
THE s2-SPECTRUM FOR BROWN-PETERSON 
COHOMOLOGY PART II. 

By W. STEPHEN WILSON*. 

Introduction. Let BP denote the spectrum for the Brown-Peterson 
cohomology theory, BP*(-). [2,5,12] We have BPk(X)-[X,BPk] where BP 

={BPk} as an Q-spectrum, i.e. Q2BPk -BPk-. [4] In Part I [20] we determined 
the structure of the cohomology of BPk. In this part we study the homotopy 
type of BPk. 

The structure of each BPk is very nice and gives some insight into the 
cohomology theory. In particular, using it, we obtain a new proof of Quillen's 
theorem that BP*(X) is generated by non-negative degree elements as a module 
over BP*(So). [11] (X is a pointed finite CW complex.) 

Let Z(p) be the integers localized at p, the prime associated with BP. We 
explicitly construct spaces Yk which are the smallest possible k - 1 connected 
H-spaces with 7T* and H* free over Z(p). The Yk are the building blocks for BPS, 
i.e., BPn -Hi Yi. In fact, one of our main theorems states that for any H-space 
X with 7r* and H* free over Z then X-I iYl,. (This is not as H-spaces, see 
section 6.) To understand the spaces Yk we need a sequence of homology 
theories: 

BP*(X) )-BP<ox>*(X )- >***-BP<n+ 1>*(X)- >BP<n>*(X) 

* - * >BP<O>*(X) = H*(X, Z(p)) 

These are constructed using Sullivan's theory of manifolds with singularities. 
BP*(S?)-_ Z(p)[XlX2... Iwith degree of xi=2(p'-1). BP<n>*(S0) 
= Z(p)[xl, .. .,x,j as a graded group. Let BP<n>= {BP<n>k} be the Q-spectrum 
for BP<n>*(-). For k>2(pn-1 + ... +p+ 1), the space BP<n>k cannot be 
broken down as a product BP<n>k -Y X X with both X and Y non-trivial. For 
k ? 2(pn+_.. +p+ 1), H*(BP<n>k,Z(p)) has no torsion. So, for k between 
these two numbers we get Yk -BP<n>k. 
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102 W. STEPHEN WILSON. 

Main Theorem. For 2(p-1+ +p+1)<k<2(pn+... +p+l) 

BPk-BP<n>kX II BP<K>k+2(p-i) 
j>n 

and cannot be broken down further. 
The proof of this theorem exploits the fact from [20] that the Z(p) 

cohomology of BPk has no torsion. 
We begin by constructing the theories BP<n>*(-). In section 2 we review 

what we need about Postnikov systems. Section 3 is devoted to preliminary 
necessities for the proof of the main theorems in section 4. Then we state the 
main results and prove Quillen's theorem (section 5) and a general decomposi- 
tion theorem for spaces which are p-torsion free and H-spaces when localized at 
p. (section 6) 

In a paper with Dave Johnson these results are applied to study the 
homological dimension of BP*(X) over BP*(SO). [21] 

This paper is part of my Ph.D. thesis at M.I.T. I would like to thank my 
advisor, Professor Frank Peterson, for his encouragement and understanding. I 
would also like to acknowledge the influence of his papers on this research, in 
particular, [10]. 

1. Construction of BP<n>. 

This section deals with Sullivan's theory of manifolds with singularities. 
[19] The approach we take is due to Nils Baas. This section is not intended to 
be an exposition on the Baas-Sullivan theory, for we only wish to use it to 
construct certain specific homology theories, the general case being covered in 
detail in [3]. Even the definitions we give will be missing major ingredients, in 
all cases we refer to [3]. 

If we dealt with the case of one singularity, P, then a manifold with 
singularity P would be a space V= N U p XMCP X M where N is a manifold with 
aN= P X M and cP is the cone on P. One can make a bordism group of a space 
using such objects in place of manifolds. An element of the bordism would be 
represented by a map f: V->X. So, as far as bordism is concerned, one might 
just as well consider only the manifold N and insist that maps f: N->X, when 
restricted to aN = P X M, factor through the projection P X M- M. This is the 
approach Baas takes. When more than one singularity is considered, the 
definitions become quite technical. From [3] 

Definition. V is a closed decomposed manifold if there exist submani- 
folds alV, . . .,I anV such that = alVu ... U anuV where union means iden- 
tification along common part of boundary such that a (ai V) = (aI V n ai V) 
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THE Q-SPECTRUM FOR BROWN-PETERSON COHOMOLOGY PART II. 103 

u ... (ai-vn aiv) u u... u (,vn aiV), which gives a.V the structure 
of a decomposed manifold. Continue, defining ak (ad (ai V)), etc. 

Let Sn = {p1,, p2,.. . Pn} be a fixed class of manifolds. Very loosely, A is a 
closed manifold of singularity type Sn if for each subset w c { 1,2, . ... , n} there is 
a decomposed manifold A (w) such that A (0) = A, aiA (w) -A (w, i) X Pi if i i , 
diA(w)_0 if i cw. A singular Sn manifold in X is a map g:A ->X such that 
gl aiA (w) _ A (w, i) X Pi factors through the projection A (w, i) X Pi->A (w, i). 

More generally, singular manifolds with boundary, singular manifolds in a 
pair, and a concept of bordism are all defined. (rigorously) These bordism 
groups are shown to give generalized homology theories, MSn *( ). One of the 
most important aspects of these theories is the relationship between MSn *(.) 
and MSn+ll*(). This will be a major tool throughout the paper. There is an 
exact sequence 

