
10. Geometric Modules over the Burnside Ring. 

We investigate in this section stable equivariant homotopy sets of 

spheres. We consider them as modules over the Burnside ring using the 

fact the Burnside ring is isomorphic to stable equivariant homotopy of 

spheres in dimension zero. In order not to become involved in the homo- 

topy group of spheres we mainly study those questions which only in- 

volve the concept of mapping degree. In particular we continue our 

study of homotopy equivalences between representations. 

10.1. Local J-groups. 

In order to prepare for the general study of vector bundles we study 

a somewhat weaker equivalence between representations than homotopy 

equivalence. In particular we recover results of Atiyah-Tall [I~] , 

Lee-Wasserman ~I0] , Snaith ~51] • 

We call real G-modules V and W locall~ J-equivalent, in symbols 

VNloc W, if for each subgroup H < G there exists a G-module U and G- 

maps 

f : S(V ~9 U) ) S(W ~) U) , g : S(W ~) U) -- ) S(V G) U) 

such that fH and gH have degree one. (Note that these degrees depend 

on the choice of orientations and are therefore only defined up to sign.) 

We put 

(IO.I.1) To G : {v-w ~ RO(G) I V~loc w ] 

jO~ °c = RO(G)/TO G. 

Note that we have a canonical quotient map 
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q(G) : JO l°c ) RO(G)/ROo(G) =: RO(G)p, 

provided G is a finite group. 

Theorem 10.1.2. For every finite group G the map q(G) is an isomorphism. 

Proof. We have to show that for a G-module V and k prime to [G[ the re- 

lation V~ loc ~ kv holds. We can assume that k is an odd integer. We 

first show that there exist stable maps f : V > ~kv such that for 

all H < G the degree of fH has the form k t. (A stable map f : V ---) W 

is a map f : S(V ~ U) > S(W ~ U) for suitable U). If V is one-dimen- 

sional there is no problem. Next suppose that V is two-dimensional and 

irreducible; then G/ker V =: K is cyclic or dihedral and V = C with 

suitable action (see 9.7) and the map f can be taken as z ~ ) z k. In 

general, by a theorem of Braver (Serre ~%~] , 12.6), we can write 

V = Z n i ind,. V i, n i E Z, V i irreducible of dimension ~ 2. Since G is 
l 

prime to k induction commutes with ~ k. Hence we have stable maps 

ind,. V i -----~ ind,. ~ kV'l of the required type. Moreover we can find 
l l k n 

an integer n such that ~ V i = V i (choose n so that k n ~ I mod iGi). 

kn-1 
Hence we can find stable maps ind~ ~ V i > ind,. V i so that 

1 1 
negative n. in the expression for V don't make trouble. Since we can 

1 
k 1 

find numbers k and 1 with (k,l) = I and ~ V = ~ V suitable linear 

combinations of stable maps f,g with degrees d(f H) = k t, d(g H) = i u 

give a map h with d(h H) = I; q. e. d. 

10.2. Projective modules. 

We recall some of the homotopy notions introduced in section 8. Let E 

and F be real G-modules, G being a compact Lie group. Put ~ = E-F ERO(G) 

and let 

= ~G = ~Q( ~ { sE,s F 
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be the stable G-equivariant homotopy group of pointed stable G-maps 

S E -----> S F. Here S E denotes the one-point compactification of E. The 

groups ~ are the coefficient groups of an equivariant homology 

theory. When we need space for lower indices we write 

~o = o0 

Smashed product of representatives induces a bilinear pairing 

~ ~+~ 

In particular ~ is a module over ~ o' the stable equivariant homo- 

topy ring of spheres in dimension zero. The pairing above induces a 

homomorphism 

(10.2.1) m : oj ~ ¢O .... ~ r~ 
~',~ ~ ~o ~ ~+'~ 

Remark 10.2.2. The modules ~ are determined by ~ only up to non- 

canonical isomorphism because in general S E has many homotopy classes 

of equivariant self-homotopy-equivalences. This causes difficulties if 

one has to use associativity or commutativity of the pairing m ~, ~ . A 

way out of these difficulties is to choose canonical representatives 

= E-F or extra structure (like suitable orientations). 

