Homology Comodules

R. M. Switzer (Göttingen)

Let X be a topological space, $A_*(p)$ the dual of the mod p Steenrod algebra A(p). Then the homology $H_*(X) = H_*(X; Z_p)$ of X is a comodule over $A_*(p)$; that is, there is a coaction

$$\mu_*$$
: $H_*(X) \rightarrow A_*(p) \otimes H_*(X)$.

 μ_{\star} is the dual of the action map

$$A(p) \otimes H^*(X) \rightarrow H^*(X)$$
.

In [3] Liulevicius gives some of the coefficients of μ_* for X = BG and MG, G = O(n), U(n), Sp(n), O, U, Sp, p = 2. The coefficients were determined by using a computer to solve a recursion formula of Van de Velde. In this note we give a complete description of μ_* for the above cases.

$\S 1. O, U \text{ and } Sp$

We recall some facts about $H_*(RP^{\infty})$, etc.

- i) $H^*(RP^{\infty}; Z_2) \cong Z_2[x], x \in H^1(RP^{\infty}; Z_2);$
- ii) $H^*(CP^{\infty}; Z) \cong Z[y], y \in H^2(CP^{\infty}; Z);$
- iii) $H^*(HP^{\infty}; Z) \cong Z[z], z \in H^4(HP^{\infty}; Z).$

Therefore in homology we have

- iv) $\tilde{H}_*(RP^\infty; Z_2)$ has a Z_2 -basis x_1, x_2, \dots with $x_i \in \tilde{H}_i(RP^\infty; Z_2)$ dual to $x^i \in H^i(RP^\infty; Z_2)$;
- v) $\tilde{H}_*(CP^\infty; Z)$ has a Z-basis y_1, y_2, \dots with $y_i \in \tilde{H}_{2i}(CP^\infty; Z)$ dual to $y^i \in H^{2i}(CP^\infty; Z)$;
- vi) $\tilde{H}_*(HP^\infty; Z)$ has a Z-basis z_1, z_2, \ldots with $z_i \in \tilde{H}_{4i}(HP^\infty; Z)$ dual to $z^i \in H^{4i}(HP^\infty; Z)$.

If $\rho: H_*(; Z) \to H_*(; Z_p)$ denotes reduction mod p, then we shall also denote by y_i the element $\rho(y_i) \in \tilde{H}_{2i}(CP^{\infty}; Z_p)$ and by z_i the element $\rho(z_i) \in \tilde{H}_{4i}(HP^{\infty}; Z_p)$.

As Liulevicius remarks in [3], the coaction of $A_*(2)$ on $H_*(BO; Z_2)$, $H_*(BO(n); Z_2)$, $H_*(MO; Z_2)$ and $H_*(MO(n); Z_2)$ is completely determined once one knows $\mu_*(x_i)$, $i \ge 1$. Similarly for any prime p the coaction of $A_*(p)$ on $H_*(BU; Z_p)$, $H_*(BU(n); Z_p)$, $H_*(MU; Z_p)$ and $H_*(MU(n); Z_p)$

is completely determined by a knowledge of $\mu_*(y_i)$, $i \ge 1$. An analogous result holds for the symplectic case. We proceed to give $\mu_*(x_i)$, $\mu_*(y_i)$ and $\mu_*(z_i)$.

We recall that $A_*(2) \cong Z_2[\xi_1, \xi_2, ...]$ with $\xi_i \in A_{2^i-1}(2)$, while for an odd prime p

$$A_*(p) \cong E(\tau_0, \tau_1, \ldots) \otimes Z_p[\xi_1, \xi_2, \ldots]$$

with $\tau_i \in A_{2p^i-1}(p)$, $\xi_i \in A_{2p^i-2}(p)$. In both cases we write X for the formal sum $1 + \xi_1 + \xi_2 + \cdots$.

