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Introduction

A few years ago, I hoped to have the opportunity to write lecture notes such as these.
It was then possible to do a complete survey of the post-Stong [St] research in the direction
of Brown-Peterson homology. When finally confronted with this outlet, I found it impossi-
ble to do justice to the entire field. Although grand schemes such as another book like
Stong’s or an exposition of Morava’s work did occur to me, I had only three months to pre-
pare the lectures. The nature of C. B. M. S. Regional Conferences dictated that the lectures
should expose nonspecialists to the area (although few were present). The format became an
introduction to the basic facts about BP, with proofs, and a highly personal sampler of fur-
ther material, mostly without proofs. These notes are fairly true to the lectures; I talked too
much. (I have added §8 and expanded §11.) I have tried to retain an informal style and
where clarity means lying, the notes are clear.

An introduction to BP is a construction of BP and a study of the stable operations. In
the sampler I discuss a number of distinct tools: operations, associated homology theories,
formal groups, and Hopf rings; and show how each applies in several ways to interact with
the others. Throughout, I have emphasized the transition from sophisticated internal theo-
rems to the necessary applications; the moral: support basic research. The Conner-Floyd con-
jecture emerges as a central figure in these notes; it depends on almost everything else and
therefore is difficult to discuss outside of a series of lectures like these. A diagram of de-
pendencies for the Conner-Floyd conjecture is given as:

operations associated Hopf rings  bar spectral sequence
\ theories \
Morava Morava K-theories
structure of Eilenberg-Mac Lane

theorem / spaces

Conner-Floyd
conjecture

Each item in the diagram has other uses as well. Also, since these lectures, serious compu-
tations for BP, X have been done which depend on the Conner-Floyd conjecture.
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I begin by assuming the reader is familiar with the homology and homotopy of the
spectrum MU. From this I develop the basic facts about complex bordism cooperations
(§1), introduce the minimal necessary formal group machinery (§2), construct BP (§3),
and describe its cooperations (§3).

The sampler is begun by going into more depth on the cooperations and applying them to
stable homotopy (84). The algebra discussed arises again and again in later sections. Next, I
introduce the sequences of associated homology theories which contribute so much to the rich
and plentiful internal theorems in the subject (§5). Operations and associated homology theo-
ries are combined to describe Morava’s little structure theorem (§6). A little knowledge of the
Morava K-theories of Eilenberg-MacLane spaces is fed into the Morava structure theorem to
prove the Conner-Floyd conjecture (§6). To obtain this “little knowledge” it is necessary to
study Q-spectra, G4. The main tool is Hopf rings and they are inserted into the bar spectral
sequence (§7). In order to complete the proof of the Conner-Floyd conjecture, the first appli-
cation is to the Morava K-theories of Eilenberg-MacLane spaces (§7). As a detailed example of
Hopf rings and the bar spectral sequence at work, the homology of the Eilenberg-MacLane
spaces is computed (§8). Hopf rings and formal groups are then combined to study the Q-
spectrum for BP (§9). This provides the opportunity to give Chan’s proof of no torsion (§10)
and leads naturally to the study of unstable operations (§11). The material on unstable opera-
tions is previously unpublished. For an introduction, see the beginning of §11.

Although there are many new ways to do the material, § §1—3 follow Adams [A,].
The required properties are established as quickly as possible; the student and researcher
alike will need to read Adams’s book for the wealth of results which do not lie on the geo-
desic to BP. Mike Boardman made the inclusion of the Hazewinkel generators possible by
supplying the simple proof used here.

8§ 84—10 owe debts to all of the coauthors and colleagues mentioned in the text. §8
is new and is joint work with Douglas C. Ravenel.

The acknowledgements for §11 are in the introduction to that section.

The idea of these lectures is entirely due to Tim Lance. I offer my warm thanks to him
for this opportunity and also to Mike Chisholm and the other members of the faculty of State
University of New York at Albany who helped him out. Thanks are also due the Conference
Board of the Mathematical Sciences and the National Science Foundation (who funded the con-
ference and have cooperated with my tardiness), and the participants of the conference.

I thank the Osaka City University, Japan, the Tata Institute of Fundamental Research,
India, and the Hebrew University, Israel, for their hospitality and support during the produc-
tion of these notes, and Mrs. M. A. Einstein at The Johns Hopkins University for difficult
mail-order typing. During this period I was also partially supported by the National Science
Foundation and the Sloan Foundation.

My apologies to the reader for not including a complete bibliography of the subject,
but I found it too difficult to attempt away from my own files.

Finally I want to thank Michael Boardman, David Johnson and Robert Stong for
numerous comments on the manuscript which allowed me to correct errors and improve the

exposition.




Part I. An Introduction

1. Complex bordism. Bordism begins with geometry. Manifolds are well-studied
objects; bordism exploits the reservoir of knowledge about manifolds to attack homotopy
theory for more general spaces. This exploitation is analogous to the use of the geometry
of Euclidean cells by standard homology. In classical homology we quickly subordinate the

geometry to the rich algebraic structure which it induces. Likewise with bordism. We must,

however, keep the geometry in mind, not just for philosophical reasons, but because we
often return to bordism’s geometrical roots to derive new algebra.

For the correct details for the first part of this section we suggest Stong’s book [St];
for the second part, Adams’s book [A,].

Let
v

(1.1) l

Ml’l

be the stable normal bundle for a manifold M” of dimension n. Then v is the pull-back of
the universal bundle ¢ over BO by a map f (which is unique up to homotopy):

y—>§
. B
: " — BO
M ¥
The inclusion U(n) — O(2n) induces the map

(1.3) r: BU — BO.

This map pulls back the universal real bundle to the universal unitary bundle. If we can
choose a homotopy lifting g,

(1.4)
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we say that M" has a U-structure g. It can have several U-structures or none. A pair (M", g)
of a manifold and a U-structure is called a U-manifold. There is also an “opposite™ U-struc-
ture on M™, (—M", g) (cf. [CF;]).

We define the nth complex bordism group of a space X, MU, X. We consider all triples
(M", g, f), where (M", g) is 2 U-manifold of dimension n and f is a map

(1.5) f: M" — X.

As with chains in homology, there are far too many of these to take seriously the first time
around. (They can, however, be useful.) So we put an equivalence relation on these triples
by (MP, g1, [,) ~ M3, &5, [p) if there is a triple (W"+1, b, k) with 9(W" ™1, ) = (M7, &)
U-(M3, g,) and klowr*tl =f Uf,:
M
f1
(1.6) wntt K Sx  awrtl=MpU-M;.

e

M;

Under this equivalence relation we have an abelian group MU, X, where addition is
given by disjoint union. Using manifolds with boundary one can define bordism for a pair
(X, A) and verify geometrically that MU (X, A) is a generalized homology theory [CFy,
CF,. Cl. Generalized homology theories like this are always obtained from spectra [Br,
Wh]. The spectrum for complex bordism is just the Thom spectrum for the unitary groups:

(1.7) MU = {MU®n)},>o With maps S2 A MU(@n — 1) — MU(n).

The space MU(n) is the Thom space of the universal n-dimensional complex bundle &, over
BU(n). The maps are induced by the maps

En—l GaC——>En

por )

BU(n — 1) — BU(n)

We have an isomorphism:

(1.9 MU, X = lim [S"+2*, MUK) A X] = {S", MU A X} ={S° MUA X},,.

k>0
(We are making free use of Boardman’s stable homotopy category [V].) This isomorphism
is proven using transversality as in Thom’s original paper [T];see [CF,, CF3, C]. We can
use the right-hand side of (1.9) to define complex bordism. We see that all of the informa-
tion of complex bordism is contained in the spectrum MU. (We have now reduced to homo-

topy theory the geometry we wish to use to study homotopy theory to solve the geometric
problems which have been reduced to homotopy theory.) To study bordism we need to
know about MU. We will ignore the geometry as we develop the basic properties of MU.



BROWN-PETERSON HOMOLOGY

Where there is a generalized homology theory, there is a generalized cohomology
theory. In this case we have complex cobordism defined for finite complexes by

(1.10) MU"X = lim [S?*7"X, MU(k)] = {S™"X, MU} = {X, MU}".

koo
The Whitney sum of bundles gives a map

(1..1 1) BU(n) x BU(m) — BU(n + m),

which, when we pass to the Thom spaces, gives

(1.12) MUn) A MU(m) — MU(n + m).

This pairing turns the spectrum MU into a ring spectrum,

(1.13) m: MU N MU — MU.

This makes MU*X an algebra over MU* = MU*(point) and MU, X a module over m, MU =
MU, = MU (point) = MU *. This algebra follows from the geometric Cartesian product of
U-manifolds.

The ring structure turns

(1.14) H MU = lim H,,,, MUK)
k—o

into an algebra with a simple description. We combine the homotopy equivalence MU(1) =
CP* and the map used in defining the spectrum:

(1.15) x: CP® = MU(1) — MU.

Applying homology we obtain a map

(1.16) Hy,,CP* — H MU.

The group ﬁZH_ZCP“ is free on one generator denoted by §;, ,. We define
(1.17) b; € Hy,MU

to be the image of §;, , under this map. We have

(1.18) H MU =Z[b,, b,,...],

a polynomial algebra on the b’s. Since these generators, b;, come from CP, the comodule
structure over the dual of the Steenrod algebra can be computed. Using this, the homotopy
of MU can be computed with the Adams spectral sequence to obtain

(1.19) MU, = 1, MU = Z[x,, x4, ...],

a polynomial algebra on even degree generators. An element x,, € Ty, MU C H, MU is a
polynomial generator if x,, = Ab, + --- where A = £p if n = p* — 1 for some prime p and
A = 1 otherwise. We assume that the reader is familiar with these basic homology and
homotopy facts about MU. They are readily accessible. See Stong’s book [St], Switzer’s
book [Sw], or the original papers of Milnor [Mi,] and Novikov [N].
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We can consider the Hurewicz homomorphism
(1.20) MU, = n,MU C H.MU.

The groups MU, are just the equivalence classes of U-manifolds under the bordism relation
(1.6). Denote the equivalence class of CP™ with the standard U-structure by [CP"]. We
have

(1.21) [CP"] € 1, MU C H,MU.

These elements form rational generators. We need to identify these elements in homology.
This is one of the key connections between the geometry and the algebra. In the power
series ring HyMU[[s]], define

(1.22) sp s =2, bt by L

i>0
Define

(1.23) logs= 2 mns"H,

n=0

by
(1.24) log(exp(s)) = s = exp(log(s))-

The m,, (n > 0) are new polynomial generators for H, MU and from Mi§¢enko [N, Appen-
dix 1],

(1.25) [cp]l =@+ m,,.

This is proven using characteristic number arguments and is part of the assumed knowledge
of the homology and homotopy of MU.

We see that the Atiyah-Hirzebruch spectral sequences for MU,CP* and MU*CP” both
collapse (they are in even degrees). Thus

(1.26) MU*[[x]] = MU*CP™ = homy g (MULCP, MUs)
MU,

where x € MU2CP® is the map (1.15) (recall (1.10)). This all follows from the compati-

bility of the spectral sequence with the usual pairing of (generalized) homology and coho-

mology. We also need the obvious fact that x reduces to the standard cohomology algebra
generator. To describe the Kronecker pairing above, let

(1.27) y: §—MUAN X EMUX and Z X — MU € MU*X.

Then

(1.28) (z, y) EMU
is

(1.29) s 2 MU A X 205 MU A MU = MU
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(good for any ring spectrum) where m is (1.13). Define

(1.30) B; € MU, CP~
by
(131) ', By = 8.

This definition is valid because of the similar duality for homology and the compatibility of
the spectral sequence with the pairing. These §’s reduce to the standard homology §’s under
the map

(1.32) MU X — Hy X

which we have from our knowledge of H°MU.
Using our map (1.15), we define

(1.33) x4(B;y,) = DMV € MU, MU
just as with homology (1.17).
The Atiyah-Hirzebruch spectral sequence
(1.34) H MU; MU,) = MU MU = n,(MU N\ MU)
collapses (it is even degree), giving
(1.35) MU MU =MU,[b,, by, ...].
(The upper MU on blM U will appear only when it seems necessary.) This is the continuous
dual of the Landweber-Novikov operations MU*MU [L,, N]. (The topology is obtained
from the finite skeleta of MU.)
Using
(1.36) 1: §° — MU € MU,
to get the map
(1.37) X=SENX—~>MUAN X,
we can apply MU,.(—) to get
(1.38) MU X — MU MU A X).
We need a standard lemma to proceed.

LEMMA 1.39. Let E(—) be a reduced generalized homology theory. Let E,X be free
over E,. The exterior product gives a Kiinneth isomorphism:

EX®; ExY SE X AY). ©

Proor. Both E X ®E* E () and E4(X A —) are generalized homology theories.
The exterior product provides a natural transformation between them. They agree on a
point so the E? terms of the Atiyah-Hirzebruch spectral sequences are isomorphic and we
are done. O '
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By (1.38) and Lemma 1.39 we have

(1.40) vy MUX — MU, MU A X) < MU MU By y, MU.X.

MU MU = 1, (MU N\ MU) has two distinct MU, module structures: a left and a right (see
below). From (1.35) we know the left module structure is free; so, by symmetry, the right
is free. In the tensor product of (1.40) we are using the right module structure.

Let X = MU and we see that MU, MU is a “Hopf algebra”. For a general X, MU X
is a comodule over this Hopf algebra. We know the algebra structure of MU MU already
from (1.35). We give the other structure maps; see [A,].

We have

(1.41) e: MU MU — MUy;

just apply my(—) to (1.13). The left and right units,
(1.42) L, Mg MU — MU.MU,

are obtained by applying m.(—) to

(1.43) MUA S® —MUAN MU and S°A MU — MU N MU

respectively. Next we have the conjugation

{L34) e MU*MUG

which comes in the same way from the switch map

(L) MU A MU@.

We consider MU, C HyMU, (1.20), and describe our maps accordingly. Note also that

(1.46) MUMU C H,MUb,, by, -]

Use bMU to define exp and log series. As with homology, we obtain mMU; see

(1.22)—(1.24). At times we write

m=m, mMU= 3 mi,
iZ0 iZ0

B = Z ﬁi’ b= Z b'-, etc.

i20 i20

(1.47)

When we use these symbols in equations, we mean the equation is valid degree by degree.

THEOREM 1.48. (2) €(b;) =0,i>0,ie. e(®) = 1.
(b) ny(m) = m and ng(m) = T omy(mM UYL

© ¢ =1, eny = ng» cng =g, and c@MY) = Y
(d) The coproduct (1.40) is Ypyy(B) = Zjsob’* ' ® by

(e) The coproduct for MU,CP” is t]JCPw(ﬁ) = Ej>ob’ ®p. ©
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These are formulas which we shall use later to obtain the corresponding formulas
for BP. Because this is an introduction to the subject we will give the details of the
proofs.

Part (a). e(d;) = (1,b)) =1, x4f;, ) = x*(1), By ) = <x, B4V =0,i > 0.

The remaining formulas are a corollary of one result. By mapping MU — MU A MU
into the left or right factor as in (1.43) we can define elements xZ, x&, ﬁiL, BiR in

(1.49) (MU N MUY*CP™ =~ (MU A MU)*[[x]] and (MU A MU),CP>.
respectively, Here
(1.50) MU AN MU)™ = (MU N MU), = 1, (MU A MU) = MU MU.
Lemma 151, 38 =u pPV LT &
Before we begin the proof, we need:
LEmmA 1.52. The following diagram commutes:

MU*CP™ & (MU N MU)*CP*

\ s/ P

homy, ; (MULCP*, MU,MU)

and P is an isomorphism. Here R is the Boardman map induced by
MU=S° A MU— MU AMU,  o(f)B) = f+(8),
and
P(g)(B;) = (g B
where < , ) is defined because MU N\ MU is an MU module spectrum by the map
MU A (MU A MU) =~ MU A MU) A MU 225 qu A MU o
PrOOF. a(f)(B,) is § —" MU A cP™ —N MU A MU.

R(f)is CP™ —IMU = S° A MU — R MU A MU.
So, PR(f))B;) = (R(f), B, is

s 25 mu A cp=

Lo MU A MU= MU A 5O A MU LB MU A MU A MU AL yu A Mo

b ~ I
~
~

-
—

~ -

The last maps can be ignored because they give the identity. We see that we are left with
a(f)(B;), thus proving the diagram commutes.

The fact that P is an isomorphism is really the more general fact that F*CP™ =~
homE*(E*CP"", Fy) when F'is a module spectrum over £ and the Atiyah-Hirzebruch spectral
sequence collapses. O
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ProoF oF 1.51. We have a(x)(8,,,) = b}*Y by definition. We also have
PLYi(B) = (EY L B = 8.
To show this, we write down the map for the element ((xL)f, By
s 2w A cp= DDy Ay A MU 255 MU A MU

and observe that it factors

w IA(xL)i mAT

B
S —= MU A CP MUN MUN MU ———= MU N\ MU

) il 4

MUAN MU+—=-—MU A MUA S° —"—=MUA S°

This is already 8{: in the lower right-hand corner. Since
(MU A MU)*CP™ = (MU A MU)*[[x"]1,

R Lyi+1
we know we can write x® = £, 0a;,(x* )" . Then

j=0

a; = Zaj(xL)i+laﬁi+1> =<xR~B,'+1) =P(XR)(B,'+1)

= P(R(x))(ﬁ,'+ 1) = a(x)(6i+ 1) = b,MU- i
We return to the proof of 1.48.
Part (¢). The first three parts are obvious from definitions. For the last, apply ¢ to

1.51 to obtain
xL i Z C.(bl._MU)(xR)i+1_
iz0

Thus it is the inverse series to 1.51 which defines the m;.MU so we have c(b,MU) = mIMU.

