Available online at www.sciencedirect.com

ScienceDirect

ADVANCES IN
Mathematics

ELSEVIER Advances in Mathematics 221 (2009) 1122-1143

www.elsevier.com/locate/aim

Homotopy theory of spectral categories

Goncgalo Tabuada

Departamento de Matemdtica e CMA, FCT-UNL, Quinta da Torre, 2829-516 Caparica, Portugal
Received 19 February 2008; accepted 28 January 2009
Available online 23 February 2009

Communicated by Bertrand Toen

Abstract

We construct a Quillen model structure on the category of spectral categories, where the weak equiva-
lences are the symmetric spectra analogue of the notion of equivalence of categories.
© 2009 Elsevier Inc. All rights reserved.

Keywords: Symmetric spectra; Spectral category; Quillen model structure; Bousfield’s localization Q-functor;
Non-additive filtration

Contents
1o IntroduCtion . . . ..ottt e 1123
2. Preliminaries . . . ... ... 1123
3. Simplicial Cate@OTICS . . . .« o . ot et e e e e 1125
4.  Levelwise quasi-equivalences . . . . . ... ... 1127
5. Stable quasi-equivalences . . .. ... ... 1134
Acknowledgments . . . . . ... 1139
Appendix A. Non-additive filtration argument . . . . .. ... ... ... 1139
References . . . . ... 1142

E-mail address: tabuada@fct.unl.pt.

0001-8708/$ — see front matter © 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.aim.2009.01.014



G. Tabuada / Advances in Mathematics 221 (2009) 11221143 1123

1. Introduction

In the past fifteen years, the discovery of highly structured categories of spectra (S-modu-
les [12], symmetric spectra [17], simplicial functors [22], orthogonal spectra [23], .. .) has opened
the way for an importation of more and more algebraic techniques into stable homotopy the-
ory [1,10,11]. In this paper, we study a new ingredient in this ‘brave new algebra’: Spectral
categories.

Spectral categories are categories enriched over the symmetric monoidal category of sym-
metric spectra. As linear categories can be understood as rings with several objects, spectral
categories can be understood as symmetric ring spectra with several objects. They appear nowa-
days in several (related) subjects.

On one hand, they are considered as the ‘topological’ analogue of differential graded (= DG)
categories [6,18,30]. The main idea is to replace the monoidal category Ch(Z) of complexes of
abelian groups by the monoidal category Sp> of symmetric spectra, which one should imagine
as ‘complexes of abelian groups up to homotopy.” In this way, spectral categories provide a non-
additive framework for non-commutative algebraic geometry in the sense of Bondal, Drinfeld,
Kapranov, Kontsevich, Toén, Van den Bergh, ... [3,4,6,7,20,21,31]. They can be seen as non-
additive derived categories of quasi-coherent sheaves on a hypothetical non-commutative space.

On the other hand they appear naturally in stable homotopy theory by the work of Dugger,
Schwede—Shipley, ... [8,27]. For example, it is shown in [27, 3.3.3] that stable model categories
with a set of compact generators can be characterized as modules over a spectral category. In
this way several different subjects such as: equivariant homotopy theory, stable motivic theory
of schemes, ... and all the classical algebraic situations [27, 3.4] fit in the context of spectral
categories.

It turns out that in all the above different situations, spectral categories should be considered
only up to the notion of stable quasi-equivalence (5.1): a mixture between stable equivalences
of symmetric spectra and categorical equivalences, which is the correct notion of equivalence
between spectral categories.

In this article, we construct a Quillen model structure [24] on the category Sp* -Cat of spec-
tral categories, with respect to the class of stable quasi-equivalences. Starting from simplicial
categories [2], we construct in Theorem 4.8 a ‘levelwise’ cofibrantly generated Quillen model
structure on Sp¥-Cat. Then we adapt Schwede—Shipley’s non-additive filtration argument (Ap-
pendix A) to our situation and prove our main theorem:

Theorem. (See 5.10.) The category Sp>-Cat admits a right proper Quillen model structure
whose weak equivalences are the stable quasi-equivalences and whose cofibrations are those
of Theorem 4.8.

Using Theorem 5.10 and the same general arguments of [31], we can describe the mapping
space between two spectral categories A and B in terms of the nerve of a certain category of
A-B-bimodules and prove that the homotopy category Ho(Sp*-Cat) possesses internal Hom’s
relative to the derived smash product of spectral categories.

2. Preliminaries

Throughout this article the adjunctions are displayed vertically with the left, resp. right, ad-
joint on the left-hand side, resp. right-hand side.
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2.1. Definition. Let (C, — ® —, I¢) and (D, — A —, Ip) be two symmetric monoidal categories.
A strong monoidal functor is a functor F :C — D equipped with an isomorphism 7 :Ip — F(I¢)
and natural isomorphisms

Yxy: FX)ANFY)—> F(X®Y), X, YeC,

which are coherently associative and unital (see diagrams 6.27 and 6.28 in [5]). A strong
monoidal adjunction between monoidal categories is an adjunction for which the left adjoint
is strong monoidal.

