The index has the following properties:

a) \(I(M + N) = I(M) + I(N) \), \(I(-M) = -I(M) \);

b) \(I(M \times N) = I(M) \cdot I(N) \);

c) If \(M \) bounds then \(I(M) = 0 \); and

d) \(I(\mathbb{CP}(2k)) = 1 \).

Thus, \(I : \Omega^{SO} \rightarrow \mathbb{Z} \) is the unique ring homomorphism taking the value 1 on each \(\mathbb{CP}(2k) \).

Proof: a) is clear for \(H^{2k}(M + N; \mathbb{R}) \) is the direct sum of \(H^{2k}(M; \mathbb{R}) \) and \(H^{2k}(N; \mathbb{R}) \), with the pairing being the 'sum' of the two pairings, while the pairing for \(M \) with orientation reversed is just the negative of that for \(M \).

To prove b), let \(P = M \times N \), with dimensions \(p \cdot m \), and \(n \) respectively. If \(p \not\equiv 0 \pmod{4} \), then at least one of \(m \) and \(n \) is not zero \(\pmod{4} \) so that \(I(P) \) and \(I(M) \cdot I(N) \) are both zero. If \(p = 4k \), then

\[
H^{2k}(P; \mathbb{R}) \cong \bigoplus_{s=0}^{2k} H^{s}(M; \mathbb{R}) \otimes H^{2k-s}(N; \mathbb{R})
\]

by the Künneth theorem. This vector space decomposes into the subspaces

\[
H^{s}(M; \mathbb{R}) \otimes H^{2k-s}(N; \mathbb{R}) \otimes H^{m-s}(M; \mathbb{R}) \otimes H^{2k+s-m}(N; \mathbb{R})
\]
for \(s < m/2 \), and the space

\[H^{m/2}(M; R) \otimes H^{n/2}(N; R), \]

with distinct summands being 'orthogonal' under the pairing and with the restriction of the pairing to each summand being nondegenerate.

If \(s < m/2 \), choose a base \(\mathbf{x}_i \) for \(H^s(M; R) \) and a base \(\mathbf{y}_j \) for \(H^{2k-s}(N; R) \) with dual bases \(\mathbf{x}_i^* \) and \(\mathbf{y}_j^* \) in \(H^{m-s}(M; R) \) and \(H^{2k+s-m}(N; R) \) respectively. Using the base \(\mathbf{x}_i \otimes \mathbf{y}_j \), \(\mathbf{x}_i^* \otimes \mathbf{y}_j^* \) for the \(s \)-subspace, the pairing sends all pairs of basis vectors to zero except for the pairs

\((\mathbf{x}_i \otimes \mathbf{y}_j, \mathbf{x}_i^* \otimes \mathbf{y}_j^*) \) and \((\mathbf{x}_i^* \otimes \mathbf{y}_j^*, \mathbf{x}_i \otimes \mathbf{y}_j) \) on which the value is \((-1)^t\) where \(t = (2k-s)(m-x) \). Thus the pairing matrix decomposes as a direct sum of 'orthogonal' 2-dimensional subspaces with matrix \((-1)^t \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\). Since the index of this \(2 \times 2 \) matrix is zero, each of the \(s \)-subspaces contributes zero to the index of \(P \).

Thus, the index of \(P \) is precisely the same as the index of the pairing on \(H^{m/2}(M; R) \otimes H^{n/2}(N; R) \). If both \(m \) and \(n \) are congruent to zero mod 4, choosing bases for which the forms of \(M \) and \(N \) are both diagonal gives the basis of products in which the form on \(H^{m/2}(M; R) \otimes H^{n/2}(N; R) \) is diagonal.

Looking at the diagonal entries gives immediately \(I(P) = I(M) \cdot I(N) \). If both \(m \) and \(n \) are congruent to 2 mod 4, then the pairings

\[H^{m/2}(M; R) \otimes H^{m/2}(M; R) \rightarrow R \]

and that of \(N \) are both skew-symmetric. Thus one may choose a base of \(H^{m/2}(M; R) \) so that the pairing matrix is a direct sum of copies of \(\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \), and similarly for \(N \). Looking in the product of two such two-dimensional subspaces, the pairing matrix is \(\begin{pmatrix} 0 & J^* \\ J & 0 \end{pmatrix} \) with

\(J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \) and \(J^* = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \). This matrix has index 0, so

\(I(P) = 0 = I(M) \cdot I(N) \).
The proof of c) is due to Thom [126]. Suppose \(M^n = \gamma W^{n+1} \) with \(n = 4k \) and \(M \) and \(W \) are oriented. By Lefschetz duality, one then has a commutative exact ladder

\[
\ldots \longrightarrow H^r(W) \xrightarrow{f^*} H^r(M) \longrightarrow H^{r+1}(W,M) \longrightarrow H^{r+1}(W) \longrightarrow \ldots
\]

\[
\downarrow a \downarrow a \downarrow a \downarrow a
\]

\[
\ldots \longrightarrow H_{n+1-r}(W,M) \longrightarrow H_{n-r}(M) \xrightarrow{f_*} H_{n-r}(W) \longrightarrow H_{n-r}(W,M) \longrightarrow \ldots
\]

where \(f : M \to W \) is the inclusion, all groups having real coefficients.

Let \(A^r = \text{Image}\((f^*)^r\) \) and \(K_{n-r} = \text{kernel}\((f_*)_{n-r}\) \).

By exactness, one has \(A^r \cong K_{n-r} \).

If \(a \in A^r, b \in A^{n-r} \), then \(\langle a \cup b, [M] \rangle = 0 \). To see this, one has \(\langle a \cup b, [M] \rangle = \langle f^*(a \cup b), \partial [W,M] \rangle = \langle \delta f^*(a \cup b), [W,M] \rangle = \langle 0, [W,M] \rangle \).

Since the coefficients are a field, one has by the universal coefficient theorem \(H^i(M) \cong H_i(M) \) and \(f^* \) is the dual map of \(f_* \); i.e. the diagram

\[
\begin{array}{ccc}
H_{n-p}(W) & \xleftarrow{f^*} & H_{n-p}(M) \\
\downarrow \cong & & \downarrow \cong \\
H^{n-p}(W) & \xrightarrow{f_*} & H^{n-p}(M)
\end{array}
\]

commutes, giving \(H_{n-p}(M)/K_{n-p} \cong \) dual of \(A^{n-p} \). Thus \(A^P \) is precisely the annihilator of \(A^{n-P} \).

With \(\dim M = 4k \), this gives \(H^{2k}(M) = A^{2k} \oplus B^{2k} \) with \(A \) and \(B \) dually paired and with dual bases \(a_i, b_j \) such that \(a_i b_j = \delta_{ij}, a_i a_j = b_i b_j = 0 \).

Ordering the basis as \(a_1, b_1, a_2, b_2, \ldots \), the matrix of the pairing consists of \(2 \times 2 \) blocks \(\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \) along the diagonal, with zeros elsewhere. One may then compute the index, which is zero, giving \(I(M) = 0 \).
For part d), $H^{2k}(\mathbb{CP}(2k); \mathbb{R})$ has a base given by α^k, where
\[\alpha \in H^2(\mathbb{CP}(2k); \mathbb{R}) \] is the first Chern class of the canonical bundle. Under the pairing, $\alpha^k \cdot \alpha^k$ is sent to $\alpha^{2k}[\mathbb{CP}(2k)] = (-1)^{2k} = 1$. Thus the pairing matrix is (1), and the index is 1.

Finally, properties a)-d) indicate that the index defines a ring homomorphism $I: \Omega^*_{SO} \to \mathbb{Z}$ sending each $\mathbb{CP}(2k)$ to 1. Since any ring homomorphism to \mathbb{Z} or \mathbb{Q} must annihilate the torsion subgroup, while the $\mathbb{CP}(2k)$ generate $\Omega^*_{SO} \otimes \mathbb{Q}$ as a ring (over \mathbb{Q}), such homomorphisms are completely determined by their values on the $\mathbb{CP}(2k)$, proving uniqueness. **

Since the index defines a homomorphism of Ω^*_{SO} into \mathbb{Q}, there must be an expression for the index of an oriented manifold as a rational linear combination of the Pontryagin numbers. The precise expression for the index is the Hirzebruch index theorem [55]:

Theorem: The index homomorphism $I: \Omega^*_{SO} \to \mathbb{Z}$ is given by the evaluation of the L class; i.e., for any closed oriented manifold, $I(M) = L(\tau)[M]$.

Proof: Let $L': \Omega^*_{SO} \to \mathbb{Q} : [M] \to L(\tau)[M]$, be the homomorphism defined by the L class evaluation. From the diagonal formula $\Delta L = L \otimes L$, it is immediate that L' is a ring homomorphism. In order to show that $I = L'$, it then suffices to show that $L(\tau)[\mathbb{CP}(2k)] = 1$ for each k. For $\mathbb{CP}(2k)$, one has $\beta(\tau) = (1 + \alpha^2)^{2k+1}$, where $\alpha \in H^2(\mathbb{CP}(2k); \mathbb{Z})$ is the first Chern class of ξ, and hence

\[
L(\tau)[\mathbb{CP}(2k)] = (\alpha/\tanh \alpha)^{2k+1}[\mathbb{CP}(2k)],
\]

= coefficient of α^{2k} in $(\alpha/\tanh \alpha)^{2k+1}$,

= $(1/2\pi i) \oint dz/(\tanh z)^{2k+1}$,

= $(1/2\pi i) \oint du/(u^{2k+1}(1-u^2))$, (u = tanh z)

= $(1/2\pi i) \oint (1/u^{2k+1})(1 + u^2 + \ldots) du$,

= 1. **
It is convenient to know the form of the power series $x / \tanh x$. Since one has

$$\frac{x + \frac{x}{\tanh x}}{e^{-2x} - 1} = \frac{(-2x)}{\tanh x}$$

the knowledge of the power series for $y/(e^y - 1)$ gives

$$x / \tanh x = 1 + \frac{1}{3} x^2 - \frac{1}{45} x^4 + \ldots + (-1)^{k-1} \frac{2^{2k}}{(2k)!} B_k x^{2k} + \ldots,$$

where B_k is the k-th Bernoulli number.

Odd Primary Data.

It is frequently convenient to know something of the p primary structure of BSO and the \mathbb{Z}_p cohomology characteristic number structure of oriented cobordism, which the chosen approach to cobordism has made unnecessary. It is possible to approach oriented cobordism in this fashion also. First, consider the case p odd.

Proposition: For p an odd prime, neither $H^*(\text{BSO}; \mathbb{Z})$ nor $\tilde{H}^*(\text{BSO}; \mathbb{Z})$ have p-primary torsion. The Bockstein operator Q_0 is trivial in $\tilde{H}^*(\text{BSO})$, making this an $A_p/(Q_0)$ module, and as such it is a free module.

Proof: Since $H^*(\text{BSO}; \mathbb{Z}_p) \cong \mathbb{Z}_p[Q^1]$ is nonzero only in dimensions congruent to zero mod 4, the universal coefficient theorem shows that there is no p-primary torsion in the integral groups. By the Thom isomorphism theorem, the same is true of $\tilde{H}^*(\text{BSO}; \mathbb{Z})$. Since the groups $\tilde{H}^*(\text{BSO}; \mathbb{Z}_p)$ are nonzero only in dimensions congruent to zero mod 4, while $\dim Q_0 = 1$, Q_0 must act trivially. Using the map $BDU \to \text{BSO}$, one has induced a homomorphism

$$\tilde{H}^*(\text{BSO}; \mathbb{Z}_p) \to \tilde{H}^*(\text{BDU}; \mathbb{Z}_p)$$

sending the Thom class of \tilde{BSO} to that of BDU.
and the homomorphism $\mathbb{A}_p/(\mathbb{Q}_0) \rightarrow \tilde{H}^\ast(\text{TSO}_2;\mathbb{Z}_p)$ induced by action on the Thom class is monic, since the composite homomorphism to $\tilde{H}^\ast(\text{BU}_2;\mathbb{Z}_p)$ is monic. By the Milnor-Moore theorem, $\tilde{H}^\ast(\text{TSO}_2;\mathbb{Z}_p)$ is a free $\mathbb{A}_p/(\mathbb{Q}_0)$ module. **

Using the mod p Steenrod algebra one may then duplicate for oriented manifolds almost all of the constructions made for the prime 2 in unoriented theory.

If M^n is an oriented manifold, then Poincaré duality and the universal coefficient theorem imply that $\tilde{H}^i(M;\mathbb{Z}_p) \otimes \tilde{H}^{n-i}(M;\mathbb{Z}_p) \rightarrow \mathbb{Z}_p : a \otimes b \mapsto a \cup b[M]$ is a dual pairing. Thus there are unique Wu classes $v_i \in \tilde{H}^{2i(p-1)}(M;\mathbb{Z}_p)$ such that

$$\Theta^i a[M] = v_i \cup a[M]$$

for all $a \in \tilde{H}^{n-2i(p-1)}(M;\mathbb{Z}_p)$. Letting $v = 1 + v_1 + \ldots \in \tilde{H}^\ast(M;\mathbb{Z}_p)$, one defines a class $Q = 1 + Q_1 + \ldots \in \tilde{H}^\ast(M;\mathbb{Z}_p)$ where $\dim Q_1 = 2i(p-1)$ by $Q = \Theta v$.

Theorem: If M^n is a closed oriented manifold, then the class Q_1 is the mod p reduction of the class $s(\overline{(p-1)/2,\ldots,(p-1)/2})^{(\Theta^1)}$; i.e. if the tangential Pontrjagin class of M is expressed formally as $\Pi(1 + x_j^2)$, then the class Q is given by $\Pi(1 + x_j^{p-1})$.

Proof: Duplicating the proof for the relation between Wu class and tangential Stiefel-Whitney classes, it suffices to consider the effect of applying Θ^1 to the Thom class in $\tilde{H}^\ast(\text{TSO}_{2k};\mathbb{Z}_p)$. Using the splitting principle, U may be written as a product $x_1 \ldots x_k$ of 2 dimensional classes, so that $\Theta^1(x_1 \ldots x_k)$ is the sum of all monomials $x_1 \ldots x_j^p \ldots x_j^{p-1} \ldots x_k$. This is the i-th elementary symmetric function in the variables x_j^{p-1} times the class $x_1 \ldots x_k$. **
Note: Writing the tangential Pontrjagin class of M as $H(l + x_j^2)$, the Wu class v is the mod p reduction of
\[H(l + (x_j - x_j^p + x_j^{p^2} + \ldots + (-1)^k x_j^{p^k} + \ldots)^{P-1}). \]
To see this, one has $\mathcal{P}x = 1 + x^{p-1}$ giving $y = 1 + (\mathcal{P}^{-1}x)^{p-1}$, and if $\dim x = 2$, then $\mathcal{P}^{-1}x = x - x^p + x^{p^2} + \ldots + (-1)^k x^{p^k} + \ldots$.

One then has the mod p analogue of the Dold theorem:

Theorem: All relations among the mod p reductions of the Pontrjagin numbers of closed oriented n manifolds are given by the Wu relations; i.e. if $\phi : \pi^*(BSO; \mathbb{Z}_p) \to \mathbb{Z}_p$ is a homomorphism, there is a closed oriented n dimensional manifold with $\phi(a) = (\pi^*(a))[M]$ for all a if and only if $\phi(\mathcal{P}b - wb) = 0$ for all $b \in H^n(BSO; \mathbb{Z}_p)$.

Proof: From the free module structure of $\mathcal{H}(BSO; \mathbb{Z}_p)$ as an $\mathcal{A}_p/(q_0)$ module, and the knowledge of the homotopy of spectra of this type, it is immediate that the image of $\pi^*(BSO)$ in $\mathcal{H}(BSO; \mathbb{Z}_p)$ consists precisely of those classes annihilating $\mathcal{A}_p\mathcal{H}(BSO; \mathbb{Z}_p)$. Using the proof given for Dold's theorem, the result is immediate. **

Note: This result and the analogue for complex manifolds (which is proven in exactly the same way using the fact that $\mathcal{H}(BU; \mathbb{Z}_p)$ is a free $\mathcal{A}_p/(q_0)$ module) were first proven by Atiyah and Hirzebruch [19]. Since all p-primary relations among the integral characteristic numbers follow from K theory, these \mathcal{Z}_p relations should be derived from the K theory. The derivation, which follows, is due to Atiyah and Hirzebruch.

Theorem: For each ω, let $\theta_\omega \in H^*(BSO; \mathbb{R})$ be the class obtained from $s_\omega(e_\mathcal{P})L$ by multiplying the component of dimension $2i + \frac{4n(\omega)}{q}$ by q^i where $q = p^{1/(p-1)}$. Then each component of θ_ω is expressible as a power of q.

times a rational polynomial in the Pontrjagin classes with denominator relatively prime to \(p \), so that \(\theta_\omega \) has a meaningful mod \(p \) reduction, \(\rho_p(\theta_\omega) \). In fact, \(\rho_p(\theta_\omega) = \mathcal{O}^{-1}s_\omega(\mathcal{O}) \cdot v \). Thus

\[
\{ \mathcal{O}^{-1}s_\omega(\mathcal{O}) \cdot v - s_\omega(\mathcal{O}) \}[\mathbb{H}] = q^{n/2-2n(\omega)}\{ s_\omega(\mathcal{O}) \cdot L - s_\omega(\mathcal{O}) \}[\mathbb{H}]
\]

which is zero mod \(p \), and hence the K-theoretic relations imply the Wu relations: \(\{ \mathcal{O}^{-1}(b) - v \cdot \mathcal{O}^{-1}(b) \}[\mathbb{H}] = 0 \) for all \(b \in H^*(BO; \mathbb{Z}_p) \).

Proof: It suffices to apply the splitting principle and write each class as a symmetric function.

The power of \(p \) in \(k! \) is at most \((k-1)/(p-1)\) and equality holds if and only if \(k \) is a power of \(p \). By the Wilson theorem,

\[
(p^j)!/p^e \equiv (-1)^e \equiv (-1)^j \mod p,
\]

where \(e = (p^j-1)/(p-1) \), so

\[
(e^{q^x} - 1)/q = \sum_{j=0}^{\infty} (-1)^j x^j p^j \mod p
\]

\[
\equiv \mathcal{O}^{-1}(x)
\]

or

\[
\frac{(e^{q^x} - 1)/q}{q^2} = \frac{(e^{q^x} - 1)/(1 - e^{-q^x})}{q^2}
\]

\[
\equiv \mathcal{O}^{-1}(x) \cdot \mathcal{O}^{-1}(x)
\]

\[
\equiv \mathcal{O}^{-1}(x^2)
\]

and letting \(\phi_\omega \) be obtained from \(s_\omega(\mathcal{O}) \) by multiplying the term of degree \(2i + 4n(\omega) \) by \(q^i \),

\[
\phi_\omega = s_\omega(\mathcal{O}) \frac{e^{q^x} - e^{-q^x}}{q^2} \equiv s_\omega(\mathcal{O}^{-1}(x^2)) = \mathcal{O}^{-1}s_\omega(\mathcal{O}).
\]
Also

\[\frac{qx}{\tanh qx} = \frac{2qx}{e^{2qx} - 1} - qx = \frac{1}{\sum_{j=0}^{\infty} (-1)^j (2x)^{-1}} - qx \]

but \(2^{p^j-1} \equiv 1 \pmod{p} \) and \(qx \equiv 0 \pmod{p} \), while letting \(y = \sum_{j=0}^{\infty} (-1)^j x^{p^j-1} \).

\[(xy)^p = \left(\sum_{j=0}^{\infty} (-1)^j x^{p^j} \right)^p = \sum_{j=0}^{\infty} (-1)^j x^{p^{j+1}} = -xy + x, \text{ since } (a+b)^p = a^p + b^p \pmod{p}.

Thus \(x = xy + (xy)^p \) or \(\frac{1}{y} = 1 + (xy)^{p-1} \). This gives

\[\frac{qx}{\tanh qx} \equiv 1 + \left(\sum_{j=0}^{\infty} (-1)^j x^{p^j} \right)^{p-1} \pmod{p}, \]

and letting \(L^* \) be obtained from \(L \) by multiplying the component of dimension 2i by \(q^i \), \(L^* \) has \(\pmod{p} \) reduction equal to \(v \).

Then

\[\rho_p(\theta_p) = \rho_p(\phi_p) = \rho_p(L^* \cdot v) = \mathcal{O}^{-1}s_{\omega}(\mathcal{O}) \cdot v. \]

This gives

\[(\mathcal{O}^{-1}s_{\omega}(\mathcal{O}) \cdot v - s_{\omega}(\mathcal{O}))[M] = q^{\frac{n}{2-2\eta}(\mathcal{O})}[s_{\omega}(\mathcal{O})]_L - s_{\omega}(\mathcal{O})[M] \]

reduced \(\pmod{p} \), and since \(s_{\omega}(\mathcal{O})[L][M] \) and \(s_{\omega}(\mathcal{O})[M] \in \mathbb{Z}[1/2] \), this is \(\pmod{p} \).

Then for any \(b \), \(\mathcal{O}b = \sum \lambda_{s_{\omega}(\mathcal{O})} \), \(\lambda \in \mathbb{Z}_p \), so

\[b \cdot v - \mathcal{O}b = \mathcal{O}^{-1}(\mathcal{O}b) \cdot v - (\mathcal{O}b) = \sum \lambda_{s_{\omega}(\mathcal{O})} \mathcal{O}^{-1}s_{\omega}(\mathcal{O}) \cdot v - s_{\omega}(\mathcal{O}), \]

giving the relation.

Note: One may use the same techniques in the complex situation. In fact, if the component of dimension \(2i + 2n(\omega) \) in \(s_{\omega}(e)x^j \) is multiplied by \(q^i \), the resulting class reduces \(\pmod{p} \) to give \(\mathcal{O}^{-1}s_{\omega}(c) \cdot v \), and the \(\mathcal{O} \) relation all follow from the K-theory relations. This also works for \(p = 2 \), since terms involving \(2^{p-1} \) never appear and since \(s_{\omega}(e)x^j[M] \in \mathbb{Z} \).
To complete the \(p \)-primary study, note that just as in the \(Z_2 \) cohomology situation, one has:

Theorem: If \(p \) is an odd prime, then for any framed manifold \(M^n \) there is an oriented manifold \(V^{n+1} \) with \(\partial V = M \) and the mod \(p \) Hopf invariant of the homotopy class represented by \(M \) is given by

\[
\frac{s}{(p-1, \ldots, p-1)} \left(\vartheta(v) \right)[V,M]
\]

where \(2i(p-1) = n+1 \). This is the only invariant of framed cobordisms defined by \(Z_p \) cohomology characteristic numbers of this type.

Note: From the work of Liulevicius [72] on the decomposability of the operations \(\vartheta_i \), it follows that the mod \(p \) Hopf invariant corresponding to \(\vartheta_i \) can be nonzero only for \(i = 1 \). For \(n = 2p - 3 \), one has

\[
H_p([M]) = Q_1(v)[V,M] = v_1(v)[V,M] = -v_1(\tau)[V,M]
\]

\[
= -pL_{p-1}^{2} (\tau)[V,M] = -pe_6([M]) \mod p.
\]

Thus, if the Adams invariant \(e_6([M]) \) is written as \((a/p) + (b/c) \) with \(a, b, c \in \mathbb{Z} \) and \(c \) relatively prime to \(p \), then \(H_p([M]) \) is the class of \(-a \mod p \). Thus the Adams invariant determines the mod \(p \) Hopf invariant in a precise fashion.

Two Primary Data

To complete the study of oriented cobordism and oriented vector bundles it seems desirable to have a basic knowledge of the 2 primary structure of \(BS0 \), which has not been necessary in the approach to cobordism taken here.
Theorem: The cohomology ring \(H^*(BO(n); \mathbb{Z}_2) \) is the polynomial algebra over \(\mathbb{Z}_2 \) on the Stiefel-Whitney classes \(w_i(\gamma^n) \) for \(1 \leq i \leq n \).

Proof: Let \(f_n : BO(n) \to BO(n) \) be the map classifying \(\gamma^n \). Then \(f_n^* : H^*(BO(n); \mathbb{Z}_2) = \mathbb{Z}_2[w_i | 1 \leq i \leq n] \to H^*(BO(n); \mathbb{Z}_2) \), sending \(w_i \) to \(w_i(\gamma^n) \). Since \(w_i(\gamma^n) = w_i(\text{det}\gamma^n) = 0 \) because \(\text{det}\gamma^n \) is trivial, this induces \(f_n^* : P_n = \mathbb{Z}_2[w_i | 1 \leq i \leq n] \to H^*(BO(n); \mathbb{Z}_2) \).

To see that this is monic, let \(g_n : BO(n-1) \to BO(n) \) be a map classifying the bundle \(\gamma^{n-1} \otimes \text{det}\gamma^{-1} \), which is orientable. Then \(g_n^*(w_i) \) is given by \(w_i + w_{i-1}w_{i-1} \) if \(i < n \), and \(w_iw_{n-1} \) if \(i = n \). Since these elements are algebraically independent in \(\mathbb{Z}_2[w_i | 1 \leq i \leq n-1] \), \(f_n^* \) must be monic (on \(P_n \)).

To see that this is epic, use induction on \(n \). For \(n = 1 \), \(BO(1) \) is a point while for \(n = 2 \), \(BO(2) = BU(1) = \mathbb{CP}^\infty \) whose cohomology is the polynomial algebra generated by \(w_2(\gamma^2) = c_1(\gamma^2) \). Assuming that \(f_{n-1}^* \) is epic, one has the diagram of the pair \((D\gamma^n, S\gamma^n)\)

\[
\begin{array}{ccc}
BSO(n-1) & \to & BSO(n) \to \text{TESO}(n) \\
\downarrow & & \downarrow \\
BO(n-1) & \to & BO(n) \to \text{TEO}(n)
\end{array}
\]

giving a commutative diagram

\[
\begin{array}{ccc}
0 & \leftarrow & H^1(BO(n-1)) \leftarrow f_{n-1}^* \\
& \leftarrow & \downarrow \\
0 & \leftarrow & H^1(BO(n)) \leftarrow f_n^* \\
& \leftarrow & \downarrow \\
0 & \leftarrow & H^1(BO(n-1)) \leftarrow g^* \\
& \leftarrow & \downarrow \\
0 & \leftarrow & H^1(BO(n)) \leftarrow H^1-\text{BO}(n) \leftarrow 0
\end{array}
\]

in which the cohomology of the Thom space is replaced by that of the base by means of the Thom isomorphism. (Note: This sequence splits up since \(s \) is
epic, and \(r \) is epic since \(r_{n-1}^i \) is epic.) Using induction on \(i \), \(r_{n}^{i-n} \) is epic, and \(r_{n-1}^i \) is epic, so \(r_n^i \) is epic. Hence \(r_n^i \) is epic. **

Note: This justifies the fact that the only \(\mathbb{Z}_2 \) cohomology characteristic numbers of oriented cobordism were Stiefel-Whitney numbers.

Lemma: In \(H^*(BO; \mathbb{Z}_2) \), one has \(\text{Sq}^1 w_i = w_1 w_i + (i+1)w_{i+1} \).

Proof: Apply the splitting principle to write \(w_i = \sum x_1 \cdots x_i \). Then \(\text{Sq}^1 w_i = \sum x_1^2 x_2 \cdots x_i \). On the other hand \(w_1 w_i \) is the sum of the monomials \(x_1 \cdots x_j^2 \cdots x_i \) and monomials \(x_1 \cdots x_{i+1} \), the latter occurring once for each subscript which came from the \(w_1 \) factor. Thus

\[
 w_1 w_i = s(2,1,\ldots,1) + (i+1)w_{i+1}. **
\]

Now consider the operation \(\text{Sq}^1 : H^*(BO; \mathbb{Z}_2) \rightarrow H^*(BO; \mathbb{Z}_2) \). One has \(\text{Sq}^1 (a \cdot b) = \text{Sq}^1 a \cdot b + a \cdot \text{Sq}^1 b \) and (by the Adem relations) \(\text{Sq}^1 \cdot \text{Sq}^1 = 0 \). Since \(\text{Sq}^1 \) is a derivation of square zero, one may form the homology with respect to \(\text{Sq}^1 \).

Lemma: The homology groups with respect to \(\text{Sq}^1 \) are given by

\[
 H(H^*(BO; \mathbb{Z}_2), \text{Sq}^1) = \mathbb{Z}_2[w_{2j}^2],
\]

\[
 H(H^*(BSO(n); \mathbb{Z}_2), \text{Sq}^1) = \begin{cases} \mathbb{Z}_2[w_{2j}^2 | 2j < n] & \text{if } n \text{ is odd}, \\ \mathbb{Z}_2[w_{2j}^2, w_n | 2j < n] & \text{if } n \text{ is even}. \end{cases}
\]

Proof: Since \(\text{Sq}^1 w_1 = w_2 + w_1 w_1 \), one may write \(H^*(BO; \mathbb{Z}_2) \) as the polynomial algebra on \(w_1, w_2, \) and \(\text{Sq}^1 w_1 \). Thus \(H^*(BO; \mathbb{Z}_2) \) is the tensor product of polynomial algebras of the forms

\[
 \mathbb{Z}_2[w_{2j}, \text{Sq}^1 w_{2j}] \quad \text{and} \quad \mathbb{Z}_2[w_1].
\]
on which Sq^1 act. Applying the Künneth theorem, the homology of $H^\ast(BO)$ is the tensor product of the homology groups of the factors, being $\mathbb{Z}_2[w_{21}^2]$ and \mathbb{Z}_2 respectively.

For the groups $H^\ast(\text{BSO}(n);\mathbb{Z}_2)$ the given computation still applies. One has $H^\ast(\text{BSO}(2k-1);\mathbb{Z}_2) = \mathbb{Z}_2[w_{21},\text{Sq}^1 w_{21} | 1 < k]$, and

$$H^\ast(\text{BSO}(2k);\mathbb{Z}_2) = \mathbb{Z}_2[w_{2k},\text{Sq}^1 w_{2k}, w_{2k}^1 | 1 < k],$$

with $\text{Sq}^1 w_{2k} = 0$ in the latter. **

Corollary: All torsion in $H^\ast(\text{BSO}(n);\mathbb{Z})$ has order 2.

Proof: It has previously been noted that all torsion is 2 primary. If some torsion class in $H_\ast(\text{BSO}(n);\mathbb{Z})$ has order 2^k, $k > 1$, then the homology of $H^\ast(\text{BSO}(n);\mathbb{Z}_2)$ with respect to Sq^1 must be nonzero in two consecutive dimensions. **

Turning attention to the Thom spectrum \tilde{TBSO}, one has:

Lemma: The homomorphism $\nu : A_2 \to H^\ast(\tilde{TBSO};\mathbb{Z}_2) : a \to a(U)$ has kernel precisely $A_2\text{Sq}^1$.

Proof: Using the pair (D^n, S^n) one has the exact sequence

$$0 \to H^\ast(\text{BSO}(n-1);\mathbb{Z}_2) \to H^\ast(\text{BSO}(n);\mathbb{Z}_2) \to H^\ast(\tilde{TBSO}(n);\mathbb{Z}_2) \to 0$$

under which the Thom class is sent to w_n, and the cohomology of the Thom space is identified with the multiples of w_n. Since $\text{Sq}^1 w_n = w_1 w_n = 0$, Sq^1 annihilates the Thom class and the kernel of ν contains $A_2\text{Sq}^1$.

Letting $s_n : BO(n-1) \to BO(n)$ classify $\gamma^{n-1} \otimes \det \gamma^{n-1}$ one has $s_n^\ast(w_n) = w_1 w_{n-1} = \text{Sq}^1 w_{n-1}$. Considering $\tilde{H}^\ast(\text{BO}(n-1);\mathbb{Z}_2)$ as the multiples of w_{n-1} in $H^\ast(BO(n-1);\mathbb{Z}_2)$, one knows that within the stable range the homomorphism $A_2 \to \tilde{H}^\ast(\text{BO};\mathbb{Z}_2) : a \to a(U)$ is monic. Thus the kernel of ν is contained in the kernel of $A_2 \to \tilde{H}^\ast(\text{BO};\mathbb{Z}_2) : a \to a\text{Sq}^1(U)$, and...
since the kernel of \(\mathcal{A}_2 \rightarrow \mathcal{A}_2 : a \mapsto \text{Sq}^1 \) is \(\mathcal{A}_2 \text{Sq}^1 \), the kernel of \(v \) is \(\mathcal{A}_2 \text{Sq}^1 \). **

Corollary: The homomorphism \(\mathcal{A}_2 \rightarrow \tilde{H}^*(\mathcal{TB}ER(2); \mathbb{Z}_2) \) obtained by evaluation on the Thom class is monic, and thus \(\tilde{H}^*(\mathcal{TB}ER(2); \mathbb{Z}_2) \) is a free \(\mathcal{A}_2 \) module.

Proof: Since \(\mathcal{TB}ER(2) = \mathcal{TB}SO \cdot \mathcal{RP}(2) \), one may consider \(\tilde{H}^*(\mathcal{TB}ER(2); \mathbb{Z}_2) \) as \(\tilde{H}^*(\mathcal{TB}SO; \mathbb{Z}_2) \otimes \tilde{H}^*(\mathcal{RP}(2); \mathbb{Z}_2) \), with the Thom class being \(U \otimes x \), \(x \in H^1(\mathcal{RP}(2); \mathbb{Z}_2) \). One may take as a base of \(\mathcal{A}_2 / \mathcal{A}_2 \text{Sq}^1 \) the admissible sequences \(\text{Sq}^I \), \(I = (i_1, \ldots, i_r) \) with \(i_r > 1 \), and \(\mathcal{A}_2 \) has a base \(\{ \text{Sq}^I, \text{Sq}^I \text{Sq}^1 \} \). Then

\[
\text{Sq}^I(U \otimes x) = (\text{Sq}^I U) \otimes x + \text{terms divisible by } x^2,
\]

\[
\text{Sq}^I \text{Sq}^1(U \otimes x) = \text{Sq}^I(U \otimes x^2) = (\text{Sq}^I U) \otimes x^2.
\]

Since the \(\text{Sq}^I U \) are linearly independent over \(\mathbb{Z}_2 \), these are also linearly independent, so evaluation on \(U \otimes x \) is monic.

As previously noted \(S^1 \) is a group, making \(\mathcal{BR}(2) \) into an \(E \)-space.

This makes \(\tilde{H}^*(\mathcal{TB}ER(2); \mathbb{Z}_2) \) a coalgebra with counit the Thom class, and by the Theorem of Milnor-Moore, \(\tilde{H}^*(\mathcal{TB}ER(2); \mathbb{Z}_2) \) is a free \(\mathcal{A}_2 \) module. **

Note: From this and the fact that the cohomology of BO maps onto that of \(\mathcal{BR}(2) \) one may conclude that \(W_*(\mathcal{R},2) \) maps monomorphically into \(T_* \), and in fact draw out all of the structure of \(W_*(\mathcal{R},2) \).

One can also obtain from this the result of Wall:

Theorem: As a module over the Steenrod algebra, \(\tilde{H}^*(\mathcal{TB}SO; \mathbb{Z}_2) \) is a direct sum of copies of \(\mathcal{A}_2 \) and \(\mathcal{A}_2 / \mathcal{A}_2 \text{Sq}^1 \). Further, there is a map of \(\mathcal{TB}SO \) into a product of spectra of the types \(K(\mathbb{Z}) \) and \(K(\mathbb{Z}_2) \) which is a 2 primary homotopy equivalence.
Proof: Let $T = \tilde{H}(TBSO; \mathbb{Z}_2)$. From the cofibration $s^1 \rightarrow \text{RP}(2) \rightarrow s^2$, one obtains by smashing with $TBSO$ and taking \mathbb{Z}_2 cohomology, an exact sequence

$$0 \leftarrow T \leftarrow T(x, x^2) \leftarrow T \leftarrow 0$$

$$t \circ x^2 \leftarrow t \leftarrow t \circ x$$

where $U = T(x, x^2)$ denotes the free T module on x and x^2, which represents $\tilde{H}(TBSO \otimes \text{RP}(2); \mathbb{Z}_2) = \tilde{H}(TBR(2); \mathbb{Z}_2)$ and is a free A_2 module.

Let $\pi : T \rightarrow T/\widetilde{A}_2^T$ be the projection. Let K be a subspace of $\text{kernel}(S^1)$ in T mapping isomorphically onto $\pi(\text{kernel}(S^1))$ and let $L \subset T$ be a subspace mapping isomorphically onto a complementary summand for $\pi(\text{kernel}(S^1))$.

The natural homomorphism of A_2 modules $A_2 \otimes (L \otimes K) \rightarrow T$ is epic (as in the Milnor–Moore theorem), and since S^1 annihilates K, induces a homomorphism $f : A_2 \otimes L \otimes A_2 / A_2 \otimes S^1 \otimes K \rightarrow T$.

For $a \in A_2$ and $t \in T$, one has

$$a(t \circ x^2) = (at) \circ x^2,$$

$$a(t \circ x) = (at) \circ x + (a't) \circ x^2,$$

where $A_a = a \otimes 1 + a' \otimes S^1 + \ldots$. Letting

$$F : A_2 \otimes (L \otimes x^2 \otimes L \otimes x \otimes K \otimes x) \rightarrow U,$$

this gives

$$ak \circ x = a(k \circ x) + a'S^1(k \circ x), \quad ak \circ x^2 = aS^1(k \circ x),$$

$$at \circ x = a(t \circ x) + a'(t \circ x^2), \quad at \circ x^2 = a(t \circ x^2),$$

and since f is epic, F is epic.
Since the composite \(L \times x + K \times x \xrightarrow{F} U \xrightarrow{U/\tilde{A}_2} T/\tilde{A}_2 T \) is an isomorphism, \(L \times x + K \times x \) forms part of a base for \(U \) as \(\tilde{A}_2 \) module. Since \(F \) is epic, one may find a subspace \(L' \subset L \) so that \(L' \times x^2 + L \times x + K \times x \) is a base for \(U \). In particular, \(f: \tilde{A}_2 \otimes L' \otimes \tilde{A}_2/\tilde{A}_2 \text{Sq}^1 \otimes K \xrightarrow{\sim} T \) is monic (with image \(T' \)) since the composite into \(U \) maps isomorphically onto \(\tilde{A}_2 \otimes L' \otimes x^2 \otimes \tilde{A}_2 \text{Sq}^1 (K \times x) \).

Choose a complementary summand \(M \) for \(L' \) in \(L, \ L = M \oplus L' \), and suppose \(M^i = 0 \) for \(i < j \), and \(m \in M^i \), with \(m \neq 0 \). Let \(U' = U/\tilde{A}_2 (L' \times x^2 + L' \times x + K \times x) \) and consider the composite \(T \xrightarrow{\sim} U' \).

Since the \(T \times x^2 \) components of all classes in \(\tilde{A}_2 (L' \times x^2 + L' \times x + K \times x) \) belong to \(T' \times x^2 \), the map \(T/\tilde{T} \xrightarrow{\sim} U' \) is monic. Since \(m \neq 0 \) in \(T/\tilde{T} \) because it maps into the complement of \(\tilde{T}' \), \(m \times x^2 \in U' \cong \tilde{A}_2 \otimes M \otimes x \) is nonzero. Thus the natural map \(U' \xrightarrow{\sim} T/\tilde{T} \) must have nonzero kernel in dimension \(i + 2 \). Thus, there are elements \(m' \in M^i \) and \(m'' \in M^{i+1} \) which are not both zero so that \(\text{Sq}^1 (m' \times x) + m'' \times x \in \tilde{A}_2 \otimes M \otimes x \) is nonzero and which maps isomorphically onto \((U')^{i+2} \) is sent to zero under the map into \(T/\tilde{T} \). Thus

\[
\text{Sq}^1 m' + m'' = \text{image of } (\text{Sq}^1 (m' \times x) + m'' \times x)
\]

with \(l' \in L' \), \(k_1 \in K \), and \(a_i, b_j \in \tilde{A}_2 \). Applying \(\text{Sq}^1 \) to this with the independence of \(M, L', \) and \(K \) shows that \(m'' = 0 \), \(a_i, b_j \in \tilde{A}_2 \). Since \(\text{Sq}^1 (\text{Sq}^1 m') = 0 \), \(\text{Sq}^1 (\sum a_i l'_i + \sum b_j k_j) = 0 \), and since \(\text{kernel}(\text{Sq}^1)/\text{image}(\text{Sq}^1) = K \) in \(\tilde{A}_2 \otimes L' + \tilde{A}_2/\tilde{A}_2 \text{Sq}^1 \otimes K \), one has

\[
\text{Sq}^1 m' = \text{Sq}^1 (\sum \tilde{a}_i l'_i) + \text{Sq}^1 (\sum \tilde{b}_j k_j).
\]
Letting \(\ell' \) be the sum of the terms \(\tilde{a}_{1,1} \ell' \) for which \(\tilde{a}_{1} \neq \tilde{a}_{2} \), this gives

\[
\text{Sq}^{1} \ell = \text{Sq}^{1}(\sum \tilde{a}_{1,1} \ell' + \sum \tilde{b}_{j,k} \ell) \in \text{Sq}^{1}(\tilde{A}_{2})
\]

where \(\ell = m' + \ell' \), \(\sum \tilde{a}_{1,1} \ell' \) is the sum of terms with \(\tilde{a}_{1} \neq \tilde{a}_{2} \), while \(\text{Sq}^{1} \) annihilates terms with \(\tilde{b}_{j,k} \neq \tilde{A}_{2} \). This gives \(\ell + \sum c_{i,1} \in \ker(\text{Sq}^{1}) \) with \(c_{i,1} \in \tilde{A}_{2} \), so that \(\ell \) belongs to the image of \(K \), contradicting the choice of \(L \) unless \(\ell = 0 \). Since \(L = M \oplus L' \), this gives \(m' = \ell' = 0 \), so that both \(m' \) and \(m'' \) are zero. This contradicts the choice of \(m' \) and \(m'' \) and thus \(M = 0 \). Thus \(T = T' \) and \(f \) is an isomorphism.

To complete the proof, one has \(f : A_{2} \oplus L \oplus A_{2}/A_{2} \otimes \text{Sq}^{1} \otimes K \rightarrow T \). Under the obvious map one has an isomorphism \(\ker(\text{Sq}^{1})/\text{image}(\text{Sq}^{1}) + \ker(\text{Sq}^{1})/A_{2} \), both being isomorphic to \(K \). Since \(\text{Sq}^{1}U = 0 \), one has \(H^{*}(TBSO; \mathbb{Z}_{2}), \text{Sq}^{1} \) isomorphic to \(H^{*}(BSO; \mathbb{Z}_{2}), \mathbb{Z}_{2} \) by the Thom isomorphism, for the Thom isomorphism sends both \(\ker(\text{Sq}^{1}) \) and \(\text{image}(\text{Sq}^{1}) \) into the corresponding groups. Thus, one may choose \(K \) to be the span of the classes \(w_{2k}u \), which are the reductions of integral classes, the \(\mathcal{O}_{w}U \). This gives a map of \(TBSO \) into a product of \(K(\mathbb{Z}) \) spectra realizing the summand \(A_{2}/A_{2} \otimes \text{Sq}^{1} \otimes K \) in the cohomology. One may also map \(TBSO \) into a product of \(K(\mathbb{Z}_{2}) \) spectra to realize the summand \(A_{2} \otimes L \). The product map sends \(TBSO \) into a product of \(K(\mathbb{Z}) \) and \(K(\mathbb{Z}_{2}) \) spectra, inducing an isomorphism of \(\mathbb{Z}_{2} \) cohomology, and thus giving a two primary homotopy equivalence. **

Note: This result has previously been proved by geometric arguments. This proof, using only cohomological methods, is essentially that of Wall [1].
Chapter X

Special Unitary Cobordism

Having already built up the machinery to study special unitary cobordism, the 'oriented' analogue of complex cobordism, one may obtain much of the structure in fairly easy fashion. The one new feature which arises is the use of KO-theory characteristic numbers.

Since SU cobordism is the (B, f) theory in which $B_{2r} = B_{2r+1} = BSU_r$, one has the determination theorem:

$$g_n^{SU} = \lim_{r \to \infty} n^{2r} (TBSU_r, \infty).$$

The primary requisite for the study of these groups is then a knowledge of the structure of BSU. In cohomology, this is provided by:

Lemma: The cohomology ring $H^*(BSU_n; \mathbb{Z})$ is the integral polynomial ring on the Chern classes $c_i(\gamma^n)$, $1 \leq i \leq n$, where γ^n is the universal oriented complex n-plane bundle over BSU_n.

Proof: Let $f_n : BSU_n \to BU_n$ be the map classifying γ^n. Then $f_n^* : H^*(BU_n; \mathbb{Z}) = \mathbb{Z}[c_i | 1 \leq i \leq n] \to H^*(BSU_n; \mathbb{Z})$ sends c_i to $c_i(\gamma^n)$. Since $c_i(\gamma^n) = c_i(det \gamma^n) = 0$ because $det \gamma^n$ is trivial, this induces

$$f_n^* : P_n = \mathbb{Z}[c_i | 1 \leq i \leq n] \to H^*(BSU_n; \mathbb{Z}).$$

To see that this is monic, let $g_n : BU_{n-1} \to BSU_n$ be a map classifying the orientable bundle $\gamma^{n-1} \oplus det \gamma^{n-1}$, so that $g_n f_n^*(c_i)$ is $c_i - c_1 c_{i-1}$ if $i < n$ and $c_1 c_{n-1}$ if $i = n$. Thus the elements $g_n f_n^*(c_i)$, $1 \leq i \leq n$, are algebraically independent in $\mathbb{Z}[c_i | 1 \leq i \leq n-1]$ and so f_n^* is monic on P_n.
To see that this is epic, one may use induction on \(n\) exactly as in the study of \(H^*(BSU_n; \mathbb{Z}_p)\). To begin the induction, \(BSU_1\) is a point and \(BSU_2 = BSp_1 = MP(\ast)\) for which the result is known. **

Since the spectrum \(T_{BU}\) is oriented for integral cohomology, the same holds for the spectrum \(T_{BSU}\) and one has:

Proposition: The groups \(\Omega^n_{SU}\) are finitely generated and \(\Omega^n_{SU} \otimes \mathbb{Q}\) is a rational polynomial algebra on classes \(x_{2i}\) of dimension \(2i, i > 1\).

Proof: The standard methods give everything here, proving that \(\Omega^n_{SU} \otimes \mathbb{Q} = H^*(BSU; \mathbb{Q})\). To see that this is a polynomial ring, consider the submanifold \(M^{2n}\) of \(CP(n+1)\) dual to det. Then \(c(M^{2n}) = (1+\alpha)^n \cdot (1+(n+2))\alpha\) so \(a_n(c(\tau))[M^{2n}] = (n+2)[(n+2)\alpha^n - (n+2)\alpha^2]q[CP(n+1)] = (n+2)^2 - (n+2)^n+1\) which is nonzero if \(n \neq 1\). Thus \(\Omega^n_{SU} \otimes \mathbb{Q}\) maps onto a polynomial subalgebra of \(\Omega^n_{SU} \otimes \mathbb{Q}\). **

Corollary: The kernel of the forgetful homomorphism \(F_* : \Omega_{SU} \rightarrow \Omega_{SU}^U\) is precisely the torsion subgroup.

For the odd primary structure one has as always that \(H^*(TBSU; \mathbb{Z}_p)\) is a connected coalgebra over \(\mathbb{Z}_p\) with counit \(U \in H^0(TBSU; \mathbb{Z}_p)\). Since the cohomology is all even dimensional, this is an \(A_p/(q_0)\) module and one has:

Lemma: The homomorphism \(\nu : A_p/(q_0) \rightarrow H^*(TBSU; \mathbb{Z}_p) : a \rightarrow a(U)\) is monic if \(p\) is an odd prime.

Proof: From the map \(g_n : BU_{n-1} \rightarrow BSU_n\), one has \(H^*(TBSU_n; \mathbb{Z}_p)\) identified with \(g_n(H^*(BU_{n-1}; \mathbb{Z}_p)) \cdot c_{n-1}c_1 \subset H^*(BU_{n-1}; \mathbb{Z}_p)\). In stable dimension, \(H^*(TBU_{n-1}; \mathbb{Z}_p) = H^*(BU_{n-1}; \mathbb{Z}_p) \cdot c_{n-1} \subset H^*(BU_{n-1}; \mathbb{Z}_p)\) is a free \(A_p/(q_0)\) module since \(c_1(CP(1)) = 2 \neq 0(p)\), one generator of this module may be taken to be \(c_1c_{n-1}\), and thus \(\nu\) is monic. **
Remarks: 1) An alternate proof is obtainable by letting $h : BSU \to BSU$
classify the universal bundle, since an Sp bundle is SU, and $(Th)^*\nu$ is
monic, so ν is also.

2) For $p = 2$, doubling gives an isomorphism of $\tilde{\pi}^*(TBSU, \mathbb{Z})$ and
$\tilde{\pi}^*(TBSU, \mathbb{Z})$. Thus $\tilde{\pi}^*(TBSU, \mathbb{Z})$ is a direct sum of copies of $A_2/(S^1)$ and
$(A_2/(S^1))/(A_2/(S^1))^2 = A_2/(S^1) + A_2^2S^2$. This is not a particularly
useful description.

Corollary: All torsion in Ω^U_{SU} is 2 primary.

To complete the calculation of the odd primary structure, let $\Omega^U_{SU} \subset \Omega_{SU}$
be the set of cobordism classes for which all Chern numbers divisible by c_1
are zero. It is clear, since c_1 is zero for SU manifolds, that
$F^U_{SU} \subset \Omega^U_{SU}$. One also has:

Lemma 1: (Conner and Floyd [39], (11.5)) $2\Omega^U_{TSU} \subset F^U_{SU}$.

Proof: If N^n has all Chern numbers with c_1 as a factor zero, let
$N^n \subset M^n \times \mathbb{CP}(1)$ be the submanifold dual to c_1 (or det), so N^n has an
SU structure. One has

$$c(N) = \frac{c(M) \cdot (1+\overline{c})^2}{1+c_1(M)+2\overline{c}}$$

giving for characteristic numbers

$$c_\omega[N] = (c_\omega(M) + \overline{c}_\omega + (c_1(M)+2\overline{c})\nu_\omega)(c_1(M)+2\overline{c})[M \times \mathbb{CP}(1)],$$

$$= c_\omega(M)[M] - 2\overline{c}[\mathbb{CP}(1)],$$

$$= 2c_\omega[M]$$
where \(u_w, v_w \) are polynomials in the \(c_1(M) \) and \(a \) (Note: These additional terms all vanish since \(\alpha^2 = 0 \) and Chern numbers of \(M \) with a factor \(c_1 \) are zero). Thus \(2[M] = [M] \in \pi_5^{SU} \).

Insofar as odd primary structure is concerned, this identifies \(\pi_5^{SU} \) with \(\pi_5^{TSU} \). For example, all odd primary relations among the Chern numbers of SU manifolds follow from the vanishing of \(c_1 \) and the K-theory relations for stably almost complex manifolds. The multiplicative structure follows from:

Proposition: Let \(p \) be an odd prime. There exist SU manifolds \(M^p_i \in \pi_5^{SU}, \ i > 2, \) such that \(p_p(\pi(M^p_i)) \), the mod \(p \) reduction of \(p(\pi(M^p_i)) = \sum s_1(e) \mathfrak{g}[M] a_w \), has largest monomial

1. \(a_i \) if \(i \neq p^s, p^s - 1 \) for any \(s \),
2. \(a_{p^s - 1} \) if \(i = p^s \) for some \(s \), and
3. \(a_{p^s - 1} \) if \(i = p^s - 1 \) for some \(s \).

Proof: For any almost complex \(M, \exists M \subseteq M \) denotes the submanifold dual to \(c_1 \), which admits an SU structure.

For part (1), one has \(s_1(e) \mathfrak{g}[M] = s_1(c)[M] \) if \(\dim M = 2i \), and it suffices to find an \(\omega \in \pi(i+1) \) for which \(s_1(c)[\exists \mathcal{F}(\omega)] \) is nonzero mod \(p \).

One choice of such \(\omega \) is:

(a) \(i, i+1 \neq 0 \) \((p) : \omega = (1, 1, i, 1) \);
(b) \(i+1 = p^r(pu+v), \ r > 0, \ 0 < v < p, \ i \neq p^s - 1 \): (1) \(u > 0 : \omega = (p^r v, p^{r+1} u) \);
(2) \(u = 0 : \omega = (p^r v, p^{r}(v - 1)) \); and
(c) \(i = p^r(pu+v), \ r > 0, \ 0 < v < p, \ i \neq p^s \): (1) \(u > 0 : \omega = (1, p^r v, p^{r+1} u) \);
(2) \(u = 0 : \omega = (1, p^r v, p^{r}(v - 1)) \).
For part (2), \(i = p^s \) and let \(M^p_1 = 3(\mathbb{C}P(1) \times \mathbb{C}P(p^{s-1})) \times \ldots \times \mathbb{C}P(p^{s-1}) \)
with \(p \) copies of \(\mathbb{C}P(p^{s-1}) \). The total Chern class of \(M^p_1 \) is
\[
(1+x_j)^{p-1+1/(1+2x+(p^{s-1}+1) x_j) + 1/2x^2}
\]
and \(M^p_1 \) is dual to \(2x+(p^{s-1}+1) \sum x_j \). Working mod \(p \), the terms \(\sum x_j \) give \(p \) equal terms in characteristic numbers, so for mod \(p \) numbers this is the same as if
\[
c(M^p_1) = \frac{1}{p}(1+x_j)^{p^{s-1}+1}
\]
and \(M^p_1 \) were dual to \(2x \). Thus the mod \(p \) Chern numbers of \(M^p_1 \) are the same as those of \(2\mathbb{C}P(p^{s-1})^p \). For \(\omega \in \pi(1) \),
\[
s_\omega(1)^p[M^p_1] = s_\omega(c)(M^p_1) = 2s_\omega(c)(\mathbb{C}P(p^{s-1})^p) = 2s_\omega(1)^p[M^p(\mathbb{C}P(p^{s-1})^p)],
\]
and since \(\sigma_p(\mathbb{C}P(p^{s-1})) \) has largest monomial \(\alpha p^{s-1} \), the result follows.

For part (3), \(i = p^{s-1} \), \(s \geq 1 \) and let \(M = M^p_1 = 3(\mathbb{C}P(p^{s-1}) \times \ldots \times \mathbb{C}P(p^{s-1})) \)
with \(p \) copies of \(\mathbb{C}P(p^{s-1}) \), with \(E = \mathbb{C}P(p^{s-1}) \times \ldots \times \mathbb{C}P(p^{s-1}) \) dual to \(\xi_1 \ldots \xi_p \) as considered in Chapter VII. (\(M \) is dual to \((\xi_1 \ldots \xi_p)^{p^{s-1}+1} \))
\(M \) has total Chern class \(\frac{1}{p}(1+x_j)^{p^{s-1}+1/(1+(p^{s-1}+1) \sum x_j) + 1/2x^2} \) and is dual to \((p^{s-1}+1) \sum x_j \). Thus for \(s \geq 2 \), \(c_\omega(M) = c_\omega(H) + p^{s-1}v_\omega \) where \(v_\omega \) is symmetric in the \(x_j \), i.e. \(v_\omega = \sum_{x_1, \ldots, x_p} x_1^{p^{s-1}-1} \ldots x_j^{p^{s-1}} \ldots x_p^{p^{s-1}} \), and multiplying by \((p^{s-1}+1) \sum x_j \) and evaluating on the product of \(E \)'s gives \(c_\omega[M] = (p^{s-1}+1)c_\omega[H] \mod p^2 \). For \(\mu \in \pi(k) \), \(k \geq p^{s-p+1} \), dim \(V = p^{s-1} \),
\[
s_\mu(e)[V] = \sum (a_\omega/b_\omega)c_\omega[V], \quad a_\omega, b_\omega \in \mathbb{Z}, \quad b_\omega \neq 0 \mod (p^2), \quad s_\mu(e)[M] = (p^{s-1}+1)s_\mu(e)[H] \mod p.
\]
Thus \(M \) has the same largest monomial as \(H \), which is as given. For \(s = 1 \), \(c_\omega[M] = 0 \mod p \) by symmetry in the \(x_j \)'s, so \(s_\mu(e)[M] = \sum (a_\omega/b_\omega)c_\omega[M] \equiv 0 \mod p \) if \(\mu \in \pi(k) \), \(k > 0 \) (since then \(b_\omega \neq 0 \mod (p) \)). Thus one needs only \(\mathcal{J}[M] \neq 0 \mod (p) \). However,
\[\mathcal{M} = \prod_{j=1}^{p} \left(x_j / (e^{x_j} - 1) \right)^2 \cdot (e^{2\pi x_j} - 1)(e^{P(1)^2}), \]

\[= \left(\frac{1}{2\pi i} \oint \frac{e^{2\pi z}}{(e^z - 1)^2} \right)^p - \left(\frac{1}{2\pi i} \oint \frac{dz}{(e^z - 1)^2} \right)^p, \]

\[= \left(\frac{1}{2\pi i} \oint \frac{(u+1)^2 du}{u^2(u+1)} \right)^p - \left(\frac{1}{2\pi i} \oint \frac{du}{u^2(u+1)} \right)^p, \quad (u = e^z - 1), \]

\[= 1 - (-1)^p, \]

\[= 2, \quad \neq 0 \text{ (p).} \]

Corollary: \(\Omega_\ast^* \otimes \mathbb{Z}[1/2] \) is a polynomial ring over \(\mathbb{Z}[1/2] \) on classes \(x_{2i}, \ i > 1. \)

Notes:
1. The manifolds \(\mathcal{M}^p \) given in the proposition provide \(\text{mod p} \) generators of \(\Omega_\ast^* \).
2. The odd primary structure of \(\Omega_\ast^* \) was first calculated by Novikov [93] using the Adams spectral sequence method.

The calculation of the 2 primary structure was done by Conner and Floyd [39], whose methods are used here.

One has exact sequences

\[\Omega_\ast^* \xrightarrow{t} \Omega_\ast^* \]

\[\sim \]

\[\Omega_\ast^* \xrightarrow{\rho} \mathcal{W}_\ast(\mathbb{Z}, 2) \]

and

\[0 \xrightarrow{} \mathcal{W}_\ast(\mathbb{Z}, 2) \xrightarrow{F_\ast} \Omega_0^U \xrightarrow{d} \Omega_\ast^U \xrightarrow{} 0. \]
Since \(\mathcal{W}_{2j-1}(\varepsilon, 2) \subset \Omega^U_{2j-1} = 0 \), this gives an exact sequence
\[
0 \longrightarrow \Omega^U_{2j-1} \longrightarrow \Omega^U_{2j} \longrightarrow \mathcal{W}_{2j}(\varepsilon, 2) \longrightarrow \Omega^U_{2j-2} \longrightarrow \Omega^U_{2j-1} \longrightarrow 0.
\]

Lemma 2: \(\Omega^U_0 \cong \mathbb{Z}, \quad \Omega^U_1 \cong \mathbb{Z}_2, \) and \(\Omega^U_2 \cong \mathbb{Z}_2 \). If \(\theta \in \Omega^U_1 \) is the nonzero class, then \(\theta^2 \) is the nonzero class in \(\Omega^U_2 \).

Proof: One has \(0 \longrightarrow \mathcal{W}_0(\varepsilon, 2) \xrightarrow{F_*} \Omega^U_0 = \mathbb{Z} \xrightarrow{d} \Omega^U_1 = 0 \longrightarrow 0 \) and \(0 \longrightarrow \mathcal{W}_2(\varepsilon, 2) \xrightarrow{F_*} \Omega^U_2 = \mathbb{Z} \xrightarrow{d} \Omega^U_3 = 0 \longrightarrow 0 \). Then \(\Omega^U_0 \xrightarrow{\mathcal{W}_0(\varepsilon, 2) \xrightarrow{F_*}} \Omega^U_0 = \mathbb{Z} \) are isomorphisms. Since \(\mathcal{W}_2(\varepsilon, 2) = \mathbb{Z} \) generated by \(\wedge \mathbb{F}(1) \), with \(\wedge \mathbb{F}(1) = 2 \), the homomorphism \(\mathbb{Z} \xrightarrow{\mathcal{W}_2(\varepsilon, 2)} \Omega^U_0 = \mathbb{Z} \) has kernel \(\mathbb{Z}_2 = \Omega^U_1 \) with \(\theta = t(1) \) the nonzero element. Since \(\mathbb{Z} \) is monic on \(\mathcal{W}_2(\varepsilon, 2) \), this also gives an isomorphism \(\Omega^U_1 \cong \Omega^U_2 \). Since the homomorphism \(t \) is multiplication by \(\theta = t(1) \), this gives \(\Omega^U_2 \cong \mathbb{Z}_2 \) with nonzero element \(\theta^2 \).

Proposition: All torsion in \(\Omega^*_3 \) has order 2.

