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Introduction 

BP denotes the spectrum for the Brown-Peterson cohomology, BP*(.), associated 
with the prime p [1, 3, 11 ]. The spectrum can be given as an O-spectrum BP = {BPk}, 
[2, 16], i.e. OBPk=BPk_ 1 and BP k is k - 1  connected for k>0 .  We have Bpk(')--~I "', 
BPk-I, the unstable homotopy classes of maps. The usual way of viewing BP*(.)  is 
B P * ( . ) - { . ,  BP}*, the stable homotopy classes of maps of the suspension spectrum 
of a space into BP. We will study the Brown-Peterson cohomology theory from an 
unstable point of view by studying the BPk. 

Interest in the Brown-Peterson theory stems from the fact that it is a "small" 
cohomology theory which determines the complex cobordism theory localized at the 
primep and that all of the nice properties of complex cobordism carry over to BP*(. ), 
such as knowledge of the operation ring. Historically, everything about the Brown- 
Peterson theory has been as nice as could be hoped for. We will push on further in that 
direction. Z(p) is the integers localized atp, i.e., rationals with denominator prime top. 

MAIN THEOREM (3.3). The Z(p) (co)homology of the zero component of BP k 
has no torsion and is a polynomial algebra for k even and an exterior algebra for k odd. 
(k can be less than zero.) # 

Using the main result of [12], the above theorem determines the Hopf algebra 
structure of the (co)homology. (see section 3) We begin by reviewing Larry Smith's 
result on the Eilenberg-Moore spectral sequence for stable Postnikov systems. [14] 
We combine this with Brown and Peterson's original construction of BP([3]) to 
calculate H*(BP2k+ 1, Zp) assuming a technical lemma which we prove in section 2. 
In section 3 we prove the main theorem and some miscellaneous items such as lifting 
our result to MU. 

In Part II we determine the homotopy type of the BPk using the main theorem here. 
This paper is a part of work done for my Ph.D. thesis at M.I.T. under the super- 

vision of Professor Frank Peterson. It is my pleasure to thank Prof. Peterson for his 
advice, encouragement, and understanding through the last several years. I am very 
grateful for the quite considerable influence which he has had on my attitudes and 
tastes in mathematics. Thanks are also due to Larry Smith and Dave Johnson for 
comments on a preliminary version of this paper, in particular for pointing out a 
mistake in the original proof for the prime 2. 
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Section 1 

For the remainder of the paper all coefficient rings are assumed to be Zp = Z/pZ 
unless stated otherwise. In this section we show H*(BP2~+I ) is an exterior algebra 
on odd dimensional generators. H*(BP2k+I ) is a Hopf  algebra, so for odd primes 
having odd dimensional generators is equivalent to being an exterior algebra. The 
general reference for Hopf  algebras is [10]. We quote what we need from [14]. 

Let K be a product of Eilenberg-MacLane spaces. We will be concerned with the 
situation 

Y ~ P K  

X ~ K  
y 

(A) 

where all spaces are infinite loop spaces and all maps are infinite loop maps. rc is the 
fibration induced by f from the path space PK over K. All cohomologies are thus 
cocommutative Hopf  algebras and H*(K)\\f* a n d  H*(X)//f*, the kernel and 
cokernel o f f *  in the category of Hopf  algebras are defined. 

There is a natural map PH---, QH, where P and Q denote the primitives and 
indecomposibles respectively of a Hopf  algebra H. When this is onto, H is called 
primitive. 

LEMMA 1.1 ([14, p. 69]). H ' ~ H  a subHopf algebra over Zp, H primitive, then 
H' is primitive. # 

If  V is a graded module, let sqV be the graded module (sqV),+q= V,. Let V- 
denote the elements of odd degree. From [14, p. 95] we have a filtration of H*(Y) of 
diagram A such that 

P Is -~ ((Q (H* (K)\\f*))-)] (1.2) 
EoH* (Y) ~_ H* (X)/if* | E [...] | [s_ x ((Q (H* (K)\\f*))-)-lt' 

as Hopf  algebras. E and P denote exterior and polynomial algebras generated by odd 
and even dimensional elements respectively. E[.. .]  is determined by H*(K)\\f*. 