Let sSet, resp. sSet,, be the (symmetric monoidal) category of simplicial sets, resp. pointed
simplicial sets. By a simplicial category, resp. pointed simplicial category, we mean a category
enriched over sSet, resp. over sSet,. We denote by sSet-Cat, resp. sSet,-Cat, the category of
small simplicial categories, resp. pointed simplicial categories. Observe that the usual adjunc-
tion [14] (on the left)

sSet, sSet,-Cat
(—)+T \L (—)+T \L
sSet sSet-Cat

is strong monoidal and so it induces the adjunction on the right.

Let Sp” be the (symmetric monoidal) category of symmetric spectra of pointed simplicial
sets [17,25]. We denote by A its smash product and by S its unit, i.e. the sphere symmetric
spectrum [25, I-3]. Recall that the projective level model structure on sz [25, III-1.9] and the
projective stable model structure on Sp* [25, II1-2.2] are monoidal with respect to the smash
product.

2.2. Lemma. The projective level model structure on Sp* satisfies the monoid axiom [26, 3.3].

Proof. Let Z be a symmetric spectrum and f : X — Y atrivial cofibration in the projective level
model structure. By proposition [25, ITI-1.11] the morphism

INfZANX—>ZAY
is a trivial cofibration in the injective level model structure [25, III-1.9]. Since trivial cofibrations
are stable under co-base change and transfinite composition, we conclude that each map in the
class
({projective trivial cofibration} A Sp* ) — COfreg
is in particular a level equivalence. This proves the lemma. O

2.3. Definition. A spectral category A is a Sp* -category [5, 6.2.1].

Recall that this means that A consists in the following data:
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— aclass of objects obj(A) (usually denoted by A itself);
— for each ordered pair of objects (x, y) of A, a symmetric spectrum A(x, y);
— for each ordered triple of objects (x, y, z) of A, a composition morphism in Sp*
AQe, y) ANA(y, 2) > Alx, 2),
satisfying the usual associativity condition;
— for any object x of A, a morphism S — A(x, x) in Sp”, satisfying the usual unit condition
with respect to the above composition.
If obj(A) is a set we say that A is a small spectral category.
2.4. Definition. A spectral functor F : A — B is a Sp” -functor [5, 6.2.3].

Recall that this means that F consists in the following data:

— a map obj(A) — obj(B) and
— for each ordered pair of objects (x, y) of .4, a morphism in Sp*

F(x,y): A(x, y) = B(Fx, Fy)
satisfying the usual unit and associativity conditions.
2.5. Notation. We denote by Sp>-Cat the category of small spectral categories.

Observe that the classical adjunction [25, [-2.12] (on the left)

Sp* Sp*-Cat
o T l % o T l 0
sSet, sSet,-Cat

is strong monoidal and so it induces the adjunction on the right.
3. Simplicial categories

In this chapter we give a detailed proof of a technical lemma concerning simplicial categories,
which is due to A.E. Stanculescu.

3.1. Remark. Notice that we have a fully faithful functor

sSet-Cat — Cat®”

A= A,

given by obj(A,) = obj(A), n > 0and A, (x,x") = A(x, x"),.
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Recall from [2, 1.1], that the category sSet-Cat carries a cofibrantly generated Quillen model
structure whose weak equivalences are the Dwyer—Kan (= DK) equivalences, i.e. the simplicial
functors F : A — B such that:

— for all objects x, y € A, the map
F(x,y): A(x, y) > B(Fx, Fy)

is a weak equivalence of simplicial sets and
— the induced functor

7o (F) :7mo(A) — mo(B)
is an equivalence of categories.

3.2. Notation. Let A be an (enriched) category and x € obj(.A). We denote by x*.A the full
(enriched) subcategory of A whose set of objects is {x}.

3.3. Lemma. (Stanculescu [29, 4.7].) Let A be a cofibrant simplicial category. Then for every
x € obj(A), the simplicial category x* A is also cofibrant (as a simplicial monoid).

Proof. Let O be the set of objects of .A. Notice that if the simplicial category A is cofibrant then
it is also cofibrant in sSet®-Cat [9, 7.2]. Moreover a simplicial category with one object (for
example x*.A) is cofibrant if and only if it is cofibrant as a simplicial monoid, i.e. cofibrant in
sSet'*)_Cat.

Now, by [9, 7.6] the cofibrant objects in sSet?-Cat can be characterized as the retracts of
the free simplicial categories. Recall from [9, 4.5] that a simplicial category 5 (i.e. a simplicial
object By in Cat) is free if and only if:

(1) for every n > 0, the category B, is free on a graph G, of generators and
(2) all degenerancies of generators are generators.

Therefore it is enough to show the following: if A is a free simplicial category, then x*A is
also free (as a simplicial monoid). Since for every n > 0, the category .4, is free on a graph,
Lemma 3.4 implies that the simplicial category x*.4 satisfies condition (1). Moreover, since the
degenerancies in A, induce the identity map on objects and send generators to generators, the
simplicial category x*.4 satisfies also condition (2). This proves the lemma. O

3.4. Lemma. Let C be a category which is free on a graph G of generators. Then for every object
x € obj(C), the category x*C is also free on a graph G of generators.

