THE ת-SPECTRUM FOR BROWN-PETERSON COHOMOLOGY PART II.

By W. Stephen Wilson*.

Introduction. Let $B P$ denote the spectrum for the Brown-Peterson cohomology theory, $B P^{*}(\cdot)$. $[2,5,12]$ We have $B P^{k}(X) \cong\left[X, B P_{k}\right]$ where $B P$ $=\left\{B P_{k}\right\}$ as an Ω-spectrum, i.e. $\Omega B P_{k} \cong B P_{k-1}$. [4] In Part I [20] we determined the structure of the cohomology of $B P_{k}$. In this part we study the homotopy type of $B P_{k}$.

The structure of each $B P_{k}$ is very nice and gives some insight into the cohomology theory. In particular, using it, we obtain a new proof of Quillen's theorem that $B P^{*}(X)$ is generated by non-negative degree elements as a module over $B P^{*}\left(S^{\circ}\right)$. [11] (X is a pointed finite $C W$ complex.)

Let $Z_{(p)}$ be the integers localized at p, the prime associated with $B P$. We explicitly construct spaces Y_{k} which are the smallest possible $k-1$ connected H-spaces with π_{*} and H_{*} free over $Z_{(p)}$. The Y_{k} are the building blocks for $B P_{n}$, i.e., $B P_{n} \cong \Pi_{i} Y_{k_{i}}$. In fact, one of our main theorems states that for any H-space X with π_{*} and H_{*} free over $Z_{(p)}$, then $X \cong \Pi_{i} Y_{k_{i}}$. (This is not as H-spaces, see section 6.) To understand the spaces Y_{k} we need a sequence of homology theories:

$$
\begin{aligned}
& B P_{*}(X) \cong B P\langle\infty\rangle_{*}(X) \rightarrow \cdots \rightarrow B P\langle n+1\rangle_{*}(X) \rightarrow B P\langle n\rangle_{*}(X) \\
& \rightarrow \cdots \rightarrow B P\langle 0\rangle_{*}(X)=H_{*}\left(X, Z_{(p)}\right)
\end{aligned}
$$

These are constructed using Sullivan's theory of manifolds with singularities. $B P_{*}\left(S^{0}\right) \cong Z_{(p)}\left[x_{1}, x_{2} \ldots\right]$ with degree of $x_{i}=2\left(p^{i}-1\right) . B P\langle n\rangle_{*}\left(S^{0}\right)$ $=\mathrm{Z}_{(p)}\left[x_{1}, \ldots, x_{n}\right]$ as a graded group. Let $B P\langle n\rangle=\left\{B P\langle n\rangle_{k}\right\}$ be the Ω-spectrum for $B P\langle n\rangle_{*}(\cdot)$. For $k>2\left(p^{n-1}+\cdots+p+1\right)$, the space $B P\langle n\rangle_{k}$ cannot be broken down as a product $B P\langle n\rangle_{k} \cong Y \times X$ with both X and Y non-trivial. For $k \leqslant 2\left(p^{n}+\cdots+p+1\right), H^{*}\left(B P\langle n\rangle_{k}, Z_{(p)}\right)$ has no torsion. So, for k between these two numbers we get $Y_{k} \cong B P\langle n\rangle_{k}$.

[^0]Main Theorem. For $2\left(p^{n-1}+\cdots+p+1\right)<k \leqslant 2\left(p^{n}+\cdots+p+1\right)$

$$
B P_{k} \cong B P\langle n\rangle_{k} \times \prod_{j>n} B P\langle j\rangle_{k+2\left(p^{i}-1\right)}
$$

and cannot be broken down further.
The proof of this theorem exploits the fact from [20] that the $Z_{(p)}$ cohomology of $B P_{k}$ has no torsion.

We begin by constructing the theories $B P\langle n\rangle_{*}(\cdot)$. In section 2 we review what we need about Postnikov systems. Section 3 is devoted to preliminary necessities for the proof of the main theorems in section 4 . Then we state the main results and prove Quillen's theorem (section 5) and a general decomposition theorem for spaces which are p-torsion free and H-spaces when localized at p. (section 6)

In a paper with Dave Johnson these results are applied to study the homological dimension of $B P^{*}(X)$ over $B P^{*}\left(S^{0}\right)$. [21]

This paper is part of my Ph.D. thesis at M.I.T. I would like to thank my advisor, Professor Frank Peterson, for his encouragement and understanding. I would also like to acknowledge the influence of his papers on this research, in particular, [10].

1. Construction of $B P\langle n\rangle$.

This section deals with Sullivan's theory of manifolds with singularities. [19] The approach we take is due to Nils Baas. This section is not intended to be an exposition on the Baas-Sullivan theory, for we only wish to use it to construct certain specific homology theories, the general case being covered in detail in [3]. Even the definitions we give will be missing major ingredients, in all cases we refer to [3].

If we dealt with the case of one singularity, P, then a manifold with singularity P would be a space $V=N \cup_{P \times M} C P \times M$ where N is a manifold with $\partial N=P \times M$ and $c P$ is the cone on P. One can make a bordism group of a space using such objects in place of manifolds. An element of the bordism would be represented by a map $f: V \rightarrow X$. So, as far as bordism is concerned, one might just as well consider only the manifold N and insist that maps $f: N \rightarrow X$, when restricted to $\partial N=P \times M$, factor through the projection $P \times M \rightarrow M$. This is the approach Baas takes. When more than one singularity is considered, the definitions become quite technical. From [3]

Definition. V is a closed decomposed manifold if there exist submanifolds $\partial_{1} V, \ldots, \partial_{n} V$ such that $\partial V=\partial_{1} V \cup \cdots \cup \partial_{n} V$ where union means identification along common part of boundary such that $\partial\left(\partial_{i} V\right)=\left(\partial_{1} V \cap \partial_{i} V\right)$
$\cup \cdots \cup\left(\partial_{i-1} V \cap \partial_{i} V\right) \cup \varnothing \cup \cdots \cup\left(\partial_{n} V \cap \partial_{i} V\right)$, which gives $\partial_{i} V$ the structure of a decomposed manifold. Continue, defining $\partial_{k}\left(\partial_{j}\left(\partial_{i} V\right)\right)$, etc.

Let $S^{n}=\left\{P_{1}, P_{2}, \ldots, P_{n}\right\}$ be a fixed class of manifolds. Very loosely, A is a closed manifold of singularity type S^{n} if for each subset $\omega \subset\{1,2, \ldots, n\}$ there is a decomposed manifold $A(\omega)$ such that $A(\varnothing)=A, \partial_{i} A(\omega) \cong A(\omega, i) \times P_{i}$ if $i \notin \omega$, $\partial_{i} A(\omega) \cong \varnothing$ if $i \in \omega$. A singular S^{n} manifold in X is a map $g: A \rightarrow X$ such that $g \mid \partial_{i} A(\omega) \cong A(\omega, i) \times P_{i}$ factors through the projection $A(\omega, i) \times P_{i} \rightarrow A(\omega, i)$.

More generally, singular manifolds with boundary, singular manifolds in a pair, and a concept of bordism are all defined. (rigorously) These bordism groups are shown to give generalized homology theories, $M S^{n}{ }_{*}(\cdot)$. One of the most important aspects of these theories is the relationship between $M S^{n}{ }_{*}(\cdot)$ and $M S^{n+1} *(\cdot)$. This will be a major tool throughout the paper. There is an exact sequence

The product of an S^{n} manifold with a closed manifold N gives an S^{n} manifold by: $(N \times A)(\omega)=N \times A(\omega)$. On a representative element $A \rightarrow X, \beta$ is $P_{n+1} \times A$ $\rightarrow A \rightarrow X$. Any S^{n} manifold A can be considered as an S^{n+1} manifold by setting $A(\omega, n+1)=\varnothing$. So $\gamma(A \rightarrow X)=(A \rightarrow X)$. For an S^{n+1} manifold A we see that $A(n+1)$ is an S^{n} manifold, so $\delta(f: A \rightarrow X)=f \mid A(n+1) \rightarrow X$. The degrees of these maps are: degree $\beta=$ dimension P_{n+1}, degree $\gamma=0$, degree $\delta=$ -dimension $P_{n+1}-1$. In our one singularity example, $\partial N=P \times M, \delta$ just restricts to M. Baas of course defines these maps rigorously, shows they are well defined and proves the exactness theorem.

Above we remarked that the product of a manifold and an S^{n} manifold is again an S^{n} manifold. This gives us a map, $M S^{0}{ }_{*}(X) \otimes M S^{n}{ }_{*}(Y) \rightarrow M S^{n}{ }_{*}(X \times$ $Y)$.This is precisely the condition that tells us the spectrum associated with $M S^{n}{ }_{*}(\cdot)$ is a module spectrum over the spectrum for the standard bordism theory $M S^{0}{ }_{*}(\cdot)$. Further, $M S^{n}{ }_{*}(X)$ is a module over $M S^{0}{ }_{*}\left(S^{0}\right)$ and the above maps, β, γ, δ are all $M S^{0}{ }_{*}\left(\mathrm{~S}^{0}\right)$ module maps.