H*(K) is primitive because it is generated by cohomology operations on funda- 
mental classes, therefore, H*(K)\\f* is primitive by 1.1. So for xe Q (H* (K)\\f*) 
we have x ' ~  x, x'~P(H* (K)\\f*) and thus x'--, x"ePH* (K). For x of odd degree, 
x' and thus x", are determined uniquely by x. Let i: OK--* Y be the inclusion of the 
fibre. 

LEMMA 1.3 ([14, p. 86 and p. 110]). i*(s-l(x))=s*(x"), s* the cohomology 
suspension, s*: H* (K)--, H* (OK). # 
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Note that if x is of  odd degree then s* (x" )#0  by the following lemma. 
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LEMMA 1.4. aePH"(K), if s*(a )=0 ,  then a=Ptx2, or a=flPkX2k+l where 
picA is the i-th reduced p-th power, A is the Steenrod algebra and x~ is of degree i. 
(p = 2, Pi= Sq2i and fl= Sqa ). # 

Proof. It is enough to consider K=K(Z(p), n) and a=Pri, where PteA is an 
Adem basis element. The kernel of s*: QH* (K(Z(p), n))~PH*(K(Z(p), n-1) ) i s  of 
the type flpkX2k+~. The proof is an argument on the excess of I and can be found in 
[13]. The kernel of PH* (K) ~ QH* (K) is of the type Ux2,= (x2,) p. The degree of 
Ptx2t = 2pt and the degree of tiP kXzk + 1 = 2pk + 2 SO the two terms cannot occur in the 
same dimension. # 

Brown and Peterson [3] construct BP by a series of fibrations which we now 
describe. Let ~ be the set of sequences of non-negative integers (ra, r2, ...) which are 
almost all zero. Define d(R)=~2r~(pi-1) ,  l (R)=~r i  and let A~ be the R with 
r i = 1 and zeros everywhere else. Let V i be the graded abelian group, free over Z~p), 
generated by Re  ~ with l ( ~ ) = j  and graded by d(R). Then we have the generalized 
Eilenberg-MacLane spectrum K(Vj) = V t~R)= j Sa~R)K(Zcp)) �9 BP =inverse limit X j 
where we have the fibrations 

K (vj)  x j 

x J - '  s K  (vj)  
(,) 

induced by k j_,. We have an A/A(Qo) resolution for A/A(Q o, Q, .... ) = H * ( B P ) ,  
d j : M j ~ M j _ I  with H*(K(Vj))=Mj and (ij)*'(kj)*=dj+l. The Qi are the Milnor 
primitives [8]. (For p = 2 ,  Q i = P  ~'§ in the Milnor basis.) For an A/A (Qo) generator 
iRe H* (K(V j)), dj(iR)= Z,  a,iR-z,. 

The spectrum K(Vj) can be given as an O-spectrum, {K(Vj, k)=X,~R)= j K x  
x (Ztp), d(R)+k)}. The entire diagram ( , )  can be turned into O-spectra and maps of 
O-spectra. From this we get a sequence of fibrations with BP k =inverse limit X J. 

r (vj, k) & xJ 
$ 
x j-1 t : (v j ,  k + 

(**) 

We suppress the k in the notation for X j, ij and kj. Note that k can be less than zero. 
We have (ij)*.(kl)*.s* =s*.(ij)*.(kj)* where the ij and kj  on the right are for BP k 
and on the left for BPk-a. This is because kj  for BPk-1 is the loop map of the kj for 
BP k. Similarly for ij. The iterated cohomology suspension gives a map s*:Mj ~ H* x 
x (K(Vj, k)) which has as its image the primitives, PH* (K(Vj, k)). In general we will 
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denote the iterated suspension by s* and it should be clear when we mean only one. 
We have the following commutative diagram. 

Mrf~+* Mr+I 

H* (V;, k)) , 1)). 
(i l)* "(k j)* 

We will often use s*(dj+,) for (ij.)*. (ky)*. It is given by the same formula ~ Q JR-a,. 
In the next section we prove the following lemma. 

LEMMA 1.50). For k odd, if a~pH2~+l(K(Vr, k+ t)) such that (kr_l)* (a)=0,  
then there exists bePH* (K(Vj+,, k+ 1))such that (i j)* .(k j)* (b)=s*(a)r 

We use this to prove the next proposition. 