Proof: Since \(t : \Omega^*_2 \longrightarrow \Omega^*_2 \) is epic and given by multiplication by \(\theta \), \(\Omega^*_2 \) consists of elements of order 2. The torsion subgroup of \(\Omega^*_2 \) is the kernel of the composite \(\Omega^*_2 \xrightarrow{\mathcal{W}_2(\varepsilon, 2) \xrightarrow{F_*}} \Omega^*_2 \), but \(F_* \) is monic, so \(\text{Torsion}(\Omega^*_2) = \ker \text{kernel}(\rho) = \text{image}(t) \), which consists of elements of order 2.

Lemma 3: \(\Omega^*_3 = 0 \).

Proof: (Due to Lashof and Rothenberg). One has the forgetful homomorphism \(S_* : \Omega^*_a \longrightarrow \Omega^*_a \) induced by the inclusion \(j : S \longrightarrow TBSU \), with \(j : \mathcal{H}^*(TBSU; \mathbb{Z}) \longrightarrow \mathcal{H}^*(\mathbb{S}; \mathbb{Z}) \) an isomorphism in dimensions less than 4 and epic in dimension 4, so the homotopy map \(S_* \) is an isomorphism in dimensions less than 3 and epic in dimension 3. Let \(\alpha \in \Omega^*_1 \) with \(S_*(\alpha) = \theta \). Since \(2\alpha = 0 \), \(2\alpha^3 = 0 \), and since \(\Omega^*_2 = 2\mathbb{S} \), \(\alpha^3 = 2\alpha \). Thus \(\theta^3 = S_*(\alpha^3) = 2S_*(\alpha) \) but all torsion in \(\Omega^*_a \) has order 2, so \(2S_*(\alpha) = 0 \). Finally \(t : \Omega^*_2 \longrightarrow \Omega^*_2 \) is epic, so \(\theta^3 = 0 \) implies \(t\theta^2 = 0 \) and \(\Omega^*_3 = 0 \).
Note: An alternate proof may be given as follows. From

$$0 \to \mathcal{W}_4(\mathbb{C}, 2) \to \Omega^U_0 = \mathbb{Z} \oplus \mathbb{Z} \to \mathcal{W}_4(\mathbb{C}, 2) \cong \mathbb{Z}$$

and a generator is represented by $96\mathbb{P}(1)^2 - 8\mathbb{CP}(2)$ with $c_1 = 0$, $c_2 = 12$, and with \mathcal{S} number 1. For a 4 dimensional SU manifold, the \mathcal{S} number must be even (KO theory characteristic number argument to be given later), so that $\rho : \Omega^U_0 \to \mathcal{W}_4(\mathbb{C}, 2)$ is not epic. Thus $\rho : \mathcal{W}_4(\mathbb{C}, 2) \to \Omega^U_2 \cong \mathbb{Z}_2$ is epic and $t : \Omega^U_2 \to \Omega^U_3$ is both epic and zero, giving $\Omega^U_3 = 0$. **

Considering the exact triangle

$$\Omega^U_0 \xrightarrow{t} \Omega^U_2 \xrightarrow{\rho} \mathcal{W}_4(\mathbb{C}, 2)$$

as an exact couple, one has a derived couple

$$\text{Image } t \xrightarrow{t} \text{Image } t$$

where $H(W)$ is the homology of $\mathcal{W}_4(\mathbb{C}, 2)$ with respect to the differential $\rho^3 : \mathcal{W}_4(\mathbb{C}, 2) \to \mathcal{W}_4(\mathbb{C}, 2)$. This gives an exact sequence

$$\cdots \to t(\Omega^U_{2j-1}) \xrightarrow{t} t(\Omega^U_{2j}) \xrightarrow{\rho^3} H_2(W) \xrightarrow{3^j} t(\Omega^U_{2j-3}) \to t(\Omega^U_{2j-2}) \to \cdots$$

Now $\Omega^U_{2j-1} = t(\Omega^U_{2j-2})$ since t is epic so $t : t(\Omega^U_{2j-1}) \to t(\Omega^U_{2j})$ has image $t^3(\Omega^U_{2j-2})$, but $t^3 = 0$ since $\theta^3 = 0$. This sequence then splits up as

$$0 \to t(\Omega^U_{2j}) \to H_2(W) \to t(\Omega^U_{2j-3}) \to 0$$

$$\begin{array}{c}
\Omega^U_{2j+1} \\
\downarrow \varepsilon \\
\Omega^U_{2j-3}
\end{array}$$
Since \(\ker(\rho) = \Omega^*_{\text{SU}} \), while Lemma 1 proved that \(2^*_{\text{SU}} \subset \text{image}(\rho) \), \(H_{2j}(W) \) is a \(\mathbb{Z}_2 \) vector space, and the above sequence splits to give

Lemma: \(H_{2j}(W) \cong \Omega^*_{2j+1} \otimes \Omega^*_{2j-3} \).

Since the torsion structure of \(\Omega^*_{\text{SU}} \) is entirely determined by the groups \(\Omega^*_{2j+1} \) knowing \(H_*(W) \) would give the torsion structure.

To begin this computation, one has an exact sequence

\[
0 \to W_*(0,2) \to W_*(e,2) \to W_*(e,2) \otimes \mathbb{Z}_2 \to 0
\]

giving a homology exact triangle

\[
\begin{array}{ccc}
H_*(W) & \to & E_*(W) \\
\downarrow & & \downarrow \\
H_*(W \otimes \mathbb{Z}_2) & \to & \end{array}
\]

but every element in \(H_*(W) \) has order 2, so one has

\[
0 \to H_{2k}(W) \to H_{2k}(W \otimes \mathbb{Z}_2) \to H_{2k-2}(W) \to 0.
\]

From Chapter VIII one has:

Assertion: \(W_*(0,2) \otimes \mathbb{Z}_2 \) is a polynomial algebra over \(\mathbb{Z}_2 \) on classes \(z_{2n} \) for \(n \neq 2 \). The boundary homomorphism is given by \(\partial z_2 = 0 \), \(\partial z_{4n} = z_{4n-2} \) if \(n \geq 2 \), and satisfies \(\partial(ab) = (\partial a)b + a(\partial b) + z_2(a)(\partial b) \).

Since \(\partial z_2 = 0 \), \(\partial(z_2a) = z_2(\partial a) \), and the ideal \(W'' \subset W_*(0,2) \otimes \mathbb{Z}_2 \) generated by \(z_2 \) is a subcomplex. From the short exact sequence

\[
0 \to W'' \to W_*(e,2) \otimes \mathbb{Z}_2 \to W' = W_*(e,2) \otimes \mathbb{Z}_2/W'' \to 0
\]

one has an exact sequence

\[
\begin{array}{ccc}
H_*(W'') & \to & H_*(W \otimes \mathbb{Z}_2) \\
\downarrow & & \downarrow \\
H_*(W') & \to & \end{array}
\]
Since $W' \cong Z_2[z_{2n} : n \geq 2]$ with $z_{4n} = z_{4n-2}$ and $z(xy) = z(xy) + (zxy)$, $H_*(W') \cong Z_2[z_{2n}^2]$.

From the product formula for \ast in $\mathcal{W}_*(e,2) \otimes Z_2$, $H_*(\mathcal{W} \otimes Z_2)$ is a ring, and the homomorphism to $H_*(W')$ is a ring homomorphism. Now

$$\ast[(z_{4n})^2 + z_2 z_{4n-2} z_{4n}] = (2z_{4n} z_{4n-2} + z_2 z_{4n-2}^2) + z_2 z_{4n-2}^2 = 0$$

so the classes $h_{4n} = z_{4n}^2 + z_2 z_{4n-2} z_{4n}$ in $H_*(\mathcal{W} \otimes Z_2)$ map onto the polynomial generators of $H_*(W')$. This splits the exact sequence to give

$$0 \rightarrow H_*(W') \rightarrow H_*(\mathcal{W} \otimes Z_2) \rightarrow H_*(W) \rightarrow 0.$$

From the formula $\ast(z_2 x) = z_2(\ast x)$ previously noted, one has $H_*(W'') = Z_2 \cdot H_*(\mathcal{W} \otimes Z_2)$, giving:

Lemma 5: $H_*(\mathcal{W} \otimes Z_2)$ is a polynomial algebra over Z_2 with generators h_2 (represented by z_2) and h_{4n}, $n \geq 2$, (represented by $(z_{4n})^2 + z_2 z_{4n-2} z_{4n}$).

Returning now to $\mathcal{W}_*(e,2)$, one notes that the generators z_{2n}, $n \neq 2$, for $\mathcal{W}_*(e,2) \otimes Z_2$ are represented by classes $z_{2n}^2 \in \mathcal{W}_*(e,2)$ with $\rho z_{4n}^2 = z_{4n-2}$ if $n > 2$, and $\rho z_2^2 = 2$. Using the product in Ω^U_* and the extension \ast' of $\rho \ast$ to Ω^U_*, one also has

$$\ast'(a \cdot b) = a \cdot b + z_2 z_2 V^h \cdot a \cdot b$$

and

$$\ast'(a \cdot b) = a(\ast'b) + (\ast'a)b - z_2^2(\ast'a)(\ast'b)$$

for $a, b \in \mathcal{W}_*(e,2)$, $[V^h]$ being given by $z_2^2 \in \Omega^2(2)$.

If M has all numbers divisible by c_1 zero ($\ast'M = 0$) and X is any stably almost complex manifold, then the submanifold of $M \times X$ dual to
c_1 has the same Chern numbers as $M \times N$, where $N \subset X$ is dual to c_1.
Thus $3'(M \cdot [X]) = [M] \cdot 3'(X)$. In particular, $H_*(\mathcal{W})$ is a ring and the homomorphism into $H_*(\mathcal{W} \otimes \mathbb{Z}_2)$ is a ring homomorphism.

One then has:

Lemma 6: The homomorphism $H_*(\mathcal{W}) \rightarrow H_*(\mathcal{W} \otimes \mathbb{Z}_2)$ maps $H_*(\mathcal{W})$ isomorphically onto the subalgebra generated by $(h_2)^2$ and h_{2k}, $k \geq 2$.
Thus $H_*(\mathcal{W})$ is a polynomial algebra on classes c_1 and c_{2k}, $k \geq 2$.

Proof: $\phi(\mathbb{OP}(1)^2) = 3\mathbb{OP}(1)^2 + 8[V^h] = 9\mathbb{OP}(1)^2 - 8\mathbb{OP}(2) \in W_*(\mathcal{E},2)$ has all Chern numbers divisible by c_1 zero ($c_1^2 = 0$, $c_2 = 12$), so is a cycle in $W_*(\mathcal{E},2)$. This class represents the product z_2^2 in $W_*(\mathcal{E},2) \otimes \mathbb{Z}_2$ or $(h_2)^2$ in $H_*(\mathcal{W} \otimes \mathbb{Z}_2)$.

For $n \geq 2$,

$$3'\phi(z_{4n}^{'12}) = 3'(z_{4n}^{'2} + 2[V^h](3'z_{4n}^{'12})),$$

$$= (2z_{4n}^{'2}z_{4n-2}^{'12} - z_{2}^{'12}z_{4n-2}^{'12}) + 2s'[V^h]z_{4n-2}^{'12},$$

$$= 2z_{4n}^{'2}z_{4n-2}^{'12} + z_{2}^{'12}z_{4n-2}^{'12}$$

for $3'[V^h]$ is a 2 dimensional class with $c_1(3'[V^h]) = 0$, so $3'[V^h] = 0$.

Also

$$3'\phi(z_{2}^{'2}z_{4n}^{'1}) = 3'(z_{2}^{'2}z_{4n}^{'1} + 4[V^h]z_{4n-2}^{'1}),$$

$$= z_{2}^{'2}z_{4n-2}^{'1} + 2z_{4n}^{'1} - 2z_{2}^{'2}z_{4n-2}^{'1} + 4s'[V^h]z_{4n-2}^{'1},$$

$$= 2z_{4n}^{'1} - z_{2}^{'2}z_{4n-2}^{'1}.$$

Thus

$$\phi(z_{4n}^{'12}) - z_{4n-2}^{'1} \phi(z_{2}^{'2}z_{4n}^{'1}) \in W_*(\mathcal{E},2)$$
is a cycle \((z_{2n-2}^{1} = 0)\) and reduces to \((z_{4n}^{1})^2 + z_{2} z_{4n-2} z_{4n-2} \in \mathcal{W}_{\ast}(\mathbb{Z}, 2) \otimes \mathbb{Z}_2\) so to \(h_{2n} \in H_\ast(W \otimes \mathbb{Z}_2)\).

Thus \(H_\ast(W)\) maps onto the asserted subgroup of \(H_\ast(W \otimes \mathbb{Z}_2)\), while the exact sequence \(0 \rightarrow H_\ast(W) \rightarrow H_\ast(W \otimes \mathbb{Z}_2) \rightarrow H_\ast(V) \rightarrow 0\) together with a dimension count make this an isomorphism. **

Returning to the isomorphism \(H_{2n}(W) \cong \Omega_{2n+1}^{SU} \otimes \Omega_{2n-3}^{SU}\), one has
\(H_{8k+2}(W) \cong H_{8k+6}(W) \cong 0\) so \(\Omega_{8k+3}^{SU} \cap \Omega_{8k+7}^{SU} = 0\). Since \(H_{8k+4}(W) = H_{8k}(W)\) (via multiplication by \(c_k\)), \(\Omega_{8k+1}^{SU} \cap \Omega_{8k-3}^{SU} \cap \Omega_{8k+5}^{SU} \cap \Omega_{8k+3}^{SU} \) or \(\Omega_{8k+5}^{SU} \cap \Omega_{8k-3}^{SU}\) and induction on \(k\), beginning with \(\Omega_{-3}^{SU} = 0\) gives \(\Omega_{8k+5}^{SU} = 0\). This then gives \(\Omega_{8k+1}^{SU} \cong H_{8k}(W)\), and one has the result of Conner and Floyd [99] (18.3):

Theorem: The torsion of \(\Omega_n^{SU}\) is given as follows:
\(\text{Torsion}(\Omega_n^{SU}) = 0\) unless \(n = 8k+1\) or \(8k+2\), in which case \(\text{Torsion}(\Omega_n^{SU})\) is a \(\mathbb{Z}_2\) vector space of rank the number of partitions of \(k\).

Proof: Since \(H_{8k}(W)\) is the \(\mathbb{Z}_2\) polynomial algebra on the \(c_{8k}, k\) and \(c_1^2\), with \(\Omega_{8k+1}^{SU} \cong H_{8k}(W)\), the odd groups \(\Omega_n^{SU}\) satisfy the given conditions. Since \(t : \Omega_{2n-1}^{SU} \rightarrow \text{Torsion}(\Omega_{2n}^{SU})\) is an isomorphism, the torsion subgroup is known in the even dimensional case also. **

Returning to the exact sequence
\[0 \rightarrow \Omega_{2j-1}^{SU} \xrightarrow{\tau} \Omega_{2j}^{SU} \xrightarrow{\rho} \mathcal{W}_{2j}(\mathbb{Z}, 2) \xrightarrow{\beta} \Omega_{2j-2}^{SU} \xrightarrow{t} \Omega_{2j-1}^{SU} \rightarrow 0\]

one has:

Theorem: The homomorphism \(\rho : \Omega_{2j}^{SU} \rightarrow \mathcal{W}_{2j}(\mathbb{Z}, 2)\) has image equal to the group \(\mathbb{Z}(\mathcal{W}_{2j}(\mathbb{Z}, 2), \rho_0)\) of cycles if \(2j \neq 4 \mod (8)\) and has image equal to the group \(B(\mathcal{W}_{2j}(\mathbb{Z}, 2), \rho_0)\) of boundaries if \(2j \equiv 4 \mod (8)\).
Proof: If $2j \neq 4k \pmod{8}$, $2j - 2 \neq 8k + 2$ so Ω_{2j-2}^{SU} is torsion free and $\rho: \Omega_{2j-2}^{SU} \to \mathcal{W}_{2j-2}(\mathbb{C}, 2)$ is monic. Thus $\ker(\partial: \mathcal{W}_{2j}(\mathbb{C}, 2) \to \Omega_{2j-2}^{SU}) = \ker(\rho \circ \partial: \mathcal{W}_{2j}(\mathbb{C}, 2) \to \mathcal{W}_{2j-2}(\mathbb{C}, 2)) = Z(\mathcal{W}_{2j}(\mathbb{C}, 2), \rho \circ \partial)$. If $2j = 8k + 4$, one has $\partial: \mathcal{W}_{2j}(\mathbb{C}, 2) \to \Omega_{2j-2}^{SU}$ epic, while $\rho: \Omega_{2j-2}^{SU} \to \mathcal{W}_{2j-2}(\mathbb{C}, 2)$ has kernel isomorphic to $H_{2j-4}(\mathcal{W}) \cong H_{2j}(\mathcal{W})$. Thus $\ker(\rho \circ \partial)/\ker \partial$ is $H_{2j}(\mathcal{W})$ and $\rho_{2j} \circ \partial = B(\mathcal{W}_{2j}(\mathbb{C}, 2), \rho \circ \partial)$. **

Corollary: Let $\partial': \Omega_{*}^{SU} \to \Omega_{*}^{U}$ be the homomorphism sending M into the submanifold $N \subset M$ dual to \det_{M}. The forgetful homomorphism $F_{*}: \Omega_{*}^{SU} \to \Omega_{*}^{U}$ has image containing $\text{image}(\partial')$. There exist SU manifolds \mathcal{W}_{k}, $k \geq 1$, such that $\text{image}(F_{*})/\text{image}(\partial') \cong \mathbb{Z}[\mathcal{W}_{k}]$. Every torsion element of Ω_{*}^{SU} is uniquely expressible in the form $V^{8n \cdot \theta}$ or $V^{8n \cdot \theta^{2}}$ where V^{8n} is a polynomial in the \mathcal{W}_{k} with coefficients 0 or 1.

Proof: Dualizing \det_{M} gives a submanifold admitting an SU structure, so image $\partial' \subset \text{image } F_{*}$. Then image $F_{*} = \rho \Omega_{*}^{SU} \subset \mathcal{W}_{*}(\mathbb{C}, 2)$ is described in the theorem as $Z(\mathcal{W})$ (or $B(\mathcal{W})$ if $\dim \equiv 4 \pmod{8}$) while image $\partial' = B(\mathcal{W})$. Thus $\text{image}(F_{*})/\text{image}(\partial') \cong H_{n}(\mathcal{W})$ if $n \neq 4 \pmod{8}$ and is zero if $n \equiv 4 \pmod{8}$, which proves the polynomial structure. The torsion group Ω_{8k+1}^{SU} is t_{8k}^{SU} and annihilates image ∂, while $t_{8k}^{SU} \neq 0$ giving the structure of the torsion. **

In order to examine the structure of Ω_{*}^{SU} more closely, it seems necessary to consider KO-theory characteristic numbers. Briefly, there is a multiplicative cohomology theory KO^{*} indexed by the integers (positive and negative) for which $KO^{0}(X)$ is the Grothendieck group of isomorphism classes of real vector bundles over X, and $KO^{-b}(X)$ is the Grothendieck group of isomorphism classes of quaternionic vector bundles over X (denoted $KSp(X)$).
This cohomology theory is periodic of period 8, the periodicity isomorphism
\[\tilde{p} : K^i(X) \rightarrow K^{i-8}(X) \] being given by multiplication by a generator
\[\tilde{p}(1) \in K^0(pt) \cong \mathbb{Z}^8 \cong \mathbb{Z}. \]

In order to describe elements in \(K^*(X) \) geometrically, it is convenient to consider a complex vector bundle \(V \) over \(X \) together with an automorphism \(J : V \rightarrow V \) such that \(J^2 = -1 \). Then \((V, J)\) is:

1) Symplectic if \(J^2 = -1 \),

2) Real if \(J^2 = 1 \).

(That this is justifiable follows from the fact that if \(J^2 = 1 \), then \(V = \frac{(1 + J)}{2} V \oplus \frac{(1 - J)}{2} V \), decomposing as the \(+1 \) and \(-1 \) eigenspaces of \(J \), and the summands are interchanged under multiplication by \(i \). Thus \(V \) is isomorphic to the complexification of \(\frac{(1 + J)}{2} V \).

Being given two such pairs \((V_1, J_1)\) and \((V_2, J_2)\), the tensor product
\[(V_1 \otimes V_2) \] admits a conjugate linear automorphism \(J_1 \otimes J_2 \) and
\[(V_1 \otimes V_2, J_1 \otimes J_2) \] is:

1) Real if \(J_1 \) and \(J_2 \) are both either real or symplectic;

2) Symplectic if one is symplectic and the other is real.

This describes the product which relates \(KO(X) \) and \(KSp(X) \) in \(K^*(X) \).

(Note: If \((V_1, J_1)\) and \((V_2, J_2)\) are symplectic, \(J_1 \otimes J_2 \) acts on \(V_1 \otimes V_2 \) thought of as complex vector bundles, and the real eigenbundle is \(V_1 \otimes H \), where \(V_1 \) is made a right vector bundle over \(H \) by means of conjugation.)

Lemma: \(KO^*(HP(n)) \) is a free \(KO^*(pt) \) module with base \(1, \tilde{a}, \ldots, \tilde{a}^n \), where \(\tilde{a} \in KO^b(HP(n)) \) is represented as \(\tilde{p}^{-1}(1-\lambda) \), \(\lambda \) being the canonical quaternionic line bundle.

Proof: From the change of fields section of Chapter V one has quotient maps
\[S^{4n+3} \rightarrow SP(2n+1) \xrightarrow{f} HP(n) \] with \(f^*(\lambda) = \lambda \otimes \tilde{1} \), and \(HP(n) \) has

...
proper integral cohomology, with $H^\bullet(\mathbb{F}(n); \mathbb{Z}) = \mathbb{Z}[\hat{\alpha}] / \hat{\alpha}^{n+1} = 0$ and $f^\#(\hat{\alpha}) = -\alpha^2$ in $H^\bullet(\mathbb{F}(2n+1); \mathbb{Z})$. In particular, under the collapse $\mathbb{H}^n \to \mathbb{H}^n / \mathbb{H}(n-1) = \mathbb{S}^{2n}$, $d^\#(\hat{\alpha}) = (-\hat{\alpha})^2$.

Assuming the result true for $\mathbb{H}^n(n-1)$, one has the exact sequence

$$0 \to \tilde{\mathbb{K}}^\#(\mathbb{S}^{2n}) \xrightarrow{d^\#} \mathbb{K}^\#(\mathbb{H}^n(n)) \xrightarrow{i^\#} \mathbb{K}^\#(\mathbb{H}^n(n-1)) \to 0$$

arising from the cofibration $\mathbb{H}^n(n-1) \xrightarrow{i} \mathbb{H}^n(n) \xrightarrow{d} \mathbb{S}^{2n}$, $i^\#$ being epic by the assumption. Since d^n is trivial over the \mathbb{S}^{2n-1} skeleton, $i^#d^n = 0$, and $d^n = d^\#(v)$ for some $v \in \tilde{\mathbb{K}}^\#(\mathbb{S}^{2n})$. To prove the result for $\mathbb{H}^n(n)$ by induction, it suffices to show that v is a generator of $\tilde{\mathbb{K}}^\#(\mathbb{S}^{2n})$.

Considering λ as a complex bundle, one has $f^\#ch(1_H^\lambda) = chf^\#(1_H^\lambda) = ch(2-\lambda \otimes \lambda) = 2 - \alpha^2 - \alpha^2 = -\alpha^2 + \text{higher terms}$, so $ch(\hat{\alpha}) = \hat{\alpha} + \text{higher terms}$.

For n odd, $\hat{\alpha}^n$ is represented as an \mathbb{S}^n 'bundle', and thought of as complex, $\hat{\alpha}^n = +\hat{\alpha}^n = d^\#(-\hat{\alpha})$, so $ch(v) = -\hat{\alpha}$ and v is a generator. For n even, $\hat{\alpha}^n$ is a real 'bundle' and $ch(\hat{\alpha}^n \otimes c) = \hat{\alpha}^n = d^\#\hat{\alpha}$, so $ch(v \otimes c) = \hat{\alpha}$ and v is a generator. **

From this it is clear that $\hat{\alpha}$ satisfies all the conditions to give $\mathbb{H}^n(n)$ proper cohomology, with $v \in \tilde{\mathbb{K}}^\#(\mathbb{S}^{2n})$ being the standard orientation class $\hat{\alpha}$, chosen so that for n odd $ch(\hat{\alpha}) = \hat{\alpha}$ and for n even $ch(\hat{\alpha} \otimes c) = \hat{\alpha}$, where $\hat{\alpha} \in \mathbb{H}^n(\mathbb{S}^{2n}; \mathbb{Z})$ is the standard generator.

Since the operation $(V,J) \to V$ obtained by taking the underlying bundle maps the generator of $\tilde{\mathbb{K}}^\#(\mathbb{S}^n)$ onto that of $\tilde{K}(\mathbb{S}^n)$, this operation is compatible with suspension and one may define a ring homomorphism

$\psi: \mathbb{K}^\#(X) \to \mathbb{K}^\#(X)$ represented geometrically by $(V,J) \to V$ in degrees congruent to zero mod 4.

It is now reasonable to describe $\mathbb{K}^\#(pt)$. Briefly, $\mathbb{K}^\#(pt)$ contains a subring consisting of Laurent series on the class $\bar{p}(1) \in \mathbb{K}^\#(pt)$ and is a
module over this subring with base $1, a, b, z$, $a \in K_{-1}(pt)$, $b \in K_{-2}(pt)$,
$z \in K_{-3}(pt)$ with relations $2a = 2b = 0$, $a^2 = b$ and $z^2 = 4p(l)$.

Note: $z \in K_{-3}(pt)$ is represented by the trivial symplectic line bundle, or $\psi(z)$ by the 2 dimensional complex bundle. Thus $\psi(z)^2$ is represented by the image under periodicity of the trivial complex 4 plane bundle, which is $4\psi(p(l)) - p(l)^4$.

Under $\psi : K^*(pt) \to K^*(pt)$ one has $\psi(a) = \psi(b) = 0$, $\psi(z) = 2p(l)^2$, $\psi(p(l)) = p(l)^4$.

Being given a $U(n)$ bundle ξ over a space B, with complex inner product $\langle \cdot, \cdot \rangle$, one has defined a bundle map

$$\phi : \pi^*(\Lambda^{ev}(\xi)) \to \pi^*(\Lambda^{od}(\xi))$$

where π is the projection of $D(\xi)$ onto B (Lemma 7, Chapter IX makes this meaningful) and over $S(\xi)$, this is an isomorphism (Corollary to Lemma 6).

Thus $\pi^*(\Lambda^{ev}(\xi)) - \pi^*(\Lambda^{od}(\xi)) \in K(D(\xi))$ is trivialized over $S(\xi)$ by ϕ, defining a class $d(\pi^*(\Lambda^{ev}(\xi)), \pi^*(\Lambda^{od}(\xi), \phi) \in K(D(\xi), S(\xi))$. Let

$$\hat{U}(\xi) = p^{-\pi^*(\Lambda^{ev}(\xi), \pi^*(\Lambda^{od}(\xi), \phi) \in H^2(T(\xi)).$$

Proposition: $\hat{U}(\xi) = (-1)^n\hat{U}(\xi)$, where $\hat{U}(\xi)$ is the orientation defined by K-theory Chern classes.

Proof: As in Assertion 1, $\hat{U}(\xi)$ is multiplicative and so one may verify this for line bundles. If V is a 1 dimensional vector space, $\Lambda(V)$ has base $(1, v)$, v a unit vector in V, and

$$F_x(1) = x, \quad F_x(v) = 0,$$

$$F_x^*(v) = \langle v, x \rangle, \quad F_x^*(1) = 0,$$

so

$$\phi_x(1) = x, \quad \phi_x(v) = \langle v, x \rangle.$$
and ϕ defines the standard trivialization over $S(\xi)$ by sending $ze \in \pi^*(\xi)_e$ into z. Thus $\tilde{U}(\xi) = p^{-1}(1-\xi)$ for the conjugate of the canonical bundle over $CP(n-1)$. Since $\tilde{U}(\xi) = p^{-1}(\xi-1)$, this gives the result. **

If ξ is an SU(2n) bundle over B with $\sigma: B \to S(A^{2n}(\xi))$ defining the orientation, then by Lemma 4 (Chapter IX) one has defined an operator $\mu: \Lambda(\xi) \to \Lambda(\xi)$, anti-commuting with i (Lemma 3). Since $\mu: \Lambda^k(\xi) \to \Lambda^{2n-k}(\xi)$, μ preserves the even/odd decomposition, and by Lemma 8, μ commutes with ϕ. Since $\mu^2 = (-1)^{2n(2n-1)/2}$, one has:

Proposition: If ξ is an SU(2n) bundle, the class

$$d(\pi^*A^{ev}(\xi), \pi^*A^{od}(\xi), \phi) \in \tilde{\pi}(T(\xi))$$

admits a conjugate linear operator μ. Since $\mu^2 = (-1)^n$, this defines a class $\mu(\xi) \in \tilde{\pi}^{h}(T(\xi))$.

Proof: If n is odd, $d = d(\pi^*A^{ev}(\xi), \pi^*A^{od}(\xi), \phi)$ is given an Sp structure, while for n even d has a real structure. Applying real periodicity this gives an element in $\tilde{\pi}^{h}(T(\xi))$.

By Lemma 5, Chapter IX, μ is multiplicative for SU(2n) bundles and so $\mu(\xi)$ is a multiplicative Thom class.

Assertion: $\mu(\xi)$ is an orientation.

Proof: Letting ξ be the trivial complex 2n plane bundle over a point, ξ is given an SU structure by the trivialization. Thus $\mu(\xi) \in \tilde{\pi}^{h}(S^{2n})$ is defined. Applying ψ to $\mu(\xi)$ gives $\tilde{U}(\xi) \in \tilde{\pi}^{h}(S^{2n})$ which is the standard orientation, so $\mu(\xi)$ is the generator of $\tilde{\pi}^{h}(S^{2n})$. **
Note: This shows that SU bundles are KO*-orientable. For ξ an SU(2k-1) bundle, $u(\xi \otimes 1) \cong \widetilde{K}^{4k}(T(\xi \otimes 1)) = \widetilde{K}^{4k}(2(\xi)) = \widetilde{K}^{4k-2}(T(\xi))$ is an orientation. The difficulty in doing this case geometrically is that one has no nice way to describe \widetilde{K}^{4k+2}.

Having an orientation for SU bundles, it would be desirable to have characteristic classes also. For a symplectic bundle ξ over X one has KO*-characteristic classes, $\psi^i_1(\xi) \in KO^i_*(X)$, defined by the general theory.

For ξ a complex bundle over X, $\xi \otimes \mathbb{C} \cong \xi \oplus \bar{\xi}$ has a symplectic structure and thus one has KO*-characteristic classes $\psi^i_1(\xi \otimes \mathbb{C}) \in KO^i_*(X)$.

Lemma: $\psi(\psi^i_1(\xi \otimes \mathbb{C})) = (-1)^i p(1)^{-2i} \pi^i_1(\xi)$ where $\pi^i_1(\xi) \in K(X)$ is the K-theory Pontrjagin class defined by the underlying real bundle of ξ. (See Chapter IX).

Proof: Clearly $\psi(\psi^i_1(\xi \otimes \mathbb{C})) = p(1)^{-2i} \beta$, with $\beta \in K(X)$ and to evaluate β it suffices to apply the splitting principle. Then for $\xi = \lambda$, $i = 1$, over $CP(n)$, one has $\beta = 2 - \lambda \otimes X = -\pi^1(\lambda)$, giving the result.

It is also convenient to reexamine the classes $\pi^i_1(\xi)$ as follows:

For any real vector bundle ξ over X, one defines

$$\lambda^R_0(\xi) = \sum_{i=0}^{\infty} \lambda^R_0(\xi) t^i \in KO(X)[[t]],$$

so that $\lambda^R_0(\xi \oplus \eta) = \lambda^R_0(\xi) \cdot \lambda^R_0(\eta)$, permitting extension to KO(X). Thus

$$\lambda^R_0(\xi - \dim \xi) = \frac{\sum \lambda^R_0(\xi) t^i}{(1 + t)^{\dim \xi}}$$

depends only on the stable class of ξ. Letting $u = t/(1+t)^2$, so that $u = t(1-t^2-t^3+\ldots)^2$ is a power series over Z with leading term t and t is a power series over Z in u with leading term u, one defines class
\[\pi^i_R(\xi) \in KO(X) \text{ by} \]
\[\sum u^i_R(\xi) = \pi^i_R(\xi) = \lambda^i_t(\xi - \dim \xi) \]
and calls \(\pi^i_R(\xi) \) the \(i \)-th KO theory Pontrjagin class of \(\xi \).

Note: \(\lambda^i_0(\xi \otimes \mathbb{C}) = \lambda^i_R(\xi) \otimes \mathbb{C} \), so \(\sum u^i_R(\xi) \otimes \mathbb{C} = \lambda^i_t(\xi \otimes \mathbb{C} - \dim \xi \mathbb{C}) \).

Replacing \(t \) by \(t/(1-t) \) gives

\[\lambda^i_{t/(1-t)}(\xi \otimes \mathbb{C} - \dim \xi \mathbb{C}) = \sum \left[\frac{t/(1-t)}{(1+t/(1-t))^2} \right]^i (u^i_R(\xi) \otimes \mathbb{C}), \]
\[= \sum \left[t(1-t) \right]^i (u^i_R(\xi) \otimes \mathbb{C}), \]
\[= \sum s^i(u^i_R(\xi) \otimes \mathbb{C}) \]

where \(s = t-t^2 \). Thus the complexification of \(\pi^i_R(\xi) \) is the class \(\pi^i(\xi) \) previously referred to as the \(K \)-theory Pontrjagin class.

This gives the somewhat curious phenomenon that for \(i \) odd, \(\pi^i(\xi) \) comes from both \(KSp(X) \), as \(-p(1)^{2i}(u^i_R(\xi) \otimes \mathbb{C}) \), and \(KO(X) \), as \(\pi^i_R(\xi) \otimes \mathbb{C} \), provided \(\xi \) is a complex bundle. This gives:

Theorem: Let \(M \) be a stably almost complex manifold, with \(s_\omega(\varphi) \),
\[J \in H^*(\mathbb{M}; \mathbb{Q}) \]
the classes given by the \(s_\omega \), symmetric function of the variables \(e_j + e_j^{-1} - 2 \) and the product of the classes \(x_j/(e_j - 1) \), when \(c(M) \)
is expressed formally as \(\Pi(1+x_j) \).

Then \((s_\omega(\varphi), J)[M] \) is an integer and is an even integer if \(M \) is an SU manifold and either:

1) \(\dim M \equiv 4 \pmod{8} \), or

2) \(\dim M \equiv 0 \pmod{8} \) and \(\omega \) is not of the form \((\omega', \omega') \).
Proof: Since $\text{ch}(\omega^j(\pi))$ is the j-th elementary symmetric function in $e^X + e^{-X} - 2$, $s_\omega(e^X) = \text{ch}(s_\omega(\pi))$ is the Chern character of the s_ω symmetric function class for the K theory Pontrjagin class. Thus, up to a periodicity, $(s_\omega(e^X))^J(M)$ is the value of the k-theory characteristic number $s_\omega(\pi)(M)$, and hence is an integer.

If M^{hr} is an SU manifold, imbed M in a sphere S^{2k} with SU norm bundle v, and let $c : S^{2k} \to T(v)$ be the collapse, $p : v \to M$ being the projection. Then

$$(s_\omega(e^X))^J(M) = \text{ch} \cdot c^*(p^*s_\omega(\pi) \cdot \bar{u}(v))[S^{2k}].$$

If $\dim M = 4(8)$, this is given by

$$\text{ch} \cdot c^*(p^*s_\omega(\pi) \cdot u(v))[S^{2k}].$$

but $c^*(p^*s_\omega(\pi)u(v)) \in \mathcal{K}^{2k-4r}(S^{2k})$, with $2k-4r = 4(8)$, and hence this Chern character has even value.

If $\dim M = 0(8)$ and $\omega \neq (\omega', \omega')$, then s_ω belongs to the ideal generated by 2 and the odd order elementary symmetric functions. [To see this consider $H^*(BO; \mathbb{Z}_2)$ as symmetric classes mod 2. The ideal generated the odd classes is the kernel of the homomorphism sending w_1 to $\sum w_j v_{i-j}$ induced by classifying $g \in \gamma$. Under this homomorphism, s_ω goes to zero if $\omega \neq (\omega', \omega')$ and if $\omega = (\omega', \omega')$, s_ω maps to $s_{\omega'}^2$.] Thus one may write

$$s_\omega(\pi) = -\sum_j s_{\omega_j}^{2j+1} \cdot s_\omega(\pi) + 2 \sum_{\lambda} b_\lambda s_\lambda(\pi),$$

with s_{ω_j}, $b_\lambda \in \mathbb{Z}$. Then $(s_\omega(e^X))^J(M)$ is given by

$$\text{ch} \cdot c^*(\sum_j s_{\omega_j}^{2j+1} \cdot s_{\omega_j}^*(\pi)u(v))[S^{2k}] + 2\text{ch} e^X \cdot (\sum_{\lambda} b_\lambda s_\lambda(\pi) \bar{u}(v))[S^{2k}].$$
The last term is even, being twice a K theory characteristic number, while the first is a sum of terms of the form $\text{ch}_\psi(x)[S^{2k}]$ with $x \in K^0 \otimes \mathbb{Z} \otimes S^{2k}$, and so is even. **

From this, one may complete the argument for $\theta^3 = 0$ in Lemma 3, by noting:

Corollary: The integer $\mathcal{J}[M]$ for M a 4 dimensional SU manifold is always even.

Next, one should note that for M an SU manifold of dimension $4n$, one has

$$s_\omega(\pi^\ast (\tau \otimes \xi))[M] = 8\sigma$$

where $\sigma \in K^0(\text{pt})$ is the standard generator $2^{n-1}(1)^{-n}$, $\epsilon = 0, 1$, of dimension $4n - 4 \tau = 8\sigma - 4\epsilon$, and $\beta \in \mathbb{Z}$. Applying ch_ψ gives

$$\beta = (-1)^n(\omega)(s_\omega(e \Theta)\mathcal{J})[M]/2^n.$$

Next, it should be noted in the above that only SU manifolds of dimension congruent to zero mod 4 were considered. The classes $s_\omega(e \Theta)$ have nonzero components only in dimensions congruent to zero mod 4 and one has

Proposition: The \mathcal{J} class is given by $e^{-c_1/2}$, so the classes \mathcal{J}_{4j+2} are divisible by c_1. In particular, the \mathcal{J} class coincides with the \hat{A} class in SU manifolds.

Proof: $x/(e^{x/2} - 1) = e^{-x/2}x/(e^{x/2} - e^{-x/2}) = e^{-x/2}((x/2)/\sinh(x/2))$ so $\mathcal{J} = e^{-c_1/2}\hat{A}$. **
To make use of KO^* theoretic characteristic numbers, one must know their values. For this define

$$\rho(\pi) : \mathbb{Z}^U_n \rightarrow \mathbb{Z}[^a_1] : [M] \rightarrow \sum \left(\sum_{e \in E} a_{e} \right) \cdot [M] \cdot a_n,$$

with $\rho_2(\pi)$ denoting the mod 2 reduction. One has:

Proposition: $\rho_2(\pi)(z'_2) = 1$ and $\rho_2(\pi)(z'_{4n})$, $n > 2$, has largest monomial given by:

1) a_n if n is not a power of 2,
2) $(a_{s-1})^2$ if $n = 2^s$, $s > 0$.

Proof: First, $z'_2 = [\mathbb{C}P(1)]$ so that $s_n(e \mathcal{O})$ is zero if $n(\omega) > 0$, giving $\rho_n([z'_2]) = \mathcal{O} [\mathbb{C}P(1)] = -1$.

If n is not a power of 2, z'_4n is the class of the submanifold of $\mathbb{C}P(1) \times \mathbb{C}P(2^p) \times \mathbb{C}P(2^{p+1}q)$ where $2n = 2^p(2^q+1)$ dual to $\bar{s}_1 + (2^p+1)\bar{s}_2 + (2^{p+1}q+1)\bar{s}_3$. Then $s_n(e \mathcal{O}) \cdot [z'_4n] = s_n(\mathcal{O})[z'_4n] = s_{2n}(c)[z'_4n]$, and this s-number was known to be nonzero in the choice of z'_4n.

If $n = 2^s$, $s > 0$, z'_4n is the class of the submanifold of $\mathbb{C}P(1) \times \mathbb{C}P(2^s) \times \mathbb{C}P(2^s)$ dual to $\bar{s}_1 + (2^s+1)\bar{s}_2 + \bar{s}_3$, and it was noted that $z'_4n = [\mathbb{C}P(2^s)]^2 + c$, where c belongs to the ideal generated by 2 and generators b_t of \mathbb{Z}_2. Since $\rho_2(\pi)(\mathbb{C}P(2^s)) = a_{2^s-1}$ + lower terms by s-classes, with $\rho_2(\pi)(z'_t) = 0$, $\rho_2(\pi)(b_t) = 0$ for $t > 1$ since b_t may be taken to be an SU manifold of dimension nonzero mod 2, and b_1 gives $\rho_2(\pi)(b_1) = 1$, which decreases the degree of the terms involving b_1, one has the asserted monomial.

Lemma: (Conner and Landweber [42]) The homomorphism $\rho_2(\pi)$ sends the image of $\rho^2 : W_*(\mathcal{S}, 2) \rightarrow W_*(\mathcal{S}, 2)$ into zero.
Proof: Since \(\text{im} \partial \) consists of SU manifolds, it suffices to consider the case \([M] = \rho \partial [N]\) with \(\dim M = 8k\). Then since \([M] \in \Omega^*_{SU}\),
\[\rho \partial [M \times \mathbb{CP}(1)] = 2[M] \] as in Lemma 1, so \(a = 2[N] - [M \times \mathbb{CP}(1)]\) is in the kernel of \(\rho \partial\) and has dimension \(8k+2\). As noted, the component of \(s^\omega(e_{\mathbb{P}})\) of dimension \(8k+2\) is divisible by \(c_1\), so this number vanishes for \(a\). Thus
\[-\rho(\pi)[M] = \rho(\pi)[M \times \mathbb{CP}(1)] = 2\rho(\pi)[N] \]
and \(\rho_2(\pi)[M] = 0\). **

Since clearly \(\rho_2(\pi)\) sends \(\mathbb{W}_\pi(e, 2)\) to zero, this shows that one has induced a homomorphism
\[\rho_2(\pi) : H_*(\mathcal{W} \otimes \mathbb{Z}_2) \to \mathbb{Z}_2[\alpha_1]. \]

Then \(\rho_2(\pi)(h_n) = 1\) and \(\rho_2(\pi)(h_{3n})\) has largest monomial \(\alpha_n^2\) if \(n\) is not a power of 2, or \((\alpha_{2^{s-1}})^4\) if \(n = 2^s, s > 0\). [Note:
\(h_{3n} = (z_{3n}^2 + z_{2^{s-1}} z_{4n-2} z_{4n}^2)\) but \(\rho_2(\pi)(z_{4n-2}) = 0\) since \(3z_{4n} = z_{4n-2}\); thus \(\rho_2(\pi)(h_{3n}) = \rho_2(\pi)(z_{4n}^2)\). Since these classes have distinct largest monomials, one has:

Proposition: \(\alpha \in H_*(\mathcal{W} \otimes \mathbb{Z}_2)\) is zero if and only if \(\rho_2(\pi)(\alpha) = 0\).

[Note the analogy with oriented cobordism in which the mod 2 numbers \(s^\omega(\mathbb{P})\) detected \(\ker\partial/\text{im}\partial\), while here the numbers \(s^\omega(\pi)\) detect.]

Theorem: All relations among the Chern numbers of \(n\) dimensional SU manifolds are given by the relations

a) \(c_1 c^\omega [M] = 0\) for all \(\omega\),
b) \(s^\omega(e_{\mathbb{P}})[M] \in \mathbb{Z}\) for all \(\omega\), and
c) If \(n \equiv 4 \pmod{8}\), \((s^\omega(e_{\mathbb{P}})[M]) \in 2\mathbb{Z}\) for all \(\omega\).

Proof: These relations have been shown to hold for SU manifolds. If
\(a \in H_n(SU; \mathbb{Q}) \) with \(c_1(a) = 0 \), \(s_\omega(e_0)[a] \in \mathbb{Z} \) and for \(n \equiv 4(3) \),
\(s_\omega(e_0)[a] \in 2\mathbb{Z} \), then from the knowledge of \(\mathfrak{u}_n \), \(a \) is represented by a
complex manifold having all numbers divisible by \(c_1 \) zero. Thus \(a \in \mathfrak{n}_n^{TSU} \).

For \(n \not\equiv 4(3) \), this suffices to prove \(a \in \mathfrak{n}_n^{SU} \). If \(n \equiv 4(3) \), then the
class of \(a \) in \(H_n(SU; \mathbb{Z}) \) is zero since \(s_\omega(e_0)[a] \equiv 0(2) \) for all \(\omega \),
so the class of \(a \) in \(H_n(SU) \) is zero. Hence \(a \) belongs to \(B(SU_n(\mathbb{Z}, 2), \rho_3) \)
and \(a \) is in \(\mathfrak{n}_n^{SU} \). **

Lemma: The KO* theory characteristic numbers of \(a \in \mathfrak{n}_n^{SU} \) are given by
a) \(s_\omega(\pi^2(r \ast \tau))[a] = 0 \) if \(n(\omega) > 0 \), and
b) \(l[a] \neq 0 \) in \(KO^{-1}(pt) \equiv \mathbb{Z}_2 \).

Proof: Let \(u : TBSU_{4r+2} \to BSU \) be a map defining the orientation class
\(u(\gamma_{4r+2}) \in \widetilde{KO}^{8r+4}(TBSU_{4r+2}) \), \(r \) large. Letting \(b \in BSU_{4r+2} \), the composite
\(f : S^{8r+4} = \Omega \to TBSU_{4r+2} \xrightarrow{u} BSU \)
represents the generator of \(\pi_{8r+4}(BSU) \equiv \widetilde{KO}^{8r+4}(S^{8r+4}) \). Since \(S^{8r+4} \) is
\(8r+3 \) connected, this map lifts to the connective cover \(BSU(8r+4, \ldots, \infty) \)
giving
\(f : S^{8r+4} \xrightarrow{\tilde{f}} BSU(8r+4, \ldots, \infty) \to BSU \).

Considering \(S^{8r+4} \) as the \(8r \)-fold suspension of \(S^4 \) gives
\(h : S^4 \xrightarrow{f'} \Omega^{8r} BSU(8r+4, \ldots, \infty) \xrightarrow{\Omega^8} \Omega^{8r} BSU \xrightarrow{\sigma} BSU \)
where \(\sigma \) is given by the \(r \)-fold application of periodicity. Both \(\sigma \) and
\(\Omega^{8r} \) induce isomorphisms on homotopy in positive dimensions, so \(h \) represents
the generator of \(\pi_{4}(BSU) \). Thus \(h^* : H^4(BSU; \mathbb{Z}) \to H^4(S^4; \mathbb{Z}) \) is an isomorphism.
and \(h^* : H^*(BSp; \mathbb{Z}) \to H^*(S^1; \mathbb{Z}) \) is an isomorphism in dimensions less than 8, so \(h_* : \pi_*(S^1) \to \pi_*(BSp) \) is an isomorphism in dimensions less than 7. Thus \(f' \) induces an isomorphism on homotopy in this range and being in the stable range, \(f \) induces an isomorphism on homotopy in dimensions less than \(8r+7 \). Thus \(f_* : \pi_*(S^{8r+4}) \to \pi_*(BSp) \) is an isomorphism in dimensions \(8r+4 \) through \(8r+6 \).

Thus, the composite \(H_* \xrightarrow{f_*} \pi_*(\text{SU}) \xrightarrow{\text{SU}^1} \pi_*(\text{KO}^*) \) is epic in degrees 0 through 2. Since 0 is the nonzero elements of \(\pi_1^{\text{SU}} \), this shows that \(1[0] \neq 0 \).

Further 0 comes from framed cobordism and \(s_{\omega}(\pi^*(\tau \otimes \xi)) = 0 \) for \(n(\omega) > 0 \) in a framed manifold, so these numbers must vanish on 0. **

Theorem: (Anderson, Brown, and Peterson [\(\omega \]): Two SU manifolds are cobordant if and only if they have the same integral cohomology and \(\text{KO}^* \) theory characteristic numbers.

Proof: Suppose \(M^1 \) is an SU manifold for which all such characteristic numbers are zero. Since all integral characteristic numbers vanish on \(M, M \) is a torsion class, and \([M] = \omega [N] \) where \(\omega = 1,2 \) and \(N \) is an SU manifold of dimension \(8k \) for some \(k \). Then for all \(\omega \),

\[
s_{\omega}(\pi^*(\tau \otimes \xi))[M] \in \text{KO}^{4n(\omega)-8k-\omega}(pt)
\]

is zero, but

\[
s_{\omega}(\pi^*(\tau \otimes \xi))[N] = s_{\omega}(\pi^*(\tau \otimes \xi))[N] \cdot \overline{\omega}
\]

since \(1[0] = \omega \) and all other numbers vanish. Thus for \(\omega \in \pi(2t) \),

\[
s_{\omega}(\pi^*(\tau \otimes \xi))[N] = m_{\omega} \cdot \overline{p}(1)^{k-t} \text{ with } m_{\omega} \text{ even, giving } s_{\omega}(e_{\xi}) \overline{\omega}[N] \equiv 0(2) \text{ for } n(\omega) \equiv 0(2).
\]

Thus \(s_{\omega}(e_{\xi})\overline{\omega}[N] \equiv 0(2) \) for all \(\omega \), the other cases being immediate since \(N \) is an SU manifold. Thus \([N] \) represents zero in \(H_8(W \otimes \mathbb{Z}) \) and also in \(H_8(N) \), giving \([N] \) is image3. Since multiplication
by \(\theta \) annihilates image\(\mathcal{I} \), this gives \([\mathcal{M}] = 0 \). The remainder of the theorem being obvious, this gives the result. **

The remaining part of the structure of \(\Omega_{SU} \) which is desireable is the multiplicative structure \(\mod \) torsion. C. T. C. Wall [136] has noted that this may be obtained out of what has already been proved. To begin this analysis, first consider \(W^*(\mathcal{C}, 2) \).

As a subset of \(\Omega^* \), \(W^*(\mathcal{C}, 2) \) is not a ring, as has previously been noted. One may define a product in \(W^*(\mathcal{C}, 2) \) by the composite

\[
* : W^*(\mathcal{C}, 2) \otimes W^*(\mathcal{C}, 2) \rightarrow \Omega^* \otimes \Omega^* \rightarrow \Omega^* \rightarrow W^*(\mathcal{C}, 2)
\]

and in \(\Omega^* \), \(\delta a \cdot \delta b = \delta (ab) = ab + 2[\nu^1] \delta a \cdot \delta b \). In particular,

\[
(\delta a \cdot \delta b) \cdot \delta c = ab \cdot \delta c + 2[\nu^1](\delta a \cdot \delta b \cdot \delta c + \delta a \cdot \delta c + \delta b \cdot \delta c - [\mathcal{C}(1)] \delta a \cdot \delta b \cdot \delta c)
\]

since

\[
\delta (\delta a \cdot \delta b) = \delta (\delta ab) = \delta \delta a \cdot \delta b + \delta \delta a \cdot \delta b - [\mathcal{C}(1)] \delta a \cdot \delta b.
\]

With this product, \(W^*(\mathcal{C}, 2) \) becomes a commutative ring with unit. Also, if \(\delta a = 0 \) then \(\delta ab = a \cdot \delta b \) and in particular, the usual map from \(\Omega^* \) into \(W^*(\mathcal{C}, 2) \) is a ring homomorphism. Further,

\[
\theta (\delta ab) = \delta \delta a \cdot \delta b + \delta \delta a \cdot \delta b - [\mathcal{C}(1)] \delta a \cdot \delta b.
\]

Theorem: Using the product \(* \), \(W^*(\mathcal{C}, 2) \) is the integral polynomial on classes \(x_i \), \(i \neq 2 \), \(\dim x_i = 2i \), with \(s_1(c)[x_i] = m_i m_{i-1} \) and the operation \(\theta \) is given by

\[
3x_i = 2,
\]

\[
\theta x_{2i} = x_{2i-1}, \quad i > 1
\]
with

$$z(a * b) = a * b + b * a - x_1 * a * b.$$

Note: \(m_1 = p\) if \(i + 1 = p^s\) for some prime \(p, s > 0; m_1 = 1\) otherwise.

Proof: First noting that an element of \(\mathcal{W}_n(0,2)\) which is decomposable under \(*\) is decomposable under \(*\) in \(\mathcal{U}_n\), it is immediate that the \(s\)-number detects indecomposables.

One has \(s_1(c)[cP(1)] = 2\) with \(m_1 = 2, m_0 = 1,\) and so one may let \(x_1 = [cP(1)].\)

From the analysis of \(\mathcal{W}_n^S \ominus Z[1/2],\) one has \(SU\) manifolds \(M_1 \in \mathcal{W}_n^S, i > 1,\) with \(s_i(c)[M_1] = 2^i(1)m_1^{i-1}\) (multiplying by \(2^i\)'s one may assume \(j(i) > 0\)) which give polynomial generators of \(\mathcal{W}_n^S \ominus Z[1/2].\) Note: \(\mathcal{W}_n^S \ominus Z = \mathcal{W}_n^S + 1\) with generator \(x = 9cP(1) - 8cP(2),\) having \(c_1^2 = 0, c_2 = 12\) and \(\mathcal{W}\) number 1. Since \(2x = 3(cP(1)^2)\) generates the image of \(\mathcal{W}_n^S,\) with \(x_1 * x_1 = x_1^2 2y.2.2 = x,\) one may assume \(M_2 = 2x_1 * x_1.\)

One also has classes \(z_{2n}^i \in \mathcal{W}_n(c,2), n > 2,\) with \(s_n(c)[z_{2n}^i] = 1\) odd if \(n \neq 2^g, 2^g - 1\) and congruent to \(1\) mod \(4\) otherwise. Now \(s_{2n}(c)[z_{4n}^i] = 0(m_{2n})\) being a complex cobordism class, and since \((2n-1)+1 = 2n, m_{2n-1} = 1\) or \(2\) as \(n\) is not or is a power of \(2.\) Thus \(s_{2n}(c)[z_{4n}^i]\) is an odd multiple of \(m_{2n}m_{2n-1}\). Since \(z_{4n-2}^i = 3z_{4n}^i\) is an \(SU\) class, \(s_{2n-1}(c)[z_{4n-2}^i]\) is divisible by \(m_{2n-2}\) (which is odd), while \(m_{2n-1} = 1\) or \(2\) as \(n\) is not or is a power of \(2.\) Thus \(s_n(c)[z_{2n}^i]\) is an odd multiple of \(m_{n}m_{n-1}\).

One may find integers \(a_n, b_n,\) with \(a_n = 2a + 1\) (odd) so that \(x_n = a_n^2 + 2b_n^2, n\) has a number \(m_nm_{n-1}.\) Let

\[
x_{2n} = a_n x_{4n}^i + 2b_n x_{2n}^i + (a_nx_{2n-1} - a_n x_{2n-1}) x_{2n-2}^i + b_n x_{2n-1} x_{2n-1},
\]

\[
x_{2n-1} = a_{2n-1} x_{4n-2}^i + 2b_{2n-1} x_{2n-1}^i.
\]
Then \(s_n(c)[x_n] = s_n(c)[x'_n] = m_{n-1} \) since \(x_n \) differs from \(x'_n \) by decomposables. Since \(z_{4n}, \ x_1 \in W_1(\ell, 2) \) and \(z_{4n-2}, M_{2n}, M_{2n-1} \in \Omega_{SU} \),
\(x_n \in W_1(\ell, 2) \). Further,

\[
3z_{2n} = a_{2n} z_{4n-2} + 2(a_{2n-1} - a_{2n}) z_{4n-2} + 2b_{2n-1} M_{2n-1} = x_{2n-1}.
\]

There is then a homomorphism \(\phi : R = \mathbb{Z}[x_1 | i \neq 2] \rightarrow W_1(\ell, 2) \). Under
the composite with

\[
\psi : W_1(\ell, 2) \rightarrow \Omega_{SU} \rightarrow \Omega_{SU} \otimes \mathbb{Z}_2
\]

one has a ring homomorphism (as \(a \cdot b = a \cdot b \) mod 2), with \(x_n \) being sent to \(z_{2n} \) plus decomposables. Thus \(\phi \) is monic (\(R \) being torsion free) and \(\mathrm{im} \phi \) has odd index.

For any \(a \in W_1(\ell, 2) \), \(\partial(x_1^3a) = 2\partial a \) so \(2x_1x_1^3a \in \ker \partial \) giving
\(2(2a - x_1^3a) = \partial(x_1(2a - x_1^3a)) \) or

\[
4a = 2x_1^3a + 2\partial(x_1a)
\]

since \(\partial(x_1^2) = 0 \). Thus

\[
a = 1/2(\partial(x_1^3a)) + 1/2 x_1^3a
\]

with \(\partial(x_1^3a) \) and \(\partial a \) the images of SU classes. Note: Any element of the form \(a + x_1b, a, b \in \Omega_{SU} \) clearly belongs to \(W_1(\ell, 2) \).

Then \(\phi : R \otimes \mathbb{Z}[1/2] \rightarrow W_1(\ell, 2) \otimes \mathbb{Z}[1/2] = \Omega_{SU} \otimes \mathbb{Z}[1/2](1,x_1) \), the
latter being the free \(\Omega_{SU} \otimes \mathbb{Z}[1/2] \) module on \(1 \) and \(x_1 \). One may then
write \(x_{2n} = 1/2 y_{2n} + 1/2 x_1x_{2n-1} \) where \(y_{2n} \in \Omega_{SU} \) and \(s_n(c)[y_{2n}] = 2a_{2n} \).

The elements \(y_{2n} = 2x_2 - x_1x_{2n-1}, x_{2n-1}, x_1^2 \) in \(R \) map to acceptable
generators for \(\Omega_{SU} \otimes \mathbb{Z}[1/2] \), and thus

\[
R \otimes \mathbb{Z}[1/2] = \mathbb{Z}[1/2][x_1^2, x_{2n-1}, y_{2n}, (1, x_1)] \] maps isomorphically to
\[W_n^{SU} \oplus \mathbb{Z}[1/2] \{ 1, x_1 \}. \] Thus \(\phi : \mathbb{R} \to W_n^\mathfrak{c}(\mathbb{C}, 2) \) has 2 primary cokernel, and so must be an isomorphism. **

Using this, one may describe all the rings of interest easily. First, \(\partial : W_n^\mathfrak{c}(\mathbb{C}, 2) \to W_n^\mathfrak{c}(\mathbb{C}, 2) \) extends to \(W_n^\mathfrak{c}(\mathbb{C}, 2) \oplus \mathbb{Z}[1/2] \) satisfying the same formulae. If \(\partial x = 0 \), then \(a = 1/2 \partial (x_1 a) \), so \(\ker \partial = \text{im} \partial \) in \(W_n^\mathfrak{c}(\mathbb{C}, 2) \oplus \mathbb{Z}[1/2] \).

One may write \(W_n^\mathfrak{c}(\mathbb{C}, 2) \oplus \mathbb{Z}[1/2] = \mathbb{Z}[1/2][x_2, x_{21-1}, x_{21-1/2}, x_1 x_{21-1}] \) with \(\partial x_1 = 2, \partial x_{21-1} = 0, \partial(x_{21-1/2} x_1 x_{21-1}) = 0 \) and \(\partial(x_1^2) = 0 \). From this it is clear that

\[\text{im} \partial = \ker \partial = \mathbb{Z}[1/2][x_2, x_{21-1}, x_{21-1/2}, x_1 x_{21-1}] \subset W_n^\mathfrak{c}(\mathbb{C}, 2) \oplus \mathbb{Z}[1/2]. \]

Applying this to \(W_n^\mathfrak{c}(\mathbb{C}, 2) \) one has:

Theorem: Letting \(W_n^\mathfrak{c}(\mathbb{C}, 2) = \mathbb{Z}[x_1 | i \neq 2] \) as above, thought of as a subring of \(W_n^\mathfrak{c}(\mathbb{C}, 2) \oplus \mathbb{Z}[1/2] = \mathbb{Z}[1/2][x_1 | i \neq 2] \), let \(A = \mathbb{Z}[1/2][x_2, x_{21-1}, x_{21-1/2}, x_1 x_{21-1}] \) and then:

a) \(\ker \partial = A \cap W_n^\mathfrak{c}(\mathbb{C}, 2) \) is the set of \(\mathbb{Z}[1/2] \) polynomials in \(x_2, x_{21-1}, x_{21-1/2}, x_1 x_{21-1} \) which have integral coefficients in the \(x \)'s.

b) \(\text{im} \partial = \{ u \in A | 1/2 x_1 u \in A + W_n^\mathfrak{c}(\mathbb{C}, 2) \} \) is the set of \(\mathbb{Z}[1/2] \) polynomials in \(x_2, x_{21-1}, x_{21-1/2}, x_1 x_{21-1} \) which when multiplied by \(1/2 x_1 \) can be expressed as the sum of such a polynomial and an integral polynomial in the \(x \)'s.