Proof. We start by defining the generators of G. Anelementof G is a path in C from x to x such
that:

(i) every arrow in the path belongs to G and
(ii) the path starts in x, finishes in x and never passes through x in an intermediate step.
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Let us now show that every morphism in x*C can be written uniquely as a finite composition
of elements in G. Let f be a morphism in x*C. Since x*C is a full subcategory of C and C is free
on the graph G, the morphism f can be written uniquely as a finite composition

f:gn...gi..-gzgl’
where g;, 1 <i < n, belong to G. Now consider the partition
l<my<---<mj<---<mg=n,

where m; is such that the target of the morphism g, ; is the object x. If we denote by M} =
gm, g1 andby Mj=gu, - gm_y+1, j =2, the morphisms in G, we can factor f as

f=M--Mj--M.

Notice that our arguments show us also that this factorization is unique and so the lemma is
proven. [O

4. Levelwise quasi-equivalences

In this section we construct a cofibrantly generated Quillen model structure on Sp> -Cat whose
weak equivalences are defined as follows.

4.1. Definition. A spectral functor F : A — B is a levelwise quasi-equivalence if:
L1) for all objects x, y € A, the morphism of symmetric spectra
F(x,y): A(x, y) > B(Fx, Fy)

is a level equivalence of symmetric spectra [25, I1I-1.9] and
L2) the induced simplicial functor

Fo: Ag— By
is a DK-equivalence in sSet-Cat.
4.2. Notation. We denote by W the class of levelwise quasi-equivalences in Sp* -Cat.
4.3. Remark. Notice that if condition L1) is verified, condition L2) is equivalent to
L2) the induced functor
70 (Fo) : 10 (Ao) — 70 (Bo)
is essentially surjective.

We now define our sets of (trivial) generating cofibrations in Sp>-Cat.
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4.4. Definition. The set I of generating cofibrations consists in:

— the spectral functors obtained by applying the functor U (A.1) to the set of generating cofi-
brations of the projective level model structure on Sp* [25, I1I-1.9]. More precisely, we
consider the spectral functors

Cnn:U(FndAlnly) = U(FnAlnly), m,n =0,

where F,, denotes the level m free symmetric spectra functor [25, [-2.12];
— the spectral functor

C:0—>S

from the empty spectral category ¥ (which is the initial object in Sp*-Cat) to the spectral
category S with one object * and endomorphism ring spectrum S.

4.5. Definition. The set J of trivial generating cofibrations consists in:

— the spectral functors obtained by applying the functor U (A.1) to the set of trivial generating
cofibrations of the projective level model structure on Sp% . More precisely, we consider the
spectral functors

Am,k,n U(FpAlk,n]y) > UFnAlnly), m20,n21, 0<k<n;

— the spectral functors obtained by applying the composed functor X°°(—_) to the set (A2)
of trivial generating cofibrations in sSet-Cat [2]. More precisely, we consider the spectral
functors

Ay S — ZF(Hy),

where A7 sends * to the object x.

4.6. Notation. We denote by J', resp. J”, the subset of J consisting of the spectral func-
tors Apm k.n, resp. Ay In this way J' U J” = J.

4.7. Remark. By definition [2] the simplicial categories H have weakly contractible function
complexes and are cofibrant in sSet-Cat. By Lemma 3.3, we conclude that x*H (i.e. the full
simplicial subcategory of H whose set of objects is {x}) is a cofibrant simplicial category.

4.8. Theorem. If we let M be the category Sp* -Cat, W be the class W), I be the set of spectral
functors of Definition 4.4 and J the set of spectral functors of Definition 4.5, then the condi-
tions of the recognition theorem [16, 2.1.19] are satisfied. Thus, the category Sp* -Cat admits a
cofibrantly generated Quillen model structure whose weak equivalences are the levelwise quasi-
equivalences.
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4.1. Proof of Theorem 4.8

We start by observing that the category Sp>-Cat is complete and cocomplete and that the
class W, satisfies the two out of three axioms and is stable under retracts. Since the domains of
the (trivial) generating cofibrations in Sp* are sequentially small, the same holds by [19] for the
domains of spectral functors in the sets / and J. This implies that the first three conditions of the
recognition theorem [16, 2.1.19] are verified.

We now prove that J-inj N W, = I-inj. For this we introduce the following auxiliary class of
spectral functors:

4.9. Definition. Let Surj be the class of spectral functors F : .4 — B such that:

Sj1) for all objects x, y € A, the morphism of symmetric spectra
F(x,y): Alx, y) = B(Fx, Fy)

is a trivial fibration in the projective level model structure [25, III-1.9] and
Sj2) the spectral functor F induces a surjective map on objects.