PROPOSITION 1.60). For k odd, H* (XJ)//(ks)* has no even dimensional gener- 
ators. (For p = 2 it is an exterior algebra.) # 

Proof. For j = 0 ,  X~ k) and all generators of H*(X ~ are in the image of 
s*:Mo=A/A(Qo)--*H*(K(Z(p~, k)). So if x is an even dimensional generator of 
H* (K(Z(~/, k)) and k is odd, then there is an odd dimensional x ' e  M0 with s*(x')= x. 
We have the exact sequence 

M, _~ A/A (Qo) = Mo Z+ A/A (Qo, QI .... ) -~ O. 

Thus there exists x"e M1 with d 1 (x")= X' as e (X')= 0 because e (x') is an odd dimen- 
sional element in A/A (Qo, QI .... ) which only has even degree elements. So s*(x")x 
x sH*(K(VI ,  k+l ) )  and (ko)* (s*(x"))=s*(d,).s*(x")=s*(d~x")=s*(x)=x and 
the even dimensional generator x~H* (X ~ goes to zero in H* (X~ *. (For p = 2 
and x an odd dimensional generator, then x z = Sq deg ~'x is killed by the same argument, 
so we have an exterior algebra.) 

By induction, assume proposition 1.60-1 ) . By 1.2 we have: 

Eon* (X j) ~- H* (X j-  I)//(kj_ ,)* | E [. . .]  

e Is -1 (O (H *(K (Vr, k + 1))\\(k r_ 
| [s -1 (O (n*  ( g  (V i, k + 1))\\(kr_ i )*)- ) ]"  " 

Now by our induction assumption, all even dimensional generators look like s -  ~ (x) 
where xsQH*(K(Vr ,  k+l)) i \ (k j_l)*- .  These elements map injectively to the 
cohomology of the fibre, see 1.3 and the remark after it. As discussed above (before 
1.3), x can be represented by an asPH* (K(V r, k+ 1)) with (kj_t)* (a)=0.  Now, as a 
is of odd degree, from 1.5(j), there exists b such that (i j)*.(kj)* (b)=x*(a)#0 .  But 
by 1.3, (it)* ( s - l ( x ) ) =  s*(a) and (i j)* is injective on these even degree indecomposibles 
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giving that  (ki)* (b) = s -  l(x) + decomposibles. Therefore, the generator s -  X(x) goes 
to a decomposible in H*(XJ)//(kj)  * and we are done. # 

C O R O L L A R Y  1.7. For k odd, H* (BPk) is an exterior algebra on odd dimensional 
generators. # 

Proof. Because K(Vj,  k) is highly connected for h i g h j  we have H*  (BPk)=direct  
limit H*(XJ)//(kj)  *. Because we are working with H o p f  algebras, odd dimensional 
generators for odd primes means we have an exterior algebra. The direct limit is 
achieved in a finite number  of  stages so we have the result using 1.6. # 

Section 2 

We will now prove lemma 1.5(j). We have already seen that  that s*(a)r (1.4) 
Let A be the m o d p  Steenrod algebra. We define a filtration: A = F~ ~ FIA D F2A 

... by giving a basis for F~A. Given an Adem basis e lement , /~opi~/~ . . ,  pi . /~, ,  it is 
basis element for FSA if s ~< ~ e~. Also, we give a basis for Bs by taking all Adem basis 
elements with s = ~  el. For  p = 2 ,  P~=Sq 2~. We do not define B~ for p = 2  using the 
Adem basis. 

For  our purposes it is usually more  convenient to work  in the Adem basis, how- 
ever, the Milnor basis is a necessary excursion for p = 2 .  For odd primes, a Milnor 
basis element QIpR t . . . .  (Q = Q o  Q1 ...) is a basis element for F~A i f s ~ < ~  e~. For p = 2 ,  
a Milnor basis element pR is a basis element for F~A if R=(r l ,  r2 .... ) has s or more 
oddrl.  Again, a basis element for B~ has s = ~  e~ ( p = 2 ,  s oddri).  