Note: Since the image of \(n^{SU}_n \) in \(W_n^\mathfrak{c}(\mathbb{C}, 2) \) is \((\ker \partial)_n \) if \(n \neq 4(8) \) and \((\text{im} \partial)_n \) if \(n = 4(8) \) this gives a fairly nice description of \(n^{SU}_n / \text{Torsion} \) as a subring of \(A \).
For example, one has bases given by

<table>
<thead>
<tr>
<th>n</th>
<th>((\ker 3)_n)</th>
<th>((\im 3)_n)</th>
<th>(\Omega_n^{SU}/\text{Torsion})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>(x_1^2)</td>
<td>(2x_1^2)</td>
<td>(2x_1^2)</td>
</tr>
<tr>
<td>6</td>
<td>(x_3)</td>
<td>(x_3)</td>
<td>(x_3)</td>
</tr>
<tr>
<td>8</td>
<td>(x_1^h, 2(x_1^4-1/2 x_1 x_3))</td>
<td>(2x_1^h, 2(x_1^4-1/2 x_1 x_3))</td>
<td>(x_1^h, 2x_1^4-x_1 x_3)</td>
</tr>
<tr>
<td>10</td>
<td>(x_1^2 x_3, x_5)</td>
<td>(2x_1^2 x_3, x_5)</td>
<td>(x_1^2 x_3, x_5)</td>
</tr>
</tbody>
</table>

An intrinsic description of \(\Omega_n^{SU}/\text{Torsion}\) is extremely complicated, since the square of the 4 dimensional generator is divisible by 4, while the product of the 4 and 6 dimensional generators is divisible by 2.

One should note also that \(x_1^2\) and
\[x_2^n-x_1 x_{2n-1} x_2^n = (x_2^n-1/2 x_1 x_{2n-1})^2 - 1/4 x_1^2 x_{2n-1}\]
belong to \(\ker 3\), and are the classes previously chosen to generate \((\ker 3/\im 3)\).

Proof:

a) If \(u \in A \cap \mathcal{W}_8(3,\mathbb{C}, 2)\), then \(u \in \mathcal{W}_8(3,\mathbb{C}, 2)\) and \(3u = 0\) so \(u \in \ker 3\), while if \(u \in \mathcal{W}_8(3,\mathbb{C}, 2)\) and \(3u = 0\) then \(u \in A\).

b) If \(u = 3v\), then \(u \in A\) since \(3u = 0\). Further \(v \in \mathcal{W}_8(3,\mathbb{C}, 2)\) and
\[3(1/2 x_1 u - v) = 0\]
since \(1/2 x_1 u - v \in A\), giving \(1/2 x_1 u \in A + \mathcal{W}_8(3,\mathbb{C}, 2)\).

If \(u \in A\), \(1/2 x_1 u = p + q\), \(p \in \mathcal{W}_8(\mathbb{C}, 2)\), \(q \in A\), then
\[u = 3(1/2 x_1 u) = 3p\], so \(u \in \im 3\). **
Relation to Framed Cobordism

The relation of framed cobordism to SU cobordism was first explored by Anderson, Brown, and Peterson [6], who determined the image of
\[F_{s} : \Omega_{s}^{fr} \longrightarrow \Omega_{s}^{SU}. \]
The proof given here is due to Conner and Floyd [41]. The hard part of the result is given by:

Proposition: There is a class \(M^{n} \in \Omega_{0}^{SU} \) with \(J[M^{n}] = 1 \) and such that
\[[M^{n}] \times \emptyset \] is in the image of \(\Omega_{0}^{fr} \) in \(\Omega_{0n+1}^{SU} \).

To prove this a couple of lemmas are convenient:

Lemma 1: There is an element \(M^{n} \in \Omega_{0}^{SU} \) with \(J[M^{n}] = 1 \) and such that
\[[M^{n}] = 2[B^{n}] \] in \(\Omega_{0}^{SU,fr} \).

Proof: One has the exact sequence
\[\Omega_{0}^{SU} = \mathbb{Z} \oplus \mathbb{Z} \longrightarrow \Omega_{0}^{SU,fr} \longrightarrow \Omega_{7}^{fr} \cong \mathbb{Z}_{240} \longrightarrow \Omega_{7} = 0 \]
(using the fact that \(\lim_{n \to \infty} \pi_{n+7}^{SU}(S^{n}) \cong \mathbb{Z}_{240}^{+} \)). Consider \(\lambda \), the canonical quaternionic line bundle over \(HF(n) \). Over \(S^{4}_{\lambda} = HF(1) \), the tangent bundle of \(D(\lambda) \) is isomorphic to \(\pi^{*}(\lambda) \oplus \pi^{*}(\tau_{b}) \) and stably \(\pi^{*}(\tau_{b}) \) is trivial, so \(D(\lambda) \) has an \(Sp \) structure for which its tangent bundle is stably isomorphic to \(\pi^{*}(\lambda) \). The usual trivialization of \(\pi^{*}(\lambda) \) over \(S(\lambda) \) gives \((D(\lambda), S(\lambda)) \) an (Sp,fr) structure.

Recalling that \(HF(2) \) is the Thom space of \(\lambda \) over \(HF(1) \), with \(\lambda \) over \(HF(2) \) restricting on \(D(\lambda) \) to \(\pi^{*}(\lambda) \) with the standard trivialization over \(S(\lambda) \), one has
\[J[D(\lambda), S(\lambda)] = J(\lambda)[HF(2),pt] = J(\lambda)[HF(2)]. \]
To compute this number, one applies the splitting principle to λ by pulling back to $\mathbb{CP}(5)$ over which λ splits as the sum of the canonical bundle and its conjugate, $\lambda_c \otimes \overline{\lambda}_c$. Then

$$\mathcal{J}(\lambda_c \otimes \overline{\lambda}_c) = \frac{a}{e^{a-1}} \cdot \frac{(-a)}{(e^{-a-1})} = \frac{a^2}{e^{a} - e^{-a} - 2}$$

but

$$e^{x} e^{-x} - 2 = \frac{1}{11} \left(\frac{x^2}{11} + \frac{h}{21} + \frac{h}{61} + \ldots \right) - 2,$$

$$= x^2 + x^6/12 + x^6/360 + \ldots$$

so

$$\frac{a^2}{e^{a} - e^{-a} - 2} = \frac{1}{1 + a^2/12 + a^4/360}, \quad (a^6 = 0)$$

$$= 1 - (a^2/12 + a^4/360) + (a^2/12)^2,$$

$$= 1 - a^2/12 + 3a^4/720,$$

Since the cohomology map is monic, $S(\lambda) = 1 + a/12 + a^2/240$ giving $\mathcal{J}[D(\lambda), S(\lambda)] = 1/240$.

Since \mathcal{J} is integral on SU manifolds, the extension is completely nontrivial, giving $\Omega_5^{SU,fr} = Z \oplus Z$.

One may then take $M^3 = 240[D(\lambda), S(\lambda)]$ and $B^8 = 120[D(\lambda), S(\lambda)]$, since $240[D(\lambda), S(\lambda)]$ belongs to the image of Ω_5^{SU} and has \mathcal{J} number 1. **

Lemma 2: Let $[V^n] \in \Omega_n^{fr}$ be an element of order 2, $[M^k] \in \Omega_k^{SU}$ an element divisible by 2 in $\Omega_k^{SU,fr}$. There is then a class $[V^{n+k}] \in \Omega_{n+k}^{fr}$ of order 2 with image $[M^k][V^n]$ in Ω_{n+k}^{SU}.
Proof: Let B^k be an (SU,fr) manifold with $2[B] = [W]$ in $\Omega_{SU,fr}$. By the (SU,fr) exact sequence, $2[B] = 0$ in Ω_{fr} and there is a compact framed manifold C^k with $\partial C^k = (\partial B_1 \cup \partial B_2)$ being two disjoint copies of ∂B. Let D^{n+1} be a compact framed manifold with $\partial D = V^1_1 \cup V^2_2$ being two disjoint copies of V^0.

Consider the product $C^k \times D^{n+1}$, which is a framed manifold with boundary formed by joining $W_1 = [(\partial B_1 \cup \partial B_2) \times D^{n+1}]$ and $W_2 = [(-1)^k C^k \times (V_1 \cup V_2)]$ along their boundaries $(-1)^{k-1} (\partial B_1 \cup \partial B_2) \times (V_1 \cup V_2)$ and

$$(-1)^k (\partial B_1 \cup \partial B_2) \times (V_1 \cup V_2)$$

One may remove tubular neighborhoods of $\partial B_1 \times V_1$ and $\partial B_2 \times V_2$ in $C^k \times D^{n+1}$ and sew the introduced boundary segments together.

\[(-1)^k C^k \times V_1 \]

\[\partial B_1 \times D \cup (-1)^k C^k \times V_2 \]

\[(-1)^{k-1} \partial B_1 \times V_2 \]

\[(\partial B_1 \times D \cup (-1)^k C^k \times V_2) / (-1)^{k-1} \partial B_1 \times V_2 \equiv (-1)^k \partial B_1 \times V_2 \] (at f)

\[(-1)^{k-1} \partial B_1 \times V_1 \equiv (-1)^k \partial B_2 \times V_2 \] (join along $a-e$)
\[-1\]^{k,n+k} = (\partial B_2 \times D \cup (-1)^k C \times V_1) / \left((-1)^k \partial B_2 \times V_1 \cong (-1)^{k-1} \partial B_2 \times V_1 \quad \text{(at c)} \right) \\
\left((-1)^k \partial B_2 \times V_2 \cong (-1)^k \partial B_1 \times V_1 \quad \text{(join)} \right) \\
\text{along } \partial B_2). \]

Since the framings induced from $C \times D$ along the portions sewn together are compatible, X is given a framing, with $\partial(-1)^k X = V_1^{n+k} \cup V_2^{n+k}$ and clearly $V_1^{n+k} = V_2^{n+k}$ is isomorphic as a framed manifold with V_2^{n+k}.

This gives a framed manifold V^{n+k} whose class has order 2 in Ω^{fr}_{n+k}.

(Note: V^{n+k} depends on a choice of C^k and D^{n+1}, but any choice gives such a class).

Since $[M] = 2[B]$, there is a framed manifold C^k with $\partial C^k = \partial B_1 \cup \partial B_2$ so that

$$M \cup (-B_1) \cup (-B_2) \cup C / \partial(-B_1) \cong \partial B_1, \partial(-B_2) \cong \partial B_2$$

is the boundary of an SU manifold W^{k+1}. (Note: This places a demand on C and hence one may assume C was chosen in this way for the above construction.)

Now $\partial (W \times V_1^n)$ contains a copy of $(-B_1) \times V_1 \cup (-B_2) \times V_1$ while $\partial((-1)^k B \times D) = B \times (V_1 \cup V_2) \cup (-1)^k \partial B \times D$ joined along their common boundary so one may form an SU manifold by sewing $(-1)^k B \times D$ to $W \times V_1^n$ by identifying $(-B_1) \times V_1$ to $B \times V_1$. The boundary of the resulting manifold has two components, one of which is $M \times V_1^n$ and the other being formed from $C \times V_1^n \cup (-1)^k \partial B \times D$ by identifying $\partial B_1 \times V_1$ to $-\partial B \times V_1$ and $\partial B_2 \times V_1$ to $-\partial B \times V_2$, which is just a copy of V^{n+k}. Thus this choice of C will give $[V^{n+k}] = [M^k][V^n]$ in Ω^{SU}_{n+k}. **
Proof of the Proposition: Let N be as in Lemma 1, and let V^1 represent the class of order 2 in Ω^r_1 which maps to θ in Ω^r_1. Suppose inductively that $v^{sk+1} \in \Omega^r_{sk+1}$ has order 2 and represents $[M^k]^k \cdot \theta$ in Ω^r_{sk+1}. Applying Lemma 2 to v^{sk+1} and N gives a framed manifold V^{sk+9} with order 2 in Ω^r_{sk+9} representing $[N^k][V^{sk+1}] = [N^k]^k \cdot \theta$ in Ω^r_{sk+9}. This completes the induction and gives the Proposition. **

From the Proposition one may completely determine the image of Ω^r_n in Ω^r_n, which is given by:

Theorem: The forgetful homomorphism $F_n : \Omega^r_n \to \Omega^r_n$ is a isomorphism in dimension zero, and in positive dimensions the image is zero except in dimensions $sk+1$ and $sk+2$ where it is \mathbb{Z}_2 with generator $x^k \cdot \theta^\epsilon$, $\epsilon = 1$ or 2.

Proof: Clearly $F_0 : \Omega^r_0 \to \Omega^r_0 = \mathbb{Z}$. For $n > 0$, Ω^r_n is finite, so $\text{image}(F_n)$ consists of torsion classes. Thus $\text{image}(F_n) = \{0\}$ for n not of the form $sk+1$ or $sk+2$. If $n = sk+\epsilon$, $\epsilon = 1$ or 2 and $a \in \text{im}(F_n)$, then a has all KO*-characteristic numbers of the form $a_n(\pi)$, $n(\omega) > 0$, zero since these classes vanish in framed manifolds, and so $a \neq 0$ if and only if $l[a] \neq 0$. Thus $\text{im}(F_n)$ is either 0 or \mathbb{Z}_2.

From the proposition, $[M^k]^k \cdot \theta \in \text{im}(F_{sk+1})$ and since $\theta \in \text{im}(F_1)$, $[M^k]^k \cdot \theta^\epsilon \in \text{im}(F_n)$. Then

$$1[[M^k]^k \cdot \theta^\epsilon] = 1[[M^k]^k],$$

$$= J[[M^k]^k] \mod 2,$$

$$= (J[M^k]^k) \mod 2,$$

$$= 1 \mod 2$$

and thus $\text{im}(F_n) \neq 0$, so must be \mathbb{Z}_2 with generator $[M^k]^k \cdot \theta^\epsilon$.
Since $\mathbb{Z}^2 \to \mathbb{Z}$ with base x_1 and x_2, while θ annihilates image 3, one must have $M^2 \theta = x_1^b$ and thus $[M^2 \theta]^k \epsilon = x_1^b \epsilon$ is the nonzero class in $\text{im}(F_{8k+\epsilon})$. **

Note: In fact, for any M^2 with odd θ number one has $[M^2 \theta]^k \epsilon = x_1^b \epsilon$.

To see this, $\theta(x_1 x_4) = 0$ implies $\theta(\theta(x_1 x_4)) = 0(2)$, so $M^2 = (2p+1)x_1^b + q\theta(x_1 x_4)$ giving $M^2 \theta = x_1^b \theta$.

Turning to the exact sequence

$$
\cdots \to \Omega^{SU}_{n+1} \to \Omega^{SU,fr}_{n+1} \to \Omega^{SU,fr}_n \to \Omega^{SU}_n \to \cdots
$$

one then knows the nature of F_5, and the remaining question which is within reach is the nature of the extension problem for $\Omega^{SU,fr}_{n+1}$:

$$
0 \to \Omega^{SU}_{n+1}/\text{im}F_5 \to \Omega^{SU,fr}_{n+1} \to \ker F_5 \to 0.
$$

This was settled by Conner and Floyd [41].

It is immediate that the construction of a KO^* orientation carries through for an SU manifold V with framed boundary, giving $U \in \hat{\text{KO}}^*(\text{T}V)$. For $n(\omega) > 0$, $s_\omega(\pi)$ may be formed in $\text{KO}^*(\text{BSU},\pi)$, giving KO^* theory characteristic numbers for (SU,fr) manifolds.

Since the torsion subgroup of Ω^*_n is detected by KO^* characteristic numbers, with image (F_5) detected by $1(\pi)$, the image of $\text{Torsion}(\pi^{SU}_{n+1})/\text{im}F_5$ in $\pi^{SU,fr}_{n+1}$ is detected by \mathbb{Z}_2 valued KO^* numbers. This defines a splitting of the torsion part.

To study the extension of the free part, the analysis of KO^* theory characteristic numbers gives immediately that an (SU,fr) manifold V has the same Chern numbers as a closed SU manifold if and only if

$$
\begin{align*}
\mathcal{F}[V, \mathcal{A}] & \in \mathbb{Z} \quad \text{dim } V \equiv 0(8) \\
& \quad \text{or } \mathbb{Z} \quad \text{dim } V \equiv 4(8),
\end{align*}
$$
all other relations coming from \(KO^* \) theory relations which are satisfied by \([v, aW]\).

One may define a homomorphism \(J' : \Omega^0_{n+1} \rightarrow Q \) by \(J'([a]) = J([a]) \) if \(\dim a \neq 4(8) \) and by \(J'([a]) = 1/2 J([a]) \) if \(\dim a = 4(8) \). Note: \(J \) is divisible by \(c_1 \) in dimensions not congruent to zero mod 4, so \(J' \) vanishes in these dimensions. \(J' \) sends \(\Omega^0_{n+1} \) to \(Z \) and defines

\[J' : \text{kernel}(F) \rightarrow Q/Z. \]

The homomorphism \(J' : \Omega^{fr}_{8k+3} = \text{kernel}(F_{8k+3}) \rightarrow Q/Z \) is just the Adams invariant \(aR \). The previous results concerning the invariant \(J \) give:

The homomorphism \(J' : \Omega^{fr}_{4k-1} \rightarrow Q/Z \) maps precisely onto the integral multiples of \(1/a_k \) where \(a_k \) is the denominator of \(B_k/4k \).

Relation to Complex Cobordism

Turning to the relationship with \(\Omega^n \), one has the exact sequence

\[\ldots \rightarrow \Omega^n_{SU} \rightarrow \Omega^n_{Fe} \rightarrow \Omega^n_{n} \rightarrow \Omega^n_{n+1} SU \rightarrow \Omega^n_{SU} \rightarrow \ldots \]

in which \(F_8 \) is completely known. Just as in the \((0, SO)\) sequence, this may be identified with the \(SU^* \) bordism sequence of the cofibration

\[\mathbb{CP}(1) \rightarrow \mathbb{CP}(\infty) \rightarrow \mathbb{CP}(\infty)/\mathbb{CP}(1) \]

or

\[\ldots \rightarrow \Omega^n_{SU} \rightarrow \Omega^n_{SU} (3, a) \rightarrow \Omega^n_{SU} \rightarrow \Omega^n_{SU} (t, 0) \rightarrow \Omega^n_{SU} \rightarrow \ldots \]
From this one knows the complete structure of $\Omega_n^{U,SU}$. The interesting part of the sequence is

$$\begin{align*}
\Omega_n^{SU} & \xrightarrow{F_{3n+2}} \Omega_n^{SU} \rightarrow \Omega_n^{SU} = Z_2 \langle \pi(n) \rangle \xrightarrow{F_{3n+3}} \Omega_n^{SU} = 0
\end{align*}$$

in which F_{3n+2} maps onto the direct summand of classes for which all numbers divisible by c_1 are zero.

From $\Omega_n^{U,SU} \equiv \Omega_n^{SU} \otimes \Omega_n^{U,\mathbb{H}}$ the extension must be completely nontrivial. Classes in Ω_n^{SU} are all of the form $\Theta \cdot M^{\mathbb{H}}$, with the characteristic numbers

$$s_{(\omega', \omega')} (e_G) \beta[M^{\mathbb{H}}] = s_{(\omega', \omega')} (\pi)[\Theta \cdot M^{\mathbb{H}}] \quad \text{(in \mathbb{Z}_2)}$$

for $\omega' \in \pi(n)$ detecting these classes. Now $\Theta \in \Omega_n^{U,\mathbb{H}}$ comes from $[D^2] \otimes \Omega_n^{U,\mathbb{H}}$ with D^2 being given the usual framing of its boundary. $[D^2] \subset \mathbb{C}P(1)$ may be realized as the disc bundle of λ over $\mathbb{C}P(1)$, with $\tau(D^2)$ being induced from λ over $\mathbb{C}P(1)$, giving the standard trivialization over S^1, which is the unusual framing of S^1. Over $\mathbb{C}P(1)$, $\mathcal{J}(\lambda) = 1 + k\delta$ with $\mathcal{J}(\tau) = \mathcal{J}(x)^2 = \mathcal{J}(\lambda)^{-2} = 1 - 2k\delta$ and $\mathcal{J}[\mathbb{C}P(1)] = -1$ gives $k = 1/2$ or $\mathcal{J}[D^2] = 1/2$.

Since $s_{(\omega', \omega')} (e_G)$ has only nonzero components in dimensions a multiple of 4, while $\mathcal{J}[D^2] = 1/2$ is divisible by c_1, the numbers $s_{(\omega', \omega')} (e_G) \mathcal{J}[V]$ are meaningful invariants of 8k+2 dimensional (U, SU) manifolds, and

$$s_{(\omega', \omega')} (e_G) \beta[D^2 \times M^{\mathbb{H}}] = s_{(\omega', \omega')} (e_G) \mathcal{J}[M^{\mathbb{H}}] \beta[D^2],$$

$$= 1/2 \ s_{(\omega', \omega')} (e_G) \beta[M^{\mathbb{H}}]$$

so that the numbers $s_{(\omega', \omega')} (e_G) \mathcal{J}$ map $\Omega_n^{U,SU}$ onto a subgroup of odd index in $(1/2 \mathbb{Z}) \langle \pi(n) \rangle$ while sending $\Omega_n^{U,\mathbb{H}}$ into a subgroup of odd index in $\mathbb{Z} \langle \pi(n) \rangle$. Thus by means of the examples $\{D^2 \times M^{\mathbb{H}}\}$ one also gets complete nontriviality of the extension.
Conner and Floyd [41] have noted that the use of cobordism theory proves the Adams result:

Theorem. The homomorphism

\[e_\xi : \Omega^{fr}_{n} \rightarrow \mathbb{Q}/\mathbb{Z} \]

maps precisely onto the integral multiples of

\[\begin{align*}
1 & \text{ if } n = 8k+5 \\
1/2 & \text{ if } n = 8k+1.
\end{align*} \]

Since this gives a cobordism theoretic proof of a homotopy result on framed cobordism, their argument will be reproduced here.

Proof. Let \(M \) be a framed \(8k+5 \) manifold. From \(\Omega^{SU}_{8k+5} = 0 \), \(M = \partial V \) with \(V \) an SU manifold. Then \(e_\xi[M] \) is the reduction mod \(Z \) of \(\mathcal{J}[V,M] = (\mathcal{J})_{8k+6}[V,M] \) but \(\mathcal{J}_{8k+6} \) is divisible by \(c_1 \) and \(c_1(V,M) = 0 \) since \(V \) is an SU manifold. Thus \(\mathcal{J}[V,M] \in \mathbb{Z} \) and \(e_\xi[M] = 1 \in \mathbb{Q}/\mathbb{Z} \).

If \(M \) is a framed \(8k+1 \) manifold, \(2[M] = 0 \) in \(\Omega^{SU}_{8k+1} = \mathbb{Z}_2/\pi(k) \), so \(2M = \partial V \) with \(V \) an SU manifold. Thus \(2e_\xi[M] = e_\xi[2M] \) is the reduction mod \(Z \) of \(\mathcal{J}[V,\partial V] \), which is zero as above. This makes \(e_\xi[M] \) a multiple of \(1/2 \).

Now let \(V^{8k+1} \) be the framed manifold of the last section with \(V^{8k+1} \) cobordant to \((M^k) \times \emptyset \) in \(\Omega^{SU}_{8k+1} \), and with \(\partial W = V \cup (-M^k) \times \emptyset \), and let \(\bar{W} = W \cup (M^k) \times D^2/(M^k) \times S^1 \). Then \(\partial W \) is a U manifold with boundary \(V \), so \(e_\xi[V^{8k+1}] = \mathcal{J}[W,V] \mod Z \). Since \(\mathcal{J} \) is an invariant of \((U,SU) \) cobordism in dimension \(8k+2 \), \(\mathcal{J}[W,V] = \mathcal{J}(M^k \times D^2) = 1/2(\mathcal{J}(M^k))^k = 1/2. \)

Thus \(e_\xi : \Omega^{fr}_{8k+1} \rightarrow \mathbb{Q}/\mathbb{Z} \) maps precisely onto the multiples of \(1/2 \). **
Relation to Unoriented Cobordism

The nature of the forgetful homomorphism \(F_* : \Omega_*^{SU} \to \Gamma_* \) has been studied by F. G. Anderson [9], Stong [118, 121], and Conner and Landweber [42]. One way to phrase the result is:

Theorem: One may choose generators \(x_i \) of \(\Gamma_* \), \(\dim x_i = 1 \), \(i \neq 2^s - 1 \), so that:

1) \(\Gamma_* = \mathbb{Z}_2[x_i] \),

2) \(W_*(\mathbb{R}, 2) = \mathbb{Z}_2[x_1, x_2^{i^2} | k \text{ not a power of } 2] \),

3) There is a derivation \(\delta_1 : W_*(\mathbb{R}, 2) \to W_{*-1}(\mathbb{R}, 2) \), with \(\delta_1^2 = 0 \), \(\delta_1 x_{2^k} = x_{2^{k-1}} \), \(k \) not a power of 2, \(\delta_1(x_{2^0}) = 0 \), and the image of \(\Omega_*^{SU} \) in \(\Gamma_* \) is additively generated by image \(\delta_1 \) and the \(\mathbb{Z}_2 \) polynomials in the class \(x_{2^k} \) (\(t \) any integer).

4) The image of \(\Omega_*^{U} \) in \(\Gamma_* \) is the squares of the classes in \(\Gamma_* \); i.e. \(\mathbb{Z}_2[x_1^2] \).

5) The image of \(W_*(\mathbb{C}, 2) \) in \(\Gamma_* \) is the squares of the classes in \(W_*(\mathbb{R}, 2) \).

6) The image of \(\Omega_*^{SU} \) in \(\Gamma_* \) is the subring additively generated by the squares of classes in image \(\delta_1 \) and the \(\mathbb{Z}_2 \) polynomials in the classes \(x_{2^k} \) (\(k \) not a power of 2) and the \(x_{2^i} \).

Proof: The classes \(x_i \) needed above were defined in Chapter VIII and satisfy properties 1-5. To verify property 6, consider a \(W_*(\mathbb{C}, 2) \) manifold \(M \), with \([M] = [M']^2 \) in \(\Gamma_* \), \(M' \) belonging to \(W_*(\mathbb{R}, 2) \). The formulas for computing the Chern numbers of \(\partial M \) are the same as those for computing Stiefel-Whitney numbers of \(\partial M' \) so \([\partial M] = [\partial M']^2 \) in \(\Gamma_* \). Thus image \(\partial M \) maps precisely onto the squares of classes in image \(\delta_1 \).
Now kernel 3 is additively generated by image 3 and the polynomials in the classes
\[c_{8n} = \phi(z_{4n}^{2}) = z_{4n}^{2} + 2v_{1}^{h}z_{4n}^{2} - z_{2}^{i}z_{2}^{i} = 2^{n} - 4v_{1}^{h}z_{4n}^{2}. \]

Since $z_{2}^{i} = [\phi(1)]$ bounds in \mathcal{N}, the image of kernel 3 in \mathcal{N} is additively generated by the squares of classes in image 3_1 and the polynomials in the classes z_{4n}^{2}. However, z_{4n}^{2} reduces to z_{2n}^{2} if n is not a power of 2 and to z_{n}^{h} if n is a power of 2. In addition, the classes c_{8n} contain SU manifolds since kernel $3 = \text{image } \Omega^{SU}$ in dimensions congruent to zero mod 8, so the images of Ω^{SU} and kernel 3 in \mathcal{N} coincide and are given by (6). **

The image of Ω^{SU} in \mathcal{N} may be described in a slightly different fashion following Conner and Landweber [42], as:

Theorem: The image of Ω^{SU} in \mathcal{N} consists of the unoriented cobordism classes $[M]^{2}$, where M is an oriented manifold for which all Pontrjagin numbers with φ_{1} as a factor are even.

Proof: Let $A_{\text{a}} \subset \mathcal{N}$ be the cobordism classes of oriented manifolds for which all Pontrjagin numbers with φ_{1} as a factor are even.

Since Pontrjagin numbers vanish on image $3_1 \subset \text{image } \Omega^{SO}$, image $3_1 \subset A_{\text{a}}$. Further z_{4n}^{2} is the class of a complex manifold for which all Chern numbers divisible by c_{1}^{2} are zero. But in mod 2 cohomology c_{1} reduces to v_{2} and φ_{1} reduces to w_{2}^{2}, so that since Pontrjagin numbers are given by Chern
numbers, or Stiefel-Whitney numbers (when reduced mod 2), one has \(z_{4n} \in A_g \). Thus the squares of classes in \(A_g \) contains image \(\Omega^8_{SU} \).

Letting \(B_g \subset A_g \) be the subring additively generated by image \(\Omega_1 \) and the polynomials in \(z_{4n} \), one has the image of \(\Omega^8_{SU} \) given precisely by the squares of classes in \(B_g \).

Now consider the ring \(\ker \mathfrak{p}/\mathfrak{m} \). \(\mathfrak{m} = \mathfrak{m}_{SU}/\mathfrak{m}^3 \), whose dual is the space of Pontrjagin numbers reduced mod 2. \(A_g/\mathfrak{m}^3 \) then has dual space the space of Pontrjagin numbers mod 2 which do not have \(\Omega_1 \) as a factor, so \(A_g/\mathfrak{m}^3 \) has dimension equal to that of \(\mathbb{Z}_2[\omega_{1}| \omega > 1] \). Since \(B_g/\mathfrak{m}^3 = \mathbb{Z}_2[z_{4n}^n | n > 2] \), this gives \(B_g = A_g \), completing the proof. **

This characterizes image \(\Omega^8_{SU} \) in \(\Omega^8 \) as those cobordism classes for which all Stiefel-Whitney numbers divisible by an odd \(w_1 \), or by \(w_2 \) are zero and for which all Stiefel-Whitney numbers of the form \(w_4^2 w_2 \) are zero. [Such being the square (odd \(w_1 \) numbers zero) of a class with \(w_1 \) numbers zero (hence oriented) for which the numbers \(w_2^2 w_2 \) and \(\Omega_1 \Omega_2 \) are zero mod 2.]

**Relation to Oriented Cobordism

Having studied the \(2 \) primary part of the relationship of \(\Omega^8_{SU} \) with \(\Omega^8_{SU} \), one may turn to the composite

\[
\mathfrak{f} : \Omega^8_{SU} \xrightarrow{F_g} \Omega^8_8 \xrightarrow{\pi} \Omega^8_{SU}/\text{Torsion}.
\]

Writing the universal Pontrjagin class \(\Omega \in H^*(BSO; \mathbb{Q}) \) as \(\pi(1 + x_j^2) \), \(\dim x_j = 2 \), one defines classes \(s_\omega(e \Omega) \) as the \(s_\omega \) symmetric functions of the variables \(e^x_j + e^{-x_j} - 2 \) and lets \(\hat{\Delta} \) be the product of the classes \(x_j/2 \sinh(x_j/2) \). Let
\[\rho : \mathbb{H}_*(BS\mathcal{O};\mathbb{Q}) \longrightarrow \mathbb{Q}[\alpha_1] : x \longrightarrow \sum s_\omega(e_\mathcal{O})\mathring{A}[x] \cdot \alpha_\omega \]

and let \(B_n^\mathcal{SO} = \{ x \in \mathbb{H}_*(BS\mathcal{O};\mathbb{Q}) | \rho(x) \in \mathbb{Z}[\alpha_1] \} \), with \(B_n^\mathcal{SO} = \prod B_n^\mathcal{SO} \).

Note: If \(x \in B_n^\mathcal{SO} \) and \(\omega \in \pi(n/4) \), \(s_\omega(e_\mathcal{O})\mathring{A}[x] = s_\omega(\omega)[x] \in \mathbb{Z} \) so \(x \) is the reduction of an integral homology class. Since \(\rho(x) \in \mathbb{Z}[1/2][\alpha_1] \), \(x \) is in fact the image of the fundamental class of an oriented manifold, so \(B_n^\mathcal{SO} \subseteq \mathfrak{m}_n^\mathcal{SO} \).

Since \(\rho(x) \in \mathbb{Z}[1/2][\alpha_1] \) for all \(x \in \mathfrak{m}_n^\mathcal{SO} \), one also sees that \(B_n^\mathcal{SO} \subseteq \mathfrak{m}_n^\mathcal{SO} \) has 2 primary index.

Lemma: If \(M \) is a manifold with "\(P(\mathbb{C}^2) \) structure", then \(\tau[M] \in B_n^\mathcal{SO} \); i.e. the image of \(\mathcal{W}_*(\mathbb{C},2) \) in \(\mathfrak{m}_n^\mathcal{SO} \) is contained in \(B_n^\mathcal{SO} \).

Proof: If \(\dim M \neq 0(4) \), \(s_\omega(e_\mathcal{O})\mathring{A}[M] = 0 \), while if \(\dim M = 0(4) \),

\[
s_\omega(e_\mathcal{O})\mathring{A}[M] = s_\omega(e_\mathcal{O})\mathring{A} \cdot \sum \frac{(-\gamma_1)^i}{2^i i!} [M],
\]

\[
= s_\omega(e_\mathcal{O})\mathfrak{j}[M],
\]

\(\in \mathbb{Z} \)

for every nonzero component of \(s_\omega(e_\mathcal{O})\mathring{A} \) has dimension congruent to zero \(\text{mod } 4 \) and is a polynomial in the Chern classes of \(M \) so is annihilated by \(\gamma_1^{2k} \), the value being integral since \(s_\omega(e_\mathcal{O})\mathfrak{j}[M] \) is the value of a \(K \) theory number. **

Lemma: Let \(P_* \subseteq \mathcal{W}_*(\mathbb{C},2) \otimes \mathbb{Z}[1/2] \) be the integral polynomial subring \(\mathbb{Z}[x_1^2, x_1^{-1}x_2, x_1^{-1}x_2^{-1}] \). Under the natural homomorphism of groups

\[
\tau : \mathcal{W}_*(\mathbb{C},2) \otimes \mathbb{Z}[1/2] \longrightarrow B_n^\mathcal{SO} \otimes \mathbb{Z}[1/2]
\]

the subring \(P_* \) maps into \(B_n^\mathcal{SO} \), and \(\tau|P_* \) is a ring homomorphism.
Proof: Since $P_e \subseteq \text{ker } \tau$, the usual and unusual products coincide on P_e, making $\tau|_{P_e}$ a ring homomorphism. Since $x_1^2 \in W_3(\mathbb{C}, 2)$, $\tau(x_1^2) \in B_1^{\text{BO}}$, while $\tau(x_{2i-1/2}^2 x_i x_{2i-1}) = \tau(x_{2i})$ since $\tau x_i = 0$, and $\tau(x_{2i}) \in B_1^{\text{BO}}$ since $x_{2i} \in W_3(\mathbb{C}, 2)$. Since B_1^{BO} is a ring, the result is clear. **

Proposition: B_1^{BO} is an integral polynomial ring on classes y_{4i}, $i \geq 1$.

Proof: Let $y_{4i} = \tau(x_{2i-1/2} x_i x_{2i-1})$, $y_2 = \tau(x_1^2)$. Then $s_1(\varphi)[y_{4i}] = m_2 m_{2i-1}$ if $i > 1$, $s_1(\varphi)[y_4] = -8 s_1(\varphi)(\text{CP}(2)) = -8$. And $B_1^{\text{BO}} \otimes \mathbb{Z}[1/2]$ is generated by these. Thus $\tau|_{P_e}$ is contained in B_1^{BO} with 2 primary index.

One also notes that $\rho_2(y_{4i})$, the mod 2 reduction of $\rho(y_{4i})$ has largest monomial

a) a_i if $i \neq 2^s$ for any s,

b) $(a_{2^s-1})^2$ if $i = 2^s$ for some $s > 0$, and

c) 1 if $i = 1$.

as computed in the KO analysis of the \mathbb{Z}'s. Thus $\tau|_{P_e}$ is contained in B_1^{BO} with odd index, making $\tau : P_e \rightarrow B_1^{\text{BO}}$ an isomorphism. **

Lemma: For any sequence (i_1, \ldots, i_r), $2y_{4i_1} \cdots y_{4i_r}$ is the image of an SU manifold and y_{4i} and y_{4i}^2 (for all i) are the images of complex manifolds for which all Chern numbers divisible by c_i are zero.

Proof: Let y_{4i} be the class of a $W_3(\mathbb{C}, 2)$ manifold M_{4i}, and write $M_{4i} = 1/2 (N_{4i} - \text{CP}(1) N_{4i-2})$ where N_{2j} is an SU manifold ($N_2 = \text{empty}$).

For any sequence (i_1, \ldots, i_r)
$$\mathcal{A}(\text{GP}(1) \times M_{k_1} \times \ldots \times M_{k_r}) = \frac{1}{2r} \mathcal{A}(M_{k_1} \times \ldots \times M_{k_r} \times \text{GP}(1) + \text{terms}$$

$$\text{GP}(1)^t \times \Pi M_{k_1} \times \Pi M_{k_2} \ldots ,$$

$$= \frac{1}{2^{r-1}} \cdot M_{k_1} \times \ldots \times M_{k_r} + \text{terms divisible by an } \Pi M_{k_2}.$$

As oriented manifolds, the terms with \(\Pi M_{k_2}\) factors are zero, so

\(2y_{k_1} \ldots y_{k_r}\) is the class of the SU manifold \(\mathcal{A}(\text{GP}(1) \times M_{k_1} \times \ldots \times M_{k_r})\).

Consider the classes in \(\mathcal{U} \otimes \mathcal{Q}\) given by

\[A = 1/4(N_{k_1} \times N_{k_1} - M_4 \times N_{k_1-2} \times N_{k_1-2}) = 1/4(N_{k_1}^2 - [\text{GP}(1)^2 - 8\text{GP}(2)]N_{k_1-2}^2) \]

and

\[B = M_{k_1}^2 + \text{GP}(1)N_{k_1-2}M_{k_1} - 2[\text{GP}(1)^2 - \text{GP}(2)]N_{k_1-2}^2, \]

\[= 1/4N_{k_1}^2 - 1/2N_{k_1} \text{GP}(1)N_{k_1-2}^2 + 1/4N_{k_1}^2 + 1/2N_{k_1} \text{GP}(1)N_{k_1-2} + 2/4 \text{GP}(1)^2 N_{k_1-2}^2 \]

\[- 1/4[8\text{GP}(1)^2 - 8\text{GP}(2)]N_{k_1-2}^2. \]

From the expansion one clearly has \(A = B\), with \(B\) being given as the class of a complex manifold and \(A\) having all Chern numbers divisible by \(c_1\) zero.

Since \(N_{k_1-2}\) is zero in oriented cobordism mod torsion, \(B\) is clearly the class \(y_{k_1}^2\). **

From the Conner and Landweber lemma that KO theory numbers detect \(H_* (\mathcal{W} \otimes \mathbb{Z}_2)\), one has \(\rho_2(x) = 0\) if \(x \in \text{image } \mathcal{A}, \) so \(\tau:\ ker \mathcal{A} \rightarrow B_*^{\text{SO}}\) takes image \(\mathcal{A}\) into \(2B_*^{\text{SO}}\). Thus \(H_* (\mathcal{W})\) maps isomorphically into the algebra
$E_{\varepsilon}^{SO}/2E_{\varepsilon}^{SO}$ with image $\mathbb{Z}_2[y_{h_1}, y_{h_1}^2 | 1 > 1]$. Since $\Omega_{\varepsilon}^{SU}$ has image in Ω_{ε}^{U} coinciding with $\ker \Theta$ in dimensions congruent to zero mod 3 and with image Θ in dimensions congruent to 1 mod 3, this gives:

Theorem: Under the forgetful homomorphism to $\Omega_{\varepsilon}^{SO}/\text{Torsion}$, $\mathcal{W}_{\varepsilon}(\varepsilon, 2)$ is mapped onto an integral polynomial subring $\mathbb{Z}[y_{h_1}] = E_{\varepsilon}^{SO}$. Further, image maps onto $2E_{\varepsilon}^{SO}$, kernel Θ maps onto the span of $2E_{\varepsilon}^{SO}$ and $\mathbb{Z}[y_{h_1}, y_{h_1}^2 | 1 > 1]$, and $\Omega_{\varepsilon}^{SU}$ maps onto the span of $2E_{\varepsilon}^{SO}$ and $\mathbb{Z}[y_{h_1}^2]$.
Chapter XI
Spin, Spin^c and Similar Nonsense

Among the (B,f) cobordism theories, the most interesting examples arise from the classical groups. The most difficult of these which have been successfully analyzed are the theories given by the groups Spin and Spin^c. The group Spin arose classically in the study of Lie groups, being the simply connected covering group of the special orthogonal group.

To justify the study of these theories, another attack will be used here. Briefly, one may consider the cobordism classification problem for manifolds which are orientable for the bundle cohomology theories KO^6 and K^n.

To begin, one may return to the construction of K theoretic orientation classes for complex bundles. For this, one considered the vector space A(C^k), treating this as a representation space for the unitary group U(k) in order to construct bundles. Clearly one may ask: Is it possible to find a larger group, acting on both C^k and A(C^k) which will possess all of the properties used in the construction?

Lemma 1: The ring of endomorphisms of A(C^k) is an algebra over C and is generated by the endomorphisms F_v and F^*_v for v \in C^k.

Proof: A(C^k) has a base consisting of the elements e_{i_1} e_{i_2} \cdots e_{i_r} \in_{i_1} \cdots \in_{i_r}. Let I,J be any two sequences of this type, I = (i_1, \ldots, i_r), J = (j_1, \ldots, j_s). There is a sequence K formed from (1, \ldots, k) - I and \sigma = e_{i_1} \cdots e_{i_r}, and say e_{k} - e_I = (-1)^{r+1} e_{i_1} \cdots e_{i_r}. Consider the
operation

\[T = (-1)^T \sum_{j=1}^{e_{1}} F_{e_{j}} \sum_{s} F_{e_{s}} \sum_{k} F_{e_{k}} \sum_{l} F_{e_{l}} \sum_{p} F_{e_{p}} \]

where \(K = (k_{1}, \ldots, k_{p}) \). Then \(T(e_{i}) = 0 \) if \(L \neq I \) and \(T(e_{i}) = e_{j} \). Since operations of this type form a base of \(\text{End}(A(e^k)) \), this completes the proof.

Lemma 2: The operations \(\phi_{v} = F_{v} + \mathfrak{F}_{v} \) for \(v \in \mathfrak{e}^k \) satisfy the identities:

a) \(\phi_{v}^{2}(x) = \|v\|^{2} \cdot x \),

b) \(\phi_{iv}^{2} = \mathfrak{F}_{v} - \mathfrak{F}_{v} \),

c) If \(v,w \in \mathfrak{e}^k \) are orthogonal, then \(\phi_{v} \phi_{w} + \phi_{w} \phi_{v} = 0 \) and \(\phi_{iv} \phi_{v} + \phi_{w} \phi_{w} = 0 \).

Proof: a) was verified in Chapter IX. For b) one has \(F_{iv} = \mathfrak{F}_{v} \), which

\[< F_{iv} y, z > = < y, iv \cdot z > = -i < y, F_{v} z > = -i F_{v}^{2} y, z > \]

so \(F_{iv}^{2} = -i \mathfrak{F}_{v}^{2} \). For c) one has \(\phi_{v+w} = \phi_{v} + \phi_{w} \), so

\[(\phi_{v+w})^{2}(x) = \|v+w\|^{2} \cdot x, \]

\[= (\|v\|^{2} + \|w\|^{2} \cdot x + \phi_{v}^{2} + \phi_{w}^{2}) \cdot x, \]

If \(v,w \) are orthogonal, \(\|v+w\|^{2} = \|v\|^{2} + \|w\|^{2} \) giving \(\phi_{v} \phi_{w} + \phi_{w} \phi_{v} = 0 \). If \(w = iv, \|v+w\|^{2} = |1+i|^{2} \|v\|^{2} = 2 \|v\|^{2} \), while \(\|w\|^{2} = \|v\|^{2} \), so

\[\phi_{v} \phi_{w} + \phi_{w} \phi_{v} = 0. \]

Note: c) may be rephrased: If \(v \) and \(w \) are orthogonal under the real inner product, \(\Re < , > \), then \(\phi_{v} \phi_{w} + \phi_{w} \phi_{v} = 0 \).
Definition: Let V be a real inner product space. The Clifford algebra of V, $\text{Cliff}(V)$, is a pair (A,f) where A is a real algebra with unit and $f: V \rightarrow A$ is a linear transformation such that $f(v)^2 = \|v\|^2 \cdot 1$ and such that for any pair (B, g) with these properties there is a unique algebra homomorphism $\lambda: A \rightarrow B$ with $g = \lambda f$.

Note: $\text{Cliff}(V)$ is, of course, unique up to natural isomorphism. If v_1, \ldots, v_p is an orthonormal base of V, the algebra A is the real algebra with unit generated by v_1, \ldots, v_p with relations $v_i^2 = 1$ and $v_i v_j + v_j v_i = 0$ if $i \neq j$. A has dimension 2^p with base given by the monomials $v_{i_1} \cdots v_{i_s}$ with $1 \leq i_1 < \ldots < i_s \leq p$.

Proposition: The linear transformation $\phi: \mathfrak{e}^k \rightarrow \text{End}(\Lambda(\mathfrak{e}^k))$ induces an algebra homomorphism $\tilde{\phi}: \text{Cliff}(\mathfrak{e}^k) \rightarrow \text{End}(\Lambda(\mathfrak{e}^k))$ which extends to an isomorphism

$$\phi: \text{Cliff}(\mathfrak{e}^k) \overset{\sim}{\rightarrow} \text{End}(\Lambda(\mathfrak{e}^k)).$$

Proof: Clearly, $\phi: \text{Cliff}(\mathfrak{e}^k) \rightarrow \text{End}(\Lambda(\mathfrak{e}^k))$ is defined and is a homomorphism of complex algebras. Both algebras have dimension 2^{2k} over \mathfrak{e}, so it suffices to show ϕ is epic. Since $\phi(v) = F_v + F_v^*$ and $\phi(iv) = i(F_v - F_v^*)$, image ϕ contains $F_v = (\phi(v) - i\phi(iv))/2$ and $F_v^* = (\phi(v) + i\phi(iv))/2$. By Lemma 1, these generate $\text{End}(\Lambda(\mathfrak{e}^k))$ as algebra over \mathfrak{e} as v runs over \mathfrak{e}^k. Thus ϕ is an isomorphism. **

Note: The critical point of this is simply that one has a very easy way to express the endomorphisms. $\text{Cliff}(\mathfrak{e}^k)$ really enters through:

Proposition: ϕ identifies $\text{Cliff}(\mathfrak{e}^k)$ with the real subalgebra of $\text{End}(\Lambda(\mathfrak{e}^k))$ consisting of those operators which commute with μ. **
Proof: Since $u^o \psi = \psi^o u$ (Lemma 8, Chapter IX), $\text{Cliff}(e^k)$ commutes with u. Since $ui = -iu$ (Lemma 3, Chapter IX), $\text{Cliff}(e^k)$ is precisely the subset of $\text{Cliff}(e^k) \otimes C$ consisting of operators which commute with u. **

It is now clear that one may perform most of the construction of an orientation by considering the group G^c (or G) consisting of elements of $\text{Cliff}(e^k) \otimes C$ (or $\text{Cliff}(e^k)$) which are:

1) Invertible (i.e. are automorphisms of $\Lambda(e^k)$);

2) Satisfy $x^* x = 1$, where x^* is the conjugate linear anti-automorphism of $\text{Cliff}(e^k) \otimes C$ defined by the adjoint. (Note: $\psi(x)$ preserves the inner product on $\Lambda(e^k)$ if and only if, for all y, z, one has

$$< y, z > = < \psi(x)y, \psi(x)z > = < \psi(x)^o \psi(x)y, z >$$

or if and only if $\psi(x)^o \psi(x) = 1$ or $x^* x = 1$. * is then clearly a conjugate linear anti-automorphism and is the identity on $e^k \subseteq \text{Cliff}(e^k)$ since

$$(\psi^o)^o = \psi^o + F^o \psi = \psi.$$

3) Preserve the even-odd decomposition of $\Lambda(e^k)$. (Note: $\text{Cliff}(e^k)$ is Z_2 graded; this takes the elements of even grading.)

Corresponding to any principal G^c (or G) bundle one may then form an associated complex vector bundle with fiber $\Lambda(e^k)$, decomposing into even-odd summands (and admitting a bundle map u). One also requires a vector bundle with fiber e^k or R^{2k}, with each fiber acting on $\Lambda(e^k)$ to define

$\phi: \Lambda^{ev}(e^k) \rightarrow \Lambda^{od}(e^k)$. This is the analogue of Lemma 7, Chapter IX in that one desires an action of G^c (or G) or a subgroup thereof on e^k.

Letting $g \in G^c$, one wishes to find for $v \in R^{2k}$ an element $gv \in R^{2k}$ so that $g \phi = \phi^o gv \phi$. Now letting $g = \psi(x)$,

$$\psi(x)^o \psi(y) = \psi^o gv \phi(x)(y)$$
\[\phi_{gy} = \phi(x)^{-1} \phi_{g} \phi(x) = \phi(xyx^{-1}) \]

or

\[gy = x^v x^{-1}. \]

Note: The subgroup consisting of elements \(g = \phi(x) \) for which \(x^v x^{-1} \in \mathfrak{g}^k \) if \(v \in \mathfrak{g}^k \) clearly acts on \(\mathfrak{g}^k \), giving an associated bundle with fiber \(\mathfrak{g}^k \). The orientation construction may then be made for this bundle.

Definition: Let \(\text{Spin}^c(k) \) (or \(\text{Spin}(k) \)) denote the subgroup of \(\text{Cliff}(R^k) \otimes \mathbb{C} \) (or \(\text{Cliff}(R^k) \)) consisting of invertible elements \(g \) for which:

1) \(gvy^{-1} \in R^k \) for all \(v \in R^k \);

2) \(g^*g = 1 \) where \(* \) is the conjugate linear antimorphism extending the identity map on \(R^k \); and

3) the \(\mathbb{Z}_2 \) grading is zero.

The above analysis shows that \(\text{Spin}^c \) and \(\text{Spin} \) bundles are \(K^* \) and \(KD^* \) orientable respectively. (Note: Restricting to a fiber, the bundle further reduces to \(U \) or \(SU \), where it is known that this construction gives a generator for the cohomology of the sphere). The orientation is clearly multiplicative, for \(\Lambda(\mathfrak{g}^k \otimes \mathfrak{g}^l) = \Lambda(\mathfrak{g}^k) \otimes \Lambda(\mathfrak{g}^l) \) and all constructions are compatible with this decomposition.

To relate this to the classical treatment, one may analyze the groups \(\text{Spin}^c(k) \) and \(\text{Spin}(k) \) in a group theoretic fashion.

Denote by \(\Gamma_k \) the subgroup of invertible elements \(x \) in \(\text{Cliff}(R^k) \otimes \mathbb{C} \) (or \(\text{Cliff}(R^k) \)) satisfying:

1) \(xyx^{-1} \in R^k \) for all \(y \in R^k \);
2) \(x^*x = 1 \); and

3) \(x \) is a homogeneous element in the \(\mathbb{Z}_2 \) grading.

Define a representation of \(\Gamma_k \) on \(\mathbb{R}^k \) by

\[
\rho : \Gamma_k \rightarrow \text{Aut}(\mathbb{R}^k)
\]

with \(\rho(x)(y) = (-1)^{\deg x}xy^{-1} \), where \(\deg x \) is the integer mod 2 giving the grading to which \(x \) belongs.

Lemma 3: The homomorphism \(\rho : \Gamma_k \rightarrow \text{Aut}(\mathbb{R}^k) \) has kernel precisely the scalar multiples \(r \cdot 1 \) where \(\|r\| = 1 \).

Proof: If \(x \in \ker \rho \), \(xy = (\omega l)^{\deg x} y \) for all \(y \in \mathbb{R}^k \). Let \(e_1, \ldots, e_k \) be the standard base of \(\mathbb{R}^k \) and write \(x = a + e_1 b \), where \(a, b \) do not involve \(e_1 \) and \(\deg a = \deg x, \deg b = \deg x + 1 \). Then \(xe_1 = ae_1 + e_1 be_1 = ae_1 + (-1)^{\deg b} b \), and \((-1)^{\deg x}e_1 x = (-1)^{\deg x}e_1 a + (-1)^{\deg x}e_1 b \) so \(b = 0 \). Similar analysis with the other \(e_j \) shows that \(x \) cannot involve any \(e_j \), so \(x = r \cdot 1 \). Since \(x^*x = \overline{r} r = 1 \), \(\|r\| = 1 \). \(\Box \)

Lemma 4: \(\rho(\Gamma_k) \) is contained in the isometries of \(\mathbb{R}^k \).

Proof: \(\|\rho(x)y\|^2 = (\rho(x)y)^*(\rho(x)y) = (-1)^{\deg x}(x^{-1}y^*x^*)(-1)^{\deg x}xy^{-1} \)

\(= y^*y = \|y\|^2 \) so \(\rho(x) \) preserves norms and hence also inner products. \(\Box \)

Lemma 5: \(\rho : \Gamma_k \rightarrow \text{O}(k) \) is epic.

Proof: Let \(v \in \mathbb{S}^{k-1} \subset \mathbb{R}^k \) be any unit vector, and extend to an orthonormal base \(e_1 = v, e_2, \ldots, e_k \). Then \(e_i \in \Gamma_k \) and

\[
\rho(e_i)(e_1) = -e_1 e_i e_1 = \begin{cases}
-e_1 & i = 1, \\
\ e_i & i \neq 1.
\end{cases}
\]
Thus $\rho(v)$ is the reflection in the hyperplane orthogonal to v. Since $O(k)$ is generated by these reflections, ρ is epic. **

Lemma 6: The homomorphism $\rho : \Gamma_k \longrightarrow O(k)$ maps the subgroup consisting of elements of degree zero precisely onto $SO(k)$.

Proof: Let $x \in \Gamma_k$. Then $\rho(x) = R_1 \circ \ldots \circ R_q$ for some reflections R_j and letting $x_j \in S^{k-1}$ with $\rho(x_j) = R_j$, one has $x = r_1 x_1 \ldots x_q$. Then $\det(x) = (-1)^q$ and $\deg x = q$, so $\rho(x) \in SO(k)$ if and only if $\deg x = 0$. **

Definition: Γ_k is denoted $Pin^c(k)$ in the case of $\text{Cliff}(H^k) \otimes C$ and is denoted $Pin(k)$ in the case of $\text{Cliff}(H^k)$.

Theorem: There are exact sequences

$$1 \longrightarrow U(1) \longrightarrow Pin^c(k) \longrightarrow O(k) \longrightarrow 1,$$

$$1 \longrightarrow U(1) \longrightarrow Spin^c(k) \longrightarrow SO(k) \longrightarrow 1,$$

$$1 \longrightarrow \mathbb{Z}_2 \longrightarrow Pin(k) \longrightarrow O(k) \longrightarrow 1,$$ and

$$1 \longrightarrow \mathbb{Z}_2 \longrightarrow Spin(k) \longrightarrow SO(k) \longrightarrow 1$$

and isomorphisms

$$Pin^c(k) \rtimes \mathbb{Z}_2 \cong U(1),$$

$$Spin^c(k) \rtimes \mathbb{Z}_2 \cong U(1)$$

where $U(1), \mathbb{Z}_2$ denote the scalars of norm 1.

Proof: All has been proved except the isomorphisms. For these one has inclusions $Pin(k) \longrightarrow Pin^c(k)$ and $U(1) \longrightarrow Pin^c(k)$ and as in Lemma 6, $Pin^c(k)$ consists of all $r x_1 \ldots x_q$, $x_j \in S^{k-1}$, $r \in U(1)$ and $Pin(k)$ consists
of all $\pm x_1 \ldots x_q$. This gives the isomorphism for $\text{Pin}^c(k)$, while that for $\text{Spin}^c(k)$ follows by taking the elements of degree zero. **

To complete the analysis of these groups, one has:

Proposition: For $k \geq 2$, $\rho : \text{Spin}(k) \rightarrow \text{SO}(k)$ is the nontrivial double cover.

Proof: It suffices to show that $+1$ and -1, the kernel of ρ, can be connected by a path in $\text{Spin}(k)$. One such path is

$$\lambda : [0, \pi] \rightarrow \text{Spin}(k) : t \mapsto \cos(t) + \sin(t) e_1 e_2. \quad \text{**}$$

Corollary: For $k \geq 2$, $\text{Spin}(k)$ is connected, and for $k \geq 3$, $\text{Spin}(k)$ is simply connected.

Proof: $\pi_0(\text{SO}(k)) = 0$; $\pi_1(\text{SO}(k)) = \mathbb{Z}_2$ for $k \geq 3$. **

Now one may form the classifying spaces for these groups.

First one notes that Spin is the simply connected cover of SO, so that $B\text{Spin}$ is the 2-connective cover of $B\text{SO}$. Thus one may identify $B\text{Spin}$ with the total space of the fibration over $B\text{SO}$ induced from the path fibration over $K(\mathbb{Z}_2, 2)$ via the map $f : B\text{SO} \rightarrow K(\mathbb{Z}_2, 2)$ realizing ν_2 (inducing an isomorphism on π_2). Thus one has

$$B\text{Spin} \longrightarrow PK(\mathbb{Z}_2, 2)$$

$$\mathbb{Z}_2_f \downarrow \downarrow$$

$$B\text{SO} \longrightarrow K(\mathbb{Z}_2, 2)$$

and the fiber of \mathbb{Z}_2 is a $K(\mathbb{Z}_2, 1)$.

One may compute the cohomology algebra $H^*(B\text{Spin}; \mathbb{S})$ for any ring \mathbb{S} containing $1/2$ easily, since $H^*(K(\mathbb{Z}_2, 1); \mathbb{S})$ is trivial, making π_2 an isomorphism.
To compute $H^*(B\text{Spin};Z_2)$ is much more difficult, requiring some additional background.

Lemma 7: In $H^*(BO;Z_2)$, $Sq^{n-1}w_n = w_{2n-1} + \text{decomposables}$.

Proof: From the Adem formulae,

$$Sq^{n-1} Sq^n = Sq^{2n-1} + \sum_{i=1}^{s} a_i Sq^{2n-1-i} Sq^i,$$

with $s = [(n-1)/2]$, so in $H^*(TBO;Z_2)$

$$Sq^{n-1} Sq^n U = w_{2n-1} U + \sum_{i=1}^{s} a_i Sq^{2n-1-i} (v_i U),$$

$$= w_{2n-1} U + \sum_{i=1}^{s} a_i \sum_{j=0}^{2n-1-i} (Sq^{2n-1-i-j} v_i) v_j U$$

and the terms with $j = 0$ vanish, since for $2n-1-i > i$, one has $Sq^{2n-1-i} v_i = 0$. Thus $Sq^{n-1} Sq^n U = (w_{2n-1} + \text{decomposables}) U$. Further

$$Sq^{n-1} Sq^n U = Sq^{n-1} (v_n U),$$

$$= Sq^{n-1} v_n U + \sum_{j=1}^{n-1} (Sq^{n-1-j} v_n) v_j U,$$

$$= (Sq^{n-1} v_n + \text{decomposables}) U.$$

Equating these expressions gives the result. **

Corollary: $f^* : H^*(K(Z_2,2);Z_2) \longrightarrow H^*(BSO;Z_2)$ is monic.

Proof: $H^*(K(Z_2,2);Z_2)$ is the Z_2 polynomial ring on the classes $Sq^I Z_2$, where $I = (2^r, 2^{r-1}, \ldots, 1)$ and by the Lemma, $Sq^I w_2 = w_{2^{r+1}+1} + \text{decomposables}$. Thus f^* is monic. **
This gives:

Proposition: \(\pi^*: H^*(BSO; \mathbb{Z}_2) \to H^*(BSpin; \mathbb{Z}_2) \) is epic, with kernel the ideal generated by \(w_2 \) over \(A_2 \). Thus \(\mathbb{Z}_2[v_1 | i \neq 1, 2^r + 1; r \geq 0] \) maps isomorphically onto \(H^*(BSpin; \mathbb{Z}_2) \).