We now get on to our applications. All manifolds considered above could be taken with some extra structure, and we assume them all to be U manifolds. So $M S^{0}{ }^{*}(\cdot)$ is $M U_{*}(\cdot)$ the standard complex bordism homology theory for finite complexes. Now $M U_{*}\left(S^{0}\right)=\pi^{S}{ }_{*}(M U)=Z\left[x_{2}, \ldots, x_{2 i}, \ldots\right]$ where degree $x_{2 j}=2 j$. We choose a representative manifold P_{i} for $x_{2 i}$. Fix a prime $p . S(n, m)=$
$\left\{P_{i} \mid i \leqslant m, i \neq p^{i}-1, j \leqslant n\right\}$. Then by all of the above, we have a homology theory $\operatorname{MUS}(n, m)_{*}(\cdot)$ made from U manifolds with singularity type $S(n, m)$. For large m we have an exact sequence:

From these exact sequences and the homotopy of $M U$ we see that $\operatorname{MUS}(n, m)_{*}\left(S^{0}\right)=\pi^{S}{ }_{*}(M U) /[S(n, m)]$ where $[S(n, m)]$ is the ideal generated by $S(n, m)$. We define the homology theory $\operatorname{MUS}(n)_{*}(\cdot)=\lim (m \rightarrow \infty) \operatorname{MUS}(n, m)$ $*(\cdot) . \operatorname{MUS}(n)_{*}(\cdot) \otimes Z_{(p)}$ is a homology theory which we will denote by $B P\langle n\rangle_{*}(\cdot)$ and the corresponding spectrum by $B P\langle n\rangle$. The reason for the notation is that if $B P \rightarrow M U_{(p)}$ is Quillen's map ([12]), then $B P \rightarrow M U_{(p)} \rightarrow B P\langle\infty\rangle$ clearly gives an isomorphism on homotopy and so $B P \cong B P\langle\infty\rangle$. Thus $B P\langle n\rangle$ is a module spectrum over $B P$ and we have:

with degree of $\beta=2\left(p^{n}-1\right)$, degree $\gamma=0$, degree $\delta=-2 p^{n}+1 . B P_{*}\left(S^{0}\right)$ $\left.=Z_{(p)}\left[x_{2(p-1)}, \ldots, x_{2\left(p^{i}-1\right)}, \ldots\right] . B P\langle n\rangle_{*}=B P\langle n\rangle_{*}\left(S^{0}\right)=B P_{*}\left(S^{0}\right) /\left[x_{2\left(p^{i}-1\right)} i\right\rangle n\right]$ as a module over $B P_{*} . B P_{*}$ acts on $B P\langle n\rangle_{*}(X)$, it is known that $x_{2\left(p^{i}-1\right)}$ acts trivially for $i>n$.

Every spectrum can be represented as an Ω-spectrum. [4] Let $B P\langle n\rangle$ $=\left\{B P\langle n\rangle_{k}\right\}$ be the Ω-spectra, i.e. $\Omega B P\langle n\rangle_{k} \cong B P\langle n\rangle_{k-1}$ and $B P\langle n\rangle_{k}$ is $k-1$ connected for $k>0$. This means that $B P\langle n\rangle^{k}(X)=\left[X, B P\langle n\rangle_{k}\right]$ where $B P\langle n\rangle^{*}(\cdot)$ is the cohomology theory given by $B P\langle n\rangle$.

The theories $B P\langle n\rangle$ are independent of choice of manifolds P_{i} representing $x_{2 i}$ but seemingly dependent on the choice of generators $x_{2\left(p^{i}-1\right)}$ chosen for $\pi^{\mathrm{S}}{ }^{*}(M U)$. However, the results we obtain are independent of the choice of even these generators because the spaces $B P\langle n\rangle_{k}$ for different choices become homotopy equivalent when k is small enough. In addition, in [21] we show that $B P\langle 1\rangle$ is independent of choice of $x_{2 i}$. In fact, $B P\langle 1\rangle$ is just the irreducible part of connective K-theory when localized at p.

We now permanently reindex the $x_{2\left(p^{i}-1\right)}$ to x_{i} with degree $2\left(p^{i}-1\right)$. From 1.1 we have a split exact sequence:

$$
\begin{equation*}
0 \longrightarrow B P\langle n\rangle_{*} \xrightarrow{x_{n}} B P\langle n\rangle_{*} \rightarrow B P\langle n-1\rangle_{*} \longrightarrow 0 \tag{1.2}
\end{equation*}
$$

$B P\langle n\rangle_{*}=Z_{(p)}\left[x_{1}, \ldots, x_{n}\right]$ as a group. Again, from 1.1 for finite complexes we get a cofibration ([1]):

For the spaces in the Ω-spectrum this becomes a fibration:

If M is a graded module let $s^{k} M$ be the graded module $\left(s^{k} M\right)_{k+q}=M_{q}$. Then,

$$
\begin{equation*}
\pi_{*}\left(B P\langle n\rangle_{k}\right)=s^{k}\left(B P\langle n\rangle_{*}\right) \quad k \geqslant 0 \tag{1.5}
\end{equation*}
$$

From 1.3 we have an exact sequence:

For most of the paper, unless otherwise noted, all coefficient groups will be Z_{p} where p is the fixed prime associated with the $B P\langle n\rangle$. Let A be the $\bmod p$ Steenrod algebra and Q_{i} the Milnor elements. [9]

Proposition 1.7. $H^{*}(B P\langle n\rangle) \cong A / A\left(Q_{0}, Q_{1}, \ldots, Q_{n}\right)=A_{n}$
Note. Baas and Madsen have a more general result which includes this, however, as this special case has a much more elementary proof we give it here.

Proof. $\quad \pi^{\mathrm{s}}{ }_{*}(B P\langle 0\rangle)=\mathrm{Z}_{(p)}, \quad$ so $B P\langle 0\rangle=K\left(\mathrm{Z}_{(p)}\right)$ and $H^{*}(B P\langle 0\rangle)=A /$ $A\left(Q_{0}\right)$. We prove the result by induction on n using 1.6. Let 1 denote the lowest dimensional class of each spectrum, then $\gamma^{*}(1)=1$. Assume $H^{*}(B P\langle n-$
$1\rangle)=A_{n-1}$. If $\gamma^{*}\left(Q_{n} 1\right)=0$, then for dimensional reasons, $\partial^{*}(1)=\lambda Q_{n} 1,0$ $\neq \lambda \in \mathrm{Z}_{p}$. If $a \in A_{n}$, then $0 \neq a Q_{n} 1=\partial^{*}(a 1)$ in A_{n-1} because $A_{n-1}=A_{n}(1) \oplus$ $A_{n}\left(Q_{n} 1\right)$. Therefore $a 1 \neq 0$ in $H^{*}(B P\langle n\rangle)$. This takes care of exactness at $H^{*}(B P\langle n-1\rangle)$. So now $H^{*}(B P\langle n\rangle)=A_{n} \oplus X$ with $\beta^{*}: X \rightarrow X$ an isomorphism, but the degree of $\beta^{*} \neq 0$ so $X=0$.

All we need now is $Q_{n} 1=0 \in H^{*}(B P\langle n\rangle)$. Our map $B P \rightarrow B P\langle n\rangle$ is an isomorphism on homotopy below dimension $2\left(p^{n+1}-1\right)$ and therefore an isomorphism on cohomology in this range. $H^{*}(B P) \cong A / A\left(Q_{0}, Q_{1}, \ldots\right)$. [5] The dimension of Q_{n} is $2 p^{n}-1$ so $Q_{n} 1=0$.

2. Postnikov Systems.

We collect here the results we need about Postnikov systems. We assume X is a simply connected $C W$ complex. We start with the standard diagram:

2.1. Definition and existence. [16] A Postnikov system for X is a sequence of spaces $\left\{X^{n}\right\}$ and maps, $\left\{g_{n}: X^{n} \rightarrow X^{n-1}\right\},\left\{\rho_{n}: X \rightarrow X^{n}\right\}$ such that $\rho_{n-1} \cong g_{n} \cdot \rho_{n}$ and the fibre of g_{n} is $K\left(\pi_{n}(X), n\right)$, the Eilenberg-MacLane space. The fibration $g_{n}: X^{n} \rightarrow X^{n-1}$ is induced by a map $k_{n}: X^{n-1} \rightarrow K\left(\pi_{n}(X), n+1\right)$ from the path space of $K\left(\pi_{n}(X), n+1\right)$. Thus $k_{n} \cdot g_{n} \cong 0$ and $k_{n} \in H^{n+1}\left(X^{n-1}, \pi_{n}(X)\right) . k_{n}$ is called the n-th k-invariant of X. Postnikov systems for simply connected $C W$ complexes always exist and $\left(\rho_{n}\right)_{\#}: \pi_{k}(X)$ $\rightarrow \pi_{k}\left(X^{n}\right)$ is an isomorphism for $k \leqslant n$ and $\pi_{k}\left(X^{n}\right)=0$ for $k>n$.
2.2. Induced maps. [8] Given $f: X \rightarrow Y$ then we have $\left\{f^{n}: X^{n} \rightarrow Y^{n}\right\}$
such that $f^{n-1} \cdot g_{n}(X) \cong g_{n}(Y) \cdot f^{n}, f^{n} \cdot \rho_{n}(X) \cong \rho_{n}(Y) \cdot f$ and $f_{\#}\left(k_{n}(X)\right)=$ $\left(f^{n-1}\right)^{*}\left(k_{n}(Y)\right)$.
2.3. Loop spaces. The Postnikov system for ΩX is given by: $(\Omega X)^{n}$ $=\Omega X^{n+1}, \rho_{n}(\Omega X)=\Omega \rho_{n+1}(X), g_{n}(\Omega X)=\Omega g_{n+1}(X), k_{n}(\Omega X)=\Omega k_{n+1}(X)$, so $k_{n}(\Omega X)=s^{*}\left(k_{n+1}(X)\right) \in H^{n+1}\left(\Omega X^{n}, \pi_{n}(\Omega X)\right)$ where s^{*} is the cohomology suspension defined by $\delta^{-1} \cdot p^{*}$.

$$
H^{*}(\Omega X, G) \underset{\cong}{\stackrel{\delta}{\rightleftarrows}} H^{*+1}(P X, \Omega X, G) \stackrel{p^{*}}{\leftarrow} H^{*+1}(X, p t, G)
$$