C L A I M  1. i) The two definitions of FM and Bs are the same. 
ii) I f  aEFSA and b~UA, then ab~FS+tA. 

iii) F~A =B~O F~+ IA. 
Sketeh proof. Milnor 's  Qi=Pn'[ l -[IP ~'. For  odd primes pal is in the algebra 

of  reduced p- th  powers and so can be written in the Adem basis without any/Ys,  
similarly for all pR in the Milnor basis. The Adem relations for p odd preserve the 
number  of/~ 's  exactly, so we see that  QI~B1 = FXA. I f  we were to rewrite a Milnor 
basis element QtpR in the Adem basis we would still have ~ i  fl's. 

The p roof  of  the second par t  just  uses the fact that  the Adem relations never 
decrease the number  of  Bocksteins. 

The p roof  for  p = 2 is slightly more  complicated and is left for the reader, iii) is 
elementary. # 

Given a~PH* (K  ( Vj, k)), (any k), it can be written as a = ~ l ( m = j  a, iR where iR is 
the fundamental  class of  K (Z~p), d (R)  + k )  and aReA. I f  it can be written like this 
with each aR~F"A, then we say a is with n Bocksteins (w.nfl's). I f  n =  1, we just say 
w.[l's. I f  a is with n Bocksteins but not  with n + 1 fl's we say a is with exactly n fl's. As 
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discussed above, Q~ is with exactly one Bockstein. Therefore by the definition of dj 
and the above claim, if a is with nil's, then s* (d j)(a) is with n + I  fl's. Recall that by 
our notation s* (dj)  = (ij-1)*" (kj-1)*.  

CLAIM 2. If  a=s*(dj)(b) and a is with 2 Bocksteins, then there is ab' with fl's 
such that s*(d j ) (b ' )=a.  # 

Proof. First for odd primes; write b=~z~R)= j aRi R with aReA. A=Bo@F1A, so 
write aR=bg+c R with bReB o and cReFIA, bl~QieB! and cRQiEFZA so s*(d~) 
( ~  6,iR) =0. Let b '=  Z c, iR. 

For prime 2 we have Qi_~=P ai and for a Milnor basis element pR we have 
pRpa'=~,,+jeven pR-2'aj+d,+j, thus bRPa%Ba and cRPa~eF2A and same proof 
works. # 

PROPOSITION 2.1 (j). Given a ePH* (K( V j, k)), a with fl's such that s* (d j)(a) = O, 
then there exists d e M j such that s* ( a)  = a and  dj(a)=0. # 

Proofofl .5(j)  For k and a odd, then a is with fl's in PH*(K(Vj,  k+I))  for 
dimensional reasons, i.e., all of the Steenrod algebra elements used are odd dimen- 
sional, and all odd dimensional elements have fl's. (k j_ 1)* (a)= 0 implies s*(dj)(a)= 0 
and we can apply proposition 2.1(j) to get d such that s*(a)=a and dj(d)=0. By 
exactness, there exists bEMj+~ such that dj+l(b)=d. Then b'=s*(b)eeH*(Kx 
x (Vj+l, k+2) )  has s*(dj+l) (b')=s*(dj+,) (s*(b))=s*(dj+,(b))=s*(d)=a. So let 

b = s*(b'), then s*(a)= s*(dj+l)(b) which is what we want. # 

PROPOSITION 2.2(j). Given an a as in 2.1(j), then there exists bePH*(Kx  
x (Vj+a, k +  1)) such that s*(dj+l)(b)=a. # 

Proof. See proof of 1.50). # 
Remark. Proposition 2.2(j) is really the essential feature that makes everything 

work. It means that exactness still holds in the unstable range for primitives with fl's. 
We need proposition 2.2(j-1) in the induction argument for the proof of prop- 

osition 2. l(j). 
Proof of 2.1(j). This follows at once from the next proposition, just lift a up one 

step at a time until it is in the stable range. # 

PROPOSITION 2.30). Given a with fl's in PH*(K(Vj,  k)) (any k) such that 
s*(dj)(a)=O, then there exists d with fl' s in PH* (K(Vj, k+ 1)) such that s*(d)=a and 
s*(dj)(d)=O. (For.]=O, s*(do)(a)=O is a vacuous condition). # 

