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INTRODUCTION

Let BP = [B%:} be the Brown-Peterson spectrum given as an
Q-gspectrum. In [9] the cohomologies of all the spaces BBK were com-
puted. In [6] the homology of these spaces is computed giving much
more information, in particular, a technique for computing the comodule
structure of H*ng over the Steenrod algebra is given. (All coefficients
in this paper are ZP’ where p is the prime associated with the Brown-
Peterson spectrum). In this paper an entirely different approach is taken
to cohomology operations. We give a description of the structure of the
indecomposibles QH*BPk as a module over the Steenrod algebra. This may
occasionally be easier to compute with than the results of [6].

Let R be a sequence of non-negative integers (rl,re,...). Define
d(R) = = Eri(pi-l), the degree of R. Define £(R) = = r,. Let v‘_j be the
graded group free over Z(p) with a generator for each sequence R with
Z(R) = j and grade d(R). We can now form the generalized Eilenberg-
MacLane spectrum K(Vj) with Q-spectrum {K(Va.,k)}. We have fundamental

*
generators i_ € H K(Vj,k) for each R with £(R) = j and iy has degree

R
d(R) + k. We have a map of modules over the Steenrod algebra

s*(dj) : QH*K(Vj,k,+l) — Q,H*K(Vj,k)

*
3 . o Z . - .
defined by s (dj) (1R) Qi 1R—A& where Ai is the sequence with one
in the igh-place and zeros everywhere else and Qi is the Milnor primitive
([4]). Any element a of QH*K(Vj,k) can be written as I ap iR(ﬂ(R) = 3j)

where ap € Ap the Steenrod algebra. If a can be written such that each ag
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is in the algebra of reduced pﬁh-powers (see section 2 for p = 2) we

say a is without Bocksteins.

o
Theorem A The kernel of the map s*(dj) restricted to all a € QH K(Vﬁ,2k)
with no Bocksteins is a module over the Steenrod algebra which is iso-

L 5 . P *
morphic to Mj/Mﬁ-l in a filtration of QH B,

*
QH BB, =M, J ... M, DMj_l J...M Do

by modules over the Steenrod algebra.

Remark 1. H*BP’2k is a polynomial algebra and H*BPek_l is an exterior

algebra. (See [9].) Likewise for ¥, and Y, . below.

Remark 2. The filtration is finite on each degree.

Remark 3. From [9] we know that the cohomology suspension gives an

isomorphism s* s QH*BPek —_— QH*BPEK_1 of modules over the Steenrod

algebra so the theorem determines the structure for BPek-l as well.
Because the space B?k can be broken up into the product of much

smaller spaces ([10]) this computation can be made even more accessible.
In [10], irreducible spaces Y, for k > O were constructed and the

k

following homotopy equivalence was proved:

BP, <= P S § R i
k >0 9 k+2(PJ‘l)
when 2(pn"l+...+p+l) <k 5‘2(pn+...+p+l). For k in the above range we can
now give a description of'QH*Yk as a module over the Steenrod algebra.
Let V(n)‘_j be the graded subgroup of V& where we only use sequences R with
r. =0 for i > n. We have the same map

1
s*(dj) : Q,H*K(V(n)j,k+l) —_— Q,H*K(V(n)j_l,k)



ined by s (d,) (i) = £, i
defined by s (dj i) = Qi lR'Ai.

Theorem B. For 2(pn—l+...+p+l) < 2k < 2(p™+...+p+l), the kernel of
*
the map s*(dj) restricted to all a € QH K(V(n)j 2k) with no Bocksteins
3
is a module over the Steenrod algebra which is isomorphic to Mﬁ/Mj-l

*
in a filtration of QH Yék

*
QU Yy =M, D ..M, DM, ) D ..M D0

by modules over the Steenrod algebra.

Remark L. The cohomology suspension homorphism gives an isomorphism
of modules over A s : QH T —> QH T .
Using this result, one can quite easily compute by hand the
explicit Steenrod algebra structure of Q,H*BPk as far as one wants.