Theorem 10.2.2. Let ~ = E-F be in RO (G) see (9.1). Then the following 
o 

holds: 

(i) The module ~ is a projective CJo-module of rank one. 

(ii) For each ~ ~ RO(G) the pairing (10.1.1) 
1 

is an isomorphism. 
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(iii) The ~ o-modul____~e ~ is free if and only if E and F are stably 

G-homotopy equivalent (in the sense of 9.1). 

We split the proof into a sequences of Propositions. The whole sec- 

tion is concerned with the proof. 

First recall the definition (and result): Let P be a module over the 

commutative ring R. Then P is a projective R-module of rank one if and 

only if P is finitely generated and for each maximal ideal q of R the 

localization P at q is a free R -module of rank one (see Bourbaki 
q q 

[~] , § 5 Th~or~me 2). 

In the following we write 

o 

We have shown in section 8 that ~ is canonically isomorphic to the 

Burnside ring A(G). Using this isomorphism and the determination of the 

prime ideals of A(G) in 5.7 we can say: 

Let q < us be a maximal ideal. Then there exists a group H < G 

(unique up to conjugation) such that NH/H is finite, the order of NH/H 

is prime to the characteristic p # O of ~/q and q is the kernel of 

mapping degree homomorphism d H mod p where 

(10.2.3) d H : ~ -----~ Z 

d H [f] = degree fH 

The corresponding ideal is then denoted q(H,p). 
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To define the mapping degree between different manifolds we need to 

choose orientations. Given E and F we choose orientations for S E and S F 

and define 

(10.2.4) d = d H : &~ .... ) Z 
~,H 

by d~ ,H If] = degree fH if dim E H = dim F H and = O otherwise. Then we 

show 

Proposition 10.2.5. If ~ = E-F ~ ROo(G) then there exists for each 

H ~ G with NH/H finite and INH/H I ~ 0 mod p an x ~ ~ such that 

d H x ~ O mod p . 

(Note that this assertion is independent of the ambiguity in the de- 

finition of dH). 

Proof. An algebraic proof for finite G is given in Theorem 10.1.2. We 

give a topological proof for general G. We first show the existence of 

an H-map f : S E ----~ S F such that fH has degree one. (Since we are only 

interested in stable maps we can assume that dim E H = dim F H > I.) By 

the assumption ~ E RO_(G) we have dim E H = dim F H and so we choose an 

sEH ~H 
H-map fl : ) S of degree one. We extend fl to an H-map f using 

the obstruction theory of 8.3. The obstructions to extending over an 

orbit bundle lie in groups 

Hi(Xn/G, Xn_I/G; ~i_I(YK)) 

where X = S E S F, ~ , y = X n Xn_ I = X(K ) in an admissible filtration of X 

Since X(K)/G = XK/NK c xK/NK and dim X K = dim yK we see that the ob- 

struction groups vanish for dimensional reasons. Hence an f exists as 
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claimed. We now apply the transfer homomorphism 

G H 
t H : co[ H ) ~o ~ G 

which satisfies 

d~,K (tG Y) = 9~ (G/H K) d~iH, K (Y) 

G if] has the desired property. The element x = t H 

10.2.6. For q = q(H,p) and ~ ~ ROo(G) the module ~ is Proposition q -- 

a free ~ q-module__ on one ~enerator. The element x E ~ ~q __is _a ~enera- 

tor if and onl~ if d ,H(X) ~ O mod p. 

Proof Take x ~ ~ ~ - ~ • , y ~ ~ . Then multiplication with x resp. y, 

using the pairing 10.2.1, gives ~ -linear maps 

respectively. The composition yw x~ is multiplication with yx E ~ . By 

definition of q(H,p) this element becomes a unit in ~ if 
q 

dH(YX) = ~ dH(Y) dH(X) ~ 0 mod p. 

(Since d H depends on the choice of orientations we have to put in a ~.) 

