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Notation. We provide here notation used in this paper for convenience.

• V = rσ + s, a real orthogonal representation of C2, which is a sum of r-copy of the sign representation 
σ and s-copy of the trivial representation 1.

• ρ = σ + 1, the regular representation of C2.
• RO(C2), the real representation ring of C2.
• SV , the equivariant sphere which is the one-point compactification of V .
• πC2

V (X), the V -th C2-equivariant homotopy group of a topological C2-space X.
• πG

V (X), the V -th G-equivariant homotopy group of a topological G-space X as a Mackey functor.
• HK

m (−) is the reduced RO(G)-graded equivariant ordinary homology with Burnside ring coefficients.
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• HK
m(−) is the reduced RO(G)-graded equivariant ordinary homology with Burnside ring coefficients as 

a Mackey functor.
• πS

rσ+s, the C2-equivariant stable homotopy groups of spheres.
• JC2(X), the equivariant reduced product space for C2-space X.
• Σσ(X), the σ-th suspension of X.
• Ωσ(X), all continuous functions from Sσ to X.
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1. Preliminaries

The absence of systematic tools like the EHP sequences for computations (specially unstable) in the 
C2-equivariant homotopy theory inspired me to work on the C2-equivariant stable and unstable homotopy 
groups of spheres, which also give information about the classical and motivic case. The main purpose of this 
paper is to give the generalizations of EHP sequences in the classical homotopy theory to the C2-equivariant 
case.

The n-th homotopy group πn(X) of a topological space X is the set of the homotopy classes of maps 
from n-sphere Sn into X preserving base points. To determine the homotopy groups πn(Sk) of spheres is 
the central problem in homotopy theory. In [5], Freudenthal showed that there exists an homomorphism

E : πn+k(Sn) −→ πn+k+1(Sn+1)

which is an isomorphism for k < n − 1. This theorem provides the stable group

πS
k = lim

n→∞
πn+k(Sn).

As a corollary, the groups πn+k(Sn) are called stable if n > k + 1, and unstable if n ≤ k + 1.
In 1951, Serre [11] proved that the homotopy groups of spheres are all finite except for those of the form 

πn(Sn) or π4n−1(S2n) for n > 0, when the group is the product of the infinite cyclic group with a finite 
abelian group. In particular, the homotopy groups are determined by their p-components for all primes p, 
where 2-components are hardest to calculate.

The C2-equivariant stable homotopy groups of the equivariant spheres are discussed by Bredon [3], [4]
and by Landweber [8].

In this section we will give the main tools that are used the rest of the article. Let X be a G-space, 
where G = C2 is a cyclic group with generator γ such that γ2 = e. The group C2 has two irreducible real 
representations, namely the trivial representation denoted by 1 (or R) and the sign representation denoted 
by σ (or R−). The regular representation is isomorphic to ρC2 = 1 + σ (it is denoted by ρ if there is no 
confusion). Thus the representation ring RO(C2) is free abelian of rank 2, so every representation V can 
be expressed as V = rσ + s. The equivariant sphere SV is defined as the one-point compactification of V . 
The V -th C2-equivariant homotopy group πC2

V (X) of a topological C2-space is [SV , X]C2 , the set of the 
homotopy classes of base points preserving C2-maps. The C2-equivariant stable homotopy groups of spheres 
are defined as

πS
rσ+s = lim [SV ∧ Srσ+s, SV ]C2 .
V→∞
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The precise computations are not published except a few examples by Bredon and Landweber. The C2-
equivariant stable homotopy groups were computed in a range by Araki and Iriye [1], but the method of 
computation is difficult to handle.

As in the classical case, we have a combinatorial model for the twisted loop and twisted suspension of a 
space which is called the C2-equivariant reduced product space due to [10]. The equivariant reduced product 
space JC2(X) for C2-space X is the colimit of

JC2
n (X) = �n

k=0X
×k/ ∼ .