(Try using [2].)

: My apologies to anyone that is actually interested in seeing the
proofs of the above theorems. You will learn quickly enough that com-
plete intimacy with the notation and techniques of [9] is necessary
for reading past the introduction. From your point of view, [9] and
this paper should be one, however, the thoughts in this paper came
somevwhat later, an@, it would be morally inexcusable to afflict the
rather nice result of [9] with the presence of detailed proofs of the
above theorems.

These results were motivated by three things; first, several

people kept asking me what I knew about the cohomology operations on

the spaces BPk and Yk. This paper is intended to supply an answer to
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that question. Second, when the results were originally proven, serious
applications existed. A much better approach to the applications has
since been found. The short-lived applications will be discussed briefly
in section 3. Third, I am convinced (through computations) that ana-
logous theorems exist for the homology and homology operations. I had
always hoped to intertwine these hypothetical theorems and the present ones
in a much more informative proof of the main theorem of [9] (H*(BPk,Z(p))
has no torsion.) which would eliminate the messy details in [9] ana here.
However, I have made no progress here and the new proof given in [é]
satisfies my personal quest. I do suggest that the analogous result
dealing with homology operations could be a very intéresting problem
to anyone who solves it.

Technical propositions and a proof of theorem A appear in
section 1. Theorem B is proven in section 2.
Remark 5. It is interesting to note that the results of this paper imply
that every generator for H%Yk can be defined by some higher order co-

homology operation on the k-dimensional class which arises because B is

always zero as there is no torsion.

Section 1. Theorem A
Let us consider BP.. . Here we have!

2k

e
K(VJ.,Zk) —l> xd

1k
Vogan i
B AR ! N K(Vj,2k+l)
3 *_ 5
where BP.. = inv. lim. X’'. There is a filtration on H XY such that

2k
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*_ 4 *_ - *
1.2 3 S O Sl 51 ®EL..1®P[...] vhere E
denotes an exterior algebra on odd degrees and TP is a truncated
polynomial algebra of height p on even dimensional generators. The
* | *
generators of E and TP are both determined by QH K(Vj,2k+l)Q§<kj_l)

There is a natural map PH —> QH, where P and Q denote the
primitives and indecomposibles of a Hopf algebra H. When this is
onto, H is called primitive.

Lemma 1.3. (1.1 in [9]) H' C H a sub-Hopf algebra over Z,» H primitive,
then H' is primitive.

If V is 2 graded module, let s-lV be the graded module with degrees
lowered by one. TP is generated by .'s,-l of the odd degree part of
Q(H*K(V3,2k+l)\§5kj_l)*), and E is generated by a quotient of the even

* . e * *
degree part, H K(V3,2k+l) is primitive so by 1.3, H K(Vj,2k+l)\§<kj_l)
* N *
. ! —
is too. *So, for x € Q(H K(V5,2k+l)\§§kj_l) ) we have x > x,
S\ * =
x' € P(H K(V.;2k+l)\\(k. )  Let x' —> x" e PH K(V,,2k+1). s Lx) is
. J J=1 J
in the module of indecomposibles for E or TP. It is possibly zero.

Lemma 1.4. (1.3 of [9])

(ij)*(s'l(X)) = s (x")

s* the cohomology suspension homomorphism.

We need just a couple more lemmas before we get started.
Lemma 1.5. (1.4 of [9]) ©ILet a e PH® K(Vj,2k+i). 5 s*(a) = 0, then
a= }.;f'}czt or a = BPtx2t+l where Pi € A is the iEﬁ reduced ng power, A

is the Steenrod algebra and X; has degree 1i.
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Lemma 1.6. (2.2 of [9])
*
If a e HEmK(Vj,2k+l) and (ij_l)* O(kj-l) (a) = 0, then there
- * *
exists b ¢ B0 ]'K(vj+l,2k+1) such that s (a) = (ij)*o(kj) ().
Now we can get to work and prove our main technical proposition.

