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Abstract. Let R be a perfectoid ring. Hesselholt and Bhatt-Morrow-Scholze have identified the Postnikov
filtration on THH(R;Zp): it is concentrated in even degrees, generated by powers of the Bökstedt generator

σ, generalizing classical Bökstedt periodicity for R = Fp. We study an equivariant generalization of the
Postnikov filtration, the regular slice filtration, on THH(R;Zp). The slice filtration is again concentrated

in even degrees, generated by RO(T)-graded classes which can loosely be thought of as the norms of σ.

The slices are expressible as RO(T)-graded suspensions of Mackey functors obtained from the Witt Mackey
functor. We obtain a sort of filtration by q-factorials. A key ingredient, which may be of independent interest,

is a close connection between the Hill-Yarnall characterization of the slice filtration and Anschütz-le Bras’

q-deformation of Legendre’s formula.
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1. Introduction

In [BMS19], the authors construct “motivic” filtrations on THH and its variants, applying this to construct
(completed) prismatic cohomology equipped with the Nygaard filtration. Their construction works by quasi-
syntomic descent to the case of perfectoid rings, where the filtration is given by the Postnikov filtration. In
this case, they show that for a perfectoid ring R,

π∗THH(R;Zp) = R[σ], |σ| = 2,

generalizing earlier work of Hesselholt for the case R = OCp [Hes06] and Bökstedt’s foundational calculation

for R = Fp [B8̈5].
Their work depends on the work of Nikolaus-Scholze [NS18], who give (in the bounded below case) a

description of cyclotomic spectra in terms of Borel equivariant homotopy theory. However, for most of
history cyclotomic spectra were studied via genuine equivariant homotopy theory. In the genuine toolbox,
a powerful way to study G-spectra is via the (regular, equivariant) slice filtration. Modelled on the slice
filtration from motivic homotopy theory, this was developed by Dugger [Dug05] in the case G = C2, and later
generalized to finite groups by Hill-Hopkins-Ravenel as one of the main tools in their solution of the Kervaire
invariant one problem [HHR16a]. We will be interested in the “regular” slice filtration, first described by
Ullman [Ull09], which has better multiplicative properties than the “classical” version used by HHR.

A simple but crucial point is that the slice filtration restricts to the Postnikov filtration on underlying
spectra, and thus constitutes an equivariant generalization of the Postnikov filtration—one which is however
quite different from the Postnikov t-structure on G-spectra, as it mixes in more of the representation theory
of G. In 2018, Hill asked what happens if, in the BMS construction, one replaces the Postnikov filtration
with the slice filtration. This gives a filtration which is sensitive to the genuine structure of THH but not
its cyclotomic structure, so is in some sense intermediary between the BMS filtration and the cyclotomic
filtration constructed by Antieau-Nikolaus [AN18].

In this paper we carry out the local calculation needed to answer Hill’s question, identifying the slice
filtration on THH(R;Zp) for a perfectoid ring R. On the arithmetic side, we present evidence that this is
strongly related to q-divided powers. Before stating the results, let us say more about the problem from a
homotopical point of view.

Our understanding of the slice filtration has come a long way since [HHR16a], but is still in its infancy.
In particular, most slice computations to date have been of spectra closely related to MUR, or of Mackey
functors; THH is of a quite different flavor than these, yet is still a very reasonable spectrum. It is fair
to be skeptical that methods in the highly specialized setting of cyclotomic spectra will work for general
G-spectra, but aside from the calculational foothold afforded by cyclotomicity, our arguments only rely
on connectivity of geometric fixed points and the Segal conjecture. Thus, while our investigations were
motivated by arithmetic considerations, we hope that they will shed light on the slice filtration in general.

One novelty is that this is the first time the slice filtration has been considered for a compact Lie group
(which we define so that it restricts to the slice filtration on all finite subgroups). This causes some peculiari-
ties: for example, we no longer get periodicity with respect to the regular representation. However, there is a
good replacement: writing T for the circle group, let λi denote the one-dimensional complex T-representation
in which z ∈ T acts as multiplication by zi. Then set

[n]λ = λ0 ⊕ · · · ⊕ λn−1

{n}λ = λ1 ⊕ · · · ⊕ λn

A standard decomposition using roots of unity shows that [n]λ restricts to the complex regular representation
of Cn, while {n}λ restricts to the reduced complex regular representation of Cn+1. The {n}λ representa-
tions also appear when calculating the K-theory of truncated polynomial algebras [HM97a, Spe19b] or of
coordinate axes [Hes07, Spe19a], and many of the formulas there bear a striking resemblance to ours.

To state the main theorem, we require some further notation. Let W (R) denote the Mackey functor of
p-typical Witt vectors of R, and let trCnW (R) be the sub-Mackey functor generated under transfers by
restriction to Cpvp(n) . Quotients of Mackey functors are to be interpreted levelwise. Finally, we will assume

for the rest of the Introduction that R is a Zcycl
p = Zp[ζp∞ ]∧p -algebra; the results are valid for any perfectoid

ring, but the meaning of the q-analogues needs to be clarified. Recall that Ainf(Zcycl
p ) = Zp[q1/p∞ ]∧(p,q−1).

2



Theorem 1.1. Let R be a perfectoid Zcycl
p -algebra. The slice covers of THH(R;Zp) are given by

P2nTHH(R;Zp) = Σ[n]λTHH(R;Zp).

The slices are given by

P2n
2nTHH(R;Zp) = Σ{n}λ trCnW (R)

= Σ[n]λW (R)/[pn]q1/p .

For comparison, Ullman [Ull09, Theorem 5.1] shows that P2nkuG = Σ[n]λkuG (for G finite cyclic), so this
is a reasonable answer. As a Cn-spectrum the representation sphere S[n]λ is just the norm NCn

e S2, so we
can roughly think of the above filtration as being generated by the norms of the Bökstedt generator σ. We
do not know whether either of the two expressions for P2n

2nTHH(R;Zp) is more natural.

Remark 1.2. For a thorough comparison with [BMS19] and prismatic cohomology, one should additionally

compute the slice filtration on the T-spectra THH(R;Zp)ET+ , ẼT⊗THH(R;Zp)ET+ , and ẼT⊗THH(R;Zp).
We will address this in future work.

As the Theorem indicates, in order to work with the slice filtration it is necessary to have a handle on
the RO(T)-graded homotopy πFTHH(R;Zp). For virtual representations of the form F = ∗ − V with
∗ ∈ Z and V an actual representation, these groups come up when studying THH of monoid algebras, and
can already be found in [HM97b, Proposition 9.1]. However, the slice filtration tends to demand study of
the degrees F = ∗ + V . Gerhardt [Ger08] computed πFTRn(Fp) additively for general F ∈ RU(T) (i.e.,
even-dimensional virtual representations), and Angeltveit-Gerhardt [AG11] extended this to all F ∈ RO(T)
(as well as to THH of Z and the Adams summand `). Their method is an RO(T)-graded version of the
isotropy separation sequence, which they slickly package as the “homotopy orbits to TR spectral sequence”
(HOTRSS).

In the course of applying their method to the slice filtration and generalizing it to perfectoid rings, we
discovered several enhancements, incorporating recent advances in equivariant homotopy theory.

(1) As we learned from work of Zeng [Zen18, §6], the isotropy separation sequence can be packaged using
the so-called gold elements aλi , uλj of equivariant homotopy theory [HHR16b, §3]. While this is in
some sense just a change of notation, it makes the calculations considerably more transparent, and
makes it easy to track the multiplicative and Mackey structure, which are important for us.

(2) As we learned from Hill, using Nikolaus-Scholze/BMS techniques, one can work with TF instead
of TRn. This greatly simplifies calculations by removing a lot of distracting torsion, which can be
put back in later (if desired). For example, there is a sharp distinction between even- and odd-
dimensional TF groups, but both of these contribute to the even-dimensional TRn groups studied
by Gerhardt.

(3) In order to generalize the method to perfectoid rings, our key lemma is a q-deformation of the gold
relation of [HHR16b, Lemma 3.6(vii)], describing the interaction of the aforementioned gold elements
aλi , uλj . Our “q-gold relation” (Lemma 4.9) says that, for 0 ≤ i < j,

σaλi = [pi+1]q1/puλi

aλjuλi = φi+1([pj−i]q1/p)aλiuλj .

The case of a torsionfree perfectoid ring is in fact easier than the case of Fp (except notationally),
since [p]q1/p and [p]q do not interfere with one another, which removes another source of torsion.

The HOTRSS played a central role in our early investigations; in the final product, we have reduced to
considering a few very nice virtual representations, which can be computed in an ad hoc way. Thus, we will
use Angeltveit-Gerhardt’s insights to derive the q-gold relation, but then use cell structures to carry out the
actual calculations, avoiding the HOTRSS. In [Sul], we will deploy the HOTRSS (or rather the HOTFSS)
to compute the entire RO(T)-graded ring πFTF(R;Zp).

The q-gold relation together with some knowledge of πFTF(R;Zp) allows us to read off the effect of
the slice filtration on homotopy. We describe the filtration on both π2iTF(R;Zp) and π[i]λTF(R;Zp), since
Theorem 1.1 as well as the answer for π2i make π[i]λ seem more natural.

3



Theorem 1.3. The slice filtration takes the following form on homotopy. When j ≤ 0 or i = 0, F2j
S π[i]λTF(R;Zp)

is all of π[i]λTF(R;Zp). Otherwise, F2j
S π[i]λTF(R;Zp) is generated by

[p(i+ j − 1)]q1/p !

[p(i− 1)]q1/p !
.

When j ≤ 0 or i = 0, F2j
S π2iTF(R;Zp) is all of π2iTF(R;Zp). Otherwise, F2j

S π2iTF(R;Zp) is generated by

[p(i+ j − 1)]q1/p !

[pr]i−1
q1/p

φr
([⌊

i+j−1
pr−1

⌋]
q1/p

!

) ,
where r =

⌈
logp

(
i+j
i

)⌉
.

In particular, taking i = 1 in either case gives

F2j
S π2TF(R;Zp) = ([pj]q1/p !)

= ([p]j
q1/p

[j]q!).

Remark 1.4. The arithmetic significance of this filtration is currently mysterious, but we will share some
speculation. As explained in [Hil20, §17.5.3], the slice filtration is the universal filtration such that the
equivariant norm functors scale filtration by the index of the subgroup. It is not clear what this means in
the case of a compact Lie group, but a good place to start is the Witt vector norm maps

Wn(R)
N−→Wn+1(R);

these are natural from the point of view of equivariant homotopy, but have received little attention in number
theory (aside from the Teichmüller lift, which is a special case). The description of the Witt vector norm is
due to Angeltveit and Borger [Ang15], but they are working with W (R) rather than Ainf(R); although the
norm maps can be lifted to Ainf(R), it is not clear if there is a canonical way to do so. However, a preferred
lift is available in the q-crystalline case: the q-Pochhammer symbols

(x,−y; q)n := (x− y)(x− qy) · · · (x− qn−1y)

are lifts of N(x − y), at least for x and y of rank one (Proposition 3.32). In particular, our filtration on
π2TF(R;Zp) should be compared with [AB19, Proposition 4.9]. We discovered this connection as the paper
was being finalized, and have not yet really explored it.

We can also understand this filtration via the regular slice spectral sequence (RSSS). Here, for the first
time, we see different behavior depending on the nature of R. When R is p-torsionfree, the E2 page is
concentrated in even degrees, so the RSSS collapses at E2. However, when R is a perfect Fp-algebra, there
are differentials on every page arising from the “collision” of ξ and φ(ξ) ([p]q1/p and [p]q). For a Mackey

functor M , we let ΦCnM denote the cokernel of trCnM →M .

Theorem 1.5. The homotopy Mackey functors of the slices are given in even degrees by

π2iP
2n
2nTHH =


W 0 = i = n

R 0 < i = n

ΦCpmW/[ph+1]q1/p 0 < i < n

where R is the constant Mackey functor on R, and

m =
⌈
logp(n/i)

⌉
− 1, h =

{
min{vp(n),

⌊
logp(n/i)

⌋
} n/i not a power of p⌊

logp(n/i)
⌋

n/i a power of p.

If R is p-torsionfree, then these are the only non-vanishing homotopy Mackey functors. If R is a perfect
Fp-algebra, then

π2i+1P
2n
2nTHH =

{
trC

pm+h+1
ΦCpmW n/i not a power of p

trC
pm+h+1

ΦCpm+1W n/i a power of p.
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Proposition 1.6. The homotopy Mackey functors π[i]λ
of the slices are

π[i]λ
P2n

2nTHH =


W 0 = i = n

W/[pn]q1/p 0 < i = n

Φ
C
p`(i,n)W/[pn]q1/p 0 < i < n

where `(i, n) = max{vp(i), . . . , vp(n− 1)} = min{r | dn/pre = di/pre}.

We provide several charts illustrating these filtrations at the end of §5.3. Although the RSSS for a perfect
Fp-algebra is very complicated, the E∞ page can be inferred from Theorem 1.3, since we have explicitly
identified the slice tower.

Corollary 1.7. Let R be a perfect Fp-algebra, and define h = h(n, i) as in Theorem 1.3. The entry on the E∞
page of the RSSS corresponding to π2iP

2n
2nTHH(R) is ΦCpf+1W/ph(n,i)+1, where f =

∑
i≤m<n(h(m, i) + 1).

1.1. q-analogues and p-typification. The above results require a great deal of preliminaries to state, and
some ugly (but straightforward) calculations to prove. Our conceptual results are much simpler to explain.
A basic combinatorial problem is to determine the sequence of p-adic valuations (vp(1), vp(2), . . . , vp(n)).

The answer is that there are
⌊
n
pk

⌋
multiples of pk in the set {1, . . . , n}. Three instances where this problem,

and hence the expression
⌊
n
pk

⌋
, arise are:

(a) the p-adic valuation of a factorial, and the q-analogue of this problem [AB19, Lemma 4.8];
(b) the decomposition of big Witt vectors in terms of p-typical Witt vectors;
(c) the p-typical decomposition of the representation {n}λ.

A similar expression appears in the work of Hill-Yarnall [HY18] characterizing the slice filtration in terms of
the Postnikov filtration. In our case, their result says that

(d) a T-spectrum X is slice n-connective if and only if the geometric fixed points XΦC
pk are

⌈
n
pk

⌉
-

connective (in the ordinary sense) for all cyclic subgroups Cpk ≤ T.

(This discrepancy between floor and ceiling functions is a persistent phenomenon, and parallels the discrep-
ancy between the representations {n}λ and [n]λ. But they are of course very closely related, and things
ultimately work out in our favor.1)

A second overall theme is that of q-analogues. We have intentionally chosen the notation [n]λ to emphasize
that these representations are λ-analogues, and in fact the connection between (c) and (a) is most clearly
seen when considering q-factorials. We also argue over the course of §3 that q-analogues (and prisms) are
natural from the point of view of equivariant homotopy theory.