The elements of the space JC2(X) will be written in the form x1 · · ·xk, where an action of C2 is

x1x2 · · ·xk −→ x̄k · · · x̄1

where x̄n := γ.xn means the image of xk under the action of the nontrivial element γ of C2. This action is 
called the twisted action. Here, ∼ is the equivalence relation which omits the base point in any coordinate 
(one can look [7, Definition 4.1.] for the definition, which is due to [10]).

Definition 1. [9]

(i) A function ν∗ from the set of conjugacy classes of subgroups of G to the integers is called a dimension 
function. The value of ν∗ on the conjugacy class of K ⊂ G is denoted by νK . Let ν∗ and μ∗ be 
two dimension functions. If νK ≥ μK for every subgroup K, then ν∗ ≥ μ∗. Associated to any G-
representation V is the dimension function |V ∗| whose value at K is the real dimension of the K-fixed 
subspace V K of V . The dimension function with constant integer value n is denoted n∗ for any integer 
n.

(ii) Let ν∗ be a non-negative dimension function. If for each subgroup K of G, the fixed point space Y K

is νK -connected, then a G-space Y is called G-ν∗-connected. If A G-space Y is G-0∗-connected, then 
it is called G-connected. Also, if it is G-1∗-connected, it is called simply G-connected. A G-space Y is
homologically G-ν∗-connected if, for every subgroup K of G and every integer m with 0 ≤ m ≤ νK ,
the homology group HK

m (Y ) is zero, where HK
m (−) is the reduced RO(G)-graded equivariant ordinary 

homology with Burnside ring coefficients.
(iii) Let ν∗ be a non-negative dimension function and let f : Y −→ Z be a G-map. If, for every subgroup 

K of G,

(fK)∗ : πm(Y k) −→ πm(ZK)

is an isomorphism for every integer m with 0 ≤ m < νK and an epimorphism for m = νK , then f is 
called G-ν∗-equivalence. A G-pair (Y, B) is said to be G-ν∗-connected if the inclusion of B into Y is 
a G-ν∗-equivalence. The notions of homology G-ν∗-equivalence and of homology G-ν∗-connectedness
for pairs are defined similarly, but with homotopy groups replaced by homology groups.

(iv) Let V be a G-representation. For each subgroup K of G, let V (K) be the orthogonal complement 
of V K ; then V (K) is a K-representation. If πK

V (K)+m(Y ) is zero for each subgroup K of G and each 
integer m with 0 ≤ m ≤ |V K |, the G-space Y is called G-V -connected. Similarly, if HK

V (K)+m(Y ) is 
zero for each subgroup K of G and each integer m with 0 ≤ m ≤ |V K |, then the G-space Y is called
homologically G-V -connected.

(v) Let V be a G-representation. A G-0∗-equivalence f : Y −→ Z is said to be a G-V -equivalence if, for 
every subgroup K of G, the map

f∗ : πK
V (K)+m(Y ) −→ πK

V (K)+m(Z)
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is an isomorphism for every integer m with 0 ≤ m < |V K | and an epimorphism for m = |V K |. A
homology G-V -equivalence is defined similarly. A G-pair (Y, B) is called G-V -connected (respectively,
homologically G-V -connected) if the inclusion of B into Y is a G-V -equivalence (respectively, homology 
G-V -equivalence).

Before giving the C2-equivariant Freudenthal suspension theorem, we will state equivariant Hurewicz 
theorems:

Theorem 2. [9] (Equivariant relative Hurewicz theorem) Let (Y, B) be a based G-CW pair with both Y and B
simply G-connected and let V be a G-representation such that |V G| ≥ 2. Then the following two conditions 
are equivalent:

(a) (Y, B) is (V − 1)-connected.
(b) (Y, B) is homologically (V − 1)-connected.