Proof. j = 0 ,  trivial. For j =  1 the arguments is the same as for j >  1 except easier, so 
assume j >  1. Now, trivially, there exists a' with fl's such that s*(a')=a. (Let a ' =  z (a).) 
Now s*(dj)(a')ekers* by commutativity of the following diagram. 
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pH*(K(Vj_I ,k)  ) ,~.,aj) PH*(K(I/j ,k + I)) 
~.~ ~,~ 

PH*- '  (K (Vj_ 1, k - 1)) ,*r PH*-I (K (Vj, k)) 

0 

a t 

a 
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By 1.4, s*(dj) (a ' )=0,  P"x2,, or flPtxz~+l in PH*(K(Vj_I, k)). 
Case 1. Ifs*(dj) (a ' )=0  we are done. 
Case2. If  s*(dj)(a')=P"x2, then s*(dj-1)(P"xz.)=O because dj_l'dj=O. 

0=s*(d j_ l )  (P"xz.)=s*(d~_~) (x2.)"= [s*(dj_,)(x2,)]  p. H*(K(Vj_2, k -1 ) )  is a 
free commutative algebra so this implies s*(d j_ l ) (x2 . )=0 .  Now a' is with fl's so 
s*(dj) (a') is with 2 fl's. This gives us that P"xz.  is with 2 fl's. If Xz,=ZR(Z i 21bi)i R 
with 2i#OEZ p and bi Adem basis elements, then P " X z , = ~ R ( ~  2~P"b~)iR and for 
dimensional reasons P"b~ is in Adem basis form. Since each P"b~ is with 2 fl's, each 
b~ is with 2 fl's and so Xz. is with 2 fl's. x2. is also in the kernel ofs*(dj_l) so we can 
apply 2.2(j-1)to produce a y2.epH2"(K(Vj, k+ 1)) with s*(dj) (yz,)=x2,. By claim 
2 we can choose Y2, to be with fl's. a'-P"Y2, is with fl's and has s*(dj) (a'-P"Y2.) =0 
and s*(a'-P"y2,)=s*(a')=a, so we are done. 

Case 3. If s*(dj) (a')=flP'x2,+~ the proof is similar to case 2. We sketch the 
differences, tiP' is injective on PHZ'+~(K(Vj_ z, k -1 ) )  because it is for any product 
of Eilenberg-MacLane spaces [13]. So we get Xzt+a is in the kernel of s*(d~_1). If 
~R(Z~ 2,bjR))=x2,+1 b~ Adem basis elements, then each flptb~ is also in Adem basis 
form and since flPtxzt+a must be with 2 fl's, each bi is with one and so x2t+l must be 
with fl's. Use 2.2(j-1) again to produce Yz,+~ with s*(dj)(yz,+l)=x2,+v Now 
a'-flPtx2t+l has the desired property. # 

Section 3 

Our first objective is to compute the (co)homology of BP2k. The bar construction 
([4]) gives a spectral sequence of Hopf  algebras: (k odd) 

Tor n'taP~) (Zp, Zv) = > EoH, (zero component of  BPk+ 1). 

Now H,(BPk) is an exterior algebra on odd dimensional generators QH,(BPk). 
(Cor. 1.7) A standard computation (see [14]) gives: Tor H*(BP~) (Zp, Zp) = F (s 1 (OH, x 
x (BPk))) where F denotes the Hopf  algebra dual to the polynomial algebra. Now all 
elements in F(s ~ (QH,(BPk))) are of even degree and the differentials change degree by 
one, so our spectral sequence collapses and we have: H*(zero component of BPk +1)= 
[EoH. (zero component of BP k + 1  ) ]  * = [ T~ § ~) (Zp, Zp)] * = IF (s 1 (QH.(BPk))) ] * 
= polynomial algebra. 

We will now show H.(BPk_~) is a polynomial algebra for k odd. Using the 
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Eilenberg-Moore spectral sequence ([6, 14]) we have TOrH.~Bpk)(Zp, Zp)= >EoH* 
(BPk_I) if BP k is simply connected. Assume it is, then the same argument just given 
shows H. (BP k_ 1) is a polynomial algebra. The only modification is: 

TorH.t,pk) (Zp, Zr) = F (s -1 (Q H* (BPk))). 