Part (b). my(m) = m follows because ny, is a left module map. For ng, let H be the
integral Eilenberg-MacLane spectrum. We reduce the formula for x% as follows and obtain
two formulas for x7:

xL

Il

> mMURY*! € (MU A MU)Y*CP™

iz0

l

Y mx'tl € (H A MU)*CP”

i=0

Z mi(xL)H-l
i i=Z0
xH = ; €(H N MU A MU)*CP™.
2 mp(m) Ry ™!

iz0
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So

i>0 i>0 i>0 >0

T )R = 3 melytl = 3 m,-< > m,?”U(xR)f“>"“,

or ng(m) = Ei>0mi(mMU)i+l.

Part (e). The coproduct for CP* is defined by

MU,CP* > MUMU ®,; MU,CP”

S

MU A MU),CP™

The element g; goes to ﬁiL, ie. Yop(B) = {3{‘, and 1 ® B; is just B,.R. We need to write 6,.1‘
in terms of B, say B = ZL_ja;,_, ® B,. We recall x® = ZisobMUG LY+ which gives

(B ST Ly
k=20

where (bM U){c means the 2k degree component of (6™ Y)/. We have

4= <(xR)i’ Zl: 4 5 ® Bk> = (xR, 8}
k=0

= ( = @ty ﬁ,-L> - 6™y,

k=0
So ‘»l’cpm(ﬁi) = Eogjgi(bMU){_j ® B;, or

Vepe® =2 MY ® ;.

=0

Part (d). This follows at once from part (e). o
We will need one more result about MU.
LEMMA 1.53. There is a 1-1 correspondence between maps of ring spectra, g:

MU — MU, and power series

fe)= 2 dx™*t e MrPcr=, 4, =1.

i=0

The correspondence is given by g,(x) = fx): 1o
PRrROOF.
MU*MU == homy,,, (MU.MU, MU,),
MU*(MU N\ MU) = homy, ,, (MU.(MU A MU), MU,,),

MULMU A\ MU) = MU MU @y, MU MU.

e A

e T
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Let 6, € homMUt(MU*MU, MU,) correspond to g € MU *MU. The diagram

MU A MU 225 MU A MU

ml 1,,,

MU —25——> MU

shows that 0, is a map of algebras if and only if g is @ map of ring spectra. Let 0 g(bi) =
i+1

d; EMU,;, i > 0 (6,60 = 1) = 1), and let g4(x) = Zj5 04X "~ -

d; = 0,(;) = 0,(cuBis1) =& X4Bip 1) = 78 Bir o)
={gaX, Bi41) = <Z ajxiﬂ’ By ) =% =
i>0

great time can be had with formal groups, especially in connec-

2. Formal groups. A
lecture notes with

on with MU and BP. In fact it could easily be made the main theme of

ti
ust be elsewhere and the reader will regretta-

the same title as these. However, our theme m
bly be exposed only to the necessary minimum.

A commutative formal group law over a graded ring R is a power series

(2.1) Fx, y) = Y ayxy’ € Ryllx, ¥ 1, 4 €ERa+j-1y

ij
with:
F(x, y) = F(y, x), commutativity,
F(F(x, ), z) = F(x, F(y, 7)), associativity, and
F(x, 0) = x = F(0, x), identity.
Many relations on the a;; follow. Some simple ones are:

(2.2) a; = a3 o =0, k#1; a,,=1

The cohomology theory MU *(—) gives rise to a formal group law over MUsx. Just
apply MU*(-) to the standard map

(2.3) y: CP™ x CP™ — CP”

to get

(24) w*: MU*CP™ — MU*(CP™ x CP~) = MU*CP~ & mMu*cp=.
We obtain the formal group law
(2.5) F(xy, x5) = p¥x) = Eai]-xi & xi.
i’j
ivity, associativity, etc.

Its properties follow from the properties of u: homotopy commutat
As usual we can best describe £ by considering

(2.6) MU*CP™ C (H N\ MU)*CP™.
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Applying ¢ to 1.51 we have

2.7 xk = Y mMUGRYt! e MU A MUY CP™.

i>0
Reducing to (H A MU)*CP* we have

(2.8) x7 = 3 mxMV =logx.
i=0

The element x# is primitive, so apply u*:
2.9) log F(x,, x,) = xf" + xf = log x; + log x,.

Now apply exp(—) to obtain:
(2.10) F(x,, x,) = exp(log x; + log x,).
LEMMA 2.11. The primitives ofMUSCPm are MUZ free on log xMU_ o

ProoF. Because Hy(CP™, Q) is a polynomial algebra on a two dimensional element,
MU,?CP°° is a polynomial algebra over MU,? on a two dimensional element. By duality
there is only one primitive free over MU™ rationally. We know log xM™V is a primitive and
a quick check of its leading coefficient shows it is the generator we want. O

The ring for a universal formal group law can be constructed using arbitrary ai].’s and
the relations from (2.1). Lazard has determined the structure of this ring. The theory of
rational formal group laws is trivial; (2.10)—(2.12).

One of the strongest connections between bordism and formal groups is displayed in
the following theorem.

THEOREM 2.12 (QUILLEN [Q,], OR SEE [A,]). The formal group law for complex
cobordism is isomorphic to the universal formal group law of Lazard. ©

Given any formal group law F(x, y) over R,, there is a ring map g: MU, — R, which
induces the formal group; that is

(2.13) g@f¥) = a}.

The result can be made to appear even stronger because a topological analogue is true.
It follows, however, from a slight generalization of 1.53, even without Quillen’s result, and
it does not imply 2.12.

THEOREM 2.14. If F(x, y) is a formal group law over E, which comes from a gener-
alized cohomology theory E*(—) and the map (2.3), then there is a map of ring spectra,
MU — E, which induces the formal group law. ©

We define the formal group sum:

(2.15) x +ry = F(x, y) = exp(log x + log y).
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We define
(2.16) [1]¢x) = x = exp(log x),
and, inductively,
[n](x) = [n — 1](x) +5 x = exp(n log x), n>1.
We have
(2.17) [=11(x) = ux) = exp(-log x)
which implies
(2.18) F(x, ux)) = 0.

To prove this is well defined, let

(219) L(X)z Z coxktt,
k=0 g
Then
(2.20) F(x, (x)) = Zai]-xi< 3¢ ckxk“)j =0
ij k=0

can be solved inductively for c,, since ¢y, = 1.
This allows us to do formal group subtraction:

(2.21) x gy =x+p ([-1]1(¥).
We need only one more elementary formal group fact for the construction of BP.
LEMMA 2.22. The power series [1/d] (x) = exp(1/d log x) is defined over MU, ® Z11a)-
ProorF. Clearly,
[@]([1/d] (x)) = exp(d log(exp(1/d log x))) = exp(d 1/d log x) = x.
Let [1/d] () = Zj5 9¢;x’* ! and [d] (x) = ;5 04;x"*!; then

X = Zal<2 cixj+1>i+1

i20 j=0

can be solved inductively for ¢,,. We get that ¢, =ag ! = 1/d and ¢, is obtained in terms
of a;, ¢;,j<n, and ay 1: so when d has been inverted, the power series [1/d] (x) is de-
fined. O

3. Brown-Peterson homology. Brown and Peterson constructed BP, known to them
as X, in [BP]. They built BP using a generalized Postnikov system. Novikov also gave a
construction [N]. BP was not computationally useful until a description of its operation
ring was available. This was produced by Quillen [Q, ] and written up by Adams [A,].
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We localize the spectrum MU at a prime p and find a multiplicative idempotent e of
MU,,. The image of a multiplicative idempotent in MU (X )(p) is a natural direct summand
and so gives rise to the multiplicative generalized homology theory called Brown-Peterson
homology: BP,X. The representing spectrum is called BP. One of the problems in the field
is that there are no pointwise models for BP, only homotopy constructions.

The idempotent of interest is the composition of a family of commuting idempotents.
We describe these idempotents.

LEMMA 3.1. Let q be a prime. There exists a multiplicative idempotent €q 0n

MU, 1/q] Such that on H*(MU“/q])
m,, n+1%0(g),

e (m,) =
0, n+1=0(q).

The €, commute. O

From this we have:
THeOREM 3.2 (QUILLEN [Q,]). The multiplicative idempotent

€= H Eq EMU*MU(p)
q#p

is well defined. On H*(MU(p))

0, n#pi-1,

€(m,) = _
My, n=p'-1. i

The image of €, in MU (X )(p) is @ multiplicative generalized homology theory denoted by
BP. X, with

Zpylvy, vy, .01 —"’—ﬂ*BPCH*BP=Z(p)[mp_1,mpz_l, ...]. o

Proor oF 3.2. The product Il 4, €, is convergent in the topology on MU*MU(p)
because for large primes €, is the identity for large skeleta. The commuting of the €, makes
€ an idempotent. The rest follows from the lemma and above. O

Lemma 1.53 on multiplicative maps is true after localization. The same proof applies.
Multiplicative maps are identified there in terms of what they do on x™Y. Our Gy however,
is described in terms of what it does to H*MU“/q]. We need to go from one type of in-
formation to the other type. Let f(x™U) be a power series representing a multiplicative
operation g We define

(3.3) mogx = Y gu(m,)x"t1,
n=0
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Since log xMVU is primitive, (2.11), by checking the first coefficient and using the fact that
g, (log xMU) must still be primitive, we have

(3.4) g+(log xMY) = log xMY.
Also,
(3.5) g(log xMY) = mog f(xM7).
Let £~1(x) be the inverse power series, i.e. FY(f@) = x = f(f~'(x)). From (3.4)—(3.5)
(3.6) log XMU = mog f(xMU),
$O
(3.7) log f 7! (x) = mog x
and by applying exp(—) we have
(3.3) f~1(x) = exp(mog x).
We have computed f(x) in terms of g4(m,,) (and vice versa).
PROOF OF 3.1. We have a chosen mog for €,- Our only problem is to see that the
corresponding f(x) has coefficients in MU, after inverting q. This is done indirectly. Let §;
be the gth roots of unity, ¢ =i 2> 0. Since x4 — 1 = ML o(x — &), most symmetnic func-

tions are zero. In particular,

Ellc+...+21(;={

We see that we can rewrite our desired mog x as

0, k#0(@)

q, k=0().

mog x = log x — é(log Byt -t log gqx).

Our formal group nonsense comes in handy here. This tells us, by (3.8),

F1(x) = exp(mog X) = X [ﬂ(zlx P

Because this is obtained using formal group sums and the [1/q] sequence, we se< that the
coefficients of f~1(x) are in MU [&;, - - éq] (/a1 However, all terms involving the &
are symmetric, and the symmetric functions in the §; are integral. Thus f ~1(x) has coeffi-
cients in MUy q) and since its first term is x, the inverse f(x) exists and has coefficients
in MUsq1/q)-

This gives a multiplicative map with the desired properties. The commuting of the €,
can be checked by evaluating in homMU*“/q](MU*MU“/q], MU*[I/q]) which is, ration-
ally, the same as homQ(H*(MU; Q), H(MU; Q). Likewise for e, © €, = €g- o

We develop the basic properties of BP,BP. Just as with MU, we will do our compu-
tations with

(39 BP,BP C (H N BP)+BP.
We occasionally change the indexing on the m’s so that

(3.10) Im| = 2(p" = 1).
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THEOREM 3.11 (QuUILLEN [Q,]). (i) There are t; € BP
i
nr(my) = Tl om;th_;.
(i) BPyBP = BP,[t,, t,,...].
(iii) c is given by

5 (p,-_l)BP, ty = 1, such that

3 e F n
me= 2 mitzplc(tk—i—j)p‘ﬂ or 1= 2" tyet)P.
0<i+j<k n,j=0
(iv) The counit € has e(1) = 1, e(t;) = 0,i > 0.
(v) The coproduct  is computed by

L o oh h+i
Z m,-(ll/(tk_,-)) = Z my, t; ® Z‘]P
i=0 h+itj=k

or

ST ue) = Y e o
i>0 i,j>0
Ravenel first showed us the nice formal group sum versions of these formulas. Note
the similarities with the formulas for the dual of the Steenrod algebra where formal group
addition is just regular addition and you use the conjugates of the normal generators for the
dual of the Steenrod algebra.
PROOF OF 3.11. Parts (i) and (ii). The formula in (i) can be used to define the #’s.

The question is whether or not they actually lie in BP,BP, since they were defined in
(H N BP),BP. We recall 1.48(b) for MU:

nR(m) = Z mi(mMU)i+1.
i=0
BP)p!  Rewrite

Apply the idempotent of 3.2 to obtain E,}onR(mpi_l) =Z,5om (m

the left-hand side using the formula defining the £’s in (i):

ZUR(m i )= Z m . tij.

i>0 B g T Bl

pi~1

Using these two expressions we have X, -, logB? t, = logBPmBF. Apply expBP (-) to obtain

F
(3.12) > e mBP.
k>0
Since mBF € BP,BP it is simple to prove, by induction on %, that t; is in BP,BP. Further-
more, it shows that ¢, = mB,f_l modulo lower m’s. Since these m’s reduce to the generating
m’s in homology we have part (ii).

Part (iii). Apply ¢ to (i),

k . .

3 1

nr(mg) = > m I._lti_i = D m;tf,
i=0 P i+j=k
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to obtain
— i
my = Z nR(mi)C(f,-)”,
i+j=k

which is

e mst,’,’sc(t]-)ps+n by (i).
st+n+j=k
Add these over k and apply exp to get the formal group sum version of the formula.
Part (iv). The proof is by induction. Apply € to (i),

i
nR(mk)= Z m,-t]-p,
i+j=k

to get my, = m, + €(t), so e(t;) = 0.
Part (v). Apply ¥ to part (i), ng(m) = EHJ.:kmit]P', to get
1@ nglmy) = Y m()P.
i+j=k

The left-hand side, by part (i), is

i i
1® 2 mtf = 3 npm) ®t,
i+j=k i+j=k

and again by part (i),

h h+s
= 2 m2 e
h+s+j=k

This proves the first formula. Just add over k to get

j§) log Y(t;) = 3,1420 log z, ® t}’s.
Apply exp to obtain the formal group sum version. O
With our new generators Z;, it seems that we have lost track of the coproduct on CP™.
It can be recovered. This is an example of how much information remains in [A,]. Several
people have studied operations on BP*CP* without noticing the following simple formula
(which, unfortunately for the author, was first conjectured by computations).

THEOREM 3.13 [RW,]. The coaction : BP,CP” — BP.BP ®pp_ BP.CP” is

cP>’
given by
VB2 =2 <c<>:”rr.>>i®ﬁfp- 2
oF i>0 n>0

ProoF. Apply the idempotent to the MU, coproduct 1.48(e) to obtain
U pe(850) = 30 057) @ 7F.

iz0
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Substitute 58F = ¢(mBP) from 1.48(c) and mBP = 2,’,;02‘" from (3.12). ©
For future use we record the formula used in the proof above.

LEMMA 3.14. b8P = ¢(ZE ¢). ©

Even the most naive reader should realize there are problems with viewing BP,, only as
a subring of H,BP. Historically, general computations with BP had to wait not only for
Quillen’s description of BP,BP, but also for explicit generators for BP,. In retrospect, many
results do not need explicit generators to be proven but they were essential for the first
proofs.

Liulevicius constructed generators for BP at p = 2 in [Li]. Then Hazewinkel con-
structed generators at all primes [H, H,]. Other generators followed; [K, Ar, ], etc. Un-
fortunately, Hazewinkel’s generators came after Adams’s lecture notes [A,] and were not
included.

THEOREM 3.15 (HAZEWINKEL [H,, H,]). Generators for
74BP C H,BP

g - M

Zpylvy. vy, ..l C©Z,y[my my, ..

o, = 20" = 1) = |m,|

are given by

o

n—1 ;

1

= — P

v, =pm, = 3 mub_.
i=1

ProOOF. From (1.19) and the properties of the idempotent, it is clear that an element
w, EBP2(p”—1) is a generator if and only if w, = Am,, + -+, p|\, A #0 (p?). Our form-
ula for v, meets this requirement if v,, lies in BP,.

- LEmMA 3.16. exp(px) € pBP,[[x]]. ©

PROOF. From (1.25) we know that p"m,_ = [CPP?"~1] € BP,. Thus p*H, . (, 1 \BP
€, k(p_l)BP, the worst case being m{‘ , 80 p"b, is clearly in BP,. Thus

exp(px) = 3 b(pxY*! € pBP,[[x]]. O
i>0
Rewrite the formula for v, as pm, = E,-"z_ol mivf,’ii and add over all n > 0:
pm-p= 3 my?, m= 3 m,
0<i+j m>0
0<j

Write p as log(exp(p)). The above is now p log(1) = log(exp(p)) + Zjsologu;. Apply exp:

[P1(1) = exp(p) +5 3" v,
j>0
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Since exp(p) € pBP4 and [p] (1) has coefficients in BP,, we can easily show, by induction
on j, that v; €BP,. O
In the above proof we showed:

LeMma 3.17. [p1(x) = Zf;ouixl’j mod (p). ©

This is a useful formula. Among other things, it says that the coefficients of x? Gt
the [p]-sequence are generators. This was surely known to Morava and probably Quillen be-
fore other people were even interested. We see, however, that the result can be obtained
from [CF,], which existed before the question could be formulated. Araki’s generators
[Ar,] have the property that the formula in 3.17 holds without going mod (p)-

We have introduced the basic formulas for BP. The reader is now equipped to use BP
as a tool. The formulas, however, can be difficult to use. They are inductive. In principle,
one needs to know everything in lower dimensions in order to compute the next. This is in
sharp contrast to the closed formulas in the Adem relations. In practice it is impossible to
keep track of all of the information forever. Consequently, much of the job of a beeper
(BPer) is to be able to skim some information from the formulas without having to deal
with it all and come out alive. There is strong motivation to do this. The formulas contain
a vast amount of information.