/3 
MSn* (X) >MSn* (X) 

~~~ZY 
MSn+l (X) 

The product of an Sn manifold with a closed manifold N gives an Sn manifold 
by: (N X A)(w) = N X A (w). On a representative element A -X, /3 is Pn + 1 X A 
-A ->X. Any S' manifold A can be considered as an Sn+1 manifold by setting 
A(c,n+1)=0. So y(A--X)=(A--X). For an Sn+1 manifold A we see that 
A(n+1) is an S manifold, so 6(f:A--X)=fJA(n+1)->X. The degrees of 
these maps are: degree /3 = dimension Pn+ , degree y =0, degree 6 = 

-dimension Pn +1-1. In our one singularity example, aN = P X M, 6 just 
restricts to M. Baas of course defines these maps rigorously, shows they are well 
defined and proves the exactness theorem. 

Above we remarked that the product of a manifold and an Sn manifold is 
again an Sn manifold. This gives us a map, MSO*(X)OMSn*(y)_>MSn*(X x 
Y).This is precisely the condition that tells us the spectrum associated with 
MSn*(_) is a module spectrum over the spectrum for the standard bordism 
theory MS?*( ). Further, MSn*(X) is a module over MS?*(S?) and the above 
maps, /B, , 6 are all MS0*(S0) module maps. 

We now get on to our applications. All manifolds considered above could 
be taken with some extra structure, and we assume them all to be U manifolds. 
So MS o*(.) is MU*(-) the standard complex bordism homology theory for finite 
complexes. Now MU*(S 0) = 7 s*(MU) = Z [x2,... ., x2 ... ] where degree x21 = 2j. 
We choose a representative manifold Pi for x2i. Fix a prime p. S(n,m)= 
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104 W. STEPHEN WILSON. 

{P,i?im,i ,p -<,j n}. Then by all of the above, we have a homology 
theory MUS(n,m)*( ) made from U manifolds with singularity type S(n,m). 
For large m we have an exact sequence: 

XPn-l 

MUS(n,m)*(X) > MUS(n,m)*(X) 

MUS(n- 1,m)*(X) 

From these exact sequences and the homotopy of MU we see that 
MUS(n,m)*(S0)-= Ts*(MU)/[S(n,m)] where [S(n,m)] is the ideal generated by 
S(n,m). We define the homology theory MUS(n)*( )=lim(m->oo)MUS(n,m) 
*( ). MUS(n)*(*)09Z(p) is a homology theory which we will denote by 
BP<n>*(-) and the corresponding spectrum by BP<n>. The reason for the 
notation is that if BP->MU(p) is Quillen's map ([12]), then BPMU(p)BP<o> 
clearly gives an isomorphism on homotopy and so BP- BP<Kxi>. Thus BP<n> is 
a module spectrum over BP and we have: 

BP<n>*(X) - BP<n>*(X) 

(1.1) 

BP<n-l1>*(X) 

with degree of /3=2(pn_ 1), degree y=0, degree S=-2pn+ 1. BP*(S0) 
= 

Z(p)[x2(p-1). ... x2(p,-j),...]. BP<n>*=BP<n>*(S0)=BP*(S0)/[x2(pi- )li>n] 
as a module over BP. BP* acts on BP<n>*(X), it is known that x2(pi-1) acts 
trivially for i> n. 

Every spectrum can be represented as an Q-spectrum. [4] Let BP<n> 
={BP<n>k} be the Q-spectra, i.e. QBP<n>k -BP<n>k1 and BP<n>k is k-I 
connected for k>O. This means that BP<n>k(X)= [X,BP<n>k] where 
BP<n>*(.) is the cohomology theory given by BP<n>. 

The theories BP<n> are independent of choice of manifolds Pi representing 
x2i but seemingly dependent on the choice of generators x2(Wi) chosen for 
ITs*(MU). However, the results we obtain are independent of the choice of 
even these generators because the spaces BP<n>k for different choices become 
homotopy equivalent when k is small enough. In addition, in [21] we show that 
BP<1> is independent of choice of x2?. In fact, BP<1> is just the irreducible part 
of connective K-theory when localized at p. 
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THE Q-SPECTRUM FOR BROWN-PETERSON COHOMOLOGY PART II. 105 

We now permanently reindex the x2(p- 1) to xi with degree 2(pi- 1). From 

1.1 we have a split exact sequence: 

Xn 

0 ->BP<n>* -> BP<n>* -*BP<n-1>* >0 (1.2) 

BP<n>* = Z(p)[xl,..., xj] as a group. Again, from 1.1 for finite complexes we get 

a cofibration ([1]): 

S 2BP<n> 3 BP<n> 
| Y (1.3) 

i=pn_l BP<n -1> 

For the spaces in the Q-spectrum this becomes a fibration: 

/3 
BP<n>k+ j BP<n>k 

IY (1.4) 

j=2(pn_1) BP<n ->k 

If M is a graded module let skM be the graded module (skM)k+q = Mq. Then, 

r* (BP<n>k) = sk(BP<n>*) k > 0 (1.5) 

From 1.3 we have an exact sequence: 

Al* rY* 
H*(BP<n>) *-H*(BP<n>) < H*(BP<n-1>) 

(1.6) 

For most of the paper, unless otherwise noted, all coefficient groups will 

be Zp where p is the fixed prime associated with the BP<n>. Let A be the 

modp Steenrod algebra and Q1 the Milnor elements. [91 

PROPOSITION 1.7. H*(BP<n>)-A/A (Q0, Q1, ..., Q) =An 

Note. Baas and Madsen have a more general result which includes this, 

however, as this special case has a much more elementary proof we give it here. 

Proof. grs*(BP<O>)=Z(p), so BP<O>=K(Z(p)) and H*(BP<O>)=A/ 
A (Q0). We prove the result by induction on n using 1.6. Let 1 denote the 

lowest dimensional class of each spectrum, then y*(l)= 1. Assume H*(BP<n - 
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106 W. STEPHEN WILSON. 

1>)=An-I. If y*(Qnl)=O, then for dimensional reasons, a*(1)=XQn1, 0 

#-XeZp. If aEA then 0#aQn *(a1) in A-I because An_l=An(1)?D 

An(Qnl). Therefore al #&0 in H*(BP<n>). This takes care of exactness at 
H*(BP<n- 1>). So now H*(BP<n>)=An EDX with /3* :X--X an isomorphism, 
but the degree of 13*#O0 so X=0. 

All we need now is Qnl=OEH*(BP<n>). Our map BP--BP<n> is an 
isomorphism on homotopy below dimension 2( pn l-1) and therefore an 
isomorphism on cohomology in this range. H*(BP)-A/A(Q05QI,...). [5] The 
dimension of Qn is 2pnj1 So Qnl=?. 

2. Postnikov Systems. 

We collect here the results we need about Postnikov systems. We assume 
X is a simply connected CW complex. We start with the standard diagram: 