Proof: Let \(E^* \) denote the spectral sequence of the fibration \(\pi, E^* \) that of the path fibration of \(K(\mathbb{Z}_2, 2) \), with \(f^* \) the induced map. Since \(E^* \) is an \(H^*(BSO; \mathbb{Z}_2) \) module, one has induced a map of spectral sequences

\[Z_2[v_1 | i \neq 1, 2^r + 1; r \geq 0] \otimes E^* \to E^*. \]

This is an isomorphism on the \(E^2 \) level, hence also on the \(E^\infty \) level. Thus, \(\pi^*: Z_2[v_1 | i \neq 1, 2^r + 1; r \geq 0] \to H^*(BSpin; \mathbb{Z}_2) \) is an isomorphism.

To form the classifying space \(BSpin^c \), one considers the map

\[g: BSO \times K(\mathbb{Z}, 2) \to K(\mathbb{Z}, 2) \] with \(g^*(x_2) = w_2 \otimes 1 + 1 \otimes _ \) and denotes by \(BSpin^c \) the total space of the fibration induced via \(g \) from the path fibration over \(K(\mathbb{Z}, 2) \). This gives a diagram

\[\begin{array}{ccc}
BSO^c & \to & PK(\mathbb{Z}, 2) \\
\downarrow \pi^* & & \downarrow \\
BSO \times K(\mathbb{Z}, 2) & \to & K(\mathbb{Z}, 2).
\end{array} \]

One then has the fibration \(\pi: BSpin^c \to BSO \) with fiber \(K(\mathbb{Z}, 2) = BU(1) \), corresponding to the exact sequence

\[1 \to U(1) \to Spin^c \to SO \to 1. \]

Notes: 1) One has a homomorphism \(Spin(k) \times U(1) \to SO(k) \times U(1): (x, y) \mapsto (\rho(x), y^2) \) inducing \(\theta: Spin^c(k) \to Spin(k) \times U(1) \to SO(k) \times U(1) \).
and θ gives an exact sequence

$$1 \longrightarrow \mathbb{Z}_2 \longrightarrow \text{Spin}^c(k) \longrightarrow \text{SO}(k) \times U(1) \longrightarrow 1.$$

The construction given for BSpin^c is the fibration associated with this sequence.

2) An oriented bundle admits a Spin structure if and only if its second Stiefel-Whitney class is zero; it admits a Spinc structure if and only if its second Stiefel-Whitney class is the reduction of an integral class.

The cohomology of BSpin^c is now readily computable. Since $H^*(K(\mathbb{Z}_2;2);\mathbb{Z}_2)$ is trivial if $1/2 \not\in \mathbb{Z}_2$, $\pi^*: H^*(\text{BO} \times \text{BU}(1);\mathbb{Z}_2) \longrightarrow H^*(\text{BSpin}^c;\mathbb{Z}_2)$ is an isomorphism. Using \mathbb{Z}_2 cohomology, g^* is monic, and using the same spectral sequence argument, π^* is epic with kernel the ideal generated by $w_2 + \mathbb{Z}$ over \mathbb{Z}_2. In particular, $\pi^*: H^*(\text{BO};\mathbb{Z}_2) \longrightarrow H^*(\text{BSpin}^c;\mathbb{Z}_2)$ is epic, with kernel the ideal generated by $w_3(s_1(w_2 + \mathbb{Z}) = w_3$ in $H^*(\text{BO} \times \text{BU}(1);\mathbb{Z}_2)$).

Note: Let $f: \text{BSpin} \times \text{BU}(1) \longrightarrow \text{BSO}$ classify the sum of the canonical bundles over these spaces. Let $k: \text{BSpin} \times \text{BU}(1) \longrightarrow K(\mathbb{Z},2)$ be projection on the second factor. Then $f \times k: \text{BSpin} \times \text{BU}(1) \longrightarrow \text{BSO} \times K(\mathbb{Z},2)$ lifts to BSpin^c; say $\hat{f}: \text{BSpin} \times \text{BU}(1) \longrightarrow \text{BSpin}^c$ is the lift. It is immediate that \hat{f} induces isomorphisms of homotopy and hence is a homotopy equivalence.

(Thus: The multiplication on BSpin^c is not the product multiplication on $\text{BSpin} \times \text{BU}(1)$.) Thus the cohomology of BSpin^c follows from a knowledge of that of BSpin.

From the knowledge of the rational cohomology of BSpin and BSpin^c, one may evaluate the Chern character of the bundle theoretic orientation class constructed above.
Proposition: Let \(\xi \) be a Spin (or Spin\(^c\)) bundle over a space \(X \) and let \(U(\xi) \in K^0(T\xi) \) (or \(\tilde{K}^0(T\xi) \)) be the orientation of \(\xi \) constructed above. Let \(\psi^{-1}_H : \tilde{H}^*(T\xi; \mathbb{Q}) \rightarrow H^*(X; \mathbb{Q}) \) be the inverse of the Thom isomorphism defined by the standard orientation associated with the SO structure of \(\xi \). Then:

a) \(\psi^{-1}_H(\text{ch}(\psi U(\xi))) = \hat{\lambda}(\xi) \) if \(\xi \) is a Spin bundle, (\(\phi \) being the usual homomorphism from \(K^0 \) to \(K^\ast \))

b) \(\psi^{-1}_H(\text{ch}(U(\xi))) = e^{-c_1(\xi)/2/2} \hat{\lambda}(\xi) \) if \(\xi \) is a Spin\(^c\) bundle, where \(c_1(\xi) \in H^2(X; \mathbb{Z}) \) is the integral class reducing to \(v_2(\xi) \) which is defined by the Spin\(^c\) structure.

Proof: By stability and naturality of the orientation class, \(\psi^{-1}_H(\text{ch}(\psi U(\xi))) \) and \(\psi^{-1}_H(\text{ch}U(\xi)) \) come from \(H^*(BS\text{Spin}; \mathbb{Q}) \) and \(H^*(BS\text{Spin}^c; \mathbb{Q}) \) respectively. Corresponding to the inclusions \(U(k) \hookrightarrow \text{Spin}^c(2k) \) and \(SU(k) \hookrightarrow \text{Spin}(2k) \) one has maps \(t : BU \rightarrow B\text{Spin}^c \), \(u : BSU \rightarrow B\text{Spin}^c \). (Note: The natural map \(BSU \xrightarrow{u} B\text{SO} \) lifts to \(B\text{Spin} \) since \(BSU \) is 3 connected; the map \(BU \xrightarrow{t} B\text{Spin} \times BU(1) \), whose projection to \(B\text{SO} \) classifies the universal bundle and whose projection to \(BU(1) \) classifies the determinant bundle clearly lifts to \(B\text{Spin}^c \).) Both \(t^\ast \) and \(u^\ast \) are monic on rational cohomology (since \(t^\ast, u^\ast \) are monic and \(\pi_1^\ast \) and \(\pi^\ast \) are isomorphisms), and since the orientation class is sent to the previously constructed orientation for \(U \) and \(SU \) bundles one may apply the previous computations.

For a \(U \) bundle, one has \(\psi^{-1}_H(\text{ch}U(\xi)) = \psi^{-1}_H(\text{ch}U(\xi)) \) (Note: To form \(U(\xi) \) one had to introduce a sign depending on \(\dim \xi \) in order to get an orientation: This was given by \(\tilde{U}(\xi) = (-1)^{\dim \xi} \tilde{U}(\xi) \) if \(\xi \) is a complex \(n \)-plane bundle. See Chapter X), and this is \(\hat{\lambda}(\xi) = e^{-c_1(\xi)/2} \hat{\lambda}(\xi) = e^{-c_1(\xi)/2} \hat{\lambda}(\xi) \).

For an \(SU \) bundle, \(\psi^{-1}_H(\text{ch}U(\xi)) = \hat{\lambda}(\xi) \), exactly as for a complex bundle. Since \(c_1(\xi) = 0 \), this reduces to \(\hat{\lambda}(\xi) \). **
In the computations which will follow, it will be necessary to have the following:

Proposition: Let $BO(k,\ldots,\varnothing)$, $BU(k,\ldots,\varnothing)$ denote the $(k-1)$ connective covers of BO and BU. Let

$$f : BO(k,\ldots,\varnothing) \longrightarrow K(\pi_k(BO),k)$$

and

$$g : BU(k,\ldots,\varnothing) \longrightarrow K(\pi_k(BU),k)$$

be the maps realizing the least possibly nonzero homotopy group. Then:

a) If $k \equiv 0,1,2,4 \pmod{8}$, $f^* : H^i(K(\pi_k(BO),k);\mathbb{Z}_2) \longrightarrow H^i(BO(k,\ldots,\varnothing);\mathbb{Z}_2)$ is epic for $i < 2k$, and in these dimensions $H^*(BO(k,\ldots,\varnothing);\mathbb{Z}_2)$ is isomorphic to

1) $(A_2/A_2Sq^1 + A_2Sq^2)f^*(i_k)$ \hspace{1cm} $k \equiv 0 \pmod{8}$,

2) $(A_2/A_2Sq^2)f^*(i_k)$ \hspace{1cm} $k \equiv 1 \pmod{8}$,

3) $(A_2/A_2Sq^3)f^*(i_k)$ \hspace{1cm} $k \equiv 2 \pmod{8}$,

4) $(A_2/A_2Sq^1 + A_2Sq^5)f^*(i_k)$ \hspace{1cm} $k \equiv 4 \pmod{8}$.

b) If k is even, $g^* : H^i(K(\pi_k(BU),k);\mathbb{Z}_2) \longrightarrow H^i(BU(k,\ldots,\varnothing);\mathbb{Z}_2)$ is epic for $i < 2k$, and in these dimensions $H^*(BU(k,\ldots,\varnothing);\mathbb{Z}_2)$ is isomorphic to $(A_2/A_2Sq^1 + A_2Sq^3)g^*(i_k)$.

Proof: The main step in the proof will be an induction on the statement:

P(1): With the given hypotheses, f^* and g^* are epic for $i < 2k$ and $k + j$, and in these dimensions, the groups $H^*(BO(k,\ldots,\varnothing);\mathbb{Z}_2)$ and $H^*(BU(k,\ldots,\varnothing);\mathbb{Z}_2)$ are as asserted.
This is clearly true for \(j = 1 \), since \(f^* \) and \(g^* \) are isomorphisms in dimension \(k \). One may then suppose \(P(j) \) is true, and try to prove \(P(j+1) \).

Consider the fibrations

\[
\begin{array}{ccc}
\text{BO}(k+1, \ldots, ^\infty) & \longrightarrow & \text{BO}(k, \ldots, ^\infty) \\
\downarrow & & \downarrow \\
K(\pi_k(\text{BO}), k) & \longrightarrow & K(\pi_k(\text{BU}), k).
\end{array}
\]

The spectral sequences of these fibrations give exact sequences

\[
\begin{array}{ccc}
\ldots & \longrightarrow & H^i(k+1, \ldots, ^\infty) \\
\tau & \longrightarrow & H^{i+1}(K(\pi_k(X), k)) \\
\ldots & \longrightarrow & H^{2k+1}(X, ^\infty) \\
\tau & \longrightarrow & H^{2k+2}(X, ^\infty). \\
\end{array}
\]

in which \(\tau : H^i(X, ^\infty) \longrightarrow H^{i+1}(K(\pi_k(X), k)) \) is the transgression.

By the inductive assumption \(H^g(X(k+1, \ldots, ^\infty)) = (A_2/\mathfrak{g}_2)x_2 \) in dimension less than \(2(k+1) \) and \(k + 1 + j \), where \(x_2 \in H^2(X, ^\infty) \) is the nonzero class of least positive dimension and \(\mathfrak{g}_2 \) is the appropriate ideal, \(\tau \) is a homomorphism over \(A_2 \) and hence it suffices to prove that the sequence of \(A_2 \)-module homomorphisms

\[
0 \longrightarrow A_2 \mathfrak{g}_2 \longrightarrow H^g(K(\pi_k(X), k)) \longrightarrow A_2 \mathfrak{g}_2 \longrightarrow 0
\]

is exact, where \(\tau x_2 = t(1) \cdot x_2 \), since then the exact sequence of the fibration will prove the isomorphism, giving \(P(j+1) \).

Thus one must determine \(t(1) \) and prove appropriate exact sequences.

Lemma: \(\tau : H^{2k+2}(\text{BU}(2k+1, \ldots, ^\infty)) \longrightarrow H^{2k+3}(K(Z, 2k)) \) sends \(x_{2k+2} \) into \(\text{Sq}^3 x_{2k} \).

Proof: Noting that \(H^{2k+3}(K(Z, 2k)) \) has a generator \(\text{Sq}^3 x_{2k} \), it suffices to show that \(\tau x_{2k+2} \neq 0 \). By periodicity, \(H^{2k+4}(\text{BU}(2k+1, \ldots, ^\infty)) = \text{BU}(5, \ldots, ^\infty) \).
and by looping, it suffices to show $\tau x_6 = Sq^3 2^5$ in the fibration $BU(5,\ldots,\infty) \longrightarrow BSU = BU(4,\ldots,\infty) \longrightarrow K(Z,4)$. If $\tau x_6 = 0$, $Sq^3 x_6 \neq 0$ in $H^7(\text{BSU})$, but one knows that $H^7(\text{BSU}) = 0$. Thus $\tau x_6 = Sq^3 2^5 x_6$. **

Lemma:

$\tau : H^{5k+1}(BO(5k+1,\ldots,\infty)) \longrightarrow H^{5k+2}(K(Z,5k)) : x_{5k+1} \longrightarrow Sq^2 2^5 x_{5k+1}$

$\tau : H^{5k+2}(BO(5k+2,\ldots,\infty)) \longrightarrow H^{5k+3}(K(Z,5k+1)) : x_{5k+2} \longrightarrow Sq^2 2^5 x_{5k+1}$

$\tau : H^{5k+4}(BO(5k+3,\ldots,\infty)) \longrightarrow H^{5k+5}(K(Z,5k+2)) : x_{5k+4} \longrightarrow Sq^2 2^5 x_{5k+2}$

$\tau : H^{5k+8}(BO(5k+5,\ldots,\infty)) \longrightarrow H^{5k+9}(K(Z,5k+4)) : x_{5k+8} \longrightarrow Sq^5 2^5 x_{5k+4}$

Proof: Clearly one may write

$\tau x_{5k+1} = a Sq^2 2^5 x_{5k+1}$

$\tau x_{5k+2} = b Sq^2 2^5 x_{5k+1}$

$\tau x_{5k+4} = c Sq^2 2^5 x_{5k+2} + d Sq^2 2^5 x_{5k+2}$

$\tau x_{5k+8} = e Sq^5 2^5 x_{5k+4}$

with $a,b,c,d,e \in \mathbb{Z}$. Since x_{5k+4} is an integral class, $0 = \tau Sq^1 x_{5k+4} = Sq^1 \tau x_{5k+4} = d Sq^2 2^5 x_{5k+2}$ and thus $d = 0$.

Looping 5k times and applying periodicity, BO(8k,\ldots,\infty) becomes BS Sp. [The case $k = 0$ is trivial and may be ignored.] and one has:

$\tau : H^5(\text{BSp}(5,\ldots,\infty)) \longrightarrow H^6(K(Z,4)) : x_5 \longrightarrow a Sq^2 2^5 x_4$

$\tau : H^6(\text{BSp}(6,\ldots,\infty)) \longrightarrow H^7(K(Z,5)) : x_6 \longrightarrow b Sq^2 2^5 x_5$

$\tau : H^8(\text{BSp}(8,\ldots,\infty)) \longrightarrow H^9(K(Z,6)) : x_8 \longrightarrow c Sq^3 2^5 x_6$

$\tau : H^{12}(\text{BSp}(12,\ldots,\infty)) \longrightarrow H^{13}(K(Z,8)) : x_{12} \longrightarrow a Sq^6 2^5 x_8$

Now consider the fibration BS p(5,\ldots,\infty) \longrightarrow BS p \longrightarrow K(Z,4). One has $H^5(\text{BSp}) = 0$ so $\tau x_5 \neq 0$ giving $\tau x_5 = Sq^2 2^5 x_4$; hence $a = 1$.

One may then compute $H^*(B\text{Sp}(5,\ldots,\infty))$ from the spectral sequence. Specifically, $H^*(B\text{Sp}(5,\ldots,\infty))$ is the polynomial algebra over \mathbb{Z}_2 on the classes $i^*(\mathcal{O}_1^s)$, $i \geq 2$, and the classes $Sq^I x_5$ with I given by:

$I = (0) -$ giving x_2^s which transgresses to $Sq^1 x_5 \ldots Sq^5 x_5 \cdot y_4$.

$I = (2^k, \ldots, 4^k)$ - giving $(Sq^2 \ldots Sq^h x_5)^{2^s}$ which transgresses to $Sq^{2^s-1(2^{k+1}+1)} \ldots Sq^{k+1} x_5 \ldots Sq^h x_5 \cdot y_4$.

$I = (1) -$ giving $(Sq^1 x_5)^{2^s}$ which transgresses to $Sq^{2^s-3} \ldots Sq^6 x_5 \cdot y_4$.

[Note: The given transgressions, together with \tilde{z}_4, form polynomial generators for $H^*(K(2,4))$.]

Now consider the fibration $B\text{Sp}(6,\ldots,\infty) \xrightarrow{i_!} B\text{Sp}(5,\ldots,\infty) \xrightarrow{\pi_1} K(2,5)$. Then $H^6(B\text{Sp}(5,\ldots,\infty))$ has base $Sq^1 x_5$ and $i^*(Sq^1 x_5) = 0$ so $\pi_6 \neq 0$, giving $\pi_6 = Sq^2 \tilde{z}_5$; hence $b = 1$.

Assertion: $i^*(\mathcal{O}_2^s) = i^*(\mathcal{O}_2^s)$.

[If not $\tau : H^7(B\text{Sp}(6,\ldots,\infty)) \rightarrow H^8(K(2,5)) = \mathbb{Z}_2 \oplus \mathbb{Z}_2$ is an isomorphism since $\pi^*(Sq^2 \mathcal{O}_2^1) = \pi^*(Sq^3 \mathcal{O}_2^1) = 0$. Thus the map $B\text{Sp}(6,\ldots,\infty) \rightarrow K(2,5)$ realizing x_6 is not epic on 7 dimensional cohomology, implying $\pi_7(B\text{Sp}) \neq 0$.]

Assertion: $\mathcal{O}_2^s = \mathcal{O}_2^s + \text{decomposables}$.

[To see this one maps $a : B\text{O} \rightarrow B\text{Sp}$ by quaternionification so $a^*(\mathcal{O}_1^s) = \mathcal{O}_1^s$. Then $a^*(\mathcal{O}_2^s \ldots \mathcal{O}_2^h) = (\mathcal{O}_2^{2r-2} \ldots \mathcal{O}_2^1 \mathcal{O}_2^h) \oplus (\mathcal{O}_2^{r-1} + \text{decomposables})$ giving indecomposability of $\mathcal{O}_2^s \ldots \mathcal{O}_2^h$.]

One may now compute $H^*(B\text{Sp}(6,\ldots,\infty))$. For later uses, it suffices to know the answer in dimensions ≤ 13. One has π^* epic in dimensions less than 16 and in dimensions ≤ 14.
\[H^6(\text{BSp}(5,\ldots,\omega)) = \mathbb{Z}_2[Sq^1,x_5 | I = (0),(1),(2^k,\ldots,b),(2^k,\ldots,2,1)] \]

and

\[H^6(K(\mathbb{Z}_2,5)) = \mathbb{Z}_2[Sq^1,\hat{x}_5 | I \text{ admissible, } e(I) < 5] \]

with the kernel of \(\pi^* \) being generated by the classes

\begin{align*}
\dim 14: & \quad Sq^6Sq^3\hat{j}_5 = \tau(Sq^6Sq^1x_6), (Sq^2\hat{j}_5)^2 + Sq^6Sq^2Sq^1\hat{j}_5 = \tau(Sq^hSq^2Sq^1x_6) \\
\dim 13: & \quad Sq^6Sq^2\hat{j}_5 = \tau(x_6^2), Sq^5Sq^2Sq^1\hat{j}_5 = \tau(Sq^hSq^2x_6) \\
\dim 12: & \quad Sq^5Sq^2\hat{j}_5 = \tau(Sq^5x_6) \\
\dim 11: & \quad Sq^5Sq^1\hat{j}_5 = \tau(Sq^3Sq^1x_6), Sq^hSq^2\hat{j}_5 = \tau(Sq^h_x_6) \\
\dim 10: & \quad \hat{j}_5^2 + Sq^hSq^1\hat{j}_5 = \tau(Sq^2Sq^1x_6) \\
\dim 9: & \quad Sq^3Sq^1\hat{j}_5 = \tau(Sq^2x_6) \\
\dim 8: & \quad Sq^2\hat{j}_5 = \tau(Sq^1x_6) \\
\dim 7: & \quad Sq^2\hat{j}_5 = \tau(x_6). \\
\end{align*}

Thus in dimensions \(\leq 13 \), \(H^*(\text{BSp}(6,\ldots,\omega)) = \mathbb{Z}_2[x_6,Sq^1x_6,Sq^2x_6,Sq^2Sq^1x_6, Sq^h_x_6, Sq^3Sq^1x_6, Sq^5x_6, Sq^hSq^2x_6, Sq^6Sq^1x_6, Sq^hSq^2Sq^1x_6]. \)

Now consider the fibration \(\text{BSp}(6,\ldots,\omega) \xrightarrow{i''} \text{BSp}(5,\ldots,\omega) \xrightarrow{i'''} K(\mathbb{Z}_2,6). \)

Then \(H^0(\text{BSp}(6,\ldots,\omega)) \) has base \(Sq^2x_6 \) and \(i''(Sq^2x_6) = 0 \) so \(\tau x_6 \neq 0. \)

Thus \(\tau x_6 = Sq^1\hat{j}_6 \) and hence \(c = 1. \)

One may now compute \(H^*(\text{BSp}(6,\ldots,\omega)) \) in low dimensions, for \(\pi^* \) is epic in dimensions \(\leq 13 \) and below dimension 14, the spectral sequence reduces to an exact sequence. Thus \(\tau: H^i(\text{BSp}(6,\ldots,\omega)) \xrightarrow{\tau} \text{kernel}(\pi^*)^{i+1} \)

for \(i \leq 12. \) Now kernel \(\pi^* \) is given by

\begin{align*}
\dim 9: & \quad Sq^3\hat{j}_6 = \tau x_8 \\
\dim 10: & \quad 0
\end{align*}
dim 11: $\text{Sq}^5 \zeta_6 + \text{Sq}^4 \text{Sq}^1 \zeta_6 = \tau \text{Sq}^2 x_8$

dim 12: $\text{Sq}^5 \text{Sq}^1 \zeta_6 = \tau \text{Sq}^3 x_8$

dim 13: $\text{Sq}^5 \text{Sq}^2 \zeta_6 = \tau \text{Sq}^4 x_8$

Now consider the fibration $\text{BSp}(12, \ldots, \infty) \xrightarrow{1'''} K(Z, 8)$. Then $H^1_{12}(\text{BSp}(8, \ldots, \infty))$ has base $\text{Sq}^4 x_8$ and $1''''(\text{Sq}^4 x_8) = 0$ so $\tau x_{12} \neq 0$.

Thus $\tau x_{12} = \text{Sq}^5 \zeta_8$ and hence $e = 1$. **

To complete the proof of the proposition, one has:

Lemma: The sequences

$$\alpha_2 / \alpha_2 \text{Sq}^1 \xrightarrow{\text{Sq}^3} \alpha_2 / \alpha_2 \text{Sq}^1 \xrightarrow{\text{Sq}^3} \alpha_2 / \alpha_2 \text{Sq}^1$$

and

$$\alpha_2 \xrightarrow{\text{Sq}^2} \alpha_2 / \alpha_2 \text{Sq}^1 \xrightarrow{\text{Sq}^3} \alpha_2 / \alpha_2 \text{Sq}^1$$

are exact, where $\text{Sq}^i(a) = a \text{Sq}^i$.

Proof: Let $\alpha_2 \subset \alpha_2$ be the sub-Hopf algebra generated by Sq^1 and Sq^2. α_2' has eight elements:

1, Sq^1, Sq^2, $\text{Sq}^2 \text{Sq}^1$, $\text{Sq}^3 = \text{Sq}^1 \text{Sq}^2$, $\text{Sq}^3 \text{Sq}^1$, $\text{Sq}^5 + \text{Sq}^4 \text{Sq}^1$, and $\text{Sq}^5 \text{Sq}^1$.

Consider the sequences
\[a_2 / a_2 S_2^1 \xrightarrow{S_2^3} a_2 / a_2 S_2^1 \xrightarrow{S_2^3} a_2 / a_2 S_2^1 \]
and
\[a_2 \xrightarrow{S_2^2} a_2 / a_2 S_2^1 \]
\[a_2^1 \xrightarrow{S_2^2} a_2 / a_2 S_2^1 \]
\[a_2^1 \xrightarrow{S_2^2} a_2 / a_2 S_2^1 \]
\[a_2 \xrightarrow{S_2^2} a_2 / a_2 S_2^1 \]

It is trivial to verify that these sequences are exact. Since \(a_2^1 \) is a sub-Hopf algebra of \(a_2 \), \(a_2 \) is a right \(a_2^1 \) module and a coalgebra, with comultiplication being a homomorphism of right \(a_2^1 \) modules. Since \(\nu : a_2^1 \to a_2 : x \to 1 \cdot x \) is monic, the Milnor-Moore theorem applies and \(a_2 \cong \mathcal{L}_{a_2^1} a_2 \) as right \(a_2^1 \) modules. Tensoring the exact sequences above with \(\mathcal{L} \) gives the exact sequences of the lemma.

Corollary: Let \(\xi \) be an \(n \)-dimensional vector bundle over \(X \) and suppose \(U(\xi) \in \tilde{K}^0(T\xi) \) (or \(\tilde{K}^0(T\xi) \)) is an orientation. Then stably \(\xi \) admits a Spin\(^c\) (or Spin) structure.

Proof: Let \(n' \) be such that \(n + n' = 8k \) and let \(\xi' = \xi \oplus n' \cdot 1 \). Then \(\xi' \) has an orientation class \(U(\xi) \oplus \cdot \in \tilde{K}_0^G(T(\xi \oplus S^k)) = \tilde{K}_0^G(T\xi') \)
\((G = U \text{ or } 0) \). Let \(f : T\xi' \to B\mathbb{G} \) represent this orientation. Since \(T\xi' \) is \(8k \)-connected, one has a lifting \(f : T\xi' \to B\mathbb{G}(8k, ..., n) \) and the inclusion \(S^8k = T(\text{fiber}) \subset T\xi' \to B\mathbb{G}(8k, ..., n) \) represents the generator of \(\pi_{8k}(B\mathbb{G}) \). The class \(f^*(x_{8k}) \) is an orientation class \(U' \in \tilde{H}^8(\xi'; \mathbb{Z}) \), so \(\xi' \) is an orientable bundle.

If \(G = 0, S^2 U' = f^*(S^2 x_{8k}) = 0 \), so \(\nu_2(\xi') = 0 \) and \(\xi' \) admits a Spin structure.
If $G = U$, one notes that there is an integral class $v \in H^{8k+2}(BU(8k, \ldots, \infty))$ with v reducing to $Sq^2 x_{8k}$ mod 2. To see this, the integral spectral sequence of $BU(8k+2, \ldots, \infty) \to BU(8k, \ldots, \infty) \to K(Z, 8k)$ has x_{8k+2} transgressing to the nonzero class of order 2 in $H^{8k+3}(K(Z, 8k); Z)$, giving $H^{8k+2}(BU(8k, \ldots, \infty); Z) \cong Z$, with generator v mapping to $2x_{8k+2}$ and with mod 2 reduction $Sq^2 x_{8k}$. Thus $f^*(v) = n^*(x')U'$ with $x \in H^2(X; Z)$ having mod 2 reduction $w_2(x')$. Thus ξ' admits a Spinc structure. **

Note: The orientation defined by the choice of a Spinc or Spin structure may differ from $U(\xi)$, but clearly differs only by multiplication with an invertible element in $KU(X)$ or $KO(X)$. Thus one knows precisely the fashion in which all K or KO theory orientations arise.

Definition: A class $x \in KO^n(X)$ (or $K^n(X)$) has filtration n if for every finite complex Y of dimension less than n and map $f : Y \to X$ one has $f^*(x) = 0$.

If X is a complex of finite type, x has filtration n if and only $i^*(x) = 0$, where $i : X^{n-1} \to X$ is the inclusion of the $(n-1)$-skeleton of X. Additionally, if $f : X \to BG$ realizes x, then x has filtration n if and only if f lifts to $BG(n, \ldots, \infty)$. Note: This assumes that $x \in KG(n)$ has positive filtration, or more precisely, the restriction of x to each component of X has virtual dimension zero.

Proposition: $KO(X)$ is a filtered ring.

Proof: If $x, y \in KO(X)$, with filtration $(x) = n$ and filtration (y), one needs that $x \cdot y$ has filtration $n+m$. Let Y be a finite complex of dimension less than $n+m$ and $f : Y \to X$ any map. Let $g : Y \to BG(n)$, $h : Y \to BG(m, \ldots, \infty)$ be maps with $g^*(y_{\ref{dim} y}) = f^*(x)$, $h^*(y_{\ref{dim} y}) = y$.

Now \(f^g(xy) \) is given by \(k^g((g_1^{-\operatorname{dim} g_1}) \otimes (g_2^{-\operatorname{dim} g_2})) \) where

\[
k : Y \xrightarrow{\Delta} Y \times Y \xrightarrow{\sigma^g} BG_r(n, \ldots, \omega) \times BG_s(m, \ldots, \omega).
\]

Letting \(p \in BG_r(n, \ldots, \omega) \), \(q \in BG_s(m, \ldots, \omega) \) be base points,
\[
u = (g_1^{-\operatorname{dim} g_1}) \otimes (g_2^{-\operatorname{dim} g_2}) \text{ is trivial over } BG_r(n, \ldots, \omega) \vee BG_s(m, \ldots, \omega)
\]
\[
= BG_r(n, \ldots, \omega) \times q \cup p \times BG_s(m, \ldots, \omega) \text{ for } g_1^{-\operatorname{dim} g_1} = 0 \text{ over } p \text{ and } g_2^{-\operatorname{dim} g_2} = 0 \text{ over } q. \text{ Thus } u = j^g(v) \text{ where}
\]

\[
j : BG_r(n, \ldots, \omega) \times BG_s(m, \ldots, \omega) \longrightarrow V = BG_r(n, \ldots, \omega) \cup BG_s(m, \ldots, \omega)
\]

and \(v \in H_r^g(V) \). Now \(V \) is \((n+m-1)\) connected \([H_r^g(V;F)] = H_r^g(BG_r(n, \ldots, \omega);F) \otimes F\]
\[
H_r^g(BG_s(m, \ldots, \omega);F) \text{ for any field } F \text{ so the least nonzero class has dimension}
\]
at least \(n+m \) so \(j^g k : Y \longrightarrow V \) is homotopic to zero, and thus
\[
(j^g k)^g(v) = f^g(xy) = 0. \text{ Thus } xy \text{ has filtration } n+m. \quad \#
\]

Following Anderson, Brown and Peterson, the analysis of \(\text{Spin}^c \) or \(\text{Spin} \)
cobordism depends centrally on the knowledge of the filtration of the \(K \) and
\(KO \) theory characteristic classes. The basic result is:

Proposition: Let \(\xi \) be an oriented real vector bundle over a space \(X \),
and let \(\pi^I_R(\xi) \) be the \(i \)-th \(KO \)-theory Pontrjagin class of \(\xi \) (defined by
\[
\pi^I_R(\xi) = \lambda^I_t(\xi-\operatorname{dim} \xi) \text{ with } u = t/(1+t)^2. \text{ For } I = (i_1, \ldots, i_r), \text{ let}
\]
\[
f^I_R(\xi) = \pi^I_R(\xi) \otimes \pi^I_R(\xi). \text{ Then } f^I_R(\xi) \text{ has filtration}
\]
\[
F(f^I_R(\xi)) = \begin{cases}
\ln(I) & \text{if } n(I) \equiv 0 \text{ (2)}, \\
\ln(I)-2 & \text{if } n(I) \equiv 1 \text{ (2)}
\end{cases}
\]

where \(n(I) = i_1 + \ldots + i_r \), and \(f^I_R(\xi) \otimes \sigma \) has filtration \(\ln(I) \) in \(K(X) \).

If \(\sigma^I_1(\xi) = \sigma^I_1(\xi) \ldots \sigma^I_r(\xi) \) is nonzero in \(H^{\ln(I)}(X;Q) \), and if
\(n(I) \) is odd the class \(\sigma^I_1(\xi) \) is not divisible by 2 in \(\text{pt}^Q H^{\ln(I)}(X;Z) \),
then these are the precise filtrations of $\pi^I_R(\xi)$ and its complexification.

Further, the lifting $\hat{f} : X \to BO(F^I_R(\xi)), \ldots, =) may be chosen with $f^*(x_{4n+1}) = \mathcal{O}_I(\xi) + 8q_0^2x_{4n}^1$ (\delta being Bockstein, a_I a polynomial in Stiefel-Whitney classes) if $n(I)$ is even, or $8q_0^2f^*(x_{4n+1}) - 8q_2(\mathcal{O}_I(\xi))$ if $n(I)$ is odd, and $f : X \to BU(4n, \ldots, =)$ may be chosen so that $f^*(x_{4n+1}) = \mathcal{O}_I(\xi)$. (Note: x_i generates $H^i(BG(1, \ldots, =); \pi_1(BG))$.)

The proof of this given by Anderson, Brown, and Peterson makes use of the KO-theory spectral sequence. The proof given here is fairly involved but will be just standard obstruction theory.

Let Y be a space with $y \in KG(Y)$ a class having filtration n. Then if $f : Y \to BG$ realizes y, there is a lifting $\hat{f} : Y \to BG(n, \ldots, =)$, and \hat{f} lifts to $BG(n+1, \ldots, =)$ if and only if $f^*(x_n) = 0$ in $H^n(Y, \pi_n(BG))$.

Denoting by $[y]$ the subset of $H^n(Y, \pi_n(BG))$ consisting of the classes $\hat{f}^*(x_n)$ for all lifts \hat{f}, y has filtration $n+1$ if and only if $0 \in [y]$.

If $G = 0$, there are four cases to be considered, depending on the class of n mod 8.

Case I: Suppose $y \in KO(Y)$ has filtration S^k, with $\hat{f} : Y \to BO(S^k, \ldots, =)$ one lifting so that $\hat{f}^*(\gamma) = y$ where γ is the universal class. Letting $g : S^k \to BO(S^k, \ldots, =)$ generate $\pi_k(BO)$ one has $g^*(x_{S^k}) = \hat{z}$ and $g^*(\gamma) = \hat{z}$, with $g^*(\text{ch}(\gamma \otimes \mathcal{C})) = \text{ch}(g^*\gamma \otimes \mathcal{C}) = z$, so $\text{ch}(\gamma \otimes \mathcal{C}) = x_{S^k} + \text{higher terms}$. Thus $\text{ch}(y \otimes \mathcal{C}) = f^*(\text{ch}(\gamma \otimes \mathcal{C})) = f^*(x_{S^k}) + \text{higher terms}$. Further $8q_2^2f^*(x_{S^k}) = f^*(8q_2^2x_{S^k}) = 0$ from the analysis of the Z_2 cohomology of $BO(S^k, \ldots, =)$. This gives: If $a \in [y]$, then $8q_2^2a = 0$ and $\rho_2(a) + \text{higher terms} = \text{ch}(y \otimes \mathcal{C})$.

If $\hat{f} : Y \to BO(S^k, \ldots, =)$ is one lift, then one has
\[K(Z, 8k-5) \]
\[\xymatrix{ 1 \ar[d] \ar[r] & Y \ar[r]^\hat{f} \ar[d]_\pi & BO(8k, \ldots, \infty) \ar[d] \cr BO(8k-4, \ldots, \infty) \} \]

and \(\pi \) being a principal fibration, the lifts \(f' : Y \to BO(8k, \ldots, \infty) \) covering \(\hat{f} \) are classified by maps into \(K(Z, 8k-5) \) or classes \(x \in H^8k-5(Y; Z) \). Since \(\rho_2 \circ i^*(x_{8k}) = i^*(\rho_2 \circ x_{8k}) = Sq^5 \circ i^* \circ x_{8k-5} \), one has \(i^*(x_{8k}) = \delta Sq^4 \circ i^* \circ x_{8k-5} \) (\(\rho_2 \) being monic), where \(\delta \) is the integral Bockstein. Thus \([y]\) is a union of cosets of \(\delta Sq^4 \circ i^* \circ x_{8k-5} \) \((Y; Z)\).

Case II: Suppose \(y \in KO(Y) \) has filtration \(8k + 1 \), with \(\hat{f} : Y \to BO(8k+1, \ldots, \infty) \) one lifting. From the \(\mathbb{Z}_2 \) cohomology analysis, one has \(Sq^2 \hat{f}^*(x_{8k+1}) = \hat{f}^*(Sq^2 \circ x_{8k+1}) = 0 \). This gives: If \(a \in [y] \), then \(Sq^2 a = 0 \).

If one considers

\[K(Z, 8k-1) \]
\[\xymatrix{ 1 \ar[d] \ar[r] & Y \ar[r]^\hat{f} \ar[d]_\pi & BO(8k+1, \ldots, \infty) \ar[d] \cr BO(8k-1, \ldots, \infty) \} \]

in which \(i^*(x_{8k+1}) = Sq^2 \circ x_{8k-1} \), one has: \([y]\) is a union of cosets of \(Sq^2 \circ H^8k-1(Y; Z) \).

Case III: Suppose \(y \) has filtration \(8k + 2 \) with \(\hat{f} : Y \to BO(8k+2, \ldots, \infty) \) one lifting. As above one has: If \(a \in [y] \), then \(Sq^3 a = 0 \). Further, \([y]\) is a union of cosets of \(Sq^2 H^8k(Y; Z) \).
Note: If y has filtration $8k + 2$, one may consider $\text{ch}(y \otimes \mathcal{G}) = a_{8k+2}$ higher terms. For $BO(8k+2, \ldots, \infty)$, the integral spectral sequence of the fibration

$$BO(8k+4, \ldots, \infty) \xrightarrow{i^*} BO(8k+2, \ldots, \infty) \xrightarrow{\pi} K(Z_2, 8k+2)$$

gives $ix_{8k+4} = \delta Sq^2 i_{8k+2}$ and thus an integral class v_{8k+4} with

$$i^*(v_{8k+4}) = 2x_{8k+4}.$$ Since $H^{8k+4}(BO(8k+2, \ldots, \infty); Z_2) \cong Z_2$ with base $Sq^2 x_{8k+2}$ one has $\rho_2 v_{8k+4} = Sq^2 x_{8k+2}$. Letting $g : S^{8k+4} \to BO(8k+2, \ldots, \infty)$ be a generator for $\tau_{8k+4}(BO)$ one has $g^*(y) = \hat{y}$ so $g^*(\text{ch}(y \otimes \mathcal{G})) = \text{ch}(\hat{y} \otimes \mathcal{G})$. Since x_{8k+4} pulls back to i in S^{8k+4}, $\text{ch}(y \otimes \mathcal{G})$ must pull back to $2x_{8k+4}$ higher terms in $BO(8k+4, \ldots, \infty)$. Thus $\text{ch}(y \otimes \mathcal{G}) = v_{8k+4} + \text{higher terms}$.

In particular, if $a \in [y]$ is $\hat{r}^*(x_{8k+2})$, then $Sq^2 a$ is the reduction of the integral class $\hat{r}^*(v_{8k+4})$ and $\text{ch}(y \otimes \mathcal{G}) = \rho_Q(\hat{r}^*(v_{8k+4})) + \text{higher terms}$.

Case IV: Suppose $y \in KO(Y)$ has filtration $8k + 4$ with

$\hat{r} : Y \to BO(8k+4, \ldots, \infty)$ one lifting. Then, if $a \in [y]$, $Sq^5 \rho_2 a = 0$ and $\text{ch}(y \otimes \mathcal{G}) = 2\rho_Q(a) + \text{higher terms}$. Further, $[y]$ is a union of cosets of $\delta Sq^2 S^{8k+1}(Y; Z_2)$.

Using these facts in looking at the Proposition, consider first the upper bound condition on the filtration. If ξ is an oriented vector bundle over R, then $\text{ch}(\pi_R^1(\xi) \otimes \mathcal{G}) = \mathcal{O}_1(\xi) + \text{higher terms}$. This gives

$$\text{ch}(\pi_R^1(\xi) \otimes \mathcal{G}) = \mathcal{O}_1(\xi) + \text{higher terms}.$$ Thus if $\mathcal{O}_1(\xi) \neq 0$ in $\mathcal{F}^{hn}(I)(x; q)$ one must have filtration $(\pi_R^1(\xi)) \leq \mathcal{F}^{hn}(I)$ and filtration $(\pi_R^1(\xi) \otimes \mathcal{G}) \leq \mathcal{F}^{hn}(I)$.

If \(n(I) \equiv 1 \mod 2 \) and filtration \((\pi^I_R(\xi)) = h_0(I) = 2k+4 \), there is a lifting \(\tilde{\xi} : X \rightarrow \mathrm{BSO}(2k+4, \ldots, \infty) \) with \(\tilde{\xi}^*(\gamma) = \pi^I_R(\xi) \). This gives an integral class \(x' = \tilde{\xi}^*(x_{2k+4}) \) such that \(\text{ch}(\pi^I_R(\xi) \otimes \xi) = 2p_q(x') + \text{higher terms} \). Thus \(\Theta^I_I(\xi) = 2p_q(x') \). Thus, if \(\Theta^I_I(\xi) \) is not divisible by 2 in \(p_q^*H^4_n(I)(X; \mathbb{Z}) \), \(\pi^I_R(\xi) \) has filtration less than \(h_0(I) \), so less than or equal to \(h_0(I) - 2 \).

To prove that \(\pi^I_R(\xi) \) has the asserted filtration, with the given classes defined by the lift, one considers \(g : X \rightarrow \text{BSO} \) with \(g^*(\gamma) = \xi \) \(- \dim \xi \), \(\gamma \) being the universal stable bundle. Then \(\pi^I_R(\xi) = g^*\pi^I_R(\gamma) \), and it suffices to prove the remainder of the result in the special case in which \(X = \text{BSO} \) and \(\xi \) is the universal bundle. This may be accomplished by a careful study of \(\text{BSO} \). From the obstruction analysis, it is clear that one is interested in the action of \(\text{Sq}^1 \) and \(\text{Sq}^2 \) in \(H^*(\text{BSO}; \mathbb{Z}_2) \).

Lemma: \(\text{Sq}^2 w_1 = \left(\frac{1+3}{2}\right) w_{1+2} + \left(\frac{1+2}{1}\right) w_{1+1} + \left(\frac{1+1}{0}\right) w_1^2 \).

Proof:

\[
\begin{align*}
\text{Sq}^2 w_1 &= \text{Sq}^2(\Sigma x_1 \ldots x_1) = \Sigma x_1 \ldots x_1^2 \ldots x_1, \\
\text{Sq}^2 w_{1+1} &= (\Sigma x_1 \ldots x_1)(\Sigma x_1 x_2), \\
&= \left(\frac{1+2}{2}\right) \Sigma x_1 \ldots x_{1+2} + \left(\frac{1}{1}\right) \Sigma x_1 \ldots x_1 x_{1+1} + \Sigma x_1 \ldots x_1^2 \ldots x_1, \\
\end{align*}
\]

so

\[
\begin{align*}
-\text{Sq}^2 w_1 + w_{1+1}^2 &= \left(1\right)w_{1+1} - \left(1+2\right)w_{1+2} + \left(\frac{1+2}{2}\right)w_{1+2}, \\
&= \left[\left(\frac{1+2}{2}\right)\left(\frac{1+1}{1}\right) - \left(\frac{1+2}{2}\right)\left(\frac{21}{2}\right)\right]w_{1+2} + 1w_{1+1}^2, \\
&= \left(\frac{1+2}{2}\right)w_{1+2} + 1w_{1+1}^2,
\end{align*}
\]

giving the desired formula. **
Recall that one has operations \(Q_0 = Sq^1 \) and \(Q_1 = Sq^1 Sq^2 + Sq^2 Sq^1 \) in \(\mathcal{A}_2 \) satisfying:

\[
Q_0 Q_1 = Q_1 Q_0, \quad Q_1^2 = 0
\]

and

\[
Q_1(a \cdot b) = Q_1(a \cdot b) + a \cdot Q_1(b).
\]

Thus in any space \(X \) one may form the homology groups \(H(X; \mathbb{Z}_2); Q_1 = \ker(Q_1)/\text{image}(Q_1) \). One has a natural map \(\phi_i : \ker Q_0 \cap \ker Q_1 \to \ker Q_i / \text{image}(Q_i) \) \((i = 0, 1)\) and clearly \(\text{image}(Q_0) \subseteq \text{image}(Q_1) \subset \ker Q_i \) \((i = 0, 1)\).

Definition: \(X \) has **isomorphic homologies** if the homomorphisms

\[
\lambda_i : \frac{\ker(Q_0) \cap \ker(Q_i)}{\text{image}(Q_0) \cap \text{image}(Q_i)} \to \frac{\ker(Q_i)}{\text{image}(Q_i)}
\]

are isomorphisms. The group \(\ker Q_0 \cap \ker Q_1 / \text{image}(Q_0) \cap \text{image}(Q_1) \) will be denoted \(H(X; \mathbb{Z}_2) \).

Lemma: \(BSO \) has isomorphic homologies.

Proof: One has \(Q_0 v_1 = (i+1) v_{i+1} \) so \(H(X; BSO); Q_0 = \mathbb{Z}_2 [(w_{21})^2] \). Also,

\[
Sq^2 Sq^1 v_1 = (i+1) Sq^2 v_{i+1} = (i+1)(i+4) v_{i+3} + v_{i+1} v_2,
\]

and

\[
Sq^1 Sq^2 v_1 = Sq^1 [(i+3) v_{i+2} + v_1 v_2] = (i+3)(i+4) v_{i+3} + (i+1) v_{i+1} v_2 + v_1 v_3,
\]

giving

\[
Q_1 v_1 = v_1 v_3 + \frac{1}{2} [(i+3)(i+3)(i+2) + (i+1)(i+1)(i+3)] v_{i+3}^3
\]

\[= v_1 v_3 + \frac{(i+3)}{2} [1^2 + 51 + 6 + 1^2 + 51 + 4] v_{i+3}^3.
\]
\[w_1w_3 + (i+3)(i^2 + 5i + 5)w_{i+3}, \]
\[= w_1w_3 + (i+3)w_{i+3}. \]

In particular, \(Q_1w_{21} = w_{21} + w_{21}w_3, \) \(Q_1w_3 = w_3^2 \) giving
\[H^*(BSO) \cong \mathbb{Z}_2[w_{21}, Q_1w_{21}] \otimes \mathbb{Z}_2[w_3], \] so \(H^*(BSO; Q_1) \cong \mathbb{Z}_2[w_{21}]^2. \)

Then \(\mathbb{Z}_2[(w_{21})^2] \subset \ker Q_0 \cap \ker Q_1 \) so \(\lambda_1 \) is epic for \(i = 0, 1. \)

Suppose \(x \in (\ker Q_0 \cap \ker Q_1)^N \) and \(\varphi_0(x) = 0. \) If \(n \neq 0 \) \((4), \) then
\(\varphi_1(x) = 0 \) also, so \(x \in \text{im} Q_0 \cap \text{im} Q_1. \) Suppose \(n = 0 \) \((4). \) Then
\[x = Q_0y + f((w_{2j})^2), \] where \(f \) is a polynomial over \(\mathbb{Z}_2. \) Since \(x = Q_0z, \)
this gives \(f((w_{2j})^2) = Q_0z + Q_1y, \) but \(\text{im} Q_0 + \text{im} Q_1 \) is contained in the
ideal generated by \(w_{2k+1}. \) Thus \(f((w_{2j})^2) = 0, \) giving
\[x = Q_0y = Q_0z \in \text{im} Q_0 \cap \text{im} Q_1. \] Thus \(\ker \varphi = \text{im} Q_0 \cap \text{im} Q_1. \)

Thus \(\lambda_0 : \ker Q_0 \cap \ker Q_1 / \text{im} Q_0 \cap \text{im} Q_1 \longrightarrow H^*(BSO; Q_0) \) is an isomorphism.

Since \(\lambda_1 \) is epic, with the two groups having the same rank over \(\mathbb{Z}_2 \) in each
dimension, \(\lambda_1 \) is also an isomorphism. **

Proposition: Let \(M \) be a positively graded module over the exterior
algebra \(E \) generated by \(Q_0 \) and \(Q_1, \) and suppose \(M \) has isomorphic
homologies. Then \(M \) is the direct sum of a free \(E \) module and a trivial \(E \)
module.

Proof: Let \(\pi : M \longrightarrow M/EM = N. \) Then \(\pi(\ker Q_0) = \pi(\ker Q_0 \cap \ker Q_1) = \pi(\ker Q_1). \) [If \(Q_1a = 0, \) there is an \(i \in \ker Q_0 \cap \ker Q_1 \) with \(a + i = Q_1b, \)
and thus \(\pi(a) = \pi(i) \in \pi(\ker Q_0 \cap \ker Q_1). \)] Let \(L \subset \ker Q_0 \cap \ker Q_1 \)
with \(\pi : L \longrightarrow \pi(\ker Q_0 \cap \ker Q_1) \) an isomorphism. Let \(T \subset M \) with \(\pi \)
mapping \(T \) isomorphically onto a complementary summand for \(\pi(L) \) in \(N. \) Then
\(f : E \otimes (L \otimes T) \longrightarrow M : e \otimes (l, t) \longrightarrow eL + et \) is epic, inducing an epimorphism
\[\varphi : L \otimes (E \otimes T) \longrightarrow M. \]
Assert: \(L \subseteq \ker Q_0 \cap \ker Q_1 \) maps isomorphically onto \(H(M) \).

[If \(a \in \ker Q_0 \cap \ker Q_1 \), there is an \(\ell \in L \) with \(\pi(a) = \pi(\ell) \) so
\(a = \ell + Q_0 x + Q_1 y \). Then \(Q_1 y = a + \ell + Q_0 x \in \ker Q_0 \cap \ker Q_1 \), and \(Q_1 y \in \text{im} Q_1 \).
Thus \(\ell + Q_0 x \in \text{im} Q_0 \), and \(\varphi_0(a) = \varphi_0(\ell) \), and hence \(L \) maps onto
\(\ker Q_0 / \text{im} Q_0 \). Hence \(\psi : L \rightarrow H(M) \) is epic. Since \(\ker \psi \subseteq \ker \pi \),
\(\psi : L \cong H(M) \).]

Now suppose \(Q_0 Q_1 t = 0 \). Then \(Q_1(Q_0 t) = 0 \) and \(Q_0(Q_0 t) = 0 \), so
\(Q_0 t \in \ker Q_0 \cap \ker Q_1 \) and \(Q_0 t \in \text{im} Q_0 \), giving \(Q_0 t = Q_1 s \) for some \(s \)
\(\text{(dim } s + 3 = \text{dim } t + 1 \). Then \(Q_0 Q_1 s = Q_0 Q_0 t = 0 \). If \(\text{dim } t < 2 \), then
\(\text{dim } s < 0 \), so \(s = 0 \) and \(Q_0 t = 0 \), giving an \(\ell \in L \) with \(t + \ell = Q_0 u \).
Suppose inductively that \(s = \ell + Q_0 a + Q_1 b \), with \(\ell \in L \). Then
\(Q_0 t = Q_1 s = Q_1 Q_0 a \), so \(Q_0(t + Q_1 a) = 0 \), giving \(t + Q_1 a \in \ker Q_0 \) so
\(t + Q_1 a = \ell' + Q_0 b' \), \(\ell' \in L \). This proves:

Assertion: If \(Q_0 Q_1 t = 0 \), then \(t = \ell + Q_0 a + Q_1 b \), for some \(\ell \in L \),
\(a, b \in M \).

Now suppose \(a = (\ell, l \otimes t + Q_0 \otimes t_0 + Q_1 \otimes t_1 + Q_0 Q_1 \otimes t_2) \in L \otimes (E \otimes T) \)
with \(\varphi(a) = 0 \). Then \(\pi \varphi(a) = \pi(\ell) + \pi(t) = 0 \) in \(\pi(L) \otimes \pi(T) \), so
\(\pi(\ell) = \pi(t) = 0 \). Since \(\pi \) is monic on both \(L \) and \(T \), \(\ell = t = 0 \). Thus
\(0 = \varphi(a) = Q_0 t_0 + Q_1 t_1 + Q_0 Q_1 t_2 \). Thus \(Q_1 Q_0 t_0 = Q_1 \varphi(a) = 0 \),
\(Q_0 Q_1 t_1 = Q_0 \varphi(a) = 0 \), and by the assertion, \(\pi(t_0) \in \pi(L) \), \(\pi(t_1) \in \pi(L) \), but
\(\pi(T) \cap \pi(L) = 0 \). Thus \(\pi(t_0) = \pi(t_1) = 0 \), giving \(t_0 = t_1 = 0 \). Then
\(0 = \varphi(a) = Q_0 Q_1 t_2 \) and similarly \(t_2 = 0 \).

Thus \(\varphi : L \otimes (E \otimes T) \rightarrow M \) is an isomorphism. **

Note: \(\ker(Q_0 Q_1) = \varphi(L \otimes (E \otimes T)) \) and \(\ker Q_0 \cap \ker Q_1 = \varphi(L \otimes (Q_0 Q_1 \otimes T)) \).
Lemma: Let \(u \in KO(BSO) \) have filtration \(n \), and suppose:

a) If \(n = 8k \), \(\text{ch}(u \otimes c)_n = \rho_Q(\mathcal{O}) \) where \(\mathcal{O} \in H^*(BSO; \mathbb{Z}) \) with \(\text{Sq}^2 \rho_2^2 \mathcal{O} = 0 \);

b) If \(n = 8k+1 \), \(\mathcal{O} \in H^*(BSO; \mathbb{Z}_2) \) with \(\text{Sq}^2 \mathcal{O} = 0 \);

c) If \(n = 8k+2 \), \(\text{ch}(u \otimes c)_{n+2} = \rho_Q(\mathcal{O}) \), \(\mathcal{O} \in H^{n+2}(BSO; \mathbb{Z}_2) \) with \(\text{Sq}^3 \rho_2^2 \mathcal{O} = 0 \);

d) If \(n = 8k+4 \), \(\text{ch}(u \otimes c)_n = \rho_Q(2 \mathcal{O}) \), \(\mathcal{O} \in H^*(BSO; \mathbb{Z}) \) with \(\text{Sq}^5 \rho_2 \mathcal{O} = 0 \).

Then, for \(n = 8k+2 \), \(\rho^2(\mathcal{O}) \in \text{im}(\text{Sq}^2) \) and let \(\mathcal{O} \) be any class in \(H^{8k}(BSO; \mathbb{Z}_2) \) with \(\text{Sq}^2 \mathcal{O} = \rho_2^2 \mathcal{G} \).

Then for any \(n \), there is a lift \(f : BSO \to BO(n, \ldots, \infty) \) for \(u \) such that \(f^*(x_n) = \mathcal{O} \) and such that for \(n = 8k+2 \), \(f^*(v_{8k+4}) = \mathcal{G} \).

Proof: Let \(f : BSO \to BO(n, \ldots, \infty) \) be any lift for \(u \) and let \(f^*(x_n) = \mathcal{O}' \).

a) \(n = 8k \): Letting \(\alpha = \mathcal{O} - \mathcal{O}' \), one has \(\rho_Q(\alpha) = 0 \) and \(\text{Sq}^2 \rho_2(\alpha) = 0 \).

Since \(\rho_Q(\alpha) = 0 \), \(\alpha \) is a torsion class and there is a \(\beta \in H^{8k-1}(BSO; \mathbb{Z}_2) \) with \(\alpha = 8\beta \) or \(\rho_2 \alpha = \text{Sq}^1 \beta \). Further \(\text{Sq}^2 \rho_2 \alpha = \text{Sq}^2 \text{Sq}^1 \beta = 0 \).

Thus \(\text{Sq}^2 \rho_2 \alpha = 0 \) and \(Q_0 \rho_2 \alpha = 0 \) so \(Q_0 \beta \in \ker Q_0 \cap \ker Q_1 \) giving \(Q_0 \beta = 0 + Q_0 Q_1 t \) so \(Q_0 \beta = Q_0 Q_1 t \) \(t \in L \) and applying \(\pi \) gives \(\pi(t) = 0 \).

Thus \(Q_0 Q_1 \text{Sq}^2 t = Q_0 \text{Sq}^2 Q_1 t = \text{Sq}^2 Q_0 \beta = 0 \) and \(\text{Sq}^2 t = l + Q_0 u + Q_1 v \) \[\text{dim} \text{Sq}^2 t = 8k-2, \text{ and } L \text{ is zero in this dimension, so } l = 0 \] or \(\text{Sq}^2 t = Q_0 u + Q_1 v \).

Then \(Q_0 Q_1 t = \text{Sq}^2 \text{Sq}^2 t = \text{Sq}^2 (Q_0 u + Q_1 v) = \text{Sq}^2 Q_0 \text{Sq}^1 u + \text{Sq}^2 Q_0 \text{Sq}^1 v = \text{Sq}^2 \text{Sq}^1 \gamma \) where \(\gamma = u + Q_2 v \). Then \(0 = Q_0 Q_0 Q_1 t = Q_0 Q_0 \text{Sq}^1 \gamma = Q_0 Q_1 \gamma \) so \(\gamma = l + Q_0 p + Q_1 q \) \[\text{dim} \gamma = 8k-3, \text{ so } l = 0 \] or \(\gamma = Q_0 p + Q_1 q \).
Thus \(p_2 a = Q_0 \delta = Q_0 Q_1 t = Sq^2 Sq^2 \gamma = Sq^2 Sq^2 (Q_0 p + Q_1 q) = Sq^2 Sq^2 \gamma = Sq^2 Sq^2 \gamma = p_2 [\delta Sq \rho_2 \delta q] \). Since \(\rho_2 \) is monic on the torsion subgroup, \(a = \delta Sq \rho_2 \delta q \). The lift from \(BO(8k, \ldots, \infty) \) may be modified using the class \(\delta q \), giving a lift \(\tilde{r} \) such that \(\tilde{r}^*(x_n) = \gamma' + a = \gamma \).

b) \(n = 8k+1 \): Letting \(a = \gamma - \gamma' \) one has \(Sq^2 a = 0 \).

Thus \(Q_0 Q_1 a = Sq^2 Sq^2 a = 0 \), so \(a = t + Q_0 x + Q_1 y \) [\(\dim a = 8k+1 \) so \(t = 0 \)] or \(a = Q_0 x + Q_1 y = Q_0 x + Q_0 Sq^2 y + Sq^2 Sq^1 y \).

Letting \(a' = a + Sq^2 Sq^1 y = Q_0 (x + Sq^2 y) \) one has \(Q_0 a' = 0 \) and \(Sq^2 a' = 0 \), so \(a' = t + Q_0 Q_1 a' \) [\(\dim a' = 8k+1 \) so \(t = 0 \)] or \(a' = Q_0 Q_1 b \).

Then \(Q_0 Q_1 Sq^2 = Sq^2 Q_0 Q_1 b = Sq^2 a' = 0 \) so \(Sq^2 = t + Q_0 e + Q_1 b \) [\(\dim b = 8k-1 \) so \(t = 0 \)] or \(Sq^2 = Q_0 a + Q_1 b \). Thus \(Q_0 Q_1 b = Sq^2 Sq^2 = Sq^2 Sq^1 a + Sq^2 Sq^1 b \), giving \(a = Sq^2 Sq^1 (y + a + Sq^2 b) \). Hence \(a = Sq^2 \rho_2 \delta (y + a + Sq^2 b) \) and modifying the lift from \(BO(8k, \ldots, \infty) \) by \(\delta (y + a + Sq^2 b) \) gives a lift \(\tilde{r} \) with \(\tilde{r}^*(x_n) = \gamma' + a = \gamma \).

c) \(n = 8k+2 \): Let \(\gamma' = f^*(\gamma_{8k+4}), \) so that \(Sq^2 \gamma' = \rho_2 \gamma' \) and \(\rho_2 (\gamma') = ch(\mu \otimes \gamma)_{n+2} \). Then \(\gamma' = \gamma' \) with \(\gamma \) a torsion class.

Let \(\gamma' = \rho_2 (\gamma') = \rho_2 (\gamma' - \delta \gamma) = \rho_2 \gamma + Sq^1 \gamma \).