The Brown-Peterson spectrum sits midway between the sphere spectrum and the
Eilenberg-MacLane spectrum. It has a nice balance between its homotopy and homology:

(3.18) S((’p) — BP — HZ

homology: good okay bad
homotopy: bad okay good

It can be expected to be useful because a tremendous amount of information has already
been used in its construction.

It has the advantage of small size over MU. Anyone who has worked with a polyno-
mial algebra prefers one whose generators go up exponentially in degree (like BP) to one
where they go up linearly (like MU).

The mod (p) cohomology of BP is just the reduced pth powers, i.e., the Steenrod al-
gebra modulo the left-right ideal generated by the Bockstein, or the left ideal generated by
the Milnor Bocksteins, @, The k-invariants of BP are given by all of the higher order oper-
ations which come from the Milnor Q,,’s. Philosophically, using BP instead of mod (p) ho-
mology should have the effect of changing this higher order information from the Q,’s into
simple BP, module structure information. Thus it is reasonable to expect BP module struc-
tures which contain information which is difficult to gain access t0 from a standard homol-
ogy point of view. On the other hand, BP can be expected to be a useful tool for only cer-
tain types of problems: those where there is higher order 9, information and it has been
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turned into accessible BP, module structure information. The next section on stable homo-

topy gives an example of the success of this principle. However, the process of trading inac-

cessible higher order information for inductive formulas does not make life easy.
A useful way of viewing Quillen’s splitting is as [Q, ]

(3.19) BPy ®yy, MULX = BP,X, MU,y ®pp BP.X =MUX,).

We end this section with a few examples of formulas taken from Giambalvo’s paper
[G]. There are more terms and formulas in his paper.
p=2.

21G) = 2x —ux? + 2% — (Tu, + B0])x* + (30v v, + 2607)%5
- (111020, + 84v5)x® + (50203v, + 3000$ + 112v3)x7
= (1270, + 960v,v2 + 229%%v, + 11400])x®
+ (766v,v5 + 54140202 + 9958v5v, + 433403 )x° + ...,
nr@) =v, +2t;, mpl,)=v, + 2, — Sv,t — 43 - Buitys
olt, Y~y - o) Tty wuts =i,
YE)=t, ®1+1®¢t, Yit,)=t,@1+1®1,+t, ®t] vt ®t,.

p=3.

[3]6Gx) == 3x ~ 8vy%® + Twlx® — Ba0ulx" = (65600, — 900007
+ (2165040, v, — 8899205 )x 1! ~ (5360208v3v, — 658776v5)x!3
+ (119105576v3v, + 1199088v7)x!% + ...,
ngr,) =v, + 3¢,
N ,) = v, — 4vdt, — 18022 — 350,73 - 27t} + 3¢,
c(t))=—t, ct)=-t,+1},
i) =t,®1+1®1¢,,

Wie,) =1, ® 1L +1®t, —v,2 0t —ut, ®8 +1, @12,



Part II. A Sampler

4. Cooperations and stable homotopy. We begin our sampling of BP with a closer
look at BP, BP with an eye to applications. There is an obvious interesting object:

(4.1) Extzh. p(BPy, A) = H**(4),
where A4 is a BP,BP comodule. We will concentrate mostly on simple cases of
4.2) A = BP,[I

where I is an invariant ideal, i.e., an ideal which is also a subcomodule of BP,;. Since the
coproduct (1.40)

(4.3) BP, — BP,BP ®, p, BPy = BP,BP

is a left module map, [ is invariant vif and only if

4.4 IBP,BP ~ BP, BPI.

If we want to verify 7 is an invariant ideal, by symmetry it is enough to check that
4.5) ng(l) C IBP,BP.

Thus it would be useful to know ng(v,) (since 0y, is an algebra homomorphism). We give
a formula which we shall use many times.

THEOREM 4.6 (RAVENEL R, ]).

F (4TS F i
o tng )P = 3 y;tP" mod(p). ©
iZ0 i>0
j>0 j=0

Proor. From 3.15, pm, = Eo<i<nmiv},’ii. Apply ng,

an(mn)= Z "R(m,-)nR(v,,_,-)pl,
0<i<n
and 3.11(j),
i j itk
p X omtf = ¥ mifne,__)” .
i+j=n 0<j+k<n
23

e =g
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Add over all n, substituting 3.15 in the left-hand side,

h  h+k K
p"p =
pY t,+ 2 myitf = 2 log t;np(wy)?" .
n=0 h+k+j=n k=0
k>0 $>0

Rewrite this as

' k k
logexp(p( 3 t,) )+ 2 logutf = > log tpnp ()P .
n>0 k>0 k>0

j>0 5>0

Apply exp,

F k F k
exp<p< > tn>> e D P = S g )P
n>0 k>0 k>0
j=0 §s>0

Reducing mod(p) we are through by 3.16. ©
This is a useful formula for extracting information about ng(—).

LEMMA 4.7. The ideal I, = (p, vy, ---, v,_;) C BPy is invariant. O

ProoF. We need only show that nR(v]-) €I,BP,BP,0<j<n. Inductively it is
enough to show nz@,_,) €1,BP,BP. We will show a little more.

LemMma 4.8. ng(v,) =v, mod,. O

ProoF. Inductively we can assume [, is invariant and we have I, BP, BP = BPBFI,
so working modulo 7, makes sense. Use 4.6 in degree 2(p™ — 1) modulo 7, ; 4.8 follows. O

This shows 4.7 inductively. O

Using Ravenel’s theorem on Lemmas 4.7—4.8 is overpowering.

THEOREM 4.9 (LANDWEBER [L,], MORAVA [Mo,]). The invariant prime ideals are
I,,0<n<o> 0O

SKETCH OF THE PROOF. We know [, is invariant and prime. Assume [ is an invariant
prime ideal. Inductively assume I, CI; we show that if I, #1, then I, ., CL Lety €
I-1I,. If we could show

(4.10) () =awft! +--,  aZ0(p),

then we would have v,’f €I and since [ is prime, v, as well; thus I, . ; CL A proof of
(4.10) is not difficult at this point; however, it does require some serious bookkeeping to
know how to choose ¢t/ = t{lt? --- given y in terms of v’s. We refer the reader to the ori-
ginal proofs or the more recent [JW,]. ©

Having meandered into operations only a little way, we are already in a position to
state a rather nice internal structure theorem on BP«X.
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LANDWEBER DECOMPOSITION THEOREM 4.11 (LANDWEBER [L;]). For X a finite
complex, there exists a finite sequence of subcomodules over BP4BP, 0 = My, CM; C--- C
M, = BP.X, with

M, /M, =BP*/I,,i, i20,0>n,20. O

The problem of 4.1 arises naturally from results like 4.7—4.9. Let I be an invariant

ideal; then

(4.12) HOBP,JI = hompp pp(BPy, BPy/I) C BP,/L

Let a € BP,/I determine such a map. Then we have the commuting diagram

BP, —> BP,BP Qgp_BP,

(4 1 3) al ll@a

BP,/I — BP,BP ®pp_ BP:ll
where, since the comodule maps are BP, module maps we have

(ol ol st secgly g

|

a—a®1=10®a
$0
(4.15) ng@) =n; (@) modulo I
determines H°BP,/I.
THEOREM 4.16 (LANDWEBER [L,]).
H°BP, ~Z,, H°BPy/I,~F,[v,],n>0. o

SKETCH OF THE PROOF. By 4.8 we have F,[v,] C HOBP,/I,,. For other a € BP,
-1, by (4.10), ng(@) #n (@ modI,. O

This makes H kBP*/In into an F, [v,] module. Since F, [v,] is a P.L.D. we know that
H¥BP,[I,, is a direct sum of free copies of F,[v,] and cyclic modules, F, [v,]/(v}). This
develops a craving for the next step, A lBP*/In, which, for reasons that will be clear in a
moment, seems accessible. Before we move on to the higher Ext groups we should have
some method of computation [M].

Let
(4.17) Q"(BPBP, A) = BP,BP ®gp_ """ ®gp, BPBP ®gp_ A

—EEET e
n copies
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be the cobar resolution with

It i ’ "
d(yyl =+ pla) = 1yl ==+ lypla + 30 2Dl bl hrgle
i=1

(4.18)
FEPTIE | nlypala”
where
(4.19) Y =27 ®7" and Y@ =) a ®a".

The homology is H**4.
For A = BP,/I, we have Q%4 = BP,/I. If a € A, then Y(a) = n (@), so

(4.20) d@) = lla — all = ngx(@@) — n,@).
Just as in (4.15), we find H°BP,/I is the kernel of
4.21) a —> np(@) — n.,@).

Observe that the resolution has no elements in internal degree ¢ #¥ 0 mod 2(p — 1).
This property is called “sparseness”, and is quite nice [TZ,].
The short exact sequence

VUy—
(4.22) 0 —> BP,JI, | ——> BP/l,_; —> BPy/I, =0

gives rise to a “Bockstein” long exact sequence:

H*BP, I, ——>H *BP, /I _

.

H*BP,/I,

This begins
S ] E, v,_,] F,[v,]

I o ] I
(4.24) 0 — HOBP, /I, | —='> HOBP,/I,_; — H°BP./I,

Vy
H1BP,JI,_, —=> H'BPI, , — H'BP4lI, )

We see that §,,_ 1(v") # 0, k > 0, and gives all elements in H 1BP,/I,_, which are killed by

v,_;- The structure theorem for modules over the P.ID. F, [v,—,] gives hope for finding
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the entire group. All we must do is compute the Fp [v,_,] free part and find module gen-
erators, Xx;, such that vg__llx]- = 6n_1(v{;). The f_ree part will be discussed later. Finding
generators x; is just a matter of dividing §,,_, (v}) by v,_, as much as possible. We give a

simple example. To compute & we need to know ngx(v,) modulo 7, _,, as

n—1s
(4.25) 8p_1(0F) = 0, ) (g W) —ny () mod I, ;.

LEMMA 4.26 (MILLER-WILSON [MW], RAVENEL’S PROOF [R,]).

= n=:1
NpWy) S+ Uy 37 ¢ —vh g,y medl, .. O

This is a good example of skimming off information from the inductive formulas. This
formula contains a tremendous amount of information and can be pushed a long way for
results; see [MW].

Proor. We use Ravenel’s equation 4.6. In the degree of ng(v,), the left-hand side is,
modulo I, _;, ng(,—;) tr ngW,) +5 t;ng ©,_{ )P, which is simply n5(@,) + ;1 (v,—1)?,
and by 4.8, this is ng (v,) + vE_,¢,.

The right-hand side of 4.6 is v,_; +p v,_ 22" '

Now we can present our example of some dividing by v

+5 v, which isv, + vn_ltf"_l. o
—1- Write k = ap®, a # 0 (p).
We know

0#5, %) =5,_,©%P")

3 S
= W,_;) g %") — 1, @) mod I, ,
(4.27)

o n—1 .S s
= Wpe1) T @, + v,y 1] —vp_ 1 )P —vpP’l modl,

A s s n—1+s s+1 _s s
= (v,,_;) ViR el =l cath W 0dP | rmod L 4

Clearly ur‘,’f;l divides this, so the element
s £
(4.28) 8, (P )/U,';ill

is nonzero and defines for us an injection of F, [vn_ll/(v,’,’il). We have easily come up
with a large number of elements in H‘BP*/In_l. These elements, for n = 2, were found in-
dependently by several (6) people, but first by Zahler [Zh]. For awhile it was believed this
was all of the v, , torsion. Haynes Miller gave an example of a new element for n = 2, and
eventually the entire structure fell [MW]. When the above a = 1, there are no more ele-
ments, but when @ # 1, one can divide (a homologous cycle) by v,_; more times. A favor-
ite pictorial representation for the v,_, torsion in H'BP/I,_, is
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81 W) 8,_, 2" 5, ') a#l

{ |

(4.29)

S Sy
511*1(01’: )/Ur’z,fl T l(uap )/Ut!; Il 9

where multiplication by v,,_, is vertical and the top line gives all of the elements & n_l(v,’f)
killed by v,_,
Let us do a little more computing. Let p be odd. For HBP, we have

(4.30) nr(y) =v; +pt;.
Then
s 1
431) 8of") = [y +p1, 7" — vf?]

is divisible by p*, and &,(u?P*)/p* reduces to aw?°~1t,, a %0 (p), in H'BP,/(p). The v,
free part of H'BP,/(p) is generated by ¢, (and there are no Z(p) summands of H!BPy).
Therefore,

(4.32) H1,2(P—l)psaBP* =~ Z/(pStY).

This looks like the image of J at an odd prime. Seeing this, we know it is time to leave our
discussion of rather sophisticated internal theorems about the cohomology of BP,BP and
start to look for applications. We need the Adams-Novikov spectral sequence.

Define BP by the stable cofibration:

o =
(4.33) S8, — BP — BP.

We form a sequence of stable cofibration triangles with the top maps all changing degree:

S(p) «— BP «——— A2BP «—— N3BP « -

e e \

BP BP A BP BP \*BP



l
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m—1 ‘~Un)
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Smash this with X and apply m.(—). The resulting spectral sequence has
(4.35) E, = Extgp pp(BPy, BP4X) = H**BPy X = 1, X .

For H*BP,, = ,S(,, p > 2, the calculation of H 1BP,, really does correspond to the
image of J [N]. Other parts of the previous algebraic material correspond to geometric situ-
ations. For the first example, Larry Smith generalized the elements of order p in the image

of J. He considered spaces V(n) with mod (p) cohomology E(Qy, Oy, ..., @,), Or equiva-
lently [Sm, ]

(4.36) BP,V(n) = BP,/I,. ,.

This is the situation discussed at the end of the last section as most likely to be accessible

by BP techniques. Unfortunately, the V(n) spaces are only known to exist for very small

values of n, but in these cases they have produced a great deal of homotopy information.
Letting S = V(- 1), the V(n) are constructed inductively as cofibrations,

(4.37) 22" Dy - 1) — Vn - 1) — V(n),
which realize the exact sequences

v
(4.38) 0 — BP,/I, = BP,/I, — BP,JI ., — 0.

The space V(0) exists for all p, V(1) exists for p > 2 [A;], V(2) for p > 3 [Sm,, To, ],
and V(3) forp > 5 [To,].
The elements of order p in the image of J are constructed by the composition
k
(4.39) 22(-Dkg0 — 520~k p(0) =—s p(0) — §*
obtained by iterating the map in (4.37). The map to V(0) is represented by
(4.40) vk € H°BP,/(p)

in the Adams-Novikov spectral sequence. The elements of order p in the image of J are
represented by

(4.41) 8,(vk) € H'BP,.

Larry Smith constructed and detected the elements 8, [Sm,] defined by the compo-
sition
(4.42) §20% -1k Ez(pz—l)kV(l) .. (1) — 22@-D+1pg) — §2(-1)+2
The map to V(1) is represented by
(4.43) vy € HBPy/(p, v;).
The nontriviality of this composition is determined by the nontriviality of

(4.44) 808,(v¥) e H?BP,.



30 W. STEPHEN WILSON

We have seen that Bl(vf) # 0. We then have an exact sequence

8
(4.45) —s H1BP, — H'BP,(p) ——> H?BP, —

where we know the first two groups and can easily verify that 5061(04‘) # 0. See [JMWZ]
or these notes after (4.31).
The element 7, is defined by the composition

@46)  S2@3DF s 5203 Dkp() ¥, pa) — s202-DF20-1F3,
The map to V(2) is represented by

(4.47) vk € H°BP./(p, vy, v,).

It is enough to show that

(4.48) 0 #8,58,8,(v5) € H>BP,.

There is a result involved in making the leap from algebra to geometry. The most accessible
place to find it is in [JMWZ]. We already know that

(4.49) 0 # 8,(v5) € H'BP/(p, vy)-

We consider the sequence

8
(4.50) — H'BP,/(p) — H'BP./(p, v;) — H*BP,/(P) =
We know the first two groups and so we can verify that
(4.51) 0+ 8,6,(v%) € H2BP,/(D).

Our next exact sequence is
8o
(4.52) —s H2BP, — H2BP,/(p) — H>BP, —.
To prove that
(4.53) 0 # 5,5,6,(v%) EH’BP,

it turns out to be necessary to compute H2BP,, but fortunately not H 2BP,/(p). Thereisa
pictorial representation for H 2BP,. corresponding to that for H 1BP,/I, given already. We
picture H'BP,/(p) more explicitly:



[IMWZ]
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top 1ow is él(ué“)

A~
5,(v5) 5(ve’)
(4.54)
51(U§S)/vfs_l —
‘\ SI(ngs)/U{,sﬁ,ps—l*z
free summand on ¢,

v, multiplication is vertical

H?BP, is all p torsion. Using (4.31) to compute (4.45), we see that the image of H!BP, in
H'BP,/(p) is the free tower on ¢,. Thus all of the v, torsion part of H'BP,/(p) maps to
H?BP, and gives the elements of order p in H2BP,. All that remains is to divide these ele-
ments by p as much as possible. The exact divisibility can be found in [MRW]. The v, tor-
sion part of the picture for H'BP,/(p) is shifted to H?BP,. The main elements are Smith’s
By = Boél(vf). From B, with k = ap®, s > 0, there are hairy stalactites hanging down. The
hair represents the division by powers of p.