Xn 
Pn 

Pn- xn-I 
K; K(Tn(X), n+ 1) Pn-I 

X1= point 

2.1. Definition and existence. [16] A Postnikov system for X is a 
sequence of spaces {Xn } and maps, {g:Xn_Xn-1l}, {pn:X-.Xn)} such that 

Pn-I n-g Pn and the fibre of g, is K(Tgn(X),n), the Eilenberg-MacLane space. 
The fibration g,:Xn_Xn-I is induced by a map kn:Xn--K(,gn(X),n+l) 
from the path space of K(7Tn(X),n+ 1). Thus kn9 g-O and 

knE Hn+l(Xn-i 7n (X)). kn is called the n-th k-invariant of X. Postnikov sys- 

tems for simply connected CW complexes always exist and (Pn)# :7k (X) 

->k(Xn) is an isomorphism for k < n and 7Tk(X n)= for k> n. 

2.2. Induced maps. [8] Given f:X--Y then we have {fn:Xn__Yn} 
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such that fn-. gn (X)-gn(y) fn, fn Pn(X) Pn(Y) f and f#(kn(X))= 

(f n)*(k( Y)). 

2.3. Loop spaces. The Postnikov system for OX is given by: (2X)n 
=Q2Xn+ , pn(QX)=?pn11(X), g(2X)=Qgnll(X), kn(QX)=2kn+1(X), so 
kn (OX) = s*(kn+, (X)) E H n1(Xn',gn(X)) where s* is the cohomology sus- 
pension defined by 8 - p* 

0 p 

H*(QX,G) H*+ l(PX,OX, G) <-- H* (X, pt, G) 

PX is the path space fibration over X. 

2.4. Product spaces. A Postnikov system for X X Y is given by {Xn X 
yn} with k-invariants {k (Xk)xk(Y)}. 

2.5. H-spaces. [8] If X is an H-space, then each X n is an H-space, Pn 
and g,n are maps of H-spaces and kn e H n+(Xn-5,7Tn(X)) is torsion and is 
primitive in the Hopf algebra structure induced on H* by the multiplication in 
Xn-1. Also, if Xn-I is an H-space and kn is primitive, then Xn is an H-space. If 
all k-invariants are primitive, then X is an H-space. 

2.6. Obstruction theory. [16] If Y is CW, and we have fn-1: yXn-1 
then fn-l lifts to fn:Y .Xn iff (fn-1)*(kn(X))=0EHn+l(Y,Vn (X)). If there 
exist maps {fn:Y..Xn} such that gn (X) fn-ffn1 then there exists f:Y->X 
with pn(X) .f-fn 

2.7. Construction of spaces. [16] Given a sequence of fibrations 
g: XnXn-Xl with fibre K(vr, n) and X l = pt, then there exists a CW complex 
X and maps pn: X->Xn such that (Xn} is a Postnikov system for X. 

2.8. Independent k-invariants. Assume for the rest of this section that 

,7*(X)o0Z(p) is free over Z(p) and the k-invariants kn(X) are torsion elements. 
This will always be the case in our applications. From the Serre spectral 
sequence of a fibration we obtain the following natural ladder of exact 
sequences: 

0 Hs (Xs-1 Z( )) * Hs(Xs, Z) Hs(K (QTs (X), s), Z (p)) 

0 Hs(Xs1) _> HS(XS) - Hs(K (7s (X),s)) 
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108 W. STEPHEN WILSON. 

2.9. 

T g,)* 

>'Hs+'(X 5lZ( P)) Hs+'(Xs Z P) _ 0 
1 ~ ~ ~ ~ - 

-> H1s+(X l) - Hs+ (XS) -0 

T is the transgression. Also we obtain 

2.10. Hk(Xs,G) Hk(X,G) for k <s. In the dimension of our ladder, 
the transgression is related to the k-invariant map k5 by T s* = k8*. This 
motivates the following definitions. 

For x E HS (K (v, (X), s), Z( p)), a free generator, T (x) will be called a k- 
invariant of X. If T(x)-=0, it is called dependent. The k-invariant T(x) is 
independent and hits a p-torsion generator if and only if p.T(X)= = fop(x) #0 

where p is the modp reduction. If the k-invariants, T(x), of OX, hit p-torsion 
generators, then there is a y with s*( y) = x, and so s*(T( y)) = T(x) showing that 
the k-invariants T( y) of X also hit p-torsion generators. (Remember that we 
have restricted ourselves to spaces with torsion k-invariants.) If H*(X, Z()) has 
no p torsion, then all p torsion generators of Hs+l(Xs-1,Z(P)) are hit by 
k-invariants. This is true because the coker T_ HS+l(XS,Z(d)) 
ciHs+l(Xs+l, Z( W))- Hs+l(X,Z( )) which is free, all by 2.9 and 2.10. 

2.11. Localization. [18] Usually we will work with localized spaces, i.e. 
spaces with vi*(X) a Z(p) module. For simply connected spaces or H-spaces, the 
localization X(p) and a modp equivalence X--X(p) can be built by 2.7 using 
7'i* (X) 0 Z(p) for homotopy groups and kn (X) 0 Z( (p) as the k-invariants. We get 
that 

H* (X, Z) 0 Z(p) -H* (X, Z(p)) H*(X(p), Z(p)) -H* (X(p), Z). 

2.12. Irreducible spaces. If a space cannot be written as a non-trivial 
product of spaces it will be called irreducible (indecomposible). If X is con- 
nected and OX is irreducible, then X must also be irreducible. If X is a localized 
space with gr*(X) free (over Z(p)) then if X'-' in the Postnikov system for X is 
irreducible and all of the s k-invariants are independent, then XS is also 
irreducible. 

3. The Map. 

Before we can prove the main theorem, 

BPk_BP<n>k X 11 BP<i>k +2(P l-1) 
j>n 
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THE Q-SPECTRUM FOR BROWN-PETERSON COHOMOLOGY PART II. 109 

for k<2(p +... +p+l), we need the maps BPk->BP<i>k+2(p-l). The na- 
tural transformation BP*( )->BP<n>*( ) gives us the map BPk--*BP<n>k which 
is onto in homotopy. If we obtain the map BPk->BP< 0>k+2(pf-i) for k 
= 2(p P-+.p+l) then we have it for all k?<2(p1'+.+ +p+l) by taking 
the loop map. We can then combine these maps to give a map 

BPk--BP<n>kX II BP<Pk+2(p1_1) for k <2(pn+. +p+l). 
j>n 

We fix k=2(p+i-1 + +p+l) and construct a map BPk--BP<K>k+2(p1-l) by 
the following series of lemmas. 

LEMMA 3.1. There is an element x;E Hk+2(P 1)(BP<i>k, Z(P)) such that 

Xi: BP<i>k-*K(Z(P), k + 2(p'-1)) is onto in homotopy, k < 2(pi- 1 + + 
p+l). 

Before proceeding, we need to state a lemma which we will prove later. 
Let ik be the generator of Hk(BP< j -'>k) 

LEMMA3.2. For k>2(pi + 1+* +p+ 1), Qjik=#0in H*(BP<Kj->k).For 
k=2(p''+-- +p+1), H1(BP<j-1>k)=0 for i=k+2pi-1=dimension 

Qjik=pk+1. 