Theorem 1 i) For p = 2 we have

ii)
$$\mu_*(x_i) = \sum_{j=0}^i (X^j)_{i-j} \otimes x_j.$$

$$\mu_*(y_i) = \begin{cases} \sum_{j=0}^i (X^{2j})_{2i-2j} \otimes y_j & p = 2, \\ \sum_{j=0}^i (X^j)_{2i-2j} \otimes y_j & p \text{ odd.} \end{cases}$$

$$\mu_*(z_i) = \begin{cases} \sum_{j=0}^i (X^{4j})_{4i-4j} \otimes z_j & p = 2, \\ \sum_{j=0}^i (X^{2j})_{4i-4j} \otimes z_j & p \text{ odd.} \end{cases}$$

Proof. First we consider the case p=2.

i) For any $\theta \in A$, $y \in H^*(X)$ and $u \in H_*(X)$ with $\mu_*(u) = \sum_i e_i \otimes u_i$, $e_i \in A_*$, $u_i \in H_*(X)$, we have the relation

$$\langle \theta y, u \rangle = \sum_{i} \langle \theta, e_{i} \rangle \langle y, u_{i} \rangle$$

(cf. [1]). Taking $X = RP^{\infty}$, $y = x^k$, $u = x_i$ we get

$$\langle \theta x^k, x_i \rangle = \sum_j \langle \theta, e_j^i \rangle \langle x^k, x_j \rangle = \langle \theta, e_k^i \rangle$$

if
$$\mu_*(x_i) = \sum_i e_j^i \otimes x_j$$
.

We now compute θx^k ; let

$$\Delta^k \colon RP^{\infty} \to R\underbrace{P^{\infty} \times \cdots \times RP^{\infty}}_{k}$$

be the k-fold diagonal $\Delta^k(x) = (x, x, ..., x)$. Let $u_i \in H^1(RP^{\infty} \times \cdots \times RP^{\infty})$ be $\pi_i^* x$, where

 π_i : $RP^{\infty} \times \cdots \times RP^{\infty} \to RP^{\infty}$

is the projection on the j-th factor. Then $x^k = \Delta^{k*}(u_1 \ u_2 \dots u_k)$ and hence

$$\begin{split} \theta \, x^k &= \theta \, \Delta^{k^*}(u_1 \, u_2 \, \dots \, u_k) = \Delta^{k^*} \, \theta \, (u_1 \, u_2 \, \dots \, u_k) \\ &= \Delta^{k^*} \left(\sum_{\alpha} \left\langle \theta, \, \xi_{\alpha} \right\rangle \, u_1^{2^{\alpha_1}} \, u_2^{2^{\alpha_2}} \, \dots \, u_k^{2^{\alpha_k}} \right) \\ &= \sum_{\alpha} \left\langle \theta, \, \xi_{\alpha} \right\rangle \, x^{2^{\alpha_1} + 2^{\alpha_2} + \dots + 2^{\alpha_k}} \\ &= \sum_{j \geq k} \left\langle \theta, (X^k)_{j-k} \right\rangle \, x^j. \end{split}$$

Thus

$$\langle \theta, e_k^i \rangle = \langle \theta x^k, x_i \rangle = \sum_{i \geq k} \langle \theta, (X^k)_{j-k} \rangle \langle x^j, x_i \rangle = \langle \theta, (X^k)_{i-k} \rangle.$$

Statement i) follows.

ii) and iii): It follows from [2, Prop. II.1.] that there is a commutative diagram

$$H_{*}(RP^{\infty}) \xrightarrow{\mu_{*}} A_{*} \otimes H_{*}(RP^{\infty})$$

$$\downarrow^{f} \qquad \qquad \downarrow^{\alpha \otimes f}$$

$$H_{*}(CP^{\infty}) \xrightarrow{\mu_{*}} A_{*} \otimes H_{*}(CP^{\infty})$$

$$\downarrow^{g} \qquad \qquad \downarrow^{\alpha \otimes g}$$

$$H_{*}(HP^{\infty}) \xrightarrow{\mu_{*}} A_{*} \otimes H_{*}(HP^{\infty})$$

where f is given by $f(x_i) = y_i$, g by $g(y_i) = z_i$ and $\alpha: A_* \to A_*$ is the squaring homomorphism $\alpha(a) = a^2$, $a \in A_*$. Statements ii) and iii) follow immediately.