4.10. Lemma. /-inj = Surj.

Proof. Notice that a spectral functor satisfies condition Sj1) if and only if it has the right lift-
ing property (= R.L.P.) with respect to the spectral functors C,, ,, m,n > 0. Clearly a spectral
functor has the R.L.P. with respect to the spectral functor C if and only if it satisfies condi-
tion Sj2). O

4.11. Lemma. Surj = J-injN W,.

Proof. We prove first the inclusion €. Let F:.4 — B be a spectral functor which belongs
to Surj. Conditions Sj1) and Sj2) clearly imply conditions L1) and L2) and so F belongs to W,.
Notice also that a spectral functor which satisfies condition Sj1) has the R.L.P. with respect to
the trivial generating cofibrations A, i ,. It is then enough to show that F has the R.L.P. with re-
spect to the spectral functors A7. By adjunction, this is equivalent to demand that the simplicial
functor Fy: . Ag — By has the R.L.P. with respect to the set (A2) of trivial generating cofibrations
{x} — H in sSet-Cat [2]. Since F satisfies conditions Sj1) and Sj2), proposition [2, 3.2] implies
that Fj is a trivial fibration in sSet-Cat and so the claim follows.

We now prove the inclusion 2. Observe that a spectral functor satisfies condition Sj1) if and
only if it satisfies condition L.1) and it has moreover the R.L.P. with respect to the trivial generat-
ing cofibrations A, k. Now, let F: A — B3 be a spectral functor which belongs to J-inj N W).
It is then enough to show that it satisfies condition Sj2). Since F has the R.L.P. with respect to
the trivial generating cofibrations

Ap:S— Z®(Hy)

the simplicial functor Fy: Ao — By has the R.L.P. with respect to the inclusions {x} — . This
implies that Fj is a trivial fibration in sSet-Cat and so by proposition [2, 3.2], the simplicial
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functor Fy induces a surjective map on objects. Since Fy and F induce the same map on the set
of objects, the spectral functor F satisfies condition Sj2). O

We now characterize the class J-inj.

4.12. Lemma. A spectral functor F: A — B has the R.L.P. with respect to the set J of trivial
generating cofibrations if and only if it satisfies:

F1) for all objects x, y € A, the morphism of symmetric spectra
F(x,y): A(x, y) > B(Fx, Fy)

is a fibration in the projective level model structure [25, 111-1.9] and
F2) the induced simplicial functor

Fo: Ay — By
is a fibration in the Quillen model structure on sSet-Cat.
Proof. Observe that a spectral functor F' satisfies condition F1) if and only if it has the R.L.P.
with respect to the trivial generating cofibrations A, ¢ ,. By adjunction F has the R.L.P. with
respect to the spectral functors A4y if and only if the simplicial functor Fj has the R.L.P. with
respect to the inclusions {x} — H. In conclusion F has the R.L.P. with respect to the set J if and
only if it satisfies conditions F1) and F2) altogether. O

4.13. Lemma. J'-cell CW,.

Proof. Since the class WV is stable under transfinite compositions [15, 10.2.2] it is enough to
prove the following: letm > 0,n > 1,0 <k <nand R: U (F,, Alk, n]4+) — A a spectral functor.
Consider the following pushout:

U(Fp Ak, n]s) —%> 4

Am.k‘n \L - \L P

U(FnAlnly) — B.
We need to show that P belongs to VV,. Since the symmetric spectra morphisms
FnAlk,n]ly — FpAlnly, m>=20,n>21,0<k<n
are trivial cofibrations in the projective level model structure, Lemma 2.2 and Proposition A.2
imply that the spectral functor P satisfies condition L1). Since P induces the identity map on

objects, condition L2') is automatically satisfied and so P belongs to W,. O

4.14. Proposition. J”-cell C W.
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Proof. Since the class W) is stable under transfinite compositions, it is enough to prove the
following: let A be a small spectral category and R:S — A a spectral functor. Consider the
following pushout

S A
An l \L
Y*(H4+) — B.
We need to show that P belongs to W;. We start by showing condition L1). Factor the spectral
functor Ay as

S = x* ¥ (H4) = TF(H4),

where x* X°°(H_ ) is the full spectral subcategory of X°°(H ) whose set of objects is {x} (3.2).
Consider the iterated pushout
S

A
*EOO(H+) o ./Z P
B.

IOMHy) ——

In the lower pushout, since x*X°°(H.) is a full spectral subcategory of X*°(H), proposi-
tion [13, 5.2] implies that A is a full spectral subcategory of B and so P; satisfies condition L1).
In the upper pushout, since x* X °(Hy) = X*°((x*H)4+) and x*H is a cofibrant simpli-

cial category (4.7), the spectral functor §>:> x*X°(H4) is a trivial cofibration. Now, let

O denote the set of objects of A (notice that if A = @, then there is no spectral functor R) and
O’ := O\R(*). By Lemma 2.2 and proposition [28, 6.3], the category (Sp*)©-Cat of spectral
categories with a fixed set of objects O carries a natural Quillen model structure. Notice that A
identifies with the following pushout in (Sp*)©-Cat

[[oSUS R

b

o SLx*Z%®(H,)

b

Since the left vertical arrow is a trivial cofibration so it is Py. In particular Py satisfies condition
L1) and so we conclude that the composed spectral functor P satisfies also condition L1).
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We now show that P satisfies condition L2"). Let f be a O-simplex in H(x, y). By con-
struction [2] of the simplicial categories H, f becomes invertible in mo(7H{). We consider it
as a morphism in the spectral category X'*°(H4). Notice that the spectral category B is ob-
tained from A, by gluing X°°(H) to the object R(x). Since f clearly becomes invertible in
(X (H+))o, its image by the spectral functor X°°(H) — B becomes invertible in 7o (Bp).
This implies that the functor

o (Po) : mo(Ao) = 0 (Bo)

is essentially surjective and so P satisfies condition L2"). In conclusion, P satisfies condition L1)
and L2') and so it belongs to W;. O

We have shown that J-cell € W, (Lemma 4.13 and Proposition 4.14) and that [-inj =
J-inj N W, (Lemmas 4.10 and 4.11). This implies that the last three conditions of the recog-
nition theorem [16, 2.1.19] are satisfied. This finishes the proof of Theorem 4.8.