Then \(Q_1 Sq^1 \gamma = Q_1 \rho_2 \gamma + Q_1 Sq^2 \gamma' = Q_1 Sq^2 \gamma' = Sq^2 Sq^1 Sq^1 \gamma' = Sq^2 Sq^1 (\rho_2 \gamma + Sq^1 \gamma) = 0 \) and \(Q_0 Sq^1 \gamma = 0 \), so \(Sq^1 \gamma \in \ker Q_0 \cap \ker Q_1 \) and \(Sq^1 \gamma = t + Q_0 Q_1 y \) \(\{ t \in L \) and applying \(\pi \), \(\pi(t) = 0 \). Then \(Sq^2 \gamma' = \rho_2 \gamma + Sq^1 \gamma = \rho_2 \gamma + Q_0 Q_1 \gamma = \rho_2 \gamma + Sq^2 Sq^2 \gamma \). Thus \(\rho_2 \gamma = Sq^2 (\gamma' + Sq^2 \gamma) \). Thus \(\rho_2 \gamma \in \text{im}(Sq^2) \).

Let \(\gamma \in \text{BSq}(BSq; Z_2) \) be any class with \(Sq^2 \gamma = \rho_2 \gamma \), and let \(a = \gamma' + Sq^2 \gamma + \gamma \). Then \(Sq^2 a = 0 \).

Then \(Q_0 Q_1 a = Sq^2 Sq^2 a = 0 \), so \(a = t + Q_0 x + Q_1 y \) [\(\dim a = 8k+2 \) so \(t \)] or \(a = Q_0 x + Q_1 y = Q_0 x + Q_0 Sq^2 y + Sq^2 Sq^1 y \).

Let \(a' = a + Sq^2 Sq^2 y = Q_0 x + Q_0 Sq^2 y + Sq^2 Sq^1 y \) giving \(Q_0 a' = 0 \) and \(Sq^2 a' = 0 \), so \(a' = t + Q_0 Q_1 z \) [\(\dim a' = 8k+2 \), so \(t = 0 \)] or \(a' = Q_0 Q_1 z \).
Thus \(\mathcal{P} = \mathcal{P} + S_2^2 \gamma + S_2^2 S_1^2 \gamma + S_2^2 S_2 = \mathcal{P} + S_2^2 (\gamma + S_2^1 \gamma + S_2^2) \).

By modifying the lift from \(BO(8k+1, \ldots, *) \) by \(\gamma + S_2^1 \gamma + S_2^2 \), one has a lift \(\hat{f} \) with \(\hat{f}^*(x_n) = \mathcal{P} \). Then \(f^*(v_{8k+4}) = \mathcal{P} \) is a torsion class and \(\rho_2(a) = S_2^2 \mathcal{P} + \rho_2(g) = 0 \), but \(\rho_2 \) is monic on the torsion subgroup so \(\sigma = 0 \), giving \(\hat{f}^*(v_{8k+4}) = \mathcal{P} \).

1) \(n = 8k+4 \): Letting \(\alpha = \mathcal{P} - \mathcal{P} \), one has \(\rho_2(a) = 0 \) so \(\alpha \) is a torsion class, giving \(\alpha = \delta \mathcal{P} \). Since \(S_2^5 \rho_2(a) = 0 \), \(S_2^5 S_1^5 \mathcal{P} = S_2^2 Q_2 \delta \mathcal{P} = 0 \).

Then \(Q_0 Q_1 S_2^2 \delta = 0 \) gives \(S_2^2 \delta = \iota + Q_0 \iota + Q_1 \iota \) [\(\dim S_2^2 \delta = 8k+5 \) so \(\iota = 0 \)] or \(S_2^2 \delta = Q_0 \iota + Q_1 \iota \). Thus \(Q_0 Q_1 \mathcal{P} = S_2^2 S_2^1 \mathcal{P} = S_2^1 S_0^1 \mathcal{P} + S_2^1 S_0 \mathcal{P} + S_2 \mathcal{P} = S_2 \mathcal{P} \).

Then \(Q_0 Q_1 \gamma = S_2^3 S_1^3 \gamma = S_2^1 S_0^1 \gamma = 0 \) so \(\gamma = Q_0 \gamma + Q_1 \gamma + \iota \). Thus \(Q_0 \gamma = S_2^3 Q_0 \gamma = S_2^1 Q_0 \gamma = 0 \) and \(Q_0(Q_0 \gamma + Q_1 \gamma) = 0 \) or \(Q_0 \gamma \).

Since \(\rho_2 \) is monic on the torsion subgroup, \(\alpha = \delta S_2^2 (q + S_1^1) \) and by modifying the lift from \(BO(8k+2, \ldots, *) \) by \((q + S_1^1) \) one has a lift \(\hat{f} \) with \(\hat{f}^*(x_n) = \mathcal{P} + \alpha = \mathcal{P} \).

**

To complete the proof of the Proposition, one applies this lemma to the class \(\pi_1^R(\gamma) \in KO(BS) \), noting that \(\text{ch}(\pi_1^R(\gamma) \otimes \mathcal{P}) = \mathcal{P} + \mathcal{P} \) higher terms.

Applying the lemma with \(\mathcal{P} \) or \(\mathcal{P} \) both zero shows that \(\pi_1^R(\gamma) \) has filtration at least \(F(\pi_1^R(\gamma)) \). If \(n(I) \) is odd, \(S_2^3 \rho_2(\mathcal{P}) = S_2^3 (\mathcal{P}) \) is zero and the lift may be chosen so that \(S_2^2 \mathcal{P} \), \(S_2^2 (\mathcal{P} I) \) is zero and \(\rho_2(a) = \delta \mathcal{P} \). For \(n(I) \) even, \(S_2^2 \rho_2(\mathcal{P} I) \neq 0 \), but \(\mathcal{P} \) is zero for any lift \(\hat{f} \). Then \(\rho_2(\mathcal{P}) = S_2^2 \mathcal{P} = 0 \) and \(\mathcal{P} \rho_2(\mathcal{P}) = S_2^2 \mathcal{P} = \mathcal{P} \mathcal{P} \).

Thus \(\rho_2(\mathcal{P}) = 0 \) for some \(\sigma \), or \(\delta = \delta S_2^2 (\mathcal{P}) \) where \(\delta \) is a polynomial in the Stiefel Whitney classes.

For the complex case, clearly filtration \(\mathcal{P} \geq \mathcal{P} \) filtration \(\mathcal{P} \). If \(\lambda \in KO(X) \) has filtration \(8k+2 \), let \(f : X \to BO(8k+2, \ldots, *) \) classify \(\lambda \).
Letting \(u : BO(8k+2,\ldots,\infty) \to BU(8k+2,\ldots,\infty) \) classify \(\gamma \in \mathcal{C} \), one has \(H^{8k+2}(BO(8k+2,\ldots,\infty);\mathbb{Z}) = 0 \) (\(\text{Sq}^1 x_{8k+2} \neq 0 \) so \(x_{8k+2} \) is not the reduction of an integral class) so \(u \) lifts to \(BU(8k+4,\ldots,\infty) \). Thus \(u \) lifts to \(BU(8k+4,\ldots,\infty) \) and filtration \((\lambda \in \mathcal{C}) \geq 8k+4\). This gives filtration \((\pi_R^I(\gamma) \in \mathcal{C}) \geq \text{kn}(I)\).

Being given a lift \(f : BS\mathbb{O} \to BU(\text{kn}(I),\ldots,\infty) \) for \(\pi_R^I(\gamma) \in \mathcal{C} \), one has \(\text{ch}(\pi_R^I(\gamma) \in \mathcal{C}) = \rho_q^f \text{co}_8(x_{4\text{kn}(I)}) + \) higher terms = \(\rho_q \text{co}_8 \) + higher terms. Thus \(f^*(x_{4\text{kn}(I)}) = \text{co}_8 + \delta \beta \) for some \(\beta \). Since \(\text{Sq}^1 \) and \(\text{Sq}^3 \) both annihilate \(\rho_2^f \text{co}_8(x_{4\text{kn}(I)}) \) and \(\rho_2 \text{co}_8, \rho_2^2 \delta \beta = \text{Sq}^1 \beta \in \ker q_0 \cap \ker q_1 \) and so belongs to image \(q_2^1 q_1 \). Thus \(\delta \beta = \delta \text{Sq}_2 \rho_2^2 \delta \alpha \) for some \(\alpha \). Since the lift from \(BU(\text{kn}(I)-2,\ldots,\infty) \) may be modified by any class in \(\delta \text{Sq}_2^2 \text{kn}(I)-3(\text{BSO};\mathbb{Z}) \), there is a lift with \(f^*(x_{4\text{kn}(I)}) = \text{co}_8 \).

This completes the proof of the proposition. **

Turning to the case of a Spin bundle or Spin\(^c\) bundle, one has:

Proposition: Let \(\gamma \) denote the universal bundle over BSpin or BSpin\(^c\). Then:

a) \(\pi_R^I(\gamma) \) for \(I = (i_1,\ldots,i_r) \) with \(i_j > 1 \) for all \(j \), has filtration precisely

\[
\begin{align*}
\text{kn}(I) & \quad \text{if } \text{kn}(I) \text{ is even,} \\
\text{kn}(I)-2 & \quad \text{if } \text{kn}(I) \text{ is odd}
\end{align*}
\]

in KU(BSpin); and

b) \(\pi_R^I(\gamma) \in \mathcal{C} \) for all \(I \) has filtration \(\text{kn}(I) \) in KU(BSpin\(^c\)).

Proof: Since the induced homomorphism from \(H^*(\text{BSO};\mathbb{Q}) \) to \(H^*(\text{BSpin};\mathbb{Q}) \) or \(H^*(\text{BSpin}^c;\mathbb{Q}) \) is monic, this is clear from the proposition, except for
filtration \((\pi_R^*(\gamma))\) with \(n(I)\) odd, which is less than or equal to \(4n(I)\).

One must check that \(\Theta_I^*(\gamma)\) is not divisible by 2 in \(\rho_QH^*(B\text{Spin};\mathbb{Z})\).

For this one has:

Lemma: Let \(v_2^i \in H^*(BO;\mathbb{Z}_2)\) be the Wu class. Then \(v_2^i\) is indecomposable, and \(\text{Sq}^1v_2^i\) belongs to the ideal generated by \(v_1\) and \(w_3\) (over \(\mathbb{A}_2^i\)).

Proof: Let \(\lambda\) be the canonical bundle over \(RP(\infty)\), so \(w(2^i\lambda) = (1 + a)^2^i = 1 + a^2^i\). Then \(v(2^i\lambda) = (1 + a + a^2 + \ldots + a^2^i + \ldots)^2^i = 1 + a^2^i + \text{higher terms}\). Thus \(v(2^i\lambda) = a^2^i\) is nonzero, while all decomposable classes of dimension \(2^i\) have value zero on \(2^i\lambda\), making \(v_2^i\) indecomposable.

To evaluate \(\text{Sq}^1v_2^i\), one considers a manifold \(M^n\). For any \(x \in H^*(M^n;\mathbb{Z}_2)\)

\[
(\text{Sq}^1v_2^i \cup x)[M] = [\text{Sq}^1(v_2^i \cup x) + v_2^i \cdot \text{Sq}^1x][M],
\]

\[
= [(v_1v_2^i \cup x) + \text{Sq}^2\text{Sq}^1x][M],
\]

\[
= [(v_1v_2^i \cup x) + (\text{Sq}^2\text{Sq}^{i-1} + \text{Sq}^1\text{Sq}^i)x][M],\quad (i \geq 2)
\]

\[
= [v_1v_2^i \cup x + v_2\text{Sq}^{i-1}x + v_1\text{Sq}^i x][M],
\]

\[
= [v_1v_2^i \cup x + v_1v_2\text{Sq}^{i-2}x + \text{Sq}^1v_2^i\text{Sq}^{i-2}x + v_1\text{Sq}^i x][M].
\]

Now applying the relation

\[
a \cdot \text{Sq}^j[b][M] = \text{Sq}^j(a \cdot b)[M] + \sum_{t=1}^{j} (\text{Sq}^t a \cdot \text{Sq}^{j-t}b)[M],
\]

\[
= (v_1 \cdot a) \cdot b[M] + \sum_{t=1}^{j} (\text{Sq}^t a \cdot \text{Sq}^{j-t}b)[M]
\]

one may "push \(\text{Sq}^j\) off of \(b\)" since in the right hand side of this expression only operators \(\text{Sq}^k b\) with \(k < j\) occur. Applying this to the above relation gives \(\text{Sq}^1v_2^i \cdot x[M] = \lambda \cdot x[M]\) where \(\lambda\) belongs to the ideal in \(H^*(BO;\mathbb{Z}_2)\) generated by \(v_1 = v_1\) and \(\text{Sq}^1v_2 = \text{Sq}^1(v_2 + w_2^1) = w_3 + v_2w_1\). **[Note:** If a
belongs to this ideal, so do $\text{Sq}^1 a$ and $v_j a$.

Thus $\text{Sq}^1 v_1 = \lambda$ maps to zero in all manifolds. Letting $M = \text{RP}(2^{i+1}) \times 2^i$, $v(M) = \Pi(1 + \alpha_j)2^{i+1}2^i - \Pi(1 + \alpha_j + \alpha_j2^{i+1})$, so $w_k(M)$ is the k-th elementary symmetric function in α_j for $k \leq 2^i + 1$, making $\tau^*: H^*(BO; \mathbb{Z}_2) \rightarrow H^*(M; \mathbb{Z}_2)$ monic in dimensions less than or equal to 2^i+1.

Thus $\text{Sq}^1 v_1 = \lambda$ and belongs to the ideal generated by v_1 and $\text{Sq}^1 v_2$ over \mathbb{A}_2. [Since $v_1 = v_1$, $v_2 = v_2 + w_1^2$, and $\text{Sq}^1 v_2 = v_3 + w_2 v_1$, this trivially holds for $i < 2$.] **

Lemma: $H^*(\text{BSpin}; \mathbb{Z}_2; Q_0) \cong \mathbb{Z}_2[v_j^2, v_j | j \text{ not a power of } 2, i > 1].$

Proof: Since v_j is indecomposable, $H^*(\text{BSpin}; \mathbb{Z}_2)$ is

$$\mathbb{Z}_2[v_{2j}, Q_0 v_j, v_j | j \text{ not a power of } 2, i > 1].$$

Then $Q_0 v_j = 0$ and applying the K"unneth theorem gives the homology. **

Corollary: All torsion in $H_*(\text{BSpin}; \mathbb{Z})$ has order 2.

Now returning to the proof of the proposition, let $I = (i_1, \ldots, i_r)$, $i_j > 1$, $n(I) = 1(2)$ and suppose $\varphi_q(\varphi_I) = 2\rho_q(x)$. Then $\varphi_I = 2x + \alpha$, where α is a torsion class, so $\alpha = \delta \beta$. This gives $w_{2I}^2 = \rho_2(\varphi_I) = \rho_2(\alpha)$.

$\text{Sq}^1 \beta$. Since $v_1 = v_1^2 \mod$ decomposables, one may write

$$v_1 = v_1^2 + f(w_{2k}) + \sum_{j \text{ odd}} \text{Sq}^1 v_j c_j,$$

where f is a polynomial in the even w_{2k}, $2k < 2^i$. Then

$$v_1^2 = v_1^2 + f(w_{2k}^2) + \sum_{j \text{ odd}} \text{Sq}^1 v_{j-1} v_j c_j^2.$$
Thus $\mathbb{L}_2[w^2_{2k} | k \neq 1]$ maps monomorphically into $H(H^*(\text{BSpin};\mathbb{Z}_2);Q_0)$, contradicting $v^2_{2i} = \text{Sq}^1 8$. Thus $\tau^R(\gamma)$ has filtration $\text{hn}(1)-2$. **

Note: The sequences involving 1's were eliminated since \mathcal{C}_1 reduces to v^2_2 which is zero in BSpin.

Lemma: $H^*(\text{BSpin}_C^c;\mathbb{Z}_2);Q_0 = \mathbb{L}_2[w^2_{2j}, v^2_{2i} | j \text{ not a power of 2, } i \geq 1]$.

Proof: $H^*(\text{BSpin}_C^c;\mathbb{Z}_2) = \mathbb{L}_2[w^2_{2j}, Q_0 v^2_{2i}]$ with $Q_0 v^2_{2i} = 0$. **

Corollary: All torsion in $H_*(\text{BSpin}_C^c;\mathbb{Z})$ has order 2.

Note: $v^2_2 = v^2_2 = \rho_2 \mathcal{C}_1$ and $H(H^*(\text{BSpin}_C^c;\mathbb{Z}_2);Q_0) \supset \mathbb{L}_2[\rho_2 \mathcal{C}_1]$.

One now has:

Lemma: Let ξ be an n dimensional vector bundle over a complex X and $U \in K^{n}_{\text{top}}(T\xi)$ an orientation. Then $\alpha \in K^*(X)$ has filtration k if and only if $\pi^*(\alpha;U) = \phi^*(\alpha)$ has filtration $n + k$.

Proof: Since ξ is trivial over cells in X, $T\xi$ has a cellular decomposition in which the $n + r$ skeleton of $T\xi$ is $T(\xi|_{X^r})$, X^r being the r skeleton of X. Further, U restricts to an orientation of $T(\xi|_{X^r})$ so $\phi^U : K^{n+r}(X^r) \to K^{n+r}(T(\xi|_{X^r}))$. Thus α restricts to zero in $K^{n+r}(X^r)$ if and only if $\phi^U(\alpha)$ restricts to zero in $K^{n+r}((T\xi)^{n+r})$. **

Note: Suppose $\hat{\alpha} : \breve{X} \to \text{BG}(k,\ldots,\alpha)$ is a lifting for α and $\hat{U} : \breve{T}\xi \to \text{BG}(n,\ldots,\alpha)$ is a lift for U (n even if $G = U$, $n \equiv 0 \text{ mod 8}$ if $G = 0$). Then

\[
\hat{\alpha} : \breve{T}\xi \to \mathbb{L}_2 \to \breve{X} \to \text{BG}(k,\ldots,\alpha) \to \text{BG}(n,\ldots,\alpha) \to \text{BG}(n+k,\ldots,\alpha)
\]

is a lift of $\phi^U(\alpha)$ and $\hat{\alpha}^U(x_{k+n}) = \pi^B(\mathbb{L}_2) \cdot U'$ where U' is the Thom class.
of \(\xi \). This is immediate from the fact that \(\beta^*(x_{k+n}) = x_k \otimes x_n \). (If \(G = 0 \), \(n = 2k \), \(k = \ell + 2 \), then \(\beta^*(v_{\ell + 4}) = v_{\ell + 4} \otimes x_{2k} \) for \(v_{\ell + 4} \) and \(v_{\ell + 4} \otimes x_{2k} \) are bases, and evaluating the Chern character of the canonical bundle over each side gives the result.)

Letting \(\gamma \) denote the canonical \(8n \) plane bundle over \(B\text{Spin}_{8n} \), one has classes

\[
\pi^*(\tau^1_R(\gamma)) \cdot U(\gamma) \in \tilde{K}^8n(\text{Spin}_{8n}) = \tilde{K}^8(\text{Spin}_{8n})
\]

of filtration \(8n + 4n(I) \) or \(8n + 4n(I) - 2 \) as \(n(I) \) is even or odd for each sequence \(I \) having \(i > j > 1 \), and the choice of liftings defines a map

\[
\text{Tr} : \text{Spin}_{8n} \longrightarrow \bigoplus_{n(I) \text{ odd}} BO(8n + 4n(I) - 2, \ldots, \infty) \times \bigoplus_{n(I) \text{ even}} BO(8n + 4n(I), \ldots, \infty)
\]

with \(\rho_2 \text{Tr}^*(x_{8n + 4n(I)}) \equiv (w_{2I}^2 + Sq^3 Sq^3 a_I) \cdot U, \ Sq^2 \text{Tr}^*(x_{8n + 4n(I) - 2}) = w_{2I}^2 \), and thus a homomorphism

\[
(\text{Tr})^* : \begin{cases} \left(\alpha_2 / \alpha_2 Sq^3 \right) x_{8n + 4n(I) - 2} & \text{if } n(I) \text{ odd} \\ \left(\alpha_2 / \alpha_2 Sq^3 + \alpha_2 Sq^2 \right) x_{8n + 4n(I)} & \text{if } n(I) \text{ even} \end{cases} \rightarrow \tilde{H}^*(\text{Spin}_{8n}; \mathbb{Z}_2).
\]

Note: Letting \(B\mathcal{O}(k, \ldots, \infty) \) be the spectrum with \((B\mathcal{O}(k, \ldots, \infty))_{8n} = BO(8n + k, \ldots, \infty) \) and with the intermediate spaces given by loop spaces, one has a map

\[
\text{Tr} : B\text{Spin} \longrightarrow \text{BO}(8n(I) - 2, \ldots, \infty) \times \text{BO}(8n(I), \ldots, \infty)
\]

defined by a careful choice of lifts for the Thom classes. Up to any given dimension, this may be obtained just by taking \(n \) sufficiently large in the above.
In exactly the same fashion, one has a map

\[\text{Tr} : \text{TBSpin}^c_{2n} \to \Pi \text{BU}(4n(I) + 2n, \ldots) \]

inducing

\[(\text{Tr})^* : \otimes (A_2/A_2^1 \oplus A_2^3)_{4n(I) + 2n} \to \tilde{H}^*(\text{TBSpin}^c_{2n}; \mathbb{Z}_2). \]

The main result of Anderson, Brown, and Peterson is:

Theorem: The homomorphisms

\[(\text{Tr})^* : \otimes (A_2/A_2^1 \oplus A_2^3)_{4n(I)-2} \otimes (A_2/A_2^1 \oplus A_2^3)_{4n(I)} + \tilde{H}^*(\text{TBSpin}^c; \mathbb{Z}_2) \]

for \(I \) with \(i_j \neq 1 \), and

\[(\text{Tr})^* : \otimes (A_2/A_2^1 \oplus A_2^3)_{4n(I)} \to \tilde{H}^*(\text{TBSpin}^c; \mathbb{Z}_2) \]

are monic and have cokernels which are free \(A_2 \) modules. In particular, there exist classes \(z_i \in \tilde{H}^*(\text{TBSpin}^c; \mathbb{Z}_2) \) and \(z'_i \in \tilde{H}^*(\text{TBSpin}^c; \mathbb{Z}_2) \), defining maps \(g \) into products of \(K(\mathbb{Z}_2) \) spectra, so that

\[\text{Tr} \times g : \text{TBSpin} \to \Pi \text{BO}(4n(I) - 2, \ldots, \infty) \times \Pi \text{BO}(4n(I), \ldots, \infty) \times \Pi K(\mathbb{Z}_2, \deg z_i) \]

for odd \(n(I) \) and even \(n(I) \)

and

\[\text{Tr} \times g : \text{TBSpin}^c \to \Pi \text{BU}(4n(I), \ldots, \infty) \times \Pi K(\mathbb{Z}_2, \deg z'_i) \]

are 2 primary homotopy equivalences.

The proof of this result requires a detailed analysis of the Steenrod algebra and the cohomology of these spaces.
Lemma 1: The homomorphisms

\[\nu : \underline{\mathcal{A}}_2 \to H^*(\mathcal{B}Spin^c; \mathbb{Z}_2) : a \to a(U) \]

and

\[\nu : \underline{\mathcal{A}}_2 \to H^*(\mathcal{B}Spin; \mathbb{Z}_2) : a \to a(U) \]

have kernels exactly \(\mathcal{A}_2 \mathcal{S}q^1 \otimes \mathcal{A}_2 \mathcal{S}q^3 \) and \(\mathcal{A}_2 \mathcal{S}q^1 \otimes \mathcal{A}_2 \mathcal{S}q^2 \) respectively.

Proof: Since \(\mathcal{S}q^4 U = w_1 U \), these are clearly contained in the kernels. One then has

\[\overline{\nu} : \mathcal{A}_2/\mathcal{A}_2 \mathcal{S}q^1 + \mathcal{A}_2 \mathcal{S}q^3 \to H^*(\mathcal{B}Spin^c; \mathbb{Z}_2) \]

which is clearly a homomorphism of coalgebras. To prove this monic, it suffices to show it is monic on primitive elements. (Note: \(x \) is primitive if its diagonal is \(x \otimes 1 + 1 \otimes x \).)

Recall that the Steenrod algebra \(\mathcal{A}_2 \) is a Hopf algebra whose dual is a Hopf algebra \(\mathcal{A}_2^* \). Letting \(\xi_k \in (\mathcal{A}_2^*)_{2^{-k}-1} \) be the dual with respect to the base \(\mathcal{S}q^1 \), \(I \) admissible, of the class \(\mathcal{S}q^2 \mathcal{S}q^k \ldots \mathcal{S}q^2 \mathcal{S}q^1 \), one has

\[\mathcal{A}_2^* \cong \mathbb{Z}_2[\xi_k]. \]

Dually, \(\mathcal{A}_2 \) has a unique nonzero primitive element in each dimension \(2^{i+1}-1 \), which is the element \(Q_i \).

The Steenrod algebra \(\mathcal{A}_2 \) also admits a "canonical antiautomorphism" given by \(\chi(1) = 1 \), and if \(A \chi = x \otimes 1 + \sum x_i \otimes x''_i + 1 \otimes x \), then

\[\chi(x) = x + \sum x(x'_i) x''_i. \]

In particular, \(\sum_{j=0}^i x(\mathcal{S}q^{i-j}) \mathcal{S}q^j = 0. \) (Note: \(\chi(Q_i) \) since \(\chi \) is an isomorphism of Hopf algebras and hence takes the nonzero primitive into itself.)

Now consider the exact sequence

\[\mathcal{A}_2 \otimes \mathcal{A}_2 \xrightarrow{\delta_0 \otimes \delta_1} \mathcal{A}_2 \to \mathcal{A}_2/\mathcal{A}_2 \mathcal{S}q_0 + \mathcal{A}_2 \mathcal{S}q_1 \to 0. \]
Applying the canonical antiautomorphism gives
\[
\begin{align*}
\alpha_2 \circ \alpha_2 \xrightarrow{L_0 + L_0} \alpha_2 \rightarrow x(\alpha_2 \alpha_2 q_0 + \alpha_2 q_1) & \rightarrow 0 \\
\end{align*}
\]
or dually
\[
0 \rightarrow (x(\alpha_2 \alpha_2 q_0 + \alpha_2 q_1))^* \rightarrow \alpha_2^* \xrightarrow{(L_0)^* + (L_1)^*} \alpha_2^* \circ \alpha_2^*
\]
where \(L_i \) is left multiplication by \(Q_i \).

Assert: \((LSq)^*(\xi_k) = \xi_k + \xi_{k-1}\).

Proof: Let \(x \in H^1(\text{RP}(\omega); Z_2) \). For \(I \) admissible, \(Sq^I x = 0 \) if \(I \neq (2^t, \ldots, 1) \) for some \(t \), and \(Sq^2 \ldots Sq^1 x = x^{2^{t+1}} \). For \(I \) admissible of degree \(2^{k-1} - 1 \), \(Sq^I x = 0 \) except for \(I = (2^{k-2}, \ldots, 1), \ x = 2^{k-1} \). **

Then \((LSq^1)^*(\xi_k) = 0 \) if \(k \neq 1, (2^{k-1} - 1 + 1 = 2^{k-1}) \) and \((LSq^2)^*(\xi_k) = (LSq^1)^*(LSq^2)^*(\xi_k) = 0 \) if \(k \neq 2 \), while \((LSq^1)^*(\xi_1) = 1, (LSq^2)^*(\xi_1) = \xi_1 \) so \((LSq^1)^*(LSq^2)^*(\xi_1) = 1 \). Now \((LSq^3)^*(\xi_k) = 0 \) always. Thus \((L_0)^*(\xi_k) = 0 \) if \(k \neq 1, 1 \) if \(k = 1 \), and \((L_1)^*(\xi_k) = 0 \) if \(k \neq 2, 1 \) if \(k = 2 \).

Since \((L_0)^* \) and \((L_1)^* \) are derivations, \(\ker(L_0)^* \cap \ker(L_1)^* \) is clearly \(Z_2[\xi_2^2, \xi_2^2, \xi_3^2, \ldots] \). Thus \(\alpha_2 / \alpha_2 q_1^1 + \alpha_2 q_3^1 = \alpha_2 / \alpha_2 q_0 + \alpha_2 q_1 \) has dual a polynomial algebra on classes \(\xi_1^2, \xi_2^2, \xi_3^2, \ldots \).

By duality, \(\alpha_2 / \alpha_2 q_1^1 + \alpha_2 q_3^1 \) has nonzero primitive elements given by:

\[
\begin{align*}
Sq^2, Sq^4 Sq^2 + Sq^2 Sq^4, \text{ and } Q_i \text{ for } i \geq 2.
\end{align*}
\]

(Note: The image of \(Q_i \) is a nonzero primitive for \(i \geq 2 \), while the others are primitive by a direct computation of the diagonal). Then
\(\bar{\nu}(s_2^2) = s_2^2 U = v_2 \cdot U, \)
\[\bar{\nu}(s^4_2 s_2^2) = s^4_2 (v_2 U) + s_2^2 (v_4 U) = (v_6 + v_4 v_2 + v_2^3) U \]
\[\bar{\nu}(q_1) = s_2^{i+1} (w) \cdot U, \quad i \geq 2. \]

[To see the latter, \(\nu(q_1) = \alpha \cdot U \in \tilde{H}^2(SO; \mathbb{Z}_2) \) and \(\alpha \) is a nonzero primitive of dimension \(2^{i+1} - 1 \). The only such class is \(s_2^{i+1} (w) \).] Now \(s_{2k+1}(w) \) is indecomposable, and the map \(BSpin^c \rightarrow BSO \) sends indecomposables to zero only in dimensions of the form \(2^4 + 1 \), so these are nonzero classes. Thus \(\bar{\nu} \) is monic.

[Note: To see that \(s_{2k+1}(w) \) is indecomposable one has the formula for \(s_j \) given by
\[s_j = \sum_{i=1}^{j} x_i^j \]
if \(j \leq n \), where \(x_k \) is the \(k \)-th elementary symmetric function in the \(x_i \). Thus \(s_j \equiv (-1)^{j+1} \cdot \sigma_j \mod \text{decomposables} \) (See: Van der Waerden, vol. I, §26).

One may prove the result for \(Spin \) in the same way, or consider the map
\[f : BSpin^c_{n-2} \rightarrow BSpin_n \] classifying \(\gamma \otimes \xi \), where \(\xi \) is the complex line bundle given by the \(Spin^c \) structure. \(f^*(v_n) = v_{n-2}^2 v_2 = s_2^2 v_{n-2} \) and thus, on the Thom space level \(f^* U = s_2^2 U' \). Thus it suffices to show that
\[a_2 \xrightarrow{S_2^2} a_2 / a_2 s_2^1 + a_2 s_2^3 \text{ has kernel precisely } a_2 s_2^1 + a_2 s_2^2. \]
If \(a_2 s_2^2 = b \cdot s_2^1 + c \cdot s_2^3 \), then \((a+c s_2^1) s_2^2 = b s_2^1 \) but
\[a_2 \xrightarrow{S_2^2} a_2 \xrightarrow{S_2^2} a_2 / a_2 s_2^1 \text{ is exact, so } a + c s_2^1 = d s_2^2 \text{ giving } a = c s_2^1 + d s_2^2 \in a_2 s_2^1 + a_2 s_2^2, \]
**

For later purposes, it is desirable to have the forms for
\[a_2 / a_2 s_2^1 + a_2 s_2^2 \] and \(a_2 / a_2 s_2^3 \). First one has:
\[a_2 \xrightarrow{S_2^1 + S_2^2} a_2 \xrightarrow{a_2} a_2 / a_2 s_2^1 + a_2 s_2^2 \xrightarrow{0} \]
and

\[a_2 \xrightarrow{S^3} a_2 \rightarrow a_2/a_2S^3 \rightarrow 0 \]

giving:

\[0 \rightarrow (x(a_2/a_2S^1a_2S^2))^* \rightarrow a_2^* \xrightarrow{(LS^1)^*+(LS^2)^*} a_2^* \otimes a_2^* \]

and

\[0 \rightarrow (x(a_2/a_2S^3))^* \rightarrow a_2^* \xrightarrow{(LS^2S^1)^*} a_2^*. \]

Then \((LS^1)^*(\xi_k) = 0\) or \(1\) as \(k \neq 1\) or \(k = 1\); \((LS^2)^*(\xi_k) = 0\) or \(\xi_1\) as \(k \neq 2\) or \(k = 2\); and \((LS^2)^*(\xi_1^2) = ((LS^1)^*(\xi_1))^2 = 1\) since

\((LS^2)^*(a\cdot b) = (LS^2)^*a\cdot b + (LS^1)^*a\cdot (LS^1)^*b + a\cdot (LS^2)^*b.\)

It is then immediate that \((x(a_2/a_2S^1a_2S^2))^* \subset Z_2[\xi_1^i, \xi_2^j, \xi_3, \ldots] = A\) and also

\((x(a_2/a_2S^3))^* \subset A.\)

\(a^*_2\) is a free \(A\) module with base \(\xi_1^i \xi_2^j\) for \(0 \leq i \leq 3, 0 \leq j \leq 1,\) with \((LS^1)^* (\xi_1^i \xi_2^j) = i \xi_1^i-1 \xi_2^j\) and

\((LS^2)^* (\xi_1^i \xi_2^j) = j \xi_1^{i+1} + \xi_2^i \xi_1^{i-2} \xi_2^j\) giving

<table>
<thead>
<tr>
<th>(a)</th>
<th>((LS^1)^*a)</th>
<th>((LS^2)^*a)</th>
<th>((LS^2S^1)^*a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(\xi_1)</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(\xi_1^2)</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(\xi_1^3)</td>
<td>(\xi_2^2)</td>
<td>(\xi_1)</td>
<td>1</td>
</tr>
<tr>
<td>(\xi_2)</td>
<td>0</td>
<td>(\xi_1)</td>
<td>1</td>
</tr>
<tr>
<td>(\xi_1 \xi_2)</td>
<td>(\xi_2)</td>
<td>(\xi_1^2)</td>
<td>0</td>
</tr>
<tr>
<td>(\xi_1^2 \xi_2)</td>
<td>0</td>
<td>(\xi_1^3 \xi_2)</td>
<td>(\xi_1^2)</td>
</tr>
<tr>
<td>(\xi_1^3 \xi_2)</td>
<td>(\xi_2^2)</td>
<td>(\xi_1^2 \xi_2)</td>
<td>(\xi_1)</td>
</tr>
</tbody>
</table>
Thus \((LSq^1)^* + (LSq^2)^*\) is monic, giving \((x(A_2/\alpha_2^1 \alpha_2^1 + \alpha_2^2 \alpha_2^2))^* = A^1\), and
\((x(A_2/\alpha_2^3))^*\) is the free \(A\) module on \(1, \xi_1^1, \xi_1^2, \xi_1^3, \xi_2, \text{ and } \xi_1 \xi_2\).

Lemma 2: \((Tr)^*\) induces isomorphisms on \(H(\cdot ;Q_i), i = 0,1\).

Proof: This requires considerable work. First, one needs the homology of each of the cyclic \(A_2\) modules. Applying \(x\) and dualization, one needs the action of \(Q_0\) and \(Q_1\) in \(A^{*}_{2}\), by right action \([(aS^i)(\lambda) = a(\lambda S^i)\) for \(a \in A^2, \lambda \in A^2\), given by \((RQ)^*\).

Sublemma 1: \((RSq)^*(\xi_1^1) = \xi_1^1 + \xi_1^2\).

Proof: \((RSq^1)^*(\xi_1^1)(S_q^1) = \xi_1^1(S_q^1)^2 \xi_1^1 = \alpha_{1}^{(k-1),\ldots,1}\) where \(\alpha_{1}^{(k-1),\ldots,1} = \sum a_{j} S^{j}\) but \(\alpha_{2}^{(k-1),\ldots,1} = S_q^1 S_i^2\) which is zero except for \(i = 1, I = (2^{k-1},\ldots,2)\), where it is \(x_2^k\). Thus \((RSq^1)^*(\xi_1^1) = 0\) if \(i > 1\) and \((RSq^1)^*(\xi_1^1)(S_q^1) = 0\) except for \(I = (2^{k-1},\ldots,2)\). Now
\[
\xi_1^2(S_q^1) = (LSq^1)^*(\xi_1^2) = 0 \text{ if } I\text{ has any odd entry, and } (LSq^1)^*(\xi_1^2) = ((LSq^1)^*(\xi_1^2))^2, \text{ which vanishes if } I\neq (2^{k-2},\ldots,1). \text{ Thus,}\n
(RSq^1)^*(\xi_1^1) = \xi_1^2 \xi_1^1\). **

SubLemma 2: \((RQ_0)^*(\xi_1^1) = \xi_1^2 \xi_1^1, (RQ_1)^*(\xi_1^1) = \xi_1^h\).

Proof: \((RQ_0)^* = (RSq^1)^*\) gives the first. Since \((RSq^2)^*(\xi_1^1) = 0,\n(RQ_1)^*(\xi_1^1) = (RSq^2)^*(\xi_1^1) = (RSq^2)^*(\xi_1^1) = (((RSq^1)^*)^2)^{k-2} = \xi_1^h\). **

SubLemma 3: \(H((x(A_2/A_2^1 \alpha_2^1 + \alpha_2^2 \alpha_2^3))*;RQ_0) = \zeta_1^2[x_1^2],\)

\(H((x(A_2/A_2^1 \alpha_2^1 + \alpha_2^2 \alpha_2^2))*;RQ_0) = \zeta_1^2[x_1^2],\)

\(H((x(A_2/A_2^3))*;RQ_0) = \zeta_1\zeta_2[x_1^2].\)
Proof: \((x(A_2/A_2^{A_2+1}A_2^{A_2+3}))^* = Z_2[e_1^2,e_2^2,e_3^2,...]\) and
\((RQ_0)^*(e_1^2) = (RQ_0)^*(e_2^2) = 0\) while \((RQ_0)^*(e_k^2) = e_{k-1}^2\) for \(k \geq 3\). Thus
\(\ker(RQ_0)^* = Z_2[e_1^2,e_2^2,e_3^2,...]\) and \(\text{im}(RQ_0)^*\) is the ideal generated by
\(Z_2[e_2^2,e_3^2,...]\).

Turning to \((x(A_2/A_2^{A_2+1}A_2^{A_2+2}))^* = Z_2[e_1^4,e_2^2,e_3^2,...]\),
\(\ker(RQ_0)^* = Z_2[e_1^4,e_2^2,e_3^2,...]\) and \(\text{im}(RQ_0)^*\) is the ideal generated by
\(Z_2[e_2^2,e_3^2,...]\).

Now \((x(A_2/A_2^{A_2+3}))^* = Z_2[e_1^4,e_2^2,e_3^2,...]\) \(\{1, e_1^2, e_1^2, e_1^3 + e_2, e_1 e_2\}\)
with \((RQ_0)^*(1) = 0, (RQ_0)^*(e_1) = 1, (RQ_0)^*(e_2) = 0, (RQ_0)^*(e_3) = 0,\)
\((RQ_0)^*(e_1 e_2) = e_1 e_2\). Then let \(a = a + \beta e_1 + \gamma e_2 + \delta(e_3^2 + e_2) + \epsilon e_1 e_2.\)

\((RQ_0)^*(a) = (RQ_0)^*a + [(RQ_0)^*\beta]e_1 + [(RQ_0)^*\gamma]e_2 + [(RQ_0)^*\delta](e_1 e_2)\)
\[+ [(RQ_0)^*\epsilon](e_1 e_2) + \beta + \epsilon (e_1 e_2),\]
giving \(a \in \ker(RQ_0)^*\) if and only if \(\beta = (RQ_0)^*a, (RQ_0)^*\beta = 0, (RQ_0)^*\gamma = 0,\)
\((RQ_0)^*\delta = \epsilon, (RQ_0)^*\epsilon = 0,\) but

\((RQ_0)^*[a\xi_1 + \delta e_1 e_2] = [(RQ_0)^*a]\xi_1 + [(RQ_0)^*\delta](\xi_1 e_2) + \alpha + \delta(\xi_3^2 + e_2),\)
\[= \alpha + \beta \xi_1 + \delta(\xi_3^2 + e_2) + \epsilon \xi_1 e_2\]
if \(a \in \ker(RQ_0)^*\). Thus \(\ker(RQ_0)^*/\text{im}(RQ_0)^* = (\ker(RQ_0)^*/\text{im}(RQ_0)^*)_1^2.\) **

Thus \(H(A_2/A_2^{A_2+1}A_2^{A_2+3};Q_0)\) is isomorphic to \(Z_2\) in each dimension of
the form \(2k\) and is zero in odd dimensions. This gives a class
\(a_{2k} \in (A_2/A_2^{A_2+1}A_2^{A_2+3})^{2k}\) with \(Q_0 a_{2k} = 0\) and \(x(a_{2k})\) evaluates to \(1\) on
\(\xi_1^{2k}.\)

It is clear that \(\tilde{u}(a_{2k}) \in H^*(\text{BSpin}^c;Z_2)\) belongs to \(\ker Q_0,\) so
\(\tilde{u}(a_{2k}) = \pi^* u_{2k} \sim U,\) with \(u_{2k} \in H^2(\text{BSpin}^c;Z_2)\) and \(Q_0 u_{2k} = 0\) since \(Q_0 U = 0.\)
[Since \(Q_0 U = Q_1 U = 0,\) the Thom isomorphism induces isomorphisms on \(Q_1\)
homology.]
Assert: u_{2k} is indecomposable if $k = 2^s$.

Proof: One may write $\chi(a_{2k}) = \sum a_j q^J$ with J admissible and $(\sum a_j q^J)$ evaluates to 1 on x_{2k}, but $x_{2k}^J(x^{2k}) = (\sum a_j q^J)(x^{2k})$, and $q^J x^{2k} = 0$ if $J \neq (2k)$, since k is a power of two. Thus
$$
\chi(a_{2k}) = q^{2k} + \sum a_j q^{J'} = q^{2k} + \text{decomposable operations, giving}
$$
$$
a_{2k} = q^{2k} + \text{decomposable operations.}
$$

On the other hand, one may consider the bundle $2^{s+1} \lambda$ over $RP(\infty)$. This is a $Spin^c$ bundle, of course. Then $q^i U = w^i(2^{s+1} \lambda) U$ is zero for $i \neq 2^s$ but $q^{2s} U \neq 0$, so $a_{2k} U = w_{2k} U$ in this bundle. Since all decomposable classes map to zero, this makes u_{2k} indecomposable. **

Thus $H^*(BSpin^c; \mathbb{Z}_2) = \mathbb{Z}_2[w_{2j}, q_0 w_{2j}, u_{2^s} | j \text{ not a power of } 2, s \geq 1]$ with $q_0 u^{2^s} = 0$, giving $H(H^*(BSpin^c; \mathbb{Z}_2); q_0) = \mathbb{Z}_2[w_{2j}, u_{2^s}]$. Now \mathcal{P}_I reduces to w_{21} and as noted $\mathbb{Z}_2[\mathcal{P}_I]$ maps monomorphically into this homology (sending \mathcal{P}_I^s into $(u_{2^s} + \text{decomposables})^2$) so $H(H^*(BSpin^c; \mathbb{Z}_2); q_0)$ is a free $\mathbb{Z}_2[\mathcal{P}_I]$ module with base formed by monomials $u_{s_1} \cdots u_{s_n}$, $1 \leq s_1 < \cdots < s_n$. (Such a monomial will be denoted u_B).

Partially order the base $\pi^*(\mathcal{P}_I u_B) \cdot U$ of $H(H^*(BSpin^c; \mathbb{Z}_2); q_0)$ by $\pi^*(\mathcal{P}_I u_B) \cdot U < \pi^*(\mathcal{P}_I u_{B'}) \cdot U$ if $\dim I < \dim I'$. [Note: $\dim I$ is the dimension of the "squared" factor in $\mathcal{P}_I u_B$.]

Recalling that $(Tf)^*(x_{un}(I)) = \pi^*(\mathcal{P}_I^0) \cdot U$, one has

Assertion: $(Tf)^*(a_{2k} \cdot x_{un}(I)) = \pi^*(\mathcal{P}_I u_{2s}) \cdot U + \sum \pi^*(\mathcal{P}_I u_{2s'}) \cdot U$ with $\dim I' > \dim I$, where $S = (2^{s_1}, \ldots, 2^{s_n})$ is the dyadic expansion of $2k$.

Proof: Clearly, $(Tf)^*(a_{2k} \cdot x_{un}(I)) = a_{2k} [\pi^*(\mathcal{P}_I) \cdot U]$ and $\pi^*(\mathcal{P}_I)^0 \cdot U$ both belong to kernelq_0, with their difference being of the form
$$
\sum a' \pi^*(\mathcal{P}_I^0) a'' U \text{ with } \deg a' > 0, \text{ and each term } a' \pi^*(\mathcal{P}_I^0) a'' U \text{ has a large }
$$
squared factor, when expressed as an element of $\tilde{H}^*(\text{TBSpin}^c; \mathbb{Z}_2)$. Thus one may write

$$\sum a^i \pi^*(\sigma_i) \cdot a^m U = \sum \pi^*(\sigma_i^* u_{B_i^*}) \cdot U + Q_0 V \cdot U.$$

Now $Q_0 V$ belongs to the ideal generated by odd v_i, so every term $\sigma_i^* u_{B_i^*}$ occurring must have larger "squared" term.

Thus it suffices to consider $a_{2k} U$, and since for degree $2k$, every term $\pi^*(\sigma_i^* u_{B_i^*}) U$ has squared term larger than $\pi^*(u_{B_i^*}) U$, it suffices to prove the coefficient of $\pi^*(u_{B_i^*}) U$ is nonzero.

For this one notes that the map $\tilde{v} : A_2 A_2 Sq^1 + A_2 Sq^3 \rightarrow \tilde{H}^*(\text{TBSpin}^c; \mathbb{Z}_2)$ is a map of coalgebras, inducing a map of coalgebras on $H(\mathbb{Z}_2; Q_0)$. The product rule $\xi_1^{2k} \cdot \xi_2^{2l} = \xi_1^{2k+2l}$ translates to the dual statement

$$\Lambda(a_{2k}) = \sum_{i+j=k} a_{2i} \cdot a_{2j}.$$

Thus $\Lambda^n(a_{2k})$ has a term $a_{2k} \cdot a_{2j}$ or

$$\Lambda^n(a_{2k}) = \Lambda^n(a_{2k})$$

always contains a squared term in at least one factor, since

$$\Lambda^n(\sigma_1) = \Lambda^n(\nu_{21}^2) = [\Lambda^n(\nu_{21})]^2.$$

Thus $\Lambda^n(\pi^*(\sigma_i^* u_{B_i^*}) U)$ never contains a term $u_{B_i^*} U \cdot \ldots \cdot u_{B_n^*} U$, showing that the coefficient of $\pi^*(u_{B_i^*}) U$ in $v(a_{2k})$ is nonzero.

This proves that $(Tf)^*$ induces an isomorphism on $H(\mathbb{Z}_2; Q_0)$ for the Spin^c case. For the Spin case one may cheat slightly.

Sublemma 4: $H(\tilde{H}^*(\text{BSpin}; \mathbb{Z}_2); Q_0) = \mathbb{Z}_2[w_{2j}^2, u_s^j | s > 1, j \text{ not a power of } 2]$ and the homomorphism given by inclusion

$$\tilde{H}^*(\text{TBSpin}^c; \mathbb{Z}_2) \rightarrow \tilde{H}^*(\text{TBSpin}; \mathbb{Z}_2)$$
induces an epimorphism on $H(\mathbb{Z}_2; \mathbb{Q}_0)$. Further, $H^*(\text{TBSpin}^c; \mathbb{Z}_2; \mathbb{Q}_0)$ and $H^*(\mathbb{Z}_2; \mathbb{Q}_0)$ have the same rank in each dimension, where \mathbb{Q}_0 denotes the product of truncated \mathbb{Q} spectra corresponding to T_f.

Proof: Noting that $H^*(\text{BSpin}^c; \mathbb{Z}_2)$ maps onto $H^*(\text{BSpin}; \mathbb{Z}_2)$ with u_2 sent to zero, $H^*(\text{BSpin}; \mathbb{Z}_2) = \mathbb{Z}_2[v_2, Q_0v_2, u_2^s | s > 1]$ with $Q_0u_2^s = 0$. This gives the homology and epimorphism easily. A dimension count gives the asserted equality easily.

Now let $BO(8n+4n(I), ..., \mathbb{Z}_2) \to BU(8n+4n(I), ..., \mathbb{Z}_2)$ and $BO(8n+4n(I)-2, ..., \mathbb{Z}_2) \to BU(8n+4n(I), ..., \mathbb{Z}_2)$ be maps classifying $\gamma \in \mathbb{C}$, with $h_*(4n(I)+8n) = x_{4n(I)+8n}$ or $\gamma_{4n(I)+8n}$ in the cases $n(I)$ even or $n(I)$ odd.

Letting $\tilde{BU} = \tilde{BU}(4n(I), ..., \mathbb{Z}_2)$ be the spectrum used in realizing the map T_f for TBSpin^c and BO the spectrum used in realizing T_f for TBSpin, one has a diagram

$$
\begin{array}{ccc}
\text{TBSpin} & \xrightarrow{T_f} & \text{TBSpin}^c \\
\downarrow h & & \downarrow T_f \\
BO & \xrightarrow{h} & BU
\end{array}
$$

where h is obtained by the product of the above maps h and point maps to the factors $BU(4n(I), ..., \mathbb{Z}_2)$ if I contains a 1. This diagram does not, of course, commute, but

Sublemma 5: After applying the functor $H(\tilde{H}^*(\mathbb{Z}_2); \mathbb{Q}_0$) the above diagram commutes.

Proof: It suffices to consider the summands $(A_2/A_2^1A_2^3)^{4n(I)}$, $\tilde{H}^*(BU; \mathbb{Z}_2)$ individually. There are three cases.

1) I contains a 1. Then $(T_f)^*(T_f)^*(4n(I)) = \sigma_1U$, but σ_1 divides σ_I and σ_1 is zero in $H^*(\text{BSpin}; \mathbb{Z}_2)$. Since h is a point map to this
factor, one also has $h^*(x_{hn(I)}) = 0$.

2) I contains no 1's and $n(I)$ is odd. Then $h^*(x_{hn(I)}) = v_{hn(I)}$ which is $Sq^2x_{hn(I)-2} \mod 2$. Thus $(Tf)^*h^*(x_{hn(I)}) = \mathcal{O}_I^U$. This coincides with $(T_I)^*(Tf)^*(x_{hn(I)})$.

3) I contains no 1's and $n(I)$ is even. Then $(Tf)^*h^*(x_{hn(I)}) = (Tf)^*(v_{hn(I)}) = (\mathcal{O}_I^U + Sq^3Sq^1a_{I})^U$. Now in $\tilde{h}^*(TBSpin^c;\mathbb{Z}_2)$, one has for any $a \in \mathcal{O}_2/Q_2^1 + \mathcal{O}_2^3$ such that $Q_0a = 0$, $a(Sq^3Sq^1a_{I}) \in \ker Q_0$. This class belongs to the ideal generated by the odd v_1 (since Sq^1a_{I} belongs to this ideal) and thus $a(Sq^3Sq^1a_{I})$ is zero in $H(\tilde{h}^*(TBSpin^c;\mathbb{Z}_2); Q_0)$. Thus $(Tf)^*h^*$ and $(T_I)^*(Tf)^*$ induce the same homomorphism on homology with respect to Q_0. **

This establishes that $(Tf)^*$ induces an isomorphism on $H(_; Q_0)$ for the Spin case.

Note: If desired one may be more specific in the choice of a representative a_{2k}. Since $Q_1Sq^{2k-2} = Q_0S q^{2k} + Sq^{2k}$, one may let $a_{2k} = \chi(Sq^{2k})$. Now $\chi(Sq^{1}U) = \pi^*(v_1)U$, where v_1 is the Wu class. Thus one may take $u_{2k} = v_{2k}$ if desired, coinciding with the choice in the first calculation of $H(\tilde{h}^*(BSpin^c;\mathbb{Z}_2); Q_0)$.

It is interesting and crucial to note that one did not need to find a specific a_{2k} in the above.

Sublemma 6: $H((x(a_2/a_2^1 + a_2^3))^{*}; RQ_1^*) = E[\xi_1^2 | i > 1]$, $H((x(a_2^1/a_2^3))^*; RQ_1^*) = E[\xi_1^2 | i > 1]$, and $H((x(a_2^1/a_2^3))^*; RQ_1^*) = \xi_1^2E[\xi_1^2 | i > 1]$, where E denotes the exterior algebra over \mathbb{Z}_2.

Proof: By Sublemma 2, \((RQ_1)^*\)(\(e_k\)) = \(\xi_{k-2}^t\). Since \(x(A_2/A_2^{2^1}A_2^{2^3})^* = z_2[\xi_1^2, \xi_2^2, \xi_3^2, ...]\), \(ker(RQ_1)^* = z_2[\xi_1^2, \xi_2^2, \xi_3^2, ...]\) and \(im(RQ_1)^*\) is the ideal generated by \(z_2[\xi_1^4, \xi_2^4, \xi_3^4, ...]\). Thus \(ker(RQ_1)^*/im(RQ_1)^* = E[\xi_1^2]\).

Since \(x(A_2/A_2^{2^1}A_2^{2^3})^* = z_2[\xi_1^2, \xi_2^2, \xi_3^2, ...]\), \(ker(RQ_1)^* = z_2[\xi_1^2, \xi_2^2, \xi_3^2, ...]\) and \(im(RQ_1)^*\) is generated by \(z_2[\xi_1^4, \xi_2^4, \xi_3^4, ...]\).

Letting \(a = a + b_1^2 + \gamma_1^2 + \delta_1^2 + \epsilon_1^2\) with \(a, ..., \epsilon\) in \(A_2\),

\[(RQ_1)^*a = RQ_1^*a + RQ_1^*b_1^2 + RQ_1^*\gamma_1^2 + RQ_1^*\delta_1^2 + RQ_1^*\epsilon_1^2 + \delta + \epsilon \xi_1^2\]

and \(ker(RQ_1)^*/im(RQ_1)^*\) is the \(E[\xi_1^2 | i > 1]\) module on \(\xi_1^2\).

If \(p = (2^1-2) + (2^2-2) + ... + (2^n-2)\) with \(2 \leq t_1 < t_2 < ... < t_n\), then \(p < 2^n - 2\). Thus if \(2^k-2 \leq p < 2^{k+1}-2\), one must have \(t_n = k\), and \(p\) has a unique expression in this form. Let \(P\) be the set of integers which are so expressible.

Thus \(H(A_2/A_2^{2^1}A_2^{2^3}; Q_1)\) is isomorphic to \(z_2\) in each dimension \(p\) belonging to \(P\) and is zero in other dimensions. There is then a class \(\beta_p \in (A_2/A_2^{2^1}A_2^{2^3})^P\) with \(Q_1 \beta_p = 0\) and such that writing \(p = (2^1-2) + ... + (2^n-2)\) one has \(x(\beta_p)\) evaluating to \(1\) on \(\xi_1^2 \xi_2^2 \xi_3^2 \xi_t^2\).

One then defines \(\tilde{\xi}_p \in H^P(BSpin^C; z_2)\) by \(\pi^* (\tilde{u})_p \cdot U = \tilde{u} (\beta_p)\) and then \(Q_1 \tilde{u}_p = 0\).

Assert: \(\tilde{u}_p \) for \(t \geq 2\) is indecomposable.

Proof: Writing \(x(\beta_p) = \sum a_j S^J\) with \(J\) admissible, \(p = 2^t-2\), one has \(a_j S^J\) evaluating to \(1\) on \(\xi_1^2 \xi_2^{t-1}\). Now \((\xi_2^{t-1}) (S^J) \neq 0\) if and only if \(A(S^J) = \sum S^U \otimes S^V\) contains the term \(S^J \otimes S^{J'}\) where \(J' = (2^{t-2}, ..., 1, \ldots)\), which holds if and only if \(S^J (x^2) \neq 0\) (dim \(x = 1\)) which holds if and only if \(J = (2^{t-1}, ..., 2)\). Thus \(x(\beta_p) = S^2 \xi_1^2 \xi_2^{t-1} + \sum a_j S^J\).
Letting \(J \) be admissible of degree \(2^t-2 \), \(J = (j_1, \ldots, j_s) \) cannot have excess 1, so \(e(J) = (j_1-2j_2) + \cdots + (j_{s-1}-2j_s) + j_s = 2j_1 - \deg J \geq 2 \), giving
\[
2j_1 \geq 2^t \quad \text{or} \quad j_1 \geq 2^{t-1}, \quad \text{and} \quad j_1 = 2^{t-1} \quad \text{if and only if} \quad J = I \quad \text{where} \quad I = (2^{t-1}, \ldots, 2).
\]
Now suppose \(Sq^J U = a U \) where \(a \) is indecomposable. Letting \(J = (j, J') \), \(J' \neq \emptyset \), \(Sq^J U = Sq^J (Sq^{J'} U) = Sq^J (a' U) \) so \(a = Sq^J a' \mod \) decomposables, but \(J \geq 2^{t-1} \) and \(\deg a' \leq 2^{t-1} - 2 < J \) so \(Sq^J a' = 0 \). Thus \(Sq^J U = a U \) with \(a \) indecomposable if and only if \(J = (2^t-2) \). Thus it suffices to show that the coefficient of \(Sq^{2^t-2} \) in \(\beta_p \) is nonzero.

Let \(y \in H^2(\mathbb{Q}(2^{t-1}); \mathbb{Z}_2) \) be the generator, with \(J \) admissible of degree \(2^t-2 \) and consider \(Sq^J y^{2^{t-1}-1} \). Writing \(J = (j, J') \), suppose \(Sq^J y^{2^{t-1}-1} \neq 0 \). Then \(Sq^J y^{2^{t-1}-1} = y^{2^t-2} y^{J'/2} \) [being nonzero] or \(Sq^J y^{2^{t-1}-1} = \frac{(2^{t-2}-j/2)}{y^{2^{t-2}}} \), but \((2^{t-2} - k) \neq 0 (2) \) implies \(k = 2^{s-1}, j = 2^{s+1} - 2^{t-1} \) and \(j = 2^t - 2 \).

Thus it suffices to show \(\beta_p (y^{2^{t-1}-1}) \neq 0 \).

Sublemma 7: If \(a, b \in H^*(\mathbb{Q}(2^{t-1}); \mathbb{Z}_2) \) and \(\theta \in A_2 \) with
\[
\deg a + \deg b = 2^{t+1} - 2,
\]
then \([\chi(\theta) a \cdot b = a \cdot \theta(b)] \).

Proof: It suffices to prove this by induction on \(i = \deg \theta \), the case \(i = 0 \) being trivial. Suppose the result true for degrees less than \(i \). Since \(w(\mathbb{Q}(2^{t-1})) = (1 + y)^{2^{t-1}} = 1 + y^{2^t} = 1, v(\mathbb{Q}(2^{t-1})) = 1 \) and all operations into the top degree are zero. Letting \(\Lambda(\theta) = \theta \otimes 1 + \sum \theta' \otimes \theta'' + 1 \otimes \theta \),
\[
0 = \theta(a \cdot b) = \theta(a) \cdot b + \sum \theta'(a) \cdot \theta''(b) + a \cdot \theta(b),
\]
\[
= \theta(a) + \sum [\chi^\theta(a) \theta'(a)] \cdot b + a \cdot \theta(b),
\]
\[
= [\chi(\theta a)] \cdot b + a \cdot \theta(b). \quad \text{**}
\]
Thus \(\beta_p (y^{2^{t-1}-1}) \neq 0 \) if and only if \(\chi(\theta_p) y \neq 0 \). Since
\[
\chi(\theta_p) = Sq^{2^{t-1}} \cdots Sq^1 \sum a_j Sq^{J'} \quad \text{and} \quad Sq^{J'} y = 0, \quad \chi(\theta_p) y = y^{2^{t-1}} \neq 0,
\]
which completes the proof. \(\text{**} \).
Thus \(H^*(B\text{Spin}^c_*; Z_2) = \mathbb{Z}_2[w_2^j, Q_1 w_2^j, Q_1^t, w_2^{t-2}] \) with \(Q_1^{t-2} = 1 \).

[Note: \(Q_1 w_2^j = w_2^{j+3} \) so these are generators.]

From this point onward, the case \(Q_1 \) is formally identical with the \(Q_0 \) case, showing that \((Tf)^*\) induces isomorphisms on homology with respect to \(Q_1 \) for both the \(\text{Spin}^c \) and \(\text{Spin} \) cases.

This completes the proof of Lemma 2. **

Lemma 3: Let \(M \) be a connected coalgebra over \(\mathbb{Z}_2 \) with counit \(1 \in M_0 \) and a left module over \(A_2 \) such that the diagonal map is a map of \(A_2 \) modules. Let \(f : N \rightarrow M \) be a map \(A_2 \) modules with either:

1) \(N = (A_2/A_2S^1 + A_2S^3) \otimes X \) and \(\ker v \otimes A_2S^1 + A_2S^3 \), or

2) \(N = (A_2/A_2S^1 + A_2S^2) \otimes X + (A_2/A_2S^3) \otimes Y \) and

\(\ker v \otimes A_2S^1 + A_2S^2 \), and such that \(f \) induces isomorphisms on homology with respect to \(Q_0 \) and \(Q_1 \). Then \(f \) is monic and cokernel \((f)\) is a free \(A_2 \) module.