Before proceeding to the description of the approach to the computation of H 2pP,

this seems like a good place to sketch a simple proof of the fact that y, # 0 [TZ,, OT, A,].

This element generated a great deal of interest when the original papers of Oka-Toda and
Thomas-Zahler came to opposite conclusions. The proof given here has evolved over the
years with all of the advantages of hindsight with contributions from many people. Nothing
is used that was not available to the combined forces of bordism and stable homotopy ex-
perts at the time of the original proofs. The bordism experts had known for some time that

(4.55) 0# ! €my, 1417 0)
in complex bordism (BP) filtration two, i.e.

(4.56) 0 #6,8,(v;) € H2BP,/(p).
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The only remaining question was whether this lived on the top or bottom sphere of 7(0) in
the exact sequence

(4.57) — Ty 14158) > Ty g 14170 = Mgy 1Sy —

Both of the end groups are in known stable stems isomorphic to Z/(p). The only question
is if ! is hit by the left-hand Z/(p). The stable homotopy experts knew that this group
was generated by ¥ [To,]. The filtration is thus greater than two so it cannot hit y!.

The complexity of the computation of H 2BP,, necessitates some new techniques. We
begin with some exact sequences which define the new BP,BP comodules:

0 — BP, — p 'BPy — BP,/(p”) — 0

0 — BP,/(p™) —> vy 'BP./(p~) — BP4/(p”,vT) — 0

(4.58)
0 — BP,/(p™, v™) —> vy BP/(p™, v7) — BP,/(p™, v], v3) — 0
Apply H*(—):
H*BP, < H*BP,|(p™) " H*BP/(p™, v7) < ="
et S i Yo \o o
H*p~'BP, H*U;IBP*/(pw) H*Uz_lBP*/(pma UT)

This gives a spectral sequence

(4.60) ESt=HW1BPJ(p™. ..., v ) = H*BPy,

called the chromatic spectral sequence [MRW] . It breaks H *BP,. up into its v,-periodic
components. Since H*p —1Bp, = Q, we have

H? —
Q\
~
~
N
oy ~
'®) H‘UII\BP*/(p“’) H! —
~
(4.61) >
~
~
B = =
-~

Q HOv'BP,/(p™) ™ HO'BP, (™, v7)

N

~
~

~

~
H?BP,
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To get H2BP,, we need H'v; ' BP,/(p™) and H%; 'BP,/(p™, v;°). This is already a great
improvement (despite the complexity of the modules) because the lower the cohomological
degree, the more accessible things are. In particular,

(4.62) . HMCM

The first differential kills all of H 'v;'BP,/(p*), so H>BP, comes only from
H®;1BP,/(p=,v7). We have an exact sequence

(4.63) 0 — v 1BP,/(p) — vy 1BP/(p™) £ v ' BP,/(p™) — 0.

Apply H*(—) to get a Bockstein exact couple

H*['BP,/(p™) £ H*v[ ' BP./(P™)

(4.64) \ /

H*UFIBP*/(I’)

Likewise, we have

0 — b5 1BP/(p, v7) — vy \BPL/(p™, v7) L= 03 BP(p™, vT) = 0,
(4.65)
v
0 — v;1BP,/(p, vy) — V3 BP4/(p, T) —> b7 BPA/(p, vT) — 0.

Applying H*(—) we get two exact couples, the second beginning with

(4.66) H*v;'BP,/(p, v,) = vy "H*BPy/(D, v,).

In general we start with the v, torsion free part,

(4.67) H*v,'BP, /I, = v, "H*BP,/I,,

and have n Bockstein spectral sequences to get to

(4.68) H* 'BP.[(p™, v, ..., v y).

The computability of (4.67) is a key motivating factor in this approach to H*BP,. This

computability is part of the Morava structure theorem for complex cobordism. We give the
Miller-Ravenel approach.

THEOREM 4.69 (RAVENEL [R,]). Let K(n)y = F,[v,, v, 1.

K(n),K(n) = K(n) ®pp_ BP.BP ®pp K(n)y = K(n)y[ty, 15, ...] @2, —v,t?™). o
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ProoF. It is elementary that

K(n)K(n) =2 K(n)« [y, 15, - J/tg @y 41) NrWp42)s -+ )

We go to Ravenel’s formula 4.6

F i_ F_ pi
2 tmp@)P = b v;tf" mod ().
i>0 i>0
>0 j>0

This reduces to Ef;otinR(vn)”' = Ef;ovn t]P". By induction on degree we have tinR(vn)”'

= vntip", but by 4.8, nx(v,) =v,, and so

THEOREM 4.70 (MILLER-RAVENEL [MR]). ExtK(n)*K(n)(K(n)*, K(n)y) =
H*v 'BPJI, = v, 'H*BP,/I,. ©

Proving this is beyond the scope of these lecture notes.

Morava’s approach (the original) is dual to this [Mo,, Mo,]. The “dual” of K(n)4K(n)
is the “group-ring” for the p-adic Lie group (known as the Morava stabilizers) of endomor-
phisms of the height n formal group law over the closure of F,. The continuous cohomol-
ogy of this Lie group determines the cohomology in 4.70. A good explanation of the details of
this duality is in Ravenel [R,]. Both approaches give H'v,1BP,/I, easily.

Another exciting motivating factor for the study made in [MRW] is the following im-
portant finiteness property which gives a parabolic vanishing curve (with spikes) for the chro-
matic spectral sequence.

THEOREM 4.71 (MORAVA [Mo,1). If p — 1 does not divide n, then
H%;'BP,JI, =0 fort>n* 0O
We are leaving the computations of cohomology groups over BP,BP. The computation

of H lBP*/In and H2?BP, demonstrates a good grasp of the operations for BP. Furthermore,
these computations have led to many concrete applications in stable homotopy.

5. Associated homology theories. There are many generalized homology theories as-
sociated with BP. Each family of theories takes us in a different direction, but the theories
themselves have a common origin. For this origin we must revert to geometry.

Recall that MU, X is given by equivalence classes of maps (1.6):

(5.1) M" — X

It is Sullivan’s idea [Su] to kill manifolds selectively to form new generalized (bordism)
homology theories. Baas [Ba] developed a good bookkeeping system for dealing with these
theories. Let

(5.2) M] = x,, EMU, = Z[xy, X4 -..].
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The bordism theory MU(x,,,), X fits into an exact sequence

MU.X ——->MU*

\ 7

MU(x2n)*

with MU(x, )5 = MU,/(x,,). A “manifold with singularity” in MU(x,,,)4X is a U-manifold
with boundary

(5.4) V, oV=MxP

and a map ¥ — X such that on 3V the map factors through the projection

(5.5) MxP—P—X.

From Sullivan’s point of view this is the same as allowing the cone on M to be a manifold
with boundary M. This can be generalized to define “bordism™ for pairs of spaces. The veri-
fication that we have a homology theory and the exact sequence (5.3) all come from the

geometry [Ba]. Inductively we can define

(5.6) MO ggosasy it

with coefficients
5.7 MU*/(XZiI, ---axz,'n),

and all possible long exact sequences. The multiplicativity of these theories is dealt with in
[SY, Wu, , Mo,].

Choose an infinite sequence of X,;’s which excludes all of the x, noyy all n, fixed
prime p. In the limit, after localizing at p, we have constructed BP, X! Kill off a few more
generators and we can construct theories with coefficient rings

BP{n), =~ Z(p)[vl, oy U [w,1,

(5.8)

P(n)*_F [vn’ Unt1s-- ] zBP*/In [JWZ],

k(n), = E, [v,] [JW,, Wu, ].
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The last two are due to Morava. These theories come with exact sequences

v
BP(n), X ——> BP(n) X

-

BP(n — 1), X

P(n) X . . P(n) X

L

P(n + 1) X

k() X —2— k(n), X

\ [

Hy(X; Z/(p))

These long exact sequences all give Bockstein spectral sequences. We have seen this before.
The first direction we pursue using these associated theories has not really moved out
of the internal theorem stage. However, there are many beautiful internal results and much
has been written about it. See [CS] and [JW,] for the basics.
We define

(5.10) hom dimgp BP,X
to be the minimum length of a free BP, resolution for BP,X:

(5.11) 0—F, —F, _, —--—F — Fy— BP,X—0.

1

The study of this number (for MU, X)) was initiated by Conner and Smith in [CS], where
the n = 0, 1 and 2 cases are investigated thoroughly. Unfortunately it turned out to be
necessary to localize at a prime and go to BP in order to continue the study. This number
measures the complexity of the BP, module structure and so is sometimes referred to as the
“ugliness number”. The main characterization is in terms of the associated theories BP{n), X.
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Consider the sequence

P P
BP X — -+ — BP(n + 1), X —15 BP(n), X —2> BP(n — 1), X —

p
<o —> BP(0), X ——> BP(— ), X
(5.12)

HyX;Zpy)  Ho(X; Z/(D)).

THEOREM 5.13 (JOHNSON-WILSON [JW,]). hom dimgp BPxX =1 *p,, pyyy, ---
are all surjective and p, p,, ..., p,_, all fail to be surjective. ©

Other related results are

THEOREM 5.14 (JoHNSON-WILSON [JW,]). If x € BP, X is v, torsion then
hom dimgp+BP, X >n. 0O

Although any expert tends to feel it should be obvious, it is only recently that a proof
has been found for

THEOREM 5.15 (JOHNSON-YoSIMURA [JY], SEE aLso [Lg]). If x EBP X is v,
torsion then it is v,,_ | torsion. O

The proof is not obvious.

Along this line is a possibility that any n dimensional class in BP, X (for X a space) is
not v, torsion. David Johnson first raised this question. There is some minor evidence for
it as a conjecture. It is a very strong statement about the possible unstable BP, module
structures.

In this direction the most interest has been centered on the theories

(5.16) v, 'BP(my X = v, 'BP(n)y @pp BPyX,

where v ! means localization with respect to {v¥}, i.e., inverting v, , first studied in [IW, ]
n p n n 1

and since studied in [L,, R;, JY]. The n = 1 case of (5.16) is the BP version of the Conner-
Floyd theorem [CF,] showing how complex cobordism determines complex K-theory:

(5.17) KU*X ~ KU* ®u MU*X.

The n > 1 cases of (5.16) generalize the Conner-Floyd theorem in one direction. These
theories are v,,-periodic and one can see similarities between this type of thing and the chro-
matic spectral sequence. In particular we have the recurring theme of using one v, at a
time and building up slowly. We will see a lot more of this in the next section.
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6. Morava’s little structure theorem and the Conner-Floyd conjecture. We take an-
other direction using associated homology theories. We have already mentioned Morava’s
structure theorem in the setting of computing Ext groups. The Morava structure theorem is
a vast internal sequence of theorems by Morava about complex cobordism and related alge-
bra. It is an internal theorem with long range consequences and applications in many direc-
tions. Here we will ignore Morava’s work with operations and the relationship with stable
homotopy and give Morava’s little structure theorem and tie it in with a new direction in
our study to give a proof of the Conner-Floyd conjecture. Because this calls for so much
machinery it usually cannot be presented to an audience unless they have been properly
warmed up to BP. However, it is one of the most beautiful and complex applications of |
the theory so it is a central theme in these lectures.

Published Morava references tend not to exist, but many of his results (in preprint

form) date back to 1971 or so. For Morava today, see [Mo, ] and [Mo,], both presently
still preprints.

THEOREM 6.1 (MORAVA, SEE [JW,]). B(n),X = v, ' P(n), X is free over B(n), =
Fp[un_l, AN e DA

Plausibility argument. P(n),X is approximately a comodule over BP,BP/I,,. There
are no nontrivial invariant ideals in B(rn), because, as in (4.10), v,’f would be in such an ideal
but it is a unit. So, it is plausible that B(n)4X is free. O

THEOREM 6.2 (MORAVA, SEE [JW,]).
K)o X = v, k(1) X = K(n)y ®p(yy, B()uX = K(n)s ®pyy,y, P(M)sX. ©

Here is another generalization of the Conner-Floyd theorem (5.17) (the n = 1 case is
just the mod (p) version of (5.16)).

COROLLARY 6.3 (MORAVA, SEE [JW,]). There is an unnatural isomorphism B(n), X
= K(n)o X ®Fp Pn+ 1) O

Wiirgler [Wu,] has made this reversing process precise.

MoRrAvVA’S LITTLE (NO OPERATIONS) STRUCTURE THEOREM 6.4. The v, forsion free
part of P(n), X is determined by K(n).X (6.3). The Bockstein long exact sequence (5.9) re-
lating P(n)4 X and P(n + 1), X gives the v, torsion. For BP,X, the diagram is
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BP. X
N
P
: 5 BP,X ——>pT'BP, X ~ H,(X; Q) ®, oy BPs
4 €
i /
P(1) X
X
5 P(1)4X === v TP(1), X = K(1)4 X ®Fp P(2),
P(2), X
A
\’
8 P(2)4 X === v7 'P(2)4 X = K(2), X ®, P«
P(3). X
!
|
l
P(n) X

) P(n) X ——— un—lP(n)*X = K(n)e X @ P(n + 1),
P(n+ 1) X

a

Although there are no operations in the statement, they are in the proof. Again we
see v,-periodicity in this structure theorem.

Up to this point the result is purely internal. An attempt to use this to compute
BP, X for some space X would convince most people that it really is only an internal result.
However, we will use it to prove the Conner-Floyd conjecture which we now digress to de-
scribe.
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Let G be a finite abelian group of order p”, p odd. Define
(6.5) SF(G) C MSO,

to be the ideal given by classes of manifolds with a differential orientation preserving action
of G with no stationary points. MSO,X is defined like MU, X except using SO structures
on the manifolds. There is a canonical element

y: 8! x -+ x St — BZ[(p) x -+ x BZ/(p),
———

e
n copies n copies
(6.6)
v € MSO,(BZ/(p) x - - x BZ|(P)).
—
n copies

The annihilator ideal is defined as:
6.7) Ann v = {x EMSO,|xy = 0}.
THEOREM 6.8 (CONNER-FLOYD [CF,]). SF(G) C Ann(y). ©

Thus, Ann(y) is of interest for the study of SF(G). Let M 2(P'~1) pe Milnor basis
elements in MSO,.

THEOREM 6.9 (CoNNER-FLOYD [CF,]).

(o, M2@-1), M2(P2—1), S MZ(P"_I—I)) C Ann(y). ©

THEOREM 6.10 (RAVENEL-WILSON [RW,]). THE ConnER-FLOYD conJECTURE [CF,].

(o, M2®D, . y2@" D) = Ann(y). ©
Floyd and tomDieck eventually by-passed the Conner-Floyd need for this with

THEOREM 6.11 (ToMDIECK [tD]). If G =G, © G, ® --- ® Gy, G; cyclic, then

SF(G) = (p, M2@~D, .. y2@" -1y o

Floyd [F] first proved the G = Z/(p) x --* X Z|(p) case.
The group

(6.12) MSO(BZ|(p) x -+ x BZ/(p))

is the group of oriented manifolds with free actions of Z/(p) x -+ x Z/(p) on them, up to
cobordism.

At odd primes the relationship between MSO,X ) and BP,X is completely analogous
to that for MU X ;- In particular, we have MU, X @y MSO ) = MSOX ) induced
by the map (1.3) (cf. [St, p. 180]), p odd. Thus the elements [M”p D] come from
MU,.

The conjecture is completely a p-primary problem, so it is the same as:
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COROLLARY 6.13 [RW,]. Ann(y) =1, in

BP.(BZ/(p) x -** x BZ|(p)). ©

I —
n copies

There is a rather obvious approach to this problem. Just compute

(6.14) BP4(BZ/(p) x -+ x BZ|(p))

and look at the answer. This has the advantage of giving the cobordism groups of Z/(p) x

- x Z[(p) free actions on oriented manifolds. However, unlike the operations discussed in
the last section, the computability of BP, X is in very bad shape. The only spaces that
could be dealt with reasonably until now were torsion free spaces (the Atiyah-Hirzebruch
spectral sequence collapses), spaces with few cells (such as V(n)) and a few spaces like BZ/(p).
In particular, what was needed was an infinite sequence of spaces with known BP homology and
increasingly complex BP, module structure. Since these lectures were given, David Johnson and
the author have succeeded in computing (6.14). Examples of this type are necessary in order to
build the sort of confidence in the computability of BP,(—) that standard homology presently
enjoys. The labor (and the 16 year wait) that the reader will see us go through to understand
something of one element in (6.14) and prove the Conner-Floyd conjecture illustrates the poor
state of computability for BP,(—). However, the understanding of this element is crucial to the
computation of the entire group (6.14). This new computation adds even more to the complex
chain of results which ends with these concrete geometric applications.

To prove 6.13 we take the map

(6.15) X"BZ/(p) — K, = K(Z/(p), n)
which takes y to .