Proposition 1.7 (j)

a(s) HW N (1) = B/ )

oA T * ¥ 5 * 3
b(j) H x? l//(1~:‘j~l) CHx injects into H x9*L
s # g * y z .
c(j) HX //(kj) is a polynomial algebra on even dimensional generators.

d(j) The maps in b(Jj) are split as algebras.

Proof of a(j). Assume for j-1. The induction is easy to start. We have

8 H*Xj_l//(kj_l)* is clearly in H X7 V}\(ij)*, so all we need to show
for a(j) is that the generators of E and TP inject into H*K(Vj,Ek). By
lemmas 1.4 and 1.5 applied to our description of generators for TP we see
that they inject. By the same argument, the only generators of E that can
Possibly go to zero must be of the form BPtX2t+l or Ptx2t in
Q(H*K(Vj,2k+l) N\ (i _l)*)-

Case 1. BP X501

*, b * -
If (kj-l) (BP xét+l) =0, then (kj-l) (X2t+l) = 0. Proof: If
% % 32, * ~ % 3.1
P o . J J
(kj_l) (%5447) # 0, then by b(3-1), it is not in H X //(kj_z) ‘C H X
so since it is an odd dimensional primitive it must land in E (for XJ-l).

* £
By a(j-1) it goes on through to H K(Vﬁ_l,Qk) and there BP is injective on




2= . _7_

* o
2%+l dimensional classes ([7]) so (ij- ) O(kj—l) (BPtx2

3 ) #£ 0.

: . : 4 t =
This contradicts our assumption that <kj-l) (BP xét+l) = 0, S0

t+l

*
(kj-l) (x2b+l) = 0. By [8] there is a differential in the Eilenberg-

Moore spectral sequence that gives 1.2 which goes from 7p(s—lx2t+l) to

s L (pp" ), i.e., BPx

*o+1 2t+1
S_lQ(HfK(V )‘Q} (k )*) which gives the generators of E.
3.2k+l’ W Y5y

is zero in the quotient of

Case 2 Ptx2

3
The same type of argument as above shows that (kj-l) (Px

b % 5 . th .
implies (kj_l) (xgt) = 0. In that case, P X,y is @ P power in

* *
H K(V& 2k+l)‘§§\(kj l) and therefore zero in the indecomposibles.
> NN =

Proof of b(j) If b(j) is not true, then there must be some

% i *
e R e Ry L C P
by 2 v J Jj-1
* *
degree by c(j-1). ©Now by a(j), (ij)*o(kj) (a) =0. If s (a) £0, by

lemma 1.6 there must be a b with (i )* o(kj+l)*(b) = s (a). But if

JrlL
this is so, then s ~(a) must be in B_ o e (kj+l)* (b) to nit,
* ) *
thus (kj) (a) = 0., This is a contradiction, so s (a) = O. By lemma 1.5
£ & | =
a =P X5, OF BP Koy
Case 1 a = BPtx2t+l
Ir (kj)*(Xét+l) # 0, then by c(j-1) it must lie in E and by a(j),
. xF L e o St b *
(13) o(kj) (32t+l) # 0. By the injectivity of BP® in H K(Vj,Ek) we
have that (i.)¥ o(k.)* (BPtx = a) # 0. This contradicts our assumption
] 5 246+1

* .
SO (kj) (X2t+l) = 0 and this implies (kj)* (Pt = a) = 0.

-1 |




=t
Case 2 a=>P X?t

Assume P X5t = @ 1s the element of minimal degree with
()% (a) € 5¥(d" DI/, )%, Crearty ()" ) 0 ana s
lles in TP by our minlmallty condition. By a(j), Xét goes on to
H* K(VS,QKD non-zero but P Xo¢ cannot. This contradicts the fact
that the pl poyer of the image of X in H*K(V3,2k) will be non-

zero.

Proof of c(3)

First we must Prove that everything in E for ® H XJ gets
killed by (k o i a(j) and lemma 1.6 with techniques similar
to those already repeated several times.