The point of the paper is to connect these varied occurrences. Since it is easy to take geometric fixed
points of cyclotomic spectra, the slice filtration is essentially determined by combinatorics. This allows us to
relate (d) to (c) and prove Theorem 1.1. To relate (c) to (a), we study the RO(T)-graded homotopy Mackey
functors of THH, where we find that the q-gold relation implements a close dictionary between representations
and q-analogues. Theorem 1.3 through Corollary 1.7 then follow fairly quickly from Theorem 1.1 and some
unpleasant algebra.

We warn the reader that we have not yet incorporated example (b). We consider THH as a p-typical
cyclotomic spectrum here, although our formulas seem more natural when it is viewed as an “integral”
cyclotomic spectrum. (So we are really working with the group Cp∞ rather than T.) Many formulas are
stated integrally, but interpreted and proven p-typically. We expect that our results hold in the integral
case, but we have not yet checked this carefully. This would partly clarify the relation to the K-theory of
truncated polynomial algebras / coordinate axes, which are given in terms of big de Rham-Witt forms.

1.2. Overview. Part 1 collects the needed technical background and notation. Unfortunately, there is a lot;
we have tried to make the paper accessible (and self-contained) to both arithmetic geometers unfamiliar with
the pre-Nikolaus-Scholze formulation of cyclotomic spectra, and to homotopy theorists who are interested
in slice computations but who have not studied [BMS19] extensively. Homotopical background is presented

1One could avoid this discrepancy by using the classical slice filtration, but the regular slice filtration is more natural.
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in §2, and arithmetic background is presented in §3. We hope that collecting all of this information in one
place will be helpful to the field.

Our notation is recapitulated at the beginning of Part 2, so one may begin there and refer back as needed.
However, even experts should read §3.1; while there are no really new technical results there, it contains the
key observations at the conceptual heart of this paper. There is also a little bit of new material in §3.3.

In §4, we compute certain RO(T)-graded homotopy Mackey functors of THH, taking a geodesic route to
the computations which are needed for describing the slice filtration. The main theorems are proved in §5.
In §6, we propose some natural followup questions.

1.3. Acknowledgements. We are grateful to Mike Hill for suggesting this problem; to Andrew Blumberg
for supervision and guidance; to Aaron Royer for patiently fielding many questions about equivariant stable
homotopy theory; to Teena Gerhardt for clarifying a confusion about the Tate spectral sequence; to Ben
Antieau and Thomas Nikolaus for help sorting out a confusion about the A-algebra structure on TRn; and to
Dylan Wilson for the crucial suggestion to use the gold elements. Figures 1 and 2 were originally created for
Kate Stange’s Number Theory and Friends group as a part of ICERM’s Illustrating Mathematics semester.
Additionally, this paper owes a tremendous intellectual debt to [AG11] and [Zen18].

Preliminary versions of the results in this paper appeared as part of the author’s PhD thesis at the
University of Texas at Austin.
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Part 1. Background

2. Homotopical background

In this section we give a crash course in equivariant stable homotopy theory, with an eye towards com-
putational aspects. We do not intend to give a complete or fully rigorous account of this subject—which
would be almost impossible in the given space—but simply to recall the main points and indicate some of
the pitfalls. For a comprehensive introduction that covers everything we need here (except for §§2.2 and 2.5),
we strongly recommend [Hil20]. Another course account is [BD17]; a modern reference is §2 and Appendices
A and B of [HHR16a]; the original source is [LMS86]; and [tD79] is also very nice, for example arithmetic
geometers will enjoy the material on λ-rings.

In §2.1, we recall the general definitions of equivariant stable homotopy theory. The main point is to
explain the difference between “naive” and “genuine” equivariant homotopy theory, and the interactions
between the four different types of fixed points in the genuine stable theory. Finally, we introduce the cases
of interest to us, the homotopy theories of cyclonic and cyclotomic spectra.
§2.2 documents the plethora of spectra that can be obtained from THH.
In §2.3 and §2.4, we recall the definition of Mackey functors and of the RO(G)-graded homotopy Mackey

functor πFX of a G-spectrum X. In particular, we discuss the equivariant Euler classes aV and their
relation to isotropy separation squares. As we are interested in the groups T and Cpn , we review in §2.5 their
representation theory as well as cell structures for their representation spheres. Lastly, in §2.6 we introduce
the regular slice filtration.

2.1. Equivariant stable homotopy theory. At the beginning of this project, the author found equivari-
ant homotopy theory extremely confusing. Now, the author finds equivariant homotopy theory only very
confusing. We have tried to explain things in the way that made the subject make sense to us.

We start in §2.1.1 with the unstable theory, but our only interest in this is on the way to the stable theory.
What we need to explain is the difference between “naive” and “genuine” equivariance. This results in there
being two types of fixed points in equivariant unstable homotopy theory: the homotopy fixed points XhG

and the categorical fixed points XG.
There are then four types of fixed points once we pass to equivariant stable homotopy theory:

• the homotopy fixed points XhG;
• the categorical fixed points XG;
• the Tate fixed points XtG;
• the geometric fixed points XΦG.

The categorical and geometric fixed points arise in passing from naive to genuine equivariant homotopy
theory, while the Tate and geometric fixed points have to do with passing from unstable to stable homotopy
theory. Categorical fixed points are to homotopy fixed points as geometric fixed points are to Tate fixed
points, in a sense made precise by the isotropy separation square (2). Ultimately, the difference between the
unstable and stable cases comes from the existence of the trace (often called the norm).

2.1.1. The unstable theory. Let S denote the ∞-category of spaces, and let Top denote the (a) topological
category of spaces. Given a compact Lie group G, we wish to define the ∞-category GS of G-spaces. As we
will see, there are several different options for what this might mean. We will examine how to do this using
the point-set model, then explain what this means ∞-categorically.

Definition 2.1. A G-topological space is a topological space X equipped with a continuous left action of G.
The topological category of G-topological spaces is denoted GTop.

If G is finite, then we may identify GTop with TopBG. However, it is very much not the case that
GS = SBG.

If we want to do homotopy theory, it is not enough to specify the category of G-topological spaces: we
must also specify the weak equivalences. Here, there is a choice to be made. Given a G-topological space X
and a subgroup H ≤ G, write

XH = {x ∈ X | h · x = x ∀h ∈ H}
for the subspace of H-fixed points, and observe that the functor (−)H is representable by G/H.

7



Definition 2.2. A map X
f−→Y of G-topological spaces is called

• a naive weak equivalence if the underlying map Xe fe−→Y e is a weak equivalence;

• a genuine weak equivalence if XH fH−→Y H is a weak equivalence for all subgroups H ≤ G.

More generally, given a family F of subgroups of G closed under conjugation and passage to subgroups, an
F-weak equivalence is a map f such that fH is a weak equivalence for all H ∈ F .

We write GSnaive, GS, GSF for the ∞-categories obtained by localizing GTop with respect to the naive,
genuine, or F-weak equivalences; GSnaive = GS{1} and GS = GS{all}. We call these the ∞-categories of
naive G-spaces, genuine G-spaces, and F-genuine G-spaces.

In other words, each subgroup H of G gives a functor GTop
(−)H−→ Top, and by specifying F we are deciding

which of these should be homotopically meaningful, descending to a functor GSF → S. It turns out that
this is essentially all of the homotopical data contained in a G-space.

Definition 2.3. Let G be a finite group. The orbit category O(G) of G is the full subcategory of SBG
spanned by the nonempty transitive G-sets. O(G) is equivalent to its full subcategory {G/H}H≤G.

Remark 2.4. A family F of subgroups of G closed under conjugation and passage to subgroups is essentially
the same thing as a downwards-closed subcategory of O(G).

Theorem 2.5 ([Elm83]). The restricted Yoneda embedding

GTop→ TopO(G)op

gives an equivalence of ∞-categories

GSnaive = SBG

GS = SO(G)op

GSF = SF
op

In particular, G/H represents the functor GS (−)H−→ S (now basically by fiat). In fact, this factors through
SAut(G/H) = SWG(H), where WG(H) = NG(H)/H is the Weyl group.

In summary, a G-space has two different notions of fixed point:

• the homotopy fixed points XhH , obtained by restricting X to SpBH and then right Kan extending
along BH → ∗;

• the categorical fixed points XH .

2.1.2. The stable theory. The first guess for the stable theory is to simply stabilize the unstable theory from
the previous subsection. This gives two options:

• the stabilization Sp(SBG) of naive G-spaces is equivalent to the functor category SpBG. These are
variously called Borel G-spectra, coarse G-spectra, FS-G-spectra, naive G-spectra, or doubly naive
G-spectra in the literature. We shall use the term naive G-spectra.

• the stabilization Sp(SO(G)op) of genuine G-spaces is equivalent to the functor category SpO(G)op .
These are sometimes called naive G-spectra in the literature (clashing with the above); we shall use
the nonstandard term ersatz G-spectra. One can of course replace O(G) with F .

Naive G-spectra are useful, but ersatz G-spectra, as the name suggests, are the wrong notion to consider.
The reason they are wrong is the same reason we get more fixed point functors.

If K → H is an inclusion (or subconjugacy relation) of subgroups of G, then there is a restriction map
XH → XK between the fixed points. In the unstable setting, this is the only relation we should expect
between fixed point spaces, in general. But in the presence of addition, there is an easy way to produce H-
fixed points from K-fixed points: simply sum over conjugates, indexed by H/K; this is known as a transfer
map. Thus, in the stable setting, we should require transfers trHK : XK → XH in addition to restriction maps

resHK : XH → XK . These are not present in SpO(G)op .
Instead, recalling that O(G) was defined as the subcategory of SBG spanned by the nonempty transitive

G-sets (equivalently, by the orbits G/H), we define AG to be the subcategory of SpBG spanned by X+, where
8



X is a nonempty transitive G-set, equivalently by the orbits G/H+. AG is called the Burnside ∞-category
of G; the classical (or algebraic) Burnside category is BG = π0AG. A Mackey functor is an additive functor
M : Bop

G → Ab; Mackey functors are reviewed in §2.3.
The category of enriched functorsA(G)op → Sp turns out to give the correct notion of genuineG-spectrum:

that is, genuine G-spectra are spectral Mackey functors. This is revisionist: traditionally, genuine G-spectra
are defined by starting with genuine G-spaces and inverting all representation spheres (ersatz G-spectra only
invert the ordinary spheres). The spectral Mackey functor formulation is due to Guillou-May [GM17], and
was used by Barwick [Bar17] to provide a fully ∞-categorical treatment of G-spectra. Kaledin also has a
homological analogue [Kal11b].

Summing over conjugates provides easy examples of fixed points; we would like to distill the interesting
ones. The Tate fixed point spectrum is defined as the cofiber of the trace map T from the homotopy orbits
to the homotopy fixed points:

XhG
T−→XhG−→XtG

which on π0 is T (x) =
∑
g∈G x. The theory of the Tate spectrum is due to Greenlees and May [GM95].

Remark 2.6. T is often written as N , and called the norm map; however, Hill has pointed out that that
is more properly reserved for the multiplicative notion.

Example 2.7. Let M be the free Z-module Z〈x, y〉, and let C2 act on M⊗2 in the obvious way. Then both

x2 and xy + yx are in H0(C2,M), but only x2 is nonzero in Ĥ0(C2,M) ∼= Z/2〈x2, y2〉.
The geometric fixed points XΦG are a “genuine” version of the Tate fixed points2 XtG. To define them,

let F be a family of subgroups of G, and let EF be a G-space with

(EF)H =

{
∅ H /∈ F
∗ H ∈ F

(Such a G-space exists by Elmendorf’s theorem, and EF is in fact determined by this condition.) Then let

ẼF be the space given by the cofiber sequence

EF+ → S0 → ẼF .
For any spectrum X, we get a diagram

EF+ ⊗X //

��

X //

��

ẼF ⊗X

��

EF+ ⊗XEF+ // XEF+ // ẼF ⊗XEF+

(1)

with the following properties:

• it can be shown that the left vertical map is an equivalence, so the right square is a pullback/pushout;
• the terms in the left column are concentrated on the subgroups in F ;
• the terms in the right column vanish on the subgroups in F ;
• the bottom row depends only on the restriction of X to F .

There are two cases of particular interest. When F = {e}, we write EG for EF , and set

Xh := EG+ ⊗X

Xh := XEG+

Xt := ẼG⊗XEG+

This is because one can show that (Xh)H = XhH for subgroups H ≤ G, where the right-hand side is a priori

defined as orbits for the restriction of X to a Borel spectrum X ∈ SpBH , and similarly for Xh and Xt.
The other particular case is when F = P is the family of all proper subgroups. In this case, we define the

geometric fixed points XΦG by

XΦG := (ẼP ⊗XEP+)G.

2More accurately of the generalized Tate construction, c.f. [AMGR17].
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This has the effect of destroying all transfers from subgroups, deleting the “cheap” fixed points. For a
subgroup H ≤ G, we define XΦH by first restricting X to HSp, then applying the above construction. The
formal properties of the different fixed-point functors are:

Ω∞(XH) = (Ω∞X)H

Σ∞(XH) = (Σ∞X)ΦH

(X ⊗ Y )ΦH = XΦH ⊗ Y ΦH

In a slogan, the spectra XΦH sort fixed points according to their stabilizers, while the spectra XH mix them
all together.

Remark 2.8. Using isotropy separation inductively, one can describe G-spectra in terms of their geometric
fixed points rather than their categorical fixed points. In place of the diagram perspective of spectral Mackey
functors, this describes G-spectra in terms of a stratification, making it look somewhat like the category of
contructible sheaves on some (mythical) stack. This is due to Glasman [Gla17] and Ayala–Mazel-Gee–
Rozenblyum [AMGR17]; an excellent exposition is [Wil17, §§1.1–1.2].

Note that when G = Cp, these two distinguished families coincide. Consequently, when G is Cn or T, we

can rewrite (ẼG⊗XEG+)G as (XΦCp)G/Cp . This gives a square

XhG
// XG //

��

(XΦCp)G/Cp

��

XhG
T
// XhG // XtG

(2)

which is the basis for many THH calculations.

Remark 2.9. It may also be useful to consider the fiber of the vertical maps in (2), which is (XẼG)G. Our

interest in this comes from the following observation. The map THH = THHΦCp ϕ−→THHtCp is a spectral

version of the derived Frobenius A
ϕ−→A//p := A⊗L

Z Fp. If A is a perfectoid ring which is either p-torsion or
p-torsionfree, containing an element π such that πp = pu for a unit u (we allow π = 0), then

A
π−→A

ϕ−→A//p

is an exact triangle [BMS18, Lemma 3.10]. In general, the fiber of A
ϕ−→A//p, which is also the fiber

of W2(A)
F−→A, “contains all information about p-divided powers in A”. More generally, the kernel of

Frobenius on W (−) is the divided-power completion of Ga at the origin; this is at the basis of Drinfeld’s
approach to crystalline cohomology through stacks [Dri].

Now we define the homotopy theories of interest to us.

Definition 2.10. A cyclonic spectrum3 is a T-spectrum genuine for the finite subgroups of T. We denote
the ∞-category of cyclonic spectra by Spξ.

Definition 2.11. A cyclotomic spectrum is a naive T-spectrum X together with T-equivariant maps

X
ϕp−→XtCp

for all p, where XtCp has the T ' T/Cp action. These are not required to be compatible for varying p.
We denote the ∞-category of cyclotomic spectra by Spϕ. We also write Spϕp for the ∞-category of p-typical
cyclotomic spectra, where we only ask for a single ϕp.