4.2. Properties

4.15. Proposition. A spectral functor F : A — B is a fibration with respect to the model structure
of Theorem 4.8, if and only if it satisfies conditions F1) and F2) of Lemma 4.12.

Proof. This follows from Lemma 4.12, since by the recognition theorem [16, 2.1.19], the set J
is a set of generating trivial cofibrations. 0O

4.16. Corollary. A spectral category A is fibrant with respect to the model structure of Theo-
rem 4.8, if and only if A(x, y) is a levelwise Kan simplicial set for all objects x, y € A.

Notice that by Proposition 4.15 we have a Quillen adjunction

Sp*-Cat

X%(=4) T J/ (=)o

sSet-Cat.

4.17. Proposition. The Quillen model structure on Sp* -Cat of Theorem 4.8 is right proper:

Proof. Consider the following pullback square in Sp>-Cat

AE,CPC
)
A—=B,

R

with R a levelwise quasi-equivalence and F a fibration. We need to show that P is a levelwise
quasi-equivalence. Notice that pullbacks in Sp> -Cat are calculated on objects and on symmetric
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spectra morphisms. Since the projective level model structure on Sp* is right proper [25, III-
1.9] and F satisfies condition F1), the spectral functor P satisfies condition L1). Notice that the
composed functor

Sp>-Cat o, sSet,-Cat — sSet-Cat

commutes with limits and that by Proposition 4.15, Fy is a fibration in sSet-Cat. Since the model
structure on sSet-Cat is right proper [2, 3.5] and Ry is a DK-equivalence, we conclude that the
spectral functor P satisfies also condition L2). O

4.18. Proposition. Let A be a cofibrant spectral category (in the Quillen model structure of
Theorem 4.8). Then for all objects x,y € A, the symmetric spectra A(x,y) is cofibrant in the
projective level model structure on Sp* [25, 111-1.9].

Proof. The Quillen model structure of Theorem 4.8 is cofibrantly generated and so any cofibrant
object in Sp¥-Cat is a retract of a /-cell complex [15, 11.2.2]. Since cofibrations are stable under
transfinite composition it is enough to prove the proposition for pushouts along a generating
cofibration. Let be .4 a spectral category such that A(x, y) is cofibrant for all objects x, y € A:

— consider the following pushout
p—A
C l 4 J/
S —— B.

Notice that 3 is obtained from A, by simply introducing a new object. It is then clear that,
for all objects x, y € B, the symmetric spectra B(x, y) is cofibrant.
— Now, consider the following pushout

U(FudAln]y) —— A

Cm.n l - l P

U(FnAlnly) — B.

Notice that .4 and 3 have the same set of objects and P induces the identity map on the set of
objects. Since F,,0A[n]y — F,, A[n]+ is a projective cofibration, Proposition A.3 implies
that the morphism of symmetric spectra

P(x,y): Alx, y) > B(x, y)

is still a projective cofibration. Finally, since the I-cell complexes in Sp*-Cat are built
from @ (the initial object), the proposition is proven. O
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4.19. Lemma. The functor
U: sz — SpE-Cat (see Definition A.1)

sends projective cofibrations to cofibrations.
Proof. The Quillen model structure of Theorem 4.8 is cofibrantly generated and so any cofi-
bration in Sp¥-Cat is a retract of a transfinite composition of pushouts along the generating
cofibrations. Since the functor U preserves retractions, colimits and send the generating projec-
tive cofibrations to (generating) cofibrations, the lemma is proven. 0O
5. Stable quasi-equivalences

In this section we construct a ‘localized’ Quillen model structure on Sp> -Cat. We denote by
[—, —] the set of morphisms in the stable homotopy category Ho(Sp¥) of symmetric spectra.
From a spectral category .A one can form a genuine category [.4] by keeping the same set of
objects and defining the set of morphisms between x and y in [A] to be [S, A(x, y)]. We obtain
in this way a functor

[—1: SpE-Cat — Cat,

with values in the category of small categories.
5.1. Definition. A spectral functor F : A — B is a stable quasi-equivalence if:
S1) for all objects x, y € A, the morphism of symmetric spectra

