A LOCALIZATION THEOREM FOR EQUIVARIANT SPECTRA
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In this note, we generalize the localization theorem (Theorem C) in [Kri]. Her orig-
inal theorem states that for a finite group G, a faithful orientable representation V,
and any Eilenberg-MacLane spectrum H M, the function spectrum F(EG,, HM) ~
HM][uy'], where uy € H AIC‘:/I*V is an orientation class, and we are using the HA-
modules structure on HM.

We observe that the condition on the faithfulness on the representation V' in her
theorem can be removed if we allow function spectrum out of the universal space
of some general family beyond the family {e}. Also the Eilenberg-MacLane spectra
can be replaced by bounded-above spectra. The author believes Kriz knows this
generalizaiton, and we will also use a key observation of hers. We will provide
a spectrum-level proof of the generalization in this paper that the author feels is
conceptually clearer, rather than mimicking the chain-level argument that was used
in her paper. Another motivation for the theorem is from the author’s computation
of the RO(C4n)-graded homotopy groups of HZ using generalized Tate squares.

The generalized localization theorem has potential applications in the slice spec-
tral sequences of Ngj” MUg, Ngj" BPgr and variants of them. For example, it pro-
vides a comparison between the Es-terms of the slice spectral sequence (SSS) and
the .Z-completed SSS, as well as a comparision between the Es-terms of the .-
localized SSS and the .%#-Tate construction of the SSS. Of course, it applies more
generally to the .#-Tate square of any tower of spectra, as long as we can find a
suitable notion of orientation classes there.

Let 7<,F be the Postnikov section of a G-spectrum E, and let X(™ be the m-
skeleton of X when X is a G-CW complex or G-CW spectrum.

Lemma 1. Let X = 7, X be a bounded-above G-spectrum, and Y a finite G-CW
spectrum with top cells in dimension m, then X AY = T<pym(X AY) is bounded-
above.

Proof. The cellular filtration of Y gives a filtration of X AY, with filtration quotients
X AY@)YE=D = X A (v,S%),i < m. Now we have a strongly convergent spectral
sequence

Bl =m(X AY®/YED)y = (X AY)
with E'-term vanishing for t > m + n, which proves the lemma. [l

Theorem 2. Let G be a finite group, V' a real G-representation, E a bounded-above
G-spectrum, say E = 1<, E. Then the map E ~ F(S°,E) — F(E%y ., E) induces
1somorphisms

~

a7
TV |—nV4b+i = Tpv—nv b F(EFy 4, E)
1
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forj=2—mn. Heren =0, |V| =dimg V', and Zy is the family {H < G|i5; (V) =
V1

Proof. Given a real representation V' of G, let
Fv ={H < Gliy(V) = |[V]}.

where |V| is regared as the trivial representation with dimension |V|. It is easily
checked that %y is a family of subgroups. By [GM95], we have the following gen-
eralized Tate square for %y, which is a homotopy pullback of commutative ring
spectra if F is.

(1) E EZy A E

f ]

F(EZv,,E) —> EZy A F(EFy,,E)

Let F' be the fiber of the left vertical map f : F — F(E%#y,, E), then F is also
the fiber of the right vertical map since it is a homotopy pullback square. The key
properties of F' are that

(1) F is bounded-above, more precisely, F' = 1<, F;
(2) Fis E-E;V—local, in the sense that the canonical map F' — E-}:V A F'is an
equivalence.
(1) is an easy consequence of the long exact sequence of the homotopy groups of the
fiber sequence
F—-FE—FEF ., E),

once we know F(E%y , F) = 7,F(E#y ., E). This is the case since we have an
Atiyah-Hirzebruch spectral sequence
(2) HY(EFv;mE) = m_F(EFy ., E)
and as a space, E.%y does not have negative cohomology. (2) is a consequence of
F bemg the fiber of two Eﬁv local spectra, using the fact that for any G-spectrum
X, EJV A X is Eﬁv local by the equivalence of G-spaces

EJV A EJV =~ EJV

Now the choice of .#y is that any K € %y acts trivally on V. Now let H ¢ .y,
then V# < V, and SV" < SV is a subcomplex of a lower dimension. Thus the
top cells (|V]-cells) of SV can only have orbit type G/H for H € %y. Now we use
the product cell structure on S™ and we can see that the cells of dimension i for
n(|V]| — 1) <i < n|V] all have orbit type G/H for H € Fy.
Now the cellular filtration makes sure the inclusion of skeleton
(SnV)(n|V|fn) &) SnV

can be factored into n maps with subquotients vG’/HZ-Jr A S H; € Zy. Since F is
EZvy-local, G/H;, A S7 A F ~ +. Thus the map i, induces an equivalence