$P X$ is the path space fibration over X.
2.4. Product spaces. A Postnikov system for $X \times Y$ is given by $\left\{X^{n} \times\right.$ $\left.Y^{n}\right\}$ with k-invariants $\left\{k_{n}(X) \times k_{n}(Y)\right\}$.
2.5. H-spaces. [8] If X is an H-space, then each X^{n} is an H-space, ρ_{n} and g_{n} are maps of H-spaces and $k_{n} \in H^{n+1}\left(X^{n-1}, \pi_{n}(X)\right)$ is torsion and is primitive in the Hopf algebra structure induced on H^{*} by the multiplication in X^{n-1}. Also, if X^{n-1} is an H-space and k_{n} is primitive, then X^{n} is an H-space. If all k-invariants are primitive, then X is an H-space.
2.6. Obstruction theory. [16] If Y is $C W$, and we have $f_{n-1}: Y \rightarrow X^{n-1}$, then f_{n-1} lifts to $f_{n}: Y \rightarrow X^{n}$ iff $\left(f_{n-1}\right)^{*}\left(k_{n}(X)\right)=0 \in H^{n+1}\left(Y, \pi_{n}(X)\right)$. If there exist maps $\left\{f_{n}: Y \rightarrow X^{n}\right\}$ such that $g_{n}(X) \cdot f_{n} \cong f_{n-1}$ then there exists $f: Y \rightarrow X$ with $\rho_{n}(X) \cdot f \cong f_{n}$.
2.7. Construction of spaces. [16] Given a sequence of fibrations $g_{n}: X^{n} \rightarrow X^{n-1}$ with fibre $K\left(\pi_{n}, n\right)$ and $X^{1}=p t$, then there exists a $C W$ complex X and maps $\rho_{n}: X \rightarrow X^{n}$ such that $\left\{X^{n}\right\}$ is a Postnikov system for X.
2.8. Independent k-invariants. Assume for the rest of this section that $\pi_{*}(X) \otimes Z_{(p)}$ is free over $Z_{(p)}$ and the k-invariants $k_{n}(X)$ are torsion elements. This will always be the case in our applications. From the Serre spectral sequence of a fibration we obtain the following natural ladder of exact sequences:

2.9.

τ is the transgression. Also we obtain
2.10. $H^{k}\left(X^{s}, G\right) \cong H^{k}(X, G)$ for $k \leqslant s$. In the dimension of our ladder, the transgression is related to the k-invariant map k_{s} by $\tau \cdot s^{*}=k_{s}{ }^{*}$. This motivates the following definitions.

For $x \in H^{s}\left(K\left(\pi_{s}(X), s\right), Z_{(p)}\right)$, a free generator, $\tau(x)$ will be called a k invariant of X. If $\tau(x)=0$, it is called dependent. The k-invariant $\tau(x)$ is independent and hits a p-torsion generator if and only if $\rho \cdot \tau(x)=\bar{\tau} \cdot \rho(x) \neq 0$ where ρ is the $\bmod p$ reduction. If the k-invariants, $\tau(x)$, of ΩX, hit p-torsion generators, then there is a y with $s^{*}(y)=x$, and so $s^{*}(\tau(y))=\tau(x)$ showing that the k-invariants $\tau(y)$ of X also hit p-torsion generators. (Remember that we have restricted ourselves to spaces with torsion k-invariants.) If $H^{*}\left(X, Z_{(p)}\right)$ has no p torsion, then all p torsion generators of $H^{s+1}\left(X^{s-1}, Z_{(p)}\right)$ are hit by k-invariants. This is true because the coker $\tau \cong H^{s+1}\left(X^{s}, Z_{(p)}\right)$ $\subset H^{s+1}\left(X^{s+1}, \mathrm{Z}_{(p)}\right) \cong H^{s+1}\left(X, \mathrm{Z}_{(p)}\right)$ which is free, all by 2.9 and 2.10.
2.11. Localization. [18] Usually we will work with localized spaces, i.e. spaces with $\pi_{*}(X)$ a $Z_{(p)}$ module. For simply connected spaces or H-spaces, the localization $X_{(p)}$ and a $\bmod p$ equivalence $X \rightarrow X_{(p)}$ can be built by 2.7 using $\pi_{*}(X) \otimes \mathrm{Z}_{(p)}$ for homotopy groups and $k_{n}(X) \otimes \mathrm{Z}_{(p)}$ as the k-invariants. We get that

$$
H_{*}(X, Z) \otimes Z_{(p)} \cong H_{*}\left(X, Z_{(p)}\right) \cong H_{*}\left(X_{(p)}, Z_{(p)}\right) \cong H_{*}\left(X_{(p)}, Z\right)
$$

2.12. Irreducible spaces. If a space cannot be written as a non-trivial product of spaces it will be called irreducible (indecomposible). If X is connected and ΩX is irreducible, then X must also be irreducible. If X is a localized space with $\pi_{*}(X)$ free (over $Z_{(p)}$) then if X^{s-1} in the Postnikov system for X is irreducible and all of the $s k$-invariants are independent, then X^{s} is also irreducible.

3. The Map.

Before we can prove the main theorem,

$$
B P_{k} \cong B P\langle n\rangle_{k} \times \prod_{i>n} B P\langle j\rangle_{k+2\left(p^{i}-1\right)}
$$

for $k \leqslant 2\left(p^{n}+\cdots+p+1\right)$, we need the maps $B P_{k} \rightarrow B P\langle j\rangle_{k+2\left(p^{i}-1\right)}$. The natural transformation $B P_{*}(\cdot) \rightarrow B P\langle n\rangle_{*}(\cdot)$ gives us the map $B P_{k} \rightarrow B P\langle n\rangle_{k}$ which is onto in homotopy. If we obtain the map $B P_{k} \rightarrow B P\langle j\rangle_{k+2\left(p^{i}-1\right)}$ for k $=2\left(p^{i-1}+\cdots p+1\right)$ then we have it for all $k \leqslant 2\left(p^{i-1}+\cdots+p+1\right)$ by taking the loop map. We can then combine these maps to give a map

$$
B P_{k} \rightarrow B P\langle n\rangle_{k} \times \prod_{j>n} B P\langle j\rangle_{k+2\left(p^{i}-1\right)} \quad \text { for } \quad k \leqslant 2\left(p^{n}+\cdots+p+1\right)
$$

We fix $k=2\left(p^{i-1}+\cdots+p+1\right)$ and construct a map $B P_{k} \rightarrow B P\langle j\rangle_{k+2\left(p^{i}-1\right)}$ by the following series of lemmas.

Lemma 3.1. There is an element $x_{i} \in H^{k+2\left(p^{i}-1\right)}\left(B P\langle j\rangle_{k}, Z_{(p)}\right)$ such that $x_{i}: B P\langle j\rangle_{k} \rightarrow K\left(Z_{(p)}, k+2\left(p^{i}-1\right)\right)$ is onto in homotopy, $k \leqslant 2\left(p^{i-1}+\cdots+\right.$ $p+1$).

Before proceeding, we need to state a lemma which we will prove later.
Let i_{k} be the generator of $H^{k}\left(B P\langle j-1\rangle_{k}\right)$.
Lemma 3.2. For $k>2\left(p^{i-1}+\cdots+p+1\right), Q_{i} i_{k} \neq 0$ in $H^{*}\left(B P\langle j-1\rangle_{k}\right)$. For $k=2\left(p^{i-1}+\cdots+p+1\right), H^{i}\left(B P\langle j-1\rangle_{k}\right)=0$ for $i=k+2 p^{i}-1=$ dimension $Q_{i} i_{k}=p k+1$.

Proof of 3.1. We go to the fibration 1.4.

$$
\begin{array}{llc}
B P\langle j\rangle_{s} & \xrightarrow{\beta} & B P\langle j\rangle_{k} \tag{3.3}\\
s=k+2\left(p^{i}-1\right) & & \gamma \downarrow \\
k=2\left(p^{i-1}+\cdots+p+1\right) & & B P\langle j-1\rangle_{k}
\end{array}
$$

$B P\langle j\rangle_{s}$ is $s-1$ connected and $\pi_{s}\left(B P\langle j\rangle_{s}\right) \cong H^{s}\left(B P\langle j\rangle_{s}, Z_{(p)}\right) \cong Z_{(p)}$.
To show β^{*} is onto in dimension s we look at the Serre spectral sequence for the fibration 3.3. In this range we have the Serre exact sequence:

$$
\begin{equation*}
H^{s}\left(B P\langle j\rangle_{k}, \mathrm{Z}_{(p)}\right) \xrightarrow{\beta^{*}} H^{s}\left(B P\langle j\rangle_{s}, Z_{(p)}\right) \longrightarrow H^{s+1}\left(B P\langle j-1\rangle_{k}, Z_{(p)}\right) \tag{3.4}
\end{equation*}
$$

We have $k=2\left(p^{i-1}+\cdots+p+1\right)$ and so $s+1=k+2\left(p^{i}-1\right)+1$. By 3.2 and the numbers we are using, the last term is zero and so β^{*} is onto. If $x_{i}: \in H^{s}\left(B P\langle j\rangle_{k}, Z_{(p)}\right)$ is such that $\beta^{*}\left(x_{j}\right)$ is the generator, and $S^{s} \rightarrow B P\langle j\rangle_{s}$ represents $1 \in \pi_{s}\left(B P\langle j\rangle_{s}\right)=Z_{(p)}$, then the composition $S^{s} \rightarrow B P\langle j\rangle_{s} \rightarrow B P\langle j\rangle_{k} \rightarrow K\left(Z_{(p)}, s\right)$ induces an isomorphism on H^{s}, so therefore x_{i} is onto in homotopy.