F(x,y): A(x,y) = B(Fx, Fy)

is a stable equivalence [25, II-4.1] and
S2) the induced functor

[F1:[A] — [B]
is an equivalence of categories.
5.2. Notation. We denote by W; the class of stable quasi-equivalences.
5.3. Remark. Notice that if condition S1) is verified, condition S2) is equivalent to:
S2/) the induced functor
[F]:[A]l — [B]

is essentially surjective.
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5.1. Functor Q
In this subsection we construct a functor
0 :Sp*-Cat — Sp>-Cat

and a natural transformation n:Id — Q, from the identity functor on Sp*-Cat to the func-
tor Q. We start with a few definitions (see the proof of proposition [25, 1I-4.21]). Let m > 0
and A, : Fuy1S' — F,, 89 the morphism of symmetric spectra which is adjoint to the wedge
summand inclusion S! — (F,, SO)mH = Z‘; an S! indexed by the identity element. The mor-
phism ,, factors through the mapping cylinder as A, = ¢, Where ¢, : Fjpy1 St — Z(Ay) is
the ‘front’ mapping cylinder inclusion and ry,, : Z(A;,) = Fi,S 0 is the projection (which is a ho-
motopy equivalence). Notice that ¢, is a trivial cofibration [17, 3.4.10] in the projective stable
model structure. Define the set K as the set of all pushout product maps

Alnly A Fpyr S 11 AA[]L A Z(hm)
dA[n] 4 AFpp1S! ’

ing Aem l

Alnly A Z(h)

where i, :0A[n] — Aln], n > 0, is the inclusion map. Let F1, be the set of all morphisms
of symmetric spectra Fy, Alk,n]+ — F, Aln]4 [25, [-2.12] induced by the horn inclusions for
m>=20n>1,0<k<n.

5.4. Remark. By adjointness, a symmetric spectrum X has the R.L.P. with respect to the set FI 4
if and only if for all n > 0, X, is a Kan simplicial set and it has the R.L.P. with respect to the set
K if and only if the induced map of simplicial sets

Map(c;, X):Map(Z(Am), X) — Map(Fm_HSl, X) ~Q2Xm+1

has the R.L.P. with respect to all inclusions i,, n > 0, i.e. it is a trivial Kan fibration of simplicial
sets. Since the mapping cylinder Z(%,,) is homotopy equivalent to F,, S°, Map(Z(A,,), X) is
homotopy equivalent to Map(F,, S°, X) =~ X,,,.

So altogether, the R.L.P. with respect to the union set K U FI 4 implies that for n > 0, X, is
a Kan simplicial set and for m > 0, 8;1 1 Xm — 2Xpm+1 18 a weak equivalence, i.e. X is an £2-
spectrum.

Notice that the converse is also true. Let X be an §2-spectrum. For all n > 0, X, is a Kan
simplicial set, and so X has the R.L.P. with respect to the set FI,. Moreover, since ¢, is a
cofibration, the map Map(c,,, X) is a Kan fibration [14, II-3.2]. Since for m > 0, 57,1 X —
£2 X m+1 1s a weak equivalence, the map Map(c,,, X) is in fact a trivial Kan fibration.

Now consider the set U(K U FI 4) of spectral functors obtained by applying the functor U
(A.1) to the set K U FI 4. Since the domains of the elements of the set K U FI 4 are sequentially
small in Sp%, the same holds by [19] to the domains of the elements of U (K U FI 4). Notice that
UK UFI,)=U(K)UJ' (4.5).
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5.5. Definition. Let A be a small spectral category. The functor Q:Sp*-Cat — Sp¥-Cat is
obtained by applying the small object argument, using the set U (K) U J' to factor the spectral
functor

A— e,
where e denotes the terminal object in Sp* -Cat.

5.6. Remark. We obtain in this way a functor Q and a natural transformation 7 : [d — Q. Notice
also that Q(A) has the same objects as A, and the R.L.P. with respect to the set U(K) U J'. By
Remark 5.4 and [19], we get the following property:

Q) for all objects x, y € Q(A), the symmetric spectrum Q(A)(x, y) is an £2-spectrum.

5.7. Proposition. Let A be a small spectral category. The spectral functor

na:A— QA
is a stable quasi-equivalence.
Proof. The elements of the set K U FI 4 are trivial cofibrations in the projective stable model
structure. This model structure is monoidal and satisfies the monoid axiom [17, 5.4.1]. This
implies, by Proposition A.2, that the spectral functor 1 4 satisfies condition S1). Since the spectral

functor 1.4 : A — Q(A) induces the identity on sets of objects, condition S2’) is automatically
verified. O

5.2. Main theorem
5.8. Definition. A spectral functor F: A — B is:
— a Q-weak equivalence if Q(F) is a levelwise quasi-equivalence (4.1);
— a cofibration if it is a cofibration in the model structure of Theorem 4.8;
— a Q-fibration if it has the R.L.P. with respect to all cofibrations which are Q-weak equiva-

lences.

5.9. Lemma. A spectral functor F : A — B is a Q-weak equivalence if and only if it is a stable
quasi-equivalence.

Proof. We have at our disposal a commutative square

A2 04

1 e

B 7 o(B),
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where by Proposition 5.7, the spectral functors 1 4 and np are stable quasi-equivalences. Since
the class W satisfies the two out of three axiom, the spectral functor F is a stable quasi-
equivalence if and only if Q(F) is a stable quasi-equivalence. The spectral categories Q(A)
and Q(B) satisfy condition 2) and so by lemma [17, 4.2.6], Q(F) satisfies condition S1) if and
only if it satisfies condition L1).