Proof of 3.1. We go to the fibration 1.4. 

/3 
BP< ->s * BP< i>k 

S= k+2(p;- 1) Y (3.3) 

k=2(pi-'+ * +p+1) BP< j-l>k 

BP< />% is s - 1 connected and 7T,(BP< i>s)- Hs(BP< j>s, Z(p))-Z(p) 
To show /8* is onto in dimension s we look at the Serre spectral sequence 

for the fibration 3.3. In this range we have the Serre exact sequence: 

/* 

Hs (BP< >k, Z(p)) > Hs (BP< j>sZ(P)) >Hs+'(BP<j -1>k' Z()) (3.4) 

Wehavek=2(pi-1'+ *+p+1) andsos+1=k+2(pi-1)+1. By3.2 
and the numbers we are using, the last term is zero and so /3* is onto. If 

Xi: EHs(BP< >k Z(P)) is such that ,8*(x,) is the generator, and S8--BP< >8 

represents 1 e 7Ts(BP< i>s)= Z(p) then the composition 

Ss-->BP<K >s--BP< i>k > K(Z(p),s) induces an isomorphism on H', so there- 
fore x; is onto in homotopy. 
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LEMMA 3.5. There is a map f: BPk- BP<i>k+ 2(pi- 1) for k 
< 2(p' + .. + p + 1), such that (f,) is onto, (k >-2(pi-1)) 

( fj )#: qrk+2(pi-1)(BPk )->k+2(ps_-1) (BP< i>k +2(pi - )-Z(P) 

Proof. It is enough to prove this for k = 2( p i- 1 + . + p + 1). We have a 
map BPk->BP<K>k--K (Z(p), k + 2(pi- 1)) from lemma 3.1. Each of these maps 
is onto in homotopy so the composite is too. K(Z(p),k+2(pi- 1)) is the first 
non-trivial term of the Postnikov system for BP< I>k+2(p i1) We know that the 
k-invariants of this space are torsion by 2.5 and that its homotopy is free over 
Z(P) by construction. (1.5) The main theorem of [20] gives us that H*(BPk, Z()) 
has no torsion. Obstructions to lifting the map to a map of the type we want are 
therefore torsion elements in Hq + '(BPk, ,q (BP< h>k)) (2.6) which has no torsion. 
Therefore we see that we can lift the map. 

COROLLARY 3.6. For k < 2(pp . + + p + 1) there is a map 

BPk-4BP<n>k X II BP< 1>k+2(pi- w)hich composed with projections is onto in 
j>n 

homotopy for g *(BP<n>k) and 7k+ 2( pi- 1)(BP< 1>k +2( pi-1)). 

Before proving 3.2 we will make an observation which we need in the next 
section. 

Consider the map IP BP< i>%-> BP< i>k'5 = k + 2( p i-1). We have 
# :K(Z(P),S)-*K(7T5(BP<kj>),S). (I,#)* is onto in Z(P) cohomology. Pick a 

generator xEH8(K(gS(BP<j>k),s),Z(p)) such that (/3#)*(x) is a generator. We 
wish to study the k-invariant T(x). Above we showed that for k 
? 2(p i -1+. + p +1) there was such a k-invariant which was dependent. 
Here we wish to show the following lemma. 

LEMMA 3.7. For k > 2( p'i-1 + . + p + 1), the above k-invariant T(x) is 
independent and hits a p-torsion generator. 

Proof. Using the naturality of the modp version of 2.9 we have: 

zp _ Hs (BP< j>s) 

O -> Hs(K(Z(p),s)) - Hs(K(Z(p),s)) - 0 
3*t ~~~~~~~(iA )*I 

-*> Hs((BP<i>k)) -X Hs(K(7Ts(BP<K>k),s)) > 

(3.8) 

Hs (BP< >k) 
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As in 2.8, T(x) is independent and hits a p-torsion generator iff s (p(x)) #0, 
p the modp reduction. Because (13#)*(x) is a generator, this is equivalent to /3* 
not being onto in 3.8. Again we go to the Serre exact sequence for 1.4. 

Hs (BP< i>k) >,Hs (BP< j>s) > Hs+ '(BP< i_ 1> ) 

We know from the proof of 1.7 that for k very large T(is) =XQ,ik,X#O. By 3.2, 
for k>2(pi-1+.. +p+l) we know Qiik=#O so i-(is)=XQ/ik#O in this range. 
So, in 3.9 we see that /3* is not onto and -(x) for such an x is an independent 
p-torsion generating k-invariant. 

We will need the following in our proof of 3.2. 

LEMMA 3.10. Qn+1=X/3PPn+ +P+ (modA(Qo,...,Qn)), X &4Ezp. 
Note. For p = 2, just consider Pi = Sq2. 

Proof. The lowest non-zero odd dimensional element of A/ A (Q0,..., Qn) 
is Qn+ 1 From [9], Qi = [PPl, Qi_ 1], so Qn+ 1 = PPnQn-Q P_ppQn Pnp = 
_ (pp n - lQ_ 1 _ _ Q P )Pp'n=Qn - pn - lpp n (as the dimension of Qn_- PP is 

less than the dimension of Qn +1 and also odd, so it is zero) = = 
( -)+lQop... ppn-lpPn(modA(Q0,... Qn)). Let kn= 1+ p+ + pn-', all 

that is left to show is: (note that Qo = /) 
Claim. pknpPn=Xpk+l 7E Z 

Proof. By the Adem relations, 

n (_J)k_ pkn+l_Pt (p ( ) t-1) 
t=0 kn -pt 

So all we need is for the binomial coefficient to be zero modp for 0 < t < kn_ 
and #0 for t=0. First we reindex, let s+t=kn-1. Then (p-1)(pn-t)-1 
= (p-1)(pn-kn 1+ s)-1=(p-I)pn-(p-I)kn_1+(p-l)s-1. Now 
(p-1)kn_1=pn-1- , sO this is (p-l)p n + pn-1+1+(p-l)s-1=(p-2) 
pn+(p-1)pn-l+(p-l)s. kn-pt=kn-pkn1+ ps=1+ps. So our coefficient 
is: 

|( p-2)pn+( p_ l)pn1 + (p p-l)s 

We want to show this is 0 for 0 < s < kn 1and =# 0 for s = kn 

From [17], if a = Yaip , b = -bip i, ai and bi < p, then modp 
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So for s<p'-2 our binomial coefficient is (P 2)(p l)((p )s) but 

( p-l)s< 1+ ps, so it is zero for s< pn-2. Set S= p,-2+s1 > p-2. We get: 

|(p p-2)pn n+ (p_ - )pn- 1+ (p p- )p n-2 + (p _ 
1)S j 

\ ~~~~~p n-1+ 1 + pSJ 

(p-2 )( p-l )( p-l )( (p -)s )S 

for s1 < pn-3 this is zero again. Let sl=pn-3+ s2. Continue like this until we 
get: 

(p - 
2)pn + (p_ 

- 
)pn- 1+ .+ (P p-)p+ (P p- ')Sn_2 

p'n-l+pn-2+ ... +p2++ pSn-2 

where 0< sn-2 < 1. For Sn-2=0, this is zero again as it is 

= p-2 80 p-1 ... p-l 8t p -l ;0 

For Sn2=1, we get 

(p-2 )(p 1 ), ..( p 1 )(P 1 )=(_1)n 

This finishes the proof of 3.10. 

Proof of 3.2. For large k, Qiik=#O in H*(BP< j-i>k) because H*(BP< j- 

1>)=A/A(Q0,...,QQj1). (1.7) The Eilenberg-Moore spectral sequence [15] 

TorH*(BP<j->k+1) (Zp,Zp) = > H* (BP< j -*k) (3.11) 

collapses in dimensions <pk and on indecomposibles, s*:QH*(BP<i-l>k+ i) 

-->QH*(BP<j ->k) is an isomorphism in this range. For k>2(p I+ 
- 

- + 
p + 1), dimension Qjik< pk so Q,ik#O. 