Lemma 3.5. There is a map $f_{i}: B P_{k} \rightarrow B P\langle j\rangle_{k+2\left(p^{i}-1\right)}$ for k $\leqslant 2\left(p^{i-1}+\cdots+p+1\right)$, such that $\left(f_{j}\right)_{\#}$ is onto, $\left(k \geqslant-2\left(p^{j}-1\right)\right)$

$$
\left(f_{j}\right)_{\#}: \pi_{k+2\left(p^{i}-1\right)}\left(B P_{k}\right) \rightarrow \pi_{k+2\left(p^{i}-1\right)}\left(B P\langle j\rangle_{k+2\left(p^{i}-1\right)}\right) \cong Z_{(p)}
$$

Proof. It is enough to prove this for $k=2\left(p^{i-1}+\cdots+p+1\right)$. We have a map $B P_{k} \rightarrow B P\langle j\rangle_{k} \rightarrow K\left(Z_{(p)}, k+2\left(p^{i}-1\right)\right)$ from lemma 3.1. Each of these maps is onto in homotopy so the composite is too. $K\left(Z_{(p)}, k+2\left(p^{i}-1\right)\right)$ is the first non-trivial term of the Postnikov system for $B P\langle j\rangle_{k+2\left(p^{i}-1\right)}$. We know that the k-invariants of this space are torsion by 2.5 and that its homotopy is free over $\mathrm{Z}_{(p)}$ by construction. (1.5) The main theorem of [20] gives us that $H^{*}\left(B P_{k}, \mathrm{Z}_{(p)}\right)$ has no torsion. Obstructions to lifting the map to a map of the type we want are therefore torsion elements in $H^{q+1}\left(B P_{k}, \pi_{q}\left(B P\langle j\rangle_{k}\right)\right)$, (2.6) which has no torsion. Therefore we see that we can lift the map.

Corollary 3.6. For $k \leqslant 2\left(p^{n}+\cdots+p+1\right)$ there is a map $B P_{k} \rightarrow B P\langle n\rangle_{k} \times \prod_{j>n} B P\langle i\rangle_{k+2\left(p^{i}-1\right)}$ which composed with projections is onto in homotopy for $\pi_{*}\left(B P\langle n\rangle_{k}\right)$ and $\pi_{k+2\left(p^{i}-1\right)}\left(B P\langle j\rangle_{k+2\left(p^{i}-1\right)}\right)$.

Before proving 3.2 we will make an observation which we need in the next section.

Consider the map $\beta: B P\langle j\rangle_{s} \rightarrow B P\langle j\rangle_{k}, s=k+2\left(p^{j}-1\right)$. We have $\beta_{\#}: K\left(Z_{(p)}, s\right) \rightarrow K\left(\pi_{s}\left(B P\langle j\rangle_{k}\right), s\right) .\left(\beta_{\#}\right)^{*}$ is onto in $Z_{(p)}$ cohomology. Pick a generator $x \in H^{s}\left(K\left(\pi_{s}\left(B P\langle j\rangle_{k}\right), s\right), Z_{(p)}\right)$ such that $\left(\beta_{\#}\right)^{*}(x)$ is a generator. We wish to study the k-invariant $\tau(x)$. Above we showed that for k $\leqslant 2\left(p^{i-1}+\cdots+p+1\right)$ there was such a k-invariant which was dependent. Here we wish to show the following lemma.

Lemma 3.7. For $k>2\left(p^{i-1}+\cdots+p+1\right)$, the above k-invariant $\tau(x)$ is independent and hits a p-torsion generator.

Proof. Using the naturality of the $\bmod p$ version of 2.9 we have:

$$
\begin{aligned}
& Z_{p} \cong H^{s}\left(B P\langle j\rangle_{s}\right)
\end{aligned}
$$

$$
\begin{align*}
& \downarrow \cong \tag{3.8}\\
& H^{s}\left(B P\langle j\rangle_{k}\right)
\end{align*}
$$

As in 2.8, $\tau(x)$ is independent and hits a p-torsion generator iff $\bar{\tau}(\rho(x)) \neq 0$, ρ the $\bmod p$ reduction. Because $\left(\beta_{\#}\right)^{*}(x)$ is a generator, this is equivalent to β^{*} not being onto in 3.8. Again we go to the Serre exact sequence for 1.4.

$$
\begin{equation*}
H^{s}\left(B P\langle j\rangle_{k}\right) \xrightarrow{\beta^{*}} H^{s}\left(B P\langle i\rangle_{s}\right) \xrightarrow{\bar{\tau}} H^{s+1}\left(B P\langle j-1\rangle_{k}\right) \tag{3.9}
\end{equation*}
$$

We know from the proof of 1.7 that for k very large $\bar{\tau}\left(i_{s}\right)=\lambda Q_{i} i_{k}, \lambda \neq 0$. By 3.2, for $k>2\left(p^{i-1}+\cdots+p+1\right)$ we know $Q_{j} i_{k} \neq 0$ so $\bar{\tau}\left(i_{s}\right)=\lambda Q_{j} i_{k} \neq 0$ in this range. So, in 3.9 we see that β^{*} is not onto and $\tau(x)$ for such an x is an independent p-torsion generating k-invariant.

We will need the following in our proof of 3.2.
Lemma 3.10. $Q_{n+1}=\lambda \beta P^{p^{n}+\cdots+p+1}\left(\bmod A\left(Q_{0}, \ldots, Q_{n}\right)\right), \lambda \neq 0 \in Z_{p}$.
Note. For $p=2$, just consider $P^{i}=S q^{2 i}$.
Proof. The lowest non-zero odd dimensional element of $A / A\left(Q_{0}, \ldots, Q_{n}\right)$ is Q_{n+1}. From [9], $Q_{i}=\left[P^{p^{i-1}}, Q_{i-1}\right]$, so $Q_{n+1}=P^{p^{n}} Q_{n}-Q_{n} P^{p^{n}}=-Q_{n} P^{p^{n}}=$ $-\left(P^{p^{n-1}} Q_{n-1}-Q_{n-1} P^{p^{n-1}}\right) P^{p^{n}}=Q_{n-1} P^{p^{n-1}} P^{p^{n}}$ (as the dimension of $Q_{n-1} P^{p^{n}}$ is less than the dimension of Q_{n+1} and also odd, so it is zero) $=\cdots=$ $(-1)^{n+1} Q_{0} P^{1} \cdots P^{p^{n-1}} P^{p^{n}}\left(\bmod A\left(Q_{0}, \ldots, Q_{n}\right)\right)$. Let $k_{n}=1+p+\cdots+p^{n-1}$, all that is left to show is: (note that $Q_{0}=\beta$)

Claim. $\quad P^{k_{n}} P^{p^{n}}=\lambda P^{k_{n+1}}, \lambda \neq 0 \in Z_{p}$.
Proof. By the Adem relations,

$$
P^{k_{n}} P^{p^{n}}=\sum_{t=0}^{k_{n-1}}(-1)^{k_{n}+t} P^{k_{n+1}-t} P^{t}\binom{(p-1)\left(p^{n}-t\right)-1}{k_{n}-p t}
$$

So all we need is for the binomial coefficient to be zero $\bmod p$ for $0<t \leqslant k_{n-1}$ and $\neq 0$ for $t=0$. First we reindex, let $s+t=k_{n-1}$. Then $(p-1)\left(p^{n}-t\right)-1$ $=(p-1)\left(p^{n}-k_{n-1}+s\right)-1=(p-1) p^{n}-(p-1) k_{n-1}+(p-1) s-1$. Now $(p-1) k_{n-1}=p^{n-1}-1$, so this is $(p-1) p^{n}-p^{n-1}+1+(p-1) s-1=(p-2)$ $p^{n}+(p-1) p^{n-1}+(p-1) s . k_{n}-p t=k_{n}-p k_{n-1}+p s=1+p s$. So our coefficient is:

$$
\binom{(p-2) p^{n}+(p-1) p^{n-1}+(p-1) s}{1+p s}
$$

We want to show this is 0 for $0 \leqslant s<k_{n-1}$ and $\neq 0$ for $s=k_{n-1}$.
From [17], if $a=\Sigma a_{i} p^{i}, b=\Sigma b_{i} p^{i}, a_{i}$ and $b_{i}<p$, then $\bmod p\binom{a}{b}=\Pi_{i}\binom{a_{i}}{b_{i}}$.

So for $s<p^{n-2}$ our binomial coefficient is $\binom{p-2}{0}\binom{p-1}{0}\binom{(p-1) s}{1+p s}$ but $(p-1) s<1+p s$, so it is zero for $s<p^{n-2}$. Set $s=p^{n-2}+s_{1} \geqslant p^{n-2}$. We get:

$$
\begin{aligned}
& \binom{(p-2) p^{n}+(p-1) p^{n-1}+(p-1) p^{n-2}+(p-1) s_{1}}{p^{n-1}+1+p s_{1}} \\
= & \binom{p-2}{0}\binom{p-1}{1}\binom{p-1}{0}\binom{(p-1) s_{1}}{1+p s_{1}}
\end{aligned}
$$

for $s_{1}<p^{n-3}$ this is zero again. Let $s_{1}=p^{n-3}+s_{2}$. Continue like this until we get:

$$
\binom{(p-2) p^{n}+(p-1) p^{n-1}+\cdots+(p-1) p+(p-1) s_{n-2}}{p^{n-1}+p^{n-2}+\cdots+p^{2}+1+p s_{n-2}}
$$

where $0 \leqslant s_{n-2} \leqslant 1$. For $s_{n-2}=0$, this is zero again as it is

$$
=\binom{p-2}{0}\binom{p-1}{1} \cdots\binom{p-1}{1}\binom{p-1}{0}\binom{0}{1}
$$

For $s_{n-2}=1$, we get

$$
\binom{p-2}{0}\binom{p-1}{1} \cdots\binom{p-1}{1}\binom{p-1}{1}=(-1)^{n}
$$

This finishes the proof of 3.10 .
Proof of 3.2. For large $k, Q_{i} i_{k} \neq 0$ in $H^{*}\left(B P\langle j-1\rangle_{k}\right)$ because $H^{*}(B P\langle j-$ $1\rangle)=A / A\left(Q_{0}, \ldots, Q_{i-1}\right)$. (1.7) The Eilenberg-Moore spectral sequence [15]

$$
\begin{equation*}
\operatorname{Tor}_{H^{*}\left(B P\langle j-1\rangle_{k+1}\right)}\left(Z_{p}, Z_{p}\right)=>H^{*}\left(B P\langle j-1\rangle_{k}\right) \tag{3.11}
\end{equation*}
$$

collapses in dimensions $<p k$ and on indecomposibles, $s^{*}: Q H^{*}\left(B P\langle j-1\rangle_{k+1}\right)$ $\rightarrow Q H^{*}\left(B P\langle j-1\rangle_{k}\right)$ is an isomorphism in this range. For $k>2\left(p^{i-1}+\cdots+\right.$ $p+1$), dimension $Q_{i} i_{k}<p k$ so $Q_{i} i_{k} \neq 0$.