Proof: Let \(\pi : M \rightarrow M/A_2^2 M \) be the projection and let \(T \subset M \) be a subspace mapped by \(\pi \) isomorphically onto a complementary summand for \(\pi f(N) \) in \(M/A_2^2 M \). Let \(e : N \otimes (A_2 \otimes T) \rightarrow M : (n, a \otimes t) \rightarrow f(n) + a(t) \). Then \(e \) is epic and induces isomorphisms on \(H(_; Q_i), i = 0,1 \).

For any \(A_2 \) module \(B \), let \(B_n \) denote the \(n \)-th degree part of \(B \) and \(B^{(n)} \) the \(A_2 \) submodule generated by the elements of degree less than or equal to \(n \). [Note: \(f : B \rightarrow C \) epic implies \(f^{(n)} : B^{(n)} \rightarrow C^{(n)} \) epic.]

Clearly \(e^{(-1)} : (N \otimes (A_2 \otimes T))^{(-1)} \rightarrow M^{(-1)} \) is an isomorphism, both being zero. Suppose then that \(e^{(n-1)} : (N \otimes (A_2 \otimes T))^{(n-1)} \rightarrow M^{(n-1)} \) is isomorphism.

Let \(y \in (N \otimes (A_2 \otimes T))^{(n)} \) and suppose \(e(y) = 0 \). One may then write

\[
y = \sum b_i \otimes x_i^n + \sum c_j \otimes y_j^n + \sum d_k \otimes t_k^n + z \quad \text{where} \quad b_i \in A_2/\ker v, \quad c_j \in A_2/A_2S^3 \quad \text{(zero in case 1)}, \quad \text{and} \quad d_k \in A_2, \quad x_i^n, y_j^n, t_k^n \quad \text{being linearly}
\]
independent elements of X_n, Y_n, and T_n respectively, and

$$z \in (\mathbb{N} \otimes (A_2 \otimes T))^{(n-1)}.$$

Now A_2 is a free right module over C ($C = E$ in case 1), A_2' in case 2)) and let a_α be a base of A_2 over C. One may then write

$$y = \sum u_{i\alpha} a_\alpha \otimes x_i^n + \sum a_\alpha v_{j\alpha} \otimes y_j^n + \sum a_\alpha v_{k\alpha} \otimes t_k^n + z$$

with $u_{i\alpha} \in Z_2$, $v_{j\alpha} \in A_2'/(A_2' \otimes S^3)$, $v_k \in C$. Let $n = \sup \{\deg a_\alpha \mid \text{the coefficient of } a_\alpha \text{ in this expression is nonzero}\}.$

Let $\psi : M_\Delta \rightarrow M \otimes M \rightarrow M \otimes (M/M^{(n-1)})$ where Δ is the diagonal and the last map is the obvious quotient. If $m \in M^{(n-1)}$, then $\Delta(m) = \sum m' \otimes m''$ and each $m'' \in M^{(n-1)}$, so $\psi(m) = 0$. Similarly, if $\deg q = n$, then $\psi(q) = 1 \otimes q$. If $b \in C$, then $\psi(bq) = b\psi(q) = b(1 \otimes q) = 1 \otimes bq$, for C is a subHopf algebra annihilating 1, and thus $\psi(a_\alpha bq) = a_\alpha (1 \otimes bq) = a_\alpha (1) \otimes bq + \text{terms in which the first factor has lesser degree}$.

Composing with $\tau' : M \otimes (M/M^{(n-1)}) \rightarrow M \otimes (M/M^{(n-1)}) $ one has

$$0 = \tau' \psi(y) = \sum a_\alpha (1) \otimes \left\{ \sum u_{i\alpha} x_i^n + \sum v_{j\alpha} y_j^n + \sum v_{k\alpha} t_k^n \right\}$$

the sum being over those α such that $\deg(a_\alpha) = m$. Since kernel ψ is the ideal $A_2 \otimes C$, these classes $a_\alpha (1)$ are linearly independent, and the right hand factors must all be zero.

Thus $e : X_n \otimes (A_2'/(A_2' \otimes S^3)) \otimes Y_n \otimes (C \otimes T_n) \rightarrow M/M^{(n-1)}$ must have nontrivial kernel. Now

$$\bar{e} : \frac{N \otimes (A_2 \otimes T)}{(N \otimes (A_2 \otimes T))^{(n-1)}} \rightarrow \frac{M}{M^{(n-1)}}$$

is epic and induces isomorphisms on $H(\ ;Q_i)$ (since both e and $e^{(n-1)}$ do so).
Case 1): Thus

\[\tilde{\epsilon} : \oplus \left((A_2 \Lambda A_2^{a_1} \Lambda A_2^{a_2}) \otimes x_j \oplus (A_2 \otimes T_j) \right) \rightarrow \mathcal{M}/\mathcal{M}^{(n-1)} \]

induces isomorphisms on \(H(\; ; Q_1) \), \(i = 0,1 \).

a) \(\tilde{\epsilon} \) is monic on \(X_n \otimes T_n \). If \(\tilde{\epsilon}(x_n + t_n) = 0 \), then \(\pi(x_n + t_n) = 0 \) for \(\pi : \mathcal{M} \rightarrow \mathcal{M}/\mathcal{M}^{(n-1)} \), \(M \) factors through \(\mathcal{M}/\mathcal{M}^{(n-1)} \), and so \(\pi(t_n) \in \pi(M) \), making \(t_n = 0 \). Thus \(\tilde{\epsilon}(x_n) = 0 \), but \(x_n \) is a \(Q_0 \) cycle and represents zero in \(H(\mathcal{M}/\mathcal{M}^{(n-1)}; Q_0) \), so \(x_n \in \text{im} Q_0 \). Thus \(x_n = 0 \).

b) \(\tilde{\epsilon} \) is monic on \(Q_1 \otimes T_n \). If \(\tilde{\epsilon}(Q_1 t_n) = 0 \), then \(\tilde{\epsilon}(t_n) \) represents a class in \(H(\mathcal{M}/\mathcal{M}^{(n-1)}; Q_1) \) and there must be an \(x_n \) with \(\tilde{\epsilon}(x_n) = \tilde{\epsilon}(t_n) + Q_1 u = \tilde{\epsilon}(t_n) \). Applying a), \(t_n = 0 \).

c) \(\tilde{\epsilon} \) is monic on \(Q_0 t_1 \otimes T_n \). If \(\tilde{\epsilon}(Q_0 t_1 t_n) = 0 \), then \(Q_1 \tilde{\epsilon}(Q_0 t_1 t_n) = 0 \) so \(\tilde{\epsilon}(Q_0 t_n) \) represents a class in \(H(\mathcal{M}/\mathcal{M}^{(n-1)}; Q_1) \). Thus for some \(x_{n+1} \in X \), \(\tilde{\epsilon}(Q_0 t_n) + \tilde{\epsilon}(x_{n+1}) \in \text{im} \mathcal{Q}_{n+1} = 0 \). Then \(x_{n+1} \) is a \(Q_0 \) cycle and \(\tilde{\epsilon}(x_{n+1}) = Q_0 \tilde{\epsilon}(t_n) \), which by monicity on \(H(\; ; Q_0) \) makes \(x_{n+1} \in \text{im} Q_0 \). Thus \(x_{n+1} = 0 \), so \(\tilde{\epsilon}(Q_0 t_n) = 0 \) and by b) \(t_n = 0 \).

Case 2): Thus

\[\tilde{\epsilon} : \oplus \left((A_2 \Lambda A_2^{a_1} \Lambda A_2^{a_2}) \otimes y_j \oplus (A_2 \Lambda A_2^{a_1} \Lambda A_2^{a_2}) \otimes y_j \otimes A_2 \otimes T_j \right) \rightarrow \mathcal{M}/\mathcal{M}^{(n-1)} \]

induces isomorphisms on \(H(\; ; Q_1) \), \(i = 0,1 \).

a) \(\tilde{\epsilon} \) is monic on \(X_n \otimes Y_n \otimes T_n \). If \(\tilde{\epsilon}(x_n + y_n + t_n) = 0 \), then \(\pi(x_n + y_n + t_n) = 0 \) so \(\pi(t_n) \in \pi(M) \) and \(t_n = 0 \). Thus \(\tilde{\epsilon}(x_n + y_n) = 0 \), so \(0 = \text{Sq}^2 (\tilde{\epsilon}(x_n + y_n)) = \tilde{\epsilon} (\text{Sq}^2 x_n) + \tilde{\epsilon} (\text{Sq}^2 y_n) = \tilde{\epsilon} (\text{Sq}^2 y_n) \). Since \(\text{Sq}^2 y_n \) represents a nonzero class in \(H(\; ; Q_1) \), this gives \(y_n = 0 \). Then \(\tilde{\epsilon}(x_n) \) but \(x_n \) represents a nonzero class in \(H(\; ; Q_0) \), so \(x_n = 0 \).

b) \(\tilde{\epsilon} \) is monic on \(Q_0 \otimes Y_n \otimes Q_0 \otimes T_n \). If \(\tilde{\epsilon}(y_n + Q_0 t_n) = 0 \), then \(\tilde{\epsilon}(y_n + t_n) \) represents a class in \(H(\mathcal{M}/\mathcal{M}^{(n-1)}; Q_0) \), so \(\tilde{\epsilon}(y_n + t_n) = \tilde{\epsilon}(x_n) \) for
some x_n, and by a), $x_n = y_n = t_n = 0$.

c) \tilde{e} is monic on $Sq^2 \otimes Y_n \otimes Sq^2 \otimes T_n$. If $\tilde{e}(Sq^2 y_n + Sq^2 t_n) = 0$, then $0 = Sq^2 \tilde{e}(Sq^2 y_n + Sq^2 t_n) = q_1 Y_0 \tilde{e}(y_n + t_n)$ so $\tilde{e}(q_0 y_n + q_0 t_n)$ represents a class in $\mathcal{H}(M/M^{(n-1)}; Q_1)$ and there is an x_{n+1} with $\tilde{e}(x_{n+1} + q_0 y_n + q_0 t_n) = 0$. Thus the class represented by x_{n+1} in $\mathcal{H}(; Q_0)$ is trivial, so $x_{n+1} = 0$, giving $\tilde{e}(q_0 y_n + q_0 t_n) = 0$, and by b), $y_n = t_n = 0$.

d) \tilde{e} is monic on $Sq^2 Sq^1 \otimes Y_n \otimes Sq^2 Sq^1 \otimes T_n \otimes Sq^3 \otimes T_n$. If $\tilde{e}(Sq^2 Sq^1 y_n + Sq^2 Sq^1 t_n + Sq^3 t'_n) = 0$, apply Sq^1 to get $q_1 q_0 \tilde{e}(y_n + t_n) = 0$ and as in c), $y_n = t_n = 0$. Then $\tilde{e}(Sq^3 t'_n) = 0$ so $\tilde{e}(q_1 Sq^2 t'_n)$ = $\tilde{e}((Sq^3 Sq^2 + Sq^2 Sq^3 + Sq^3 t'_n) = 0$. Thus $\tilde{e}(Sq^2 t'_n)$ is a Q_1 cycle and $\tilde{e}(Sq^2 t'_n) = \tilde{e}(Sq^2 y_n + x_{n+2} + y'_n$ for some y'_n and x_{n+2}. Applying Sq^2 to this $\tilde{e}(q_1 t'_n + q_0 y'_n) = 0$ and as in c), $t'_n = y'_n = 0$.

e) \tilde{e} is monic on $Q_0 q_1 \otimes Y_n \otimes Q_0 q_1 \otimes T_n$, precisely as in c).

f) \tilde{e} is monic on $(Sq^5 + Sq^4 Sq^1) \otimes T_n$. Note that $q_1 Sq^2 = Sq^5 + Sq^4 Sq^1$. Thus if $\tilde{e}(q_1 Sq^2 t_n) = 0$, $\tilde{e}(Sq^2 t_n)$ represents a class in $\mathcal{H}(M/M^{(n-1)}; Q_1)$ so $\tilde{e}(Sq^2 t_n) = \tilde{e}(Sq^2 y_n + x_{n+2})$ for some y_n, x_{n+2}. Applying Sq^1 gives $\tilde{e}(Sq^3 t_n) = 0$ and by d), $t_n = 0$.

g) \tilde{e} is monic on $Sq^5 Sq^1 \otimes T_n$. If $\tilde{e}(Q_0 q_1 Sq^2 t_n) = 0$ then $\tilde{e}(Q_0 Sq^2 t_n)$ is a Q_1 cycle giving $\tilde{e}(Q_0 Sq^2 t_n) = \tilde{e}(x_{n+3} + Sq^2 y_{n+1} + q_1 (y_n + t'_n))$. Applying Q_0 gives $Q_0 q_1 \tilde{e}(y_n + t'_n) = 0$ and by e), $y'_n = t'_n = 0$. Thus the Q_0 homology class of $x_{n+3} + Sq^2 y_{n+1}$ is sent to zero, so $x_{n+3} = Sq^2 y_{n+1} = 0$ and $\tilde{e}(Q_0 Sq^2 t_n) = 0$ by d) this gives $t_n = 0$.

These computations then contradict the existence of m, and thus, one has $y = z \in (N \otimes (Q_2 \otimes T))^{(n-1)}$, but $e(y) = e^{(n-1)}(y) = 0$ gives $y = 0$.

Thus $e^{(n)}$ is monic, hence an isomorphism. By induction on n, e is then an isomorphism. **
Combining Lemmas 1 through 3 completes the proof of the main Anderson-Brown-Peterson theorem. **

As might be expected after this much effort, the cobordism computation is now a triviality. One has, of course,

$$\tilde{\Omega}_n^{Spin} \cong \lim_{r \to \infty} \pi_{n+r}^{TBSpin_{r,\infty}}$$

and

$$\tilde{\Omega}_n^{Spin^c} \cong \lim_{r \to \infty} \pi_{n+r}^{TBSpin^c_{r,\infty}}.$$

Proposition: The groups $\tilde{\Omega}_n^{Spin}$ and $\tilde{\Omega}_n^{Spin^c}$ are finitely generated.

Further, the maps

$$\pi : BSpin \to BSO$$

and

$$\pi' : BSpin^c \to BSO \times K(\mathbb{Z}, 2)$$

are odd primary homotopy equivalences, and induce odd primary homotopy equivalences on the Thom space level. Thus one has isomorphisms

$$\tilde{\Omega}_e^{Spin} \otimes \mathbb{Z}[1/2] \cong \tilde{\Omega}_e^{SO} \otimes \mathbb{Z}[1/2]$$

and

$$\tilde{\Omega}_e^{Spin^c} \otimes \mathbb{Z}[1/2] \cong \tilde{\Omega}_e^{SO(K(\mathbb{Z}, 2))} \otimes \mathbb{Z}[1/2].$$

In particular, all torsion in $\tilde{\Omega}_e^{Spin}$ and $\tilde{\Omega}_e^{Spin^c}$ is two primary.

Proof: Since Spin and Spinc bundles are naturally oriented for integral cohomology, this all follows from the Thom isomorphism and the fact that \ast^{*} and π' are isomorphisms on rational and \mathbb{Z}_p (p odd) cohomology. **
Turning to the 2-primary structure, one has the 2-primary homotopy equivalences

\[\text{Tf} \times g : \text{TBSpin} \longrightarrow BO \times \Pi K(\mathbb{Z}_2, \dim z_1) \]

and

\[\text{Tf} \times g : \text{TBSpin}^c \longrightarrow BU \times \Pi K(\mathbb{Z}_2, \dim z_1^c). \]

Now \(\pi_1(BO) \cong KO^{-1}(pt) \) is given by

<table>
<thead>
<tr>
<th>(i \mod 8)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\pi_1(BO))</td>
<td>2</td>
<td>(\mathbb{Z}_2)</td>
<td>(\mathbb{Z}_2)</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

and \(\pi_{2i}(BU) \cong \mathbb{Z} \), \(\pi_{2i+1}(BU) = 0 \), so one has easily:

Theorem: All torsion in \(\Omega Spin^c \) and \(\Omega Spin^c \) has order 2.

The main structure theorem is:

Theorem: Two Spin manifolds are cobordant if and only if they have the same KO theory and \(\mathbb{Z}_2 \) cohomology characteristic numbers. Two Spin\(^c\) manifolds are cobordant if and only if they have the same rational and \(\mathbb{Z}_2 \) cohomology characteristic numbers.

Proof: Let \(\alpha \in \Omega Spin^c \) with all KO and \(\mathbb{Z}_2 \) numbers zero. Then

\((\text{Tf} \times g)_*(\alpha) = 0 \) in \(\pi_*(BO \times \Pi K(\mathbb{Z}_2, \dim z_1)) \). Since \((\text{Tf} \times g)_* \) is an isomorphism mod odd torsion, \(\alpha \) is a torsion class of odd order and since all torsion in \(\Omega Spin^c \) is two primary, \(\alpha = 0 \).

If \(\alpha \in \Omega Spin^c \) has all rational and \(\mathbb{Z}_2 \) characteristic numbers zero, then \(\alpha \) is a torsion class. Further, the homotopy homomorphism induced by

\[g : \text{TBSpin}^c \longrightarrow \Pi K(\mathbb{Z}_2, \dim z_1^c) \]

sends \(\alpha \) to zero. Since \(g_* \) is an isomorphism on the torsion, this makes \(\alpha = 0 \). **
Proposition: If M and M' are two Spin manifolds with $\nu_R^J[M] = \nu_R^J[M']$ for all sequences J having no 1's, then M and M' have the same KO characteristic numbers.

Proof: Let $Tf : TS\text{pin} \to BO$ have fiber G. Let $[M - M'] \in \pi_8(BO)$, and then $(Tf)_\ast[M - M'] = 0$, so $[M - M'] = i_\ast[g]$ for some $g \in \pi_8(G)$. Let $p : TS\text{pin} \to BO$ be a map realizing some KO characteristic class. Then $p_\ast i_\ast[g] = 0$ giving the value of the characteristic number defined by p on $M - M'$.

Then G has mod 2 cohomology a free \mathbb{Z}_2 module (hence a free \mathbb{Z} module with homology zero) and trivial rational cohomology since G has the 2 primary homotopy type of a product of \mathbb{Z}_2 spectra. Thus in the stable range, G_n satisfies all the conditions used to analyze filtration on BO, so that any class in $KO_n(G_n)$ has filtration at least 2n. Thus $p_\ast i_\ast[g] = 0$ giving the result. **

In order to tell more about the structure of $\pi_n^S\text{pin}$, one may analyze the homotopy of $BO \times \Omega K(\mathbb{Z}_2, \dim z_1)$. From the knowledge of $\pi_n(BO)$ one has

For each sequence J containing no 1's and having $n(J)$ even, there is a Spin manifold M_J of dimension $4n(J)$, of infinite order in $\pi_n^S\text{pin}$, such that $\nu_R^J[M_J]$ is odd (as a multiple of the $KO^\ast(pt)$ generator), with all other KO theory numbers being zero (and the numbers $z_1[M_J]$ being zero). Applying complexification and the Chern character gives $\text{ch}(\nu_R^J[M_J] \otimes \xi) = \text{ch}(\nu_R^J \otimes \xi)[M_J] = \sigma_J[M_J]$, and the mod 2 characteristic number $\sigma_J[M_J]$ is odd.

For each sequence J containing no 1's and having $n(J)$ odd there are Spin manifolds N_J of dimension $4n(J) - 2$ and M_J of dimension $4n(J)$, N_J being of order 2 and M_J having infinite order, such that $\nu_R^J[N_J]$ and $\nu_R^J[M_J]$ are...
odd (as multiples of the KO*(pt) generator) and having the other KO theory and \(\mathbb{Z}_2 \) cohomology numbers zero.

One also has classes \(a \in \Omega^1_{\text{Spin}} = \mathbb{Z}_2 \), \(\tau \in \Omega^4_{\text{Spin}} = \mathbb{Z} \) and \(\omega \in \Omega^8_{\text{Spin}} = \mathbb{Z} \oplus \mathbb{Z} \) for which \(1[a], 1[\tau], \) and \(1[\omega] \) are all odd multiples of the KO*(pt) generator (and with \(\pi^2_R[\omega] = 0 \)). [Note: Applying \(\chi \) and dualization to \(A_2/A_2^{\text{Sq}^1} + A_2^{\text{Sq}^2} \) gives a polynomial algebra on classes of dimension 4, 6, 7, 15, ...; and the generating class for \(\mathbb{R}(\text{un}(2), \ldots, \omega) \) gives another 6 dimensional class. Thus \(T \) induces isomorphisms on \(\mathbb{Z}_2 \) cohomology through dimension 9, so no \(z_{i'} \) appear in this range.]

Finally one may find manifolds \(R_i \) of dimension equal to \(\dim z_i \), having order 2, for which all KO numbers vanish and with \(z_i, [R_i] = 0 \) or 1 as \(i' \neq i \) or \(i' = i \).

One then has the result of Anderson, Brown, and Peterson [7]:

Theorem: A basis for \(\Omega^p_{\text{Spin}} \otimes \mathbb{Z}_2 \) is given by

1) \([M_j] \times \omega^k \times a^i \), \(k \geq 0, 0 \leq i \leq 2, n(J) \) even,

2) \([M_j] \times \tau \times \omega^k \), \(k \geq 0, n(J) \) even,

3) \([R] \),

4) \([N_j], n(J) \) odd,

5) \([M_j] \times \omega^k \), \(k \geq 0, n(J) \) odd, and

6) \(([M_j] \times \tau)/4) \times \omega^k \times a^i \), \(k \geq 0, 0 \leq i \leq 2, n(J) \) odd.

Proof: This is immediate from the structure of \(\pi_* (BO \times \mathbb{R}(Z_2, \dim z_i')) \), with the classes in cases 1), 2), or 4) through 6) having the number \(\pi^J_R \) (for the same \(J \)) an odd multiple of the KO*(pt) generator. One need only note that \(\pi_* (BO(k, \ldots, \omega)) \) is a \(\pi_* (BO) \) module (using the tensor product) and that the image of \(\pi_4 (BO) \otimes \pi_{6k+4}(BO(8k+4, \ldots, \omega)) \) in \(\pi_{6k+8}(BO(8k+4, \ldots, \omega)) \) is the multiples of 4.
Theorem: Let $B_n^{SO} = \{ x \in H_n(BSO; \mathbb{Q}) | s_\omega(e) \hat{A}(x) \in \mathbb{Z} \text{ for all } \omega \}$, and $B_{n}^{SO} = \oplus B_{n}^{SO} \subset H_*(BSO; \mathbb{Q})$. Then $\tau : \Omega^*_{Spin} \rightarrow H_*(BSO; \mathbb{Q})$ maps $\Omega^*_{Spin}/\text{Torsion}$ isomorphically onto the subring of the polynomial ring $B_*^{SO} = \mathbb{Z}[x_{4i}]$ consisting of all classes whose dimension is a multiple of 8 and twice every class whose dimension is congruent to 4 mod 8.

In particular, all relations among the Pontrjagin numbers of Spin manifolds are given by the KO theoretic relations:

$$s_\omega(e) \hat{A}(M) \in \mathbb{Z} \text{ or } 2\mathbb{Z}$$

if $\dim M \equiv 0 \text{ or } 4 \text{ mod } 8$, respectively.

Proof: Let M^n be imbedded in S^{8N} for some large N, with Spin normal bundle ν. Then

$$s_\omega(e) \hat{A}(M) = \text{ch}(s_\omega(\pi_R) \otimes c) \cdot \phi_H^{-1}(\text{ch}(\psi(U(\nu))))[M],$$

$$= \phi_H^{-1}(\text{ch}(s_\omega(\pi_R) \otimes c)\text{ch}(\psi(U(\nu))))[M],$$

$$= \text{ch}(\psi c^*(\pi^*[s_\omega(\pi_R)]U(\nu)))[S^{8N}],$$

but $c^*(\pi^*[s_\omega(\pi_R)]U(\nu)) \in KO^{-n}(S^{8N})$ and this Chern character is integral and is even if $n \equiv 4 \text{ (8)}$.

Thus $\tau : \Omega^*_{Spin} \rightarrow B_*^{SO}$. From the analysis of B_*^{SO} in the study of SU cobordism, one has $B_*^{SO} = \mathbb{Z}[x_{4i}]$ and clearly image τ is contained in the asserted subring $A_* \subset B_*^{SO}$, $A_{8k} = B_{8k}^{SO}$ and $A_{8k+4} = 2B_{8k+4}^{SO}$.

Clearly image $\tau \subset A_*$ has 2 primary index in each dimension, for $\text{im } \tau \subset B_*^{SO} \subset \text{im } \hat{A}$ with $\hat{A} : \Omega^*_{Spin} \rightarrow \Omega^*_{SO}$ being an isomorphism mod odd torsion. Also from the study of Ω^*_{SU}, one has $\Omega^*_{SU} = \text{im } \beta_{8k+4}$ mapped onto $2B_{8k+4}^{SO}$, and this factors through τ, so $\text{im } \beta_{8k+4} = A_{8k+4}$.

For $(\text{im } \tau)_{8k}$, one has $s_\omega(e) \hat{A}(M^{8k}) \cdot \beta(1)^k = s_\omega(\pi_R)[M^{8k}]$ and for any sequence I belonging to $\nu(2k)$, write $I = 0,1,1,\ldots,1$, J having no 1's.
with p 1's. Let $M'_I = M_J \times \omega^{p/2}$ if p is even, $(M_J \times \tau)/4 \times \omega^{(p-1)/2}$ if p is odd. Then the numbers $K'_{R}[M'_I]$ are 0 if $K \neq J$ and odd if $K = J$. Thus the free group on the $\tau M'_I$ is contained in B_{SO} with odd index. Combined with the two primary index properties, this gives $B_{SO} = (\text{im} \tau)_{8k}$.

In order to understand a bit more of the structure of Ω^Spin_{8k}, suppose M is a Spin $8k + 2$ manifold, and let S^1 denote the circle with the unusual framing/Spin structure which represents the nonzero class $\alpha \in \Omega^\text{Spin}_{1} \otimes Z_2$. All Stiefel-Whitney numbers of S^1 are zero, so the same is true of the numbers of $S^1 \times M$. Further, all KO numbers of $S^1 \times M$ are zero since the dimension is $8k + 3$. Thus $S^1 \times M$ bounds, and let U have boundary $S^1 \times M$. Then $S^1 \times M = \partial(2U) = \partial(V \times M)$ where $\partial V = 2S^1$, and one may form $T(M) = 2U \cup [(V \times M)]/\partial(2U) \equiv \partial(V \times M)$ giving a closed Spin manifold of dimension $8k + 4$.

A different choice of cobordism U' of $S^1 \times M$ to zero changes $T(M)$ to $T(M) \cup 2[U' \cup (-U)/\partial U' = \partial U]$ in $\Omega^\text{Spin}_{8k+4}$ while a different choice of cobordism V' of $2S^1$ to zero replaces $T(M)$ by $T(M) \cup [V' \cup (-V)/\partial V' = \partial V] \times M = T(M) \cup X \times M$, but X is a 2 dimensional Spin manifold so $X \cdot M = a \cdot a^2 \cdot M$ with $a \in \mathbb{Z}_2$, and since $a \cdot M = 0$ this is also zero. Thus $T(M)$ gives a well defined class in $\Omega^\text{Spin}_{8k+4} \otimes \mathbb{Z}_2$.

This construction clearly depends only on the cobordism class of M and using disjoint unions is clearly additive, and thus defines a homomorphism $T : \Omega^\text{Spin}_{8k+2} \rightarrow \Omega^\text{Spin}_{8k+4} \otimes \mathbb{Z}_2$.

If N is an $8k$ dimensional Spin manifold, $\partial(U \times N) = S^1 \times M \times N$ and so $T(M \times N)$ is represented by $2U \times N \cup [-(V \times M \times N)]/\partial(2U \times N) \equiv \partial(V \times M \times N) = T(M) \times N$. Thus T is an Ω^Spin_{8k} module homomorphism.

If one considers Ω^Spin_{n} as $\nu_{n+k}(\text{TBSpin}_{n})$ for some large k, this may be realized as the following construction:
Let $f : S^{n+k} \to \text{TBSpin}_k$ represent M, $h : S^{n+k+1} \to S^{n+k}$ the suspension of the Hopf map, and $2 : S^{n+k+1} \to S^{n+k+1}$ a degree 2 map. One may deform 2 and h to be transverse regular on every point other than the base point, the inverse image of any regular value in S^{n+k} being S^1. If f is also transverse regular on BSpin_k, then $f \circ h$ is transverse regular on BSpin_k and defines the Spin manifold $2S^1 \times M$. Considering the cobordisms U and V as given by maps $u : D^{n+k+2} \to \text{TBSpin}_k$ and $v : D^{n+k+2} \to S^{n+k}$ (V being a framed cobordism of $2S^1$ to zero) extending $f h$ and $h \circ 2$ respectively, $u \circ 2$ and $v \circ 2$ fit together along their boundary to define a map of the $n + k + 2$ sphere into TBSpin_k which represents $T(M)$.

Being given any space X, with $\beta \in \pi_n(X)$ such that $\beta \circ \eta \in \pi_{n+1}(X)$ is zero, where $\beta \circ \eta$ is defined by $b \circ h : S^{n+1} \to S^n \to X$ with b representing β, h being the suspension of the Hopf map, one may deform $b \circ h$ to zero and $h \circ 2$ to zero (if $n \geq 3$) and joining these together define a class $< 2, n, \beta >$ in $\pi_{n+2}(X)$. A different choice of homotopy for $b \circ h$ changes this by a multiple of 2, while a different homotopy for $h \circ 2$ adds a composition $\beta \circ \eta \circ \eta$ which is zero. Thus the Toda bracket $< 2, n, > : \text{kernel}(\eta) \to \text{cokernel}(2)_{n+2}$ is well defined. This is just the operation T in the special case of TBSpin.

Considering the space Y formed from S^n by attaching an $n+2$ cell by means of b, $Y = S^n \cup \mathbb{H}^{n+2}$, the map $b : S^n \to X$ extends to $b : Y \to X$ and clearly the map $i : S^n \to Y$ gives $i \circ \eta = 0$. By naturality of the construction, one has $b_\eta(< 2, n, i >) = < 2, n, \beta >$. Considering the space Y more closely, it is clear that the cofibration $S^n \to Y \to S^{n+2}$ gives $H_n(Y; \mathbb{Z}) = H_{n+2}(Y; \mathbb{Z}) = \mathbb{Z}$ and all other positive dimensional groups are zero, and the obvious universal construction of $< 2, n, i >$ makes the composite $\nu \circ < 2, n, i >$ of degree 2. Now Y is just the $n+2$ skeleton of the two stage Postnikov system $K(Z, n+2) \to Z \to K(Z, n)$ with $\tau^2_{n+2} = 5S_2^2l_n$.

< 2, η, i > represents a generator of \(\pi_{c+2}(Y) \cong \mathbb{Z} \) which has Hurewicz image equal to twice a generator of \(H_{n+2}(Y; \mathbb{Z}) \).

Applying this to \(BO \), with \(\gamma \in \pi_{8k+2}(BO) \) the nonzero element \((\gamma \eta) \in \pi_{8k+3}(BO) = 0\) one has

\[
\begin{align*}
BO(8k+2, \ldots, \infty) & \rightarrow BO \\
& \downarrow c \\
Y & \rightarrow BO(8k+2, 8k+4)
\end{align*}
\]

with \(BO(8k+2, 8k+4) \) being the two stage Postnikov system

\(K(Z, 8k+1) \rightarrow BO(8k+2, 8k+4) \rightarrow K(Z, 8k+2) \) with \(i_{8k+4} = e^{8k+2} i_{8k+2} \). with \(b, c, \) and \(d \) being isomorphisms on \(\pi_{8k+4} \) and epic on \(\pi_{8k+2} \). Naturality of \(< 2, \eta, > \) then shows that \(< 2, \eta, \gamma > \) is the nonzero element in \(\pi_{8k+4}(BO) \oplus \mathbb{Z}_2 \).

This gives:

Proposition: If \(M \) is an \(8k + 2 \) dimensional Spin manifold, then \(\pi^J_R[T(M)] \) reduced mod 2 is the same as \(\pi^J_R[M] \).

Proof: Let \(a : S^{8k+2} \rightarrow TBSpin_{8k} \) represent \(M \) and \(p : TBSpin_{8k} \rightarrow BO \) represent \(\pi^J_RU \). Then \(\pi^J_R[M] = p_*[a] \in \pi_{8k+8l+2}(BO) \) and \(\pi^J_R[T(M)] \mod 2 = p_* (\langle 2, \eta, [a] \rangle) = \langle 2, \eta, p_*[a] \rangle \in \pi_{8k+8l+4}(BO) \oplus \mathbb{Z}_2 \). but \(< 2, \eta, > : \pi_{8k+8l+2}(BO) \cong \mathbb{Z}_2 \rightarrow \pi_{8k+8l+4}(BO) \oplus \mathbb{Z}_2 \cong \mathbb{Z}_2 \) is an isomorphism.

Now let \(I_\ast \subset \pi_\ast^{Spin} \) be the set of classes \([M]\) for which all \(KO \) theory characteristic numbers are zero. Since \(\pi_J^R(M \times N) = \sum_{j+k=1}^{j+k=1} \pi_J^R(M) \pi_K^R(N) \), \(I_\ast \) is an ideal. Letting \(G \) be the fiber of \(T_\ast : TBSpin \rightarrow BO \), \(I_\ast \) is precisely \(\text{image}(\pi^J_\ast(G) \rightarrow \pi_\ast^{Spin}) \), which is a \(\mathbb{Z}_2 \) vector space detected by \(\mathbb{Z}_2 \) cohomology characteristic numbers.
Let \(R_\ast \) be the ring \(\mathbb{Z}[x_{4i}, y_{8j+2}, \theta_1 | i \geq 1, j \geq 1] \) modulo the relations

\[
2y_1 = 2y_1 = y_t y_r = \theta_1 y_t = \theta_1^3 = 0, \quad y_{8j+2} x_4 = y_{8j+2} \theta_1^2, \quad y_{8j+2} x_8 t + 4 = y_{8j+2} \theta_1^2.
\]

Theorem: \(\Omega^{\text{Spin}}_e / I_\ast \) is isomorphic as ring with the subring \(A_\ast \) of \(R_\ast \) generated by the \(Y \)'s, \(\theta_1 \), the \(R_{8k} \) and \(2R_{8k+4} \).

Proof: Clearly \(I_\ast \) is the kernel of the homotopy map induced by \((Tf)_\ast : \tilde{T} \text{Spin} \to \Bbb{S} \), identifying \(\Omega^{\text{Spin}}_e / I_\ast \) with image \(((Tf)_\ast) \). Now \(I_\ast \subseteq \text{Torsion}(\Omega^{\text{Spin}}_e) \) so one has \(p : \Omega^{\text{Spin}}_e / I_\ast \to \Omega^{\text{Spin}} / \text{Torsion} \subseteq \Bbb{S} = \mathbb{Z}[x_{4i}] \), which completely annihilates the groups of dimension not a multiple of \(4 \), which are \(\mathbb{Z}_2 \) vector spaces, and since \(\pi_{4e} (\Bbb{S}) \) is torsion free, \(I_{4e} = \text{Torsion}(\Omega^{\text{Spin}}_e) \) and thus \(p : \Omega^{\text{Spin}}_e / I_{4e} \to \Omega^{\text{Spin}} / \text{Torsion} \).

Now \((Tf)_\ast : \Omega^{\text{Spin}}_e / I_\ast \to \pi_{4e} (\Bbb{S}) \) is an isomorphism and in fact coincides with the isomorphism \((Tf)_\ast : (\Omega^{\text{Spin}}_e / I_\ast)_1 \to \pi_1 (\Bbb{S}) \) in dimensions \(i \neq 0 (4) \). Thus one has a class \(\theta_1 \in \Omega^{\text{Spin}}_e / I_\ast \cong \Omega^{\text{Spin}}_e \) with \(\theta_1^3 = 2y_1 = 0 \) and the Toda bracket \(T = 2, n, \ast : \pi_{8k+2} (\Bbb{S}) \to \pi_{8k+4} (\Bbb{S}) \otimes \mathbb{Z}_2 \) is an isomorphism, and \(T : \Omega_{8k+2} / I_{8k+2} \to \Omega_{8k+4} / I_{8k+4} \otimes \mathbb{Z}_2 \) is an isomorphism. One may choose a unique element \(y_{8k+2} \in \Omega_{8k+2} / I_{8k+2} \) such that \(T(y_{8k+2}) \) is the mod 2 reduction of the class which maps by \(p \) into \(2x_{8k+4} \). Clearly \(2y_1 = 0, \theta_1 y_t = 0 \) being a class of dimension \(8k + 3 \), and \(Y \) \(Y \) being a torsion element in the free group \(\Omega^{\text{Spin}} / I_{4e} \).

\(\Omega^{\text{Spin}}_e / I_{8t} \) maps onto \(\Omega^{\text{Spin}}_e / I_{8t+1} \) for applying \((Tf)_\ast \), composition with \(n \) sends \(y_{8k} (\Bbb{S}) \) onto \(y_{8k+1} (\Bbb{S}) \) with kernel precisely the multiples of \(2 \), making \(\Omega^{\text{Spin}}_e / I_{8t+1} \cong \Omega^{\text{Spin}}_e / I_{8t} \). Applying \(T \) to \(\Omega^{\text{Spin}}_e / I_{8t} \), \(k = 1 \) \(\Omega^{\text{Spin}}_e / I_{8t-8k} \) gives the subgroup \(\Omega^{\text{Spin}}_e / I_{8t+4} \otimes \mathbb{Z}_2 \) spanned by the \(\Omega^{\text{Spin}}_e / I_{8e} \) multiples of classes mapped under \(p \) into \(2x_4 \) and the \(2x_{8k+4} \), and thus \(B_{8t+2} \) spans \(\Omega^{\text{Spin}}_e / I_{8t+2} \). The kernel of the map \(\Omega^{\text{Spin}}_e / I_{8t} \to \bigcup_{k=1} \Omega^{\text{Spin}}_e / I_{8t-8k} \to B_{8k+2} \) is precisely
the kernel of the composite with \(T \) which is precisely the multiples of 2 and the relations given by

\[
T(y_{8k+2}x_{8k+4}x_{8s+4}) = 2x_{8k+4}x_{8k+4}x_{8s+4}(\mod 2) = T(y_{8k+2}x_{8k+4}x_{8s+4})
\]

if \(k, l > 1, s + k + l + 1 = t \), or

\[
T(y_{8k+2}x_{4}x_{8s+4}) = 2x_{4}x_{8k+4}x_{8s+4}(\mod 2) = T(\sigma^{2}x_{8k+4}x_{8s+4})
\]

if \(k > 1, s + k + l = t \).

It is then immediate that \(\mathfrak{H}^{\text{Spin}}/\mathfrak{I} \) is isomorphic to the subring \(\mathfrak{A} \) of \(\mathfrak{R} \).

Returning to the \(\text{Spin}^{c} \) case one has

\[
\text{BU} \xrightarrow{t} \text{BSpin}^{c} \xrightarrow{\iota} \text{BSO} \times \text{BU}(1)
\]

with \(\iota^{-1} \) an isomorphism on rational cohomology and \(t^{*} \) being monic. One then has Pontrjagin classes \(\sigma_{1} \in H^{4}(\text{BSpin}^{c}; \mathbb{Q}) \) and a class \(c_{1} \in H^{2}(\text{BSpin}^{c}; \mathbb{Q}) \) with \(H^{*}(\text{BSpin}^{c}; \mathbb{Q}) = \mathbb{Q}[c_{1}^{*}, \sigma_{1}^{*}] \). One may then form the classes

\[
s_{\omega,j}(e) = s_{\omega}(e_{\sigma})e^{\omega} \quad \text{and} \quad s_{j} = e^{-c_{1}/2} \quad \text{in} \quad H^{*}(\text{BSpin}^{c}; \mathbb{Q}).
\]

Let \(\mathfrak{H}^{\text{Spin}^{c}} = \{ x \in H_{n}(\text{BSpin}^{c}; \mathbb{Q}) | s_{\omega,j}(e) \mathfrak{J}[x] \in \mathbb{Z} \text{ for all } \omega, j \} \) and

\[
\mathfrak{H}^{\text{Spin}^{c}} = \mathfrak{H}(\text{BSpin}^{c}; \mathbb{Q}) \subset H_{n}(\text{BSpin}^{c}; \mathbb{Q})
\]

\(\mathfrak{H}^{\text{Spin}^{c}} \) is a ring since \(\text{BSpin}^{c} \) admits an \(\mathbb{H} \)-space structure, with both \(t \) and \(\mathfrak{t} \) being \(\mathbb{H} \)-maps. This ring structure gives a diagonal map in

\[
H^{*}(\text{BSpin}^{c}; \mathbb{Q}) \quad \text{given by} \quad \Delta(\sigma_{1}) = \sum_{k=1}^{1} \sigma_{j} \otimes \sigma_{k} \quad \text{and} \quad \Delta(c_{1}) = c_{1} \otimes 1 + 1 \otimes c_{1}.
\]

Thus \(\Delta(s_{\omega}(e_{\mathfrak{J}})) = \sum_{k=1}^{1} s_{\omega}(e_{\mathfrak{J}}) \otimes s_{0^{k}}(e_{\mathfrak{J}}) \), \(\Delta(\mathfrak{J}) = \mathfrak{J} \otimes \mathfrak{J} \) and

\[
\Delta(e^{\mathfrak{J}}) = e^{\mathfrak{J}} \otimes e^{-\mathfrak{J}}(v \in \mathbb{Q})
\]

Let \(\mathfrak{H} = \mathbb{Z}[a_{i}] \otimes U, i > 1 \), where \(U \) is the free abelian group on elements \(u_{n}, n \in \mathbb{Z} (-\infty < n < \infty) \). Define a sum and product in \(\mathfrak{H} \) by...
\[(\sum p_k(a)u_k) + (\sum q_j(a)u_j) = \sum (p_k(a) + q_k(a))u_k. \]

For any \(x \in B_{\mathbb{C}}^{Spin} \), let \(\mathcal{O}(x) = \sum (s_{\omega,j}^c(e))x_j \cdot a \cdot u_j \in H \). Using the multiplication in \(H_*(BSpin^c;\mathbb{Q}) \) induced by the \(H \)-structure, the diagonal formulae show that \(B_{\mathbb{C}}^{Spin} \) is a subring of \(H_*(BSpin^c;\mathbb{Q}) \) and \(\mathcal{O} : B_{\mathbb{C}}^{Spin} \rightarrow B_{\mathbb{C}}^{Spin} \) is a ring homomorphism.

Letting \(\tau : H_{\mathbb{C}}^{Spin} \rightarrow H_*(BSpin^c;\mathbb{Q}) \), one has \(\text{image}(\tau) \subseteq B_{\mathbb{C}}^{Spin} \) for if \(M \) is a \(Spin^c \) manifold imbedded in \(S^{2m} \) with \(Spin^c \) normal bundle then
\[
\begin{align*}
\sigma_{\omega,j}(e)[M] &= \text{ch}(s_{\omega}^c(\tau_R) \otimes \theta_R \otimes \theta_j \cdot \xi^j) \cdot s_{\omega}^{-1}(c_1(v)/2) \cdot A(-v))[M], \\
&= \text{ch}^c(\pi^c(s_{\omega}^c(\tau_R) \otimes \theta_R \otimes \theta_j \cdot \xi^j) \cdot U(v))[S^{2m}],
\end{align*}
\]
where \(\xi \) is the complex line bundle over \(M \) with \(c_1(\xi) = c_1(\tau M) \).

If \(M \) is an almost complex manifold, then \(M \) has a \(Spin^c \) structure induced by \(t \), with \(c_1(\tau M) \) being the first Chern class of \(M \). This defines a ring homomorphism \(\mathcal{O}^U : B_{\mathbb{C}}^{Spin} \rightarrow B_{\mathbb{C}}^{Spin} \). In particular, if \(M \) is an almost complex manifold, \(s_{\omega,j}(e) \mathcal{J}[M] = s_{\omega}(e_j) \mathcal{J}[M] \), since \(c_1(M) = 0 \), and hence \(\mathcal{O}(\tau M) = \rho^c(\tau M) \cdot \sum u_j \), where \(\rho^c(x) = \sum s_{\omega}(e_j) \mathcal{J}[x] \theta_j \) is the homomorphism defined in the study of SU cobordism.

Let \(\tilde{\mathcal{O}} : B_{\mathbb{C}}^{Spin} \rightarrow \mathbb{Z}_2[a_1] \) be the composition of \(\mathcal{O} \) and the homomorphism \(\mathbb{H} \rightarrow \mathbb{Z}_2[a_1] \) which sends \(u_j \) into zero if \(j \neq 0 \) or into \(a_1 \) if \(j = 0 \), and which reduces \(\mod 2 \).
Proposition: $\mathcal{C}_2(\tau(\mathbb{G}(1)))$ has largest monomial

1) $a_{1/2}$ if i is even, and
2) 1 if $i = 1$.

Proof: If $i = 2j$, one needs only $s_{(j)}(e_{\mathbb{G}(2j)}) = s_{(j)}(e_{\mathbb{G}(2j)})$
$s_{(j)}(e_{\mathbb{G}(2j)}) = 2j + 1 \neq 0 \mod 2$. For $\mathbb{G}(1)$, the total Pontrjagin class
is 1, so $s_{(0)}(e_{\mathbb{G}(1)})$ is zero if $\omega \neq (0)$ and 1 if $\omega = (0)$, and $\hat{A} = 1$.
Then $s_{(0)}(e_{\mathbb{G}(1)}) = e^{1+1/2\hat{A}}[\mathbb{G}(1)] = 2j + 1$, which completes the
proof. **

Corollary: $(B_{\omega}^{\text{Spin}}/\text{Torsion}) \otimes Z_2$ is a polynomial algebra over Z_2
on classes y_i with $i = 2$ or $4k$. In addition, the image of Ω^U_{ω} in B_{ω}^{Spin}
has odd index in each dimension.

Now let p be an odd prime. Define $\mathcal{O}_p : B_{\omega}^{\text{Spin}} \to H \otimes Z_p$ to be the
mod p reduction of \mathcal{O}. For any integer k and any $\omega \in \pi(2k)$ a partition
of $2k$ into integers 2 and $4i$, $\omega = (2, \ldots, 2, k_{i_1}, \ldots, k_{i_\ell})$ with j 2's,
write $j = \lambda_0 + \lambda_1 p + \ldots + \lambda_s p^s$, $0 \leq \lambda_i < p$, and define

$$M_p^\omega = \mathbb{G}(1)^{\lambda_0} \times \ldots \times \mathbb{G}(p)^{\lambda_s} \times \mathbb{M}_{2i_1}^p \times \ldots \times \mathbb{M}_{2i_\ell}^p,$$

where \mathbb{M}_{2i}^p denote the SU manifolds whose existence was asserted in Chapter X.

Proposition: The elements $\mathcal{O}_p(\pi M_p^\omega) \in H \otimes Z_p$, for ω belonging to the
set of partitions of $2k$ into 2's and 4i's, are linearly independent.

Proof: Suppose one has $\sum n_\omega \mathcal{O}_p(\pi M_p^\omega) = 0$, $n_\omega \in Z_p$, with some $n_\omega \neq 0$
($\omega \in \pi(2k)$ of the given form). Write each $\omega = (2I_j, 4\omega)$, where I_j has
j 1's. Then among all ω with $n_\omega \neq 0$, let m denote the largest value of
j in any I_j, (i.e., $n_\omega \neq 0$ for some $\omega = (2I_m, 4\omega)$ and for any
$\omega' = (2I_j, 4\omega')$ with $n_\omega' \neq 0$, $j \leq m$).
Define $\phi : \mathbb{H} \otimes \mathbb{Z}_p \rightarrow \mathbb{Z}_p[a_1]$ by $\phi(u_1) = (-1)^m(-1)^m_i$ if $0 \leq i \leq m$ and zero otherwise. Then for any N, the coefficient of a^{i}_N in $\phi(\gamma N)$ is

$$
\sum_{i=0}^{m} (-1)^{m-i} e_{\gamma}^{i+1} [c_1]^{m} S_N = s_{\phi}(e_{\gamma}) (c_{1} - 1)^m S_N + \text{terms with } c_1 \text{ to a higher power}.
$$

Since c_1 is zero for an SU manifold, this gives

$$
\phi(\sum_{\omega} n_{\omega} \phi_p(\gamma \omega)) = \sum_{\omega} n_{\omega} S_N (e_{\gamma}) [M^p]^{c_1} [V^p]^{a_1} \omega,
$$

the latter sum being over $\omega = (2I_m, k\omega)$, and V^p_m being $\mathbb{C}P(1)^0 \times \ldots \times \mathbb{C}P(p^s)$ for $m = \nu_0 + \ldots + \nu_s^p$, $0 \leq \nu_i < p$. Then

$$
c^m_{1,m} = (\nu_0 + \ldots + \nu_s^p) c_1 \mathbb{C}P(1)^0 \ldots \mathbb{C}P(s)^0 c_1 \mathbb{C}P(p)^s,
$$

and

$$
c^m_{1,m} \mathbb{C}P(p^s)^{\mu} = \nu_1 (c_1 \mathbb{C}P(p^s)^{\mu})^{\mu} = \nu_1 (\mathbb{C}P(p^s)^{\mu+1}),
$$

so $c^m_{1,m}$ equals zero modulo p.

Hence $\sum_{\omega} n(2I_m, k\omega)^{s_0} (e_{\gamma}) [M^p]^{c_1} \omega = \sum_{\omega} n(2I_m, k\omega)^{s_0} \phi^p(\gamma \omega)$ is zero.

As was noted in the SU case, the polynomials $\phi^p(\gamma \omega)$ for $\omega \in \pi((2k-2m)$ are linearly independent, and thus all $n(2I_m, k\omega)^{s_0}$ are zero, contradicting the choice of m.

This shows that the index of the image of μ_{2k}^U in B_{2k} is not divisible by p for any odd prime p, or:

Theorem: All relations among the Pontrjagin-Chern numbers of Spinc manifolds are given by K theory; i.e. $\mathbb{H}^U_{\text{Spin}} = B_{\text{Spin}}^U$. Further, the forgetful homomorphism $\Omega^U_{\text{Spin}} \rightarrow \Omega^U_{\text{Spin}} /\text{Torsion}$ is epic.
Note: Another proof of this may be given by relating Ω^c_\bullet to $\Omega^c(\mathbb{G}_F(\mathbb{S}))$. Since π' is an odd primary homotopy equivalence, one may apply the result that for torsion-free spaces all odd primary relations in oriented bordism come from K theory.

For p an odd prime, the generator of $\Omega^c_{2(p-1)} \otimes \mathbb{Z}_p$ is the image of $\mathbb{G}_F(1)$, with $\mathcal{O}_p(\tau \mathbb{G}_F(1)) = \sum (2i+1)u_i$, so $\mathcal{O}_p(\tau \mathbb{G}_F(1)^p) = \mathcal{O}_p(\tau \mathbb{G}_F(1))$. An indecomposable generator of $\Omega^c_{2(p-1)} \otimes \mathbb{Z}_p$ is the image of \mathbb{M}_{p-1} for which $p^1(\mathbb{M}_{p-1}) = t \not\equiv 0 \mod p$, so $\mathcal{O}_p(\tau \mathbb{M}_{p-1}) = t \sum u_i$ and letting $u \cdot t \equiv 1 \mod p$ $\mathcal{O}_p(\tau (\mathbb{M}_{p-1} \times \mathbb{G}_F(1))) = \mathcal{O}_p(\tau \mathbb{G}_F(1))$. Then $\tau (\mathbb{M}_{p-1}) - \tau (\mathbb{G}_F(1)^{p-1})$ and $\tau (\mathbb{G}_F(1))$ are nonzero in $\Omega^c_{2(p-1)} \otimes \mathbb{Z}_p$, but their product is zero. Thus:

Proposition: $(\Omega^c_\bullet / \text{Torsion}) \otimes \mathbb{Z}_p$, p a prime, is a polynomial algebra over \mathbb{Z}_p if and only if $p = 2$.

Since for each prime p (odd) and each integer m, $c^m(\mathbb{G}_F) \neq 0 \mod p$, there exist manifolds $\nu_m \in \Omega^c_{2m}$, with $c^m(\nu_m)$ being a power of 2, hence classes $u_{2m} \in \Omega^c_{2m} \otimes \mathbb{Z}[1/2]$ with $c^m(u_{2m}) = 1$. By the SU-Spin results, $\Omega^c_{2m} \otimes \mathbb{Z}[1/2]$ is a polynomial algebra on classes x_{2i} (x_{2i} being the cobordism class of an SU manifold). Then $\Omega^c_{2m} \otimes \mathbb{Z}[1/2]$ is a free module over $\Omega^c_\bullet \otimes \mathbb{Z}[1/2] = \mathbb{Z}[1/2][x_{2i}]$ on the classes u_{2m}, and

$$u_{2i} \cdot u_{2j} = \delta_{i,j} u_{2(1+j)} + \sum \delta_{i,j,k} x_{\omega_{i,j}} u_{2k}.$$

$|\omega| + 2k = 2(1+j)$, $|\omega| > 0$, $\delta_{i,j,k} \in \mathbb{Z}[1/2]$, by the module structure.

Also $\delta_{i,j} = c_1(u_{2i} \cdot u_{2j}) = (i+j)c_1(u_{2i})c_1(u_{2j}) = (i+j)$.

This describes $(\Omega^c_\bullet / \text{Torsion}) \otimes \mathbb{Z}[1/2]$ and completes the Spinc case.
Relation to Framed Cobordism

Theorem: The forgetful homomorphism $F_n : \bigoplus_n^\text{fr} \rightarrow \bigoplus_n^\text{Spin}$ is an isomorphism in dimension 0, and for $n > 0$, $\text{image}(F_n) = 0$ for $n \neq 8k + 1$, $8k + 2$, $\text{image}(F_{8k+1}) \cong \text{image}(F_{8k+2}) \cong \mathbb{Z}_2$.

The forgetful homomorphism $F_n : \bigoplus_n^\text{fr} \rightarrow \bigoplus_n^\text{Spin}$ is an isomorphism in dimension zero and is zero if $n > 0$.

Proof: One may factor F_n through \bigoplus_n^SU or \bigoplus_n^U respectively, showing that these give upper bounds for the image. For the Spin case there are framed manifolds of dimensions $8k + 1$ and $8k + 2$ with the KO theory characteristic number 1 being nonzero. Since KO theory numbers are Spin cobordism invariants, these manifolds have nontrivial image in \bigoplus_n^Spin.

Relation to Unoriented Cobordism

Theorem: The images of the forgetful homomorphisms

$$F_n : \bigoplus_n^\text{Spin} \rightarrow \mathcal{N}_n \quad \text{and} \quad F_n : \bigoplus_n^\text{Spin} \rightarrow \mathcal{N}_n$$

are precisely the set of cobordism classes for which all Stiefel-Whitney numbers with a factor w_1 or w_2, and w_4 or w_5 respectively, are zero.

Proof: Since a Spin manifold has w_1 and w_2 zero, while a Spinc manifold has w_1 and w_3 zero, these sets of cobordism classes contain the images.

Now suppose $v \in H^*(BO; \mathbb{Z}_2)$ is zero on all Spin (resp. Spinc) manifolds of dimension n, and let M be any manifold for which all numbers divisible by w_1 and w_2 (resp. w_3) are zero. Then $\hat{p}^* : \tilde{H}^*(BO; \mathbb{Z}_2) \rightarrow \tilde{H}^*(\overline{\text{Spin}}^c; \mathbb{Z}_2)$ is epic and a class in $\tilde{H}^*(\overline{\text{Spin}}^c; \mathbb{Z}_2)$ vanishes on all of the homotopy of
\(\text{TB} \text{Spin}^c \) if and only if it belongs to \(\tilde{\mathbb{A}}_2 ^{\wedge}(\text{TB} \text{Spin}^c; \mathbb{Z}_2) \). Thus, letting \(\phi \) be the Thom isomorphism, \(\phi(v) \equiv \phi(x) \mod \tilde{\mathbb{A}}_2 ^{\wedge}(\text{TB} \text{Spin}^c; \mathbb{Z}_2) \) with \(x \in \ker(p^* : H^*(BO; \mathbb{Z}_2)) \rightarrow H^*(\text{BS} \text{Spin}^c; \mathbb{Z}_2) \). Since \(\phi^{-1}(\tilde{\mathbb{A}}_2 ^{\wedge}(\text{TB} \text{Spin}^c; \mathbb{Z}_2)) \) vanishes on all manifolds, this gives \(v[M] = x[M] \), where \(x = \sum \rho_i \delta_i (v_1) + \sum \beta_j \sigma_j (v_2) \) (resp. \(\sum \rho_1 \delta_1 (v_1) + \sum \beta_2 \sigma_2 (v_3) \)) with \(\rho, \sigma \in \tilde{\mathbb{A}}_2 ^{\wedge}; \). \(\delta_1, \beta_2 \in H^*(BO; \mathbb{Z}_2) \). Consider a number \(\alpha \cdot \rho(v_1)[M] \). Since \(\rho(v_1) = \lambda \omega^k \) with \(\lambda \in \mathbb{Z}_2 \), \(\alpha \cdot \rho(v_1)[M] = \alpha \cdot \lambda \omega^k [M] = 0 \) since all numbers of \(M \) divisible by \(v_1 \) are zero. Then consider a number \(\beta \cdot \sigma(w_2)[M] \) (resp. \(\beta \cdot \sigma(w_3)[M] \)). If degree(\(\sigma \)) = 0, this vanishes since all numbers of \(M \) divisible by \(w_2 \) (or \(w_3 \)) are zero. Suppose \(\beta \cdot \sigma(w_j)[M] = 0 \) whenever degree(\(\sigma \)) < degree(\(\sigma \)), and let \(\delta \sigma = \sigma \cdot 1 + \sum \sigma^1 \otimes \sigma^2 + 1 \otimes \sigma \). Then

\[
\beta \cdot \sigma(w_j)[M] = \sigma(\beta \cdot w_j)[M] + \sum (\sigma \cdot \beta \cdot \omega^k w_j)[M] + \sigma \beta \cdot w_j[M],
\]

since the last terms vanish by the inductive assumption. Now \(\sigma(\beta \cdot w_j)[M] = v_0 \cdot \beta \cdot w_j[M] \) where \(v_0 \) is a "Wu class" defined by \(\sigma \) in \(H^*(BO; \mathbb{Z}_2) \), and this vanishes on \(M \) being divisible by \(w_j \). Thus \(v \) vanishes on \(M \) also.

Since any number which vanishes on image(\(F_n \)) also vanishes on \(M \), one must have \([M] \in \text{image}(F_n) \). Thus, image(\(F_n \)) is as asserted. **

Open question: Can one describe these images nicely as subrings of \(\text{Spin}^c \)?

Relation to Oriented Cobordism

Theorem: The forgetful homomorphism \(F_n : \text{Spin}_n \rightarrow U_n \) has kernel the ideal generated by \(a \in \text{Spin}_1 \). In particular, kernel(\(F_n \)) = 0 if \(n \neq 8k + 1, 8k + 2 \), with kernel(\(F_{8k+1} \)), \(i = 1, 2 \), being \(U_{8k} \cdot a^i \) where \(U_{8k} \subset \text{Spin}_{8k} \) is a subgroup mapping isomorphically onto \(\text{Spin}_{8k} / \text{Torsion} \).
Proof: Since \(\Omega^S_{-1} = 0 \), kernel(\(F_a \)) contains the ideal generated by \(a = 1 \).
If \(x \in \ker F_a \), then \(x \) must be a torsion element, \(F_a \) being a rational isomorphism. Thus \(\ker F_a \subset \text{Torsion} \Omega^S_{\text{Spin}} \) mapping monomorphically into \(\Omega^S_{\text{Spin}} \oplus \mathbb{Z} \). Since the manifolds \(M_j \), \(\tau \), and \(\omega \) all have infinite order, a basis for \(\text{Torsion} \Omega^S_{\text{Spin}} \subset \Omega^S_{\text{Spin}} \oplus \mathbb{Z} \) is given by the classes \([M_j] \times \omega^k \times a^i \), \(i > 0 \); \([([M_j] \times \tau)/4] \times \omega^k \times a^i \), \(i > 0 \); \([R_i] \) and \([N_j] \). (These are the images of torsion classes and modulo these one gets the same rank as \(\Omega^S_{\text{Spin}} / \text{Torsion} \oplus \mathbb{Z} \), so this must be the image of the torsion subgroup.) Now the classes \([R_i] \) and \([N_j] \) are detected by \(\mathbb{Z} \) cohomology, and hence kernel(\(F_a \)) is the vector space spanned by the given multiples of \(a \). The classes \([M_j] \times \omega^k \) and \([([M_j] \times \tau)/4] \times \omega^k \) are, of course, a base for \(\Omega^S_{\text{Spin}} / \text{Torsion} \oplus \mathbb{Z} \), and hence, choosing a subspace \(U_{3k} \) as in the theorem, \(\ker F_{3k+1} = U_{3k} \cdot a^i \), \(i = 1, 2 \).