A similar argument applies to x~ yw . If xy is a unit in ~q then x q 

is an isomorphism. By 10.2.5 we can find x,y such that xy becomes a 

unit in ~ . This proves that ~ ~ is free with generator x. Since 
q q 

any other generator of ~ ~ differs from x by a unit of ~q we also 
q 

obtain the second assertion. 
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We now prove (ii) of the Theorem in case ~ & ROo(G). Using a basic 

fact of commutative algebra (Bourbaki [3~] , § 3.3. ) we need only 

show that the localizations (m ~, ~ )q are isomorphisms, for each maxi- 

mal ideal q c ~ . But then we are dealing with a map 

~ ~+~ 
q q q 

between free ~ -modules of rank one (10.2.6), and the same Proposition 
q 

tells us that the tensor product of the generators is mapped onto a 

generator. 

We now finish the proof of (i) by showing 

Proposition 10.2.7. For 

~enerated. 

~( ~ ROo(G) the 6j -module o9~ is finitely 

Proof. By the remarks above we have an isomorphism ~ ~ 

Let the element I ~ ~ correspond to ~ imi ~ n i. Then ~ 

as ~ -module by the m i, namely for x E ~ 

6 J  . 
- 0 (  

is generated 

x = ( [ m i ~ ni)x = ~ mi(nix). 

(This uses associativity of the pairings m). 

°(X;Y) is a finitely-generated Remark 10.2.8. If G is finite then ~ G 

~-module if X and Y are finite G-CW-complexes. This follows by 

induction over the number of cells (using that ~ o G is noetherian). 

What happens for G a compact Lie group? 

In order to prove (ii) we note that an inverse to m is given by ~,@ 
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~+~ ~ ~® (~-~ ®~x+@) ------~ ~ ® ~ ' 

Finally we show (iii). If E and F are stably G-homotopy equivalent 

then a stable equivalence induces an isomorphism ~)~ Wo. Conversely, 

assume that (J~ is free, with generator x say. Then ~ _ ~ is also 

~ ~ ~ ~ ~ . Let y be a gene- free, because ~ = ~ ~ ~ _ ~ _ ~ _ 

rator of ~ . The product xy ~ ~ is then a generator of this mo- 

dule, hence a unit of ~ . This implies dH(XY) = ~I for all H ~ G and 

therefore dH(X) = ~I for all H < G. By 8.2 x is represented by a G- 

homotopy equivalence. 

10.3. The Picard group and invertible modules. 

In order to use the results of 10.1 successfdly we have to collect some 

facts about projective modules. 

Let R be a commutative ring. The set of isomorphism classes of pro- 

jective R-modules of rank one forms an abelian group under the compo- 

sition law "tensor product over R". This group is called the Picard 

group of R 

Pic (R) . 

The inverse of an element is given by the dual module. Using the 

notations of section 9, part of 10.2.2 may be restated as follows 

Proposition 10.3.1. 

ring homomorphism 

Th 9 assitnment ~ ----) induces an in~ective 

G 
pO(G) : ROo(G)/ROh(G) ~ PiC(~o ) . 
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We are interested in the computation of Pic(~) and pO(G). Since 

the results are interesting mainly for finite groups we assume from now 

on in this section that G is finite. This has the advantage that we can 

G 
think of ~ o as a subring of a finite direct product of the integers. 

The computation of Picard groups is facilitated by using the Mayer- 

Vietoris sequence for Pic. 

Proposition 10.3.2. Let 

R 9 R I 

i rl J 
i I jr2 uP2 

J 

R 2 .... } S 

P2 

be a pull-back diagram of commutative rin~s. 

Suppo_se that Pl is surjective. Then the following Mayer-Vietoris 

sequence is exact 

Pic S ~---- Pic R I ~ Pic R 2 4~---- Pic R 4----- 

< R I ~ R 2 ~ R 

S 

Here S ~denotes the units of the ring S. We describe the maps in this 

sequence, if f : R --~ S is a ring homomorphism we use f to view S as 

an R-module; if P is a projective R-module of rank one then f~P := P~R S 

is a projective S-module of rank one. The first two maps are given by 

x ~--~ (r1~ x,r 2~x) and (y,z)~---~ PIW y - P2~ y (consider Pic as 

additive group). The last two maps are given by similar formulas. 
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Now as to d. Given e ~ S W let 1 : S ----9. S be the left translation 
e 

s ~--~ es. Let M(e) be d e f i n e d  by t h e  f o l l o w i n g  p u l l - b a c k  d i a g r a m  

M(e) ) R I 

(10.3•3) leP I 

R 2 9 S 

P2 

Then M(e) is an R-module (an R-submodule of R I x R2). We need the 

following information about such modules• (We still assume the hypothesis 

of 10.3.2.) 

