
I. The Burnside rin~ of finite G-sets. 

In this section let G denote a finite group. In order to motivate 

some of the subsequent investigations we give an introduction to the 

Burnside ring of a finite group. Later we generalize this to compact 

Lie groups by geometric methods which in case of a finite group are not 

always suitable for the applications of the Burnside ring in represen- 

tation theory. The material in this section is mainly due to Andreas 

Dress. 

1.1. Finite G-sets. 

A finite G-set S is a finite set together with a left action of G on 

this set. A finite G-set is the disjoint union of its orbits. The orbits 

are transitive G-sets and are G-isomorphic to homogeneous G-sets 

G/H = {gHlg E G~ . The G-sets G/H and G/K are isomorphic if and only 

if H is conjugate to K in G. The set of G-isomorphism classes of finite 

G-sets becomes a commutative semi-ring A+(G) with identity with addition 

induced by disjoint union and multiplication induced by cartesian pro- 

duct with diagonal action. The non-triviality of the multiplication 

arises from the decomposition of G/H x G/K into orbits. These orbits 

correspond to the double cosets HgK, g E G, which can be identified with 

the orbit space of G/K under the left H-action. This correspondence can 

be described as follows: If X is an H-space the H-orbits of X corres- 

pond to the G-orbits of GXHX. If moreover X is a G-space then we have 

the G-isomorphism G/H x X ) GXHX : (g,x)~------>(g,g-lx). We apply this 

to X = G/K. Explicitely, the double coset HgK corresponds to the orbit 

through (1,g). 

1.2. The Burnside rin@ A(G). 

The Grothendieck ring constructed from the semi-ring A+(G) is denoted 

A(G) and will be called the Burnside rin~ of G. If S is a finite G-set 



let IS] or S be its image in A(G). Additively, A(G) is the free abelian 

group on isomorphism classes of transitive G-sets. Equivalently, an 

additive Z-basis is given by the ~/H] where (H) runs through the set 

C(G) of conjugacy classes of subgroups of G. The multiplication comes 

from the decomposition of G/H x G/K into orbits. The ring A(G) is 

commutative with unit [G/G] . 

Example 1.2.1. 

Let G be abelia~ Then, since generally the isotropy group of G/H x G/K 

-I -1 
at (gl H, g2 K) is giHgl ~ g2Kg2 , all isotropy groups are H ~ K in the 

abelian case. Therefore [G/H]" [G/K] = a [G/H~ K] where a ~ Z is ob- 

tained by counting the number of elements on both sides. In particular 

[G/HI 2 = IG/H I [G/HI , where ISI is the cardinality of S. We see that 

for abelian G the [G/~ are almost idempotent. 

If H < G and S,T are finite G-sets then we have for the cardinality 

of the H-fixed point sets IS H + T H I = IsHI + ITHiand I(S xT)H I = 

IsHI ITHI. Hence S , %IsHI extends to a ring homomorphism 

: A(G) .............. --) Z ~H 

Conjugate subgroups give the same homomorphism so that we have one ~H 

for each (H) E C(G). We let 

= ( ~H ) : A(G) --'> ~(H) & C(G) Z 

be the product of the ~H" 

Proposition 1.2.2. 

is an in~ective rin~ homomorphism. 



Proof. 

By definition ~ is a ring homomorphism. Suppose x # o is in the kernel 

of ? . We write x in terms of the basis x = ~ aH[G/H]. We have a partial 

ordering on the [G/~ , namely [G/HI ~ [G/K] if and only if H is sub- 

conjugate to K. Let [G/HI be maximal among the basis elements with 

a H ~ o. Then G/K H # ~ implies ~/H] ~ [G/K] . Hence o = ~H x = 

= a H [G/H H] = a H INH/H I # O, a contradiction. 

Since ~ is an injection of a subgroup of maximal rank the cokernel 

is a finite group. We want to compute its order. We consider the 

diagram of injective ring homomorphisms 

A(G) 

! 
$ 

A(G) ~ Q 

~Q 

)T[z 

where the lower ~Q is the rational extension of the upper 

Recall that WH = NH/H acts freely on G/H as the group of G-auto- 

-1 
morphisms: The action is given by WH X G/H - > G/H : (wH,gH) ~--> gw H. 

Hence it acts freely on any fixed point set G/H K. In particular IG/HKI 

is divisible by IWHI . Therefore -- -~Q( [G/HI ~ IWHJ -1) is contained ~Z. 

Proposition 1.2.3. 