For k=2(pi-1+ - +p+i), the E2 term of 3.10 has one element in 
dimension pk+ 1 (for p=2, none), s'-(Q/ik+l). All Qiik+L=0 for i < j so by 3.10 
this is s - (X,8PP' + +P+lik+ ) s-1 corresponds to the cohomology suspension 
([14]). s*(/3PP'+ P ik+l)1=Pk/2ik =f(4k)P= 0 so s'(Qjik+l) is hit by a 
differential and the result follows. 
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4. Proofs. 

In the last section we constructed a map (3.6) 

BPk *BP<n>kX II BP<P>k+2(pi-1) for kV2(pn+'. +p+l) (4.1) 
j>n 

If this map is a homotopy equivalence for some k >0 then it is a homotopy 
equivalence for all k < 2( pn + ... + p + 1). To see this, look at the diagram for 
f:X ->Y 

7T * (QX) - qr (X) 
+ 1 

O 
f# 

f # 4/ s / 

7T*(QY) _ T* (Y) 
+1 

If either Of# or f# is an isomorphism then so is the other and then they are 

both homotopy equivalences because our spaces are the homotopy type of CW 

complexes. 
We will prove the homotopy equivalences for the 

k= kn=2(p n-1 + + p +p 1) + 1, (ko= 1) 

by induction on the Postnikov system. As a plausibility argument, as well as the 

fact that we need it, we prove the following lemma. 

LEMMA 4.2. The homotopy is the same on both sides of 4.1. 

Proof. 7T*(BPk)-sk(Z(p)[Xl, x2, .. * ] 

77*(BP<n>k x II BP< i>k+2(pi-1) =7T*(BP<n>k) j 7g*(BP< />k+2(p'-1)) 
i>n 

> 

=sk(Z(p)[X1)*.**Xn]) ffl sk+2(p1( p) ([x1,, xix) (1.5) 
i>n 

Our isomorphism takes a Z(p) generator on the right-hand side, 

sk+ ( [-)(xl)i1 . (Xj)s'] to sk[(xl)il . 
.(xj l)ii-1(Xj)i+11- 

Recall that kn = 2( p n-1+ . . +p+1)+1 (ko = 1). 

Statement P(n, s). i = kn + 2(p i -1) 

fk +s: 
(BPk) n. >*(BP<n>k )+sx II (BP< i>i)k 

j>n 

is a homotopy equivalence. 

This content downloaded from 68.84.140.110 on Fri, 13 Sep 2013 19:19:41 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


114 W. STEPHEN WILSON. 

4.3. Statement P(n, s) implies a similar statement for any k < kn,1 replac- 
ing kn. 

Statement K(n, s). All k-invariants T (x) in 

Hkn +s+2(BP<nk+ s, Z(p)) 

are independent and hit p-torsion generators. (see 2.8) 

4.4. K (n, s) implies that all k-invariants Tr(x) in Hk+s+2((BP<n>k)k+s,Z(p)) 

are independent and hit p-torsion generators for k > kn. 

Statement A. 

P(n,s) s S m -> K(n+ 1,m) 
K(n,s) s?<m 

Statement B. 

(1) K(n+j,s) s<m j>O 

(2) P(n,m) 
- >P(n,m+1) 

4.5. Now, to get things started, observe that statement P(n, 0) is true for 

all n as it just reduces to K(Z(p),kln) - K(Z(p),kn). Also, statement K(O,s) is 
trivially true for all s because BP<O>k 1 is just the 'circle localized at p and has 
no k-invariants. 

LEMMA 4.6. Statements A and B imply statements P(n,s) and K(n,s) for 
all n and s. 

Proof. Claim (t). (a) P(n,m) is true for m < t, all n. 
(b) K(n,m) is true for m < t, all n. 

Claim (t) is true for t = 0 by 4.5. We will show claim (t) = > claim (t + 1). By 4.5 
we know K (O, t) is true, applying statement A n times we have K (n, t), 
therefore we have K(n, t) for all n giving us b) of claim (t + 1). Now, applying 
statement B we obtain P(n, t + 1) for all n. This proves claim (t + 1), so, by 
induction, claim (t) is true for all t and we are done. 

Now we will prove statements A and B. In the next section we will explore 
some of the consequences of P(n,s) and K(n,s). 
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Proof of statement A. Consider the fibration 1.4 

BP<n + 1>j > BP<n + 1>k 

JY k= k.+l 

i=kn+1+2(pn+1'_ 1) BP<n>k 

and the induced maps on the Postnikov systems: q = k + s + 1 

p8q-1 Yq-1 

(BP<n+ >i)k+s (BP<n+ 1>k)k+s (BP<n>k) 
k't kt ik (4.7) 

K(7Tq(BP<n+1>j),q +1) - K(7Tq(BP<n +1>k), q+1) 3 K(7Tq(BP<n>k),q+1) 

P# and y# give the split short exact sequence 1.2, 1.5. We know that the 
k-invariants in Hq+ l((BP<n>k)k+s, Z()) are independent and hit p torsion 
generators for s < m by statement K(n,s), s < m of A and coinment 4.4; 
equivalently, (T ")q is injective: 

I 
01q~~- H1(pf>)k+) Hq (K 

(7Tq (BP< n>k), q) ) 
Hq l((BP<n>k) 

q y )k*s (4q- 8) 

Hq (K (7Tq(BP<K + 1>k) q)) Hq+1((BP<n + l>k)) (4.8) 

H4(K (Tq(BP<n + 1>i), q)) Hq+l((BP<n+ l>.)k+s) 

Assume for a moment that yq-1 pulls these k-invariants in 
Hq+ ((BP<n>k )k+s Z )) back to independent p-torsion generating k-invariants 
in Hq+1((BP<nf+ >) +s,Z(p) i.e. (T)q. (Y#)*=(yq-1)*.(T)q is injective in 4.8. 
Then the first possible dependent k-invariant is of the type discussed in 3.7. 
There, it was shown to be an independent p-torsion generating k-invariant. 
Assume for some minimum s S m that we have a dependent k-invariant, or one 
which is not a p-torsion generator, equivalently, assume there is an x & ker(i)q, 
therefore q > i. By what we have assumed about the k-invariants pulling back, x 
is not in the image of (y#)*. Thus, by the split exactness of homotopy, and 
therefore the (y#)*, (I #)* sequence of 4.8, (/3#)*(x)=y#0. Now using the 
result 2.3 about the k-invariants of loop spaces, (S*)r. (T')q = (#)q r (s*), r= i - k 
-2(p +'- 1). By our minimality assumption on s, (M)q - is injective so 
0(=)q ( *)r( y) =(S*)r. (#)q( y) = (*)r. (T() (38#)*(X) = (S*)r. ( 83ql)* .T)q (X) 
contradicting (T)q (X) = O. 
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All we need now is to show that (T)q. (Y#)* = (Yq- 1)* (T/")q is injective. We 
have the maps (k + s + 1 = q) 

k+s-1 k yq- k+s 
(BPk) > (BP<n+1>k) 

s > (BP<K>n) 

If we show that (Fq-l)*. (yq-l)* (T")q is injective, we will be through. Using 
statement P(n, s), s ? m, from our given in A, we see that this is true if 
G* (T"), ++ 1 is injective (as k = k, + 1 > kn), G the projection: 

