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In this note, we generalize the localization theorem (Theorem C) in [Kri]. Her orig-
inal theorem states that for a finite group G, a faithful orientable representation V ,
and any Eilenberg-MacLane spectrum HM , the function spectrum F pEG`, HMq »

HM ru´1
V s, where uV P HAG

|V |´V is an orientation class, and we are using the HA-
modules structure on HM .

We observe that the condition on the faithfulness on the representation V in her
theorem can be removed if we allow function spectrum out of the universal space
of some general family beyond the family teu. Also the Eilenberg-MacLane spectra
can be replaced by bounded-above spectra. The author believes Kriz knows this
generalizaiton, and we will also use a key observation of hers. We will provide
a spectrum-level proof of the generalization in this paper that the author feels is
conceptually clearer, rather than mimicking the chain-level argument that was used
in her paper. Another motivation for the theorem is from the author’s computation
of the ROpC2nq-graded homotopy groups of HZ using generalized Tate squares.

The generalized localization theorem has potential applications in the slice spec-
tral sequences of NC2n

C2
MUR, N

C2n

C2
BPR and variants of them. For example, it pro-

vides a comparison between the E2-terms of the slice spectral sequence (SSS) and
the F -completed SSS, as well as a comparision between the E2-terms of the F -
localized SSS and the F -Tate construction of the SSS. Of course, it applies more
generally to the F -Tate square of any tower of spectra, as long as we can find a
suitable notion of orientation classes there.

Let τďnE be the Postnikov section of a G-spectrum E, and let Xpmq be the m-
skeleton of X when X is a G-CW complex or G-CW spectrum.

Lemma 1. Let X “ τďnX be a bounded-above G-spectrum, and Y a finite G-CW
spectrum with top cells in dimension m, then X ^ Y “ τďn`mpX ^ Y q is bounded-
above.

Proof. The cellular filtration of Y gives a filtration ofX^Y , with filtration quotients
X ^ Y piq{Y pi´1q “ X ^ p_IiS

iq, i ď m. Now we have a strongly convergent spectral
sequence

E1
s,t “ πtpX ^ Y psq

{Y ps´1q
q ñ πtpX ^ Y q

with E1-term vanishing for t ą m ` n, which proves the lemma. □

Theorem 2. Let G be a finite group, V a real G-representation, E a bounded-above
G-spectrum, say E “ τďbE. Then the map E » F pS0, Eq Ñ F pEFV `, Eq induces
isomorphisms

πn|V |´nV `b`jE
–
ÝÑ πn|V |´nV `b`jF pEFV `, Eq
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for j ě 2 ´ n. Here n ě 0, |V | “ dimR V , and FV is the family tH Ă G|i˚
HpV q “

|V |u.

Proof. Given a real representation V of G, let

FV “ tH Ă G|i˚
HpV q “ |V |u.

where |V | is regared as the trivial representation with dimension |V |. It is easily
checked that FV is a family of subgroups. By [GM95], we have the following gen-
eralized Tate square for FV , which is a homotopy pullback of commutative ring
spectra if E is.

(1) E

f

��

// ĆEFV ^ E

g
��

F pEFV `, Eq // ĆEFV ^ F pEFV `, Eq

.

Let F be the fiber of the left vertical map f : E Ñ F pEFV `, Eq, then F is also
the fiber of the right vertical map since it is a homotopy pullback square. The key
properties of F are that

(1) F is bounded-above, more precisely, F “ τďbF ;

(2) F is ĆEFV -local, in the sense that the canonical map F Ñ ĆEFV ^ F is an
equivalence.

p1q is an easy consequence of the long exact sequence of the homotopy groups of the
fiber sequence

F Ñ E Ñ F pEFV `, Eq,

once we know F pEFV `, Eq “ τďbF pEFV `, Eq. This is the case since we have an
Atiyah-Hirzebruch spectral sequence

(2) Hs
pEFV ; πtEq ñ πt´sF pEFV `, Eq

and as a space, EFV does not have negative cohomology. p2q is a consequence of

F being the fiber of two ĆEFV -local spectra, using the fact that for any G-spectrum

X, ĆEFV ^ X is ĆEFV -local by the equivalence of G-spaces

ĆEFV ^ ĆEFV » ĆEFV .

Now the choice of FV is that any K P FV acts trivally on V . Now let H R FV ,
then V H Ĺ V , and SV H

Ĺ SV is a subcomplex of a lower dimension. Thus the
top cells (|V |-cells) of SV can only have orbit type G{H for H P FV . Now we use
the product cell structure on SnV and we can see that the cells of dimension i for
np|V | ´ 1q ă i ď n|V | all have orbit type G{H for H P FV .