The elements ~e( [G/HI ~ IWH~ -I) =: x H form a Z-basi____~s of 

order of cokernel~ i__ss ~(H) E C(G) IWHI 

Z. The 



Proof. 

The first assertion implies the second one. We view elements in • Z 

as row vectors. Then the x H form (suitably ordered) a triangular matrix 

with one's on the diagonal. Hence they must be a basis. 

Remark 1.2.4. 

The homomorphism ~ may be discovered from the ring structure of A(G) 

as follows. An element x ~ A(G) is a non-zerodivisor if and only if 

x has no zero component. Therefore A(G) ~ Q is the total quotient 

ring of A(G) (i.e. all non-zero-divisors made invertible). If 

xG A(G) ~ Q is integral over A(G) then the components of ~QX are 

integral over z hence integers. Conversely ~z is integral over ~A(G), 

e. g. because ~ Z is generated by idempotent elements which are 

integral over any subring. Hence ~ may be identified with the inclus~n 

of A(G) into the integral closure in its total quotient ring. (For the 

notion of integral ring extension see Lang ~0~j, Chapter IX; Bourbaki 

[3~] , Ch. 5 . )  

1.3. Congruences between fixed point numbers. 

We have seen in 1.2. that ~ A(G) is a subgroup of maximal rank in ~Z. 

How can we describe its image? If G = Z/pZ is the cyclic group of prime 

order p then ISI ~ ~sGI mod p because the orbits of S~ S G have 

cardinality p. Hence this congruence gives a condition for elements to 

be in the image of ~ . The reader can easily check that this is the 

only condition, for G = Z/pZ. We generalize such congruences. 

Let S be a finite G-set and let V(S) be the complex vector space 

spanned by the elements of S. The G-action on the basis S of V(S) in- 

duces a linear action on V(S). The resulting G-module V(S) is called 

the permutation representation associated to S. The character of V(S) 

is a function on G; it will be denoted with the same symbol. The 



orthogonality relations for characters say in particular that for any 

complex G-module V the number IGI -I ~ gE G V(g) is the dimension of 

V G. Hence 

(1.3.1) ~ gE G V(S) (g) - = O mod ~G I . 

Now note that 

V(S) (g) = Trace(ig : V(S) .~V(S) : v ~----> gv) = Isgl 

(look at the matrix of i 
g 

can be rewritten 

with respect to the basis S). Therefore 1.3.1 

(1.3.2) I gEG ~<g> (x) ---- O mod ~GI 

for any x 6 A(G), where <g> denotes the cyclic group generated by g. 

If H is a cyclic subgroup of G the number of elements g with {g> 

conjugate to H is 

I H L J G/NH I 

where H~is the set of generators of H and I G/NH I is the number of 

groups conjugate to H. Therefore (1.3.2) can be rewritten 

(1.3.3) ~" (H) cyclic IH~(-i IG/NH i ~H (X) ~ 0 mod IGI 

where now the summation is taken over conjugacy classes of cyclic sub- 

groups of G. 

We now apply the same argument to V(S H) considered as NH/H-module 

and obtain 



7_ (x> = o mod INH/HI 

where we sum over NH-conjugacy classes K such that H is normal in K 

and K/H is cyclic. This may also be written in the form 

(I .3.4) Z (K) n(H,K) ~ K (x) ~ 0 mod INH/H I 

where the n(H,K) are certain integers with n(H,H) = I and the sum is 

over the G-conjugacy classes(K) such that H is normal in K and K/H is 

cyclic. 

For the next Proposition we view elements of ~Z as functions 

C (S) --+ Z. 

Proposition 1.3.5. 

The con@ruences 1.3.4 are a complete set of con@ruences for image ~ , 

i. e. x ~ ~ Z is contained in the image o_~f ~ if and only i_~f 

(K) n(H,K) x(K)~ O mod ~NH/H I 

for all (H) & C(G). 

Proof. 

We have already seen that the elements in the image of ~ satisfy these 

congruences. The congruences 1.3.6 are independent because they are 

given by a triangular matrix with one's on the diagonal. Hence they 

describe a subgroup A of index ~ INH/H I . By Proposition 1.2.3 there- 

fore A = im 



Remark 1.3.7. 

A slightly different set of congruences is obtained if one considers 

V(S H) as NpH/H-module where NpH/H is a Sylow p-group of NH/H. This 

yields a set of p-primary congruences which may be used instead of 

1.3.4. These congruences are useful when localizations of A(G) are 

considered; e. g. for A(G) (p), the Burnside ring localized at p, only 

p-primary congruences are valid. 