(3) (SmVY@lVI=m)  p il gV B
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By Lemma , since (S™V)VI=") ig a finite G-CW complex of dimension n|V| —n,
we know (S™V)"VI=") A F is bounded-above, with homotopy groups 7, vanishing
for m > n|V| —n + b. Combining with (3)), we get

TS AF =0 when m=n|V|-n+b+1.
Using the cofiber sequence
SV AF =SV AE2L sV A F(EFy, E),

we know that the map 1 A f induce isomorphisms on homotopy groups =, for
m=n|V|—n+b+2. O

Example 1. (1) All Eilenberg-MacLane spectra HM , or more generally, bounded-
above graded Filenberg-MacLane spectra.

(2) The slice sections P*"X and slices P"X for any n € Z and any G-spectrum
X, see [HHR16, Thm 4.42].
(8) The Postnikov sections 1<, X for any G-spectrum X.

Remark 1. The above argument actually works for all families % such that F >
Fv.
Corollary 3. If a G-ring spectrum F' has an orientation class uy € myy—vF, and
E is a F-module, then F(EZy ., E) is uy-local. If further E is bounded-above, then
f:E— FEZ%y ., E)in induces an equivalence

F(EZy ., E) ~ E[uy'].
Moreover, the map g : E’:J;V ANE — E/}:V ANF(EZy ., E) in is also inverting
Uy .
Proof. The spectrum F(E.%y ., E) is uy-local, since EZy, = hocolim,, Eﬂvi’”)
with filtration quotients vG/H, A S™, H € Fy, thus

F(EZy.,E) = holim,, F(EZ,, E)

with filtration quotients F(vG/Hy A S",E) ~ vG/H, A ST A E, H € Zy, by the
self-duality of orbits and the fact that Eﬁvim) can be constructed as a finite G-CW
complex. By induction, we only need to prove that multiplication by uy induces

equivalences on the filtration quotients. But this is indeed true by the shearing
isomorphism

G/H, AST"AE S SVVIAG/H, AS™AE.
Now Theorem 2 implies that
’/TkE[U‘_/l] = COlimnﬂk+n|V|,nvE = COlZ‘mnﬂkerv‘,nvF‘(Ecg‘\VJr, E) = ’/TkF(Egvar, E)

where the colimit is over multiplications by powers of uy . Since this is also true
when we restrict to subgroups K < G, we actually get an equivalence of homotopy
Mackey functors of both sides, and the equivalence

F(EZy..E) ~ E[u;']
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is proved.
Now for for the last statement, we have the following commutative square with
the vertical maps in the middle an equivalence.

(EZv, A B)luy'] Efuy'] (EZv A B)[uy']

T

EFy, nE F(EZy,, E) — EZy A F(EFy,,E)

The left vertical map is an equivalence since E.%y | A E is already uy-local. We
deduce the rightmost vertical map is an equivalence. 0

Remark 2. For a bounded-above spectrum E, the function spectrum F(E.Z ,, F) is
again bounded-above by the same bound. So the localization process can be iterated.
If the G-ring spectrum F' has two orientation classes uy,uy, then we will get

F(E(ZynZw)y,E) ~ F(EZy AEFw E) ~ F(EFy ,F(EFw ., E)) ~ E[uy', uy/].

Example 2. (1) G = C, a cyclic group, E = HA. All irreducibles V are

rotations of the plane. If Gy s the stablizer of V', then uy = Tesgv :
ToHA — m vHA = A(G/Gy), and uy can be taken to be the image of 1.
This can be generalized to all finite groups, since we still have HAy_y =
A(G/Gy).

(2) G any finite group, E is the postnikov section of any complex orientable
cohomolgy theory, like T<, MU¢q, T<, KUgq, T<,kUq.

(8) More concretely, take F = KUg and E = 17<,KUg. For a complex G-
representation V', we have the orientation class uy, and thus F(E%y ., <, KUg) ~
TenKUgluy']. Taking inverse limit with respect to n, we get

F(EZy ., KUg) ~ holim,(t<, KUg[uy']).
This formula also holds for other complezx-oriented G-spectra.

Remark 3. The theorem cannot be extended to a general G-spectrum. Take G =
Cy, V' = 20 with o the real sign representation, ,E = KUg,, then E%#y = ECy, and
we know KUg,[usy'] ~ KUg, is not equivalent to F(ECy,, KUg,).
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