If  BPk, k odd, is not simply connected, then it is easy to see that one can get a 
splitting BPk_~ ( x SX)~p)x X where X is simply connected. This is because BP k is an 
H-space with Z~p) free homotopy. Its k-invariants are therefore torsion and primitive, 
but ( x S1)~p) has no torsion in Z~p) cohomology. Thus we have a spectral sequence of 
Hopf  algebras: 

TorH.(x) (Zp, Zp) = EoH* (zero component of BPk-1) 

and our argument goes through. We have proved the following proposition. 

PROPOSITION 3.1. The modp (co)homology of the zero component of BP k is a 
polynomial algebra on even dimensional generators for k even, and an exterior algebra 
on odd dimensional generators for k odd. (Note that for k odd, BPk is connected.) # 

PROPOSITION 3.2. The Z(p) (co)homology of BP k has no torsion. # 
Proof. For k even this is trivial because H*(BPk) has no elements in odd degrees. 

For k odd we view the Bockstein spectral sequence as a spectral sequence of Hopf  
algebras. The differentials are the higher order Bocksteins. Let fl~ be the first non- 
trivial differential and let x be the minimum degree generator that fl~ acts non-trivially 
on. fls(x) is an even dimensional primitive, contradiction, so all differentials are zero. # 

We can now prove the main theorem. 

THEOREM 3.3. The Z(p) (co)homology of BP2k+l is an exterior algebra and the 
Z(p) (co)homology of the zero component of BP2k is a polynomial algebra. # 

Proof. We will do the ease for polynomial algebras, the exterior case being similar. 
From 3.2 we know the (co)homology is free over Z(p) and so we can lift the modp 
generators (3.1) up to it. These lifted elements generate the Z(p) (co)homology ring 
because there is no torsion and their modp reductions generate the Zp (co)homology. 
By considering the rank we can see there can be no relations and we have a poly- 
nomial algebra. # 

We can now lift our result to MU. Normally the spectrum MU is given by {MU 
(n)}, the Thorn complexes, and maps S 2 M U ( n ) - ~ M U ( n + I ) .  [9, 15] However, if 
M,  = lim(k ~ oo )O 2k-"MU(k), then OM, ~- m , _  1 and for finite complexes MU"(X) 
= l i m ( k ~  oo) [S2k-"X, MU(k)]  = l i m ( k ~  oo )[X, O2k-"MU(k)]  = IX, M,] .  Thus, 
{M,} = MU as an O-spectrum. 
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C O R O L L A R Y  3.4. The integer (co)homology of the zero component of M, has no 
torsion and is a polynomial algebra over Z for n even and an exterior algebra for n odd. # 
Proof. From [3] we have MU(p) -  ~ V~ S2"'BP and so (M,)(p)~- 1-Ii BP,+2, ,. By 3.3 for 
n even H,(M,,  Z ) Q Z ( , ) ~ H , ( M , ,  Z(p))~-H,((M,)(p), Ztp))~-polynomial algebra 
over Z(p). Thus the integer homology has no torsion, and localized at every prime it is 
a polynomial algebra, so it is a polynomial algebra over Z. Similarly for n odd. Since 
there is no torsion, the same thing works for cohomology. # 

Remark 1. A completely analogous theorem is true for MSO if the ring Z(1/2) is 
used. 

Remark 2. There are several ways to determine the number of generators for 3.1, 
3.3, and 3.4. The spaces BP, and M,  are just products of rational Eilenberg-MacLane 
spaces when localized at Q. (This is because their k-invariants are torsion.) Because 
there is no torsion, the number of generators is the same as for the rationals. As 
examples we have ~zs(Bp)=z(p)Ex2(p_l),...,x2(pi_1) .... ] so for 2n>0, H*(BP2~ , 
Z(p))~-Z(p)[s2"7~S,(BP)] and ~zs(MU)=Z[-x2 .... , x21 .... ] so for 2n>0,  H*(M2., Z)  
_~ Z [~2"Trs(MU)]. 

We have shown that both the cohomology and homology of the zero component 
of BPz, are polynomial algebras. This is a very strong statement, in fact, it determines 
the Hopf  algebra structure of the (co)homology. 