Notice that, since Q(A) (and Q(B3)) satisfy condition 2), the set [S, Q(A)(x, y)] can be
canonically identified with 7o(Q(A)(x, ¥))o and so the categories [Q(A)] and mo(Q(A)) are
naturally identified. This allows us to conclude that Q (F) satisfies condition S2’) if and only if
it satisfies condition L2") and so the lemma is proven. 0O

5.10. Theorem. The category Sp*-Cat admits a right proper Quillen model structure whose
weak equivalences are the stable quasi-equivalences (5.1) and the cofibrations those of Theo-
rem 4.8.

5.11. Notation. We denote by Ho(Sp? -Cat) the homotopy category hence obtained.

In order to prove Theorem 5.10, we will use a slight variant of theorem [14, X-4.1]. Notice
that in the proof of lemma [14, X-4.4] it is only used the right properness assumption and in the
proof of lemma [14, X-4.6] it is only used the following condition (A3). This allows us to state
the following result.

5.12. Theorem. (See [14, X-4.1].) Let C be a right proper Quillen model structure, Q :C — C a
functor and n:1d — Q a natural transformation such that the following three conditions hold:

(A1) The functor Q preserves weak equivalences.
(A2) The maps ngay, Q(ma): Q(A) — QQ(A) are weak equivalences in C.
(A3) Given a diagram

B
K
A— 0A)

with p a Q-fibration, the induced map n 4, : A X ga) B — B is a Q-weak equivalence.

Then there is a right proper Quillen model structure on C for which the weak equivalences are
the Q-weak equivalences, the cofibrations those of C and the fibrations the Q-fibrations.

Proof of Theorem 5.10. The proof will consist on verifying the conditions of Theorem 5.12.
We consider for C the Quillen model structure of Theorem 4.8 and for Q and 5, the functor and
natural transformation defined in 5.5. The Quillen model structure of Theorem 4.8 is right proper
(4.17) and by Lemma 5.9 the Q-weak equivalences are precisely the stable quasi-equivalences.
We now verify conditions (A1)—(A3).
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(Al) Let F: A — B be a levelwise quasi-equivalence. We have the following commutative
square

A2 04

1 e

B 7‘ o(B),

with 14 and ng stable quasi-equivalences. Notice that since F satisfies condition L1),

the spectral functor Q (F) satisfies condition S1). The spectral categories Q(A) and Q(B)

satisfy condition €2) and so by lemma [17, 4.2.6] the spectral functor Q(F’) satisfies con-

dition L1).

Observe that since the spectral functors n 4 and np induce the identity on sets of objects

and F satisfies condition L2"), the spectral functor Q (F) satisfies also condition L2).
(A2) We now show that for every spectral category .4, the spectral functors

noA) Qna): Q(A) > Q0O (A)

are levelwise quasi-equivalences. Since the spectral functors ng(4) and Q(n.4) are stable
quasi-equivalences between spectral categories which satisfy condition 2), they satisfy by
lemma [17, 4.2.6] condition L1). The functor Q induces the identity on sets of objects and
so the spectral functors 794y and Q(n.4) clearly satisfy condition L2").

(A3) We start by observing that if P:C — D is a Q-fibration, then for all x, y € C the morphism
of symmetric spectra

P(x,y):C(x,y) = D(Px, Py)

is a fibration in projective stable model structure [25, II1I-2.2]. In fact, by Proposition 4.19,
the functor

U:Sp” — Sp~-Cat

sends projective cofibrations to cofibrations. Since it sends also stable equivalences to sta-
ble quasi-equivalences the claim follows.
Now consider the diagram

A x B

oA B
T
A—— (A,

with P a Q-fibration. The projective stable model structure on Sp? is right proper and so,
by construction of fiber products in Sp* -Cat, we conclude that the induced spectral functor

na,cA x B—B
oA
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satisfies condition S1). Since 71 4 induces the identity on sets of objects so it thus 1 4, , and
so condition S2’) is verified. O

5.13. Proposition. A spectral category is fibrant with respect to Theorem 5.10 if and only if for
all objects x, y € A, the symmetric spectrum A(x, y) is an §2-spectrum.

Proof. By corollary [14, X-4.12] A is fibrant with respect to Theorem 5.10 if and only if it
is fibrant (4.16), with respect to the model structure of Theorem 4.8, and the spectral func-
tor n4: A — Q(A) is a levelwise quasi-equivalence. Observe that n 4 is a levelwise quasi-
equivalence if and only if for all objects x, y € A the morphism of symmetric spectra

nax, y): Alx, y) > Q(A(x, y)

is a level equivalence. Since Q(A)(x, y) is an £2-spectrum we have the following commutative
diagrams (for all n > 0)

n

A, y)n QA Y)nt1

| l

QA (x, y)n ——= 2O(A)(x, YIn+1,

n

where the bottom and vertical arrows are weak equivalences of pointed simplicial sets. This
implies that

Sn A, V)0 = QAX, Y)np1, n=0,

is a weak equivalence of pointed simplicial sets and so we conclude that for all objects x, y € A,
Q(x,y) is an £2-spectrum. O