Next we treat the case of odd primes p.

ii) For the admissible monomials $P^I \in A(p)$ we have

$$P^{I} y = \begin{cases} y^{p^{s}} & I = (0, p^{s-1}, 0, p^{s-2}, 0, \dots, 1, 0), \quad s \ge 0, \\ 0 & \text{otherwise.} \end{cases}$$

We can express this by writing

$$P^{I} y = \sum_{i} \langle P^{I}, \xi_{i} \rangle y^{p^{i}},$$

or since the P^I form a basis for A(p) over Z_p

$$\theta y = \sum_{i} \langle \theta, \xi_i \rangle y^{p^i}, \quad \theta \in A(p).$$

By a calculation analogous to the one for θx^k we now find

$$\theta y^k = \sum_i \langle \theta, (X^k)_{2i-2k} \rangle y^i.$$

Hence from the formula $\langle \theta y, u \rangle = \sum_{j} \langle \theta, e_{j} \rangle \langle y, u_{j} \rangle$ follows the statement ii) for odd p.

iii) The maps $BU(n) \to BSp(n)$ classifying $\xi_n \otimes H$ induce a map $q_*: H_*(BU) \to H_*(BSp)$ which satisfies $q_*(y_{2i}) = z_i$, $q_*(y_{2i-1}) = 0$, $i \ge 1$. If we apply $1 \otimes q_*$ to the equation

$$\mu_*(y_{2i}) = \sum_{j=0}^{2i} (X^j)_{4i-2j} \otimes y_j,$$

we get

$$\mu_*(z_i) = \sum_{j=0}^i (X^{2j})_{4i-4j} \otimes z_j.$$

Remark. If $\mu_*(x_i) = \sum_{j=0}^i e_j^i \otimes x_j$, $e_j^i \in A_{i-j}(2)$, then the recursion relation of Van de Velde for the e_j^i is the following: for each i and each pair of integers s, t with s+t=j, we have

$$e_j^i = \sum_k e_s^k e_t^{i-k}.$$

One readily checks that

$$e_i^i = (X^j)_{i-1}$$

satisfies this relation.

We may take $BO(1) = RP^{\infty}$; then we have the inclusion

$$RP^{\infty} = BO(1) \rightarrow BO$$

and we denote the image of x_i in $H_*(BO; Z_2)$ with x_i again. We also have the Thom isomorphism

$$\Phi_*: H_*(MO; Z_2) \rightarrow H_*(BO; Z_2)$$

and we denote $\Phi_*^{-1}(x_i)$ by a_i . Then the composite

$$f: RP^{\infty} \simeq MO(1) \rightarrow \Sigma MO$$

induces

$$f_*: H_i(RP^\infty; \mathbb{Z}_2) \rightarrow H_{i-1}(MO; \mathbb{Z}_2)$$

which satisfies

$$f_*(x_i) = a_{i-1}, \quad i \ge 1.$$

Analogous results hold if we replace O by U or Sp and Z_2 by Z. Then we get the following.

Theorem 2.

i)
$$H_*(BO; Z_2) \cong Z_2[x_1, x_2, ...]$$
 and
$$\mu_*(x_i) = \sum_{j=0}^i (X^j)_{i-j} \otimes x_j.$$

$$H_*(MO; Z_2) \cong Z_2[a_1, a_2, ...]$$
 and
$$\mu_*(a_i) = \sum_{j=0}^i (X^{j+1})_{i-j} \otimes a_j.$$

ii)
$$H_{\star}(BU; Z_p) \cong Z_p[y_1, y_2, \ldots]$$
 and

$$\mu_*(y_i) = \begin{cases} \sum_{j=0}^{i} (X^{2j})_{2i-2j} \otimes y_j & p = 2, \\ \sum_{j=0}^{i} (X^j)_{2i-2j} \otimes y_j & p \text{ odd.} \end{cases}$$

$$H_*(MU; Z_p) \cong Z_p[b_1, b_2, \ldots]$$
 and

$$\mu_*(b_i) = \begin{cases} \sum_{j=0}^{i} (X^{2j+2})_{2i-2j} \otimes b_j & p=2, \\ \sum_{j=0}^{i} (X^{j+1})_{2i-2j} \otimes b_j & p \text{ odd.} \end{cases}$$