Moreover, either of these conditions implies that, for any G-representation W with 2∗ < |W ∗| < |V ∗|, 
πG

W (Y, B) is a W -Mackey functor (instead of just a (W − 1)-Mackey functor) and the map

∼
h: s∗πG

W (Y,B) −→ HG
W (Y,B)

is an isomorphism, where s∗ is the functor associated to an inclusion of W into a complete G-universe. If 
|W ∗| < |V ∗| and (Y, B) is (V − 1)-connected, then both πG

W (Y, B) and HG
W (Y, B) are zero.

Note that Lewis proved this equivariant relative Hurewicz theorem for compact Lie groups in [9]. Because 
of this reason, he introduced the W -Mackey functors, which are the generalization of Mackey functors. 
However, in our case, the group is C2, so one can consider these Mackey functors as usual Mackey functors. 
Also, one can check [9] for details.

Theorem 3. [9] Let Y and Z be G-connected G-CW complexes, f : Y −→ Z be a G-map, and V and W be 
G-representations with |W ∗| < |V ∗|. If f is a V -equivalence, then f is also a W -equivalence and a homology 
W -equivalence. Moreover, if Y and Z are simply G-connected and f is a homology V -equivalence, then f
is a V -equivalence.

Now, we will state Freudenthal suspension theorem for C2-spaces: For example, one can find it in [2]:

Theorem 4. Let X be a pointed C2-space.
(i) Suppose that the underlying space of X is m-connected (m ≥ 1), and XC2 is n-connected (n ≥ 1), then 
for p + q ≤ 2m and q ≤ 2n

Σ : πU (X) −→ πU+1(S1 ∧X)

is isomorphic, and epimorphic if p + q ≤ 2m + 1 and q ≤ 2n + 1, where U = pσ + q,
(ii) Suppose that the underlying space of X is m-connected, and XC2 is path connected, then for p + q ≤ 2m
and q < m

Σσ : πU (X) −→ πU+σ(Sσ ∧X)

is isomorphic, and it is epimorphic if p + q ≤ 2m + 1 and q ≤ m, where U = pσ + q.

For X = SV , this theorem is given by Bredon in [3] before:
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Theorem 5. For the representations U = pσ + q, V = rσ + s and the suspension and twisted suspension 
homomorphisms

πU+1(SV +1) Σ←− πU (SV ) Σσ

−→ πU+σ(SV +σ)

Σ is epimorphism when p + q ≤ 2(r+ s) − 1 and q ≤ 2s − 1, and isomorphism if the strict inequalities hold. 
Similarly, Σσ is epimorphism when p + q ≤ 2(r + s) − 1 and q ≤ r + s − 1, and isomorphism if the strict 
inequalities hold.

2. C2-equivariant James splitting

Let (X, q) be a pair consisting of a path-connected compact topological C2-space with a basepoint x0 ∈ X, 
and a continuous map q : X −→ R+, where R+ is a nonnegative real numbers such that

(i) q−1(0) = x0.
(ii) q(g.x) = q(x) for all g ∈ C2, and x ∈ X.

Let

ΓV (X, q) = V ×X/{(v, x)| ‖ v ‖≥ q(x)},

which is called C2-Moore suspension of X. We define the action of C2 by g.|(v, x)| = |(g.v, g.x)|. It is easy 
to see that ΓV (X, q) is C2-homeomorphic to ΣV X. We define the space Ω∗V ΓV (X, q) as

Ω∗V ΓV (X, q) = {(r, f) ∈ R+ ×Map(V,ΓV (X, q))|∀v ∈ V ‖v‖ ≥ r ⇒ f(v) = x0}

with the action g.(r, f) = (r, g.f) [10]. The space Ω∗V ΓV (X, q) is called C2-Moore loops on ΓV (X, q). Rybicki 
[10, Lemma 1.1.] showed that Ω∗V ΓV (X, q) is homotopy equivalent to ΩV ΣV X.