Now the cellular filtration makes sure the inclusion of skeleton

pSnV
q

pn|V |´nq in
ãÝÑ SnV

can be factored into n maps with subquotients _G{Hi` ^ Sj, Hi P FV . Since F is
ĆEFV -local, G{Hi` ^ Sj ^ F » ˚. Thus the map in induces an equivalence

(3) pSnV
q

pn|V |´nq
^ F

in^1
ÝÝÝÑ SnV

^ F.
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By Lemma 1, since pSnV qpn|V |´nq is a finite G-CW complex of dimension n|V | ´ n,
we know pSnV qpn|V |´nq ^ F is bounded-above, with homotopy groups πm vanishing
for m ą n|V | ´ n ` b. Combining with (3), we get

πmS
nV

^ F “ 0 when m ě n|V | ´ n ` b ` 1.

Using the cofiber sequence

SnV
^ F Ñ SnV

^ E
1^f
ÝÝÑ SnV

^ F pEFV `, Eq,

we know that the map 1 ^ f induce isomorphisms on homotopy groups πm for
m ě n|V | ´ n ` b ` 2. □

Example 1. (1) All Eilenberg-MacLane spectra HM , or more generally, bounded-
above graded Eilenberg-MacLane spectra.

(2) The slice sections P nX and slices P n
nX for any n P Z and any G-spectrum

X, see [HHR16, Thm 4.42].
(3) The Postnikov sections τďnX for any G-spectrum X.

Remark 1. The above argument actually works for all families F such that F Ą

FV .

Corollary 3. If a G-ring spectrum F has an orientation class uV P π|V |´V F , and
E is a F -module, then F pEFV `, Eq is uV -local. If further E is bounded-above, then
f : E Ñ F pEFV `, Eq in (1) induces an equivalence

F pEFV `, Eq » Eru´1
V s.

Moreover, the map g : ĆEFV ^ E Ñ ĆEFV ^ F pEFV `, Eq in (1) is also inverting
uV .

Proof. The spectrum F pEFV `, Eq is uV -local, since EFV ` “ hocolimm EFV
pmq

`

with filtration quotients _G{H` ^ Sn, H P FV , thus

F pEFV `, Eq “ holimm F pEFV
pmq

` , Eq

with filtration quotients F p_G{H` ^ Sn, Eq » _G{H` ^ S´n ^ E,H P FV , by the

self-duality of orbits and the fact that EFV
pmq

` can be constructed as a finite G-CW
complex. By induction, we only need to prove that multiplication by uV induces
equivalences on the filtration quotients. But this is indeed true by the shearing
isomorphism

G{H` ^ S´n
^ E

»
ÝÑ SV ´|V |

^ G{H` ^ S´n
^ E.

Now Theorem 2 implies that

πkEru´1
V s “ colimnπk`n|V |´nVE – colimnπk`n|V |´nV F pEFV `, Eq “ πkF pEFV `, Eq

where the colimit is over multiplications by powers of uV . Since this is also true
when we restrict to subgroups K Ă G, we actually get an equivalence of homotopy
Mackey functors of both sides, and the equivalence

F pEFV `, Eq » Eru´1
V s



4 GUOQI YAN

is proved.
Now for for the last statement, we have the following commutative square with

the vertical maps in the middle an equivalence.

pEFV ` ^ Eqru´1
V s //

»

��

Eru´1
V s

»

��

// p ĆEFV ^ Eqru´1
V s

��

EFV ` ^ E // F pEFV `, Eq // ĆEFV ^ F pEFV `, Eq

.

The left vertical map is an equivalence since EFV ` ^ E is already uV -local. We
deduce the rightmost vertical map is an equivalence. □

Remark 2. For a bounded-above spectrum E, the function spectrum F pEF `, Eq is
again bounded-above by the same bound. So the localization process can be iterated.
If the G-ring spectrum F has two orientation classes uV , uW , then we will get

F pEpFV XFW q`, Eq » F pEFV `^EFW `, Eq » F pEFV `, F pEFW `, Eqq » Eru´1
V , u´1

W s.

Example 2. (1) G “ Cn a cyclic group, E “ HA. All irreducibles V are
rotations of the plane. If GV is the stablizer of V , then uV “ resGGV

:
π0HA Ñ π2´VHA “ ApG{GV q, and uV can be taken to be the image of 1.
This can be generalized to all finite groups, since we still have HA|V |´V “

ApG{GV q.
(2) G any finite group, E is the postnikov section of any complex orientable

cohomolgy theory, like τďnMUG, τďnKUG, τďnkUG.
(3) More concretely, take F “ KUG and E “ τďnKUG. For a complex G-

representation V , we have the orientation class uV , and thus F pEFV `, τďnKUGq »

τďnKUGru´1
V s. Taking inverse limit with respect to n, we get

F pEFV `, KUGq » holimnpτďnKUGru´1
V sq.

This formula also holds for other complex-oriented G-spectra.

Remark 3. The theorem cannot be extended to a general G-spectrum. Take G “

C2, V “ 2σ with σ the real sign representation, ,E “ KUC2, then EFV “ EC2, and
we know KUC2ru´1

2σ s » KUC2 is not equivalent to F pEC2`, KUC2q.
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