5.14. Remark. Notice that Proposition 5.7 and Remark 5.4 imply that n4:.4 — Q(A) is a
functorial fibrant replacement of A in the model structure of Theorem 5.10.
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Appendix A. Non-additive filtration argument
In this appendix, we adapt Schwede—Shipley’s non-additive filtration argument [26] to a ‘sev-

eral objects’ context. Let V be a monoidal model category, with cofibrant unit I, initial object 0,
and which satisfies the monoid axiom [26, 3.3].
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A.1. Definition. Let

U:YVY — V-Cat,
be the functor which sends an object X € V to the V-category U (X), with two objects 1 and 2
and such that U(X)(1, ) =U(X)(2,2) =L, U(X)(1,2) = X and U (X)(2, 1) = 0. Composition
is naturally defined (the initial object acts as a zero with respect to A since the bi-functor — A —
preserves colimits in each of its variables).

In what follows, by smash product we mean the symmetric product — A — of V.

A.2. Proposition. Let A be a V-category, j : K — L a trivial cofibrationinV and F :U(K) — A
a morphism in V-Cat. Then in the pushout

UK) L= 4
U(j)l J \LR
U(L) —— B,
the morphisms
R(x,y): Alx,y) > B(x,y), x,y€A,
are weak equivalences in V.

Proof. Notice that A and B have the same set of objects and the morphism R induces the identity
on sets of objects. The description of the morphisms

R(x,y): A(x,y) —> B(x,y), x,y€A,
in V is analogous to the one given by Schwede—Shipley in the proof of lemma [26, 6.2]. The
‘idea’ is to think of B(x, y) as consisting of formal smash products of elements in L with el-
ements in .4, with the relations coming from K and the composition in .4. Consider the same
(conceptual) proof as the one of lemma [26, 6.2]: B(x, y) will appear as the colimit in V of a
sequence

Ax,)V=Py—> P —> ---—> P, — ...,
that we now describe. We start by defining an n-dimensional cube in V), i.e. a functor

W:P({1,2,....,n}) >V

from the poset category of subsets of {1,2,...,n}to V.If S C {1, 2, ..., n}is a subset, the vertex
of the cube at S is

W(S) :=A(x, FO)) ACi AA(F(1), F(D) ACo A...ACy AA(F(1), y),
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with

i =

{K ifi ¢S,
L ifies.

The maps in the cube W are induced from the map j : K — L and the identity on the remaining
factors. So at each vertex, a total of n + 1 factors of objects in V, alternate with n smash factors
of either K or L. The initial vertex, corresponding to the empty subset has all its C;’s equal to K,
and the terminal vertex corresponding to the whole set has all its C;’s equal to L.

Denote by Qj, the colimit of the punctured cube, i.e. the cube with the terminal vertex re-
moved. Define P, via the pushout in V

On — A(x, F(0)) AL A(AF(1), F(1)) ALY "D A A(F (1), y)

| J |

Py Py,

where the left vertical map is defined as follows: for each proper subset S of {1,2,...,n}, we
consider the composed map

W(S)—> Ax, FO)ALANAFQ),FA)A...ALANA(F(1),y)

| S| factors L

obtained by first mapping each factor of W (S) equal to K to A(F (1), F (1)), and then composing
in A the adjacent factors. Finally, since S is a proper subset, the right-hand side belongs to Pis
and so to P,4+1. Now the same (conceptual) arguments as those of lemma [26, 6.2] show us that
the above construction furnishes us a description of the V-category B.

We now analyze the constructed filtration. The cube W used in the inductive definition of P,
has n + 1 factors of objects in V, which map by the identity everywhere. Using the symmetry
isomorphism of — A —, we can shuffle them all to one side and observe that the map

0, — A(x, FO) AL A (A(F(1), F)) ALYV A A(F(1), y)

is isomorphic to
On A2y — LM A Z,,

where

Z,i=Ax, FO) AL A (A(F(1), FAD) ALY "D A A(F(1), y)
and Q,, is the colimit of a punctured cube analogous to W, but with all the smash factors different
from K or L deleted. By iterated application of the pushout product axiom, the map Q,, — L™"
is a trivial cofibration and so by the monoid axiom, the map P,4+; — P, is a weak equivalence

in V. Since the map

R(x,y): A(x,y)=Py— B(x,y)
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is the kind of map considered in the monoid axiom, it is also a weak equivalence and so the
proposition is proven. [

A.3. Proposition. Let A be a V-category such that A(x, y) is cofibrant inV for all x, y € A and
i:N — M a cofibration in V. Then in the pushout

UN) —— A

U(i)l y lR

UM) —— B,
the morphisms
R(x,y): A(x,y) = B(x,y), x,y€A,
are cofibrations in V.
Proof. The description of the morphisms
R(x,y): A(x,y) = B(x,y), x,y€A,

is analogous to the one of Proposition A.2. Since for all x, y € A, A(x, y) is cofibrant in V, the
pushout product axiom implies that in this situation the map

On A Zy— LA 2,

is a cofibration. Since cofibrations are stable under co-base change and transfinite composition,
we conclude that the morphisms R(x, y), x, y € A are cofibrations. O
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