Classically [HM94], a cyclotomic spectrum was defined as a cyclonic spectrum X equipped with equiva-
lences

X
∼−→XΦCp

which now are required to be compatible. The homotopy theory of cyclotomic spectra was first constructed
in [BM15]; the definition above is due to [NS18]. In the bounded below case, this agrees with the classical
notion.

3This terminology is due to Barwick-Glasman [BG16].
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Definition 2.12. A cyclotomic spectrum with Frobenius lifts is a naive T-spectrum X together with com-
patible T-equivariant maps

X
ψ−→XhCp

for all p. We denote the ∞-category of cyclotomic spectra with Frobenius lifts by Spψ. We also write Spψp
for the ∞-category of p-typical cyclotomic spectra with Frobenius lifts, where we only ask for a single ψp.

There are forgetful functors

Spψ → Spϕ → Spξ → SpBT → Sp.

2.2. THH and friends. The author has found that the proliferation of T acronyms in this subject
confuses a great number of people—arithmetic geometers and homotopy theorists alike—so in this section
we document them all. (To keep the net confusion constant, we also suggest some new ones.) This is merely
a collection of definitions; for an introduction to the subject we suggest [KN], [HN20]; the modern reference
is [NS18]. The pre-Nikolaus-Scholze surveys [May] and [Mad95] are also highly recommended.

Recall that ordinary Hochschild homology HH(A/k) gives an object in ModBT
k

4. Topological Hochschild
homology THH(A) := HH(A/S) has more structure, and gives an object of Spϕ. To begin, we denote

HC := HHhT cyclic homology

HC− := HHhT negative cyclic homology

HP := HHtT periodic cyclic homology

These are shown to be equivalent to the classical description in terms of bicomplexes in [Hoy18]. Analogously,
we make the following definitions in the topological case:

TC− := THHhT topological negative cyclic homology

TP := THHtT topological periodic cyclic homology

See Remark 2.20 below. There are exact triangles

ΣHC→ HC− → HP

ΣTHHhT → TC− → TP

The shift comes from working in the compact Lie case.

Warning 2.13. Despite the name, TP∗(A) is not periodic in general. But this is the case when A lives over
a single prime.

The TRn spectra are defined using the categorical fixed points:

TRn+1 := THHCpn length n+ 1 topological Restriction homology

Remark 2.14. For any ring A, TRn+1
0 (A) = Wn+1(A) [HM97b, Theorem 3.3].

Remark 2.15. This is more properly called p-typical TR, denoted TRn+1(−; p), whereas “big TRn+1” is

THHCn+1 . We will only use p-typical TRn+1 in this paper.
The numbering of p-typical TRn+1 is chosen to agree with Witt vectors: for any ring A, TRn+1

0 (A) =
Wn+1(A). As explained in [Bor11, 2.5], the mismatch in indexing is thus the number theorists’ fault.

The TRn spectra are related by various maps mimicking the structure of Witt vectors:

TRn+1 F−→TRn

TRn V−→TRn+1

TRn+1 R−→TRn

4In fact, it even gives a cyclonic k-module, but we do not know how to access the fixed-point information in the absence of
cyclotomicity.
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Here F is the equivariant restriction, V is the equivariant transfer, andR comes from the cyclotomic structure.
This is interesting: classically one thinks of the R map on Witt vectors as the “easy” one and the F map as
the “exotic” one, whereas the opposite is true from the perspective of equivariant homotopy theory.

With these notations, the isotropy separation sequence (2) takes the form

THHhCpn
// TRn+1 R //

��

TRn

ϕ

��

THHhCpn
// THHhCpn // THHtCpn

We can thus express TRn+1 in Nikolaus-Scholze language as the iterated pullback

TRn+1 //

��

y . . . //

��

y TR3 R //

��

y TR2 R //

��

y //TR1

ϕ

��...

��

...

��

THHhCp
can
//

ϕhCp

��

THHtCp

...

��

...

��

THHhCp2
can
//

��

THHtCp2

...

��

...

��

//
...

THHhCpn
can
//THHtCpn

This should be compared to the Cartier-Dieudonné-Dwork lemma, and with Borger’s perspective on Witt
vectors [Bor11].

Remark 2.16. Angeltveit shows there is also an N map, reflecting the Tambara functor structure [Ang15].
We make some remarks about this in §3.3.

We then define

TR := lim
←−
n,R

TRn topological Restriction homology

TF := lim
←−
n,F

TRn topological Frobenius homology

More conceptually, THH 7→ TR is the right adjoint to the forgetful functor Spψp → Spϕp , applied to
THH [KN, Proposition 10.3]. This is analogous to W (R) being the cofree δ-ring on R. Furthermore,
TF = HomSpξ(S,THH). At infinite level, the isotropy separation sequence (2) becomes

ΣTHHhT // TF
R //

��

TF

ϕ

��

ΣTHHhT // TC−
can
// TP

Remark 2.17. The upper-right copy of TF behaves differently from the upper-left copy, and is in some
sense a Frobenius untwist of it. In calculations we have found it convenient to write the upper-right copy as
TΦ, but we fear that trying to introduce this notation would provoke outrage.

Remark 2.18. It would be natural to define

TV = lim
−→
n,V

TRn topological Verschiebung homology
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which is a topological analogue of the unipotent coWitt vectors [Fon77, Chapitre II]. To our knowledge this
has not yet been exploited.

Open Problem 2.19. Come up with better names for TR, TF, and TV.

Finally, TC := HomSpϕ(S,THH) is obtained by trivializing all the cyclotomic structure. This definition
is really a theorem, conjectured by Kaledin [Kal11a] and proven by Blumberg-Mandell [BM15]. There are
various equivalent descriptions of this using the above spectra:

TC := HomSpϕ(S,THH) topological cyclic homology

= fib(TR
1−F−−−→ TR)

= fib(TF
1−R−−−→ TF)

= fib(TC−
can−ϕ−−−−→ TP∧) “Nikolaus-Scholze formula”

Remark 2.20. It is really THHhT which deserves to be called topological cyclic homology, and denoted TC.
We have advertised the idea of calling HomSpϕ(S,THH) topological motivic cohomology (TM); however, we
shall not indulge that here.

2.3. Mackey functors. If M is an abelian group acted on by G, there are several maps relating the
fixed-point modules MH for subgroups H ≤ G.

• The Weyl group WG(H) = Aut(G/H) = NG(H)/H acts on each MH .
• If K ≤ H, there is a restriction map resHK : MH →MK .
• If K ≤ H, there is a transfer map trHK : MH →MK .

The notion of a Mackey functor axiomatizes this structure. In other words, a Mackey functor M assigns
to each subgroup H ≤ G an abelian group M(G/H), with an action of WG(H), along with restriction and
transfer maps, satisfying appropriate compatibilities. We will not spell these out here; the most important
one for us is that

resHK trHK(x) =
∑

g∈WH(K)

g · x

A complete, explicit definition can be found in [Maz13, Definition 1.1.2]. More abstractly, a Mackey functor is
an additive functor Bop

G → Ab. Mackey functors are to G-modules are to abelian groups as genuine G-spectra
are to naive G-spectra are to spectra.

Example 2.21. For any genuine G-spectrum X and n ∈ Z, the homotopy Mackey functor πn(X) is defined
by

πn(X)(G/H) = [Sn ⊗G/H+, X].

Example 2.22. The Burnside Mackey functor A is the representable functor BG(−, G/G). For any finite
group G, A(X) is K0 of the category of finite G-sets. In fact, A = π0S.

Example 2.23. Given a G-module M , the fixed point Mackey functor M is defined by M(G/H) = MH .
Restrictions are inclusions of fixed points, and transfers are summations over cosets. This is a Mackey
analogue of the right adjoint to the forgetful functor GSp→ SpBG.

Example 2.24. Given a G-module M , the orbit Mackey functor O(M) is defined as O(M)(G/H) = M/H,
the orbit of H ⊂ G. Transfers are quotient maps, and restrictions are summations over representatives. This
is a Mackey analogue of the left adjoint to the forgetful functor GSp→ SpBG.

All of our Cpn -representations will be restricted from T-representations. Since T is connected, this means
all the Weyl actions will be trivial, and the Mackey functor condition amounts to resGH ◦ trGH = |G : H|.

There is a closed symmetric monoidal structure on Mackey functors, which we do not discuss. The
monoidal unit is A (and not Z). A Mackey functor is a Z-module if and only if it satisfies the condition
trHK resHK = |H : K| [TW95, Proposition 16.3].
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Example 2.25. For any ring R, the Witt Mackey functor W (R) is a Cpn -Mackey functor (for any n),
whose value on Cpn/Cpk is Wk+1(R). Restrictions are given by F and transfers are given by V . In fact,
W (R) = π0THH(R) [HM97b, Theorem 3.3]. W (R) should not be confused with the constant Mackey functor
W (R). If R is an Fp-algebra, then V F = p and W (R) is a Z-module, but this is not true for general R.

A common way of describing a Mackey functor is by means of a Lewis diagram. If M is a Mackey functor,
we draw the modules M(G/H) with M(G/G) on top and M(G/e) on the bottom. Restrictions are indicated
by maps going downward, and transfers by maps going upward. For example, a Lewis diagram for Cp looks
like this:

M(Cp/Cp)

res
Cp
e

��

M(Cp/e)

tr
Cp
e

XX

Weyl group action

WW

All of the Mackey functors we encounter will have trivial Weyl action.

2.4. RO(G)-graded homotopy. Let α and β be actual representations of G. If X is a genuine G-spectrum,
we define the RO(G)-graded homotopy πHα−β(X) of X as

πHα−β(X) = [Sα ⊗G/H+, S
β ⊗X]

Warning 2.26. This notation is abusive: it depends on the choice of α and β, not only on α − β. This is
discussed at length in [Ada84, §6]. This is not an equivariant peculiarity; even for ordinary spectra, there is
a sign involved in trying to identify S|V | with SV for an abstract real vector space V .

We address this by choosing a specific irreducible representation in each isomorphism class of irreducible
representations: the λi introduced in §2.5. Thus when we say RO(T) we really mean Z[λi | i ≥ 1], or

Z(p)[λi | i ≥ 0] when we work p-locally. Similarly, RO(Cpn) really means Z[λi | 1 ≤ i ≤ pn−1
2 ], or

Z(p)[λi | 0 ≤ i ≤ n − 1] when we work p-locally; when p = 2, we must also include the sign representation
ςn−1.

Varying H, these fit into a Mackey functor πα−β(X). Varying the representation, we obtain the RO(G)-
graded homotopy Mackey functor πF(X), which is the fundamental computational invariant of the G-
spectrum X. It is conventional to use ∗ for Z-grading, and F for RO(G)-grading.

A very important source of RO(G)-graded classes is the Euler classes aV .

Definition 2.27. Let V be an actual representation of G. Suspending the inclusion {0} ↪→ V gives a map
S0 → SV , which we denote by aV . If V G 6= 0, then aV is nulhomotopic. Otherwise, aV refines to a class
aV ∈ πG−V S, and we continue to denote by aV its Hurewicz image in πG−VX for any G-spectrum X.

The significance of these classes is as follows. Consider the isotropy family of V ,

FV = {H ≤ G | V H 6= 0}.

Then S(∞V ) is a model of EFV , while S∞V is a model of ẼFV . Note that

S∞V = lim
−→

(
S0 aV−→SV

aV−→S2V aV−→· · ·
)
,

so smashing with S∞V has the effect of inverting aV . Consequently, the isotropy separation square (1) can
be viewed as an arithmetic square for aV .

2.5. Representations of T and Cpn . Let λi be the T-representation where z ∈ T ⊂ C× acts as zi. These

exhaust the nontrivial irreducible real representations of T. The representation spheres Sλ
i

and Sλ
j

are all

integrally inequivalent [Kaw80], but in the p-local setting we have Sλ
i ∼= Sλ

j

whenever the p-adic valuations
of i and j agree. Thus, let λr = λp

r

.
Note that 1 ∈ R(T) corresponds to 2 ∈ RO(T); to avoid confusion, we will often write λ∞ for the

one-dimensional complex representation with trivial action.
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We use the same notation for the restriction of λi to a subgroup Cpn . When p 6= 2 these exhaust the
irreducible real representations of Cpn , and λr is trivial for r ≥ n. When p = 2, there is additionally the
sign representation of C2n , which we denote ςn−1, satisfying λn−1 = 2ςn−1. The regular representations then
decompose as

ρCpn = 1 +

pn−1
2⊕
i=1

λi p 6= 2

= 1 +

n−1∑
i=0

pn−1−i(p− 1)

2
λi p-locally

ρC2n
= 1 + ςn−1 +

2n−1−1⊕
i=1

λi p = 2

= 1 + ςn−1 +

n−2∑
i=0

2n−2−iλi 2-locally

Warning 2.28. In the literature, one sometimes sees the notation λd for what we call {d}λ.

As Cn spectra, the representation spheres have cell structures

S0 // S� //

��

Sλr

��

S1 ⊗ Cpn/Cpr+
// (. . . )

��

S2 ⊗ Cpn/Cpr+

The attaching map S1 ⊗ Cpn/Cpr+ → S1 ⊗ Cpn/Cpr+ is given by 1 − γ, where γ is a chosen generator
of Cpn . The one-skeleton S� is not actually a representation sphere, except in the case G = C2n , when

Sλn−1/2 = Sςn−1 . Taking duals gives a dual cell structure

S−2 ⊗ Cpn/Cpr+
// (. . . )

��

// S−λr

��

S−1 ⊗ Cpn/Cpr+
// S−�

��

S0

on S−λr . Tensoring these together for various values of r, and using the fact that Sλs ⊗ Cpn/Cpr+ =
S2 ⊗ Cpn/Cpr+ for r ≤ s, gives cellular structures for all α ∈ RO(Cpn), and hence spectral sequences
to compute παX for any Cpn -spectrum X. This is discussed in [HHR17, §1.2]. When α is an actual
representation (or the negative of one), the spectral sequences become chain complexes of Mackey functors,
which are determined by the underlying chain complex of abelian groups.
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Example 2.29. Let M be a Cp-Mackey functor, and write M(Cp/Cp) = M1, M(Cp/e) = M0, and trivial
Weyl action on M0. Then π2λ0+∗M is the homology of the following complex:

M1

res

��

res // M0

∆

��

0 // M0

∆

��

p
// M0

∆

��

0 // M0

∆

��

M0

tr

SS

∆
// M0[Cp]

∇

SS

1−γ
// M0[Cp]

T
//

∇

SS

M0[Cp]

∇

SS

1−γ
// M0[Cp]

∇

SS

0 −1 −2 −3 −4

Example 2.30. Let M be a Cp2-Mackey functor, and write M(Cp2/Cp2) = M2, M(Cp2/Cp) = M1,
M(Cp2/e) = M0, all with trivial Weyl action. Then π∗−λ0−λ1

M is the homology of the following com-
plex:

M0

∆

��

0 // M0

∆

��

tr // M1

∆

��

0 // M1

∆

��

tr // M2

res

��

M0[Cp2/Cp]

∆

��

∇

TT

1−γ
// M0[Cp2/Cp]

∇

TT

∆

��

tr // M1[Cp2/Cp]

∇

TT

res

��

1−γ
// M1[Cp2/Cp]

∇

TT

res

��

∇ // M1

tr

TT

res

��

M0[Cp2 ]

∇

SS

1−γ
// M0[Cp2 ]

∇

SS

∇
// M0[Cp2/Cp]

tr

SS

1−γ
// M0[Cp2/Cp]

tr

SS

∇
// M0

tr

TT

4 3 2 1 0

These cell structures imply the following very useful bound on homology.