For $k=2\left(p^{i-1}+\cdots+p+1\right)$, the E_{2} term of 3.10 has one element in dimension $p k+1$ (for $p=2$, none), $s^{-1}\left(Q_{i} i_{k+1}\right)$. All $Q_{i} i_{k+1}=0$ for $i<j$ so by 3.10 this is $s^{-1}\left(\lambda \beta P^{p^{i-1}+\cdots+p+1} i_{k+1}\right) \cdot s^{-1}$ corresponds to the cohomology suspension ([14]). $s^{*}\left(\beta P^{p^{i-1}+\cdots+p+1} i_{k+1}\right)=\beta P^{k / 2} i_{k}=\beta\left(i_{k}\right)^{p}=0$, so $s^{-1}\left(Q_{i} i_{k+1}\right)$ is hit by a differential and the result follows.

4. Proofs.

In the last section we constructed a map (3.6)

$$
\begin{equation*}
B P_{k} \longrightarrow B P\langle n\rangle_{k} \times \prod_{i>n} B P\langle j\rangle_{k+2\left(p^{i}-1\right)} \quad \text { for } \quad k \leqslant 2\left(p^{n}+\cdots+p+1\right) \tag{4.1}
\end{equation*}
$$

If this map is a homotopy equivalence for some $k>0$ then it is a homotopy equivalence for all $k \leqslant 2\left(p^{n}+\cdots+p+1\right)$. To see this, look at the diagram for $f: X \rightarrow Y$

If either $\Omega f_{\#}$ or $f_{\#}$ is an isomorphism then so is the other and then they are both homotopy equivalences because our spaces are the homotopy type of $C W$ complexes.

We will prove the homotopy equivalences for the

$$
k=k_{n}=2\left(p^{n-1}+\cdots+p+1\right)+1,\left(k_{0}=1\right)
$$

by induction on the Postnikov system. As a plausibility argument, as well as the fact that we need it, we prove the following lemma.

Lemma 4.2. The homotopy is the same on both sides of 4.1.

$$
\text { Proof. } \quad \pi_{*}\left(B P_{k}\right) \cong s^{k}\left(Z_{(p)}\left[x_{1}, x_{2}, \ldots\right]\right)
$$

$$
\begin{gather*}
\pi_{*}\left(B P\langle n\rangle_{k} \times \prod_{j>n} B P\langle j\rangle_{k+2\left(p^{i}-1\right)}\right)=\pi_{*}\left(B P\langle n\rangle_{k}\right) \underset{j>n}{\oplus} \pi_{*}\left(B P\langle j\rangle_{k+2\left(p^{i}-1\right)}\right) \\
=s^{k}\left(Z_{(p)}\left[x_{1}, \ldots, x_{n}\right]\right) \underset{j>n}{\oplus} s^{k+2\left(p^{i}-1\right)}\left(Z_{(p)}\left[x_{1}, \ldots, x_{j}\right]\right) \tag{1.5}
\end{gather*}
$$

Our isomorphism takes a $\mathrm{Z}_{(p)}$ generator on the right-hand side, $s^{k+2\left(p^{i}-1\right)}\left[\left(x_{1}\right)^{i_{1}} \cdots\left(x_{j}\right)^{i_{1}}\right]$ to $s^{k}\left[\left(x_{1}\right)^{i_{1}} \cdots\left(x_{j-1}\right)^{i_{i-1}}\left(x_{j}\right)^{i_{i}+1}\right]$.

Recall that $k_{n}=2\left(p^{n-1}+\cdots+p+1\right)+1\left(k_{0}=1\right)$.
Statement $P(n, s) . \quad i=k_{n}+2\left(p^{i}-1\right)$

$$
f^{k_{n}+s}:\left(B P_{k_{n}}\right)^{k_{n}+s} \longrightarrow\left(B P\langle n\rangle_{k_{n}}\right)^{k_{n}+s} \times \prod_{i>n}\left(B P\langle j\rangle_{i}\right)^{k_{n}+s}
$$

is a homotopy equivalence.
4.3. Statement $P(n, s)$ implies a similar statement for any $k<k_{n+1}$ replacing k_{n}.

Statement $K(n, s)$. All k-invariants $\tau(x)$ in

$$
H^{{k_{n}}_{n}+s+2}\left(\left(B P\langle n\rangle_{k_{n}}\right)^{k_{n}+s}, Z_{(p)}\right)
$$

are independent and hit p-torsion generators. (see 2.8)
4.4. $K(n, s)$ implies that all k-invariants $\tau(x)$ in $H^{k+s+2}\left(\left(B P\langle n\rangle_{k}\right)^{k+s}, Z_{(p)}\right)$ are independent and hit p-torsion generators for $k \geqslant k_{n}$.

Statement A.

$$
\left.\begin{array}{ll}
P(n, s) & s \leqslant m \\
K(n, s) & s \leqslant m
\end{array}\right\}=>K(n+1, m)
$$

Statement B.

$$
\begin{array}{ll}
\text { (1) } \quad K(n+j, s) & s \leqslant m \quad j \geqslant 0 \\
\text { (2) } P(n, m) & \\
& \\
=>P(n, m+1)
\end{array}
$$

4.5. Now, to get things started, observe that statement $P(n, 0)$ is true for all n as it just reduces to $K\left(Z_{(p)}, k_{n}\right) \xrightarrow{\cong} K\left(Z_{(p)}, k_{n}\right)$. Also, statement $K(0, s)$ is trivially true for all s because $B P\langle 0\rangle_{k_{0}=1}$ is just the circle localized at p and has no k-invariants.

Lemma 4.6. Statements A and B imply statements $P(n, s)$ and $K(n, s)$ for all n and s.

Proof. Claim (t). (a) $P(n, m)$ is true for $m \leqslant t$, all n.
(b) $K(n, m)$ is true for $m<t$, all n.

Claim (t) is true for $t=0$ by 4.5. We will show claim $(t)=>\operatorname{claim}(t+1)$. By 4.5 we know $K(0, t)$ is true, applying statement $A n$ times we have $K(n, t)$, therefore we have $K(n, t)$ for all n giving us b) of claim $(t+1)$. Now, applying statement B we obtain $P(n, t+1)$ for all n. This proves claim $(t+1)$, so, by induction, claim (t) is true for all t and we are done.

Now we will prove statements A and B. In the next section we will explore some of the consequences of $P(n, s)$ and $K(n, s)$.

Proof of statement A. Consider the fibration 1.4

$$
\begin{array}{ccc}
B P\langle n+1\rangle_{i} & \xrightarrow{\beta} & B P\langle n+1\rangle_{k} \\
i=k_{n+1}+2\left(p^{n+1}-1\right) & & \downarrow^{\gamma}
\end{array} \quad k=k_{n+1}
$$

and the induced maps on the Postnikov systems: $q=k+s+1$

$\beta_{\#}$ and $\gamma_{\#}$ give the split short exact sequence 1.2, 1.5. We know that the k-invariants in $H^{q+1}\left(\left(B P\langle n\rangle_{k}\right)^{k+s}, Z_{(p)}\right)$ are independent and hit p torsion generators for $s \leqslant m$ by statement $K(n, s), s \leqslant m$ of A and comment 4.4; equivalently, $\left(\bar{\tau}^{\prime \prime}\right)_{q}$ is injective:

$$
\begin{align*}
& H^{q}\left(\dot{K}\left(\pi_{q}\left(B P\langle n\rangle_{k}\right), q\right)\right) \xrightarrow{\left(\gamma_{\#}\right)^{*} \downarrow}<\stackrel{\left(\bar{\tau}^{\prime \prime}\right)_{q}}{\longrightarrow} \underset{\left(\gamma^{q-1}\right)^{*} \downarrow}{ } \quad H^{q+1}\left(\left(B P\langle n\rangle_{k}\right)^{k+s}\right) \\
& H^{q}\left(K\left(\pi_{q}\left(B P\langle n+1\rangle_{k}\right), q\right)\right) \xrightarrow{(\bar{\tau})_{q}} H^{q+1}\left(\left(B P\langle n+1\rangle_{k}\right)^{k+s}\right) \tag{4.8}\\
& { }^{\left(\beta_{\#}\right)^{*} \downarrow} \\
& { }^{\left(\beta^{q-1}\right)^{*}} \downarrow \\
& H^{q}\left(K\left(\pi_{q}\left(B P\langle n+1\rangle_{i}\right), q\right)\right) \xrightarrow{\left(\bar{\tau}^{\prime}\right)_{q}} \quad H^{q+1}\left(\left(B P\langle n+1\rangle_{i}\right)^{k+s}\right)
\end{align*}
$$