For TP, I claim that in g %9 (as opposed to E o XJ) this is
a polynomial algebra. A generator for TP comes from
x2t+1 € Q(HK(V, 32NN (55_1)) and by a(y), (1, Y (7Y (%54,1)) # 0.
p° ((1 e (s ( 2t+l))) # O because it is a pEl power in a product of
Eilenberg-MacLane spaces. By a(j), P (s'l(x i 1)) = (g~ (Xét+1)) must

be (P Xét+1)'

The problem is to show that if (k ) gets a pgh-power, say

(P x2t+1 (k bl (a), then it also hits g~ (Xét+1)' Using the
technlques of [9] one can show that x?t +1 must be "with Bocksteins".
This can be used to show the necessary result.
The proof of d(g) is nothing exciting and is left to the diligent

reader of this paper and [o].



We have the following corollaries to the proposition.

Corollary 1.8 The diagram 1.1 gives rise to an exact sequence in the

category of Hopf algebras.

Corollary 1.9

% J % *
H X //(kj) > H BP,,
is injective and splits as a map of algebras.

Corollary 1.10

Q(H X //(kj) o H R
is injective.
We can now define the filtration:
* f g .
111 QH BBy =M, 0...0M DM, D...M DO by setting
*d * f
Mj = image Q(H X //(kj) ). By corollary 1.10 and the construction 1.1

of BP‘2k this is well-defined. We have also already computed MJ/MIJ._l

although not yet in quite the nice form stated in the theorem in the

introduction.

*
If a € PH K(Vj,k), we say a is with Bocksteins if a = I apip

(£(R) = j) where each ap € (Qo) the left-right ideal generated by the
Bockstein Qo = B. We say a is with no Bocksteins if each ap is in the
algebra of reduced pﬁﬁ powers. (For p = 2, if each ap can be written
in terms of the Milnor basis Sq(I) with all sequences made of even

integers.) We have the map

* * *
s (dJ.) ‘P H K(Vj,k+l) —> H K(Vj_l,k)

2 * : 5
defined by s (dd> (;R) =% QilR_A&.
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*
Each a € PH K(Vﬁ,k) can be written as a = b + ¢ where b is with
Bocksteins and ¢ is with no Bocksteins. In [9,p.50] we showed:
* *
Lemma 1.12 s (dj) (a) = 0 if and only if both s (dj) (b) = 0 and
*
g (dj) (¢) = 0.
We also proved a much stronger lemma than we quoted in 1.6.
Lemma 1.13 (2.2 of [9])
* *
If a € PH K(Vj,k) with Bocksteins and s (dj) (a) = 0, then there
* * *
exists b € PH K(Vj+l,k) such that s (dj+l) (b) = s (a).
" )* are the same.

*
Note 1.14 s (dj) and (1j-l o (k

j-1
Note 1.15 We really needed 1.13 in the proof of c(j) when we referred
the reader to techniques of [9].

Now, by the definition of the filtration M, (1.11), and the

*
proposition 1.7, we can compute Mﬁ/Mj-l‘ We know that (kj) kills
X 3 *od NS
the odd dimensional generators in 1.2 and Q(H X //(kj) ) is even
o i

dimensional. Even dimensional generators of H X9 which do not come

¥ 4
from H X9 1//(kj_l)

* *
from an a € PH K(Vj,2k+l) (for BPék) with s (dj) (a) = 0. From 1.12,

*
come from TP in 1.2. Everything in Q(TP) comes

a=b+c and s*(dj) (b) =0 = s*(dj) (¢c). By 1.5 s (b) #0 (if b #£ 0)
and by 1.13, s-l(b) is killed by (kj)* and so we need only concern
ourselves with a = ¢, i.e., a with no Bocksteins. Furthermore, since
anything in the image of s*(dj+l) is with Bocksteins, we have essentially
computed Mﬁ/Mj-l' Many of the generators of TP are not generators of
H&Xj//(kj)* because they are pZl powers, but that can be detected in
H*K(Vj,ak). We have shown that MIJ./MJ._l is the set of all