Lemma 2.31. Let M be a T-Mackey functor and let α be a fixed-point-free virtual representation of T. Write
α = β− γ for actual representations β, γ (still assumed to be fixed-point-free). Then π∗+αM is concentrated
in ∗ ∈ [−2d0(β), 2d0(γ)].

An important observation, which we learned from Mike Hill, is that these have simpler cell structures as
T-spectra.

Observation 2.32. In Spξ there is an exact triangle

T/Cpr+ → S0 → Sλr .

2.6. The slice filtration. The equivariant slice filtration is a filtration on equivariant spectra first intro-
duced by Dugger in the C2 case [Dug05], then generalized to finite G by Hill-Hopkins-Ravenel as a key tool
in their solution of the Kervaire invariant one problem [HHR16a]. It is modeled on the motivic slice filtra-
tion of Voevodsky, hence the qualifier “equivariant”. For an introduction to the slice filtration, the original
[HHR16a, §4] is still highly recommended, as well as the survey [Hil12]. However, significant advances have
been made since then: [HY18] gave a much easier characterization of slice connectivity, and [Wil17] provided
an algebraic description of categories of slices, as well as a general recipe for computing slices. A thorough
treatment of the slice spectral sequence is given in [Ull09], and of course there are many computations in
the literature one can learn from, such as [HHR17] or [Yar15].

We caution the reader that there is no single slice filtration; [HHR16a] and [Hil12] use the classical slice
filtration, whereas [HY18] and [Ull09] treat the regular slice filtration. We shall be concerned with the regular
slice filtration. A general framework for slice filtrations is given in [Wil17, §1.3].

Definition 2.33. Let G be a finite group. A regular slice cell of dimension n is a G-spectrum of the form

↑GH SkρH ,

where H is a subgroup of G, ρH is the regular representation of H, and k|H| = n. The regular slice filtration
is the filtration generated by the regular slice cells. More explicitly,
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• We say that a G-spectrum X is slice n-connective, and write X ≥ n, if X is in the localizing
subcategory generated by the regular slice cells of dimension ≥ n. Equivalently [HY18], X is slice
n-connective if and only if for all subgroups H ≤ G, the geometric fixed points XΦH are in the
localizing subcategory of ordinary spectra generated by Sdn/|H|e.

We write GSp≥n for the slice n-connective spectra. This is a coreflective subcategory, and we
denote by PnX → X the coreflection, the slice n-connective cover of X.

• We say that a G-spectrum X is slice n-truncated and write X ≤ n if MapGSp(Y,X) = ∗ whenever
Y ≥ n+ 1. It suffices to check this for Y a regular slice cell of dimension ≥ n+ 1.

The slice n-truncated spectra are reflective, and we denote by X → PnX the localization functor,
the slice n-truncation of X.

• We say that a G-spectrum X is an n-slice if X ≥ n and X ≤ n. There is an exact triangle
Pn+1X → X → PnX, whence a canonical equivalence PnPnX = PnP

nX. We write PnnX for either
of these, the n-slice of X.

• The slice spectral sequence takes the form

E2
s,t = πt−sP

t
tX ⇒ πt−sX.

This follows Adams grading, so the Ers,t term is placed in the plane in position (t − s, s). The
dr differential has bidegree (r, r − 1), or (−1, r) in terms of the plane display. There is also an
RO(G)-graded version

E2
s,t = πα−sP

dimα
dimαX ⇒ πα−sX.

The slice filtration is generally not associated to a t-structure, but rather a sequence of t-structures [Wil17,
Definition 1.43].

The above definition is only for finite groups, and it is not immediately clear how to interpret the slice
filtration for cyclonic or cyclotomic spectra. We have chosen to interpret this as the Cpn -slice filtration on
the restriction to a Cpn -spectrum for all n, but we do not claim this is the only or best option.

Warning 2.34. The slice covers Pn give a descending filtration, while the slice truncations Pn give an
ascending filtration. This is opposed to the usual super/subscript convention for filtrations.

Remark 2.35. In [AN18], Antieau and Nikolaus produce a t-structure on Spϕ by stipulating that the
forgetful functor Spϕ → Sp reflect n-connective objects. A natural idea is to transport the slice filtration along
Spϕ → Spξ in the same way. However, the Hill-Yarnall characterization implies that the slice connectivity
of a cyclotomic spectrum is equal to the connectivity of its underlying spectrum, so this reproduces the
cyclotomic t-structure.
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3. Arithmetic background

In this section we collect the needed background from number theory. In §3.1 we introduce q-analogues,
and survey several key instances where these appear; in particular, we repeatedly encounter the problem
of p-typification. This discussion is the core of the narrative of the paper. In §3.2 we recall the notion of
perfectoid ring and Fontaine’s ring Ainf , followed by the homotopical properties of perfectoid rings. Finally,
in §3.3 we discuss the reformulation of perfectoid rings as perfect prisms, and explore some homotopical
features of prisms.

3.1. q-analogues and p-typification.

Definition 3.1. Let n ∈ N. The q-analogue of n is the formal expression

[n]q :=
qn − 1

q − 1
= 1 + · · ·+ qn−1 ∈ Z[q].

These give a one-parameter deformation of the natural numbers, and many notions in mathematics admit
so-called q-deformations, recovering the classical notion when q = 1. Such q-deformations arise naturally in
counting problems over finite fields, combinatorics, and a wide variety of other contexts. The relevance to
THH is ultimately that TP can be used to construct q-de Rham cohomology, as envisioned in [Sch17] and
carried out in [BMS19].

For us, the key feature of Z[q] is that it is a Λ-ring : we have commuting ring endomorphisms ψn(q) = qn

for n ∈ N×, which are Frobenius lifts in the sense that

ψp(x) = xp + pδp(x)

for some (unique, since Z[q] is torsionfree) δp(x) ∈ Z[q], for all primes p. This gives an action n 7→ ψn of N×
on Z[q] in the category of commutative rings. This action interacts with q-analogues in two ways:

(1) The map N× → (Z[q],×) sending n 7→ [n]q is not a map of commutative monoids, but rather is
semi-multiplicative with respect to this action, in the sense that

[mn]q = [m]qψ
m([n]q) = [n]qψ

n([m]q)

for m,n ∈ N×. Note that [m]q still divides [mn]q.
(2) For m,n, k ∈ N×, there is a congruence

ψmk([n]q) ≡ n mod [m]q

since qm ≡ 1 mod [m]q. We will explore the significance of this congruence in §3.3; it enforces a
subtle constraint on the way in which n 7→ [n]q deviates from being truly multiplicative.

We will mostly restrict attention to the submonoid pN ⊂ N× and write φ := ψp, δ := δp (although it would

be good to formulate some of this more globally). Note that φn thus means ψp
n

. Prisms can be viewed as
an axiomatization and generalization of the p-typical part of the above structure.

We now examine several case studies involving q-analogues.

3.1.1. Perfectoid algebras. This concerns the specialization

Z[q]→ Zp[q1/p∞ ]∧(p,q−1);

the reference for this section is [BMS18, Example 3.16] and the next few propositions.
The starting point is the observation that [p]q is the minimal polynomial of ζp, and thus Zp[q]/[p]q = Zp[ζp].

We think of this as “characteristic close to p”; note that ζp = 1 implies p = 0. Similarly, φn([p]q) is the
minimal polynomial of ζpn+1 , so Zp[q]/φn([p]q) = Zp[ζpn+1 ]. Thus, taking perfections yields

Zp[q]

��

φ
// Zp[q]

��

φ
// · · ·

��

// Zp[q1/p∞ ]

��

Zp[ζp] // Zp[ζp2 ] // · · · // Zp[ζp∞ ]
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We want q = 1 to be the “base case”, so we complete at q− 1 and let q1/p, rather than q, be a primitive pth

root of unity. Thus we set

A = Zp[q1/p∞ ]∧(p,q−1)

[n]A = [n]q1/p

R = A/[p]A

We warn that A/φn([p]A) is now isomorphic to Zcycl
p = Zp[ζp∞ ]∧p for all n; however, these have different

A-algebra structures, namely q 7→ ζpn−1 .
What about the other q-analogues? It turns out that there are canonical identifications

A/[pn]A
∼−→Wn(R)

such that the projectionsA/[pn+1]A → A/[pn]A are identified with the Frobenius maps F : Wn+1(R)−→Wn(R).
(We would get a different A-algebra structure if we wanted the R maps to be A-linear.) Since the A-algebra
structure is important to us, we will almost exclusively write A/[pn]A rather than Wn(R).

The ring R is an example of a perfectoid ring and the triple (A, φ, [p]A) is the corresponding perfect prism.
It suffices to think of this example for the remainder of the paper (except when we explicitly restrict to
perfect Fp-algebras).

3.1.2. Legendre’s formula. Throughout this paper we will need to count the number of integers in {1, . . . , n}
having a particular p-adic valuation. One instance of this is the following classical formula for the p-adic
valuation of a factorial.

Proposition 3.2 (Legendre). The p-adic valuation of n! is given by

vp(n!) =

∞∑
r=1

⌊
n

pr

⌋
The q-factorial is defined by

[n]q! := [1]q · · · [n]q.

Anschütz-le Bras have supplied a q-deformation of Legendre’s formula in their work identifying the cyclotomic
trace in degree 2 as a q-logarithm.

Lemma 3.3 ([AB19, Lemma 4.8]; “q-Legendre formula”). In the specialization Z[q]→ Zp[[q − 1]], we have

[n]q! = u

∞∏
r=1

φr−1([p]q)
bn/prc

= u

∞∏
r=1

[pr]
bn/prc−bn/pr+1c
q

for a unit u ∈ Zp[[q − 1]]×.

In what follows, we will apply this to [n]A! rather than [n]q!.
An illustration of the q-Legendre formula is given in Figures 1 and 2. In the classical Legendre formula, all

bars would be the same color. However, as we have already noted, q-analogues are only semimultiplicative:
[pn]q = [p]q · · ·φn−1([p]q) rather than [p]nq .

In §5.1, we will see that the appearance of the floor function in the preceding formulas is intimately linked
to the appearance of the ceiling function in the slice filtration. The identity⌈

n+ 1

pk

⌉
− 1 =

⌊
n

pk

⌋
is useful for translating between the two.

Remark 3.4. Bhargava [Bha00] has an interesting framework for generalized factorials.
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2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64

Figure 1. The q-Legendre formula at p = 2

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81

Figure 2. The q-Legendre formula at p = 3

3.1.3. Circle representations. This concerns the specialization

Z[q]→ Z[λ±] = R(T),

where R(T) is the complex representation ring of the circle group T. In this case, λ-analogues are something
familiar:

↓TCn [n]λ = C[Cn] = ↑Cne C
is another name for the complex regular representation of Cn. We prefer the notation [n]λ as it fits with the
overall theme of q-analogues. An important consequence is that

↓TCn S
[n]λ = NCn

e S2,

so S[n]λ is ≥ 2n by [Ull09, Corollary I.5.8]; this is ultimately the reason for our interest in λ-analogues. We
will also use the (admittedly atrocious) notation

{n}λ := λ1 + · · ·+ λn

= [n+ 1]λ − λ∞
= λ[n− 1]λ

which has the property that ↓TCn+1
{n}λ is the complex reduced regular representation of Cn+1.

As noted earlier, when working p-locally it suffices to consider the representations λi := λp
i

.
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Observation 3.5. Determining the decomposition of {n}λ into λi’s is isomorphic to the problem considered
in the q-Legendre formula. More precisely, it corresponds to decomposing [pn]A! = [p]nAφ([n]A!), since we
always pick up a new irreducible representation when passing from {n}λ to {n+ 1}λ, whereas we only pick
up new (non-unit) factors in [n]A! when we hit multiples of p.

For example, with p = 3 the representation {4}λ = λ+ λ2 + λ3 + λ4 has p-typical decomposition

{4}λ = 3λ0 + λ1

and dimension-sequence

d•({4}λ) = (4, 1).

This parallels the decomposition

[4p]A! = u[p]3A[p2]A

= u[p]4Aφ([p]A).

Corollary 3.6. The dimension-sequences of the representations [n]λ and {n}λ are

ds([n]λ) =

⌈
n

ps

⌉
, ds({n}λ) =

⌊
n

ps

⌋
,

and their p-typical irreducible decompositions are

[n]λ = λ∞ +

∞∑
s=0

(⌈
n

ps

⌉
−
⌈

n

ps+1

⌉)
λs,

{n}λ =

∞∑
s=0

(⌊
n

ps

⌋
−
⌊

n

ps+1

⌋)
λs.

Remark 3.7. The representation [n]λ is also familiar to homotopy theorists as the Bott cannibalistic class
ρn(λ) arising in topological K-theory. In fact, since the Bott element is given by β = λ − 1, we can write
π∗ku = Z[[λ − 1]]. Thus, another way to think of λ-analogues and λ-deformations is that we are deforming
the trivial line bundle to a general line bundle.

This is related to the present situation as follows. By [Sus83] we have K(OCp ;Zp) = kup, and the
cyclotomic trace

π2kup = K2(OCp ;Zp)→ TP2(OCp ;Zp)

sends λ to (a possible choice of) q by [Hes06, Lemma 3.2.3]. This can be generalized to Zcycl
p algebras, see

[Mat20, Example 5.5].

3.1.4. Tate cohomology. Our final example is more philosophical in nature. It concerns the specialization

Z[q]→ Z[q]/(qn − 1) = Z[Cn]

in which q is viewed as a generator of Cn. In this case [n]q gets sent to the Cn-trace, so that quotienting by
[n]q essentially amounts to taking Tate cohomology. This suggests yet another perspective on q-deformations,
one which may appeal to the equivariant homotopy theorist: we are deforming from a trivial action to a
non-trivial action, such that multiplication by n gets deformed to a transfer for a subgroup of index n.

One would then hope that the equivariant norm for a subgroup of index n would correspond to some
q-deformation of raising to the power n. At present, we are only able to relate the norm to existing notions
of q-powers on elements of rank one. We record this in §3.3.

3.2. Perfectoid rings.
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3.2.1. Arithmetic aspects. The reference for this section is [BMS18, §§3–4], see also [Bha18, Lecture IV].

Definition 3.8. Let R be a p-complete ring. The tilt R[ of R is the inverse limit perfection of R/p:

R[ := lim
←−
φ

R/p.

There is a multiplicative bijection

R[ ∼= lim
←−
x 7→xp

R,

and we write (−)] : R[ → R for the multiplicative map (x0, x1, . . . ) 7→ x0.