COROLLARY 6.16 [RW,]. Ann(y,)=1,,t, €BP,K, . ©

All of the above follow from

THEOREM 6.17 [RW,]. Ann(,)=1,,t, €v,'BP,K,. O

To prove 6.13 and 6.16 from 6.17 we just apply the maps and 6.9 to get

(6.18) I, C Ann(y) C Ann(,)gp C Ann(t,) s N I,
VUn

To prove 6.17 we compute
(6.19) v, 'BP.K,

in its entirety. To do this we use the Morava structure theorem. We start with the Morava
K-theories of K, (developed more later)

K(j)*Kn = 0’ j< n,

(6.20)

IE(‘n')*_n =~ a K(n), free module on p — 1 even generators.
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To compute, we invert v, in the Morava Structure Theorem 6.4 using reduced theories in

each place:
vn—lBP*‘Kn
\
~0
5 07 BP, K, == " 0, BPuK, = Hy(K,; 0) ® v, BP:
v 1P()K,
!
~ 0 o
5 / 07 P14k, == 07 oy P K, = KWKy ® vy POy

Un_IP(z)*Kn
|

621) |

I
un—lP(n - 1)K,

In—1
\ o
s /v; 1p(n - 1)K, —— vt vy P01 = 1)4K, 2K = DK, ® v, ' Pn)s
U,,—IP(")*K,,
E—% vn
5 /u;lp(n)*l_(n =5 7 1P(n)4 K, = KK, ® P(n + 1),

v, tP(n + 1)y

>
R
(o]

n

After this localization we have reduced the computation process to a finite number of

Bockstein exact couples. By (6.20) we have

(6.22) v,,_lP(n)*L(n =~ p — 1 copies of v,’;lBP*/In on even degree generators.
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i We now compute vn_lP(n - 1)4K,,. We see from (6.20) and (6.21) that thisis all v,_, tor-
sion. We use

v P(n — 1)K,

BP, (6.23) 5 v, TP K,

v, 1P(n)+K,,

From (6.23) the v,_, torsion must be in odd degrees because the degree of & is odd, the
degree of v,_, is even, and v, 1P(n)K,, is in even degrees. Thus p is zero and (6.23) is a

EP(2), short exact sequence which is p — 1 copies of
-1 -1 =
(6.24) 0 —> v, " BPy/I,, — v, BP/(P, vy, ..., V5,V )
S L e e WL ey e (8
So
v, 'P(n — 1)4K, =p — 1 copies of U 'BP/(D, ..., Vyegs V1)
(6.25)
on odd degree generators.
= Repeat this type of computation until we have
)*.]_(n ® vn lP(n)*
(6.26) v, 'BP,K, = p — 1 copies of v, 'BP/(P”, ..., V;_y)-
Note (4.63)—(4.68) the familiar BP,, modules! To finish the Conner-Floyd conjecture we
need to locate t,,. This is just a homology computation.
The problem of computability is a very serious one. Consider the (time and location
dependent) functor
1)y 6.27) topologists = topological spaces

which assigns to each topologist his favorite topological space. If an algebraic theory E(—)
is to be useful, then X must be able to compute E(F(X)). After all, if he wants to prove
theorems about F(X), E () does no good if he cannot get his hands on the algebraic in-
variant E,(F(X)). By this standard it is clear that H,(-) is fairly computable, but it is not
clear why, since there is no workable algorithm for computing H,(F(X)). As a substitute
number of for an algorithm, Y has had to rely on the observation that X has computed H . (F(X)) for
all X older than Y. This supplies a certain faith that Y too can compute H(F(Y)), even if
he must do it in an “ad hoc” fashion and be prepared to spend two years at it. With H.(—)
he has the decades of development of homological algebra, the Steenrod algebra, homology
operations, etc., to help him out. In general, although there are millions (>> ) of homology
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theories, very few are computationally useful. After Hy(—) we find that people have been
quite successful with K-theory. Now, with

(6.28) K(n)«K(Z/(p),j) and BPy(BZ/(p) x **" X BZ[(p))

computed there is some hope for K(n)4(-) and BP,.(-). It may be that BP,(—) never be-
comes an easily computable theory. We see by the above example that K(n)4(—) is some-
times an acceptable substitute. It appears to be quite computable, due mainly to the
Kiinneth isomorphism

(6.29) K(n)o(X x Y) =2 K@)+X k), K(n)sY
which follows because K(1)y is a graded field. We discuss (6.28) more later.

7. Hopf rings, the bar spectral sequence and K(n) K. The techniques for computing
and describing K(1)«K; (K; = K(Z/(p). 7)) are general and have several BP related applica-
tions (like Sullivan’s theory of manifolds with singularities). We have already used the Morava
structure theorem for the proof of the Conner-Floyd conjecture. In addition, we need all of
the material in this section to compute the necessary K(j)«K,, for the completion of the
proof. After this discussion we can bring up some other examples of the technique and this
will eventually lead us to unstable cohomology operations.

Let
(.1 Gy = {Gr)x
be an Q-spectrum, i.e.
(72) QG4 = G-

This represents a generalized cohomology theory

(7.3) X=X, Gal-
We want to study

(7.4 E4Gs = {ExGily

where E. (—) is a multiplicative homology theory. To apply our tools we need a Kiinneth
isomorphism for the spaces G- This condition seldom holds in general, but always holds

for
(7.5) Eu(=) = Km)u(-) or Hy(=:ZI(P))-
It also usually holds for
(7.6) Gy =MUy or Bl
These techniques can be used to compute things like
(17  K@)«Kx, ExMUs EoBPy Hik(n)s, HaBED and  HyKy-

We feel that even more non-BP applications could be made.

|
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We have that G*X is an abelian group. Thus G, must be a homotopy commutative
H-space (not surprising since we already know it is an infinite loop space), or, in other
words, an abelian group object in the homotopy category. By our Kiinneth isomorphism,
E4(-) takes G to a coalgebra; it also takes products of Gy to products in the category of
coalgebras (tensor product). Thus E4(—) takes the abelian group object G to an abelian
group object in the category of coalgebras. This is just to say that E,Gy is a (bi-) commu-
tative Hopf algebra with conjugation. This “abelian group™ structure, or the Hopf algebra
multiplication, just comes from the product

(7.8) *: G x G — Gy
after applying E(—):

(7.9) *: E4Gy ®p, ExGy — EyGy.

Considering everything at once, G*X is a graded abelian group so, as above, G is a
graded abelian group object in the homotopy category. Likewise,

(7.10) EyGy = {E«Grlg

is a graded abelian group object in the category of E, coalgebras.

Of course, when G is a ring spectrum, G*X is more than just a graded group; it is a
graded ring. Then the graded abelian group object G, in the homotopy category becomes
a graded ring object. The multiplication

(7.11) G¥X x G"X — G**"X

has a corresponding multiplication in Gy:

(7.12) 0: Gy X Gy > Gpyp-

Applying E«(—) we have

(7.13) o: ExGy ®p, ExGp —> ExGiin

turning F Gy into a graded ring object in the category of coalgebras. This object “should”
be called a “coalgebraic ring” but instead has taken on names such as “Hopf bialgebra™ and

the one we use, “Hopf ring”. See [RW,].
A ring must have a distributive law, and ours is:

(7.14) xo(y#z)=2 t(x' 0y)x(x"02) where Y(x) =3 x' ®x".
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Because of the importance of the relationship between the two products and the coproduct
we will track it down from the distributive law in G*X. We have that

G % GFX gkx —LX*—G"X x G*x

ldiag xI XI t

(7.15) G"X x G"X x G¥X x G*X G"trX
I X switch X I ]*
G"X x GFX x G"X x Gkx 222> G TEX % Grtkx
is the distributive law in G*X. In terms of classifying spaces it becomes

G, x Gy xG—6n % G

lA XI XI ko

(7'16) Qn LS Qn X —Gk x Gy gn+k

l[ x switch X T W*

o X o
o %0
G, * Gy X Gp ¥ Gy Gk % Gnie

Apply Ex(-) to obtain (7.14).

Because of the two products it is easy to construct many elements starting with just a
few; this helps to describe answers in terms of Hopf rings. All of our examples will demon-
strate this property in a strong way. We will also demonstrate some of the other benefits
which allow the Hopf ring structure to be used seriously in proofs as well. For even deeper
applications we will put the Hopf ring structure into the bar spectral sequence. To do this
we review the bar construction.

Let o" be the geometric n-simplex and Q,’C the zero component of Gy. Then

g ~pg. = [I o" x G x - % Gil~
(7.17) Gr+1 Ur itk Gy . : Gy
n copies

where ~ indicates that there are identifications made [Mg] which we will not give explicitly
in these lectures. BGy is filtered by

(7.18) BG, = JJal =G X G/~ C BGy.
s=n=0 Seampryre—"
n copies

Apply E«(-) to this filtered space to get the bar spectral sequence [RS]. Since

B,Gy/Bs 1 G =% NGy N+ N Gy

s copies

(7.19)

we have

(7.20) El,= Fo(B,Gy/Bs—1Gi) = F (25 ®p+ ® ExGrs
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and

Etgk
*

(7.21) EE,*zTOT J* (E*,E*)=>E*Q;¢+1-

This is a spectral sequence of Hopf algebras. To put the additional structure of the o multi-
plication in the bar spectral sequence we look at

: _
0! Gy X Gy Gr+n+1

) U

o: BG, x G, — > BG4 »

(7.22) /

o: Hasxgkx---xgk/~ XG> Hasxgk+nx---xgk+n/~
s=0 A s=0 .
s copies s copies

THEOREM 7.23 (THOMASON-WILSON [TW]). The o product factors as

Bsgk gr gn __)Bsgk+n

N N

o B—Gk % gn —_)ng+n
and the map

BGy/B;_1 Gy x G, > B Gy yn/Bs—1Crin

26, N NGy x Gy = TGran N N\ it

s copies s copies

is described inductively as (8, ..., &) ° & = (€ 08 ...,80°8) O
This automatically implies:

THEOREM 7.24 (THOMASON-WILSON [TW]). Let E;’*(E*gk) = EyGyyq be the
bar spectral sequence. Compatible with

o ExGiy1 ®p, ExGp = ExGrs14n
is a pairing

E,:,*(E*Qk) ®E, E.G, ""E;,*(E*Qk+n)’
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with d'(x) ey =d"(x ° y). Forr =1 this pairing is given by

(g I""18)og=Z (8 g'lg, 08"l 1gg 0 8®)
whereg —2g' ®g" ® " ® &) is the iterated reduced coproduct. O

This result is easy to prove, but tremendously powerful. It allows one to identify ele-
ments in terms of o products, compute differentials inductively, and solve extension problems
using Hopf ring properties. This will all be demonstrated. The first example of the above
pairing was given in [RW,] with G = K. It is unnecessary to know how to prove this re-
sult in order to use it for computational purposes.

We wish to inject some formal group nonsense at this point. Our formal groups all
come from the standard map 2.3):

(7.25) iz P~ x CP= == CP™,

which is unstable information. This is generally stabilized immediately, with the exception
of Quillen’s proof that MU *X is generated over MU * by nonnegative degree elements [Q,].
We go even further in [RW,] in extracting unstable information from formal groups. In
E .G, we have two formal groups. Later we will get unstable relations from their interaction.
For now, we concentrate on just one formal group. We assume E is complex orientable, i.e.
CP= has xF and 61.5 just like MU in (1.26) and (1.30). Thus we have a formal group law

for E and elements ag . This formal group is the coproduct in E *CP™. Dual to this is the
product in £ «CP=. ForEy(-)= H,(—; Z) we can let B(s) = Zi>o B;s' and describe this

product as

(7.26) B(s)B(t) = B(s + D)

We know H(CP™, Z) is a divided power algebra. If we look at the coefficient of sit! we
get

(1.27) B:8; = (@ NB;+j»

so the notation has managed to hide the binomial coefficients. We have much more to hide.
Let

(7.28) Bs) = 2 BFs' €ECP[[s1]-

i=0
THEOREM 7.29 (RAVENEL-WILSON [RW,]). In E.CP=([s, 111,
B(s)BE) = B(s tp 1)-

ProOF. Write B;8; = ZyCx By and &y *r x,)F = 3, jafixix}. Then

iz0

Cr = xk’ Z cixi> = (xk, 6,'61') = (xk, IJ*(B,' ® ﬁ]))

= 'k, B ® f) = <Z«a,.’;x§ ® x4, B; ®31> =85
U
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Then B(s)B(2) = Z; ;8,567 = 3, ; yalis'tipy = 2,8, Zaks't) = T, B, (s +p 1)F =
Bs +z ). o
Iterating we have:

CoroLLARY 7.30 [RW,]. B(s)" = B([n] z(s)). ©

On the surface, this appears to be another nonsense formula involving totally inacces-

sible coefficients. However, in the important case £ = BP we can extract an explicit for-
mula. Let

(7.31) Buy =8 ;.
p
It is fairly easy to see that the other §’s are decomposable.

THEOREM 7.32 (RAVENEL-WILSON [RW,]). In QBP,CP” mod (p)

)

u n—k
0= 3 v Biury ©
k=1

PrOOF. Recall 3.17: [p](x) = ZE v, xP" mod (p). By 7.30,

66)° = B([p) s)) = ﬁ( z”u,,sp") mod (p)

n>0

=T} B(vns”") mod (p) by iterating 7.29.
n>0

Since f, is the multiplicative identity we have f(s)? = 8, and I, oB(v, Py = 2, > 0B, sP )
in QBP,CP mod (p). Just pick off the coefficient of s?¥. o

We can now proceed to our discussion of the Morava K-theories of the mod (p)
Eilenberg-MacLane spaces, K(1) K .

THEOREM 7.33 (RAVENEL-WILSON [RW,]). In K(n),CP™
By =0, 0<i<n-1,
i .
Bli+n-1) =R B, O0<i o

ProoF. The formal group law for BP reduces to K(n) to give

k
P16 = X vs?" = v,s?".
k>0

By 7.30, B(s)° = B(v,sP"), 50 f(s)P = 2,5 ,BPsP!, and

B(vnspn) =3 B,-v:;s"”n.

3 =0

The coefficients of s?° " give the result. O
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Recall that K; = K(Z/(p), /)

THEOREM 7.34 [RW,]. The standard map K, — CP* induces a Hopf algebra inclu-
sion K(n),K,; C K(n),CP~, where K(n)4K, is free over K(n)y ona; €K(n),;K,,0<i<p",
which maps to ;. The standard coproduct a,, — Za;_; ® a; follows and

aGl-1) = Vnd(0)>

a’("§=0, 0<i<n-—-1. O

i
PrOOF. Any attempt works. O

THEOREM 7.35 (GLOBAL VERSION, RAVENEL-WILSON [RW,]). K(n)«Ky is the free
Hopf ring on K(n).K,. ©

We have to say what a free Hopf ring is. Given a graded Hopf algebra
(7.36) H, (%) = {H(K)}g»

H (k) a (graded) Hopf algebra with conjugation, the free Hopf ring FH(x) is a functorially
assigned Hopf ring and map a such that any map f of our Hopf algebra to a Hopf ring factors
through a:

Hy(x) —1= Ry(¥)

A
/
/
/

FH (%)

(7.37)

a

The Hopf ring FH () is constructed by taking all finite * products of all finite o products
of elements and then using the relations obtained from Hopf algebras and Hopf rings.

Since our “abelian groups” in our fancy ring are bicommutative Hopf algebras with
conjugation, our “—17, denoted [-1], is just conjugation. So, if we are in a Hopf ring
R, (%) with

(7.38) X ERn),y ER(K), xo0y=CDI-1]"yox.
In the case of K(n).K;, [~ 1la = —a(), s0
(7.39) 4y ° 4G) = T4G) ° 4ay
which implies, by Hopf ring madness, that
(7.40) Apy e gy = 0.
In K(n)+K«, the longest o product is
(7.41) a1=a(0) °a(l) o ---oa(n_l),
By the distributivity law
(742) Ai+1) ° x* = (g X7,
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SO

a;‘P = (a(O) Osiats oa(n—l))*p = a(l) o (a(l) PRpe0 a(""l))*p

=aqy o agy o @gyo e o dg))?

(7.43)

=4(1) 0 ag) © o+ ° Ggn-y) © @i-1))
= a(l) 0 «:.s0 (Z(n_l) o Una(o)
=(=1"v

These are all of the elements in K(n),K,, so as advertised in (6.20), K(n),K,, is free over
p — 1 even degree generators. Furthermore, any longer o product must give zero, so since
K(n)4K, generates everything, 1&3{)*5]. = 0,7 >n, as in (6.20). This is all we needed to
prove the Conner-Floyd conjecture.

A detailed description (local version) and proof for K(n),K, are available in [RW,],
and for the more difficult K(Z/(p*), j) as well. In particular, we describe K(n)*L{,. completely
as a Hopf algebra. This is necessary since we use the bar spectral sequence (7.21) to make
the computation. Inductively we compute Tor. Using 7.24 we can name many elements,
show which are infinite cycles, and compute the differentials, all inductively. Then we use
the Hopf ring structure to solve extension problems. Theorem 7.35 follows from this de-
tailed version.

This type of calculation, which relies heavily on the Kiinneth theorem, demonstrates
the computability of K(n)(—) to our satisfaction, and we recommend them to other homo-
topy theorists.

8. H.K, and the Steenrod algebra. Before we introduce the second formal group
law into Hopf rings we want to do a complete calculation. We will do a simple one, just
the mod (p) homology of the mod (p) Eilenberg-MacLane spaces H,K,. Usually people do
the p = 2 case, but we will do only the odd primes. They demonstrate the pairing 7.24
better. Letting

(8.1) H = {K}i>o

when we have H,K, we will also have H,H, the dual of the odd primary Steenrod algebra.
Having computed H,H it is nearly obligatory to give its structure as a Hopf algebra. This is
no problem since we have already done all the work for MU MU.