s*(a) € QH*K(Vﬁ,Qk) where a € PH*K(V5,2k+l) is with no Bocksteins and
s*(dj) (a) = 0. This is not in the form we give in the introduction yet

either. We need the following diagram and lemma.
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7 s (a,) =
1.16 QH K(V,_,,2k-1) < QHK(V,,2k)

t t
*
s (d,)
* *
PH K(Vj_l,Ek-l) L py K(Vj,2k)
* o v TS*
*
3 s (d.,) o
QH K(V, _152%) s —d gH K(Vj,2k+l)

ts

1 1
% s¥(a.) L
PH K(Vj_l,2k) IR K(Vj,2k+l)

In the above diagram the map P —> Q is the standard map.
Lemma 1.17. The set of all a € QH#K(VJ,EK) with no Bocksteins such that
s*(dj) (a) is the same as the set of all s (a') ¢ QH*K(V5,2k),
a' € PH*K(vj,ekﬂ) with no Bocksteins and s*(dj) (a') = 0.

Sketch proof. We have the commutative diagram 1.16 to aid us in the

visualization of the proof. By commutativity, every such s*(a') is

contained in the first set and our only problem is to go the other way.

All the vertical maps are onto, in fact, for a € QH*K(Vj,Ek) with no
Bocksteins there exists a' € PH*K(VJ,2k+l) with no Bocksteins that goes

down to it. All we need to show is that s*(dj) (a') = 0. a' is an odd
dimensional element and P —> Q is an isomorphism on odd dimensional
elements. Also, s* is injective on odd dimensional elements by 1.5

so we really have s*(dj) (a') = 0 iff the lifting of a to

a" € PH*K(VJ,Ek) has S*(dj) (") = 0. By commutativity, S*(dj( (a") = (xzt)p

& Ptx2t as this is the only type of element in the kernel of the map P —> Q



=18

and we must have zero in the upper left hand corner of 1.16. Now, using
the techniques of [9] it is easy to show that X5, 1s with Bocksteins and
S*(dj-l) (xzt) = 0. Using lemma 2.2(j) of [9] we can find a

* . ; *
Yor € PH K(Vj,2k) with no Bocksteins such that s (dj) (yét) = Xpye If
we alter our choice for a" by adding -Pty'et we obtain the desired result.

This concludes the proof of theorem A stated in the introduction.
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Section 2 The Yk and Theorem B

As the BPk can be built up out of smaller spaces (see the theorem

of [10] mentioned in the introduction), it is to our advantage to be
able to compute with the Yk instead of the much larger spaces BPk.

Y, for e(pn'1+...+p+1) <k% 2(p™...+p+l) is the kEB-space in

the f-spectrum for BP < n >, a BP module spectrum with myBP < n >

= ﬂ*BP/(vn+l,vh+2,...

3 *
v, = 2(p'-1). H BP = A/A(Q_,Q;,Q,...) and HBP < n > = B/A(Q 5.+ Q).

) where nxBP = Z(P)[vl,v ,...] with degree

The theories BP < n > have their applications in [1] and [3] as
well as in [10].

For k in the above range, BPk = YkX X=BP<n >kx X. The map
BPk == Yk comes from the map of BP to BP < n >, Since we have this
splitting, the "Adams~Postnikov" construction for BPk 5

K(v, ,x) — X,
( 52 ) 3

|

—
X1 K(Vj,k+l)

must also split at each stage. So, all we really need to do in order
to determine the split off system for Yk is to identify the homotopy
groups of Yk in terms of those for BPk' This follows easily from the
I iy 1o ; .
fact that v= = vllv2 <. in n,BP corresponds to the I generator in
H*K(Vi(I)’k) modulo higher order products. A little thought (or a
little work with the Adams spectral sequence for BP and BP < n >)

will verify this and convince the reader that the splitting is as in

the introduction, i.e., Yk is built from a system
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:'L(n)'j