1.4. Idempotent elements. 

Idempotent elements in ~ Z are the functions with values 0 and I. We 

use 1.3 to see when such functions come from A(G). We consider A(G) as 

subring of ~ Z via 

A subgroup H of G is called perfect if it is equal to its commutator 

subgroup. Each H < G has a smallest normal subgroup H s such that H/H s 

is solvable. One has (Hs) s = H s. A subgroup H is perfect if and only 

if H = H s. Let P(G) be the subset of C(G) represented by perfect sub- 

groups. 

Proposition 1.4.1. 

An idempotent e ~ ~ Z is contained in A(G) if and only if for all 

(H) E C(G) the equality e(H) = e(H s) holds. 

Proof. 

Suppose e ~ A(G). Then e satisfies 1.3.6. Given K < G. Choose 

of 
K s = K n 4 K n-1 4 ... 4 K ° = K such that Ki/K i+I is cyclic prime order 

p(i). Then by 1.3.6 applied to the group K i+I we have e(K i) ~ e(K i+I) 

mod p(i). Since the values of e are 0 or I we must have e(K i) = e(K i+I) 

and therefore e(K s) = e(K). Conversely assume that e(K s) = e(K) for all 

K. Then we must have e(H) = e(K) for all H ~ K with K/H cyclic so that 

e satisfies the congruences 1.3.6. 



Corollary 1.4.2. 

The set of indecomposable idempotents of A(G) corresponds bi~ectively 

t__oo P(G). I_nn particular G is solvable if and only i_~f 0 and I are the 

only idempotents i__nn A(G). 

Remark 1.4.3. 

Let P C Z be a set of prime numbers. Let A(G)p be the localization of 

A(G) at P, i. e. the primes not in P are made invertible. Then one can 

show as in the proof of Proposition 1.4.1 that the idempotents of 

A(G)p are the functions e with e(H) = e(Hp) where Hp is the smallest 

normal subgroup of H such~at H/Hp is solvable of order involving only 

primes in P. 

1.5. Units. 

If A is a commutative ring we let A ~ be the multiplicative group of its 

units. 

Let e ~ A be an idempotent. Then I-2e = u is a unit. Conversely it 

can happen that for a unit u the element (I-u)/2 = e is contained in A. 

2 
Then e is an idempotent, because (l-u) = 2(I-u) for any unit u. In 

case of the Burnside ring (I-u)/2 is contained in ~ Z but not in 

general in A(G) as we shall see in a moment. But if G has odd order 

then coker ~ is odd and hence 1-u E A(G) and (I-u)/2 E ~ Z implies 

(I-u)/2 E A(G). Since a non-solvable group has non-trivial idempotents, 

by 1.4.2, we obtain 

Proposition 1.5.1. 

If G is non-solvable then A(G) 

order then A(G) ~ = { ~ I} . 

{ + I ~ . If G is solvable of odd 

Let H be a subgroup of index 2 in G. Then H 4 G, [G/HI 2 = 2 [GIH] 



and therefore u(H) := I - [G/HI ~ A(G) W. Note that (1-u(H))/2 is not 

in A(G). The subgroups of index 2 are precisely the kernels of non- 

trivial homomorphisms G---~Z/2Z. Hence we obtain an injective map 

j : Hom(G,Z/2Z) ) A(G) ~ given by j(f) = 1-G/ker(f) . The image of j 

is in general not a subgroup. 

Problem 1.5.2. 

Determine the structure of A(G) ~ in terms of the structure of G. (Of 

course one knows by the famous theorem of Feit - Thompson that groups 

of odd order are solvable. Therefore the 2-primary structure of G is 

relevant. In particular A(G) ~ for 2-groups would be interesting. (See 

also the next remark.) 

Remark 1.5.3. 

We shall prove later by geometric methods that for a real representation 

V the function (H) I )(-I) dim vH is contained in A(G). This function 

is then a unit in A(G). It would be interesting to see units which are 

not of this form (2-groups?). 

1.6. Prime ideals. 

Since ~ Z is integral over A(G) by the "going-up theorem" of Cohen- 

Seidenberg (see Atiyah-Mac Donald [11] , p. 62) every prime ideal of 

A(G) comes from ~ Z hence has the form 

q(H,p) := {x ~ A(G) I ~H (x) -= 0 rood p } 

for a subgroup H of G and a prime ideal (p) of Z. The elementary proof 

of Dress [~] for this fact shall be given later (section 5) in the 

slightly more general context of compact Lie groups. The prime ideals 

q(H,o) are minimal; the ideals q(H,p), p # O, are maximal with residue 

field Z/pZ. If q(H,p) = q(K,q) then p = q and 
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(i) (H) = (K) if p = 0 

(ii) (H) = (K) if p # O. 
P P 

Here Hp is the smallest normal subgroup of H such that H/Hp is a p- 

group. If q is a prime ideal of A(G) then there exists a unique mini- 

mal (H) such that [G/~ ~ q. Moreover for this H one has q = q(H,p) 

where p is the characteristic of the ring A(G)/q. Finally this (H) is 

the maximal (H) for which q = q(H,p). All this is proved in Dress [~ 

and will later be proved for compact Lie groups. 