Now, we define a continuous C2-map λ̄ : X −→ Ω∗V ΓV (X, q) by λ̄(x) = (q(x), λx(−)), where λx(v) =
|(v, x)|. The map λ̄ extends to a continuous C2-map

λ : JC2(X) −→ Ω∗V ΓV (X, q) (2.1)

defined by λ(x1 · · ·xk) = λ̄(x1) · · · λ̄(xk), which is given by Rybicki in [10].
Let W and X be C2-spaces. This part is the equivariant analogue of the work of George W. Whitehead 

in the book [12] on James splitting theorem. Let f : (JC2
m (W ), JC2

m−1(W )) −→ (X, ∗) be a C2-map. We will 
construct an extension g : JC2(W ) −→ JC2(X) which is called combinatorial extension of f . Note that all 
the actions on the cartesian, smash and wedge products of G-spaces are twisted actions, where the twisted 
action means that the action of the nontrivial element γ of C2 is reversing the order of the element on the 
product. For example, we are given the action of C2 on the space X ∧ Y by

g.(x ∧ y) =
{

(g.y) ∧ (g.x) for g = γ ∈ C2
x ∧ y for g = 1 ∈ C2.

We use the notation N∗(−) to remind the reader each time that the action on the products is the twisted 
one.

Remark 6. Let hm : N∗(Wm) −→ X be a sequence of C2-maps such that hm ◦ ik = hm−1 for k = 1, · · · , m, 
where ik : N∗(Wm−1) −→ N∗(Wm) is the map defined by
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ik(w1, · · · , wm−1) = (w1, · · · , wk−1, e, wk, · · · , wm−1).

Then there is a map h : JC2(W ) −→ X such that (h|JC2
m (W )) ◦ πm = hm for m = 1, 2, 3, · · · , where 

πm : N∗(Wm) −→ JC2
m (W ) is the natural map defined by

πm(w1, . . . , wm) = w1 · · ·wm.

By Remark 6, it is enough to construct a sequence of C2-maps fn : N∗(Wn) −→ JC2(X) (n = 1, 2, · · · )
such that

fn ◦ ik = fn−1, (k = 1, · · · , n)

fm = f ◦ πm.

fn is a constant map for all n < m. For n ≥ m, let Pn be the set of all strictly increasing m-termed 
subsequences of (1, · · · , n) with lexicographical order from the right; that is, α < β if and only if there 
exists j(1 ≤ j ≤ m) such that αi = βi for i > j and αj < βj . Let α1, · · · , αN be the N =

(
n
m

)
elements of 

Pn. For each r(1 ≤ r ≤ N), define gr : N∗(Wn) −→ Jm(W ) by

gr(a1, · · · , an) = πm(aαr
).

Then we will define a map fn : N∗(Wn) −→ JC2
N (X) ⊂ JC2(X) by

fn(x) = πN (fg1(x), · · · , fgN (x)).

The combinatorial extension g : JC2(W ) −→ JC2(X) of f is defined by the condition

(g|Jn(W )) ◦ πn = fn, (n = 1, 2, · · · ).

In particular, let N∗(W (n)) be the n-fold smash product with the twisted action. Then the natural projection 
pn : N∗(Wn) −→ N∗(W (n)) induces a map fn : (JC2

n (W ), JC2
n−1(W )) −→ (N∗(W (n)), ∗). Let

gn : JC2(W ) −→ JC2(N∗(W (n)))

be the combinatorial extension of fn. Let X =
∞∨

n=1
N∗(W (n)) and in : N∗(W (n)) −→ X be the inclusion, so 

i′n = JC2(in) : JC2(N∗(W (n))) −→ JC2(X). If x ∈ JC2
m (W ), define θm(x) =

∏m
n=1 i

′
n(gn(x)).