Proposition 10.3.4. (i) M(e I) • M(e 2) ~ M(ele 2) ~ R. 

(ii) M(e I) ~ M(e 2) ~ M(ele2). 

(iii) M(e) is projective of rank one. 

Proof• (i) The modules in question are given by the following pull-back 

diagrams 

M(e I ) ~ M(e 2) ) R I ~9 R I M(ele 2) @ R -----} R I (~ R I 

k (PlXPl) 

,,1, ,], 4, 
R 2 ~) R 2 ~ S ~ S R 2 {B R 2 9 S ~ S 

P2 x P2 P2 x P2 

i 
I h (Pl ) I xPl 

$ 

where h is given by the matrix 
e 1 0 \ 

0 e 2 ) 
and k by the matrix 

ele 2 0 i 
0 1 

• NOW h and k differ by the matrix 
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/ e 2 0 > 

O e21 

which can be lifted to an invertible matrix over 

R I because Pl is surjective; here one uses the formal identity 

la O) (I a I 11 O> (I a) i O ) 
O a -I 0 I -a -I I O I -I O • 

Hence h(Pl x p2 ) is transformable into k(Pl x pl ) by invertible matrices 

so that (by transitivity of pull-backs) the desired isomorphisms drops 

out. 

(iii) We obtain from (i) that M(e) ~ M(e -I) is free. Hence M(e) is pro- 

jective. If we localize (10.3.3) at prime ideals q of R we see that 

M(e)q = 0 h e n c e  r a n k q  M(e) ~ 1. S i n c e  r a n k q  M(e) + r a n k q  M(e) = 

rank (M(e) ~ M(e-1)) = 2, by (i), we have rank M(e) = I. 
q q 

2 
(ii) Since M(e) has rank one the second exterior power A of M(e) is 

2 
zero. Now apply A to (i) and (ii) drops out. 

If view of 10.3.4 we can now define a homomorphism 

d : S ---) Pic R by d(e) = M(e) 

With these preparations 10.3.2 is easy to verify. 

The Mayer-Vietoris sequence may be applied to the Burnside ring A as 

follows. Let c be a multiple of the group order IGI . Let 

: A = A(G) .... 9 c = C(~(G),Z) 

be the standard map. Then the following diagram is a pull-back 
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A ) C 

I # , 
I I 
I J 

A/cC > C/cC 
mod c 

Here the vertical maps are the canonical quotient maps. We regard ~ as 

an inclusion. Since the cokernel of ~ has exponent IG~ (section I) we 

have cC c A so that A/cC makes sense. We use the following facts. 

Proposition 10.3.6. Pic C = O. Pic A/cC = O. 

Proof. C is finite direct product of the integers, say C = Z n. Since 

projective modules over z are free we have Pic Z = O. Using induction 

on n we obtain from 10.3.2 that Pic Z n = O. 

In case of R := A/cC we note that this ring is finite as an abelian 

group. Therefore R has a finite number of maximal ideals (is a semi- 

local ring). If ml,...,m n are the maximal ideals then R > ~ A/m i is 

surjective (Chinese remainder theorem) with kernel m = mln ... ~ m n the 

radical. Since R is finite hence Artinian this radiacal equals the nil- 

radical nil R of R. The ring R/m is a product of fields hence Pic R/m 

is zero. We have proved Pic R = O if we use the following 

Proposition 10.3.7. Let I be an ideal in the commutative ring R. Then 

th__ee canonical map 

Pic R ------) Pic R/I 

i_~s injective if I is contained in the radical of R and bi~ective if I 

i__ss nilpotent. 
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Proof. The first statement follows from Bourbaki [35] , II § 3.2. 