Note: The images of \(\Omega^S_{\text{Spin}} \) in \(\Omega^S_{\text{SO}} / \text{Torsion} \) (recall \(\Omega^S_{\text{SO}} \)) and in \(\Omega^S_{\text{SO}} / \text{Torsion} \) have been described, essentially giving image(\(F_a \)).

Theorem: The forgetful homomorphism \(G_a : \Omega^C_{\text{Spin}} \longrightarrow \Omega^S_{\text{SO}}(BU(1)) \) is mono, while \(F_a : \Omega^C_{\text{Spin}} \longrightarrow \Omega^S_{\text{SO}} \) has torsion-free kernel. Further, the composite \(\Omega^C_{\text{Spin}} F_a : \Omega^S_{\text{SO}} \longrightarrow \Omega^S_{\text{SO}} / \text{Torsion} \) is epic.

Proof: \(G_a \) is induced by \(v' \) and is a rational isomorphism, so ker\(G \) consists of torsion. Since the torsion is detected by \(\mathbb{Z} \) cohomology characteristic numbers, all of which come from \(H^*(BO; \mathbb{Z}) \), the torsion of \(\Omega^C_{\text{Spin}} \) maps monomorphically into \(\Omega^C_{\text{Spin}} \). Hence ker\(G_a = 0 \). Similarly, ker\(F_a \) must be torsion free. Since \(\Omega^U_{\text{Spin}} \longrightarrow \Omega^S_{\text{SO}} / \text{Torsion} \) is epic and factors through \(\Omega^C_{\text{Spin}} \), \(\text{soF}_a \) is epic.
Note: \(\ker F_* \) may also be described as the ideal generated by the odd projective spaces \(\mathbb{CP}(2k+1) \). Certainly all Pontrjagin numbers and Stiefel-Whitney numbers of \(\mathbb{CP}(2k+1) \) are zero, so \(F_* \) sends this ideal to zero. Let \(R_* = \mathbb{Z}[y_{4i}] \subset \Omega_*^{\text{Spin}^c} \) be a subring mapped isomorphically to \(\mathbb{H}^0/\text{Torsion} \).

Then the class \(y_{4i} \) may be used to replace \(\mathbb{CP}(2i) \) or \(M^p_{2i} \) in the mod \(p \) calculations proving that \(\Omega_*^{\text{Spin}^c}/\text{Torsion} \) is generated by \(R_* \) and the \(\mathbb{CP}(2k+1) \).

Let \(S_* \) be the subring of \(\Omega_*^{\text{Spin}^c} \) generated by the \(\mathbb{CP}(2k+1) \) and \(R_* \). \(S_* \) can contain no torsion classes, for a torsion class in \(S_* \) must belong to the ideal generated by the \(\mathbb{CP}(2k+1) \) (being in the kernel of \(\pi_*F_* \)), hence is in the kernel of \(F_* \), but \(\ker F_* \) has no torsion. Thus

\[
\Omega_*^{\text{Spin}^c} = S_* \oplus \text{Torsion} (\Omega_*^{\text{Spin}^c})
\]

and so \(\ker F_* = \ker F_* |_{S_*} \) is the ideal generated by the \(\mathbb{CP}(2k+1) \).

Relation to Complex Cobordism

The only reasonable result here is:

Proposition: \(\Omega_*^{U} \) maps onto \(\Omega_*^{\text{Spin}^c}/\text{Torsion} \) under the forgetful homomorphism.

This has, of course, already been proved.

Relation to Special Unitary Cobordism

The interesting result here is:

Proposition: The forgetful homomorphism \(F_* : \Omega_*^{SU} \longrightarrow \Omega_*^{\text{Spin}^c} \) is monic on the torsion subgroup.
Proof: If M is an $8k + \varepsilon$ dimensional SU manifold, M is cobordant to $N^{8k} \times \varepsilon^c$ for some N^{8k}. Then for $\omega \in \pi(2k)$

$$s_\omega(\pi^8(\pi \oplus \varepsilon))[M] = s_\omega(\pi^8(\pi \oplus \varepsilon))[N] \mod 2,$$

$$= s_\omega(e)[N] \mod 2,$$

$$= s_\omega(\pi)[N] \mod 2,$$

$$= s_\omega(\pi)[M]$$

and these numbers detect $[M]$ in the two cases. **

Relation of Spin and Spinc

It is readily verified that the map $g : B\text{Spin} \times BU(1) \to B\text{Spin}^c$ classifying the sum of the canonical bundles is a homotopy equivalence. Since $TBU(1) = GSp(\omega)$, one has

Proposition: $\nu^n \text{Spin}^c = \nu^n GSp(\omega)$.

One may relate the pair $(\text{Spin}, \text{Spin}^c)$ through exact sequences in precisely the same way as (SU, U) are related (or as (SO, U) are related). Computationally this is not of much use since one has no way to nicely describe the torsion in $\nu^n \text{Spin}^c$.

Appendix 1

Advanced Calculus

This appendix collects the results from standard advanced calculus which are needed for geometric arguments in cobordism theory. These results are lifted bodily from the following sources:

Definition: A function \(f : \mathbb{R}^n \to \mathbb{R}^m \) is differentiable at \(a \in \mathbb{R}^n \) if there is a linear transformation \(\lambda : \mathbb{R}^n \to \mathbb{R}^m \) such that

\[
\lim_{h \to 0} \frac{|f(a + h) - f(a) - \lambda(h)|}{|h|} = 0
\]

Proposition: If \(f : \mathbb{R}^n \to \mathbb{R}^m \) is differentiable at \(a \in \mathbb{R}^n \), there is a unique linear transformation \(\lambda : \mathbb{R}^n \to \mathbb{R}^m \) for which the above holds.

Proof: If \(\mu : \mathbb{R}^n \to \mathbb{R}^m \) is another such linear transformation, \(x \in \mathbb{R}^n \) and \(t \in \mathbb{R} \), then
\[
\frac{\lambda(x)-\mu(x)}{|x|} = \lim_{t \to 0} \frac{\lambda(tx)-\mu(tx)}{|tx|}
\]

\[
= \lim_{t \to 0} \frac{\lambda(tx)-f(a+tx)+f(a)+f(a+tx)-f(a)-\mu(tx)}{|tx|}
\]

\[
= \lim_{t \to 0} \frac{f(a+tx)-f(a)-\lambda(tx)}{|tx|} + \lim_{t \to 0} \frac{f(a+tx)-f(a)-\mu(tx)}{|tx|}
\]

\[
= 0 + 0
\]

so \(\lambda(x) = \mu(x)\) for all \(x\). *

Definition: The linear transformation \(\lambda\) satisfying the above condition is denoted \(Df(a)\) and is called the derivative of \(f\) at \(a\).

Lemma: If \(T: \mathbb{R}^n \to \mathbb{R}^m\) is a linear transformation, there is a number \(M\) such that \(|T(h)| \leq M|h|\) for all \(h \in \mathbb{R}^n\).

Proof: Let \(e_i^1, e_j^2\) be the usual bases of \(\mathbb{R}^n\) and \(\mathbb{R}^m\) respectively and define \(t_{ij} \in \mathbb{R}\) by \(T(e_i^1) = \sum t_{ij} e_j^2\). If \(h = \sum h_i e_i^1\), then

\[
|T(h)| = \sqrt{\sum_j (\sum_i h_i t_{ij})^2} \leq \sum_j \sum_i h_i t_{ij} \leq \sum_j \sum_i |t_{ij}| |h_i| \leq mm \sup_{i,j} |t_{ij}| |h|.
\]

Thus it suffices to take \(M = mm \sup_{i,j} |t_{ij}|\). *

Proposition: If \(f: \mathbb{R}^n \to \mathbb{R}^m\) is differentiable at \(a \in \mathbb{R}^n\), then it is continuous at \(a\).

Proof: Let \(\epsilon > 0\). Since \(\lim_{x \to a} \frac{|f(x)-f(a)-Df(a)(x-a)}{|x-a|} = 0\), there is a \(\delta_1 > 0\) so that \(|x-a| < \delta_1\) implies
\[|f(x) - f(a) - Df(a)(x-a)| < (\varepsilon/2)|x-a|. \]

By the lemma, there is an M such that $|Df(a)(h)| \leq M|h|$. Let
\[
\delta = \text{minimum of } (\delta_1, \varepsilon/2M, 1). \text{ Then } |x-a| < \delta \text{ implies }
\]
\[
|f(x) - f(a)| \leq |f(x) - f(a) - Df(a)(x-a)| + |Df(a)(x-a)|
\]
\[
< (\varepsilon/2)|x-a| + M|x-a|
\]
\[
\leq (\varepsilon/2) + M(\varepsilon/2M)
\]
\[
= \varepsilon.
\]

Hence f is continuous at a. *

Theorem: (Chain Rule) If $f : \mathbb{R}^n \rightarrow \mathbb{R}^m$ is differentiable at $a \in \mathbb{R}^n$, and $g : \mathbb{R}^m \rightarrow \mathbb{R}^p$ is differentiable at $f(a) = b \in \mathbb{R}^m$, then the composition $g \circ f : \mathbb{R}^n \rightarrow \mathbb{R}^p$ is differentiable at a, and

\[D(g \circ f)(a) = Dg(f(a)) \circ Df(a). \]

Proof: Define

\[
\phi(x) = f(x) - f(a) - \lambda(x-a)
\]
\[
\psi(y) = g(y) - g(b) - \mu(y-b),
\]

where $\lambda = Df(a)$, $\mu = Dg(f(a))$. Then

\[
g(f(x)) - g(b) - \mu \lambda(x-a) = g(f(x)) - g(b) - \mu(f(x) - f(a) - \phi(x))
\]
\[
= [g(f(x)) - g(b) - \mu(f(x) - b)] + \mu(\phi(x))
\]
\[
= \psi(f(x)) + \mu(\phi(x)).
\]
By the lemma, there is an M_1 such that $|\nu(h)| \leq M_1|h|$, so

$$0 \leq \lim_{x \to a} \frac{\nu(\psi(x))}{|x-a|} \leq M_1 \lim_{x \to a} \frac{\psi(x)}{|x-a|} = 0$$

Now let $\varepsilon > 0$ and choose an M_2 so that $|\lambda(h)| \leq M_2|h|$. Since

$$\lim_{y \to b} \frac{\psi(y)}{|y-b|} = 0$$

there is a $\delta_1 > 0$ so that $|\psi(f(x))| < (\varepsilon/M_2)|f(x) - b|$ if $|f(x) - b| < \delta_1$. Since differentiability implies continuity, there is a $\delta_2 > 0$ so that $|x-a| < \delta_2$ implies $|f(x) - b| < \delta_1$. Thus if $|x-a| < \delta_2$,

$$|\psi(f(x))| < (\varepsilon/M_2)|f(x) - b|$$

$$= (\varepsilon/M_2)|\psi(x) + \lambda(x-a)|$$

$$\leq (\varepsilon/M_2)|\psi(x)| + \varepsilon|x-a|$$

and so

$$0 \leq \lim_{x \to a} \frac{\psi(f(x))}{|x-a|} \leq \frac{\varepsilon}{M_2} \lim_{x \to a} \frac{\psi(x)}{|x-a|} + \varepsilon = \varepsilon,$$

and since this holds for all $\varepsilon > 0$

$$\lim_{x \to a} \frac{\psi(f(x))}{|x-a|} = 0.$$ *

Proposition: 1) If $f : \mathbb{R}^n \to \mathbb{R}^m$ is a constant function, then $Df(a) = 0$.

2) If $f : \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation, then $Df(a) = f$.

3) If $f : \mathbb{R}^n \to \mathbb{R}^m : x \mapsto (f^1(x), \ldots, f^m(x))$, then f is differentiable at $a \in \mathbb{R}^n$ if and only if each f^i is differentiable at a, and $Df(a) = (Df^1(a), \ldots, Df^m(a))$.

4) If $f, g : \mathbb{R}^n \to \mathbb{R}^m$ are differentiable at $a \in \mathbb{R}^n$, then $f + g : \mathbb{R}^n \to \mathbb{R}^m$ is differentiable at a, and

$$D(f+g)(a) = Df(a) + Dg(a).$$
5) If \(f, g : \mathbb{R}^n \to \mathbb{R} \) are differentiable at \(a \in \mathbb{R}^n \), then
\[f \cdot g : \mathbb{R}^n \to \mathbb{R} \] is differentiable at \(a \), and
\[D(f \cdot g)(a) = f(a) \cdot Dg(a) + g(a) \cdot Df(a). \]

Proof:

1) If \(f(x) = y \) for all \(x \), then
\[\lim_{h \to 0} \frac{|f(a+h) - f(a) - 0|}{|h|} = \lim_{h \to 0} \frac{|y - y - 0|}{|h|} = 0. \]

2) \[\lim_{h \to 0} \frac{|f(a+h) - f(a) - f(h)|}{|h|} = \lim_{h \to 0} \frac{|f(a)+f(h) - f(a) - f(h)|}{|h|} = 0. \]

3) If each \(f^i \) is differentiable and \(\lambda = (Df^1(a), \ldots, Df^m(a)) \), then
\[f(a+h)-f(a)-\lambda(h) = (f^1(a+h)-f^1(a)-Df^1(a)(h), \ldots, f^m(a+h)-f^m(a)-Df^m(a)(h)) \]

so
\[\lim_{h \to 0} \frac{|f(a+h) - f(a) - \lambda(h)|}{|h|} \leq \sum_{i=1}^m \lim_{h \to 0} \frac{|f^i(a+h) - f^i(a) - Df^i(a)(h)|}{|h|} = 0. \]

Conversely, \(f^i \) is the composition of \(f \) and the projection \(\pi_i \) which is linear, so \(Df^i(a) = D(\pi_i \circ f)(a) = \pi_i Df(a) \).

4) Let \(s : \mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}^m : (x, y) \to x + y \), and let
\((f, g) : \mathbb{R}^n \to \mathbb{R}^m \times \mathbb{R}^m : a \to (f(a), g(a)) \). Then \(s \) is linear, so \(Ds = s \) and by 3), \(D(f, g) = (Df, Dg) \). By the chain rule,
\[D(f+g)(a) = Ds(f(a), g(a)) \circ D(f, g)(a) \]
\[= s(Df(a), Dg(a)) \]
\[= Df(a) + Dg(a). \]
5) Let \(p : \mathbb{R}^2 \rightarrow \mathbb{R} : (x,y) \rightarrow xy \). By the chain rule, it suffices to show that \(Dp(a,b)(x,y) = bx + ay \). Letting \(\lambda(x,y) = bx + ay \),

\[
\lim_{(h,k) \to 0} \frac{|p(a+h,b+k)-p(a,b)-\lambda(h,k)|}{|(h,k)|} = \lim_{(h,k) \to 0} \frac{|hk|}{|(h,k)|}.
\]

Since \(|hk| \leq \sup(|h|^2, |k|^2) \leq |h|^2 + |k|^2 \), one has

\[
0 \leq \lim_{(h,k) \to 0} \frac{|hk|}{|(h,k)|} \leq \lim_{(h,k) \to 0} \frac{|(h,k)|^2}{|(h,k)|} = \lim_{(h,k) \to 0} |(h,k)| = 0. \]

Proposition: If \(f : \mathbb{R} \rightarrow \mathbb{R} \) is differentiable at \(a \in \mathbb{R} \) and has either a relative maximum or relative minimum at \(a \), then \(Df(a) = 0 \).

Proof: Let \(Df(a)(h) = \theta h \) with \(\theta \in \mathbb{R} \). If \(a \) is a relative maximum, then \(f(a+h) - f(a) \leq 0 \) and so if \(\theta h > 0 \),

\[
0 = \lim_{h \to 0} \frac{|f(a+h) - f(a) - \theta h|}{|h|} \geq \lim_{h \to 0} \frac{|\theta h|}{|h|} = |\theta|.
\]

If \(a \) is a relative minimum, then \(f(a+h) - f(a) \geq 0 \) so if \(\theta h < 0 \),

\[
0 = \lim_{h \to 0} \frac{|f(a+h) - f(a) - \theta h|}{|h|} \geq \lim_{h \to 0} \frac{|\theta h|}{|h|} = |\theta|.
\]

Theorem: (Rolle) Let \([a,b] \subseteq \mathbb{R} \) and \(f : [a,b] \rightarrow \mathbb{R} \) a continuous function with \(f(a) = f(b) = 0 \) and such that \(Df(c) \) exists for all \(a < c < b \). Then \(Df(c) = 0 \) for some \(c \) with \(a < c < b \).

Proof: If \(f \) is not identically zero, in which case \(Df(c) = 0 \) for all \(c \in (a,b) \), then \(f \) has a positive maximum or a negative minimum which must occur at some \(c \in (a,b) \). Thus \(c \) is either a relative maximum or relative minimum and so \(Df(c) = 0 \) by the proposition.
Theorem: (Mean Value) Let \([a,b] \subseteq \mathbb{R}\) and \(f : [a,b] \to \mathbb{R}\) a continuous function which is differentiable at all points \(c \in (a,b)\). Then there is a point \(c \in (a,b)\) so that

\[
f(b) - f(a) = Df(c)(b-a)
\]

Proof: Let \(F(x) = f(x) - f(a) - [(f(b) - f(a))/(b-a)](x-a)\). Then \(F\) satisfies the conditions of Rolle's theorem, so for some \(c \in (a,b)\),

\[
0 = D F(c) = Df(c) - [(f(b) - f(a))/(b-a)] \cdot 1
\]

where \(1 : \mathbb{R} \to \mathbb{R}\) is the identity function. *

Definition: If \(f : \mathbb{R}^n \to \mathbb{R}\) and \(a \in \mathbb{R}^n\), then the limit

\[
\lim_{h \to 0} \frac{f(a_1, \ldots, a_i+h, a_{i+1}, \ldots, a_n) - f(a_1, \ldots, a_n)}{h}
\]

is called the \(i\)-th partial derivative of \(f\) at \(a\), denoted \(D_i f(a)\), when it exists.

Theorem: If \(f : \mathbb{R}^n \to \mathbb{R}^m\) has the property that all of the partial derivatives \(D_j^i f(x)\) exist in an open set containing \(a\) and are continuous at \(a\), then \(D f(a)\) exists.

Proof: It suffices to show \(D f^i(a)\) exists, so one may assume \(m = 1\).

Then

\[
f(a+h)-f(a) = \sum_{i=1}^{n} \left[f(a_1+h_1, \ldots, a_i+h, a_{i+1}, \ldots, a_n) - f(a_1+h_1, \ldots, a_i-h, a_{i+1}, \ldots, a_n) \right]
\]

\[
= \sum_{i=1}^{n} h^i D_i f(c_i)
\]

for some point \(c_i = (a_1+h_1, \ldots, a_i-h, a_{i+1}, \ldots, a_n)\) where

\(0 < \theta_i < 1\), by the mean value theorem. Hence
\[\lim_{h \to 0} \frac{|f(a+h) - f(a) - \mathbf{H}^i \cdot D^i f(a)|}{|h|} = \lim_{h \to 0} \frac{|\mathbf{H}^i [D^i f(c^i) - D^i f(a)]|}{|h|} \]

\[\leq \lim_{h \to 0} \sum \left| D^i f(c^i) - D^i f(a) \right| \cdot \frac{|h^i|}{|h|} \]

\[\leq \lim_{h \to 0} \sum \left| D^i f(c^i) - D^i f(a) \right| \]

\[= 0 \]

by continuity of \(D^i f \) at \(a \). Thus \(Df(a)(h) = \sum D^i f(a) \cdot h^i \). *

Definition: For \(f : \mathbb{R}^n \to \mathbb{R} \), the function \(D^i_1 \ldots , i^r f \) defined by

\[D^i_1 \ldots , i^r f = D^i_1 (D^i_1 \ldots , i^r f) \]

is called an \(r \)-th order partial derivative of \(f \). The function \(f \) is said to be of class \(C^r \) if all partial derivatives (of all orders) exist.

Theorem: If \(f : \mathbb{R}^n \to \mathbb{R} \) and \(D^i_1 f \) and \(D^i_j f \) exist and are continuous in an open set containing \(a \in \mathbb{R}^n \), then

\[D^i_1 f(a) = D^i_j f(a). \]

Proof: It suffices to consider the case \(n = 2 \). Let \(a = (c,d) \) and let \((h,k) \in \mathbb{R}^2\) be small enough so that both \(D^i_1 f \) and \(D^i_2 f \) are defined on \(\{(x,y) : |x-c| < h, |y-d| < k\} \). Let

\[\phi(x) = f(x,d+k) - f(x,d) \]

\[\psi(y) = f(c+h,y) - f(c,y). \]

Then

\[a = f(c+h,d+k) - f(c,d+k) - f(c+h,d) + f(c,d) = \phi(c+h) - \phi(c) \]

\[= \psi(d+k) - \psi(d) \]
There is a \(c' \in (c, c+h) \) with

\[
\alpha = \psi(c+h) - \psi(c) = D\psi(c') \cdot h
\]

\[
= [D_1 f(c',d+k) - D_1 f(c',d)] \cdot h
\]

\[
= D_{2,1} f(c',d') \cdot h k
\]

for some \(d' \in (d,d+k) \).

There is a \(d'' \in (d,d+k) \) with

\[
\alpha = \psi(d+k) - \psi(d) = D\psi(d'') \cdot k
\]

\[
= [D_2 f(c+h,d'') - D_2 f(c,d'')] \cdot k
\]

\[
= D_{1,2} f(c'',d'') \cdot h k.
\]

for some \(c'' \in (c,c+h) \).

Thus every open set \(U \) containing \(a \) contains points \(p',p'' \) with

\[
D_{1,2} f(p') = D_{2,1} f(p'').
\]

By continuity of the \(D_{1,j} f \) this gives

\[
D_{1,2} f(a) = D_{2,1} f(a).
\]

Proposition: If \(f : \mathbb{R}^n \to \mathbb{R} \) is a \(C^\infty \) function and \(x_0 \in \mathbb{R}^n \), there exist \(C^\infty \) functions \(g_i : \mathbb{R}^n \to \mathbb{R} \), \(i = 1, \ldots, n \), with \(g_i(x_0) = \frac{\partial f}{\partial x_i}(x_0) \) such that

\[
f(x) = f(x_0) + \sum_{i=1}^{n} (x-x_0)_i \cdot g_i(x).
\]

Proof: Define \(h_x(t) = f(x_0 + t(x-x_0)) \). Then \(h_x(t) \) is a \(C^\infty \) function of \(t \) and

\[
\int_0^1 \frac{dh_x}{dt} \cdot dt = h_x(1) - h_x(0)
\]

\[
= f(x) - f(x_0).
\]
By the chain rule,
\[
\frac{dh}{dt} = \sum_{j=1}^{n} \frac{\partial f}{\partial x_j} (x_0 + t(x-x_0)) \cdot (x-x_0)_j
\]
so
\[
f(x) = f(x_0) + \sum_{j=1}^{n} (x-x_0)_j \int_{0}^{1} \frac{\partial f}{\partial x_j} (x_0 + t(x-x_0)) dt
\]
and one may let \(g_1(x) = \int_{0}^{1} \frac{\partial f}{\partial x_1} (x_0 + t(x-x_0)) dt \). Then
\[
g_1(x_0) = \int_{0}^{1} \frac{\partial f}{\partial x_1} (x_0) dt = \frac{\partial f}{\partial x_1} (x_0) \int_{0}^{1} dt = \frac{\partial f}{\partial x_1} (x_0).
\]

Lemma: Let \(A \subseteq \mathbb{R}^n \) be a rectangle and \(f: A \to \mathbb{R}^n \) continuously differentiable (i.e. each \(D_jf^i(x) \) exists and is continuous on \(A \)). If there is a number \(M \) such that \(|D_jf^i(x)| \leq M \) for all \(x \) in the interior of \(A \), then
\[
|f(x) - f(y)| \leq n^2 M |x-y|
\]
for all \(x, y \in A \).

Proof: One has
\[
f_i(y) - f_i(x) = \sum_{j=1}^{n} \left[f_i(y^1, \ldots, y^j, x^{j+1}, \ldots, x^n) - f_i(y^1, \ldots, y^{j-1}, x^j, \ldots, x^n) \right]
\]
\[
= \sum_{j=1}^{n} |y^j - x^j| \cdot D_jf^i(z_{ij}) \quad \text{for some } z_{ij} \in \text{interior } A
\]
\[
\leq \sum_{j=1}^{n} |y^j - x^j| \cdot M
\]
\[
< nM |y-x|
\]
so
\[
|f(y) - f(x)| \leq \sum_{i=1}^{n} |f^i(y) - f^i(x)| \leq n^2 M |y-x|. \]

Theorem: (Inverse Function) Let \(f : \mathbb{R}^n \rightarrow \mathbb{R}^n \) be continuously differentiable in an open set containing \(a \), with \(Df(a) \) non-singular. Then there is an open set \(V \) containing \(a \) and an open set \(W \) containing \(f(a) \) such that \(f : V \rightarrow W \) has a continuous inverse \(f^{-1} : W \rightarrow V \) which is differentiable and \(Df^{-1}(y) = [Df(f^{-1}(y))]^{-1} \) for all \(y \in W \).

Proof: Let \(\lambda = Df(a) \) and then \(D(\lambda^{-1} \circ f)(a) = D(\lambda^{-1})(f(a)) \circ Df(a) = \lambda^{-1} \circ Df(a) = I \). If \(g \) is an inverse for \(\lambda^{-1} \circ f \), then \(g \circ \lambda^{-1} \) is an inverse for \(f \), and hence one may assume \(\lambda = I \). Hence, if \(f(a+h) = f(a) \) one has

\[
\frac{|f(a+h) - f(a) - \lambda(h)|}{|h|} = \frac{|h|}{|h|} = 1
\]

but since

\[
\lim_{h \rightarrow 0} \frac{|f(a+h) - f(a) - \lambda(h)|}{|h|} = 0
\]

this means that \(f(x) \neq f(a) \) if \(x \) is close to \(a \) but not equal to \(a \).

Thus there is an closed rectangle \(U \) containing \(a \) in its interior with

1. \(f(x) \neq f(a) \) if \(x \in U \), \(x \neq a \).

Since \(f \) is continuously differentiable in an open set containing \(a \), one may also assume

2. \(Df(x) \) is non-singular for all \(x \in U \)

3. \(|D_i f_i(x) - D_j f_i(a)| < 1/2n^2 \) for all \(i,j \) and \(x \in U \).

Since \((D_i f_i)(a) \) is the Kronecker delta \(\delta_{ij} \), the lemma applies to \(g(x) = f(x) - x \) giving that for \(x_1, x_2 \in U \):

\[
|f(x_1) - x_1 - (f(x_2) - x_2)| \leq 1/2 |x_1 - x_2|
\]

so

\[
|x_1 - x_2| - |f(x_1) - f(x_2)| \leq |f(x_1) - x_1 - (f(x_2) - x_2)| \leq 1/2 |x_1 - x_2|.
\]
Hence
4. \(|x_1 - x_2| \leq 2|f(x_1) - f(x_2)|\) if \(x_1, x_2 \in U\).

Since \(f\) is continuous, \(f(\partial U)\) is compact and by 1 cannot contain \(f(a)\), so there is a \(d > 0\) such that \(|f(x) - f(a)| \geq d\) if \(x \in \partial U\). Let \(W = \{y \mid |y - f(a)| < d/2\}\). If \(y \in W\) and \(x \in \partial U\) then
5. \(|y - f(a)| < |y - f(x)|\)
for \(d \leq |f(x) - f(a)| \leq |y - f(x)| + |y - f(a)| < |y - f(x)| + d/2\).

Now let \(y \in W\) and let \(g : U \to R\) by
\[g(x) = |y - f(x)|^2 = \sum_{i=1}^{n} (y^i - f^i(x))^2.\]

Then \(g\) is continuous so has a minimum on \(U\), but by 5. \(g(a) < g(x)\) for \(x \in \partial U\), so the minimum of \(g\) must occur at an interior point of \(U\), i.e. is a relative minimum. Thus there is a point \(z \in \text{interior} \ U\) with
\[D_j g(z) = 0\] for all \(j\), or
\[2 \sum_{i=1}^{n} (y^i - f^i(z)) \cdot D_j f^i(z) = 0.\]
Since by 2., \(Df(z)\) is non-singular, this gives \(y^i - f^i(z) = 0\) or \(y = f(z)\) for some \(z \in \text{interior} \ U\). By 4., this \(z\) is unique.

Letting \(V = (\text{interior} \ U) \cap f^{-1}(W)\), the function \(f : V \to W\) has an inverse \(f^{-1} : W \to V\), and rewriting 4. as \(|f^{-1}(y_1) - f^{-1}(y_2)| \leq 2|y_1 - y_2|\)
for \(y_1, y_2 \in W\) proves continuity of \(f^{-1}\).

To show that \(f^{-1}\) is differentiable, let \(\mu = Df(x)\) and \(y = f(x)\) and for \(x_1 \in V\), let us define \(\phi\) by
\[f(x_1) = f(x) + \mu(x_1 - x) + \phi(x_1 - x)\]
so that
\[\lim_{x_1 \to x} \frac{|\phi(x_1 - x)|}{|x_1 - x|} = 0.\]
Then
\[u^{-1}(f(x_1) - f(x)) = x_1 - x + u^{-1}(\phi(x_1 - x)) \]

and since every \(y_1 \in W \) is of the form \(f(x_1) \) with some \(x_1 \in V \), one has
\[f^{-1}(y_1) = f^{-1}(y) + \mu^{-1}(y_1 - y) - \mu^{-1}(\phi(f^{-1}(y_1) - f^{-1}(y))). \]

Since \(\mu^{-1} \) is linear, there is an \(M \) with
\[
\frac{|\mu^{-1}(\phi(f^{-1}(y_1) - f^{-1}(y))|}{|y_1 - y|} \leq M \frac{|\phi(f^{-1}(y_1) - f^{-1}(y))|}{|y_1 - y|}
\]
\[
= M \frac{|\phi(f^{-1}(y_1) - f^{-1}(y))|}{|f^{-1}(y_1) - f^{-1}(y)|} \cdot \frac{|f^{-1}(y_1) - f^{-1}(y)|}{|y_1 - y|}
\]
\[
\leq 2M \frac{|\phi(f^{-1}(y_1) - f^{-1}(y))|}{|f^{-1}(y_1) - f^{-1}(y)|}
\]

by equation 4. As \(y_1 \to y \), continuity of \(f^{-1} \) gives \(f^{-1}(y_1) \to f^{-1}(y) \), and by definition of \(\phi \), this term goes to zero. Thus \(\mu^{-1} \) is a linear transformation of the form required to show \(f^{-1} \) differentiable at \(y \). *

Theorem: (Implicit Function Theorem) Let \(f: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m \) be continuously differentiable in an open set containing \((a, b)\) with \(f(a, b) = 0\).

Let \(M \) be the \(m \times m \) matrix \((D_{n+i}^j f(a)) \) for \(1 \leq i, j \leq m \). If \(M \) is nonsingular, there is an open set \(A \subseteq \mathbb{R}^n \) containing \(a \) and an open set \(B \subseteq \mathbb{R}^m \) containing \(b \), so that for each \(x \in A \) there is a unique \(g(x) \in B \) such that \(f(x, g(x)) = 0 \). The function \(g \) is differentiable.

Proof: Let \(F: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n \times \mathbb{R}^m \) by \(F(x, y) = (x, f(x, y)) \). Then \(DF(a, b) \) is non-singular. There are then open sets \(W \subseteq \mathbb{R}^n \times \mathbb{R}^m \) containing \(F(a, b) = (a, 0) \) and \(V \subseteq \mathbb{R}^n \times \mathbb{R}^m \) containing \((a, b)\), which may be taken to be
of the form $A \times B$, such that $F : V \rightarrow W$ has a differentiable inverse $h : W \rightarrow V = A \times B$. Clearly $h(x,y) = (x,k(x,y))$ since F has this form, where k is some differentiable function. Let
\[\pi : \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}^n : (x,y) \mapsto y\]
be the projection. Then
\[
f(x,k(x,y)) = f \circ h(x,y) = \pi \circ F \circ h(x,y)
\]
\[= \pi(x,y) = y\]
so $f(x,k(x,0)) = 0$ and one may let $g(x) = k(x,0)$. *

Theorem: Let $f : \mathbb{R}^n \rightarrow \mathbb{R}^p$ be continuously differentiable in an open set containing a, where $p \leq n$. If $f(a) = 0$ and $Df(a)$ is an epimorphism, there is an open set $A \subset \mathbb{R}^n$ and a differentiable function $h : A \rightarrow \mathbb{R}^n$ with differentiable inverse so that
\[
f \circ h(x_1, \ldots, x_n) = (x_{n-p+1}, \ldots, x_n)
\]

Proof: Since $Df(a)$ has rank p, there are integers $1 \leq i_1 < \ldots < i_p \leq n$ such that the matrix $(D_if^j(a))$, $1 \leq j \leq p$, $1 = i_1, \ldots$ is non-singular. Let $g : \mathbb{R}^n \rightarrow \mathbb{R}^p$ permute the coordinates so that $g(x^1, \ldots, x^n) = (\ldots, x_{i_1}^1, \ldots, x_{i_p}^p)$. Then $f \circ g : \mathbb{R}^n = \mathbb{R}^{n-p} \times \mathbb{R}^p \rightarrow \mathbb{R}^p$ has the matrix $(D_{n-p+j}(f \circ g)^j(g^{-1}(a)))$ non-singular $1 \leq i, j \leq p$. As above, there is an $h : A \rightarrow \mathbb{R}^n$, $A \subset \mathbb{R}^n$ an open set with
\[
(f \circ g) \circ h(x^1, \ldots, x^n) = (x_{n-p+1}, \ldots, x^n).
\]
The function $g \circ h$ satisfies the conditions of the theorem. *

Lemma: Let $f : \mathbb{R}^n \rightarrow \mathbb{R}^p$ be continuously differentiable in an open set containing a, where $p \geq n$. If $Df(a)$ is monic, there is an open set $U \subset \mathbb{R}^p$ containing $f(a)$ and a differentiable function $h : U \rightarrow \mathbb{R}^p$ with differentiable inverse so that
\[h \circ f(x_1, \ldots, x_n) = (x_1, \ldots, x_n, 0, \ldots, 0) \]
on some neighborhood of \(a \).

Proof: Since \(\left(\frac{\partial f_i}{\partial x_j} \right) \) has rank \(n \), one may, by reordering coordinates in \(\mathbb{R}^p \), assume \(\left(\frac{\partial f_i}{\partial x_j} \right)_{1 \leq i, j \leq n} \) is non-singular. Let \(F : \mathbb{R}^n \times \mathbb{R}^{p-n} \to \mathbb{R}^p \) by
\[
F(x_1, \ldots, x_p) = f(x_1, \ldots, x_n) + (0, \ldots, 0, x_{n+1}, \ldots, x_p).
\]
Since \(F(x_1, \ldots, x_n, 0, \ldots, 0) = f(x_1, \ldots, x_n) \), \(F \) extends \(f \). \(DF(a, 0) \) has
\[
\begin{pmatrix} \left(\frac{\partial f_i}{\partial x_j} \right) & 0 \\ * & I \end{pmatrix}
\]
as matrix so is non-singular. Hence \(F \) has an inverse \(h \) on a neighborhood of \((a, 0) \), so
\[
hf(x_1, \ldots, x_n) = hF(x_1, \ldots, x_n, 0, \ldots, 0)
\]
\[
= (x_1, \ldots, x_n, 0, \ldots, 0).
\]

Definition: A rectangle in \(\mathbb{R}^n \) is a set of the form \(\Pi_{i=1}^n [a_i, b_i] \) with \(a_i \leq b_i \), \(a_i, b_i \in \mathbb{R} \). The **volume** of the rectangle \(S = \Pi_{i=1}^n [a_i, b_i] \) is
\[
\nu(S) = \Pi_{i=1}^n |b_i - a_i|.
\]

Definition: A subset \(A \subseteq \mathbb{R}^n \) has \((n\text{-dimensional}) \) **measure zero** if for every \(\varepsilon > 0 \) there is a countable collection \(B_i \) of rectangles with
\(A \subseteq \bigcup B_i \) and \(\sum \nu(B_i) < \varepsilon \).

Theorem: A countable union of sets of measure zero is itself of measure zero.
Proof: If \(A = \bigcup A_i \), with each \(A_i \) of measure zero, let \(\varepsilon > 0 \) and choose families \(B_{i,j} \) of rectangles with \(A_i \subseteq \bigcup_j B_{i,j} \), \(\sum_j v(B_{i,j}) < \varepsilon / 2^i \).

Then \(A \subseteq \bigcup_j B_{i,j} \) and \(\sum_{i,j} v(B_{i,j}) < \sum_i \varepsilon / 2^i = \varepsilon \). *

Proposition: Let \(\mathcal{U} \) be an open cover of the interval \([a,b]\) by intervals of length at most \(\varepsilon \). Then there is a finite subcover \(\mathcal{U}_0 \) of \(\mathcal{U} \) so that \(\bigcup I_i \subseteq 2(|b-a| + \varepsilon) \).

Proof: Let \(\mathcal{U}_1 \) be a finite cover by elements of \(\mathcal{U} \) and let \(\mathcal{U}_0 \) be a minimal family of elements of \(\mathcal{U}_1 \) which cover. Order \(\mathcal{U}_0 \) by writing the elements of \(\mathcal{U}_0 \) as \(I_j = (a_j, b_j) \) where \(i < j \) if \(a_i < a_j \). Then one has \(\mathcal{U}_0 = \{ I_j \} \), \(j = 1, \ldots, r \) and by minimality of the cover \(a_i < a_{i+1} < b_i < b_{i+1} \) for each \(i \) and \(a_1 < a < a_2, \ldots, b_{r-1} < b < b_r \). The sum of the overlaps is at most

\[
(a - a_1) + (b_1 - a_2) + \ldots + (b_{r-1} - a_r) + (b_r - b) \leq 2 \varepsilon + |b-a|
\]

since

\[
a_1 < a < a_2 < b_1 < a_3 < b_2 < a_4 < b_3 < \ldots < a_{r-1} < b_{r-2} < a_r < b_{r-1} < b < b_r
\]

and this gives the result. *

Theorem: (Fubini) Let \(A \subseteq \mathbb{R}^n \) be a compact set such that each set \(A \cap (t \times \mathbb{R}^{n-1}) \) has \((n-1)\)-dimensional measure zero. Then \(A \) has \(n \)-dimensional measure zero.

Proof: Since \(A \) is compact \(A \subseteq [a,b] \times \mathbb{R}^{n-1} \) for some \(a, b \in \mathbb{R} \). Let \(\varepsilon > 0 \) and choose \(\varepsilon_1 > 0 \) so that \(2(|b-a| + 1) \varepsilon_1 < \varepsilon \). For each \(t \in [a,b] \), \(A \cap (t \times \mathbb{R}^{n-1}) \) has measure \(0 \) so there is a countable collection of rectan
$B_{t,i} \subset \mathbb{R}^{n-1}$ such that $A \cap (t \times \mathbb{R}^{n-1}) \subset \bigcup_i t \times B_{t,i}^0$ and $\bigcup_i v(B_{t,i}) < \varepsilon_1$, where $B_{t,i}^0$ is the interior of $B_{t,i}$. Now $A - R \times \bigcup_i B_{t,i}^0$ is a compact set containing no point of the plane $t \times \mathbb{R}^{n-1}$ and hence there is a $1/2 > \delta_t > 0$ so that $A \cap (t-\delta_t, t+\delta_t) \times \mathbb{R}^{n-1} \subset (t-\delta_t, t+\delta_t) \times \bigcup_i B_{t,i}^0$. The sets $(t-\delta_t, t+\delta_t)$ cover $[a,b]$ and by the proposition there is a finite family t_1, \ldots, t_r so that the intervals cover $[a,b]$ and have total length at most $2(|b-a| + 1)$. The countable family of all $[t_i-\delta_t, t_i+\delta_t] \times B_{t,i}$ then covers A and has the sum of volumes at most $2(|b-a| + 1) \varepsilon_1 < \varepsilon$.

Definition: Let $f : U \rightarrow \mathbb{R}^p$ be a smooth (C^∞) map, U open in \mathbb{R}^n. A point $x \in U$ is a critical point if $Df(x)$ is not epic; it is a regular point if $Df(x)$ is epic. The critical values of f are the images under f of critical points; those points of \mathbb{R}^p which are not the image of critical points are called regular values.

Theorem: (Sard) Let $f : U \rightarrow \mathbb{R}^p$ be a C^∞ map, U open in \mathbb{R}^n, and let C be the set of critical points of f. Then $f(C) \subset \mathbb{R}^p$ has measure zero.

Proof: The statement makes sense for $n \geq 0$, $p \geq 1$, with \mathbb{R}^0 being a single point. The proof is by induction on n, being obvious for $n = 0$.

Let $C_1 \subset C$ denote the set of $x \in U$ such that all partial derivatives of f of order ≤ 1 are zero at x. For example, $C_1 = \{x \in U | Df(x) = 0\}$.

Step 1: The image $f(C-C_1)$ has measure zero.

One may assume $p \geq 2$ for $C = C_1$ if $p = 1$.

Let $\bar{x} \in C - C_1$. Since $\bar{x} \notin C_1$, there is some partial derivative, say $\partial f/\partial x^1$, which is nonzero at \bar{x}. Let $h : U \rightarrow \mathbb{R}^1$ by

$$h(x) = (f^1(x), x^2, \ldots, x^p).$$
Since $\text{Dh}(\tilde{x})$ is non-singular, h maps some neighborhood V of \tilde{x} diffeomorphically onto an open set V' of \mathbb{R}^n. Then $g = f \circ h^{-1} : V' \rightarrow \mathbb{R}^p$. The set of critical points of $g|_{C'}$, is precisely $h(V \cap C)$, so $g(C') = f(V \cap C)$.

For each $(t, x^2, \ldots, x^n) \in V'$, $g(t, x^2, \ldots, x^n) \in t \times \mathbb{R}^{p-1} \subseteq \mathbb{R}^p$ or g takes hyperplanes to hyperplanes. Let $g^t : (t \times \mathbb{R}^{p-1}) \cap V' \rightarrow t \times \mathbb{R}^{p-1}$ be the restriction of g. Since

$$\frac{\partial g^t}{\partial x^j} = \begin{pmatrix} 1 & 0 \\ 0 & \frac{\partial g^t}{\partial x^j} \end{pmatrix}$$

a point of $t \times \mathbb{R}^{p-1}$ is critical for g^t if and only if it is critical for g. By induction, the set of critical values of g^t has measure zero in $t \times \mathbb{R}^{p-1}$ and so $g(C')$ intersects each plane $t \times \mathbb{R}^{p-1}$ in a set of measure zero, or $f(V \cap C)$ intersects each plane $t \times \mathbb{R}^{p-1}$ in a set of measure zero.

Since $C - C_1$ is a countable union of sets of the form $\tilde{V} \cap C$, where \tilde{V} is a compact neighborhood of \tilde{x}, $\tilde{V} \subseteq V$, Fubini's theorem shows that $f(C - C_1)$ is a countable union of sets of measure zero, so has measure zero.

Step 2: The image $f(C_{i+1} - C_{i+1})$ has measure zero, for $i \geq 1$.

For each $\tilde{x} \in C_1 - C_{i+1}$ there is some $(i+1)$-st derivative $\frac{\partial^{i+1}f}{\partial x_{a_1} \cdots \partial x_{a_{k+1}}} \bigg|_{\tilde{x}}$ which is non-zero. Thus $\nabla(\tilde{x}) = \frac{\partial^{i+1}f}{\partial x_{a_1} \cdots \partial x_{a_{k+1}}} \bigg|_{\tilde{x}}$ vanishes at \tilde{x} but $\frac{\partial \nabla(\tilde{x})}{\partial x_{a_1}}$ does not. Suppose $a_1 = 1$ for definiteness. Let $h : U \rightarrow \mathbb{R}^n$ by

$$h(x) = (\nabla(x), x^2, \ldots, x^n).$$
Then \(h \) carries a neighborhood \(V \) of \(\bar{x} \) diffeomorphically onto an open set \(V' \). Also \(h \) takes \(C_i \cap V \) into \(0 \times \mathbb{R}^{n-1} \). Consider
\[
g = f \circ h^{-1} : V' \rightarrow \mathbb{R}^p
\]
and let \(\bar{g} \) be the restriction of \(g \) to \((0 \times \mathbb{R}^{n-1}) \cap V'\). By induction, the set of critical values of \(\bar{g} \) has measure zero in \(\mathbb{R}^p \), but each point of \(h(C_i \cap V) \) is a critical point of \(\bar{g} \) (since all derivatives of order \(\leq i \) vanish). Thus
\[
\bar{g}(h(C_i \cap V)) = f(C_i \cap V)
\]
has measure zero. Since \(C_i - C_{i+1} \) is covered by countably many such sets \(V \), it follows that \(f(C_i - C_{i+1}) \) has measure zero.

Step 3: The image \(f(C_k) \) has measure 0 for \(k \) sufficiently large.

Let \(I^n \subseteq U \) be a cube of edge \(\delta \). By Taylor's theorem, the compactness of \(I^n \) and the definition of \(C_k \), one has
\[
f(x+h) = f(x) + R(x,h)
\]
where \(|R(x,h)| \leq c|h|^{k+1} \) for \(x \in C_k \cap I^n, x + h \in I^n \). \(c \) being a constant which depends only on \(f \) and \(I^n \).

Subdivide \(I^n \) into \(r^n \) cubes of edge \(\delta/r \), and let \(I_1 \) be a cube of the subdivision which contains a point \(x \in C_k \). Then any point of \(I_1 \) is \(x + h \) with \(|h| \leq \sqrt{n} (\delta/r) \). Since \(|f(x+h) - f(x)| \leq c|h|^{k+1} \), \(f(I_1) \) lies in a cube of edge \(a/r^{k+1} \) centered at \(f(x) \), where \(a = 2c(\sqrt{n} \delta)^{k+1} \) is constant. Thus \(f(C_k \cap I^n) \) is contained in a union of at most \(r^n \) cubes having total volume
\[
V \leq r^n (a/r^{k+1})^p = a^p r^{n-(k+1)p}
\]
If \(k + 1 > n/p \), then \(V \rightarrow 0 \) as \(r \rightarrow \infty \), so \(f(C_k \cap I^n) \) has measure zero. *
Lemma: Let D, D' be two open rectangles in \mathbb{R}^n with $D \subset D'$. Then there is a real valued C^∞ function g on \mathbb{R}^n such that

a) $0 \leq g(x) \leq 1$ for all x,
b) $g(x) = 1$ for $x \in D$, and
c) $g(x) = 0$ for $x \in \mathbb{R}^n - D'$.

Proof: One may write $D = \Pi(a_1, b_1)$, $D' = \Pi(a'_1, b'_1)$ with $a'_1 < a_1 < b_1 < b'_1$.

For any interval $[c, d] \subset \mathbb{R}$, let

$$
\psi_{c,d}(x) = \begin{cases}
\exp\left(-\frac{1}{x-c} + \frac{1}{x-d}\right), & x \in [c, d] \\
0, & x \notin [c, d].
\end{cases}
$$

Then $\psi_{c,d}$ is C^∞ and $\psi_{c,d}(x) \geq 0$. Let

$$
\phi_{c,d}(x) = \int_c^x \psi_{c,d}(x)dx /
\int_c^d \psi_{c,d}(x)dx.
$$

Then $\phi_{c,d}$ is C^∞, $0 \leq \phi_{c,d}(x) \leq 1$, $\phi_{c,d}(x) = 0$ if $x < c$, $\phi_{c,d}(x) = 1$ if $x > d$.

For $a' < a < b < b'$, let

$$
h_{a',a,b,b'}(x) = \begin{cases}
h_{a',a}(x), & x \leq b \\
1 - h_{b,b'}(x), & x > b.
\end{cases}
$$

Then $h_{a',a,b,b'}$ is C^∞, $0 \leq h_{a'ab}(x) \leq 1$, $h_{a'ab}(x) = 1$ if $x \in [a,b]$ and $h_{a',a,b,b'}(x) = 0$ if $x \notin [a',b']$.

Let $g(x) = \prod_{i=1}^n h_{a_i',a_i,b_i,b_i'(x_i)}$. $*$
Lemma: Let U be an open set in \mathbb{R}^n with \overline{U} compact, and let V be an open set containing \overline{U}. Then there is a real valued C^∞ function $g : \mathbb{R}^n \rightarrow [0,1]$ such that $g(x) = 1$ for $x \in \overline{U}$, $g(x) = 0$ for $x \in \mathbb{R}^n - V$.

Proof: Since \overline{U} is compact, there are a finite number of open rectangles D_1, \ldots, D_s with $\overline{D_i} \subset V$ covering \overline{U}. Let D_i' be an open rectangle containing $\overline{D_i}$ and contained in V. Let g_i be given as in the previous lemma for the pair D_i, D_i'. Then define g by

$$1 - g = (1-g_1)(1-g_2)\ldots(1-g_s).$$

Then g is C^∞, $0 \leq g(x) \leq 1$ for all x. If $x \in \bigcup D_i$, then $g_j(x) = 1$ for some j so $1 - g(x) = 0$. Thus $g(x) = 1$ for $x \in \overline{U} \subset \bigcup D_i$. If $x \not\in \bigcup D_i'$, then $g_i(x) = 0$ for all i so $1 - g(x) = 1$. Thus $g(x) = 0$ if $x \in \mathbb{R}^n - V \subset \mathbb{R}^n - \bigcup D_i'$.

Lemma: Let $F : W \rightarrow \mathbb{R}$, W open in \mathbb{R}^n be a continuous function of class C^∞ in an open set $U \subset W$. Let U', V' be open sets with $\overline{U'} \subset V' \subset \overline{V'} \subset W$, $\overline{U'}$ and $\overline{V'}$ being compact. Let $\delta > 0$. Then there is a continuous function $G : W \rightarrow \mathbb{R}$ with $|G(x) - F(x)| < \delta$ for all $x \in W$, such that G is C^∞ in $U \cup U'$ and $F(x) = G(x)$ if $x \in W - \overline{V'}$.

Proof: By the Weierstrass approximation theorem there is a polynomial $H(x)$ so that $|H(x) - F(x)| < \delta$ for $x \in \overline{V'}$. Let $g : \mathbb{R}^n \rightarrow \mathbb{R}$ be C^∞, $0 \leq g < 1$ with $g|_U = 1$, $g|_{\mathbb{R}^n - V'} = 0$. Let

$$G(x) = g(x) \cdot H(x) + (1-g(x))F(x)$$

for all $x \in W$. Then $G(x) = H(x)$ on U' and $G(x) = F(x)$ on $W - \overline{V'}$. On $\overline{V'}$,

$$|G(x) - F(x)| = |g(x)||H(x) - F(x)| < \delta.$$
Also \(G(x) \) is \(C^\infty \) when \(F \) is, hence on \(U \), so \(G \) is \(C^\infty \) on \(U \cup U' \).

Proposition: Let \(f : W \rightarrow \mathbb{R}^k \) be a \(C^\infty \) function, \(W \) and open subset of \(\mathbb{R}^n \), \(C \) a compact subset of \(W \), \(V \) a neighborhood of \(C \) with \(\overline{V} \subseteq W \), and \(\varepsilon > 0 \). Then there exists a differentiable \(g : W \rightarrow \mathbb{R}^k \) such that

1) \(g|_C \) has \(0 \in \mathbb{R}^k \) as a regular value.

2) \(g = f \) on \(W - V \)

3) \(|g_i(x) - f_i(x)| < \varepsilon, \ |\partial g_i/\partial x_j(x) - \partial f_i/\partial x_j(x)| < \varepsilon \)

for all \(x \in W, \ 1 \leq i \leq k, \ 1 \leq j \leq n \).

Proof: Let \(\lambda : W \rightarrow \mathbb{R} \) be \(C^\infty \) with \(\lambda|_C = 1, \ \lambda|_{W - V} = 0 \) and \(0 \leq \lambda(x) \leq 1 \) for all \(x \). If \(y \) is any regular value of \(f \) then

\[g(x) = f(x) - \lambda(x)y \]

satisfies conditions 1) and 2) above. By Sard's theorem, \(y \) may be chosen arbitrarily close to 0, and so 3) may be satisfied by taking \(y \) small enough.

Proposition: Let \(C \) be a compact subset of \(W \), \(W \) open in \(\mathbb{R}^n \) and \(g : W \rightarrow \mathbb{R}^k \) a \(C^\infty \) function such that \(g|_C \) has \(0 \) as regular value. Then there is an \(\varepsilon > 0 \) such that if \(h : W \rightarrow \mathbb{R}^k \) with

\[|h_1(x) - g_1(x)| < \varepsilon, \ |\partial h_1/\partial x_j(x) - \partial g_1/\partial x_j(x)| < \varepsilon \]

for all \(x \in C \), then \(h|_C \) also has \(0 \) as regular value.

Proof: \(\{x \in C| x \) is critical for \(g \)\} is closed so compact and the set of critical values of \(g \) is then closed. Thus there is an \(\varepsilon_1 > 0 \) so that \(|g_1(x)| < \varepsilon_1 \) implies \(x \) is regular for \(g \). In particular \(Dg(x) \) is non-singular and there is an \(\varepsilon_2(x) > 0 \) such that \(|A_{ij} - \partial g_i/\partial x_j(x)| < \varepsilon_2(x) \).
implies \((A_{ij})\) is non-singular. On the set of \(x\) for which \(|g_i(x)| \leq \varepsilon_1/2\) which is compact, there will be an \(\varepsilon_3 > 0\) so that \(\varepsilon_3 \leq \varepsilon_2(x)\) for all these \(x\). Let \(\varepsilon = \min(\varepsilon_1/2, \varepsilon_3)\). If \(|h_i(x) - g_i(x)| < \varepsilon\) and

\[|\partial h_i/\partial x_j (x) - \partial g_i/\partial x_j (x)| < \varepsilon\] then \(h(x) = 0\) implies \(|g_i(x)| < \varepsilon \leq \varepsilon_1/2\) so \(Dg(x)\) is non-singular and since \(|\partial h_i/\partial x_j (x) - \partial g_i/\partial x_j (x)| < \varepsilon \leq \varepsilon_2(x)\) \(Dh(x)\) is non-singular. Thus 0 is a regular value for \(h\).
Appendix 2

Differentiable Manifolds

This appendix covers the basic notions of differentiable manifolds, tangent and normal bundles and proves the transverse regularity theorem which will be basic to the calculation of cobordism groups. In order to get this, one needs basic structure theorems for manifolds such as tubular neighborhoods and imbeddability and these are also proved. Basic references are:

Definition: \(H^n \subset R^n \) is the half space \(\{(x_1, \ldots, x_n) \in R^n | x_n \geq 0\} \).

Definition: An \(n \)-dimensional differentiable manifold with boundary is a pair \((V, \mathcal{F})\) where \(V \) is a Hausdorff space with a countable base and \(\mathcal{F} \) is a family of real valued continuous functions on \(V \) satisfying:

1) \(\mathcal{F} \) is local: if \(f : V \rightarrow R \) and for all \(p \in V \) there is an open set \(U_p \subset V \), \(p \in U_p \), and a function \(g_p \in \mathcal{F} \) such that \(f|_{U_p} = g|_{U_p} \), then \(f \in \mathcal{F} \).

2) \(\mathcal{F} \) is differentiably complete: if \(f_1, \ldots, f_k \in \mathcal{F} \) and \(F : R^k \rightarrow R \) is \(C^\infty \), then \(F_0(f_1 \times \ldots \times f_k) : V \rightarrow R \) belongs to \(\mathcal{F} \).

3) For each point \(p \in V \) there are \(n \)-functions \(f_1, \ldots, f_n \in \mathcal{F} \) such that \(f_1 \times \ldots \times f_n : V \rightarrow R^n \) is a homeomorphism of an open neighborhood \(U \) of \(p \) onto an open subset of \(H^n \). Further, every function \(f \in \mathcal{F} \) agrees on \(U \) with a function of the form \(F_0(f_1 \times \ldots \times f_n) \) where \(F : R^n \rightarrow R \) is \(C^\infty \).
The functions \(f \in \mathcal{F} \) are called the differentiable functions on \(V \).

A chart at \(p \in V \) is a pair \((U, h)\), where \(U \) is an open neighborhood of \(p \) and \(h : V \to \mathbb{R}^n \) is a function \(f_1 \times \ldots \times f_n = h \), with \(f_i \in \mathcal{F} \) mapping \(U \) homeomorphically onto an open subset of \(\mathbb{R}^n \) as in 3).

Proposition: \(V \) is paracompact.

Proof: Since \(\mathbb{R}^n \) is locally compact, so is \(V \), and there is a base \(U_1, U_2, \ldots \) for \(V \) with \(U_i \) compact for each \(i \). There is a sequence \(A_1, A_2, \ldots \) of compact sets with union \(V \) and \(A_i \subseteq \text{interior } A_{i+1} \): Let \(A_1 = \overline{U}_1 \) and if \(A_i \) is defined, there is a least integer \(k = k(i) \) so that \(A_i \subseteq \overline{U}_1 \cup \ldots \cup \overline{U}_k \). Then let \(A_{i+1} = \overline{U}_1 \cup \ldots \cup \overline{U}_k \).

Let \(\mathcal{O} \) be any open cover of \(V \). Cover the compact set \(A_{i+1} \) - Interior \(A_i \) by a finite number of open sets \(V_1, \ldots, V_r \), where \(V_j \) is contained in an element of \(\mathcal{O} \) and in the open set \(\text{interior } A_{i+2} - A_{i+1} \). Let \(\mathcal{O}_i \) denote the family \(\{V_1, \ldots, V_r\} \), and \(\mathcal{O} = \mathcal{O}_0 \cup \mathcal{O}_1 \cup \ldots \). Then \(\mathcal{O} \) refines \(\mathcal{O}_i \), covers \(V \) and since any compact set \(C \) is contained in some \(A_i \), \(C \) can intersect only finitely many elements of \(\mathcal{O}_i \). Thus, for \(p \in V \), any compact neighborhood of \(p \) meets only a finite number of elements of \(\mathcal{O} \).

Corollary: \(V \) is normal.

Proof: a) \(V \) is regular. If \(a \in V \), \(B \subseteq V \), \(B \) closed and \(a \notin B \), choose for each \(b \in B \) open sets \(U'_b, V'_b \) with \(a \in U'_b \), \(b \in V'_b \) and \(U'_b \cap V'_b = \emptyset \). Let \(U_b = U'_b \cap (V - B) \). Then \(a \in U_b \), \(b \in V_b \), \(U_b \cap V_b = \emptyset \) and \(U_b \subseteq V - B \). Then \(\{V - a - B, U_b, V_b\}_{b \in B} \) is an open cover of \(V \), so has a locally finite refinement \(\{C_a\}_{a \in I} \). Let \(J = \{a \in I | C_a \cap B \neq \emptyset \} \neq \emptyset \), \(W = \bigcup_{a \in J} C_a \). Then \(W \) is open and contains \(B \). Let \(N \) be a neighborhood of \(a \) and \(J \)
meeting only a finite number of the sets C_a. There is a finite set $J \subseteq J$ so that $a \in J$, $N \cap C_a \neq \emptyset$ implies $a \in J_0$. For each $a \in J_0$, $C_a \cap B \neq \emptyset$, so there is a $b = b(a) \in B$ with $C_a \subseteq V_b$. Let $T = N \cap \bigcap_{a \in J_0} U_{b(a)}$. Then T is open, $a \in T$ and $T \cap W = \emptyset$.

b) V is normal. Let $A, B \subseteq V$ be closed, $A \cap B = \emptyset$. For each $a \in A$ there are open sets U_a, V_a with $a \in U_a$, $B \subseteq V_a$ and $U_a \cap V_a = \emptyset$. Let $U_a = U_a \cap (V - B)$, $V_a = V_a \cap (X - A)$. Then $\{V - A - B, U_a, V_a\}_{a \in A}$ is an open cover of V so has a locally finite refinement $\{C_a\}$. Let $J = \{a | C_a \cap A \neq \emptyset\}$.

For each $b \in B$, there is a neighborhood H_b of b meeting only a finite number of the sets C_a, $a \in J$. Each such C_a is contained in some set U_a and the intersection of H_b with the corresponding sets V_a is a neighborhood T_b of b not meeting any C_a with $a \in J$. Let $T = \bigcup_{b \in B} T_b$, $W = \bigcup_{a \in J} C_a$.