Example 3.9. If R = Zcycl
p := Zp[ζp∞ ]∧p , then R/p = Fp[x1/p∞ ]/x and R[ = Fp[[x1/p∞ ]]. The ] map is given

by x] = (ζp − 1)p.

We get the same R/p and R[ by taking instead R = Zp[p1/p∞ ]∧p . In this case the ] map is given by x] = p.

Tilting is right adjoint to the functor of (p-typical) Witt vectors:

{perfect Fp-algebras}
W //
⊥ {p-complete Zp-algebras}

(−)[
oo

Morally, we think of this adjunction as extension/restriction of scalars along the Teichmüller lift Fp → Zp
(which is a map of multiplicative monoids, but not a map of rings).

Definition 3.10. We write Ainf(R) := W (R[), and θ : Ainf(R) → R for the counit of this adjunction.
By functoriality of Witt vectors, Ainf(R) inherits a Frobenius φ from R[ (even though there is usually no
Frobenius on R).

Explicitly, every element of Ainf(R) has the form

x =

∞∑
i=0

[ai]p
i

with ai ∈ R[, and the maps φ and θ are given by

φ(x) =

∞∑
i=0

[api ]p
i, θ(x) =

∞∑
i=0

a]ip
i.

Example 3.11. If R = Zcycl
p , then Ainf(R) = Zp[q1/p∞ ]∧(p,q−1) is the ring we encountered in the previous

section. The element q is constructed as follows. Fix a compatible choice of {ζpi}, and let

ε = (1, ζp, ζp2 , . . . ) ∈ R[

q = [ε] ∈ Ainf(R) = W (R[)

We see that θ(q1/p) = ζp, so θ(q) = 1 and ker θ is generated by [p]q1/p = q−1
φ−1(q−1) .

In particular, Ainf(R) is a Zp[q1/p∞ ]∧(p,q−1)-algebra for any Zcycl
p -algebra R. Traditionally q− 1 is denoted

µ, [p]q1/p is denoted ξ, and [p]q is denoted ξ̃.

Remark 3.12. q is roughly a p-adic analogue of e2πi. Note that e2πi = 1, but we can formally write
(e2πi)1/p = e2πi/p = ζp whereas 11/p = 1. Keeping track of an inverse system of p-power roots allows us
to make this formal manipulation precise, and interpret e2πi as an expression (like q) whose “underlying
element” is 1, but which contains the information of the ζp∞ .

Definition 3.13 ([BMS18, Definition 3.5]). A perfectoid ring is a ring R satisfying:

(a) there is some π ∈ R such that πp divides p;
(b) R is π-complete;

(c) the Frobenius R
φ−→R/p is surjective;
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(d) the kernel of Ainf(R)
θ−→R is principal.

If R is p-torsionfree, the last condition may be replaced by:

(d’) if x ∈ R[ 1
p ] with xp ∈ R, then x ∈ R.

Example 3.14. An Fp-algebra is a perfectoid ring if and only if it is perfect; in this case π = 0, and

Ainf(R) = W (R). Zcycl
p and Zp[p1/p∞ ]∧p are both perfectoid. If C is a complete algebraically closed extension

of Qp, then OC is a perfectoid ring; in particular, OC is a Zcycl
p -algebra.

Some examples of rings which are not perfectoid are Zp (a), Zp[p1/p] (c), and Zp[[x1/p∞ ]]/x (d’).

Remark 3.15. We are mainly interested in perfectoid rings which are either p-torsion or p-torsionfree.
There is a fracture theorem expressing any perfectoid ring as a (homotopy) pullback of such perfectoid rings
[Bha18, Proposition IV.3.2], so we are justified in restricting to such.

Remark 3.16. If R is perfectoid, then Ainf(R)
θ−→R is the universal pro-infinitesimal formal p-adic thick-

ening of R [Fon94, Théorème 1.2.1]. This is the reason for the notation Ainf .

Assume from now on that R is perfectoid. In this case, there is an alternative description of Ainf which
is very useful. Although by definition

Ainf(R) := lim
←−
n,R

Wn(R[),

it turns out [BMS18, Lemma 3.2] that there is also a canonical isomorphism

Ainf(R) ∼= lim
←−
n,F

Wn(R). (3)

This is very important for the topological story: TR0(R) = W (R), but TF0(R) = Ainf(R).

Under the isomorphism (3), we define θ̃n : Ainf(R)−→Wn(R) to be the projection. Explicitly, for x =

(x(0), x(1), . . . ) ∈ R[, we have θ̃n([x]) = [x(n)]. The map θ introduced above is the same as θ̃1φ, and in fact

we will mainly be concerned with θ̃nφ (which is relevant to TF) rather than θ̃n (which is relevant to TP).

We also will not use the maps θn := θ̃nφ
n (for n > 1), which are relevant to TR.

The crucial point for us is how these maps interact with the F , R, V operators on Wn(R).

Lemma 3.17 ([BMS18, Lemma 3.4]). The following diagrams commute:

Ainf(R)
θ̃n+1

//

φ−1

��

Wn+1(R)

R

��

Ainf(R)
θ̃n

// Wn(R)

Ainf(R)
θ̃n+1

// Wn+1(R)

F

��

Ainf(R)
θ̃n

// Wn(R)

Ainf(R)
θ̃n+1

// Wn+1(R)

Ainf(R)
θ̃n

//

λ̃n+1

OO

Wn(R)

V

OO

Here λ̃n+1 is an element of Ainf(R) satisfying θ̃n+1(λn+1) = V (1) ∈Wn+1(R).

By definition, ker θ is a principal ideal; we let [p]A be a choice of generator. (This is not a Teichmüller
representative.) Then the elements

[pn]A := [p]Aφ([p]A) · · ·φn−1([p]A)

φ([pn]A) = φ([p]A) · · ·φn([p]A)

generate ker(θ̃nφ) and ker θ̃n, respectively [BMS18, Lemma 3.12]. Note in particular that for n ≤ m,

[pm]A = φn([pm−n]A)[pn]A.

This gives the following, which will turn out to be related to the cell structure of Sλn−1 (§2.5, Lemma 4.11).
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Lemma 3.18 ([BMS18, Remark 3.19]). For n < m, the bottom row of the following commutative diagram
is exact:

Ainf(R)

θ̃nφ

��

// Ainf(R)

θ̃mφ

��

[pn]A
// Ainf(R)

θ̃mφ

��

Ainf(R)

θ̃nφ

��

0 // Wn(R)
Vm−n

// Wm(R) // Wm(R)
Fm−n

// Wn(R) // 0

3.2.2. Topological aspects. The fundamental theorem of topological Hochschild homology is that THH∗(Fp) =

Fp[σ], with |σ| = 2. This is due to Bökstedt [B8̈5], but for several decades his paper was available only via
clandestine channels; fortunately, a public proof is now available, see [HN20, §1.2] or [KN19, §1]. The key
local calculation of [BMS19] is that Bökstedt periodicity continues to hold for perfectoid rings.

Theorem 3.19 ([Hes06], [BMS19, Theorem 6.1]). Let R be a perfectoid ring. Then THH∗(R;Zp) = R[σ],
for some choice of σ ∈ THH2(R;Zp).

Proposition 3.20 ([BMS19, Propositions 6.2 and 6.3]). Let R be a perfectoid ring, and let A = Ainf(R).
We can choose generators [p]A ∈ ker θ, σ ∈ TC−2 (R;Zp), t ∈ TC−−2(R;Zp), and τ ∈ TP−2(R;Zp) to give
identifications

TC−∗ (R;Zp) =
A[σ, t]

σt− [p]A

TP∗(R;Zp) = A[τ±1]

such that TC−(R;Zp)
can //

ϕ
//TP(R;Zp) act as

can(σ) = [p]Aτ
−1 ϕ(σ) = τ−1

can(t) = τ ϕ(t) = φ([p]A)τ

Since we will mainly be concerned with the canonical map, we will make a slight abuse of notation and
write t rather than τ .

3.3. Prisms. The classical definition of perfectoid rings given in the previous section is most useful for
recognizing perfectoid rings in the wild. However, for our purposes it is more natural to view perfectoid rings
as equivalent to perfect prisms, as the emphasis will be on Ainf(R) rather than R. We hope to convince the
reader that prisms are natural from the perspective of equivariant homotopy theory. Although we will only
use perfect prisms in the remainder of the paper, the general setting is illuminating; we conjecture that our
results hold for general prisms, but this is nontrivial to prove as TR and TF are not yet understood in the
general case. References for this section are [BS19], [Bha18], and [AB19].

Definition 3.21. A δ-structure on a ring A is a ring homomorphism φ : A → A which is a derived lift of
Frobenius. When A is p-torsionfree, this just means that φ(x) ≡ xp mod p; in this case, we can uniquely
solve for the element “witnessing” this congruence, and thus define a function δ : A→ A such that

φ(x) = xp + pδ(x)

for all x ∈ A. “Derived lift” means that for general A, we specify δ rather than φ, where δ is required to
satisfy whatever identies are needed for φ to be a ring homomorphism.

A δ-ring is a ring together with a δ-structure. A δ-ring is perfect if φ is an isomorphism.

Remark 3.22. A δ-structure on A is equivalent to a ring section of W2(A)
R−→A, given in Witt coordinates

by x 7→ (x, δ(x)) and in ghost coordinates by x 7→ (x, φ(x)). This can be seen from the pullback diagram

W2(A)
R //

F

��

y A

ϕ

��

A
can

// A//p := A⊗L
Z Fp
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Again, this pullback diagram follows from injectivity of the ghost map in the torsionfree case, and in general
by Kan extending. This perspective is apparently due to Rezk [Rez19].

Definition 3.23 ([BS19, Definition 3.2]). A prism consists of a δ-ring A together with an ideal I such that:

• I defines a Cartier divisor on SpecA;
• A is derived (p, I)-complete;
• (“prism condition”) p ∈ I + φ(I)A.

We write R = A/I. A prism is:

• perfect if φ is an isomorphism;
• crystalline if I = (p);
• orientable if I is principal, in which case a choice of generator is called an orientation. We denote

an orientation by [p]A;
• transversal if it is orientable and (p, [p]A) is a regular sequence. (This implies that R is p-torsionfree.)

It is usually safe to assume all prisms are orientable. In this case, the first condition requires that [p]A is
a non-zerodivisor, and the prism condition becomes

φ([p]A) ≡ up mod [p]A

for a unit u ∈ A×, or equivalently δ([p]A) ∈ A×.

Example 3.24. Here are examples of prisms.

• A crystalline prism is simply a δ-ring which is p-torsionfree and p-complete.
• The category of perfectoid rings is equivalent to the category of perfect prisms viaR 7→ (Ainf(R), ker θ)

and (A, I) 7→ A/I. Perfect Fp-algebras correspond to perfect crystalline prisms, while torsionfree
perfectoid rings correspond to perfect transversal prisms. Different untilts of a perfect Fp-algebra k
correspond to different prism structures on W (k).

• Let K/Qp be a finite extension with residue field k and fixed uniformizer π. Let S = W (k)[[z]], with
δ-struture given by the usual Frobenius on W (k) and φ(z) = zp. There is a surjection S → OK
given by z 7→ π, with kernel generated by an Eisenstein polynomial E(z). Then (S, (E(z))) is a
prism, said to be of “Breuil-Kisin type”. Different local fields K with residue field k correspond to
different prism structures on S, so we can think of K as an untilt (in the sense of “characteristic
zero incarnation”) of k((z)).

• Let A = Zp[[q−1]] with φ(q) = qp, and let I = ([p]q) with orientation [p]A := [p]q. This “q-crystalline”
prism has the interesting property that δ([p]A) ≡ 1 mod [p]A.

Our main goal in this section is to explain the significance of the prism condition. First, we need an
elaboration of it. We again set [pn]A = [p]Aφ([p]A) · · ·φn−1([p]A). The i = 1 case of the following lemma
appears as [AB19, Lemma 3.5].

Proposition 3.25. For i ≤ j, there is a congruence

φj([p]A) ≡ ui,jp mod [pi]A

for some unit ui,j ∈ A×.

Proof. The case (i, j) = (1, 1) is the prism condition, with u1,1 = δ([p]A). To induct in the direction
(i, i) =⇒ (i+ 1, i+ 1), we write

φi+1([p]A) = φi([p]A)p + pφiu1,1

= (ui,ip+ x[pi]A)p−1φi([p]A) + pφiu1,1

≡ (up−1
i,i pp−2φi([p]A) + φiu1,1)p mod [pi+1]A.

The final parenthesized expression is a unit because φi([p]A) ∈ rad(A). To induct in the (i, j) =⇒ (i, j + 1)
direction, we write

φj+1([p]A) = φj([p]A)p + pφju1,1

≡ (upi,jp
p−1 + φju1,1)p mod [pi]A.

The final parenthesized expression is a unit because p ∈ rad(A). �
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Corollary 3.26. For i ≤ min{j, r} there is a congruence

φr([pj−i]A) ≡ upj−i mod [pi]A

for some unit u ∈ A×.

Remark 3.27 (Algebro-geometric interpretation of the prism condition). Geometrically, the prism condition
says that the closed subschemes of Spec(A) cut out by any two φ-iterates φi([p]A) and φj([p]A) intersect
only in characteristic p:

V (φi[p]A) ∩ V (φj [p]A) ⊂ V (p).

We imagine shining a beam of characteristic p into SpecA, refracting it into beams of characteristic φ•([p]A),
which can then be studied one at a time; this is the reason for the name “prism”. Our proof of Proposition
3.31 is an example of this idea.

SpecAV (p)

V ([p]A)

V (φ([p]A))

V (φ2([p]A))

. . .

. . .

. . .

There is also an equivariant interpretation of the prism condition: it is just what we need to build a
Mackey functor (specifically, to satisfy the axiom res ◦ tr = p).

Corollary 3.28 (Equivariant interpretation of the prism condition). The prescription

W (T/Cpn) = A/[pn+1]A

defines a Mackey functor W , with restriction maps given by the natural projections, by defining the transfers
as indicated:

...

��

A/[p3]A

1

��

ZZ

A/[p2]A

1

��

φ2([p]A)u−1
2,2

YY

A/[p]A

φ([p]A)u−1
1,1

YY

In subsequent Lewis diagrams we will omit the u−1
i,i to save space (and since we will be working up to

units anyway), but they do matter.

Remark 3.29. Proposition 3.25 is not optimal: already in the base case we in fact have φ([p]A) ≡ u1,1p mod
[p]pA. The congruences we have given suffice to construct the Mackey structure, but it seems that sharper
statements are needed to study the interaction of the norm maps with the slice filtration.

Let us explain the connection to topology. Assume there exists a connective E∞-ring SA such that
SA ⊗S Z = A; this can be constructed by hand in all the examples we have given, starting from Lurie’s
spherical Witt vectors [Lur18, Example 5.2.7]. In the case of a perfectoid ring R, the canonical map

THH(R;Zp)→ THH(R/SA)

is an equivalence ([KN19, Proposition 3.5], [Zho20, Lemma 14]); for general prisms, THH(R/SA) is what one
should study. The Mackey functor W arises as π0THH(R/SA)ET+ , which agrees with π0THH(R/SA) when
A is perfect. The reader should consult [Zho20] for more in this direction, such as a Hopkins-Mahowald
result for perfectoid rings and complete regular local rings.
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The multiplication on A descends to W , making it a Green functor. In the situation of the preceding
paragraph, the framework of equivariant homotopy theory implies that W has even more structure: it is a
Tambara functor. We refer to [HM19, Definition 2.11] for a full definition, but essentially this means that W
comes with norm maps which are multiplicative analogues of transfers. In the remainder of this section we
will try to identify the norm algebraically. This material is not used elsewhere in the paper, but we expect
it to be important to further developments.