Prop. 5. Now assume that I is nilpotent. We have to show that the map 

is surjective. A projective R/I-module of rank one is given as a direct 

summand of a finitely-generated free R/I-module hence is given by a 

certain idempotent matrix A E GL(n,R/I). We have to lift the matrix to 

an idempotent matrix B 6 GL(n,R). Once this is done the proof is finished 

because ~ R R/I does not change the rank of a projective module. We 

define inductively a sequence of matrices as follows: Let B I E GL(n,R) 

be a lifting of A. Put N i = B~l - B1 and Bi+ I = Bi + Ni - 2B.N..I l Then 

21 
one checks that Ni+ I & GL(n,I ) and that B i is a lifting of A. For 

large i N. = O and we are done. 
l 

Combining the previous results we obtain 

Proposition 10.3.8. The following sequence is exact 

0 • Pic A < (C/cC) < C ~ A/cC <----- A 

In principal this sequence can be used to compute Pic A for the 

Burnside ring A = A(G). But it is not easy to obtain the actual struc- 

ture of the abelian group Pic A. We shall indicate later, how the 

congruences 1.3 for the Burnside ring can lead to a computation. 

Remark 10.3.9. If G is a compact Lie group Proposition 10.3.8 is still 

valid with c being a common multiple of the INH/H~, (H) E ~(G). (See 5. 

3. for the existence of such c.) One has the pull-back 10.3.5 and 

moreover Proposition 10.3.6. is still true. 

We now continue with a pull back diagram as 10.3.5 where C = Z n, 

is an inclusion of maximal rank. We consider C as an A-module via this 

inclusion. If M,N ~ C are A-submodules we define their product 
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(10.3.10) MN c C 

to be the module generated by all elements mn, m~ M, n~ N. We call M 

invertible if their exists N such that MN = A. (This is not quite the 

standard notion, e.g. as in Bourbaki [3~] , § 5.6, but exactly what we 

need. Therefore one should investigate a more general situation com- 

prising both notions of invertible modules.) Let 

Inv (A) 

be the set of invertible A-modules. 

Proposition 10.3.11. (i) Inv A is an abelian group under the composition 

law 10.3.10. 

(ii) Invertible modules are projective of rank one. Assigning to each 

invertible module its class in Pic A w__ee obtai____~n ~ sur2ective homomorphism 

cl : Inv (A) ------) Pic (A). 

(iii) There exists a canonical exact sequence 

0 ----~ A~----) CW-- ~ Inv (A) 
cl 

-~ Pic (A) -----> O. 

(iv) There exists a canonical exact sequence 

0 .... ~ (A/cC)* .... 9 (C/cC) ~ ......... 9 Inv (A) ~ O. 

Proof. (i) follows directly from the definition of Inv (A) because the 

existence of inverses was required. 

(ii) Suppose MN = A. Then 
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hence 

CM = CMC > CMN = CA = C 

CM = C . 

Therefore I = [ c. m. for suitable c. [ C and m. ~ M and hence 
1 1 1 1 

c = ~ (cci)m i. But cc iEA so that c 6M, hence cA cM. In particular 

M c C is a subgroup of maximal rank with cokernel annihilated by c, 

and M ~ Z Q ) C ~ Z Q is an isomorphism. 

If I = [ mini, m i ~ M, n i E N then fi : M ----> A : m ~---> mn i is A- 

linear and for each x E M we have x = [ fi(x)mi. Therefore M is a 

finitely generated projective module. Let q be a maximal ideal of A. 

Then Mq is a free Aq-module. Since Mq ~ ~ m Cq ~ ~ as Aq ~ Q-modules 

M must have rank one. 
q 

Finally given a projective module of rank one M. By 10.3.8 this 

module is isomorphic to a module of type M(e), e ~ (C/cC) ~. We give 

another description of this module. Let e' E C be a lifting of e. Then 

M(e) can be identified with 

(10.3.12) M' (e'):= {x E C I e'x ~ A } 

Choose f' & C such that e'f' = I + c2z for an z E C. Then f' E M' (e'), 

2 M' M' ') M' e' ~ M' (f') and e'f' = I + c z & (e') (f ~ (e'f'). But c~ M' (e') 

2 M' ' ~ . and cz e M' (f') hence c z & (e') M (f') hence A ~ M' (e') M' (f') On 

the other hand M' (e'f') = M' (I+c2z) = M' (I) = A. Therefore M' (e') is 

invertible and cl is surjective. From 10.3.4 (ii) we see that cl is a 

homomorphism. 