iii)
$$H_*(BSp; Z_p) \cong Z_p[z_1, z_2, ...]$$
 and

$$\mu_{*}(z_{i}) = \begin{cases} \sum_{j=0}^{i} (X^{4j})_{4i-4j} \otimes z_{j} & p=2, \\ \sum_{j=0}^{i} (X^{2j})_{4i-4j} \otimes z_{j} & p \text{ odd.} \end{cases}$$

$$H_*(MSp; Z_p) \cong Z_p[q_1, q_2, \ldots]$$
 and

$$\mu_*(q_i) = \begin{cases} \sum_{j=0}^{i} (X^{4j+4})_{4i-4j} \otimes q_j & p=2, \\ \sum_{i=0}^{i} (X^{2j+2})_{4i-4j} \otimes q_j & p \text{ odd.} \end{cases}$$

Now $H_*(BO(n); Z_2)$ is the subgroup of $H_*(BO; Z_2)$ spanned by monomials $x_1^{\alpha_1} x_2^{\alpha_2} \dots x_r^{\alpha_r}$ with at most n factors. Hence the comodule structure of $H_*(BO(n); Z_2)$ over $A_*(2)$ is also determined by Theorem 2i). The inclusion $MO(n) \to \Sigma^n MO$ maps $H_*(MO(n); Z_2)$ monomorphically onto the subgroup spanned by all monomials $a_1^{\alpha_1} a_2^{\alpha_2} \dots a_r^{\alpha_r}$ with at most n factors. Hence the comodule structure of $H_*(MO(n); Z_2)$ over $A_*(2)$ is

also determined by Theorem 2i). Analogous results hold for BU(n), MU(n), BSp(n), MSp(n) and all primes p.

§2. SO and Spin

Let p be an odd prime. The map $r: BU \to BSO$ which "forgets complex structure" induces $r_*: H_*(BU; Z_p) \to H_*(BSO; Z_p)$ with $r_*(y_{2i-1}) = O$ for $i \ge 1$ and

$$H_*(BSO; Z_p) \cong Z_p[z_1', z_2', \dots],$$

where

$$z'_i = r_*(y_{2i}) \in H_{4i}(BSO; Z_p)$$
 and $\mu_*(z'_i) = \sum_{j=0}^i (X^{2j})_{4i-4j} \otimes z'_j$.

Similarly for Mr_* : $H_*(MU; Z_p) \rightarrow H_*(MSO; Z_p)$ we have $Mr_*(b_{2i-1}) = 0$ for $i \ge 1$ and

$$H_*(MSO; Z_p) \cong Z_p[q'_1, q'_2, \dots],$$

where
$$q_i' = Mr_*(b_{2i})$$
 in $H_{4i}(MSO; Z_p)$ and $\mu_*(q_i') = \sum_{j=0}^{i} (X^{2j+1})_{4i-4j} \otimes q_j'$.

Since $H_*(B\operatorname{Spin}; Z_p) \cong H_*(BSO; Z_p)$ and $H_*(M\operatorname{Spin}; Z_p) \cong H_*(MSO; Z_p)$, we have also described the comodule structures of $H_*(B\operatorname{Spin}; Z_p)$ and $H_*(M\operatorname{Spin}; Z_p)$.

The difficulty with SU is that we do not have a convenient description of $H_{\star}(BSU; Z_p)$.

References

- Adams, J.F.: Lectures on generalised cohomology, pp. 1-138. In: Lecture Notes in Mathematics 99. Berlin-Heidelberg-New York: Springer 1969.
- 2. Liulevicius, A.: Notes on homotopy of Thom spectra. Amer. J. Math. 86, 1-16 (1964).
- 3. Liulevicius, A.: Homology comodules. Trans. Amer. Math. Soc. 134, 375-382 (1968).

R.M.Switzer
Mathematisches Institut der Universität
D-3400 Göttingen
Bunsenstr. 3/5
Federal Republic of Germany

(Received December 8, 1972)