K(v(n)a.,k) > X(n)‘j

k(n)j-l
X(n)J_l = K(V(n)j,kﬂ)

where V(n)j is the graded group, free over Z(p) with a generator for
each R = (rl,re,...) with £(R) = j and r; =0 for i >n. We have the
same maps

(1) 5.1)" o)y ;)" (1p) = s*(a(w))) (ip) = 2yip p

Now, by the fact that each stage splits off from that for BPk
we have injections on all of our cohomology and we can just read off

theorem B.
A i licat h BU . Y. d h
s a novel & ication we ha T AT an e have
yo)s) ion w ve )~ i oy W

=

therefore described the Steenrod algebra structure of QH*BU.

Section 3. Past applications.

In (6] we consider the monster space

BP = dir. lim.(n = - ) I BP
_ k>n 2k

Not only is this an H-space because it is a loop space (Q?ZBP = BP),

but there is another product which comes from the fact that BP is a

ring spectrum

P A ot
BE o % BPop = BBy (y4n)

I _BP = IxBP = 2 )[vl,v 5++.). This gives rise to elements

o (p
[v,] e HBP 5.n ;) CH  BP.

These elements generate HOZBP. We have another select set of elements.
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* ) * 2 0 Pk
BP (CP = BP [[T]] where T ¢ BF* CP . BP (X) = [X,BPk], so let
cP” —> BP2 represent T. Now, we have generators Bi € Héi CP" which

we can push into Héi BP2. In particular we let

g ,Bp, CH _BP
Bt nE

be the image of B T The b(i) generate the stable homology of BP using
the second produci mentioned above. In [6] we construct a "Hopf-ring"
completely algebraically which is isomorphic to H, BP. The proof that
they are isomorphic depends on the fact that the [vi] and b(i) generates
Hy BP if both products are allowed. In [6] we solve that problem by
computing Hy BP directly in terms of the [vi] and b(i)‘ However,
originally we proved it using the technical proposition 1.7. What follows
is a very brief sketch of how we approached the problem then.

If we consider Hy IBBP as an algebra using the loop space product,
it is enough to show that the elements of QH, BP are linear combinations
of elements ) :

vib’ = ...[v2]Ol")o[vl]Ollob(o)oaoob(:l_)o':J
where the circle denotes the second product we discussed. The element

v, € 7 BP gives rise to a map

i
v, (P -Lgp s pp

which is just multiplication by vy This also carries over to

BP —> BP and gives a map

(v;)y : H, BP —> H, BP
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In fact, b e just (vl)*(bJ). By a simple induction we need

only prove that the bJ generate Q,H*BP2k modulo the image of all the
1 : h .
(v'), from the QH*BP2k+d(I). By duallity, it will be enough to show

*
that either x € PH B is in the image of the cohomology suspension

P2k
* *
from H BP or (vI) (x) # 0 for some I. We know from [9] and (5] that

if x is a primitive it is either a primitive generator or a th'pOWer

*
of one. By the fact that H BP’2k is a polynomial algebra, the p-JEg

powers will follow if we can prove it for primitive generators. So,

x € Qi BR,. Find J such that x € M, but x £ M, ,. By the definition
of the Mj and proposition 1.7 we have (ij)*(x) # 0 and is in fact an
element with no Bocksteins in QH*K(VJ,2k). Find an ip,e€ H*K(V5,2k)

*
such that the coefficient in (13) (x) = = apip has ap, ip, & o

little hand-waving should convince the reader that the map

Rl
VR e B

actually factors through K(Vj,zk) and iy, pulls back to the generator

k+d(R')
Yy Osz BPQk‘*‘d(R')'

that the homotopy of BP2k given by K(Vj,ak) is just the vI with

This is just the fact mentioned in section 2

£(I) = j modulo higher order products. In particular, (vR')*(x) = ap.¥
which is non-zero and in the image of H*BP.

Remark: The above notation allows us to define Mj C Q,H%BPQk
directly.

*
M, = *ﬂ> : xer(v')
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