(BP<n>kS) 
+s x II (BPKi> )lc+s- >(BP<n>kn)s 

j>n 

This follows trivially from statement K (n, s), s < m. 

Proof of Statement B. By (1) of -statement B and 2.4 on k-invariants of 
product spaces, all of the k-invariants on the right hand side of P(n,m) are 
independent and hit p-torsion generators except possibly a zero k-invariant if 
m = 2pi -3 which corresponds by construction (3.6) to a dependent k-invariant 
on the left hand side of P(n,m). Now by P(n,m), (fkn +m)* is an isomorphism 
and so pulls back all of the independent p-torsion generating k-invariants to 
independent p-torsion generating k-invariants in (BPknk +m. This determines all 
of the k-invariants on the left hand side because we know the homotopy is the 
same on both sides (4.2). So by this, (and 3.6 if m=2pi-3) f# on gk + m + I 

must be an isomorphism. Thus (fkI+m+l)# is an isomorphism on v * giving us 
P(n, m + 1). 

5. Statement of Results. 

In section 4 we proved the main theorem: k < 2( pn +* + p +1) 

BPk-BP<n>k X n BP<ji>k+2( p'-1) 
j>n 

The main theorem of [20] says: The Z(p) (co)homology of the connected part of 
BPk has no torsion and is a polynomial algebra for k even and an exterior 
algebra for k odd. The map above is a map of H-spaces for k <2( pn+ - + 

p + 1) so we have the following corollary. 

COROLLARY 5.1. For k<2( p+ . . . +p+ 1), the Z(P) (co) homology of the 
connected part of BP<n>k has no torsion and is a polynomial algebra for k even 
and an exterior algebra for k odd. For k = 2( pn + .*. *+ p + 1), H*(BP<n>k, Z(d)) 

has no torsion and is a polynomial algebra. (Note that for k >0 or k odd <0, 
BP<n>k is connected.) 
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Note. For k = 2( p n + * + p + 1), H*(BP<n>k, Z( p)) is not a polynomial 
algebra. 

At the rationals, the space BP<n>k is just a product of Eilenberg-MacLane 
spaces. So, since there is no torsion, the number of generators over Z(p) is the 
same as over Q. As an example, for k even, O < k < 2( p n + * * * + p + 1), we have 

H*(BP<n>k, Z( p)) = Z( p)[sk7S*(BP<n>)] = Z( p)[sk(Z( p)[Xl) * * )Xn])] 

For k even and less than 2( pfn + + p + 1), the (co)homology Hopf 
algebras of 5.1 are bipolynomial, that is, both it and its dual are polynomial 
algebras. Such Hopf algebras are studied in [13]. There, such a Hopf algebra is 
shown to be isomorphic to a tensor product of the Hopf algebras B(p)[x,2d] 
studied in [7]. B(p)[x,2d], as an algebra, is a polynomial algebra over Z(p) on 
generators ak(x) of degree 2pkd. As a Hopf algebra it is isomorphic to its own 
dual. 

Letting R (n, k) be the set of all n-tuples of non-negative integers, R 
=(r1,...,rn) with d(R)=2k+22(pi-1)ri. R is called prime if it cannot be 
written R = pR' + (k, 0,... , 0) with R' E R (n, k). Then, as a further example, we 
have the following corollary from [13] and the counting done above. 

COROLLARY 5.2. For 0 < k < pn + * + p + 1 as Hopf algebras: 

H *(BP<n>2k, Z(P))- 0 B(P)[xR, d(R)] 
RIG ER(n, k) 

R prime 

We now utilize statement K(n,s); all k-invariants T(x) in 

Hk+s+2((BP<n>kn)k+s, Z(p)) are independent and hit p torsion generators, 
kn = 2( pn-l + ... + p + 1) + 1. This implies that BP<n>k, cannot be written as a 
non-trivial product. (2.12) 

COROLLARY 5.3. For k > 2(pn1 + * + p + 1), BP<n>k is irreducible. 
Using the fact that kn + 2( pi -1 ) > k, for j> n we have now completed the 

proof of the main theorem. 

THEOREM 5.4. For k < 2( pn+.** +p+1) 

BPk-BP<n>kX II BP<K>k+2(pi-1) 
j>n 

and for k > 2( pn-1 + ** + p + 1), this decomposition is as irreducibles. 

Note. For k < 2( pn+.** + p + l) this is as H-spaces. 
Now letting k < 2( pn-1 ' +.* + p + 1) and using two versions of 5.4 we 

This content downloaded from 68.84.140.110 on Fri, 13 Sep 2013 19:19:41 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


118 W. STEPHEN WILSON. 

have 

BPk- BP<n>k X OTHER 
and 

BPk BP<n - >k X BP<n>k+2(p l) X OTHER 

From this we get the following corollary. 

COROLLARY 5.5. For k<2(p`+... +p+1) 

BP<n>k -BP<n -'>k X BP<n>k+2(p-1) 

Note. For k < 2( p n-1 + * * + p + 1) this is as H-spaces. 
This gives us the point where the fibration 1.4 becomes trivial. Again, using 

BPk=~BP<n>kX OTHER for k < 2( pn+ + p + 1) and the fact that for finite 
complexes BP<n>k(X) = 0 for high k we get 5.6. 

COROLLARY 5.6. (i) BPk(X)-->BP<n>k(X) is onto for k < 2( pn +... + p + 

1). (ii) BP*(X)--*BP<n>*(X) is onto in all but a finite number of dimensions. 
We now apply 5.6 to prove Quillen's Theorem. The problem was first 

studied in [6]. 

THEOREM 5.7 (Quillen). Let X be a finite CW complex, then BP*(X) is 
generated as a BP*(S0) module by elements of non-negative degree. 

Proof. If uEBPk(X) and k<0, we will show u is a finite sum Yi>0xiUi 
=u, uiE BPk+2(P -l)(X) and xicEBP*(SO)= Z(P)[x1,...,xi,...] of degree 
-2( p - 1). By downward induction on the degree of u we will be done. 

Consider the maps 
gn fn 

BP*(X) -> BP<n>*(X) > BP<n-1>*(X) 

Find n such that gn (u) 0 butfn fgn(u)=gr,-1(u)=0. Such an n exists because 
n=O gives g0(u) EHk(X,Z()) = 0 as k < 0, and for n high enough BPk(X) 

BP<n>k(X), by the finiteness of X. 
Dual to 1.1 we have an exact sequence and commuting diagram: 

Xn 

BPk +2(P'-1)(X) > BPk (X) 

gn N1/ 

Xn fn 

BP<n>k+2(Pn-l (X) > BP<n>k(X) > BP<n - 1>k(X) 
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Asfn(g(u))=O there exists u' with xn u'= gn(u) by exactness. But now, by 5.6 
and 2(p + +p+1)>k+2(p -1) for k<O we have that gn is onto in 
dimension k+2(p -1) and so pick un BPk+2(P'-l)(X) with gn (un)=u'. Then 