This computation of H.K, represents joint work with Douglas Ravenel. We came
across it in the early stages of our work with Hopf rings. Since that time we have promised
many people that we would write it up for pedagogical purposes. We thank Doug Ravenel

‘ for allowing us to use this in these notes. We leave the K(Z/(p’), n) cases and Bockstein’s,
etc., for a potential future write-up.
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The beauty of this approach is that neither chains nor Steenrod operations need to be
introduced. Everything is done using standard homological algebra to keep track of the Hopf
ring structure inductively using the pairing in 7.24.

To describe our answer we need notation for H, K, and H,CP”. We have

(8.2) €y EHIKI’ aiEHziKI, ﬁiEHziCPm, i=0.
The generators are
(8.3) v =% Pp =B

The coproduct is
(84) Vo) =3 0 B, VB = 3 b, OB,
i=0 i=0

THEOREM 8.5 (GLOBAL VERSION). H Ky is the free Hopf ring on H.K, = H[Z/p],
H.K,, and H,CP” C H,K,, subject to the relation that e; o e, =f;. O

Denote the height p truncated polynomial algebra and the exterior algebra respectively

by

86) TP, (x) = ZI(P)X) [xP),  EGx) = ZIp)[x] [x2).
For finite sequences

(8.7) T =l st Sy iy, e

define

(8.8) O = GGy o Bpy® ety B T [1] — [0] €EHyK,-

For finite sequences

8.9) Tl i g,

define

(8.10) B =Bes o Bigh o oo, O =111~ 10].

THEOREM 8.11 (LOCAL VERSION). As an algebra

HyKy =@ E(e; o 0po 87) &y TPy (0q o 87,

where the tensor product is over all I, J as above and the coproduct follows by Hopf ring
properties from the o’s and B’s. O

Anyone who knows H *K . can conclude 8.5 and 8.11 rapidly enough. We give this
example to demonstrate the computation techniques in a familiar setting.

PrOOF OF 8.5. Just as in (7.38)—(7.40), Q) © Yy = 0. The relation e, ce; =, is
obvious. All even generators must be truncated of height one because of Hopf rings and the
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fact that they are in H,K, and H,CP*. There are no additional relations in 8.11, so 8.5

follows. O
Homology suspend B(i) to define
(812) Ei eHz(pi_.l)If’
and %) to define
(8.13) T; E1'1V2p,-_11{.
From 8.11 we have
(8.14) HeH'=E[rg, 7y, <. '® PIE b5 -0 1.

THEOREM 8.15 (MILNOR [Mi,]). The coproduct on the Hopf algebra H_H is given
by

VE,) =3 &2 ®F ad y(r,)= z": ¢ @741, ®1. O
=0 i=0

PrRoOOF. We have our usual (stable) maps

CP™ — MU, — CP” = K(Z, 2) — K,

oy l

MU =—= MU — H

and commuting diagram. From this we see that b = ;5 ob; € MU, MU reduces to & =
-0 €H.H (Recall that since 8, i # p’, is decomposable it suspends trivially to HH.)
Theorem 1.48(e) now gives us the coaction on CP*, just by the reduction MU MU —
H.H. Part (d) reduces

Ve = X @

=0

For the 7's we compare with the £’s using the maps

K, —CP~
H H

This gives us all of the coproduct except the term ? ® 1, which must be 7 ® 1 because we
are in a Hopf algebra. To be fair we must reduce the entire proof of 1.48(e) from MU to
2. H; easily done. ©

The 7, and &, are seen to be Milnor’s.
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PROOF OF 8.11 (RAVENEL-WILSON). This proof is by induction on spaces but we
will do all steps at once. We use the bar spectral sequence as in §7. First we compute

E2 . = Totd s5+Z/(p), ZI(p)) = HiKs 1-

Tor preserves tensor products and depends only on the algebra structure. TorE™) =~ D(ox),
I'(y) the divided power algebra, free over Z/(p) on 7,(») with coproduct

v(r,) = Z Yoi @ Vi3

product v;7; = @ +j generated by v,y = Yy We have v,(») =y and o is homology
suspension. We have

ox € Torf )ZI(p), ZI(P))

and so v, (ox) € TorE®) (ZI(p), Z|(P)).

n,nlx
Tor" "1 ¥ (Z/(p), ZI(p)) = E(ox) ® T(6(x),
with ox € TorlT’ };ll(x)(Z/(p), Z|(p)) and the transpotence,

8(x) € Tor, 1 @/(p), ZI(p))

represented by the cycles x|xP ¥ in the bar resolution, 4.

7,0()) € Torg ) (ZI(p), ZI())-

TorggX* = ®y, s E(00;6”) ®; ; T(¢(c;87)) ®; y D(oe,a;p7).

Since suspension is just o multiplication with e, , this is

®E(e,0,8”) ® T(¢(c;87)) ® T(ozp’ " 20).

) =, + L+ 1, ...) sand s(J)=(0,jg i1>---)
Cramv 8.16. Modulo decomposables, in the spectral sequence pairing 7.24, for

@ BK, x Ku_; — BKs,

i = Jrag
7pi(ﬁ(0)) o asi(f) o f° 'Ypi(alﬂ )s

BK, % Ky — BK.,

7p,‘(¢([1] - [0] )) o O‘si+ 1(1)63i+1(l) = 7pi(¢(aIﬁJ)).
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We will finish the proof of 8.11 before we prove the claim. For degree reasons the
spectral sequence for BK,, collapses and we have already named the elements

‘7p,-(¢([1] - [o) = Qi)

Letting ' — K, and comparing the spectral sequences for CP™ = BS'! — BK,, we see
that the one for BS! collapses trivially, and so, like the %y the

'Ypi(B(o)) = 3(,')
are permanent cycles. Thus by induction, the elements on the right in 8.16 (using the dif-
ferentials in 7.24) are also permanent cycles. Since these are all of the even degree genera-
tors, the spectral sequence collapses. (The odd degree generators are in Tor; and so are
permanent cycles.) Furthermore, since we have names for the elements on the left in 8.16,
we see that Y, (¢(a16] )) represents %) © Cia gy ° ﬁ’ 1) and %, (a,ﬁ °) represents
By © o B¢ W+a0) e have now located and named all of the ele-
ments

0 g5 = 4 .
% iy P %in
o ﬁ.\'H'l(J) 2 ﬁsi(""'AO)

J
e, o a0 fY, Quy © & %

i+1 1¢))
This is just an obscure way of writing e o0 ik a; o 87 without a¢B(°).

So far we have collapsing and the correct answer. All we need now is to show that
there are no algebra extension problems. We give two proofs. This is easy to do without
Hopf rings. The map multiplication by p, p: K, — K, is homotopically trivial, so

0=py: HeKy — Hy K.
To show there are no extension problems all that we need to do is show
(aI o BJ)*p =1,

but this is just p(a () © 85¢)). However, since we are trying to demonstrate Hopf rings
we will give a Hopf ring proof. Each ap o BJ can be written as togy e oo B’ or ay o
g7 o ﬁ() The proof is the same for both. By the distributive law (7.14) (as in (7.42)),

(070 [ 5(,-)) = Qg © B* 0, (ﬁ(if) =0

But by the same calculation, if B(",‘.f were not zero (such as in K(n), K ) this Hopf ring tech-
nique would have solved our extension problem for us. O

ProoF oF CLAIM 8.16. There is nothing to prove for the i = 0 case of 8.16(a). For
i > 0 compute the p’ — 1 times iterated reduced coproduct. The symmetric term from the
right-hand side agrees with that on the left as aIﬁJ+A°. In fact, there are no other terms
but the symmetric one. The terms in Tor ; with this symmetric term equal to zero are
easily seen to be the decomposables. Thus the two sides of (a) are equal modulo decom-
posables. When we establish the i = 0 part of (b), the i > 0 part will follow in the same
way. It is this # = O part that makes the odd primes a much better example of the spec-
tral sequence pairing than p = 2. Part (a) was done just by using the homology suspension

8
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fact thate, ce; = B,. Nothing more complicated ever happens for p = 2 because there is
never the filtration 2 transpotence to worry about. We now get to use the r = 1 computa-
tion of the pairing in 7.24. Using 7.24, iterated coproducts, the distributive law and the
facts that, in our cases, [1] o x = x and [0] e x =0, we have

(1] = [01) o aypyB*) = (111 = [01)* 11111 — [0]) o "

= (‘xIﬁJ)*p =3 lajﬁ’,

plus many terms with more * products involved. We know what all cycles representing non-
trivial elements in Tor, look like. They are products of elements in Tor, or transpotence
elements. Thus the terms with more products contribute nothing. O

9. Two formal groups and BP,BP,. In this section we bring in the second formal
group law to add even more structure to the Hopf ring E4Gx. We assume that both E and
G are complex orientable (see after (7.25)) so we have xZ, x©, 6{5 , and {SiG . We have al-
ready done a crucial step with one of the formal group laws by computing the multiplica-
tion in E4CP® in 7.29.

We need to define a few elements. For

©.1) G € G2eP™ = [CP, G,)

define

©.2) xS (BF) =b; EE,;G,-

To make your confusion specific, this b; stabilizes to b;_, for E=MU=G.
For ‘

(93) aEGiz [pta _G_i]a 1 EEo(pt)on’

define

(94 ax(1) = [a] €EG;.

We now have a sub-Hopf ring

9.5) EL[G*] CE4Gy

where E,[G¥] is the “ring-ring” (a group ring with some extra structure) on G X
We define a “formal group sum”

(9.6) zZ+Hpq1 Y = * lef1 o z°f o yol
i

using the Hopf ring “addition” and “multiplication”.

We are ready to give the “main relation” which uses the interplay between the two
formal group laws and Hopf rings to give unstable information.

TueorEM 9.7 (RAVENEL-WILsON [RW,]). Let b(s) = Zisobis’ In ExGxlls, 11,

b(s tpp £) = b(s) t{rgs] b(). ©
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REMARK 9.8. This does not require the Kiinneth isomorphism and so is not neces-
sarily in a Hopf ring.

REMARK 9.9. For some E and G, such as K(n), K, this is vacuous because b; = 0,
i>0.

REMARK 9.10. The notation is almost necessary because when 9.7 is expanded out
we have

(9.11) Zi:bi <jzk:aﬁ;sitk>" =« [2$] (g:bn-?")oi . <§;bmtm>°j

Y

and the actual coefficients of s’/ are even more unpleasant. i
ProOF oF 9.7. We compute the composition CP” x CP~ 5 o I G, in

two different ways.

bis +p £) = x5(8G +p D) = xEEEBE) = xTu2(BE) ® 6())
= (x% o w)«(Bs) ® BO) = (u*xF))x(B(s) ® ()
< TaSxEY ® (xf)"> (8(s) ® B(1))
ij ¥

% [af] o bEX" 0 b)Y = b6) +p ) D).
ij

The second to the last step is because the sum goes to x, the a;; to [a,.j] and the product
too, O
We obtain the following corollary by iteration.

COROLLARY 9.12 [RW,]. In E,G[[s]],
b([n]FE(s)) = [n] [Fgl (). ©

Again, as with 7.29, this appears to be a useless nonsense formula; but again, as in
7.32, when we restrict to BP we can obtain very useful explicit results. To do this we go
to the mod (p) homology.

THEOREM 9.13 [RW,]. Let I = (p, v, v,, ...). In QH,BP,/[I1°*QH BP,,
“ k
0= 3 [l o 325y o
k=1

Proor. Using 9.12 for n = p we have

by = b(ps) = [P] ) @6 = T [, ] 0 bGP+ [p]e (), by 3.17.
n>0

Since [p] ° (z) = b, mod decomposables, this becomes, mod decomposables and %%,
Z,50lv,] © b(s)°®". Picking out the coefficient of s?” gives the result. O
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We still have not answered the question about how powerful the “main relation” 9.7
is. In the universal case G = MU, it is complete and gives all information.

THEOREM 9.14 (RAVENEL-WILSON [RW,1). E MU, (E+BP,) is generated over E
by [MU*] ([BP*]) and the b’s (b;y’s). The only relations come from 9.7. O

The proof is difficult and will not be given here. To obtain
(9.15) EMU, and E.BP,
it is enough to add e, € E; MU, (EBP;) and the relation
(9.16) e o€ =by.

A key step in the proof is to show that the integral homology of BP, has no torsion.
With this the Atiyah-Hirzebruch spectral sequence for BP*I_?E*' (MU MU,) collapses. The
above solves all % and o product extension problems. By duality we have a complete de-
scription of MU*MU,, (BP*BP,), the unstable operations. The last section is dedicated to
developing this further.

The explicit formula 9.13 can be used to give a basis for OH, BPy and PH,BP, which
then lifts to QF ,BPy and PE4BP,. E.BP, is an exterior algebra or a polynomial algebra for
k odd and even respectively. Let

9.17) I=(y iy -.-)
and
(9.18) J=(jorj1$"')a

both nonnegative finite sequences. Define
I AT o [y 2 ojo  peof
(9.19) 187 = [v; v, ]o boy ° b(1§ B =
THEOREM 9.20 [RW, |. A basis for QE«BP,  is given by all [v!]b’ such that if J
can be written as

J=pAk1+p2Ak2+--'+p"Akn+J', ky, <k, <kj;<--
J' a nonnegative sequence, then i, =0. O

This basis uses 9.13 to get the largest v’s possible. This is useful in the study of the
BPn),. [Si] and the unstable Hurewicz homomorphism for BP, [Ma]. It is also possible to
use 9.13 to obtain a basis using the smallest v’s possible. This basis is particularly useful for
computations with unstable operations; see §11.

THEOREM 9.21 (BOARDMAN). A basis for QE +BP,  is given by all [v']b7 such that
if I can be written as

I=28, + Ay +---+Akn+1’, ky S ky & to=

3

; . k
I' a nonnegative sequence, then j, <p ". O
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For BP.BP,, the b(,.) are not always the best elements to work with. Stably, in
BP,BP, the t; are not everyone’s choice either. The elements c(t;) will certainly do as alter-
native stable generators. Even better, they desuspend to elements

(9.22) 7; EBP, ;BP;.

For this reason many people prefer them. Thus in 9.20 and 9.21 the b(l) can be replaced
by the t (by 3.14).

10. Chan’s proof of no torsion in H,BP,. As already mentioned, knowing there is no
torsion in the homology of BP, is very important. The first proof of this fact in [W,] is
very ugly and we suspect no one ever reads it. There the spaces BP, are dismantled in an
unpleasant way. Then every possible torsion element that could arise during reassembly is
hunted down and killed with such individuality that the process borders on sadism. The re-
sult, even in this weak form, already has several applications. It allows one to study the en-
tire homotopy type of BP,. The important spaces here are the BPn), . This leads to a suc-
cessful analysis of H-spaces with no torsion in m, or Hy. See [W,] for these results. The
homotopy type analysis is important in the study of hom dlmBP BP,X in [JW,] and gives
the upper bound from the dimension of X. (For X of dlmensmn k, hom dlmBP BP, X<n
where k <p" +p" 1+ ... +p+1) In [Zb], Zabrodsky also uses these spaces.

Later, a second proof for the no torsion of H,BP, was given in [RW, ]. Unfortunately,
it is still rather inaccessible because it essentially proves 9.14 simultaneously. However, it is
nicer than the original and it gives more information. Again we suspect few people read the
inner details.

It is with great delight that we sketch a recent proof by Ken Chan which we think is
simple enough to convince most people that the theorem is true. Chan’s proof can easily be
improved to show H, BP, is generated by the [v;]’s and b(,) s, but completeness of the rela-
tions still requires more work.

The no torsion follows immediately from the following statement because the Bock-
stein spectral sequence collapses. We use mod (p) homology. A bipolynomial Hopf algebra
is one where both it and its dual are polynomial.

THEOREM 10.1 ([W,]; SECOND PROOF [RW,]; CHAN’S PROOF [Ch]). HyBP,; .1
is an exterior algebra and H*Bfé x IS bipolynomial. We have, for k + n > 0,
rank QH, . ,BP, = rank m BP = rank H, BP. O

SKETCH OF CHAN’S PROOF. The proof is by induction. To ground the induction we
have

H,BP, ~ QH,BP, ~n,BP, ~m,_,BP
which proves the result for degree 1 = k + n. For our induction we assume the result for

H,,;BP, ,0<i<k, all n, and H,, , h <g. We must show it for H +kBP We use
the bar spectral sequence
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E2, = Tortg BPa=1z/(p), ZI(p)) = HuBE,-

For g odd, Tor of a polynomial algebra is just an exterior algebra on the suspensions of
the generators. The spectral sequence obviously collapses and we are done. For g even,
Tor of the exterior algebra is a divided power algebra I' on the suspension of the gener-
ators. For both odd and even cases we compute

k4q— ~—0
k+qg-1—

+

known below this line

2 = s
Es,r = Torm =

R~ total degree of interest

1 k+gq

For g even, I' is even degree so the spectral sequence collapses (in our range, by the diagram).
Since I'is dual to a polynomial algebra we have the cohomology part of bipolynomial. The
rank of QH *lqu is also correct. We must now solve all extension problems in E 2=F"=T.
We must show that it becomes a polynomial algebra of the correct rank. Since its dual is a
polynomial algebra of the correct rank we know that if it is a polynomial algebra then its
rank will be correct. Let A be the algebra after the extension problems are solved. If Ais
not polynomial then clearly rank QA , > rank m, BP. By induction everything is okay in
lower degrees and we are only concerned with degree kK + g.

Now, use the bar spectral sequence to compute Hesy +i§f‘; g0 20s (By induction
we already know the lower degrees.) It is easy to see that this oversized rank will persist
into the stable range, which is a contradiction because we know the stable homology. Thus
A must be a polynomial algebra of the correct rank. O

This technique of “trapping” the homology of an Q-spectrum between the known
m4E, in the form of HyE 4 and the known HE, has wide applications. This is the easiest
case. It can be used in other instances to solve extension problems, to show collapsing, or

to compute differentials.