Assume for a moment that γ^{q-1} pulls these k-invariants in $H^{q+1}\left(\left(B P\langle n\rangle_{k}\right)^{k+s}, Z_{(p)}\right)$ back to independent p-torsion generating k-invariants in $H^{q+1}\left(\left(B P\langle n+1\rangle_{k}\right)^{k+s}, Z_{(p)}\right)$, i.e. $(\bar{\tau})_{q} \cdot\left(\gamma_{\#}\right)^{*}=\left(\gamma^{q-1}\right)^{*} \cdot\left(\bar{\tau}^{\prime \prime}\right)_{q}$ is injective in 4.8. Then the first possible dependent k-invariant is of the type discussed in 3.7. There, it was shown to be an independent p-torsion generating k-invariant. Assume for some minimum $s \leqslant m$ that we have a dependent k-invariant, or one which is not a p-torsion generator, equivalently, assume there is an $x \in \operatorname{ker}(\bar{\tau})_{q}$, therefore $q>i$. By what we have assumed about the k-invariants pulling back, x is not in the image of $\left(\gamma_{\#}\right)^{*}$. Thus, by the split exactness of homotopy, and therefore the $\left(\gamma_{\#}\right)^{*},\left(\beta_{\#}\right)^{*}$ sequence of $4.8,\left(\beta_{\#}\right)^{*}(x)=y \neq 0$. Now using the result 2.3 about the k-invariants of loop spaces, $\left(s^{*}\right)^{r} \cdot\left(\bar{\tau}^{\prime}\right)_{q}=(\bar{\tau})_{q-r} \cdot\left(s^{*}\right)^{r}, r=i-k$ $=2\left(p^{n+1}-1\right)$. By our minimality assumption on $s,(\bar{\tau})_{q-r}$ is injective so $0 \neq(\bar{\tau})_{q-r} \cdot\left(s^{*}\right)^{r}(\boldsymbol{y})=\left(s^{*}\right)^{r} \cdot\left(\bar{\tau}^{\prime}\right)_{q}(\boldsymbol{y})=\left(s^{*}\right)^{r} \cdot\left(\bar{\tau}^{\prime}\right)_{q} \cdot\left(\beta_{\#}\right)^{*}(\boldsymbol{x})=\left(s^{*}\right)^{r} \cdot\left(\beta^{q-1}\right)^{*} \cdot(\bar{\tau})_{q}(\boldsymbol{x})$, contradicting $(\bar{\tau})_{q}(x)=0$.

All we need now is to show that $(\bar{\tau})_{q} \cdot\left(\gamma_{\#}\right)^{*}=\left(\gamma^{q-1}\right)^{*} \cdot\left(\bar{\tau}^{\prime \prime}\right)_{q}$ is injective. We have the maps $(k+s+1=q)$

$$
\left(B P_{k}\right)^{k+s} \xrightarrow{F^{q-1}}\left(B P\langle n+1\rangle_{k}\right)^{k+s} \xrightarrow{\gamma^{q-1}}\left(B P\langle n\rangle_{k}\right)^{k+s}
$$

If we show that $\left(F^{q-1}\right)^{*} \cdot\left(\gamma^{q-1}\right)^{*} \cdot\left(\bar{\tau}^{\prime \prime}\right)_{q}$ is injective, we will be through. Using statement $P(n, s), s \leqslant m$, from our given in A, we see that this is true if $G^{*} \cdot\left(\bar{\tau}^{\prime \prime}\right)_{k_{n}+s+1}$ is injective (as $\left.k=k_{n+1}>k_{n}\right), G$ the projection:

$$
\left(B P\langle n\rangle_{k_{n}}\right)^{k_{n}+s} \times \prod_{j>n}\left(B P\langle j\rangle_{k}\right)^{k_{n}+s} \rightarrow\left(B P\langle n\rangle_{k_{n}}\right)^{k_{n}+s}
$$

This follows trivially from statement $K(n, s), s \leqslant m$.
Proof of Statement B. By (1) of statement B and 2.4 on k-invariants of product spaces, all of the k-invariants on the right hand side of $P(n, m)$ are independent and hit p-torsion generators except possibly a zero k-invariant if $m=2 p^{i}-3$ which corresponds by construction (3.6) to a dependent k-invariant on the left hand side of $P(n, m)$. Now by $P(n, m),\left(f^{k_{n}+m}\right)^{*}$ is an isomorphism and so pulls back all of the independent p-torsion generating k-invariants to independent p-torsion generating k-invariants in $\left(B P_{k_{n}}\right)^{k_{n}+m}$. This determines all of the k-invariants on the left hand side because we know the homotopy is the same on both sides (4.2). So by this, (and 3.6 if $m=2 p^{i}-3$) $f_{\#}$ on $\pi_{k_{n}}+m+1$ must be an isomorphism. Thus $\left(f^{k_{n}+m+1}\right)_{\#}$ is an isomorphism on π_{*} giving us $P(n, m+1)$.

5. Statement of Results.

In section 4 we proved the main theorem: $k \leqslant 2\left(p^{n}+\cdots+p+1\right)$

$$
B P_{k} \cong B P\langle n\rangle_{k} \times \prod_{j>n} B P\langle j\rangle_{k+2\left(p^{i}-1\right)}
$$

The main theorem of [20] says: The $\mathrm{Z}_{(p)}(\mathrm{co})$ homology of the connected part of $B P_{k}$ has no torsion and is a polynomial algebra for k even and an exterior algebra for k odd. The map above is a map of H-spaces for $k<2\left(p^{n}+\cdots+\right.$ $p+1$) so we have the following corollary.

Corollary 5.1. For $k<2\left(p^{n}+\cdots+p+1\right)$, the $Z_{(p)}$ (co) homology of the connected part of $B P\langle n\rangle_{k}$ has no torsion and is a polynomial algebra for k even and an exterior algebra for k odd. For $k=2\left(p^{n}+\cdots+p+1\right), H^{*}\left(B P\langle n\rangle_{k}, Z_{(p)}\right)$ has no torsion and is a polynomial algebra. (Note that for $k>0$ or k odd <0, $B P\langle n\rangle_{k}$ is connected.)

Note. For $k=2\left(p^{n}+\cdots+p+1\right), H_{*}\left(B P\langle n\rangle_{k}, Z_{(p)}\right)$ is not a polynomial algebra.

At the rationals, the space $B P\langle n\rangle_{k}$ is just a product of Eilenberg-MacLane spaces. So, since there is no torsion, the number of generators over $Z_{(p)}$ is the same as over Q. As an example, for k even, $0<k \leqslant 2\left(p^{n}+\cdots+p+1\right)$, we have

$$
H^{*}\left(B P\langle n\rangle_{k}, Z_{(p)}\right)=Z_{(p)}\left[s^{k} \pi_{*}^{S}(B P\langle n\rangle)\right]=Z_{(p)}\left[s^{k}\left(Z_{(p)}\left[x_{1}, \ldots, x_{n}\right]\right)\right]
$$

For k even and less than $2\left(p^{n}+\cdots+p+1\right)$, the (co)homology Hopf algebras of 5.1 are bipolynomial, that is, both it and its dual are polynomial algebras. Such Hopf algebras are studied in [13]. There, such a Hopf algebra is shown to be isomorphic to a tensor product of the Hopf algebras $B_{(p)}[x, 2 d]$ studied in [7]. $B_{(p)}[x, 2 d]$, as an algebra, is a polynomial algebra over $Z_{(p)}$ on generators $a_{k}(x)$ of degree $2 p^{k} d$. As a Hopf algebra it is isomorphic to its own dual.

Letting $R(n, k)$ be the set of all n-tuples of non-negative integers, R $=\left(r_{1}, \ldots, r_{n}\right)$ with $d(R)=2 k+\Sigma 2\left(p^{i}-1\right) r_{i} . R$ is called prime if it cannot be written $R=p R^{\prime}+(k, 0, \ldots, 0)$ with $R^{\prime} \in R(n, k)$. Then, as a further example, we have the following corollary from [13] and the counting done above.

Corollary 5.2. For $0<k<p^{n}+\cdots+p+1$ as Hopf algebras:

$$
H^{*}\left(B P\langle n\rangle_{2 k}, \mathrm{Z}_{(p)}\right) \cong \bigotimes_{\substack{R \in R(n, k) \\ R \text { prime }}} B_{(p)}\left[x_{R}, d(R)\right]
$$

We now utilize statement $K(n, s)$; all k-invariants $\tau(x)$ in $H^{k_{n}+s+2}\left(\left(B P\langle n\rangle_{k_{n}}\right)^{k_{n}+s}, Z_{(p)}\right)$ are independent and hit p torsion generators, $k_{n}=2\left(p^{n-1}+\cdots+p+1\right)+1$. This implies that $B P\langle n\rangle_{k_{n}}$ cannot be written as a non-trivial product. (2.12)

Corollary 5.3. For $k>2\left(p^{n-1}+\cdots+p+1\right), B P\langle n\rangle_{k}$ is irreducible.
Using the fact that $k_{n}+2\left(p^{i}-1\right) \geqslant k_{j}$ for $j>n$ we have now completed the proof of the main theorem.