by commutativity, gn (xnun) = gn(u). Now continue this process using u - XnUn 
By the finiteness of X, BPk+2(P1 ')(X) will be zero for large j and we will get 
our finite sum u = Y i>oxiui and be done. 

The spaces BP<n>k are most useful in the range 2( pn-1 + * + p + 1) < k 
< 2( pn + ... + p + 1) where they are both irreducible and torsion free. In the 
next section, we will identify these with spaces that have perhaps a more 
tangible description. 

6. Torsion free H-spaces. 

All modules will be over Z(p), and, until further notice, all coefficients will 
be Z(p). In this section we will study torsion free H-spaces. Our immediate goal 
is to construct and study the following spaces. 

PROPOSITION 6.1. There exists an irreducible k - 1 connected H-space Yk 

which has H*(Yk) and 7*(Yk) both free over Z(p) and such that each stage of 
the Postnikov system is irreducible. 

Proof. We will build up a Postnikov system for Yk and use 2.7. We drop 
the subscript k. Clearly we must start the Postnikov system with yk 

= K (Z(p),k). We will now just build up a Postnikov system by killing off the 
torsion in cohomology as efficiently as possible. 7*(yk) is free over Z(p) and 
Hi(Yk) has no torsion for j< k+1. yk is an H-space. Assume we have 
constructed the s-I stage, ys-l for s> k such that * (Ys-1) is free and 
Hi(Ys-l) has no torsion for j < s. Assume also that ys-1 has an H-space 
structure. Hs + 1( YS- 1) _ F (D T where F is the free part and T is the torsion part. 
It is finitely generated so it is isomorphic to (Z(p))noe(D>(ZPJ)Nt where (G)n 
= G D... ( G n times. Using the torsion generators, this isomorphism deter- 
mines a map: 

n ys-1._ > II K (Z(p), s+ 1) =K (FnS + 1), F= ( Z( P)) 

n= ni times 
i>o 

Let this map be the s k-invariant, kS. This constructs the space Ys as the 
induced fibration. ks is torsion and so it is primitive because there is no torsion 
in lower dimensions, therefore by 2.5, Ys is an H-space. Recall the Z(p) 
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sequence 2.9 
(g,)* 

O > Hs (ys- 1) > Hs( Ys ) > Hs(K (F s)) 

-> Hs+1( ys- 1) > Hs+ 1(ys ) >0 

Using ks*= T'S* we see that all of our "k-invariants" T(x) are independent 
and hit p-torsion generators by construction. Coker (g9)* is a subgroup of a free 
group and so is free giving us: 

(g,)* 
0 >Hs(Ys-l) > Hs(Ys) *coker(g,)* >0 

with both ends free by our induction hypothesis. Therefore Hs(Ys) is free. 
Hs+1(Ys) is coker T=coker(ks)* which by construction is F, so free. By the 
isomorphism 2.10, Hi(Ys)-Hi(Ys - ), j < s, we have H?(Ys) is free for j < s + 1. 
Also 7*(Ys) is free by construction. Because we have used the minimum 
number of Z(p)'s for 7,*(Ys), if ys-l is irreducible, then so is Ys. (2.12) 

THEOREM 6.2. If X is a simply connected CW H-space with 7r*(X) and 
H*(X, Z(d)) free and locally finitely generated over Z(p), then X -Hi Yk. 

Remark 1. The simply connected assumption is not necessary because 
one can just split off a bunch of circles localized at p. Y1 = (S 1)(p). Then, what is 
left is still an H-space, see the next remark. 

Remark 2. The reason for the H-space hypothesis is that we want torsion 
k-invariants (2.5). Since spaces with 7T* and H* free are H-spaces if their 
k-invariants are torsion we could have used the hypothesis that X must have 
torsion k-invariants instead. Note that our homotopy equivalence is not as 
H-spaces. 

Proof of 6.2. As always, we do everything by induction on the Postnikov 
system, but first we need the map X--H1 iY4. The construction is similar to that 
for the main theorem except easier because X is only a theoretical space. We 
revert back to modp cohomology for the proof. We start with the modp version 
of the sequence 2.9. 

9* i 
0- )Hs(Xs-l) -> Hs(Xs) -> Hs(KQ(Ts(X),s)) 

- > Hs+'(Xs-1)- >Hs+'(XS)- >0 (6.3) 
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Choose VS c HS(XS) HS(X) such that i*: V5--keri. Let r5 be the rank of VW. 
This determines a map f': X--K((Z )r,s). H*(X,Z(p)) has no p torsion soZS lifts 
first into the product of r; copies of K(Z(p),s) and then into the product of ri 

copies of Y1 denoted rYe. (It lifts by 2.6 because Y, has p-torsion k-invariants 
and free homotopy.) So we have f :X X->rY, such that the image of (f5)* in 
dimension s is VS. Let f= 11jfs: X-1=srY=. 

Claim. f is a homotopy equivalence. 

Proof. By induction on the Postnikov system assume S: X5-* YS 

=k<s(rYk)5 is a homotopy equivalence. (X'= Y'= pt) Let f4 be the induced 
map K (Q%, I(X), s + 1)--K (Qs+ I(Y), s + 1). f5 is a homotopy equivalence, if f4 is 

too, then fS+1 #:7(Xs+') >7T*(Ys+') is an isomorphism and so fs+l is a 
homotopy equivalence. f# is a homotopy equivalence iff (f#)*: 
Hs+ '(K (7;s+ I(Y),s + 1))-Hs+ '(K(7s+ I(X),s + 1)) is an isomorphism. Now 

K (,gs+l( Y),s +l) =K (gs+lt 1 rYk 5s + l X K((Z( p)) ",s +l) = K xK 

and Hs+ 1(K X K') = Hs+ 1(K) D Hs+ 1(K'). KerTy = Hs+ 1(K') by the construc- 
tion of the Yk, i.e., all k-invariants are independent and hit p-torsion generators. 
Using the naturality of 2.9 we have: 

i* 

>Hs+'(Xs+') >Hs+1(K(,gs+j(X),s 1)) >Hs+2(Xs) 

Hs (ys -) Hs+(K(7,+j(Y)H s1)() > Hs+2(Ys) 

HS+ 1( rY5,)e EH1+1(rYH+K1))EDW+ (K') (6.4) 
k < s 

Now (iy) H`+1(rY,+ )kerfy= H`+(K') and by construction of f +1, 
f= (fS+l)*: Hs + (rY5,+i)-* VS+l. By commutativity, (f#)*:kerTy-*kerTx. 
;1JY H5+'(K) is injective and by our construction of the Yk it hits every possible 
element in cohomology, i.e., all that reduce from torsion elements in Z(p) 