Part III. Something New

11. Unstable operations. When I first showed, in 1971 [W,], that H,BP, had no
torsion, I realized it meant that unstable BP Operations were accessible and abundant. It
was hopeless to study them until a basis for H,BP, had been found [RW,]. It is only in
recent years that I have dabbled seriously with them. The usefulness of the only other truly
unstable, additive operations, the Adams ¥* in K-theory, led me to believe the BP operations
carried a great deal of information. The recent work of Bendersky, Curtis, Miller and Ravenel
(see [BCM] and later works) supports this conclusion. Since K-theory splits off cobordism
[CF, ], we know that the unstable cobordism operations contain, at minimum, the same in-
formation as K-theory. However, a quick look at the homotopy type of BP, [W,] makes
it clear that K-theory operations are only the surface of the operations available to cobor-
dism. Although it is clear that BP operations contain a great deal of information, the old
problem with BP is still there: how do you get information out and live to tell the tale?
The machinery is now set up for straightforward computations, but, as yet, I have been un-
able to do a general computation with applications of interest. This has caused a delay in
publishing these results. The reader has mercifully been spared the tortuous backwaters that
months of calculations led me to. They have resulted in only a few conjectures to which I
hope to return someday.

First I will turn the unstable operations into a “ring” and give a rigorous general non-
sense definition of unstable modules, which is somewhat independent of the rest of the sec-
tion. Second, I show that unstable operations are not just a simple divisibility problem for
stable operations as I first suspected, but that unstable operations are very different animals
despite their close relationship with stable operations. More explicitly, no multiple of a
truly unstable operation is ever stable; although rationally, unstable and stable are the same!
This is our main result. It is a fact first revealed by unspeakable computations of examples.
This property is demonstrated in a familiar setting by showing that the Adams operations
for complex cobordism are legitimate unstable operations. Just as with K-theory, ¥/* can be
delooped twice for every power of k it is multiplied by. In order to prove this, formulas
for computing

({d1:1) 7! BP,BP, —> BP,BP,
are worked out for all unstable operations r EBP"ILPH =8P BP,]. The proofs in this sec-

tion allow us to talk about stable operations, an aspect of BP neglected so far in these lectures.
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Near the end of this section I have presented the gruesome details of an elementary
application. The motivation is to show that straightforward calculation does produce, but
this is not the way to do it. Itis included for the student who really wants to learn the
material. :

The research related to this section took place over the years at The Institute for Ad-
vanced Study, Oxford University, The Johns Hopkins University, and the Centro de Investi-
gacion del IP.N. in Mexico City. In addition to the support of these institutions, the
research was partially supported by the National Science Foundation and the Sloan Founda-
tion. I am grateful to Luis Astey, Mike Boardman, Daciberg Goncalves, Don Davis, Vince
Giambalvo, Sam Gitler, Dave Johnson, Peter Landweber, Dana Latch, Haynes Miller, John
Moore, Bob Thomason, and surely, a few others I have forgotten; all of whom helped me
out in one way or another.

Since this work was completed, Mike Boardman has developed another approach to
unstable operations and he can reproduce most of these results and more. In particular he
has proven the conjecture of mine that OBP.BP, is [BPy] free as well as BP, free, a curious
fact indeed.

We have described BP,BPy which gives, by duality, one description of the unstable
BP operations. For our definition of unstable modules, we will go to a more general setting.

Let
(11.2) E*(-) = [ Es]
be a generalized cohomology theory. The unstable cohomology operations are the natural
transformation
FEy == FEX
(11.3)

X, E.] — X, B,

which, by [Br], are given by

(11.4) E"E; = [Ey, E,l-

We will restrict our attention to additive operations:

(11.5) r(x +y) =rx) + r(»).

To do this effectively we need to assume that

(11.6) E*(E, x E) = E*E; &+ E*Ey.
The “abelian group” structure of £y,

11.7) E, xEx—Ep
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which comes from the abelian group EXX, gives rise to a “coproduct”:
(11.8) E*E, —E*E, 8., E*E,,
and the “primitives”, PE*E, , i.., those r € E*E « such that

(11.9) r—r®1+18r,

are the additive unstable operations.
We want an unstable £*E module to behave like £*X for X a space. That is, we
want a graded (topologized) £* module, like E *X, and pairings like

(11.10) PE"E, ® E¥X — E"Y,
giving a commuting diagram

PE'E, ® PE"E, ® EXX — PE'E, ® E"X

(11.11) 1 1

PE'E, ® E¥XX ———— Fix
where the composition of maps gives the pairings (11.10) and
(11.12) PE’E, ® PE"E, — PE'E, .

We take the time now to make rigorous what we mean by the “ring” of unstable (ad-
ditive) operations and modules over it. This part can be safely skipped by readers who need
to do so.

It is understood that upper % modules are topologized and that maps occur in the ap-
propriate category. This will be suppressed throughout.

We have R algebras

(11.13) B* =8 o b Geo . ens
A graded E* — G,, bimodule is a bigraded R module
(11.14) By = (B},

where B is a left E* module, BY is a right G module, and these structures are compatible

in the obvious way. We denote this category grbimodE,_G ;
*

We need a “tensor product” functor
(11.15) ®p«: grbimod r_p, X grbimodF._G. 4 grbimodE._G*.
Define (B ®,+ CH)i in grbimodE._G* by

(11.16) (B ®p+ CINi = (BY ®ps Gy,
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the zero degree of the standard graded tensor product over F MRy vilel
(11.17) (B ®ps CENe =Y B ®z Ci/(br®c—b®rc), rEF*.
i

One is not allowed to call just anything a tensor product. Bob Thomason has justified call-
ing this a tensor product by showing that it is a coend, as any good tensor product should
be.

The coend of a functor [ML, p. 222]

(11.18) SiiEwE=—=D,
is an object, d € D, and a dinatural transformation
(11.19) n: S(e, &) —>d
» such that if X € D has a dinatural transformation
(11.20) B: S, ¢c) — X,

then we have a: d — X with an = §.
To be dinatural means that for a: ¢ — ¢’, the following diagram commutes:

/, S, c)
\

(11.21) (', )

/

Let C = F*, where, as a category, F* has objects i € Z and morphisms

S(c',.c))

(11.22) FI~" = morph(j, j).
C°P = F, with F*7 = F,

i "

; = morph(j, /). Define

(11.23) 8@, j) = B} ®g Ci € grbimodg«_g .
i R E*-G,
‘ 4 , The coend of this functor is just
\ iy
‘ | (11.24) B} ®p, Ci

: as defined above.

- Let

' (1125)  Bf €gibimodgs_p , Ci € gbimodps_g, and Dj € grbimodg+ _g .

Define the graded E* — F, bimodule

(11.26) Homg o, ¥(C%, D)

by

(11.27) Homg _¢ "CE D)= homR_G*(C,,’f, D3).
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The left £* module structure is inherited from the left £* module structure of D¥. The
right 7y, module structure is induced by the left F* module structure on CE
The adjoint relation is

(11.28) hOmEt_G‘ By ®ps C, D)= homE._F‘ (B%, Homy, -¢, +(C$,D}).
Let B € grbimod ., .. . A map
(11.29) B} ®p« B} — B

puts a “ring” structure on Bg. The definition of associative is obvious since ®p« is associa-
tive. A unit is a sequence of elements 1, € B]} which act as left and right units in the ob-
vious fashion. When we say ring we mean an associative “ring” structure with unit, Observe
that this is a sequence of maps

(11.30) B, ® B} — B
EXAMPLE 11.31. End%(M*). Let M* be a left E£* module. Let
EndZ(M*) = hom, (¥, ym).

The left £* module structure of s * turns End¥(M*) into an object of grbimodE.._E‘. The
“ring” structure is just composition of maps and so it is clearly associative. The unit is the
collection of identity maps 1, € homg, (M", M™),

More generally, we can define, for M} € grbimodE._G‘,

Endi(3) = homy_; (ME, M),

which is again a ring in grbimodE*_E - The first is a special case of this. ©
EXAMPLE 11.32. B MopULES. A B module, M} € grbimod,._ . , for B¥ a ring
in grbimodE,._E , Is a ring map

B} — Endi(M}),

which, by the adjoint relation, is the same as a definition given by an E* — G, map,
B¥ Bp« M} — M,

with commuting diagram

Bi ®@ge B @pu M3 181, pr g | s

m@ll lm

B} ®p« M} s M

As above, we can specialize to the case of a left £ * module M*, o
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ExaMPLE 11.33. STABLE E*E MODULES. Let E*E be the stable cohomology oper-
ation ring for a generalized cohomology theory represented by the spectrum E. Define
Stk e grbimod e by
E"*E = St%.
This is not a very efficient way to say it, but a ring map St§ — End¥(M*) is the same as
our usual concept of a stable E*E module structure on M*.
There is a stable £ *E module structure induced on each SiM* i € Z, from

St = St4~! — End}Z(M*) ~ End{(Z'M*). ©

1

EXAMPLE 11.34. UNSTABLE E*E mopULES. This is our motivating example. Let
E = E, be an Q-spectrum with

E*(E;, x E) = E*E, ® E*E;

for every k. We have PE*E, C E*E,. Let Uy = PE"E,. This is a ring in grbimod z«_g .
We define an unstable E*E module structure on M* to be a ring map

UX — Endi(M*).

The cohomology suspension £ n—kp —s PE"E . gives a ring map St¥ — Ug. By composi-
tion, any unstable module has a stable structure on it. We say a stable £*E module is un-
stable if the following diagram can be filled in:

St¥ — Endi(M$)

A
l 7
7.
/!
Vi
. Vé
Us
A stable module may have many unstable structures, or none.

An unstable module structure on M * can be lifted to an unstable structure on SiM*,
i > 0, by using the cohomology suspension map PE*E, — PE *_i_E_‘*_,. to get

U* — U — EndiTi(M*) = End%(Z'M).

Extending the unstable structure on M* to one on =~1M* (or TM*) may not always be
possible. This, of course, is one of the important points about unstable operations.

Every E*X, for X a space, is an unstable E*E module, and E*3iX is an unstable
module isomorphic to SIE*X. If a space can be desuspended, say X = 2ZY X =z71X),
then

(11.35) Py = 3-1EX

and we have an unstable structure on s—1F*x  Therefore, if there is no compatible un-
stable structure on s~1E*X, then X cannot be desuspended.
We have already noted that for £ = MU and BP,

(11.36) E*Ek = homE*(E*Ek: Ey)
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and (11.6) holds. This is simply because HE, has no torsion and the Atiyah-Hirzebruch
spectral sequence collapses. Standard mod (p) homology also satisfies condition (11.6). The
stable operations H*H give the Steenrod algebra A,. We can exhibit the striking differences
between unstable BP and H operations and show the reasoning behind our philosophy that
BP operations should contain a great deal of information. We have, for n > 0,

A, —> PH*K, C H*K,, primitively generated,
(11.37)

BP*™"BP »— PBP*BP, C BP*BP, not primitively generated.

For mod (p) cohomology, the stable operations map onto the additive unstable opera-
tions and H *L(n is primitively generated. Thus the only unstable operations are stable oper-
ations and cup products. The main unstable information is that some stable operations (for
p=2,8¢,i> n) are always trivial on #» dimensional classes.

For BP, the stable operations inject into the additive unstable operations. As a bonus,
BP*I_S’Bn is not primitively generated. So not only do we have a rich new collection of ad-
ditive unstable operations, but there are serious new nonadditive operations not generated by
cup products and the additive operations.

We will tend to ignore the nonadditive operations until useful applications of the ad-
ditive ones have been found. Theoretically, though, it is clear how to deal with them, and
computations like those in this section can be carried out.

Recalling that H, MU, is bipolynomial or exterior, we have MUMU, is cofree and
MU*MU., is either a completed polynomial algebra (n even) or a completed exterior algebra
(n odd). We can see by duality that MU *MU,, is not primitively generated.

Since there is never any torsion anywhere in BP (MU) we can feel free to study things
rationally without loss of information. BP is just a bunch of Eilenberg-MacLane spaces ra-
tionally so we have

(11.38) BPS"BP ~ PBPEBP,, n >0,

with obvious modifications for n < 0. The isomorphism is given by cohomology suspension.
This immediately implies

(11.39) 0— BP*™"BP —> PBP*BP,, 1n >0,

with modifications for n < 0. From this it appears that the study of unstable operations for
BP is just a problem of divisibility conditions for stable operations, and indeed, if we restrict
our attention to k dimensional complexes this is the case, and the coker defined by

(11.40) BP*™"BP — PBP*BP, —> coker — 0

would be entirely torsion. However, as we let k go to ©, we have an inverse limit with
higher and higher torsion. (Think p-adics.) In other words we have completion problems,
discussed more later, and unstable operations cannot be represented in terms of stable opera-
tions and divisibility problems, but they are truly different objects. Our main theorem is

THEOREM 11.41. In (11.40), there is no torsion in the cokernel. O
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We defer the proof for a bit. We have:
BPS"BP D BP*""BP —> homyp (BP+BP, BPy)
(11.42) = N n
PBPEBP, D PBP*BP, — homgp (QBP.BP,, BP)

We now have two ways to describe our unstable operations. First, they are dual to
QBP,BP,, which we have an explicit basis for. Second, we know they are contained in the
rational stable operations. For this to be a useful statement, we must know how they sit
inside. Our first description can tell us. We have

(11.43) BPE™"BP = hompp+(QBP4BP,, BPQ)
and the unstable operations, PBP*BP, , in
(11.44) BP*~"BP C PBP*BP, C BP§"BP

are just those maps which send QBP,BP, to BP, C BPQ. We need a more explicit descrip-
tion of the isomorphism (11.43).

We can think of » € BP* "BP as a map
(11.45) r € PBP*BP, C BP*BP, =~ [BP,, BP,| =~ {BP,, Z*BP},

just by restricting to n dimensional classes (the cohomology suspension again). The map in
(11.43) is induced as usual: r goes to

(11.46) 7 € homgp (QBP4BP,, BP:)
with
(11.47) Fy) =,y or Fy)=eos™ ory(y)

§% the o homology suspension and 7 the induced map (11.1).

Although our concern is mainly 7, evaluating r,, is an interesting problem in its own
right. As mentioned already, it is enough to do this rationally.

Recall from §9 the notations o, *, [a], b = Z;54b; and X € BP*CP®. The algebra
structure on BP,BP induces a coalgebra on BP*BP with r — Zr' &r".

THEOREM 11.48. Let r € BP§"BP C PBPEBP,, any n (also for MU). If r(x) =
Ei>0cix((k'")/2)+i+1, ¢; € BPR, then

() 7o(y # 2) = re(¥) # 14(2), F(x % ¥) = 0, (x, ¥) in the augmentation ideal;

(i) r4(y o 2)=Zr'(y) o r"(@), Ay o 2) = ZF(N)7"@);

(iii) 74([a]) = [r@)], 7([a]) = r(a);

(V) r4(b) = %50lc;] © pUGCBVEM R By ey = o o

This gives a complete evaluation of r, for r EPBPSQI_D" because we know that the [4]
and b’s generate BP, BP, from §9. Since BP*BP, is primitively generated rationally, it is
easy to extend this to all r EBP"ILP,,.
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Proor. (i) follows from the additivity of 7 and the fact that homology suspension is
trivial on decomposables. (ii) and (iii) are elementary. To show (iv), we consider, rationally,

CP= > BP) = BP) 1y _y-

Then

r*(b)=r*x*(ﬁ)=r(x)*(ﬁ)=(Zc,-x“"'")’”*”‘) =« [g] o p(F—mID*IHL,
¥ iz0

From e(b) = 1, s(x * y) = 0, and e(ng(a)) = a, we have

B)=e05"s re() = €o s°°< A b((k—n)/2)+i+1>
>0

= e<z n (e plGE=m D +i+1 b;m) =Y e=c o
(=0 i=0

1
We are now equipped to produce some honest unstable operations. If we are given
(11.49) r € MUS"MU = PMUEMU,, = homy,y; (QMU,MU,,, MUR)

we can evaluate it on QUU,MU,,, and if it lands in MU, C MUQ we have a legitimate un-
stable operation.

Several people have studied rational Adams operations for MU and BP, but generally
they are not viewed as potential unstable operations [N, Ar,, Sn].

Recall (1.53) that the MU multiplicative operations are given by power series

(11.50) fe)=x+--

with coefticients in MUQ. Let

(11.51) fx) = K1)k

define a rational multiplicative operation Y *. We know that for x EMUéCP“’,
(11.52) V) = [kl (x)/k.

THEOREM 11.53. ¢ € PMUMU, C MUSMU and k'y* € PMU**MU,,, . C
MURMU, e =0,1,i€Z 0

REMARKS 11.54. Novikov [N] claims the first part for torsion free spaces in a foot-
note. The result is true for BP as well because the ¥ exist there [Ar,]. Note that the y*
imply torsion in the coker of PBP*BP, >—> PBP*~2BP, .