Theorem 5.4. For $k \leqslant 2\left(p^{n}+\cdots+p+1\right)$

$$
B P_{k} \cong B P\langle n\rangle_{k} \times \prod_{j>n} B P\langle j\rangle_{k+2\left(p^{i}-1\right)}
$$

and for $k>2\left(p^{n-1}+\cdots+p+1\right)$, this decomposition is as irreducibles.
Note. For $k<2\left(p^{n}+\cdots+p+1\right)$ this is as H-spaces.
Now letting $k \leqslant 2\left(p^{n-1}+\cdots+p+1\right)$ and using two versions of 5.4 we
have

$$
B P_{k} \cong B P\langle n\rangle_{k} \times \text { OTHER }
$$

and

$$
B P_{k} \cong B P\langle n-1\rangle_{k} \times B P\langle n\rangle_{k+2\left(p^{n}-1\right)} \times \text { OTHER }
$$

From this we get the following corollary.
Corollary 5.5. For $k \leqslant 2\left(p^{n-1}+\cdots+p+1\right)$

$$
B P\langle n\rangle_{k} \cong B P\langle n-1\rangle_{k} \times B P\langle n\rangle_{k+2\left(p^{n}-1\right)}
$$

Note. For $k<2\left(p^{n-1}+\cdots+p+1\right)$ this is as H-spaces.
This gives us the point where the fibration 1.4 becomes trivial. Again, using $B P_{k} \cong B P\langle n\rangle_{k} \times$ OTHER for $k \leqslant 2\left(p^{n}+\cdots+p+1\right)$ and the fact that for finite complexes $B P\langle n\rangle^{k}(X)=0$ for high k we get 5.6.

Corollary 5.6. (i) $B P^{k}(X) \rightarrow B P\langle n\rangle^{k}(X)$ is onto for $k \leqslant 2\left(p^{n}+\cdots+p+\right.$ 1). (ii) $B P^{*}(X) \rightarrow B P\langle n\rangle^{*}(X)$ is onto in all but a finite number of dimensions.

We now apply 5.6 to prove Quillen's Theorem. The problem was first studied in [6].

Theorem 5.7 (Quillen). Let X be a finite $C W$ complex, then $B P^{*}(X)$ is generated as a $B P^{*}\left(S^{0}\right)$ module by elements of non-negative degree.

Proof. If $u \in B P^{k}(X)$ and $k<0$, we will show u is a finite sum $\sum_{i>0} x_{i} u_{i}$ $=u, \quad u_{i} \in B P^{k+2\left(p^{i}-1\right)}(X)$ and $x_{i} \in B P^{*}\left(S^{0}\right)=Z_{(p)}\left[x_{1}, \ldots, x_{i}, \ldots\right]$ of degree $-2\left(p^{i}-1\right)$. By downward induction on the degree of u we will be done.

Consider the maps

$$
B P^{*}(X) \xrightarrow{g_{n}} B P\langle n\rangle^{*}(X) \xrightarrow{f_{n}} B P\langle n-1\rangle^{*}(X)
$$

Find n such that $g_{n}(u) \neq 0$ but $f_{n} \cdot g_{n}(u)=g_{n-1}(u)=0$. Such an n exists because $n=0$ gives $g_{0}(u) \in H^{k}\left(X, Z_{(p)}\right)=0$ as $k<0$, and for n high enough $B P^{k}(X)$ $\cong B P\langle n\rangle^{k}(X)$, by the finiteness of X.

Dual to 1.1 we have an exact sequence and commuting diagram:

$$
\begin{array}{clc}
B P^{k+2\left(p^{n}-1\right)}(X) & \xrightarrow{x_{n}} & B P^{k}(X) \\
g_{n} \downarrow & g_{n} \downarrow \\
B P\langle n\rangle^{k+2\left(p^{n}-1\right)}(X) & \xrightarrow{x_{n}} & B P\langle n\rangle^{k}(X) \\
& \xrightarrow{f_{n}} B P\langle n-1\rangle^{k}(X) \\
& g_{n}(u) \longrightarrow 0
\end{array}
$$

As $f_{n}\left(g_{n}(u)\right)=0$ there exists u^{\prime} with $x_{n} u^{\prime}=g_{n}(u)$ by exactness. But now, by 5.6 and $2\left(p^{n}+\cdots+p+1\right) \geqslant k+2\left(p^{n}-1\right)$ for $k<0$ we have that g_{n} is onto in dimension $k+2\left(p^{n}-1\right)$ and so pick $u_{n} \in B P^{k+2\left(p^{n}-1\right)}(X)$ with $g_{n}\left(u_{n}\right)=u^{\prime}$. Then by commutativity, $g_{n}\left(x_{n} u_{n}\right)=g_{n}(u)$. Now continue this process using $u-x_{n} u_{n}$. By the finiteness of $X, B P^{k+2\left(p^{\prime}-1\right)}(X)$ will be zero for large j and we will get our finite sum $u=\sum_{i>0} x_{i} u_{i}$ and be done.

The spaces $B P\langle n\rangle_{k}$ are most useful in the range $2\left(p^{n-1}+\cdots+p+1\right)<k$ $\leqslant 2\left(p^{n}+\cdots+p+1\right)$ where they are both irreducible and torsion free. In the next section, we will identify these with spaces that have perhaps a more tangible description.

6. Torsion free \mathbf{H}-spaces.

All modules will be over $Z_{(p)}$, and, until further notice, all coefficients will be $\mathrm{Z}_{(p)}$. In this section we will study torsion free H-spaces. Our immediate goal is to construct and study the following spaces.

Proposition 6.1. There exists an irreducible $k-1$ connected H-space Y_{k} which has $H^{*}\left(Y_{k}\right)$ and $\pi_{*}\left(Y_{k}\right)$ both free over $\mathrm{Z}_{(p)}$ and such that each stage of the Postnikov system is irreducible.

Proof. We will build up a Postnikov system for Y_{k} and use 2.7. We drop the subscript k. Clearly we must start the Postnikov system with Y^{k} $=K\left(Z_{(p)}, k\right)$. We will now just build up a Postnikov system by killing off the torsion in cohomology as efficiently as possible. $\pi_{*}\left(Y^{k}\right)$ is free over $Z_{(p)}$ and $H^{j}\left(Y^{k}\right)$ has no torsion for $j \leqslant k+1 . Y^{k}$ is an H-space. Assume we have constructed the $s-1$ stage, Y^{s-1} for $s>k$ such that $\pi_{*}\left(Y^{s-1}\right)$ is free and $H^{j}\left(Y^{s-1}\right)$ has no torsion for $j \leqslant s$. Assume also that Y^{s-1} has an H-space structure. $H^{s+1}\left(Y^{s-1}\right) \cong F \oplus T$ where F is the free part and T is the torsion part. It is finitely generated so it is isomorphic to $\left(Z_{(p)}\right)^{n_{0}} \oplus_{i>0}\left(Z_{p}\right)^{n_{i}}$, where $(G)^{n}$ $=G \oplus \cdots \oplus G n$ times. Using the torsion generators, this isomorphism determines a map:

$$
Y^{s-1} \longrightarrow \prod_{n=\sum_{i>0} n_{i} \text { times }} K\left(Z_{(p)}, s+1\right)=K\left(F_{n}, s+1\right), \quad F_{n}=\left(Z_{(p)}\right)^{n}
$$

Let this map be the $s k$-invariant, k_{s}. This constructs the space Y^{s} as the induced fibration. k_{s} is torsion and so it is primitive because there is no torsion in lower dimensions, therefore by $2.5, Y^{s}$ is an H-space. Recall the $Z_{(p)}$
sequence 2.9

$$
\begin{aligned}
& 0 \longrightarrow H^{s}\left(Y^{s-1}\right) \xrightarrow{\left(g_{s}\right)^{*}} H^{s}\left(Y^{s}\right) \longrightarrow H^{s}\left(K\left(F_{n}, s\right)\right) \\
& \xrightarrow{\tau} H^{s+1}\left(Y^{s-1}\right) \longrightarrow H^{s+1}\left(Y^{s}\right) \longrightarrow 0
\end{aligned}
$$

Using $k_{s}^{*}=\tau \cdot s^{*}$ we see that all of our " k-invariants" $\tau(x)$ are independent and hit p-torsion generators by construction. Coker $\left(g_{s}\right)^{*}$ is a subgroup of a free group and so is free giving us:

$$
0 \longrightarrow H^{s}\left(Y^{s-1}\right) \xrightarrow{\left(g_{s}\right)^{*}} H^{s}\left(Y^{s}\right) \longrightarrow \operatorname{coker}\left(g_{s}\right)^{*} \longrightarrow 0
$$

with both ends free by our induction hypothesis. Therefore $H^{s}\left(Y^{s}\right)$ is free. $H^{s+1}\left(Y^{s}\right)$ is coker $\tau=\operatorname{coker}\left(k_{s}\right)^{*}$ which by construction is F, so free. By the isomorphism 2.10, $H^{j}\left(Y^{s}\right) \cong H^{j}\left(Y^{s-1}\right), j<s$, we have $H^{j}\left(Y^{s}\right)$ is free for $j \leqslant s+1$. Also $\pi_{*}\left(Y^{s}\right)$ is free by construction. Because we have used the minimum number of $Z_{(p)}$'s for $\pi_{*}\left(Y^{s}\right)$, if Y^{s-1} is irreducible, then so is Y^{s}. (2.12)

Theorem 6.2. If X is a simply connected $C W H$-space with $\pi_{*}(X)$ and $H^{*}\left(X, Z_{(p)}\right)$ free and locally finitely generated over $Z_{(p)}$, then $X \cong \Pi_{i} Y_{k_{i}}$.

Remark 1. The simply connected assumption is not necessary because one can just split off a bunch of circles localized at $p . Y_{1}=\left(S^{1}\right)_{(p)}$. Then, what is left is still an H-space, see the next remark.

Remark 2. The reason for the H-space hypothesis is that we want torsion k-invariants (2.5). Since spaces with π_{*} and H^{*} free are H-spaces if their k-invariants are torsion we could have used the hypothesis that X must have torsion k-invariants instead. Note that our homotopy equivalence is not as H-spaces.