DEFINITION.  A connected bicommutative Hopf algebra i~ called bipolynomial if 
both it and its dual are polynomial algebras. # 

There is a bipolynomial Hopf  algebra B(p)Ex, 2n] over Z~p) (or Zp) which has 
generators ak(x) of degree 2pkn [7]. It  is isomorphic as Hopf  algebras to its own dual. 

In [12] we prove the following proposition. 

PROPOSITION 3.5. If  H is a bipolynomial Hopf algebra over Z(p) (or Zp), then 
H"~| j B(p)[xs., 2dj]. (For p=2 and Zz, replace 2dj by dj).# 

Using this and the counting argument of remark 2 we can just write down the 
Hopf  algebra structure for BP2,. As an example, we will do this for n>0.  Let ~,, be 
the set of sequences of non-negative integers R=(rl ,  rz,...) with almost all r i=0.  
Let d ( R ) = 2 n + ~  2(p ~-  1) r~ for our fixed prime p. We say R is prime if it cannot be 
written R=pS+(n,  O, 0 .... ), S e ~ , .  

PROPOSITION 3.6. For n>O, H*(BP2.,  Z(p))" | ~,, B(p)[xg, d(R)].  # 
R prime 

If  we work over the integers and let B Ix, 2d] be the bipolynomial Hopf  algebra on 
generators e.(x) of degree 2dn with coproduct e . (x)~F,  e._j(x)@cj(x) ([7]) then 
we have an analogous proposition. [12] 
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P R O P O S I T I O N  3.7. I f  H is a bipolynomial Hop f  algebra over Z,  then H "~ | j 

B Ix  j, 2dj]. # 
We can now apply this to M U  = (M.}. Let I ,  be the set of  sequences of  non- 

negative integers I = ( i l ,  iz . . . .  ) with il>~n and almost all i j = 0 ,  (n>0) .  Let d ( 1 ) =  
= ~ j  2ji 1. We say I is prime if it cannot be written I = k J ,  where k >  1 and J~I , .  

P R O P O S I T I O N  3.8. I f  {Mk} is the O-spectrum for  MU, then for  n > 0 ,  H*  

(M2 n, Z )  "~ (~1 p ri me ~ l m B [xI, d ( I ) ]  as H o p f  algebras. # 
Proof. Just use 3.7 and the counting done in remark 2. # 
Let S be the sphere spectrum and let i: S ~  BP represent 1 ezroS(Bp). S =  (QS"} as 

an O-spectrum where Q X = l i m O " S " X .  i induces maps i , : Q S " - - , B P , .  H , ( Q S " )  is 
given in terms of  homology  operations on the n dimensional generator [5]. 

P R O P O S I T I O N  3.9. Let n > 0 ,  the kernel o f  ( i , ) , : H . ( Q S " ) - - * H . ( B P , )  is 
generated by homology operations on the n-dimensional class which have Bocksteins in 
them. # 

P R O P O S I T I O N  3.10. Let  n > O, i f  j ,  : BPn ~ K(Z~p), n) represents the generator 
o f  H"(BP,,  Z,p)), then the kernel o f  ( j , )* :  H*(K(Z<,) ,  n)) ~ H*(BP, )  is generated 
by cohomology operations on the n-dimensional class which have Bocksteins in them. # 

Proof  o f  3.9. By 3.2, any homology operation which has Bocksteins in it goes to 
zero. Let u be a homology  operation with no fl's such that u x , ~ O  in H . ( Q S " ) .  As u 
has no fl's, U(s,)kXn is a p-th power for some k. So U(s,)kx.  = UX n + k = (U'X, + k) ~. NOW 
by induction on the degree of  u, i ,  (u 'x ,  + k)V ~ 0 in H ,  (BP. + k) and n + k is even since we 
have a p-th power. H , ( B P ,  + k) is a polynomial  algebra and so [ i , (u ' x ,  + k)]P 4:0 and is 
= i ,  [u 'x ,  + k]" = i ,U(s , )kx .  = i ,  ( s , )kux .  = (S,)ki ,  (UX,) and so i ,  (ux . )  ~ O. # 

The p roo f  of  3.10 is similar. 
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