PrROOF. Recall (3.7) that mog x = log f~!(x). We have f~(x) = [1/k](kx) be-
cause

[1/E] (k([K) (x)/k) = [1/k]([£] () = x.
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mog x = log f ™1 (x) = log[1/k] (kx) = log exp((1/k) log(kx))
= (1K) log(kx) = (1/0) X m ey,

and since

2 VEm)xtt = (k) X mkxy Y,

i>0
we have gl/f(mi) = kimi and it follows that, for a € MU ™%,
v¥(@) = ka.
We will prove only the MU OM_(_/'O part as it adequately demonstrates the techniques. Recall

Theorem 9.13 that MU, MU, is generated by b’s and [MU*]. So QMU,MU, must be gen-
erated by elements of the form

[a] o bt o b2 +++ = [a] b

with la| = =20, +7, + *+*), [a] €MU,MU,,,. We have ¥ [a] = k~%/?q and J*(b) =
[k1(1)/k. Since Y* is multiplicative we have
V¥(lalb?) = $*([a]) P57 = k19 2a")

= k_lallza(stuff)/kjl +j2+-..’

which is integral! Likewise for the general case. O
Before we prove 11.41 we introduce the stable BP operations. Define monomials in
the #’s in BP,BP by

(11.55) A

We define

(11.56) rgz € BP*BP
by the property

(11.57) G C=3C

Then |rg| = |E| = 2Ei>oei(pi —1). Let R be the free Z(p) module on the r;. R is a co-
algebra with

(11.58) rg— 2 rg®rgs
E'+E"=E

and

(11.59) BP*BP ~ BP* ® R.
An element r € BP*BP is a possibly infinite sum

(11.60) r=>cgrg, c¢g€BP*.
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Our interest is in BP(’;BP, which is not the same as tensoring BP*BP with Q, but is the
same as taking sums (11.60) with the ¢z € BP(")‘. Define a truly unstable operation to be an
element of PBP"!_}_}_’H which is not in the image of BP* "BP, i.e., an additive unstable opera-
tion which is not a stable operation. We can rephrase 11.41.

THEOREM 11.61. A truly unstable operation r = Zcyry must be an infinite sum with
unbounded negative powers of p in the coefficients cg. O

Define af € BP,; by

(11.62) rp() = 3 afxlBM2tit1 e pp2cp=,
i=z0

LemMa 11.63. Let af = 2, jaf. Then

b= c<ZFti> = Z aEtE. o

=0

j=0

F_\J
= ’z_(:) e, c<i§0 t,.> >(x, By

i=0

22 =y B=C(r/Qx ¥ c<ZFti>] ® ﬁ> by 3.13

Since (x, [3].) = 0 except when j = 1, we have

= <rE, c<§: t,~> ,

the required result. The first equality is just 3.14. O
Tables of some a,.E for p = 2 have been computed and are presented at the end of this
section. Thanks to Daciberg Goncalves and Don Davis for tremendous help.

COROLLARY 11.64. 75(b) =af. O

COROLLARY 11.65. ?Ai(bm) = aoA" =-1. O

ProoF. Use induction and =% tic(ti)"j =1, O

PrOOF OF 11.61. Let f= Zdfr, € PBP*BP, C BPa‘"Bf not in BP* "BP C
PBP*BP, ; then 0 # d& EBP{S/BP* for some E. We assume that p¥f = r € BP*BP for
some minimal k > 0. We obtain a contradiction. This proves the result. Since we have
multiplied f by p to get 7, 7 must be trivial mod (p). By cohomology suspension, f is in all
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PBP*BP,, i <n, and the corresponding s are also trivial modulo (p). Since we have chosen
k minimal we can write

r=Y cErg +pr', somer' €BP*BP

with ¢f 20 (p) and some nontrivial cZ. The pr' will automatically have pr' =0 mod (p).
So since 7 is zero mod (p), we must have " = ZcEry give 7' =0 mod (p). We show this
does not happen, i.e., for any such r" with cE # 0 mod (p) we find that for large negative
i, 7" is nontrivial mod (p) on QBP,BP;. Of course we need to find only one element x with
7(x) 20 (p).

Order the sequences F by

E,<E, if |E,|<IE,l,
E, <E, if|E,|=|E,| and E,) > IE,), (E) =3 e,

E, <E, if|E,| =I|E,|, IE,) = KE,),

el =e?i=1,2,...,k~1,and e} <el.

Pick the minimal E from the set of ¢£. To construct our x we begin with 5% =
b(s} © bgsi o +-- . By our choice of £, 11.65 and 1148,

(11.66) F'BF) = (- 1YE)E,

We started with a fixed PBP*BP, and we must produce an x in PBP*BP;, i < n. This bF
may not meet this condition. Pick k and j very large so that [vlgl] o bE & PBP*BP,, i < n.
Also choose k bigger than any v in ¢, and j bigger than /(E) and |cE]; then

P 7 j
(11.67) Erg(vP'] o bEY=2cEu?’  (p).

For @E:E ' > E, to give something nonzero we know that some of rg+ must apply to [v,’c’]],
by (11.66). If so, then it must apply to all p! of the v,’s in order to be nonzero mod (p).
This guarantees p’ v’s smaller than v,. However, by our choice of , cEin (11.67) has fewer
such v’s, so the term in (11.67) will never be canceled out. ©

This gives some insight into the number and type of unstable operations. We can take
a “basis” for PBP*BP,, dual to either 9.20 or 9.21. For the element r corresponding to a
basis element

(11.68) w187,

the “lead” term will be irE/pI(I) for some E. The infinity of terms in the “tail” of r will
be forced to be there in order to make 7 integral.

In practice it is a burden to handle the entire definition of unstable operations; a
“local” condition does well enough. If we have a stable BP*BP module M*, then for any
Xx €M™ we have a map

(11.69) BP*7"BP — M*
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which takes 7 to r(x). If M* has an unstable structure on it, then this map must factor
through a BP*BP module map

BP*7"BP — M*

2
/
(11.70) J e
Vd

/
PBP*BP,

This is just good old-fashioned algebraic topology.
The BP*BP module structure of PBP*BP, is complicated. Basically there will be a
bunch of generators lp> V1> Vos ..., and a set of operations and relations

(11.71) Tty = Zr,.]-yi.
14

Defining the map in (11.70) amounts to choosing values in M* for the unstable operations
(11.72) ¥; €PBP*BP,

which are consistent with the relations (1 1.71). This is difficult to handle in practice, but it
is always a straightforward calculation in primary operations.

We give a computational example. The result is well known and can be proven using
standard unstable secondary operations. The hope, of course, is that the unstable primary
BP operations can eventually be used to obtain results that would necessitate the use of
standard higher order operations. To make our computations, we formalize the previous dis-
cussion in the equivalent form: Is M" in the image of

M* = homy ., o ,(BP*BP, M*) «— homg s p ,(PBP*BP, , M*)
(11.73)

= EXty ps g p(PBP*BP, , M*)?

We need to produce only one element X,, not in the image in order to show no unstable

module structure exists. To show an unstable structure exists one must show that all of the
local definitions patch together consistently.

For our example, consider the cofibration
(11.74) RP'S — RP26 — RP2§ = RP26/Rp1S

No eleven-fold desuspension exists for RPfg. We prove this by showing there is no unstable
module structure on

(11.75) TUBP*RP2S = M+,
which is compatible with the given stable structure. We compute, for p = 2,

(11.76) homy pu  o(PBP*BP,, M*).
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and show that it is not onto M>. It is enough to compute through internal degree 15 be-
cause M* = 0, k > 15. Also M*¥ =0, k even.
We describe a cofree BP,BP resolution

(11.77) 0 — QBP,BP; — F, — F,,

take the dual and apply hom to obtain

(11.78) 0 — homy .« 5 (PBP*BP 5, M*) —> homy . o o (Fg, M) LY hom e (FF, M*).
To briefly describe how this goes (through deg 15),

(11.79) Fy~3%°BP,BP ® ='!BP,BP ® Z'°BP,BP

and

(11.80) F, ~3'1pP.BP ® ='3BP,BP.

Now, (11.78) becomes

(11.81) 0— Ker—>MS® M @ M5 5 M1 @ M13

where r is a matrix of stable operations. Interpreted as in (11.71), for every x, we must be
able to choose an x,; and an x, ; such that

(11.82) O0=r X5 +ri,x, Trizxs and 0=ry x5 try,x;, +ry3x,.

This will not come out so clearly in the computation. What we want is to show that the
composition of (11.81),

(11.83) 0 — Ker — M5 @ M1 @ yq15

!

MS

is not surjective. We will never describe the matrix 7 in terms of the rg, but we will keep
our computations in homology, not cohomology.
From 9.21, or simple manipulations using 9.13 and 9.14, a basis for QBP,BP; is

deg
S €y c:b;’2
7 €4 ob1 ob2
(11.84) ey o by?
02
11 eloblob4,810[01]oblob2
13 €, 0 b2 o b4, €; 0 [01] o b;a
15 €, o [UI] obl ob20b4, €1 0 [vz] obi’aob;z.

The Boardman basis is preferred because it uses the smallest v’s possible.
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By homology suspension we consider this a subcomodule of Z5BP,BP. Recall that
[«] suspends to mg(a) and b,, suspends to b,,_, .

QBP.BP, C Z°BP,BP

deg
51
7 b,
(11.85) 9 b2
11 by, bing(,)
13 b,bs, b?"’R(”l)

1S bibyng(vy), bing(v,)

From tables at the end of this section giving nj (vy) =v; —2b, and nx(v,) = v, +
Sv2b, — 150,62 — 2b, + 14b3 we can rewrite and slightly alter the basis to be

QBP,BP, C °BP,BP

deg

(11.86)

11 b
13- Bghes ' v =2b7

15 <2038y, (upb? = 1443
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To begin our resolution (11.77), (11.79), (11.80), in F, we give coefficients
deg QBP,BP, — Z°BP,BP >'1pp, BP =5ppP, BP

5 1— 14
7 b, — b,
9 b2 — b2
11 by — b3

(11.87)
23 — 23

111
bby — b, b, 3b,
(v,63 — 2b%) — v, b3 — 2b =3By
2636, —> 2b2b, 1762 - 2v,b,
(v,b} — 14b5) — (v, b} — 14b7)  —(15v,b, + 36b2)

This requires some computations to verify as does

Fo—r—’Fl

coefficients of

111

-2
13 b} — 2v,
(11.88) byby — 3v,
byly, = PoL
15 By —= -10b2 + 10v,b,
bib, —» =2 + 1700, =165 20 4 34D,
BEl,, = =Dogh § 4 2b% —4b,
l,s—  —170? + 68v,b; — 687 —33v; + 66b,

Before we can compute (11.83) from (11.81) and (11.78), we must compute the groups
M* of (11.75).
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We begin with the fibration
(11.89) RP™ — P~ 25 cp~,

The Atiyah-Hirzebruch spectral sequences all collapse and give an exact sequence, so

(11.90) BP*RP™ = BP*[[x]]/[2] (x).

Furthermore, the spectral sequences collapse for everything in sight, giving surjections from
the maps

(11.91) RP** — RP=, RPS, — CP, RPZIigpR

where CP}! =~ CP"/CP¥~1, For example,

(11.92) BP*Rp** = BP*[[x]1]1/([2] (x), x®+1),
and
(11.93) BP*RPZ:

has a Z , summand in degree 2k coming from x* € BP¥CPy;.. In memory of CP™ we
call the BP* generators for (11.93), x¥, x¥+1, x”  Using the formula for [2] (x) at the
end of §3 we can describe BP"‘RP12(',3 explicitly from degree 16 on up.

BP*RP}E = sliy*

deg groups generators relations
26 Z/(2) x!3 %13 = o
24 Z/(4) xt2 212 =y x13
R 22 Z/(8) 2t =y xt?
20 Z/(16), Z/(2) 2'? =—Zuxi! 4 gt P
18  Z/(32), Z/(4) 959 = _3le10 5 v2x12
16 Z,, Z/(8)

Returning to (11.81) we have

(11.95) 0 — Ker — (Z(z) ® Z/(8)) ® Z/(8) ® Z[(2) ﬂr—z)» Z/(8) ® Z/(4),
Y1 Y2 ¥3 Va 21 22

with new names for the generators. Since we obtain surjections from (11.91) we can com-
pute our stable operations in BP*CP}3. This is torsion free, so we can compute operations
in here by duality in BP, CPt%3 . These in turn can be computed using CP*. Our operation
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r is given to us in terms of (11.88), and we must compute it on the y’s in (11.95). For
Hx") = Zax’,

(11.96) a =rx", B) = € o ry 0 x3(B),

which is convenient for us because we are given r in terms of r,. The map x" is just

(11.97) CP” — A.CP™ — A Z2BP — 3?"BP.
n n

We will need the following computations which use the fact that b, = —v,b; + 2bf from
the tables at the end of this section.

modulo
x43By3 )
X 'Byy 8)

X348y, = 116, =—b, 4)
(11.98)

X418y = 11b, + (121>b‘;’ = b, + b? @)

8 il L 8 8
XxByy =8by + <3>bf + (1,1>b1b2 =0 8
X361 = 2b7 “
8 o
X4by3=0 2
We compute (11.95) from (11.96). We compute in BP*CPZ 3 but because we reduce
to BP*RP1266 , we can work modulo (2°) as in the tables (11.98). Let
(11.99) F(a)=agx! +a,x'% +g,513,

3

because y, = x!3, and we have x138,, = x138,, = 0,7,(v,) = a,x!3 and

(11.100) ay = (ry(¥4), By3) = €0 r o xk3B 3 =€oru(lys) =
from (11.88)

(11.101) e(~17v2 + 68v,b, — 68b2) = — 1702

because e(b) = 1. Since 2x'3 =0,

(11.102) ri(yg) =vix!3 = 4xll = 4z |
Computing r,(y,) = 2z, is about the same. So

(11.103) r(yg) =4z, + 2z,.

Note that for our purposes we need only the table of € o 7, from (11.88), as
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deg €ory, coefficients of
Fo— 1y, lys
by —0
by — 1
lj, -2

4
by — 2v]

(11.104
) byby — —v,

bylyy = -y,
15 b —0
b2b3 — v?
b3l —0
s — v}
A similar calculation to that for r(y,) also gives
(11.105) ) =4az, + 2,;
Computing r( Y,) is slightly different because Y, = v.lxl 1. We have
(11.106) r(¥3), B = € o 1u(vx" 1)o(By) = € 0 740, x4 (B,)

where v,  is just multiplication by Mg (v;). Recall that in (11 .104) there is an absent 15, by,
and 5% going to zero. We compute

(11.107) ny,) = 0.

Computing r( Y1) is fairly easy. We represent it as

(11.108) r(yy) =apx® +a;x% +a,x10 + a3x'! +a,x12 + gx13,

Then

By
By

ﬁll
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and we have
(11.110) r(y,) =2z,.

We are almost done. We want to show the lack of surjectivity of (11.83), and it is
now clear, from (11.103), (11.105), (11.107) and (11.110), put into (11.95), that y; cannot
be in the image in (11.83).

We conclude this section with some formulas we have found useful. We use the formu-

las and tables found earlier in the paper, and

THEOREM 11.111. Let [p]l(x) = Z;59a,x' T, with b = =, o b; = c(EiZot,.), and
a=Z%,50a; a; €BP,;. Then, with x(y) = TisoXy' Y, b(a) = nga(d), or

I

2 b;a" =3 np@pttt. o
i>0 i>0

Proor. Just stabilize 9.12 for BP. ©
This allows us to compute the right unit of v’s in terms of »’s and give the nongen-

erating b’s in terms of the generating b’s.
p=2[2]1(x)=Z;50a%" . In BP,BP

ng(a,) = 2,

ngl@) =-v, +2b,,

ng(ay) = 2v} — 8v,b, + 8b%,

ng(@3) = —Tv, — 8v3 + 13v}b, + 9v,b} + 14b, — 34b3,

ng(a,) = 30v,v, + 2607 — 60v,b, — 58v3b; — 126v3b2
ke ~ 60, b, + 488v, b3 — 424b% + 120b, b,
Mg (as) = —111v,0] — 84v] + 444v,v, b, + 28501h, — 444v,b} + 52503}

+ 22202b, — 3714v3b3 — 888v,b, b, + 6156v,b7 + 888b2b, — 352807,
ng(ag) = 11203 + 502,03 + 30008 — 1892v2v,b, — 1090v3b, + 2664v,v,b7

~ 1790v§b} — 448v,b, — 1004v3b, — 880v,b3 + 175280303 + 3784v2b,b,

~ 39728v2b% — 5328v,b%b, + 39936v,b5 + 448b2 + 1760b,b3 — 1507255,
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In BP,BP,p =2,
1R (2) = 2,
np;) =v; —2b,,
by =-v,b, + 22,
Mr(Vy) = v, + 5vib; ~ 150,63 - 2b, + 143,
by =~vib, = 2v,b, ~ 3025 + 14v,b3 - viby — 16b7 + 6b, b,
) bs = 4vv,b; + 201, - 110,62 + v36? + 12b,
—4901b3 — 13v,b,b; + 121v,b% + 28b3by — 9853,
be = —4viv,b, — 23b, + 270 0,52 + Tvib} ~ 2v,b,
= 207by — 400,57 + 570363 + 1302b,b, — 32103p¢

= 600,530, + 5700,b5 + 452 + 80b7b; — 36858.

F - BB B E
c(2i>ot,-)— Zpa®tt, at = 0@ -

=1,

=-1+o —0f + v, + 2}) - Bo? + 4v;p,) + (6v3v, + 4v3) + ---

=250, + 8] - (170} + 11v,) + (3700, + 3% + -
=35+ 21y — 4% + (500, + 11803) + -+,

=-l+v —v2+ Qu, +203) + -,
(LT =14 - 84v, + 2640 + -+
a'l =6~ 130, + 212 + -+,
@ =-42+3300, +---,
@' =-28 + 1000, + ---
a®=132+---
Al =120+ -,

2 =4+
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