1.7. An example: The alternating group A 5. 

The diagram of conjugacy classes of subgroups of A 5 is 

A 5 

Ds 

I 

Here D n is~ the dihedral group of order 2n. The groups A5, A4, D5, D 3 

are their own normalizers while N(Z/n) = D n and N(D2) =A 4. A(A 5) is the 

set of functions z : C(G)---) Z satisfying 

(i) 

(ii) 

(iii) 

(iv) 

z(H) arbitrary for H = A5,A4,D5,D 3. 

z(Z/n) ~ z(D n) mod 2 for n = 3,5. 

z(D 2) m z(A 4) mod 3. 

z(1) + 2Or(Z/3) + 15z(Z/2) + 24z(Z/5) ~ 0 mod 60. 

The ring A(A 5) contains the following units: 
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I Z/2 Z/3 Z/5 D 2 D 3 D 5 A 4 A 5 

a a a a b c d b e 

Here a,b,c,d,e 6 {I,-I~ and the second line gives the value of the 

function u : C(G) ---9 Z at the element indicated in the first line. The 

congruences (i) - (iv) show that there are no conditions for a unit u 

at A 5, A 4, D 3. From (iii) we obtain u(D 2) = u(A4). Considering (iv) 

mod 3, mod 4, and mod 5 we obtain 

u(1) = u(Z/2) = u(Z/3) = u(Z/5). 

The subgroups I and A 5 are perfect. Therefore A(A 5) contains the 

idempotents O,1,e,l-e where ~A5(e) = I, ~H(e) = O for H # A 5. 

1.8. Comments. 

The Burnside ring was introduced by Dress [~] where also the prime 

ideal spectrum was determined. The Burnside ring plays an important 

role in the axiomatic representation theory (Green [~S] , Dress [~0 3 ) 

in particular in the general theory of induction theorems (Dress [gO]). 

The Burnside ring, as a functor, is universal among the Mackay functors 

of Dress, see the cited references. 

We shall demonstrate in these lectures the topological significance 

of the Burnside ring. At this point we only mention that a finite 

simplicial complex with simplicial G-action is a combinatorial object 

built from finite G-sets. So one expects some basic invariants of 

simplicial G-complexes to lie in the Burnside ring, e.g. the "Euler- 

Characteristic": the alternating sum ~ (-1)iSi of the G-sets S i of 

i-simplices. 

The Burnside ring codifies in a convenient frame-work some basic 

properties of the lattice of subgroups of a given group. Given G, the 
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G-transformation groups are governed by the internal relations of the 

Burnside ring. This influence of the Burnside ring is more transparent 

when we have shown that the ring is isomorphic to equivariant stable 

homotopy of sphere in dimension zero (Segal [I~5] ) so that in particu- 

lar stable equivariant homotopy groups are modules over the Burnside 

ring. 

The description of the Burnside ring using congruences among 

cardinalities of fixed point sets is based on an oral communication 

by Dress. These congruences are generalized in tom Dieck-Petrie [&$] 

where also various geometrical applications are given. 

1.9. Exercises. 

I. Let G and H be finite groups whose orders are relatively prime. 

Show that 

A(G ~ H) ~ A(G) ~ A(H) 

2. For i ~ O mod p let 

M(i~ = ~(a,b~ I ai~ b mod p~ c Z ~ Z. 

Show that M(i) is a projective module over A(Z/pZ). Classify projective 

modules over A(Z/pZ). 

3. Show that G is perfect if and only if A(G) contains the idempotent 

e such that 

H e = O for H # G, ~G e = I. 

4. Let G be a p-group of order pn (p a prime). Let m C A(G) be the 

ideal 

m = {x 

Show that m n+1C p A(G). 

topologies coincide.) 

I ~{i ~ X = O mod p ~ . 

(In particular: The p-adic and the m-adic 
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5. Let G be a 2-group and let IA(G)~[ = 2 n. Show that n is not greater 

than the number of conjugacy classes (H) such that INH/H] = 2. 