Definition 3.30. Let A be a perfect prism. A function A
N−→A is a lift of the norm Npn

pn−1 if

A
N //

��

A

��

A/[pn]A
N
// A/[pn+1]A

commutes, where

A/[pn]A = Wn(A/[p]A)
N−→Wn+1(A/[p]A) = A/[pn+1]A

is Angeltveit’s norm map for Witt vectors [Ang15]. We also say that N(x) lifts Npn

pn−1(x) if this diagram

commutes for a particular x ∈ A.

Proposition 3.31. Let A be a perfect prism. N(x) is a lift of Npn

pn−1(x) if and only if

N(x) ≡ φ(x) mod φn([p]A)

N(x) ≡ xp mod [pn]A

Proof. By functoriality, we may assume that A is transversal, so that A/[p]A is p-torsionfree. This has the
advantage that the ghost map gh: Wn(A/[p]A)→ (A/[p]A)n is injective. The identification

A/[pn]A
∼−→Wn(A/[p]A)

is given in ghost coordinates by

x 7→ (φ−(n−1)(x) mod [p]A, . . . , x mod [p]A).

By [Ang15, Theorem 1.4], the norm is given in ghost coordinates by

Wn(A/[p]A)
N−→Wn+1(A/[p]A)

(w0, w1, . . . , wn−1) 7→ (w0, w
p
0 , w

p
1 , . . . , w

p
n−1).

Thus we get the congruences

N(x) ≡ φ(x) mod φn([p]A)

N(x) ≡ xp mod φi([p]A), 0 ≤ i < n.

Using transversality again, the second line is equivalent to N(x) ≡ xp mod [pn]A by [AB19, Lemma 3.6]. �

Since φ and x 7→ xp are both multiplicative, we immediately get N(xy) ≡ N(x)N(y) mod [pn+1]A. We do
not expect there to be lifts of the norm which are multiplicative as maps A→ A, however.

Proposition 3.32. Let A be a prism over (Zp[q1/p∞ ]∧(p,q−1), [p]q1/p), and let x, y ∈ A with δ(x) = δ(y) = 0.

Then the q-Pochhammer symbol

(x,−y; qp
n−1

)p :=

p−1∏
i=0

(x− qip
n−1

y)

is a lift of Npn

pn−1(x− y).

Proof. This follows from qp
n−1 ≡ ζp mod φn([p]q1/p), qp

n−1 ≡ 1 mod [pn]q1/p , and φ(x− y) = xp − yp. �

The following is an adaptation of Borger’s formula for the norm [Ang15, Definition 1.1].
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Proposition 3.33. The function

Nn(x) = φ(x)− φn([p]A)

un,n
δ(x)

is a lift of the norm Npn

pn−1 .

Proof. Certainly Nn(x) ≡ φ(x) mod φn([p]A), and Nn(x) ≡ xp mod [pn]A by Proposition 3.25. �

Warning 3.34. The q-Pochhammer symbol (x,−y; qp
n−1

)p does not agree with our handicrafted norm
Nn(x − y) as functions A → A unless n = 1, p = 2. It seems highly non-trivial to write down lifts of the
norm that make sense for arbitrary prisms and which specialize to the q-Pochhammer symbol. The best we
have found in this direction is the identity

(x,−y; q)3 = ψ3(z)− [3]qδ3(z)− [3]q([2]q − 2)(zδ2(z)− δ3(z)),

where z = x− y, obtained through trial and error with the help of Sage.
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Part 2. Results

Notation

Throughout R is a fixed perfectoid ring, A = Ainf(R) equipped with its lift of Frobenius φ, [p]A is a

generator of ker(A
θ−→R), and

[pn]A = [pA]φ([pA]) · · ·φn−1([p]A)

[n]A := [pvp(n)]A

[n]A! = [1]A[2]A · · · [n]A.

(This definition of [n]A does not agree with [n]q1/p , but it does up to units, which is enough for our purposes.)

We will simply write THH, TC−, etc. for THH(R;Zp), TC−(R;Zp), etc. We caution the reader that
we write THH for both the cyclonic spectrum and its underlying Borel T-spectrum; the intended meaning
should always be clear from context. We also write TC−∗ := π∗TC− = π∗TC−(R;Zp), etc.

The circle group is denoted by T. The ring of real representations of T is denoted RO(T), while the
ring of complex representations is denoted by R(T). We write ∗ for Z-grading and F for RO(T)-grading.
Occasionally we may write F where only an actual representation would make sense; we hope this is clear
from context. We write aV ∈ πG−V S for the Euler class associated to an actual representation V .

λn is the one-dimensional complex T-representation where z ∈ T acts by zn, λi := λp
i

, and λ∞ := λ0.
We also define

[n]λ = 1 + λ+ . . .+ λn−1

{n}λ = λ+ . . .+ λn.

Given α ∈ RO(T), we write α(r) for the fixed space αCpr pulled back along the root isomorphism

T ∼−→T/Cpr . We then set dr(α) = dimC(α(r)). Explicitly, λ′∞ = λ∞, λ′i = λi−1 for i > 1, and λ′0 = 0. Thus
for a representation

α = k0λ0 + · · ·+ knλn + k∞λ∞,

we get

dr(α) = kr + kr+1 + · · ·+ kn + k∞.

When a single representation α is in play, we may abbreviate dr(α) to dr.
The (equivariant) sphere spectrum is denoted by either S or S0. The smash product of spectra, including

G-spectra, is denoted by ⊗. We do not distinguish between an abelian group (or Mackey functor) and its
associated Eilenberg-Mac Lane (equivariant) spectrum, nor between a G-space and its suspension spectrum.

We write PnX for the nth slice cover of a G-spectrum X, and PnnX for its n-slice.

4. RO(T) calculations

In this section we study the portion of the RO(T)-graded homotopy πFTHH that will be needed for the
slice computations in §5. The Mackey functors we will be using are introduced in §4.1. In §4.2, we review
the tools we will use for computing these groups, and derive the q-gold relation (Lemma 4.9). Our actual
calculations are carried out in §4.3.

The author learned to work with the gold elements from Zeng’s beautiful paper [Zen18], and we urge the
reader interested in learning to do these types of calculations to read Zeng’s paper (as well as the earlier
version [Zen17], which shows several alternative ways to do the same calculation).

4.1. Mackey functors.

Definition 4.1. The Witt Mackey functor W (c.f. §3.3) is the T-Mackey functor given on objects by

W (T/Cpk) = A/[pk+1]A.

Restrictions are given by the natural quotient maps, and for i ≤ j the transfer is defined as multiplication

by
[pj+1]A
[pi+1]A

ui,j = φi+1([pj−i]A)ui,j , where ui,j ∈ A× is an appropriate unit (c.f. Proposition 3.25). We will
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generally suppress this unit from the notation. We also write W (n) := ↓TCpn W for the restriction of W

to a Cpn-Mackey functor. Abstractly we have W (T/Cpk) ∼= Wk+1(R), but the A-algebra structure will be
important for us.

Definition 4.2. Let M be a G-Mackey functor, and let H ≤ G be a subgroup. Then trHM is defined to
be the sub-Mackey functor of M generated under transfers by ↓GH M , while ΦHM is defined as the quotient

0→ trHM →M → ΦHM → 0.

Importantly, we have ΦK trHM = 0 for H ≤ K.

Remark 4.3. If G is finite, then trHM is just the image of the canonical map ↑GH↓GH M →M .

Example 4.4. For G = Cp2 , these sequences are

0 //

��

A/[p]A

p

��

φ([p2]A)
// A/[p3]A

1

��

// A/φ([p2]A)

1

��

// 0

��

0 //

ZZ

��

A/[p]A

p

��

1

XX

φ([p]A)
// A/[p2]A

1

��

φ2([p]A)

XX

// A/φ([p]A)

��

φ2([p]A)

XX

// 0

ZZ

��

0

[[

// A/[p]A

1

YY

1
// A/[p]A

φ([p]A)

YY

// 0

YY

// 0

[[

0 // treW
(2) // W (2) // ΦeW (2) // 0

and

0 //

��

A/[p2]A

p

��

φ2([p]A)
// A/[p3]A

1

��

// A/φ2([p]A)

��

// 0

��

0 //

ZZ

��

A/[p2]A

1

��

1

XX

1 // A/[p2]A

1

��

φ2([p]A)

XX

// 0

��

XX

// 0

ZZ

��

0

[[

// A/[p]A

φ([p]A)

YY

1
// A/[p]A

φ([p]A)

YY

// 0

[[

// 0

[[

0 // trCpW
(2) // W (2) // ΦCpW (2) // 0

and

0 //

��

A/[p]A

p

��

φ([p]A)
// A/[p2]A

p

��

// A/φ([p]A)

p

��

// 0

��

0 //

ZZ

��

A/[p]A

p

��

1

XX

φ([p]A)
// A/[p2]A

1

��

1

XX

// A/φ([p]A)

��

1

XX

// 0

ZZ

��

0

[[

// A/[p]A

1

YY

1
// A/[p]A

φ([p]A)

YY

// 0

YY

// 0

[[

0 // treW
(2) // trCpW

(2) // Φe trCpW
(2) // 0.

Abusive Notation 4.5. In our present case G = Cp∞ , we will write trCn when we really mean trC
p
vp(n)

.

We expect that our results hold as stated without this abuse when THH is regarded as an integral cyclonic
spectrum, but we have not carefully verified this.
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4.2. Tools. The most powerful tool for computing RO(T)-graded THH is the isotropy separation square.
This takes the form

πFΣTHHhT // TFF
R //

��

TFF′

ϕ

��

πFΣTHHhT // TC−F
// TPF

(4)

at infinite level, and

πFTHHhCpn
// TRn+1

F
R //

��

TRn
F′

ϕ

��

πFTHHhCpn
// πFTHHhCpn // πFTHHtCpn

(5)

for finite subgroups.
We will understand TFF by relating it to TC−F and TPF. In doing so, we will rely heavily on the following

RO(T)-graded version of Tsalidis’ theorem [Tsa98, Theorem 2.4]. Our reliance on this result is the main
difficulty in generalizing our results to imperfect prisms.

Theorem 4.6 ([AG11, Theorem 5.1]). Write F = α + ∗ for ∗ ∈ Z and α ∈ RO(T). The vertical maps in
the isotropy separation square (5) are isomorphisms for

∗ ≥ 2 max{−d1(α), . . . ,−dn(α)}.

Consequently, the vertical maps in (4) are isomorphisms for

∗ ≥ 2 max{−di(α) | i ≥ 1}
≥ 0.

To begin, we had better know the Z-graded homotopy of TF and TRn, which was not spelled out in
[BMS19]. Abstractly the following tells us that TRn

∗ = Wn(R)[σ]; this was already known (at least on π0)
by [HM97b, Theorem 3.3]), but the A-module structure is crucial for what follows.

Proposition 4.7. The Z-graded homotopy of TF and TRn+1 are

TF∗ = A[σ]

TRn
∗ = (A/[pn]A)[σ]

Proof. We already know that TP∗ = A[t±], and we have by [BMS19, Remark 6.6] that the Tate cohomology
at finite level is

π∗THHtCpn = (A/φ([pn]A))[t±].

The result now follows from Tsalidis’ theorem (in Z degrees). Note the map ϕ is φ-linear with respect to
A-module structures, which is why we get (A/[pn]A)[σ] instead of (A/φ([pn]A))[t−1]. �

Our next task is to understand the bottom row of the isotropy separation square. As in the Z-graded
case, this can be computed by a spectral sequence

H∗(BT,TR1
α+∗)⇒ TC−α+∗.

On the underlying, we have TR1
α+∗ = TR1

|α|+∗, and we let uα ∈ TR1
|α|−α be the image of 1 ∈ TR1

0
∼−→TR1

|α|−α.
The action of T on this group is necessarily trivial, and the spectral sequence collapses for degree reasons, so
uα lifts to TC−|α|−α; by construction, it is invertible. A similar discussion applies to TP, so the whole bottom

row of the isotropy separation sequence is uλi-periodic. We also recall (§2.4) that the right column is aλ0
-

periodic. As Zeng [Zen18] puts it, the clash between the uλi-periodicity of ΣTHHhT and the aλ0
-periodicity

of the rightmost TF produces a lot of classes in the middle TF. Note that the classes uλi lift to TF2−λi by
Tsalidis’ theorem, but are no longer invertible there.
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Remark 4.8. We explain the relation between our account in terms of the gold elements and that given
by Angeltveit-Gerhardt. Their analysis of the Tate spectral sequence begins by observing that the E2 page
of the α-graded HOSS, HFPSS, or TSS is simply a shift by 2d0(α) of the usual one: this is uF-periodicity.
Then they point out that while the Tate spectral sequence obviously depends on d0(α), the Tate spectrum

THHt only depends on α′ (which is not true of THHh or THHh). To exploit this, they reindex the α-graded
Tate spectral sequence to make it isomorphic to the usual one, but with a different meaning of “first/second
quadrant”: this trick is essentially aλ0

-periodicity. The correspondence between our names and Angeltveit-
Gerhardt’s is u−1

α ←→ td0(α)[−α].

In principle—although it is not the strategy we will use here—, this allows one to completely compute
TFF, using aλ0 -periodicity for the induction and uλi-periodicity for the base case. The remaining ingredient
needed is to understand the relation between the various classes aλi , uλi , σ, and t. For this, we will bring in
the other tool we have for computing RO(T)-graded homotopy (and the one we will use in this paper): cell
structures, c.f. §2.5. As Cn-spectra, the representation spheres Sλj have cell structures of length 2, which
we call the “long cell structure”. However, as pointed out to us by Hill, these have “short cell structures”
as T-spectra: there is an exact triangle

T/Cpj+ → S0 → Sλj .

The following is a q-deformation of the “gold relation” from [HHR16b, Lemma 3.6(vii)].

Lemma 4.9 (q-gold relation). The following relations hold in TFF. For j ≥ 0,

σaλj = [pj+1]Auλj .

For 0 ≤ i < j,

aλjuλi = tr
Cpj

Cpi
(1)aλiuλj

=
[pj+1]A
[pi+1]A

aλiuλj

= φi+1([pj−i]A)aλiuλj .

Proof. By Tsalidis’ theorem, we have that TFλj = TC−λj , and TC−λj = A〈σu−1
λj
〉 since TC− is uλj -periodic.

On the other hand, mapping the short cell structure into THH gives a short exact sequence

0 // TFλj
aλj

// TF0
// TRj+1

0
// 0

0 // A〈σu−1
λj
〉 // A // A/[pj+1]A // 0

This gives the relation σu−1
λj
aλj = [pj+1]A, which proves the first claim. Now write

σ = [pi+1]A
uλi
aλi

= [pj+1]A
uλj
aλj

.