cohomology. f5 is a homotopy equivalence by induction so by commutativity of 
6.4 

- also hits all possible elements and we have isomorphism on the ends of 
diagram 6.5 giving us the desired isomorphism by the five lemma. 

Or [> v+l > Hs+'(K(S7s+l(X),s+l)) 
- image Tx 30 

t- (t# )*t ~~~~~~~~~~~~~(fS)*1 

0 > Hs+ (rYs+ ) > Hs+ 1(K') @ Hs+(K ) >(image 5y >0 

(6.5) 
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COROLLARY 6.6. Yk as in 6.1 is unique up to homotopy type. 

COROLLARY 6.7. Any map Yk-> Yk which induces an isomorphism on 

7kk(yk) = Z(p) is a homotopy equivalence. 

COROLLARY 6.8. For 2(p nI+ *p + p+1) < k < 2(p n+ ** +p+ 1), 

BP<n>k- Yk 

Proof. 7r*(BP<n>k) is free by construction. (1.5) H*(BP<n>k) has no 

torsion for k<2(p +- - +p+l) by 5.1. For k>2(pn- '+. +p+l) 
BP<n>k is irreducible by 5.3. Now, for k in this range just apply 6.2. 

COROLLARY 6.9. For k > 2( p n- I+ * * * + p + 1), any map 

BP<n>k--BP<n>k which induces an isomorphism on "7k is a homotopy equiva- 

lence. 
Note that YOc, _ BP and we get an unpublished result of F. P. Peterson. 

COROLLARY 6.10 (Peterson). Given a spectrum X with H*(X,Z(d)) and 

7T*S(X) bounded below, locally finitely generated, and free over Z(P)' then 

X- V1SkBP 

PRINCETON UNIVERSITY AND 

INSTITUTE FOR ADVANCED STUDY 

REFERENCES. 

[1] J. F. Adams, "A variant of E. H. Browns representability theorem," Topology, 10 (1971), pp. 
185-199. 

[2] - , Quillen's work on formal group laws and complex cobordism, University of Chicago 
Lecture Notes Series (1970). 

[3] N. A. Baas, On bordism theory of manifolds with singularities, Mathematica Scandinarca, 33 

(1973), pp. 279-302. 
[4] E. H. Brown, Jr., "Cohomology theories," Annals of Mathematics (2) 75 (1962), pp. 467-484. 
[5] E. H. Brown, Jr. and F. P. Peterson, "A spectrum whose Zp cohomology is the algebra of 

reduced pth powers," Topology 5 (1966), pp. 149-154. 
[6] P. E. Conner and L. Smith, "On the complex bordism of finite complexes," I.H.E.S. 

Publications Math. 37 (1969), pp. 117-222. 
[7] D. Husemoller, "The structure of the Hopf algebra H*(BU) over a Z(P)-algebra," American 

Jourmal of Mathematics 93 (1971), pp. 329-349. 
[8] D. W. Kahn, "Induced maps for Postnikov systems," Transactions of the American 

Mathematical Society, 107 (1963), pp. 432-450. 

This content downloaded from 68.84.140.110 on Fri, 13 Sep 2013 19:19:41 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


THE 2-SPECTRUM FOR BROWN-PETERSON COHOMOLOGY PART H1. 123 

[9] J. W. Milnor, "The Steenrod algebra and its dual," Annals of Mathematics, (2) 67 (1958), pp. 
150-171. 

[10] F. P. Peterson, "The modp homotopy type of BSO and F/PL," Bol. Soc. Math. Mexicana, 14 
(1969), pp. 22-28. 

[11] D. Quillen, "Elementary proofs of some results of cobordism theory using Steenrod opera- 
tions," Advances in Mathematics, 7 (1971), pp. 29-56. 

[12] , On the formal group laws of unoriented and complex cobordism theory, Bulletin of 
the American Mathematical Society, 75 (1969), pp. 1293-1298. 

[13] D. Ravenel and W. S. Wilson, "Bipolynomial Hopf algebras," Journal of Pure and Applied 
Algebra, 4 (1974), pp. 45-55. 

[14] L. Smith, "Homological algebra and the Eilenberg-Moore spectral sequence," Transactions of 
the American Mathematical Society 129 (1967), pp. 58-93. 

[15] , Lectures on the Eilenberg-Moore spectral sequence, Lecture Notes in Mathematics, 
134, Springer-Verlag. 

[16] E. H. Spanier, "Algebraic Topology," McGraw-Hill, New York 1966. 
[17] N. E. Steenrod and D. B. A. Epstein, Cohomology Operations, Annals of Mathematics, 

Studies No. 50. 
[18] D. Sullivan, Geometric topology, part I, localization, periodicity and Galois symmetry, notes, 

M.I.T. (1970). 
[19] , Geometric topology, seminar notes, Princeton University (1967). 
[20] W. S. Wilson, "The 2-spectrum for Brown-Peterson cohomology," part I, Commentarii 

Mathematici Helvetici, 48 (1973), pp. 45-55. 
[21] D. C. Johnson and W. S. Wilson, "Projective dimension and Brown-Peterson homology," 

Topology 12 (1973), pp. 327-353. 

This content downloaded from 68.84.140.110 on Fri, 13 Sep 2013 19:19:41 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

	Article Contents
	p.101
	p.102
	p.103
	p.104
	p.105
	p.106
	p.107
	p.108
	p.109
	p.110
	p.111
	p.112
	p.113
	p.114
	p.115
	p.116
	p.117
	p.118
	p.119
	p.120
	p.121
	p.122
	p.123

	Issue Table of Contents
	American Journal of Mathematics, Vol. 97, No. 1 (Spring, 1975), pp. 1-290
	Front Matter
	Holomorphic Maps Which Preserve Intrinsic Measure [pp.1-15]
	Weighted Shifts and Banach Algebras of Power Series [pp.16-42]
	Some Picard Theorems for Holomorphic Maps to Algebraic Varieties [pp.43-75]
	Submanifolds with Constant Mean Curvature II [pp.76-100]
	The Ω-Spectrum for Brown-Peterson Cohomology Part II [pp.101-123]
	Division Points of Elliptic Curves and Abelian Functions Over Number Fields [pp.124-132]
	On the Volume Decreasing Property of a Class of Real Harmonic Mappings [pp.133-147]
	Compressibility Properties in Topological Dynamics [pp.148-171]
	Sur Certaines Operations Differentiables des Groupes de Lie [pp.172-181]
	The Index and the Generalized Todd Genus of Z-Actions [pp.182-204]
	Characterization of Sets Which are Tame in Complexes in E [pp.205-220]
	Separatrix Structure for Elliptic Flows [pp.221-247]
	Compactness of Certain Homogeneous Spaces of Finite Volume [pp.248-259]
	Vector Bundles Over Tori and Noncompact Solvmanifolds [pp.260-281]
	Un Théorème de Sélection et L'Espace des Rétractions D'Une Surface [pp.282-290]
	Back Matter