Then $B \subseteq T$, $A \subseteq W$ and $T \cap W = \emptyset$. *

Lemma: Let U be an open cover of V. Then there is a refinement \mathcal{V} of U so that for each $X \in \mathcal{V}$ there is a set $Y \in U$ with $X \subseteq Y$.

Proof: Let U_0 be a locally finite refinement of U. Consider the set \mathcal{X} of all functions F whose domain is a subfamily of U_0, and for each U in the domain of F, $F(U)$ is an open set with closure contained in U, and such that $\bigcup\{F(U)|U \in \text{domain } F\} \cup \bigcup\{W \in U_0|W \notin \text{domain } F\} = V$.

\mathcal{X} is non-empty by normality of V. Partially order \mathcal{X} by $F \leq G$ if G extends F. If F_α is a linearly ordered family, let F be defined on $\bigcup\{\text{domain } F_\alpha\}$ by $F(U) = F_\alpha(U)$ if $U \in \text{domain } F_\alpha$. Let $x \in V$ and suppose $x \notin W$ for any $W \notin \text{domain } F$. Thus if $x \in U$, $U \in U_0$, then $U \in \text{domain } F$. Since there are only a finite number of sets $U \in U_0$ with $x \in U$, and each such $U \in \text{domain } F_\alpha$ for some α, there is a β such that $x \in U$, $U \in U_0$ implies $U \in \text{domain } F_\beta$. Thus $x \in \bigcup\{F_\beta(U)|U \in \text{domain } F_\beta\}$ so
\(x \in \bigcup \{F(U) \mid U \in \text{domain } F \} \). Then \(\omega \) has a maximal element \(F \) and by normality of \(V \), \(F \) must be defined on all of \(U_0 \). Thus \(V = \{F(U) \mid U \in U_0 \} \) suffices. *

Proposition: Let \(U \) be any open cover of \(V \). Then there is a differentiable partition of unity on \(V \) subordinate to \(U \), i.e. \(\exists \) collection \(\phi \in \mathcal{F} \) such that:

1) \(\phi \in \phi \) implies \(\phi : V \to [0,1] \)

2) The collection \(\mathcal{V} = \{U_\phi \mid \phi \in \mathcal{F} \} \) is a locally finite refinement of \(U \) where \(U_\phi = \{x \in V \mid \phi(x) > 0 \} \).

3) For each \(x \in V \), \(\sum \phi(x) = 1 \).

Proof: Let \(U_1 \) be the collection of open sets \(U \) such that there is a chart \((U,h)\) and such that \(U \subseteq U' \) for some \(U' \in U \). By the lemma, there is a locally finite refinement \(U_2 \) of \(U_1 \) such that for each \(U_2 \in U_2 \) there is a \(U_1 \in U_1 \) with \(U_2 \subseteq U_1 \), and there is a refinement \(U_3 \) of \(U_2 \) such that for each \(U_3 \in U_3 \) there is a \(U_2 \in U_2 \) with \(U_3 \subseteq U_2 \). In particular there is a cover of \(V \) by sets \(U_3 \) such that \(U_3 \in U_3 \), \(U_3 \subseteq U_2 \), \(U_2 \in U_2 \), \(U_2 \subseteq U_1 \), \(U_1 \in U_1 \) and the family of such sets \(U_1 \) is a locally finite refinement of \(U \). Let \((U_1,h)\) be a chart and let \(\psi_3 : h(U_1) \to R \) be \(C^\infty \), being 1 on \(h(U_3) \) and 0 outside \(h(U_2) \), with \(0 \leq \psi_3 \leq 1 \). Let \(\psi_3^U \) be \(\psi_3 \circ h \) on \(U_1 \) and 0 on \(V - U_2 \). Then being locally in \(\mathcal{F} \), \(\psi_3^U \in \mathcal{F} \). Finally let \(\psi_3(x) = \psi_3^U(x) / \sum \psi_3^U(x) \) and \(\phi \) the collection of these \(\psi_3^U \).

Corollary: Let \(U \) and \(W \) be open subsets of \(V \) with \(\tilde{U} \subseteq W \). There is an \(f \in \mathcal{F} \) with \(f(V) \subseteq [0,1] \) so that \(f|_U = 1 \), \(f|_{V-W} = 0 \).
Proof: \(\{W, V - \widetilde{U}\} \) is an open cover of \(V \) so there is a differentiable partition of unity \(\phi \) subordinate to this cover. If \(\phi \in \phi \) and \(\phi(x) \neq 0 \)
for some \(x \in \widetilde{U} \), then \(U_\phi \subseteq W \). Let \(f \) be the sum of those \(\phi \in \phi \) which are non-zero on \(\widetilde{U} \).

The set of points of \(V \) may be divided into two classes as follows. For each point \(p \in V \), let \((U, h) \) be a chart at \(p \). Then either
\(h(p) \in \mathbb{R}^{n-1} \times 0 \subset \mathbb{R}^n \) or \(h(p) \) belongs to the interior of \(\mathbb{R}^n \). If \((U', h') \)
is another chart at \(p \) and \(h'(p) \notin \mathbb{R}^{n-1} \times 0 \), then
\(hoh^{-1} : h'(U \cap U') \to h(U \cap U') \subset \mathbb{R}^n \) is a \(C^\infty \) function with a \(C^\infty \)
inverse, and by the inverse function theorem, \(hoh^{-1} \) maps onto an open neighborhood of \(h(p) \) in \(\mathbb{R}^n \). Thus \(h(p) \notin \mathbb{R}^{n-1} \times 0 \). Hence this property is independent of the choice of \((U, h) \).

Definition: The set of points \(p \in V \) for which there is a chart \((U, h) \)
with \(h(p) \in \mathbb{R}^{n-1} \times 0 \) is called the boundary of \(V \), and denoted \(\partial V \). The
complement of \(\partial V, V - \partial V \), is the interior of \(V \).

Proposition: If \((V, \mathcal{F}) \) is an \(n \)-dimensional differentiable manifold
with boundary and \(\mathcal{F} |_{\partial V} \) denotes the set of restrictions to \(\partial V \) of
functions in \(\mathcal{F} \), then \((\partial V, \mathcal{F} |_{\partial V}) \) is an \((n-1)\)-dimensional differentiable
manifold (without boundary; i.e. \(\partial (\partial V) = \emptyset \)).

Proof: Clearly \(\partial V \) is Hausdorff and has a countable base, and properties
2) and 3) are clear. Suppose \(f : \partial V \to \mathbb{R} \) is any function, and for each
\(p \in \partial V \) there is an open set \(U_p \subset \partial V \) and \(g_p \in \mathcal{F} |_{\partial V} \) such that
\(f \big|_{U_p} = g_p \big|_{U_p} \). There is then a function \(g_p' \in \mathcal{F} \) and an open neighborhood
\(U'_p \) of \(p \) in \(V \) with \(U'_p \cap \partial V = U_p' \) and \(g_p' |_{\partial V} = g_p \). Then \(\{V-\partial V, U'_p\} \) is
an open cover of \(V \) and there is a partition of unity \(\phi \) subordinate to this
cover. For each \(\phi \in \phi \) such that \(U_\phi = \{x \in \partial V | \phi(x) > 0\} \) meets \(\partial V \), there is
a set U'_p with $U'_p \subset U_p$. Let p'_p be one such. Then define $f' : V \to \mathbb{R}$ by $f'(x) = \sum_{\phi \in \mathcal{F}} \phi(x)g'_p(x)$ where $\phi' = \{ \phi \in \mathcal{F} \cap 3V : \phi(x) \neq 0 \}$. f' is locally a finite sum of elements of \mathcal{F}, so belongs to \mathcal{F}. If $x \in 3V$ and $\phi(x) \neq 0$ then $x \in U'_p$ so $g'_p(x) = f(x)$. Hence $f'(x) = f(x) \cdot \sum_{\phi \in \mathcal{F}} \phi(x) = f(x)$. Thus $f = f'|_{3V}$ or $f \in \mathcal{F}|_{3V}$.

Definition: If $(V, \mathcal{F}(V))$ and $(W, \mathcal{F}(W))$ are differentiable manifolds with boundary, a function $f : V \to W$ is called a differentiable map if for all $g \in \mathcal{F}(W)$, $g \circ f \in \mathcal{F}(V)$. f is a **diffeomorphism** if f has a differential inverse.

Proposition: If $f : (V, \mathcal{F}(V)) \to (W, \mathcal{F}(W))$ is a differentiable map and $f(3V) \subset 3W$ then $f|_{3V} : (3V, \mathcal{F}(V)|_{3V}) \to (3W, \mathcal{F}(W)|_{3W})$ is a differentiable map. The inclusion map $i : (3V, \mathcal{F}(V)|_{3V}) \to (V, \mathcal{F})$ is differentiable.

Proposition: If (V, \mathcal{F}) is an n-dimensional manifold with boundary, U is an open subset of V and $\mathcal{F}|_U$ denotes the set of restrictions to U of functions in \mathcal{F}, then $(U, \mathcal{F}|_U)$ is an n-dimensional manifold with boundary, and the inclusion map is differentiable.

Let X be a set and suppose there is a countable collection $\mathcal{C} = \{(X_a, h_a)\}$ where $X_a \subset X$ and $\bigcup_a X_a = X$ and h_a is a bijection of X_a with an n-dimensional manifold with boundary V_a such that for each pair a, b $h_a(X_a \cap X_b)$ is an open subset of V_a and

$$h_b \circ h_a^{-1} : h_a(X_a \cap X_b) \to h_b(X_a \cap X_b)$$

is differentiable. Then X may be given a topology and a differentiable structure so that each set X_a will be open and each function h_a is a diffeomorphism. X is then an n-dimensional differentiable manifold with
boundary, and is uniquely determined within diffeomorphism.

For example, let \((V, \mathcal{F})\) and \((W, \mathcal{G})\) be \(n\)-dimensional and \(m\)-dimensional manifolds with boundary (\(\emptyset W\) being empty). Let \((U_i, h_i)\) and \((T_j, g_j)\) be countable families of charts for \(V\) and \(W\). Then the collection
\[
\{(U_i \times T_j, h_i \times g_j)\}
\]
defines a differentiable structure on \(V \times W\), giving the product manifold, of dimension \(n + m\). Then \(\partial(V \times W)\) is diffeomorphic to \(\partial V \times W\).

Definition: If \((V, \mathcal{F})\) is a differentiable manifold with boundary a subset \(A \subseteq V\) is called a submanifold of \(V\) if for each point \(a \in A\) there is a chart \((U, h)\) at \(a\) with \(h(U \cap A) = h(U) \cap \{0 \times \mathbb{R}^k\}\). The collection \(\mathcal{F}|_A\) of restrictions to \(A\) of functions of \(\mathcal{F}\) is the family of differentiable functions on \(A\).

Note: \(\partial A = A \cap \partial V\), is then a submanifold of \(\partial V\).

Definition: A (real) vector bundle \(\xi = (E, B, \pi, +, *)\) is a 5-tuple where

1) \(E\) and \(B\) are topological spaces, called the total space and

base space of \(\xi\),

2) \(\pi : E \to B\) is a continuous map, called the projection,

3) \(+ : E + E = \{(e, e') \in E \times E | \pi e = \pi e'\} \to E\) and

\(\cdot : R \times E \to E\) are continuous maps such that \(\pi + (e, e') = pe = pe'\), \(\pi \cdot (r, e) = pe\) and the restrictions to each fiber \(\pi^{-1}(b)\) for \(b \in B\) make \(\pi^{-1}(b)\) into a real vector space.

Definition: A bundle map \(f : \xi \to \xi'\) is a pair \(f_E, f_B\) of continuous maps \(f_E : E \to E', f_B : B \to B'\) such that \(\pi'^{-1}\circ f_E = f_B^{-1}\circ \pi\) and

\(f_E^+ = +'(f_E + f_E), f_E^\cdot = \cdot'(f_E)\), where \(f_E + f_E\) is the restriction to \(E + E\) of \(f_E \times f_E\). \(f\) is an isomorphism if there is a bundle map
\(g : \xi' \to \xi\) which is inverse to \(f\).
For example one has the product bundle \((B \times \mathbb{R}^{p}, B, \pi, +, \cdot)\) where \(\pi\) is the projection of the product space.

Definition: The bundle \(\xi = (E, B, \pi, +, \cdot)\) is **locally trivial** if for each point \(b \in B\) there is an open set \(U\) in \(B\) containing \(b\) and a bundle isomorphism \(h_{U} : \xi|_{U} \longrightarrow (U \times \mathbb{R}^{p}, U, \pi|_{U}, +, \cdot)\) where \(\xi|_{U}\) is the bundle \((\pi^{-1}(U), U, \pi|_{\pi^{-1}(U)}, +, \cdot)\) with induced operations with the induced map of base spaces being the identity map of \(U\).

Definition: A **differentiable vector bundle** is a vector bundle \(\xi\) for which the total space and base space are differentiable manifolds with boundary, the projection is a differentiable map and such that for each point \(b \in B\) the open set \(U\) and map \(h_{U}\) may be chosen to give a diffeomorphism of total spaces.

Note: + and \(\cdot\) are forced to be differentiable by the local triviality.

Definition: Let \((V, \mathcal{F})\) be an \(n\)-dimensional manifold with boundary, and \(v \in V\). A **tangent vector** \(X\) and \(v\) is a function \(X : \mathcal{F} \rightarrow \mathbb{R}\) such that:

1) If \(f, g \in \mathcal{F}\) and there is an open neighborhood \(U\) of \(v\) with \(f|_{U} = g|_{U}\), then \(X(f) = X(g)\),

2) For \(f, g \in \mathcal{F}\), \(a, b \in \mathbb{R}\), \(X(af + bg) = aX(f) + bX(g)\),

3) If \(f, g \in \mathcal{F}\), then \(X(f \cdot g) = X(f \cdot g)(v) + f(v) \cdot X(g)\).

The set of tangent vectors at \(v\) forms a vector space induced from the additive structure in \(\mathbb{R}\), called the **tangent space** to \(V\) at \(v\) and denoted \(\mathcal{T}_{v}\).

Denote by \(\tau(V)\) the union over all \(v \in V\) of the sets \(\tau_{v}\) and let \(\pi : \tau(V) \rightarrow V\) be the function which sends each subset \(\tau_{v}\) into the point...
Proposition: Let \(v \in V \) and let \((U,h)\) be a chart at \(v \), with \(h = f_1 \times \ldots \times f_n \). Then
\[
\lambda_U : \pi^{-1}(U) \rightarrow U \times \mathbb{R}^n : X \mapsto (\pi(X), (X(f_i)))
\]
is a bijection. If \((U',h')\) is another chart at \(v \), then
\[
\lambda_U \circ \lambda_{U'}^{-1} : (U \cap U') \times \mathbb{R}^n \rightarrow (U \cap U') \times \mathbb{R}^n
\]
is given by
\[
\lambda_U \circ \lambda_{U'}^{-1}(u,a) = (u, D(hoh'^{-1})(h'(u))(a)).
\]

Proof: First note that if \(X \in T_v \) then \(X \) annihilates constant functions.
To see this, one has \(X(c) = cX(1) = cX(1 \cdot 1) = c(1X(1) + X(1) \cdot 1) = 2cX(1) \).
Thus \(cX(1) = 2cX(1) \) must be zero, so \(X(c) = 0 \). Then let \(f \in \mathcal{F} \) be any function. There is a \(C^\infty \) function \(F : \mathbb{R}^n \rightarrow \mathbb{R} \) with \(f = Foh \) and one may write
\[
F(x) = F(h(v)) + \sum_{i=1}^{n} (x_i - h(v)) \cdot g_i(x) \text{ with } g_i \text{ being } C^\infty \text{ and }
\]
\[
g_i(h(v)) = \frac{\partial F}{\partial x_i}(h(v)).
\]
Thus
\[
f = f(v) + \sum_{i=1}^{n} (f_i - f_i(v)) \cdot (g_i \circ h)
\]
so
\[
X(f) = X(f(v)) + \sum_{i=1}^{n} [X(f_i - f_i(v)) \cdot g_i \circ h(v) + (f_i(v) - f_i(v))X(g_i \circ h)]
\]
\[
= \sum_{i=1}^{n} X(f_i) \cdot \frac{\partial F}{\partial x_i}(h(v)).
\]
Thus \(\lambda_U \) is one-to-one, and letting \(\lambda_a = \sum a_i \frac{\partial F}{\partial x_j}(h(v)) \) for \(a \in \mathbb{R}^n \), one has \(\lambda_U \) onto. Thus \(\lambda_U \) is a bijection.

Then \(\lambda_{U'}^{-1}(u,a) = (u, (\lambda_{U'}^{-1}(u,a)(f_i))) \) and
\[
\lambda_{U'}^{-1}(u,a)(f_i) = \sum_{j=1}^{n} a_j \frac{\partial (g_i \circ h \circ h'^{-1})}{\partial x_j}(h'(v)),
\]
\[
= [D(hoh'^{-1})(h'(v))(\alpha)]_i.
\]
Corollary: \(\tau = (\tau(V), \nu, \pi, +, \cdot) \) may be given the structure of a differentiable fiber bundle so that if \((U, h)\) is a chart in \(V\), \(\lambda_U\) is a local trivialization of \(\tau\) and \((\pi^{-1}(U), (h \times 1) \circ \lambda_U)\) is a chart of \(\tau(V)\). The boundary of \(\tau(V)\) is \(\pi^{-1}(\partial V)\).

Proposition: If \(\phi : (V, \mathcal{F}(V)) \to (W, \mathcal{F}(W))\) is a differentiable map, \(v \in V\) and \(X \in \tau_v\), let \(\phi_v(X)\) be defined by

\[\phi_v(X)(f) = X(f \circ \phi) \]

if \(f \in \mathcal{F}(W)\). Then \(\phi : \tau(V) \to \tau(W)\) is a differentiable map covering \(\phi\) and \((\phi_v, \phi)\) is a differentiable bundle map.

Definition: Let \(M(p, n)\) denote the set of \(p \times n\) matrices with differentiable manifold structure given by identification with \(\mathbb{R}^{pn}\). Let \(M(p, n; k)\) denote the subset consisting of matrices of rank \(k\).

Lemma: \(M(p, n; k)\) is a differentiable manifold of dimension \(k(p + n - k)\), \(k \leq \min(p, n)\).

Proof: Let \(E_0 \in M(p, n; k)\) and by reordering coordinates write

\[E_0 = \begin{pmatrix} A_0 & B_0 \\ C_0 & D_0 \end{pmatrix} \]

where \(A_0\) is non-singular and \(k \times k\). There is an \(\varepsilon > 0\) so that if all entries of \(A - A_0\) are less than \(\varepsilon\), then \(A\) is also non-singular. Let \(U \subset M(p, n)\) consist of all

\[E = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \]

with entries of \(A - A_0\) less than \(\varepsilon\).
Then \(E \in M(p,n;k) \) if and only if \(D = CA^{-1}B \). To see this, note that

\[
\begin{pmatrix}
A & B \\
X & D
\end{pmatrix}
=
\begin{pmatrix}
I_k & 0 \\
X & I_{p-k}
\end{pmatrix}
\begin{pmatrix}
A & B \\
C & D
\end{pmatrix}
\]

has the same rank as \(E \). If \(X = -CA^{-1} \), this is

\[
\begin{pmatrix}
A & B \\
0 & -CA^{-1}B + D
\end{pmatrix}
\]

so if \(D = CA^{-1}B \) this has rank \(k \), while if any element of \(-CA^{-1}B + D \) is non-zero the rank is greater than \(k \).

Let \(W \) be the open set in \(\mathbb{R}^m \), \(m = k(p+n-k) = pn - (p-k)(n-k) \), consisting of matrices

\[
\begin{pmatrix}
A & B \\
C & 0
\end{pmatrix}
\]

with all entries of \(A - A_0 \) less than \(\epsilon \). Then

\[
\begin{pmatrix}
A & B \\
C & 0
\end{pmatrix}
\mapsto
\begin{pmatrix}
A & B \\
C & CA^{-1}B
\end{pmatrix}
\]

maps \(W \) homeomorphically onto the neighborhood \(U \cap M(p,n;k) \) of \(E_0 \).

Definition: A differentiable map \(\phi : (V, \mathcal{F}(V)) \to (W, \mathcal{F}(W)) \) is an immersion if \(\phi_* \) is a monomorphism on each fiber of \(\tau(V) \). It is an imbedding if it is also a homeomorphism into.

Proposition: Let \(U \) be an open subset in \(\mathbb{R}^p \) and \(f : U \to \mathbb{R}^p \) a differentiable map with \(p \geq 2n \). Given \(\epsilon > 0 \), there is a \(p \times n \) matrix \(A \) with all entries less than \(\epsilon \) such that \(g(x) - f(x) + Ax \) is an immersion.
Proof: For any $p \times n$ matrix A, $Dg = Df + A$ and one wants to choose A, so that Dg has rank n at all points of U, or equivalently, $A = Q - Df(x)$ where Q has rank n.

Define $F_k : M(p,n;k) \times U \rightarrow M(p,n) : (Q,x) \rightarrow Q - Df(x)$. Then F_k is differentiable and domain F_k has dimension $k(p+n-k) + n < pn = \dim M(n,p)$. [Taking partials one has $p+n-2k$ so the dimension is a monotone function of k and for $k < n$ this is at most $(n-1)(p+n-(n-1)) + n = (2n-p) + pn - 1 < pn].$

Thus for any chart (W,h) of $M(p,n;k) \times U$, $F_k \circ h^{-1}$ has no regular values.

By Sard's theorem, $F_k(W) = F_k \circ h^{-1}(h(W))$ has measure zero but image F_k is a countable union of such sets so has measure zero. Hence there is an A arbitrarily near zero which is not in $\bigcup_{k<n} \text{image } F_k$. This A suffices.

Remark: If U were an open subset of \mathbb{R}^n the same argument suffices since f is the restriction of a differentiable map from \mathbb{R}^n into \mathbb{R}^p.

Theorem: Given a differentiable map $f : (V,\mathcal{O}(V)) \rightarrow \mathbb{R}^p$ where $p \geq 2n$ and a continuous positive function δ on V, there is an immersion $g : (V,\mathcal{O}(V)) \rightarrow \mathbb{R}^p$ such that $|g(v) - f(v)| < \delta(v)$. If f_{\ast} is monic on τ_v for all $v \in N$, N a closed subset of V, then one may let $g|_N = f|_N$.

Proof: Since $f_{\ast}|_{\tau_v}$ is monic for all $v \in N$, it is monic for all $v \in U$ where U is an open neighborhood of N. One may then find a refinement of the open cover $(V - N, U)$ by a locally finite countable family of sets V_i such that each set \bar{V}_i is compact and such that each V_i is the underlying set of a chart (V_i, h_i). [There is a countable base consisting of sets W with \bar{W} compact and (W, h) a chart. The proof that V is paracompact shows that one may find a countable locally finite refinement]. Index the sets V_i so that the V_{i+1} contained in U have $i \leq 0$, while the remainder have $i > 0$, with $i \in \mathbb{Z}$. Applying the proof of the shrinking lemma twice constructs open sets.
\[W_1 \subset \bar{W}_1 \subset U_1 \subset \bar{U}_1 \subset V_1 \] with \(\{W_1\} \) being a cover of \(V \).

Let \(f_0 = f \) and suppose \(f_{k-1} : V \rightarrow \mathbb{R}^P \) is defined such that \((f_{k-1})_{\mu} \mid \tau_v \) is monic for all \(v \in N_{k-1} = \bigcup_{j < k} \bar{W}_j \). For any \(p \times n \) matrix \(A \) let \(F_A : h_k(V_k) \rightarrow \mathbb{R}^P \) be given by

\[F_A(x) = f_{k-1} \circ h^{-1}_k(x) + \phi(x) \cdot A(x) \]

where \(\phi \) is a \(C^\infty \) function from \(\mathbb{R}^n \rightarrow [0,1] \) with \(\phi \mid h_k(\bar{W}_k) = 1 \), \(\phi_k(\mathbb{R}^n - U_k) = 0 \).

First, one wants \(DF_A \) to have rank \(n \) on \(K = h_k(N_{k-1} \cap \bar{U}_k) \).
\(\bar{U}_k \) has a finite cover by open sets each meeting only finitely many \(\bar{W}_j \) so \(N_{k-1} \cap \bar{U}_k \) is compact and \(DF_A(x) = D(f_{k-1} \circ h^{-1}_k(x)) + A(x) \cdot D\phi(x) + \phi(x) \cdot A \)
with \(D(f_{k-1} \circ h^{-1}_k) \) having rank \(n \) on \(K \). This is a continuous function from \(K \times M(p,n) \) to \(M(p,n) \) sending \(K \times 0 \) into \(M(p,n;n) \), so if \(A \) is sufficiently small one has \(K \times A \) mapped into \(M(p,n;n) \). Assume \(A \) is this small.

Next, choose \(A \) small enough so that \(|A(x)| < \varepsilon_k/2^k \) where

\[\varepsilon_k = \inf(\delta(x)|x \in \bar{U}_k) \] for all \(x \in h_k(V_k) \).

Finally, as above \(A \) may be chosen arbitrarily small so that \(f_{k-1} \circ h^{-1}_k(x) + A(x) \) has rank \(n \) on \(h_k(U_k) \).

Let \(A \) satisfy all these requirements.

Then define \(f_k : V \rightarrow \mathbb{R}^P \) by

\[f_k(y) = f_{k-1}(y) + \phi(h_k(y))A(h_k(y)) \quad \text{if} \quad y \in V_k \]

\[= f_{k-1}(y) \quad \text{if} \quad y \in V - \bar{U}_k. \]

These agree on the overlap \(V_k - \bar{U}_k \) so \(f_k \) is differentiable. By the first condition on \(A \), \(DF_A \) has rank \(n \) on \(N_{k-1} \), and by the third it has rank \(n \) on \(\bar{U}_k \), hence \(f_k \mid _\tau_v \) is injective for each \(v \in N_k \). By the second condition, \(f_k \) is a \(\delta/2^k \) approximation to \(f_{k-1} \).
Since the cover \(\Gamma_1 \) is locally finite, the \(f_k \) agree on any given compact set if \(k \) is sufficiently large, so \(g(x) = \lim_{k \to \infty} f_k(x) \) exists and \(g \) is differentiable, \(g|_{V_v} \) is monic for all \(v \in \Sigma \), and \(g \) is a \(\delta \) approximation to \(f \). *

Lemma: Let \((V,\mathcal{F})\) be a differentiable manifold with boundary and \(f : V \to \mathbb{R}^p \) an immersion. Then for each point \(a \in V \) there is an open set \(U \) containing \(a \) such that \(f|_U \) is an immersion.

Proof: Let \((W,h)\) be a chart at \(a \). Then \(f \circ h^{-1} : h(W) \to \mathbb{R}^p \) extends to a differentiable map \(k : \mathbb{R}^n \to \mathbb{R}^p \) with \(Dh(h(a)) \) monic. Thus there is an open set \(T \subset \mathbb{R}^p \) containing \(k(h(a)) \) and differentiable map \(g : T \to \mathbb{R}^p \) with differentiable inverse so that \(gk(x) = (x,0) \) on a neighborhood \(S \) of \(h(a) \). Then

\[
h^{-1} \circ goh(y) = h^{-1} \circ goh^{-1}(h(y)) = h^{-1} \circ gok(h(y)) = h^{-1} \circ (h(y),0) = h^{-1} h(y)
\]

for all \(y \) in a neighborhood of \(a \), \(h^{-1}(S) = U \), where \(w \) projects \(\mathbb{R}^p \) on the first \(n \) coordinates. *

Lemma: If \(p > 2n \) any immersion \(f : (V,\mathcal{F}) \to \mathbb{R}^p \) may be \(\delta \)-approximated by an \(l \)-\(l \) immersion \(g \). If \(f \) is \(l \)-\(l \) on a neighborhood \(U \) of the closed set \(N \), one may choose \(g|_N = f|_N \).

Proof: Choose a covering of \(V \) by sets \(\{U_a\} \) such that \(f|_{U_a} \) is an imbedding for each \(a \), refining the cover \(\{U, V-N\} \). Construct a countable locally finite refinement by sets \(\Gamma_1 \), of the cover \(\{U_a\} \), indexed so that the \(\Gamma_1 \subset U \) have \(i \leq 0 \). Apply the shrinking lemma twice to get \(\overline{U_1} \subset \overline{U_1} \subset U_1 \subset \overline{U_1} \subset V_1 \) and let \(\phi_1 : V \to \mathbb{R} \) be a function of \(\mathcal{F} \) so that \(0 \leq \phi_1 \leq 1 \), \(\phi_1(\overline{U_1}) = 1 \), \(\phi_1(V-U_1) = 0 \).
Let $f_0 = f$ and suppose the immersion $f_{k-1} : V \to \mathbb{R}^p$ is defined. Then f_k is defined by

$$f_k(x) = f_{k-1}(x) + \phi_k(x)b_k$$

where $b_k \in \mathbb{R}^p$ is yet to be chosen. As above, for small b_k, f_k will be an immersion, so let b_k be this small. b_k may also be made small enough so that f_k is a $\delta/2^k$ approximation to f_{k-1}.

Finally, let N be the open subset of $V \times V$ consisting of pairs (x, x') with $\phi_k(x) \neq \phi_k(x')$, and let $\sigma : N \to \mathbb{R}^p$ by

$$\sigma(x, x') = -[f_{k-1}(x) - f_{k-1}(x')]/[\phi_k(x) - \phi_k(x')].$$

N is the union of the manifolds $(V - \partial V) \times (V - \partial V) \cap N$, $(V - \partial V) \times \partial V \cap N$, and $\partial V \times \partial V \cap N$ on each of which σ is differentiable, and since each of these have dimension at most $2n < p$, $\sigma(N)$ has measure zero. Thus b_k may be chosen arbitrarily small and not in this image.

Then $f_k(x) = f_k(x')$ if and only if $\phi_k(x) = \phi_k(x')$ and $f_{k-1}(x) = f_{k-1}(x')$ for $k > 0$.

Let $g(x) = \lim_{k \to \infty} f_k(x)$. If $g(x) = g(x_0)$ and $x \neq x_0$ it follows that $f_{k-1}(x) = f_{k-1}(x_0)$ and $\phi_k(x) = \phi_k(x_0)$ for all $k > 0$. Thus $f(x) = f(x_0)$ so x and x_0 cannot belong to the same set V_i, and since $\phi_k(x) = \phi_k(x_0)$ for $k > 0$ neither can belong to a set W_i with $i > 0$. Thus x and x_0 must lie in U, contradicting the fact that f is 1-1 on U.

Definition: Let $f : (V, \mathcal{F}) \to \mathbb{R}^p$. The limit set $L(f)$ of f is the set of $y \in \mathbb{R}^p$ such that $y = \lim r(x_i)$ for some sequence $\{x_1, x_2, \ldots\}$ in V which has no limit point in V.

Proposition: $f(V)$ is a closed subset of \mathbb{R}^p if and only if $L(r) \subseteq f(V)$.
Proof: Let \(y \in \overline{f(V)} \). Then there is a sequence of points \(y_1 \in f(V) \) with \(\lim y_1 = y \). Let \(x_1 \in V \) with \(f(x_1) = y_1 \). If the sequence \(x_1 \) has a limit point \(x \in V \), then \(f(x) = y \) by continuity of \(f \). If the sequence \(x_1 \) has no limit point in \(V \), then \(y \in L(f) \) so \(y \in f(V) \). Thus \(y \in f(V) \), so \(f(V) \) is closed. *

Proposition: \(f \) is a topological imbedding if and only if \(f \) is 1-1 and \(L(f) \cap f(V) \) is empty.

Proof: Let \(T \subseteq V \) be closed and \(y \in \overline{f(T)} \cap f(V) \). Then there is a sequence \(y_1 \in f(T) \) with \(\lim y_1 = y \). Let \(x_1 = f^{-1}(y_1) \in T \). If the sequence \(x_1 \) has no limit point then \(y \in L(f) \), but \(L(f) \cap f(V) = \emptyset \). Thus there is a limit point \(x \) of the sequence \(x_1 \), and since \(T \) is closed, \(x \in T \). By continuity of \(f \), \(f(x) \) is a limit point of the sequence \(y_1 \), and since \(y \) is the limit of the sequence \(y_1 \), \(R^{P} \) is Hausdorff, \(y = f(x) \). Thus \(\overline{f(T)} \cap f(V) = f(T) \) so \(f(T) \) is closed in \(f(V) \). Hence \(f^{-1} : f(V) \to V \) is continuous, or \(f \) is a topological imbedding. *

Lemma: There is a differentiable map \(f : (V, \mathcal{F}) \to R \) with \(L(f) = \emptyset \).

Proof: Let \(V_1 \) be a countable, locally finite cover of \(V \) by sets \(V_1 \) with compact closure. Apply the shrinking lemma twice to give \(V_1 \subseteq \overline{W}_1 \subseteq U_1 \subseteq \overline{U}_1 \subseteq V_1 \), with \(\{W_1\} \) a cover of \(V \), and let \(\phi_i \in \mathcal{F} \) with \(0 \leq \phi_i \leq 1 \), \(\phi_i(\overline{W}_i) = 1 \), \(\phi_i(V - U_i) = 0 \). Let \(f(x) = \sum_j \phi_j(x) \). This sum is finite for each \(x \) since \(V_1 \) is locally finite. If \(x_1 \) is a sequence in \(V \) having no limit point, then only finitely many \(x_1 \) can lie in any compact subset of \(V \). Given any integer \(m \), there is an integer \(N(m) \) such that \(i \geq N(m) \) implies \(x_1 \notin \overline{W}_1 \cup \ldots \cup \overline{W}_m \). Thus if \(i \geq N(m) \), there is a \(j > m \) with \(x_1 \in \overline{W}_j \), so \(f(x_1) \geq j > m \). Hence the sequence \(f(x_1) \) can have no limit point. *
Corollary: Every n-dimensional differentiable manifold with boundary can be imbedded in \mathbb{R}^{2n+1} as a closed subset.

Proof: Let $f : (V, \mathcal{F}) \rightarrow \mathbb{R} \subset \mathbb{R}^{2n+1}$ be a differentiable map with $L(f) = \emptyset$ constructed as above. Let $\delta(x) = 1$ for all $x \in V$ and let g be a 1-1 immersion of (V, \mathcal{F}) in \mathbb{R}^{2n+1} with $|g(x) - f(x)| < \delta(x)$ for all $x \in V$. Let x_i be any sequence in V having no limit point. Given any integer m there is an integer $P(m) = N(m+1)$ so that if $i \geq P(m)$, then $|g(x_i)| > m$, for $|g(x_i)| \geq |f(x_i)| - 1 > m + 1 - 1$. Thus the sequence $g(x_i)$ cannot have a limit point. Hence $L(g) = \emptyset$ and g is a topological imbedding as a closed subset. *

Definition: Let V_1, V_2 be differentiable manifolds, $f : V_1 \rightarrow V_2$ an immersion. The normal bundle of f, v_f is defined as follows. Let τ_1 and τ_2 denote the tangent bundles of V_1 and V_2. Then $f_* : \tau_1 \rightarrow \tau_2$ induces a monomorphism into the bundle $f^!\tau_2$ over V_1, where $f^!\tau_2$ is the pull-back. The quotient bundle of $f^!\tau_2$ by τ_1 is a differentiable vector bundle over V_1 which is v_f.

Now let (V, \mathcal{F}) be a differentiable manifold and let $g : V \rightarrow \mathbb{R}^P$ be an imbedding. Since the tangent bundle of \mathbb{R}^P is trivial, i.e. the total space is $\mathbb{R}^P \times \mathbb{R}^P$ one may use the usual inner product in \mathbb{R}^P to give an inner product in each fiber of $\tau(\mathbb{R}^P)$. and hence in $g^!(\tau(\mathbb{R}^P))$. The orthogonal complement of the image of each fiber of $\tau(V)$ in each fiber of $g^!(\tau(\mathbb{R}^P))$ is a subspace mapped isomorphically to the fiber of v_g. The orthogonal complements fit together to form the total space of a differentiable vector bundle $\tau(V)^\perp$ over V isomorphic to v_g, via the quotient map $\alpha : g^!(\tau(\mathbb{R}^P)) \rightarrow v_g$. The bundle map $\beta : g^!(\tau(\mathbb{R}^P)) \rightarrow \tau(\mathbb{R}^P)$ then gives a differentiable map $\gamma = \beta \circ (\alpha|_{\tau(V)^\perp})^{-1}$ mapping $\mathbb{R}(v_g)$ diffeomorphically onto
the submanifold of \(\mathbb{R}^p \times \mathbb{R}^p = \mathbb{E}(\tau(\mathbb{R}^p)) \) given by \(\{(x,y) \in \mathbb{R}^p \times \mathbb{R}^p | x = g(v) \) and \(y \perp g_\ast(\tau_v), v \in V \)\).

Let \(e : \mathbb{R}^p \times \mathbb{R}^p \rightarrow \mathbb{R}^p : (x,y) \mapsto (x+y) \).

Theorem: If \((V,\tau_V)\) is an \(n \)-dimensional differentiable manifold with \(\partial V = \emptyset \) and \(g : V \rightarrow \mathbb{R}^p \) is an imbedding, then the differentiable function \(e \circ \gamma : E(v_g) \rightarrow \mathbb{R}^p \) maps an open neighborhood of the zero section of \(v_g \) diffeomorphically onto an open neighborhood of \(g(V) \) in \(\mathbb{R}^p \).

Proof: First \(e \circ \gamma \) is differentiable and has rank \(p \) at all points of the zero section. [To see this, let \((U,h)\) be a chart on \(V \) so that \(v_g \) is trivial over \(U \). One then has a local trivialization \(k : h(U) \times \mathbb{R}^{p-n} \rightarrow E(v_g) \) with \((w^{-1}(U),k^{-1}) \) a chart of \(E(v_g) \). Then the function \(\delta = (e \circ \gamma)k : h(U) \times \mathbb{R}^{p-n} \rightarrow \mathbb{R}^p \) is given by \(\delta(x,a) = goh^{-1}(x) + \sum a_i y_i(x) \) where for each \(x \in h(U), \{y_i(x)\} \) form a base for the orthogonal complement to \(D(goh^{-1})(x)[\mathbb{R}^p] = g_\ast(\tau_h(x)) \). Then \(D\delta(x,a)(y,\beta) = D(goh^{-1})(x)(y) + \sum s_i y_i(x) + \sum a_i D y_i(x)(y) \) where \(\{y_i, \beta \} \in \mathbb{R}^p \times \mathbb{R}^{p-n} = \mathbb{R}^p \). For \(a = 0 \), this gives \(D\delta(x,0)(y,\beta) = D(goh^{-1})(x)(y) + \sum s_i y_i(x) \) which spans \(\mathbb{R}^p \) as \(\{y_i, \beta \} \) runs through \(\mathbb{R}^p \) because of the choice of \(y_i \). Hence \(e \circ \gamma \) has rank \(p \) in some neighborhood of the zero section of \(E(v_g) \), so that it is a local diffeomorphism at points of the zero section: i.e. it maps an open neighborhood of each point \(x \) in the zero section diffeomorphically onto an open neighborhood of \(e \circ \gamma(x) \) in \(\mathbb{R}^p \).

To complete the proof it suffices to show:

Lemma: Let \(X \) and \(Y \) be Hausdorff space with countable bases and \(X \) locally compact. If \(f : X \rightarrow Y \) is a local homeomorphism and the restriction
of \(f \) to a closed subset \(A \) is a homeomorphism, then \(f \) is a homeomorphism on some neighborhood \(V \) of \(-A\).

Proof: 1) If \(A \) is compact, the lemma is true. If not, then every neighborhood \(N \) of \(A \) contains a pair \(x, y \) of points for which \(f(x) = f(y) \). One may then find a countable family \(N_i \) of compact neighborhoods of \(A \) with \(N_{i+1} \subset N_i \) and \(\bigcap N_i = A \). For each \(i \), let \(x_i, y_i \in N_i \) with \(f(x_i) = f(y_i) \). Since \(N_i \) is compact, the sequence \(x_i \) and \(y_i \) have limit points \(x \) and \(y \). Since \(V - N_{i+1} \) contains only a finite number of points \(x_j \) and \(y_j \), one must have \(x, y \in \bigcap N_i = A \). But \(f(x) = \lim f(x_i) = \lim f(y_i) = f(y) \) contradicting the fact that \(f|_A \) is a homeomorphism.

2) Let \(A_0 \) be a compact subset of \(A \). Then there is a neighborhood \(U_0 \) of \(A_0 \) such that \(U_0 \) is compact and \(f \) is a homeomorphism on \(U_0 \cup A \). To see this, let \(V_0 \) be a neighborhood of \(A_0 \) with \(\overline{V_0} \) compact and \(f|_{\overline{V_0}} \) 1-1, which is possible by 1). If no neighborhood of \(A_0 \) in \(V_0 \) satisfies the requirements for \(U_0 \), there is a sequence of points \(x_n \in X - A \) converging to \(x \in A_0 \) with \(f(x_n) \in f(A) \). Let \(y_n \in A \) with \(f(y_n) = f(x_n) \). Since \(f \) is continuous, \(f(y_n) \) converges to \(f(x) \); and since \(f|_A \) is a homeomorphism, \(y_n \) converges to \(x \). Since \(x_n \neq y_n \) this contradicts the assumption that \(f \) is a local homeomorphism at \(x \).

3) Express \(A \) as the union of an ascending sequence of compact sets \(A_1 \subset A_2 \subset \ldots \). Suppose \(V_i \) is a neighborhood of \(A_i \) with \(\overline{V_i} \) compact and \(f \) is a homeomorphism on \(\overline{V_i} \cup A \). Then \(\overline{V_i} \cup A_{i+1} \) is a compact subset of \(\overline{V_i} \cup A \) on which \(f \) is a homeomorphism and by 2) there is a neighborhood \(V_{i+1} \) of \(\overline{V_i} \cup A_{i+1} \) with \(\overline{V_{i+1}} \) compact and \(f \) a homeomorphism on \(\overline{V_{i+1}} \cup A \). Let \(V = \bigcup V_i \). The sets \(V_i \) are an ascending sequence of open sets so if \(x, y \in V \) with \(f(x) = f(y) \) then there is an \(i \) with \(x, y \in V_i \), but \(f|_{V_i} \) is 1-1 so \(x = y \). Thus \(f \) is 1-1 on \(V \) and being a local homeomorphism, \(f|_V \) is a homeomorphism.
Lemma: Let (V, \mathcal{F}) be a manifold with boundary. Then there is a differentiable function $g : V \to [0, \infty)$ such that $g(3V) = 0$ and $g_v|_V$ is non-zero for each $v \in 3V$.

Proof: Let (V, h_i) be a countable locally finite cover of V by charts and apply the shrinking lemma twice to get $W_i \subset \overline{W_i} \subset U_i \subset U_i \subset V_i$. Let $\phi_i \in \mathcal{F}$ with $0 < \phi_i \leq 1$, $\phi_i(\overline{W_i}) = 1$, $\phi_i(V-U_i) = 0$. Let K be the set of i such that $W_i \cap 3V \neq \emptyset$. For each $i \in K$, $h_i : V_i \to R^n$ is of the form $r_1 \times \cdots \times r_n$ and $V_i \cap 3V = h_i^{-1}(R^{n-1} \times 0) = (r_i)^{-1}(0)$. Let $g(x) = \sum_{i \in K} \phi_i(x) \cdot r_i(x)$. Then $g \in \mathcal{F}$ and $g : V \to [0, \infty)$ with $g(3V) = 0$.

Let $v \in 3V$. There is then an $i \in K$ with $v \in W_i$. Let $\lambda : (0, \infty) \to$ by $\lambda(t) = h(v) + (0, \ldots, 0, t)$. Then there is an $\varepsilon > 0$ with $\lambda([0, \varepsilon)) \subset h(V_i)$. Then $h^{-1}\lambda : (0, \varepsilon) \to V$ is a differentiable map and to show $g|_{h^{-1}\lambda} \neq 0$ it suffices to prove that $\frac{d}{dt} (goh^{-1}\lambda) \neq 0$ at $t = 0$.

For the $i \in K$ used to define λ, we have $\phi_i oh^{-1}\lambda(t) = 1$ for all $t \in \lambda^{-1}(W_i)$ and $\frac{d}{dt} (\phi_i oh^{-1}\lambda)(t) = t$ for all $t \in [0, \varepsilon)$. Thus

$$\frac{d}{dt} (((\phi_i oh^{-1}\lambda)) oh^{-1}\lambda) = 1.$$

For any $i' \neq i$, $i' \in K$ with $v \in V_i$, one has

$$\frac{d}{dt} (((\phi_i oh^{-1}\lambda)) oh^{-1}\lambda) = (\phi_i oh^{-1}\lambda) \cdot \frac{d}{dt} (\phi_i oh^{-1}\lambda) + \phi_i oh^{-1}\lambda \cdot \frac{d}{dt} (\phi_i oh^{-1}\lambda).$$

Now $\phi_i oh^{-1}\lambda(0) > 0$, $\phi_i oh^{-1}\lambda(0) = 0$ and for $t > 0$, $\phi_i oh^{-1}\lambda(t) > 0$ in a neighborhood of $t = 0$, and hence $\frac{d}{dt} (\phi_i oh^{-1}\lambda) > 0$.

Adding these up, one has $\frac{d}{dt} (goh^{-1}\lambda) > 1$. *

Theorem: Let (V, \mathcal{F}) be a differentiable manifold with boundary. There is an open neighborhood U of $3V$ in V such that $(U, \mathcal{F}|_U)$ is diffeomorphic to $3V \times [0,1]$.
Proof: Let \(\tilde{g} : V \to \mathbb{R}^P \) be an imbedding. Then \(\tilde{g} \mid_{\partial V} : \partial V \to \mathbb{R}^P \) is an imbedding so there is an open neighborhood \(N \) of \(\partial V \) in \(\mathbb{R}^P \) diffeomorphic to a neighborhood of the zero section in \(E(\nu_{\tilde{g}}) \), with \(\alpha : N \to E(\nu_{\tilde{g}}) \) the diffeomorphism into. Then \(\pi \circ \alpha \circ \tilde{g} : \tilde{g}^{-1}(N) \to \partial V \) is a differentiable retraction of the open neighborhood \(\tilde{g}^{-1}(N) \) of \(\partial V \) onto \(\partial V \). Let \(g : V \to [0,\infty) \) be as given previously. Then \(r = (\pi \circ \alpha \circ \tilde{g}) \times g : \tilde{g}^{-1}(N) \to \partial V \times [0,\infty) \) is a differentiable map. For any \(v \in \partial V \), the kernel of \(g \mid_{\tau_v} \) contains the image of \(\tau(\partial V)_v \), hence by dimension this is precisely the kernel. \((\pi \circ \alpha \circ \tilde{g}) \mid_{\tau_v} \) maps the image of \(\tau(\partial V)_v \) isomorphically. Thus \(r \mid_{\tau_v} \) is an isomorphism. Thus \(r \mid_{\tau_v} \) is monic for all \(w \) in some open neighborhood \(W \) of \(\partial V \), and so is a local diffeomorphism of \(W \) with an open neighborhood of \(\partial V \times 0 \) in \(\partial V \times [0,\infty) \), and is a homeomorphism on \(\partial V \). Thus there is an open neighborhood \(Q \) of \(\partial V \) in \(V \) diffeomorphic to an open neighborhood of \(\partial V \) in \(\partial V \times [0,\infty) \). By means of a countable locally finite cover of \(\partial V \) by charts, with compact closure, one may take a neighborhood of \(\partial V \) of the form \(\{(x,y) \in \partial V \times [0,\infty) | y < \beta(x)\} \) for some \(\beta \in \mathcal{F}(\partial V) \) with \(\beta > 0 \), within this neighborhood. Sending \((x,y) \to (x,y/\beta(x)) \) maps this diffeomorphically onto \(\partial V \times [0,1) \).

Theorem: Let \((V,\partial V) \) and \((W,\partial W) \) be differentiable manifolds with boundary such that \(V \) is a submanifold of \(W \) with inclusion \(i : V \to W \) and suppose there is a neighborhood \(U \) of \(\partial W \) in \(W \) and a diffeomorphism \(f : (U,\partial U \cap V) \to (\partial W \times [0,1), \partial V \times [0,1)) \). Then there is an open neighborhood of \(V \) in \(W \) diffeomorphic to an open neighborhood of the zero section in \(V \).

Proof: Let \(a = \pi_1 \circ f : U \to \partial W \), \(b = \pi_2 \circ f : U \to [0,1) \). There is a function \(\mu \in \mathcal{F}(W) \) with \(0 \leq \mu \leq 1 \), \(\mu(b^{-1}([0,3/4])) = 1 \), \(\mu(W-U) = 0 \) and a function \(v \in \mathcal{F}(W) \) with \(0 \leq v \leq 1 \), \(v(b^{-1}([0,5/8])) = 0 \).
ν(\(W - β^{-1}([0,3/4])\)) = 1 and so \(σ = μ \cdot β + ν : W \to [0, \infty)\) is in \(F(W)\) and
\(σ|_{U'} = β|_{U'}\), where \(U' = β^{-1}([0,1/2])\).

Let \(φ : [0,1/2] \to [0,1]\) be the \(C^∞\) function with \(φ[0,1/4] = 0, \phi[3/8,1/2] = 1\) given by \(φ = φ_{1/4,3/8}\). Let \(q : W \to W\) be \(f^{-1}(lxu)\) of on \(U'\), where \(u(s) = φ(s)\cdot s\) and the identity on \(W - f^{-1}([0,3/8])\).

Let \(g : W \to R^p\) be any imbedding and define \(h = (goq) \times σ : W \to H^{p+1}\), \(h\) is easily seen to be an imbedding and \(h\circ f^{-1} : \partial W \times [0,1/2] \to H^{p+1}\) agree with \(g|_{\partial W} \times 1\).

The inner product on \(R^{p+1}\) gives inner products on \(ν_1(W)\) and \(ν_1(V)\), so that one may identify \(ν_1\) with

\[
\{(x,y) \in H^{p+1} \times R^{p+1} | x = hi(v), y \in h_1(W)_1(v), y \perp h_1(W)_1(v), \}
\]

The evaluation map \(e\) sends this subset into \(R^{p+1}\), and by the agreement of \(h\circ f^{-1}\) with \(g|_{\partial W} \times 1\) on \(\partial W \times [0,1/2]\) will send \(\{(x,y) | x = h(u'), y \in U'\}\) into \(H^{p+1}\) (since \(y\) can have no component orthogonal to \(R^p \times 0\)) and hence sends a neighborhood of \(h(i(V)) \times 0\) into \(H^{p+1}\). Since \(W\) is imbedded nicely by \(h\), there is a retraction of a neighborhood of \(W\) into \(W\) (as in the tubular neighborhood theorem for closed manifolds in Euclidean space). The composite map of a neighborhood of the zero section in \(E(ν_1)\) into \(W\) is of maximal rank at the zero section, and checking along the tubular neighborhood of \(\partial W\) shows that this is a diffeomorphism of smaller neighborhoods.

Note: Such a nice tubular neighborhood \(U\) seems to always exist if one has sufficient regularity at the intersection of \(V\) and \(\partial W\). In particular, our definition of submanifold appears sufficiently restrictive to give this. No simple proof seems possible, and hoping that we won't need this existence, we will avoid the argument.
Definition: Let \(f : \mathcal{M}^m \rightarrow \mathcal{N}^n \) be a differentiable map, \(\mathcal{N}^{'k} \) a closed submanifold of \(\mathcal{N} \). \(f \) is said to be transverse regular to \(\mathcal{N}^{'k} \) at \(x \in \mathcal{M}^m \) if:

1) \(f(x) \notin \mathcal{N}^{'k} \), or
2) \(f(x) \in \mathcal{N}^{'k} \) and the composite

\[
\tau(\mathcal{M})_x \xrightarrow{\tau(f)_x} \tau(\mathcal{N})_{f(x)} \xrightarrow{i_* \tau(\mathcal{N}')}_{f(x)}
\]

is epic, where \(i : \mathcal{N}' \hookrightarrow \mathcal{N} \) is the inclusion.

\(f \) is said to be transverse regular on \(\mathcal{N}' \) if \(f \) is transverse regular at each point of \(\mathcal{M} \).

Proposition: The set of points \(x \in \mathcal{M} \) at which \(f \) is transverse regular to \(\mathcal{N}' \) is open.

Proof: \(f^{-1}(\mathcal{N}') \) is closed so the set of points of type 1 is open. Suppose \(x \) is of the second type and choose a chart at \(f(x) \), \((U,h)\), with

\(h(U \cap \mathcal{N}') = h(U) \cap (0 \times \mathbb{R}^k) \). Let \((V,k)\) be a chart at \(x \) with \(V \subset f^{-1}(U) \).

With coordinates \(u_i \) in \(h(U) \), \(v_j \) in \(k(V) \), one has \(h \circ f^{-1} : k(V) \rightarrow h(U) \)
and the transversality condition at \(x \) is the assertion that

\[
(\partial u_i / \partial v_j)_{i=1, \ldots, n-k}^{j=1, \ldots, m}
\]

has rank \(n-k \) at \(k(x) \). This matrix has rank \(n-k \) in a neighborhood of \(k(x) \), so \(f \) is transverse regular on a neighborhood of \(x \).

Proposition: If \(f : \mathcal{M}' \rightarrow \mathcal{N}' \) is transverse regular to \(\mathcal{N}^{'k} \) and the restriction of \(f \) to \(\mathcal{M}' \) is also transverse regular to \(\mathcal{N}^{'k} \) then \(f^{-1}(\mathcal{N}') \) is a submanifold of \(\mathcal{M} \) of dimension \(m - (n-k) \). Further, the normal bundle of \(f^{-1}(\mathcal{N}') \) in \(\mathcal{M} \) is induced from the normal bundle to \(\mathcal{N}' \) in \(\mathcal{N} \).
Proof: Let f be transverse regular at $x \in f^{-1}(N')$ and choose charts (U,h) and (V,k) as above. By reordering coordinates in V, one may assume $(\partial u_i/\partial v_j)_{i,j=1,\ldots,n-k}$ is non-singular at $k(x)$. Hence by the inverse function theorem the functions $(u_1,\ldots,u_{n-k},v_{n-k+1},\ldots,v_m)$ give a chart at $k(x)$ in $k(V)$ and hence a chart at x, (V',k') so that $k'(V' \cap f^{-1}(N')) = k'(V') \cap (0 \times \mathbb{R}^{m-(n-k)})$. If $x \in M - \partial M$ this is a chart of the required type. If $x \in \partial M$, then the condition on $f|_{\partial M}$ implies that in the reordering the function v_m is not replaced by any u_i, and hence that $k'(V') \subseteq \mathbb{R}^m$. Thus, the chart (V',k') is as required. The normal bundle condition is clear since the induced map is epic on fibers.

Theorem: Let $f : M \to N$ be a differentiable map; let N' be a closed differentiable submanifold of N'. Let A be a closed subset of M such that the transverse regularity condition for f on N' is satisfied at all points of $A \cap f^{-1}(N')$. There exists a differentiable map $g : M \to N$ such that

1) g is homotopic to f,

2) g is transverse regular on N'

3) $g|_A = f|_A$.

Proof: There is a neighborhood U of A in M such that f satisfies the transverse regularity condition on U. Cover N by $N - N' = Y_0$ and coordinate systems (Y_i,k_i) for $i > 0$ with coordinate functions (v_1,\ldots,v_m) such that $N' \cap Y_i$ is mapped precisely to the set for which $v_1=\ldots=v_{n-k}=0$. The sets $f^{-1}(Y_i)$ cover M, as do the sets U and $M - A$. Let (V_j,h_j) be a refinement of both coverings which is countable and locally finite, indexed so that $j \leq 0$ if $V_j \subseteq U$ and the others have $j > 0$. Apply the shrinking lemma twice to get $\bar{V}_j \subseteq \bar{U}_j \subseteq U_j \subseteq \bar{U}_j \subseteq V_j$ and let $\phi_j \in \mathcal{F}(M)$,
0 \leq \phi_j \leq 1, \phi_j(\tilde{W}_j) = 1, \phi_j(M-U_j) = 0. For each \ j choose an \ i(j) \geq 0 with \ f(v_j) \subset Y_i(j).

Let \ f_0 = f and suppose \ f_{k-1} \ has been defined, satisfies transverse regularity on \ \bigcup_{j<k} \tilde{W}_j \ with \ f_{k-1}(\tilde{U}_j) \subset Y_i(j) \ for \ each \ j. In particular, letting \ i = i(k), \ f_{k-1}(\tilde{U}_j) \subset Y_i.

Consider the function \ \pi_{k-1} f_{k-1} \ : \ h_k(U_k) \rightarrow \mathbb{R}^{n-k} \ where \ \pi \ projects \ on \ the \ first \ n-k \ coordinates. By the approximation of regular values theorem, there are arbitrarily small vectors \ y \in \mathbb{R}^{n-k} \ such that \ \pi_{k-1} f_{k-1}(\phi_k h_k^{-1})y \ has \ the \ origin \ as \ regular \ value. We then define \ f_k \ by

\[f_k(x) = k^{-1}_i (k f_{k-1}(x) - \phi_k(x)(y,0)) \text{ for } x \text{ in a neighborhood of } \tilde{U}_k \]

\[= f_{k-1} \text{ if } x \in M - U_k. \]

where \ y \in \mathbb{R}^{n-k} \ is yet to be chosen.

First one needs \ y \ small enough that \ \phi_k h_k^{-1} \ lies in \ k_i(Y_i) \ for all \ x \in \tilde{U}_k. If \ Y_i \ is a neighborhood meeting \ \mathfrak{N} \ then \ (y,0) \ is "parallel" to \ \mathfrak{N} \ and one is not translated out of \ k_i(Y_i) \ across \ \mathfrak{N}. Hence for small \ y \ this holds and thus \ k_i^{-1} \ may be applied. Next \ y \ is chosen to give a \ \delta/2^k \ approximation to \ f_{k-1}. Also \ y \ is chosen small enough that \ f_k(\tilde{U}_j) \subset Y_i(j) \ for each \ j. This is possible since only a finite number of sets \ \tilde{U}_j \ meet \ \tilde{U}_k. Under these conditions \ f_k \ will be transverse regular on \ N' \ at each point of \ f_{k-1}^{-1}(N') \cap \tilde{W}_k.

Now \ f_{k-1} \ is transverse regular on \ N' \ at each point of the compact set \ \tilde{U}_k \cap \bigcup_{j<k} \tilde{W}_j \ and since small changes preserve regularity, for sufficiently small \ y, \ f_k \ will also be transverse regular on this set, hence on \ \bigcup_{j<k} \tilde{W}_j.

After all these limitations, we have such a \ y \ and hence an \ f_k. Let \ g(x) = \lim f_k(x). A homotopy from \ f_{k-1} \ to \ f_k \ is given by contracting \ y \ and a limit of these homotopies defines a homotopy from \ f \ to \ g. *
BIBLIOGRAPHY

3. _____: On the groups J(X),II, Topology, 3 (1965), 137-173.

30. _____: A spectrum whose \mathbb{Z}_p cohomology is the algebra of reduced pth powers, Topology, 5 (1966), 149-154.

35. _____: Cobordism theories, Seattle conference on Differential and Algebraic Topology (mimeographed), 1963.

47. A. Dold: Relations between ordinary and extraordinary cohomology, Notes, Aarhus Colloquium on Algebraic Topology, Aarhus, 1962.

49. F. T. Farrell: The obstruction to fibering a manifold over a circle, (mimeographed) Yale University, New Haven, Conn., 1967.

50. S. Gitler and J. D. Stasheff: The first exotic class of BF, Topology, 4 (1965), 257-266.

63. P. S. Landweber: Cobordism operations, mimeographed, University of Virginia (about 1965).

64. _____: Cobordism operations, Notices Amer. Math. Soc., 12 (1965), 578.

68. _____: On the symplectic bordism groups of the spaces Sp(n), Hp(n), and BSp(n), (to appear).

70. _____: Conjugations on complex manifolds and equivariant homotopy of MSp, Bull. Amer. Math. Soc., 74 (1968), 271-274.

75. _____: Notes on homotopy of Thom spectra, Amer. J. Math., 86 (1964), 1-16.

77. J. W. Milnor: On manifolds homeomorphic to the 7-sphere, Ann. of Math., 64 (1956), 399-405.

78. _____: Lectures on characteristic classes, mimeographed, Princeton University, Princeton, N. J., 1957.

82. _____: On the cobordism ring Ω^* and a complex analogous, Part I., Amer. J. Math., 82 (1960), 505-521.

84. _____: A survey of cobordism theory, Enseignement Mathematique, 8 (1962), 16-23.

85. _____: Spin structures on manifolds, L'Enseignement Mathematique, 9 (1963), 198-203.

89. _____: Characteristic classes for spherical fibre spaces, (mimeographed), Princeton University, 1965.

128. _____: Les classes caractéristiques de Pontrjagin des variétés triangulées, Symposium Internacional de Topologia Algebraica, Mexico, 1958.