Since [pj+1]A = φi+1([pj−i]A)[pi+1]A, multiplying out gives the second claim. �

In particular

aλj = φ([pj ]A)aλ0
uλju

−1
λ0
,

t = aλ0u
−1
λ0
,

so from now on we will stop writing t. We also see that when working in TC− or TP (where the uλj are
invertible), it suffices to consider only the classes σ, aλ0

, and uλj .
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Remark 4.10. The two forms of the q-gold relation,

σaλj = [pj+1]Auλj

aλjuλi = φi+1([pj−i]A)aλiuλj ,

can be combined by formally setting uλ−1
:= σ, aλ−1

:= 1. This is one possible explanation of the ‘philo-
sophical’ role of the Bökstedt generator.

4.3. Computations.

Lemma 4.11. For j < n,

TRn+1
λj+∗ =


tr
Cpn

Cpj
(1)u−1

λj
∗ = −2

σiu−1
λj

∗ = 2i ≥ 0

0 else

These generate the Mackey functors trCpj W
(n) for ∗ = −2 and W (n) for ∗ = 2i ≥ 0.

Proof. Since TRn+1
∗ is even, the long cell structures give long exact sequences

0→ TRj+1
2+∗

V n−j−−−→ TRn+1
λj+∗

aλj−→TRn+1
∗

Fn−j−−−→ TRj+1
∗ → 0,

described algebraically by Lemma 3.18. When ∗ = −2, this says that the transfer TRj+1
0 → TRn+1

λj−2 is an

isomorphism. The case ∗ = 2i ≥ 0 follows from Tsalidis’ theorem. �

While the statement of the next lemma is imposing, its content is very simple. To compute TF2i−α, we
start with TF2i generated by σi, and exchange σs for uλj s, starting with the largest value of j. If we run out
of σs, we continue by adding aλj s to land in the correct RO(T)-graded degree. Alternatively, we can start
with TF−α generated by aα, and exchange aλj s for uλj s, or σs once we run out of aλj s. For example:

TF4 = A〈σ2〉 TF4−2λ0−λ1
= A〈aλ0

uλ0
uλ1
〉

TF4−λ1 = A〈σuλ1〉 TF2−2λ0−λ1 = A〈a2
λ0
uλ1〉

TF4−λ0−λ1
= A〈uλ0

uλ1
〉 TF−2λ0−λ1

= A〈a2
λ0
aλ1
〉

Lemma 4.12. The portion of TFF of the form F = ∗ − α, with ∗ ∈ Z and α an actual representation, is

A[σ, aλi , uλi ].

Explicitly, let α = k0λ0 + · · ·+ kn−1λn−1 be an actual, fixed-point free representation of T. Write

α[s, t) := ksλs + · · ·+ kt−1λt−1.

Then for i ≥ 0,

TF2i−α =

{
A〈aα[0,r−1)a

dr−1(α)−i
λr−1

u
i−dr(α)
λr−1

uα[r,n)〉 dr(α) ≤ i < dr−1(α)

A〈σi−d0(α)uα〉 d0(α) ≤ i

TRn+1
2i−α =

{
A/φ([pn−r]A)〈aα[0,r−1)a

dr−1(α)−i
λr−1

u
i−dr(α)
λr−1

uα[r,n)〉 dr(α) ≤ i < dr−1(α)

A/[pn+1]A〈σi−d0(α)uα〉 d0(α) ≤ i

When d0(α) ≤ i, the corresponding Mackey functor is W . When dr(α) ≤ i < dr−1(α), the corresponding

Mackey functor is ΦCpr−1W .

Proof. We proceed by induction on (k0, . . . , kn−1) ∈ Nn in dictionary order. Let β be an actual T-
representation whose restriction to Cpr is trivial, and let α = β + λr. The short cell structure gives

0 // TF2i−β
aλr // TF2i−α // TRr+1

2i−2dr(α)
// 0

0 // A〈gβ〉 // A〈gα〉 // A/[pr+1]A〈σi−dr(α)〉 // 0
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for some generators gβ , gα. From this we see that

gα =

{
gβaλr dr(α) > i

gβuλrσ
−1 dr(α) ≤ i

which implies the description of the generators. The A-module structure and Mackey structure follow from
the fact that aλr kills transfers from Cpr , along with TRn+1 = TF/aλn (the short cell structure). �

In the case of a perfect Fp-algebra, these groups were already known by [HM97b, Proposition 9.1] and
[AG11, Theorem 8.3]. Our result is finer, as it identifies the multiplicative and Mackey structure.

Remark 4.13. We point out some important structural features of TFF that are implicit in the preceding
computations; proofs will be given in [Sul]. For α ∈ RU(T), one can show that the (nonzero) groups TFα
are all isomorphic to A, and vanish for d∞(α) < 0; one can even determine the generators relatively quickly.
On the other hand, the groups TFα−1 are all torsion, need not be cyclic, and are more difficult to determine.

This is why we used the long cell structure in the proof of Lemma 4.11 rather than the short cell structure:
TFλj−2 is zero, and instead TRn+1

λj−2 = TFλj+λn−3. It is easier to calculate the TRn+1 group directly than to

calculate the latter TF group. This problem does not arise in Lemma 4.12 since there are no odd-dimensional
TF classes in that range.

There is also a “gap” phenomenon present in Lemma 4.11. For k ≥ 1 the groups TFkλj−(2k−1), . . . ,TFkλj−3

are nonzero, and yet TFkλj−1 = 0. This is essential to the proof of Theorem 5.1, in order to be able to isolate
a single Mackey functor by “clipping off the Tsalidis part”. It also allows us, for an actual representation
V , to read off the homotopy Mackey functor πV+∗THH as quotients of TFV+∗ for ∗ ≥ 0 (Tsalidis’ theorem
guarantees we can do this for ∗ ≥ 1). This gap is easy to understand using the HOTFSS ([AG11, §3]): for
α = k0λ0 + . . .+ kn−1λn−1, this is the spectral sequence computing TFα+∗ from

πα+∗(ΣTHHhT)

a±λ0
πα′+∗(ΣTHHhT)

...

a±λ0
· · · a±λn−2

πα(n−1)+∗(ΣTHHhT)

a±λ0
· · · a±λn−1

TF∗

The integer degrees of the orbit terms depend on the dimension sequence of α, but the bottom term will
always start in degree 0. For virtual representations that are not too wild (in particular, those of the form
∗+ V for an actual representation V ), this kills any potential contributions to degree −1.
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5. Slices of THH

In this section, we study the slice filtration on THH and prove the main theorems. In §5.1, we identify
the slices and slice covers of THH in terms of RO(T)-graded suspensions (Theorem 5.1). In §5.2, we work
out the filtration this gives on homotopy groups. We analyze the slice spectral sequence in §5.3.

5.1. The slice tower. We begin by explaining the idea. Non-equivariantly, Bökstedt periodicity implies
that the Whitehead tower of THH is

THH Σ2THH
σoo Σ4THH

σoo · · ·oo

Since the slice filtration restricts to the Postnikov filtration on the underlying spectrum, it is reasonable to
guess that equivariantly, the slice covers will be given by

P2nTHH = ΣVnTHH

for appropriate T-representations Vn. Since

(SV ⊗ THH)ΦH = SV
H

⊗ THH

by cyclotomicity, we are reduced to finding T-representations Vn with d0(Vn) = n and

2dk(Vn) ≥
⌈

2n

pk

⌉
for all k ≥ 0.

Using the irreducible representations λi, these are uniquely determined p-locally. From the p-typical
description it is not so easy to see a pattern, but contemplating the q-Legendre principle (Observation 3.5),
we find that Vn = [n]λ. For example, with p = 3 we get

2d0(V4) = 8

2d1(V4) ≥ 3

2dr(V4) ≥ 1 ∀r ≥ 2;

these force V4 = 2λ0 + λ1 + λ∞, which we recognize as p-locally equivalent to λ0 + λ1 + λ2 + λ3 = [4]λ.
Educated guesses like this are actually a standard way to compute slices, thanks to the recognition

principle [HHR16a, Lemma 4.16]. To verify it, we must produce maps Σ[n+1]λTHH→ Σ[n]λTHH restricting
to σ on underlying spectra, and check that the cofibers are n-slices.

Theorem 5.1. There is a canonical identification of exact triangles

P2n+2THH // P2nTHH // P2n
2nTHH

Σ[n+1]λTHH // Σ[n]λTHH // Σ{n}λ trCnW

The bottom row is identified with

Σ{n}λ
(

Σλ∞THH
σu−1

λn−−−→ Σλ∞−λ
n

THH→ trCnW

)
or equivalently with

Σ[n]λ

(
Σλ

n

THH
σu−1

λn−−−→ THH→W/[pn]A

)
Proof. There are four steps.

(1) Show that Σ[n]λTHH is slice 2n-connective.
(2) Produce the map Σ[n+1]λTHH−→Σ[n]λTHH with cofiber Σ{n}λ trCnW .
(3) Check that Σ{n}λ trCnW is ≥ 2n.
(4) Check that Σ{n}λ trCnW is ≤ 2n.

35



We have already observed (Corollary 3.6) that ds([n]λ) =
⌈
n
ps

⌉
, which verifies (1) by the preceding discussion

together with the inequality 2
⌈
n
ps

⌉
≥
⌈

2n
ps

⌉
. The exact triangle

Σλ∞THH
σu−1

λn−−−→ Σλ∞−λ
n

THH→ trCnW

follows from Lemma 4.11, which takes care of (2).
The alternative expression for the cofiber sequence can be obtained either from Lemma 4.12, or by using

cell structures (Example 2.30) to see that

Σλ
n−λ∞ trCnW = W/[pn]A.

Now we check that Σ{n}λ trCnW ≥ 2n. Let us write connX for the connectivity of an ordinary spectrum
X. We must show that

conn ΦCpk
(

Σ{n}λ trCnW
)
≥
⌈

2n

pk

⌉
.

We have

conn ΦCpkS{n}λ = 2

⌈
n+ 1

pk

⌉
− 2

conn ΦCpk trCnW =

{
0 k ≤ vp(n)

∞ k > vp(n)

which proves (3) since k ≤ vp(n) implies that 2
⌈
n+1
pk

⌉
− 2 = 2n

pk
=
⌈

2n
pk

⌉
.

Finally, (4) follows from Lemma 5.2 below. �

Lemma 5.2. If M is any T-Mackey functor, then Σ{n}λM ≤ 2n.

Proof. This requires showing that

[Ssρpk , ↓TC
pk

Σ{n}λM ] = 0

for all spk > 2n. We write rρpk = r
2 [pk]λ, and note that

↓TC
pk
S{n}λM =

⌊
n

pk

⌋
λ∞ +

k−1∑
r=0

(⌊
n

pr

⌋
−
⌊

n

pr+1

⌋)
λr

so we need to compute [SV ,M ] where

V =

(
s

2
−
⌊
n

pk

⌋)
λ∞ +

s

2
α− β,

α =

k−1∑
r=0

(pk−r − pk−(r+1))λr,

β =

k−1∑
r=0

(⌊
n

pr

⌋
−
⌊

n

pr+1

⌋)
λr.

Our assumption spk > 2n gives
spk−r

2
>

n

pr
≥
⌊
n

pr

⌋
, which implies that in the irreducible decomposition

V = k0λ0 + · · ·+ kk−1λk−1 + k∞λ∞,

we have ki ≥ 0 for 0 ≤ i <∞ and k∞ > 0. The desired result then follows from Lemma 2.31. �
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Example 5.3. When p = 3, the regular slice tower up to P18 is

P18 = Σ6λ0+2λ1+λ∞THH //

��

Σ6λ0+2λ1+λ∞ trCp2 W = P18
18 P8 = Σ2λ0+λ1+λ∞THH //

��

Σ3λ0+λ1 treW = P8
8

P16 = Σ5λ0+2λ1+λ∞THH //

��

Σ6λ0+2λ1 treW = P16
16 P6 = Σ2λ0+λ∞THH

��

// Σ2λ0+λ1 trCpW = P6
6

P14 = Σ4λ0+2λ1+λ∞THH //

��

Σ5λ0+2λ1 treW = P14
14 P4 = Σλ0+λ∞THH

��

// Σ2λ0 treW = P4
4

P12 = Σ4λ0+λ1+λ∞THH //

��

Σ4λ0+2λ1 trCpW = P12
12 P2 = Σλ∞THH

��

// Σλ0 treW = P2
2

P10 = Σ3λ0+λ1+λ∞THH // Σ4λ0+λ1 treW = P10
10 P0 = THH // W = P0

0

Remark 5.4. The slice filtration is not a filtration by cyclotomic spectra: instead, we have

ΦCpkP2nTHH = P2dn/pkeTHH.

5.2. The slice filtration. In this section we work out the filtration induced on homotopy groups. We
will treat both π[i]λTF and π2iTF; the latter is what one would be probably interested in a priori, but the
former appears to be more natural. The filtration is defined as

F2j
S π[i]λTF = im(πT

[i]λ
P2(i+j)THH→ π[i]λTF)

F2j
S π2iTF = im(πT

2iP2(i+j)THH→ π2iTF)

Since TF is even in this range, our formulas will apply just as well to π[i]λ
THH and π2iTHH.

Theorem 5.5. The slice filtration takes the following form on homotopy. When j ≤ 0 or i = 0, F2j
S π[i]λTF

is all of π[i]λTF. Otherwise, F2j
S π[i]λTF is generated by

[p(i+ j − 1)]A!

[p(i− 1)]A!
.

When j ≤ 0 or i = 0, F2j
S π2iTF is all of π2iTF. Otherwise, F2j

S π2iTF is generated by

[p(i+ j − 1)]A!

[pr]i−1
A φr

([⌊
i+j−1
pr−1

⌋]
A

!
) ,

where r =
⌈
logp

(
i+j
i

)⌉
. In particular, taking i = 1 in either case gives

F2j
S π2TF = [pj]A!π2TF.

Remark 5.6. These formulas are easier to understand from our illustration of the q-Legendre formula
(Figures 1 and 2). The generator of F2j

S π[i]λ corresponds to taking the first i + j − 1 columns, and then

discarding the first i− 1 columns. The generator of F2j
S π2i corresponds to taking the first i+ j − 1 columns,

and then discarding i− 1 columns, tallest columns first.

Proof. The key identity, which follows from the q-gold relations and the q-Legendre principle, is

σka{k}λu
−1
{k}λ = [pk]A!.