Proof of 6.2. As always, we do everything by induction on the Postnikov system, but first we need the map $X \rightarrow \Pi_{i} Y_{k_{i}}$. The construction is similar to that for the main theorem except easier because X is only a theoretical space. We revert back to $\bmod p$ cohomology for the proof. We start with the $\bmod p$ version of the sequence 2.9.

$$
\begin{align*}
& 0 \longrightarrow H^{s}\left(X^{s-1}\right) \xrightarrow{\mathrm{g}^{*}} H^{s}\left(X^{s}\right) \xrightarrow{i^{*}} H^{s}\left(K\left(\pi_{s}(X), s\right)\right) \\
& \xrightarrow{\bar{\tau}} H^{s+1}\left(X^{s-1}\right) \longrightarrow H^{s+1}\left(X^{s}\right) \longrightarrow 0 \tag{6.3}
\end{align*}
$$

Choose $V^{s} \subset H^{s}\left(X^{s}\right)=H^{s}(X)$ such that $i^{*}: V^{s} \rightarrow \operatorname{ker} \bar{\tau}$. Let r_{s} be the rank of V^{s}. This determines a map $f_{s}^{\prime}: X \rightarrow K\left(\left(Z_{p}\right)^{r_{s}}, s\right) . H^{*}\left(X, Z_{(p)}\right)$ has no p torsion so f_{s}^{\prime} lifts first into the product of r_{s} copies of $K\left(Z_{(p)}, s\right)$ and then into the product of r_{s} copies of Y_{s}, denoted $r Y_{s}$. (It lifts by 2.6 because Y_{s} has p-torsion k-invariants and free homotopy.) So we have $f_{s}: X \rightarrow r Y_{s}$ such that the image of $\left(f_{s}\right)^{*}$ in dimension s is V^{s}. Let $f=\Pi_{s} f_{s}: X \rightarrow \Pi_{s} r Y_{s}=Y$.

Claim. f is a homotopy equivalence.
Proof. By induction on the Postnikov system assume $f^{s}: X^{s} \rightarrow Y^{s}$ $=\Pi_{k \leqslant s}\left(r Y_{k}\right)^{s}$ is a homotopy equivalence. $\left(X^{1}=Y^{1}=p t\right)$ Let $f_{\#}$ be the induced $\operatorname{map} K\left(\pi_{s+1}(X), s+1\right) \rightarrow K\left(\pi_{s+1}(Y), s+1\right) . f^{s}$ is a homotopy equivalence, if $f_{\#}$ is too, then $f^{s+1}: \pi_{*}\left(X^{s+1}\right) \rightarrow \pi_{*}\left(Y^{s+1}\right)$ is an isomorphism and so f^{s+1} is a homotopy equivalence. $f_{\#}$ is a homotopy equivalence iff $\left(f_{\#}\right)^{*}$: $H^{s+1}\left(K\left(\pi_{s+1}(Y), s+1\right)\right) \rightarrow H^{s+1}\left(K\left(\pi_{s+1}(X), s+1\right)\right)$ is an isomorphism. Now

$$
K\left(\pi_{s+1}(Y), s+1\right)=K\left(\pi_{s+1}\left(\prod_{k \leqslant s} r Y_{k}\right), s+1\right) \times K\left(\left(Z_{(p)}\right)^{r_{s+1}}, s+1\right)=K \times K^{\prime}
$$

and $H^{s+1}\left(K \times K^{\prime}\right)=H^{s+1}(K) \oplus H^{s+1}\left(K^{\prime}\right) . \operatorname{Ker} \bar{\tau}_{Y}=H^{s+1}\left(K^{\prime}\right)$ by the construction of the Y_{k}, i.e., all k-invariants are independent and hit p-torsion generators. Using the naturality of 2.9 we have:

Now $\left(i_{Y}\right)^{*}: H^{s+1}\left(r Y_{s+1}\right) \rightarrow \operatorname{ker} \bar{\tau}_{Y}=H^{s+1}\left(K^{\prime}\right)$ and by construction of f_{s+1}, $f^{*}=\left(f^{s+1}\right)^{*}: H^{s+1}\left(r Y_{s+1}\right) \rightarrow V^{s+1}$. By commutativity, $\left(f_{\#}\right)^{*}: \operatorname{ker} \bar{\tau}_{Y} \rightarrow \operatorname{ker} \bar{\tau}_{X}$. $\bar{\tau}_{Y} \mid H^{s+1}(K)$ is injective and by our construction of the Y_{k} it hits every possible element in cohomology, i.e., all that reduce from torsion elements in $\mathrm{Z}_{(p)}$ cohomology. f^{s} is a homotopy equivalence by induction so by commutativity of $6.4 \bar{\tau}_{X}$ also hits all possible elements and we have isomorphism on the ends of diagram 6.5 giving us the desired isomorphism by the five lemma.

Corollary 6.6. $\quad Y_{k}$ as in 6.1 is unique up to homotopy type.
Corollary 6.7. Any map $Y_{k} \rightarrow Y_{k}$ which induces an isomorphism on $\pi_{k}\left(Y_{k}\right)=Z_{(p)}$ is a homotopy equivalence.

Corollary 6.8. For $2\left(p^{n-1}+\cdots+p+1\right)<k \leqslant 2\left(p^{n}+\cdots+p+1\right)$, $B P\langle n\rangle_{k} \cong Y_{k}$.

Proof. $\pi_{*}\left(B P\langle n\rangle_{k}\right)$ is free by construction. (1.5) $H^{*}\left(B P\langle n\rangle_{k}\right)$ has no torsion for $k \leqslant 2\left(p^{n}+\cdots+p+1\right)$ by 5.1. For $k>2\left(p^{n-1}+\cdots+p+1\right)$ $B P\langle n\rangle_{k}$ is irreducible by 5.3. Now, for k in this range just apply 6.2.

Corollary 6.9. For $k>2\left(p^{n-1}+\cdots+p+1\right)$, any map $B P\langle n\rangle_{k} \rightarrow B P\langle n\rangle_{k}$ which induces an isomorphism on π_{k} is a homotopy equivalence.

Note that $Y_{\infty} \cong B P$ and we get an unpublished result of F. P. Peterson.
Corollary 6.10 (Peterson). Given a spectrum X with $H^{*}\left(X, Z_{(p)}\right)$ and $\pi_{*}^{S}(X)$ bounded below, locally finitely generated, and free over $Z_{(p)}$, then

$$
X \cong V_{i} S^{k_{i}} B P
$$

Princeton University and
Institute for Advanced Study

REFERENCES.

[1] J. F. Adams, "A variant of E. H. Browns representability theorem," Topology, 10 (1971), pp. 185-199.
[2] ——, Quillen's work on formal group laws and complex cobordism, University of Chicago Lecture Notes Series (1970).
[3] N. A. Baas, On bordism theory of manifolds with singularities, Mathematica Scandinarca, 33 (1973), pp. 279-302.
[4] E. H. Brown, Jr., "Cohomology theories," Annals of Mathematics (2) 75 (1962), pp. 467-484.
[5] E. H. Brown, Jr. and F. P. Peterson, "A spectrum whose Z_{p} cohomology is the algebra of reduced p th powers," Topology 5 (1966), pp. 149-154.
[6] P. E. Conner and L. Smith, "On the complex bordism of finite complexes," I.H.E.S. Publications Math. 37 (1969), pp. 117-222.
[7] D. Husemoller, "The structure of the Hopf algebra $H_{*}(B U)$ over a $Z_{(p)}$-algebra," American Journal of Mathematics 93 (1971), pp. 329-349.
[8] D. W. Kahn, "Induced maps for Postnikov systems," Transactions of the American Mathematical Society, 107 (1963), pp. 432-450.
[9] J. W. Milnor, "The Steenrod algebra and its dual," Annals of Mathematics, (2) 67 (1958), pp. 150-171.
[10] F. P. Peterson, "The mod p homotopy type of BSO and F/PL," Bol. Soc. Math. Mexicana, 14 (1969), pp. 22-28.
[11] D. Quillen, "Elementary proofs of some results of cobordism theory using Steenrod operations," Advances in Mathematics, 7 (1971), pp. 29-56.
[12] - On the formal group laws of unoriented and complex cobordism theory, Bulletin of the American Mathematical Society, 75 (1969), pp. 1293-1298.
[13] D. Ravenel and W. S. Wilson, "Bipolynomial Hopf algebras," Journal of Pure and Applied Algebra, 4 (1974), pp. 45-55.
[14] L. Smith, "Homological algebra and the Eilenberg-Moore spectral sequence," Transactions of the American Mathematical Society 129 (1967), pp. 58-93.
[15] -, Lectures on the Eilenberg-Moore spectral sequence, Lecture Notes in Mathematics, 134, Springer-Verlag.
[16] E. H. Spanier, "Algebraic Topology," McGraw-Hill, New York 1966.
[17] N. E. Steenrod and D. B. A. Epstein, Cohomology Operations, Annals of Mathematics, Studies No. 50.
[18] D. Sullivan, Geometric topology, part I, localization, periodicity and Galois symmetry, notes, M.I.T. (1970).
[19] ——, Geometric topology, seminar notes, Princeton University (1967).
[20] W. S. Wilson, "The Ω-spectrum for Brown-Peterson cohomology," part I, Commentarii Mathematici Helvetici, 48 (1973), pp. 45-55.
$[21]$ D. C. Johnson and W. S. Wilson, "Projective dimension and Brown-Peterson homology," Topology 12 (1973), pp. 327-353.

[^0]: Received November 1, 1972.
 *The author is partially supported by NSF.
 American Journal of Mathematics, Vol. 97, No. 1, pp. 101-123
 Copyright © 1975 by Johns Hopkins University Press.