(iii) Suppose that M E Inv(A) is free, with generator x say. If MN = A 

we must have an identity of the form I = ~ (aix)n i, so that xEC~ and 

M = M' (x). If M' (x) = M' (y) for x,y ~ C then x = ay for a~ A; hence 

a & A ~e" 
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(iv) Let r : C - .) C/cC be the quotient map. Let C' = r-1(C/cC~). If 

r(e) = r(f) then M' (e) = M' (f): Let e = f+ch. Then x6 M' (e) ~ ex~ A 

x(f+ch) ~ A. Since cC c A we conclude that xch ~ A and therefore xf @ A, 

so that M(e) c M(f). We can therefore define a map (C/cC) ~--) Inv(A) 

by r(e) ~----} M' (e). To show that this is a homomorphism we note that 

M' (e) M' (f) c M' (ef) which follows from the definition. This is an in- 

clusion of invertible modules. Thus we have to show that any such in- 

clusion M c N must be an equality. Let q be a maximal ideal of A. By 

the Cohen-Seidenberg theorem (Atiyah-Mac Donald ~I] , 5.) there exists 

a ring homomorphism ~ : C ---~ Z such that q = {a~A I ~(a) ~ 0 mod p} 

for some prime p. Therefore x~ M is a generator of the localized module 

c N maps a generator Mq if and only if ~(x) ~ 0 mod p. Therefore Mq q 

onto a generator, hence is an isomorphism. By commutative algebra, Mc N 

is an isomorphism. 

The exactness of the sequence (iv) is implied by (iii) and 10.3.8. 

We now prove a recognition principle for invertible modules. 

Proposition 10.3.13. Let M be invertible. Suppose e E M and r(ef) = I. 

Then M = M' (f). 

Proof. If x E M' (f) then xf ~ A and therefore xef ~ M. Since cC c M we 

obtain x E M hence M' (f) c M. By the previous proof this inclusion 

must be an equality. 

We conclude with a geometric application. Let ~ ~ Ro(G). The module 

~ is contained via the mapping degree of fixed point mappings in 

C(~(G),Z) = C, see 8. g . We use this inclusion as an identification. 

Proposition 10.3.14. (i) Let ~ E Ro(G). Then ~J~ c C is invertible. 
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(ii) The assignment ~ ~ ~ ~ induces a homomorphism 

G 
Ro(G) ) InV(~o) • 

(iii) For ~ ~ Ro(G) the module w i__ss ~ t__oo &o ° if and only if 

Proof. (i) We know already that ~ is projective of rank one (10.2.2), 

but not every such submodule of C is invertible. The pairing 10.2.1 

- o f  o 

shows, by passing to fixed point degrees, that 

~o m ~ ¢o _ ~ ~ I 

so that 60 = c4 ~o 
o ~ -~ 

(ii) The pairing 10.2.1 also shows ~ ~)~ ~ ao . This ~+~ 

being an inclusion of invertible modules is an equality by the proof 

of 10.3.11. (iv). 

(iii) If u~ = ~o then I ~ ~ . A map representing I is an oriented 

stable homotopy equivalence. Conversely I & &)~ implies ~= 4 o, 

by 10.3.13. 

We restate 10.3.14 as follows 

Proposition 10.3.15. The assignment ~ ~ ~ induces an in~ective 

homomorphism 

p(G) : Ro(G)/Rh(G) .... ~ Inv (w~). 
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10.4 Comments. 

This section is based on tom Dieck-Petrie [6~] , where further in- 

formation may be found. Generalizations to real G-modules are in 

Tornehave [I~0] • A more conceptual proof of the main result of section 

9 using section I0 and the theory of p-adic A -rings may be found in 

tom Dieck [68] . These one also finds a computation of Pic A(G) for 

abelian G and an indication now Pic A(G) may be computed in general. 

For homotopy equivalent G-modules for compact Lie groups G see 

Traczyk [1GI] . For G-maps S(V) > S(W) of specific degree see 

Lee-Wasserman ~I0] and Meyerhoff-Petrie ~I~] . An interesting and 

difficult problem is the study of homotopy equivalences between products 

S(V) x S(W). For the homeomorphism problem for the S(V) see Schultz 