Starting with the case of π[i]λ , we want to identify the image of

πT
[i]λ

P2(i+j)THH = π[i]λ−[i+j]λTF
σi+ju−1

[i+j]λ−−−−−−−→ π[i]λTF.
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The terms are

π[i]λTF = A〈σiu−1
[i]λ
〉 by Tsalidis’ theorem

π[i]λ−[i+j]λTF =

{
A〈σ−ju−1

[i]λ
u[i+j]λ〉 j ≤ 0 by Tsalidis’ theorem

A〈a{i+j−1}λa
−1
{i−1}λ〉 j > 0 by Lemma 4.12

Noting that u[i]λ = u{i−1}λ , this gives all the claims about π[i]λTF.
For the case of π2i, we must identify the image of

πT
2iP2(i+j)THH = π2i−[i+j]λTF

σi+ju−1
[i+j]λ−−−−−−−→ π2iTF = A〈σi〉

Let α = {i+ j − 1}λ with p-typical decomposition α = k0λ0 + · · ·+ kn−1λn−1. By Lemma 4.12,

π2i−[i+j]λTF = π2(i−1)−αTF

=

A〈aα[0,r−1)a
dr−1(α)−i+1
λr−1

u
i−1−dr(α)
λr−1

uα[r,n)〉 dr(α) ≤ i− 1 < dr−1(α)

A〈σi−1−d0(α)uα〉 d0(α) ≤ i− 1

We have dr(α) =
⌈
i+j
pr

⌉
− 1, so the dimension conditions become

(pr−1 − 1)i < j ≤ (pr − 1)i or j ≤ 0,

equivalently r =
⌈
logp

(
i+j
i

)⌉
. This takes care of the case j ≤ 0.

The case j > 0 is more involved. We rewrite

σi+ju−1
α aα[0,r−1)a

dr−1(α)−i+1
λr−1

u
i−1−dr(α)
λr−1

uα[r,n)

=
σi+j−1aαu

−1
α

σi−1a
i−1−dr(α)
λr−1

u
−(i−1−dr(α))
λr−1

aα[r,n)u
−1
α[r,n)

σi

=
[p(i+ j − 1)]A!

[pr]i−1
A (a−1

λr−1
uλr−1)dr(α)aα[r,n)u

−1
α[r,n)

σi

To deal with the remaining term on the bottom, we write

aα[r,n)u
−1
α[r,n) =

n−1∏
s=r

(aλsu
−1
λs

)ks

(a−1
λr−1

uλr−1
)dr(α)aα[r,n)u

−1
α[r,n) =

n−1∏
s=r

φr([ps−r+1]A)ks

= φr
n−r∏
`=1

[p`]
k`+r−1

A

Since ks =
⌊
i+j−1
ps

⌋
−
⌊
i+j−1
ps+1

⌋
, and

⌊
bx/mc
n

⌋
=
⌊
x
mn

⌋
, we can apply the q-Legendre formula (Lemma 3.3) to

conclude that this final expression is

φr
([⌊

i+j−1
pr−1

⌋]
A

!
)
. �

5.3. The slice spectral sequence. Finally, we interpret the slice filtration using the regular slice spectral
sequence (RSSS). The RSSS for a G-spectrum X has signature

Es,α2 = πα−sP
|α|
|α|X ⇒ πα−sX

for α ∈ RO(G). We draw this in the plane using Adams indexing, so Es,α+t
2 is placed at (α+ t− s, s). The

differentials go dr : Es,αr → E
s+r,α+(r−1)
r , or in terms of the plane display, translate by (−1, r). We will again

treat the two cases π∗THH and π[∗]λTHH. We suggest that the reader study the charts at the end before
digesting the proofs in this section.

38



It will be useful to recall that the Mackey functors trCpr W and ΦCprW are given explicitly by

(trCpr W )(T/Cpk) =

{
A/[pk+1]A 0 ≤ k ≤ r
A/[pr+1]A r < k

(ΦCprW )(T/Cpk) =

{
0 0 ≤ k ≤ r
A/φr+1([pk−r]A) r < k

Theorem 5.7. The homotopy Mackey functors of the slices are given in even degrees by

π2iP
2n
2nTHH =


W 0 = i = n

R 0 < i = n

ΦCpmW/[ph+1]A 0 < i < n

where R is the constant Mackey functor on R, and

m =
⌈
logp(n/i)

⌉
− 1, h =

{
min{vp(n),

⌊
logp(n/i)

⌋
} n/i not a power of p⌊

logp(n/i)
⌋

n/i a power of p.

If R is p-torsionfree, then these are the only non-vanishing homotopy Mackey functors. If R is a perfect
Fp-algebra, then

π2i+1P
2n
2nTHH =

{
trC

pm+h+1
ΦCpmW n/i not a power of p

trC
pm+h+1

ΦCpm+1W n/i a power of p.

Proof. We use the exact sequence

0→ π2i+1P
2n
2nTHH→ π2iP2n+2THH

σu−1
λn−−−→ π2iP2nTHH→ π2iP

2n
2nTHH→ 0.

By Lemma 4.12 and Corollary 3.6, we have π2iP2nTHH = W if i = n, and π2iP2nTHH = ΦCpmW if
0 < i < n. Let us write g1 for the generator of π2iP2nTHH and g2 for the generator of π2iP2n+2THH. The
degrees are related by

|g2| = |g1| − λn = |g1| − λvp(n).

Note that m is the highest value of j such that aλj appears in g1.

If we write ek(j) for the exponent of aλj in gk, then there is a unique h such that e2(h) = e1(h) + 1,

e2(j) = e1(j) for j 6= h. The map π2iP2n+2THH → π2iP2nTHH will then hit [ph+1]A times g1. If i = n,
then h = 0 and we get W/[p]A = R. Otherwise, there are three possibilities:

• If vp(n) ≤ m, then h = vp(n).
• If vp(n) > m and n/i is not a power of p, then h = m.
• If vp(n) > m and n/i is a power of p, then h = m+ 1.

Some examples of the three cases with p = 3 are

ΦCpW 〈a3
λ0
aλ1
〉

[p]A
// ΦCpW 〈a2

λ0
aλ1
〉 // π2P

8
8THH

ΦeW 〈a2
λ0
uλ1〉

[p]A
// ΦeW 〈aλ0uλ0〉 // π4P

6
6THH

ΦCpW 〈a4
λ0
aλ1

uλ1
〉

[p2]A
// ΦeW 〈a4

λ0
uλ1
〉 // π4P

12
12THH

We then combine these cases into the stated formula for h by noting that
⌊
logp(n/i)

⌋
=
⌈
logp(n/i)

⌉
if n/i is

a power of p, and m =
⌊
logp(n/i)

⌋
otherwise.

When R is p-torsionfree, the extended prism condition (Proposition 3.25) shows that the above maps are
injective, so the odd homotopy Mackey functors vanish. When R is a perfect Fp-algebra, there are two cases.

When n/i is not a power of p, we get

(π2i+1P
2n
2nTHH)(T/Cpk) =


0 0 ≤ k ≤ m
A/pk−m 0 < k −m < h+ 1

pk−m−(h+1)A/pk−mA h+ 1 ≤ k −m
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and thus

π2i+1P
2n
2nTHH = trC

pm+h+1
ΦCpmW.

When n/i is a power of p, we instead get

(π2i+1P
2n
2nTHH)(T/Cpk) =


0 0 ≤ k ≤ m+ 1

A/pk−(m+1) 0 < k − (m+ 1) < h

pk−(m+1)−hA/pk−(m+1)A h ≤ k − (m+ 1)

and thus

π2i+1P
2n
2nTHH = trC

pm+h+1
ΦCpm+1W. �

The RSSS thus collapses at E2 when R is p-torsionfree. When R is a perfect Fp-algebra, the RSSS is very
complicated; however, since we identified the entire slice tower (i.e. the maps between the slice covers, not
just the slices), the E∞ page can be read off from Theorem 5.5.

Corollary 5.8. Let R be a perfect Fp-algebra, and define h = h(n, i) as in Theorem 5.7. The entry on the E∞
page of the RSSS corresponding to π2iP

2n
2nTHH(R) is ΦCpf+1W/ph(n,i)+1, where f =

∑
i≤m<n(h(m, i) + 1).

Proposition 5.9. The homotopy Mackey functors π[i]λ
of the slices are

π[i]λ
P2n

2nTHH =


W 0 = i = n

W/[pn]A 0 < i = n

Φ
C
p`(i,n)W/[pn]A 0 < i < n

where `(i, n) = max{vp(i), . . . , vp(n− 1)} = min{r | dn/pre = di/pre}.

Proof. We use the exact sequence

π[i]λ
P2n+2THH

σu−1
λn−−−→ π[i]λ

P2nTHH→ π[i]λ
P2n

2nTHH→ 0.

By Lemma 4.12, the terms are

π[i]λ−[n+1]λ
THH =


0 0 = i < n

ΦCnW 〈aλn〉 0 < i = n

Φ
C
p`(i,n+1)W 〈a{n}λa

−1
{i−1}λ〉 0 < i < n

π[i]λ−[n]λ
THH =

{
W 0 ≤ i = n

Φ
C
p`(i,n)W 〈a{n−1}λa

−1
{i−1}λ〉 0 < i < n

so the result follows by the q-gold relation. �

We provide charts of the RSSS below. It is customary to use hieroglyphics to denote Mackey functors in
spectral sequences. Our notations are listed in Figure 5.3; Lewis diagrams for these can be found in Example
4.4. Colors correspond to vanishing lines: for example, after restricting to {e} we would only see the classes
in red, after restricting to Cp we would only see the red and orange classes, etc. In particular, we see that
after restricting to any finite subgroup, the spectral sequence is bounded in each degree.

The E2 page of the Z-graded RSSS, in both the p-torsionfree and torsion cases, is depicted in Figures
4–7. We indicate the E∞ page of the Z-graded RSSS for a perfect Fp-algebra in Figure 8. Here, an entry

(f h) means that the entry in plane coordinate (2i, s) is ΦCpf+1W/ph. Finally, the filtration on π[i]λ
THH

(when R is p-torsionfree) is depicted in Figures 9 and 10; here the group π[i]λ
appears in the 2i column, so

this is not really a spectral sequence chart.
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/[p]A /[p2]A /[p3]A /[p4]A /[p5]A /[p6]A /[p7]A
W F ♠ ♣

ΦeW F ♠ ♣
ΦCpW F ♠ ♣
ΦCp2W F ♠ ♣
ΦCp3W F ♠ ♣
ΦCp4W F ♠ ♣
ΦCp5W F ♠ ♣

trCp∗+1 trCp∗+2 trCp∗+3 trCp∗+4 trCp∗+5

ΦeW 9
ΦCpW 9
ΦCp2W 9
ΦCp3W 9
ΦCp4W 9
ΦCp5W 9

Figure 3. Hieroglyphics for Mackey functors
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Figure 4. E2 page of the RSSS for THH(Zcycl
2 ;Z2)
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Figure 5. E2 page of the RSSS for THH(F2)
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Figure 6. E2 page of the RSSS for THH(Zcycl
3 ;Z3)
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Figure 7. E2 page of the RSSS for THH(F3)

p = 2 π2 π4 π6
s = 2 0 2 0 1 0 1
s = 4 2 1 1 2 1 1
s = 6 3 3 3 1 2 2
s = 8 6 1 4 2 4 1
s = 10 7 2 6 1 5 2
s = 12 9 1 7 3 7 1
s = 14 10 4 10 1 8 2
s = 16 14 1 11 2 10 1
s = 18 15 2 13 1 11 3
s = 20 17 1 14 3 14 1
s = 22 18 3 17 1 15 2
s = 24 21 1 18 2 17 1
s = 26 22 2 20 1 18 3
s = 28 24 1 21 4 21 1
s = 30 25 5 25 1 22 2
s = 32 30 1 26 2 24 1
s = 34 31 2 28 1 25 3
s = 36 33 1 29 3 28 1

p = 3 π2 π4 π6
s = 2 0 1 0 1 0 1
s = 4 1 2 1 1 1 1
s = 6 3 1 2 1 2 1
s = 8 4 1 3 2 3 1
s = 10 5 2 5 1 4 1
s = 12 7 1 6 1 5 2
s = 14 8 1 7 2 7 1
s = 16 9 3 9 1 8 1
s = 18 12 1 10 1 9 2
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s = 24 16 1 14 1 13 2
s = 26 17 1 15 2 15 1
s = 28 18 2 17 1 16 1
s = 30 20 1 18 1 17 2
s = 32 21 1 19 3 19 1
s = 34 22 3 22 1 20 1
s = 36 25 1 23 1 21 2

Figure 8. E∞ page of the RSSS for THH(F2) and THH(F3).
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Figure 9. Filtration on π[∗]λTHH(Zcycl
2 ;Z2)
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Figure 10. Filtration on π[∗]λTHH(Zcycl
3 ;Z3)
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6. Further questions

We close with some questions to stimulate ideas.

Question 6.1. Let G be a finite cyclic group, and let X be a G-spectrum whose underlying is 2-polynomial.
By this we mean that πe∗(X) = πe0(X)[x] for a class x ∈ πe2(X), so that xn exhibits Σ2nX as the 2nth

Postnikov cover of Xe. Under what conditions is X “slice 2-polynomial”, in the sense that the odd slices
vanish and

P2nX = Σ[n]λX?

For example, Ullman [Ull09, Theorem 5.1] shows that

P2nKUG = Σ[n]λkuG,

so kuG is slice 2-polynomial (and KUG is “slice 2-periodic”). What should we expect for higher periodicities?

Question 6.2. If Cn acts on R, then the fixed point Mackey functor R is a Cn-Tambara functor. When n
is prime to p, Angeltveit-Blumberg-Gerhardt-Hill-Lawson-Mandell show that the “relative THH” NT

Cn
R is a

p-cyclotomic spectrum [ABG+18, Theorem 8.6]. For example, R could be a perfectoid Zcycl
p -algebra, and Cn

a finite quotient of Gal(Qcycl
p /Qp) = Z×p . What does the slice filtration on (NT

Cn
R)∧p look like in this case?

Question 6.3. Is there a formal proof of Theorem 5.1, relating the slice filtration of any cyclotomic spectrum
to its Postnikov filtration?

Question 6.4. The q-gold relation provides a dictionary between representations and q-analogues; for
example, {n}λ corresponds to [pn]q!. (Bhargava’s perspective [Bha00] makes the additional factor of p
less distressing.) What q-analogues do other families of representations (symmetric powers, wedge powers,
cannibalistic classes, . . . ) correspond to? What representations correspond to q-multinomial coefficients,
q-Catalan numbers, . . . ? Are these useful for THH?

Question 6.5. We have used the regular slice filtration due to its superior multiplicative properties, but
there are other versions of the slice filtration. For example, a back-of-the-envelope calculation suggests that
the classical slice filtration is given by

Pcls
2nTHH = Σ{2n}λ−{n}λTHH = Σ[2n+1]λ−[n+1]λTHH.

Wilson describes a general framework for slice filtrations in [Wil17, §1.3]. Our proof of Theorem 5.1 was
relatively formal; can it be generalized to identify the slice filtration on THH for an arbitrary dimension
function ν? If so, what is the arithmetic interpretation of ν?

Question 6.6. In the cyclotomic t-structure [AN18], the “cyclotomic homotopy groups” πcyc
i of THH are

essentially given by the ordinary homotopy groups πi of TR. Slices are generalizations of homotopy groups,
and TR is again a cyclotomic spectrum. Do the slices of TR, or the RO(T)-graded homotopy groups of TR,
correspond to something in the cyclotomic t-structure?

Question 6.7. Wilson [Wil17] has given algebraic descriptions of the category of n-slices, as well as an
algorithm for computing slices. What does this look like when G = T, and how does it compare to our
method?
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