If x ∈ JC2
m−1(W ), then gm(x) = e; hence, θm|JC2

m−1(W ) = θm−1. Therefore, the maps θm together define a 

map θ : JC2(W ) −→ JC2(X). Recall that Σσ(X) and Γσ(X, q) are C2-homeomorphic. Let 
∼
θ : ΣσJC2(W ) −→

Σσ(X) be the adjoint to the composite map

JC2(W ) θ−→ JC2(X) λ−→ Ω∗σΓσ(X, q) Ψ−→ ΩσΣσ(X)

where λ was defined earlier (2.1), and Ω∗σΓσ(X, q) Ψ−→ ΩσΣσ(X) is a homotopy equivalence [10, Lemma 
1.1.].

Now, we will give the splitting theorem:

Theorem 7. If W is C2-connected, and (W )C2 is simply C2-connected, then the map 
∼
θ is a weak C2-homotopy 

equivalence.
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Proof. Since W is C2-connected, JC2(W ) and X =
∞∨

n=1
N∗(W (n)) are C2-connected, so ΣσJC2(W ) and 

ΣσX are simply C2-connected. Therefore, it is enough to show that 
∼
θ is a homology C2-equivalence. Let 

Xm =
m∨

n=1
N∗(W (n)), so 

∼
θ(ΣσJC2

m (W )) ⊂ ΣσXm for every m. Therefore 
∼
θ induces

∼
θm : ΣσJC2

m (W )/ΣσJC2
m−1(W ) −→ ΣσXm/ΣσXm−1.

But,

ΣσJC2
m (W )/ΣσJC2

m−1(W ) = Σσ(JC2
m (W )/JC2

m−1(W )) ∼= ΣσN∗(W (m))

as is ΣσXm/ΣσXm−1. It follows that 
∼
θ |ΣσJC2

m (W ) : ΣσJC2
m (W ) −→ ΣσXm is naturally G-homeomorphism, 

so it is a homology C2-equivalence. However, the homology groups of the filtered spaces ΣσJC2(W ) and 

ΣσX are the direct limits of those of the subspaces ΣσJC2
m (W ) and ΣσXm, respectively and therefore 

∼
θ is 

a homology C2-equivalence. �
Our main interest is representation spheres W = SV , so we have the following result.

Corollary 8. 
∼
θ : ΣσJC2(SV ) −→

∞∨
k=1

S|V |k+σ is a weak G-homotopy equivalence, so ΣσΩσΣσSV is weak 

G-homotopy equivalent to 
∞∨
k=1

S|V |k+σ.

From this splitting, by collapsing all the appropriate factors of the wedge and then taking the adjoint, 
we get the Hopf invariant map

Hσ : ΩσSV +σ −→ ΩσSV⊗ρ+σ.

There is also the map

Eσ : SV −→ ΩσSV +σ

adjoint to the identity SV +σ −→ SV +σ, which induces the suspension homomorphism on the homotopy 
groups. Now, we will give C2-EHP sequences.

3. C2-equivariant EHP sequences

In order to construct the fibration we use the fact that JC2(Sn) � ΩσΣσSn, which is given in [10]. We 
have that JC2

2 (Sn) = Sn × Sn/(x, e) ∼ (e, x). This identification gives a copy of Sn in JC2
2 (Sn), and the 

quotient is JC2
2 (Sn)/JC2

1 (Sn) = JC2
2 (Sn)/Sn is Snρ. As denoting the quotient map JC2

2 (Sn) −→ Snρ by 
x1x2 −→ x1x2, we will define f : JC2(Sn) −→ JC2(Snρ) by

f(x1x2 · · ·xk) = x1x2 x1x3 · · ·x1xk x2x3 x2x4 · · ·x2xk · · ·xk−1xk.

It is easy to check that f(x1x2 · · ·xk) = f(x1x2 · · · x̂i · · ·xk) if xi = e since xe = ex is the identity element 
of jC2

2 (Snρ), so it is well defined and also C2-equivariant. Let F denote the homotopy fiber of f , so we have 
a G-fibration
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F −→ JC2(Sn) −→ JC2(Snρ).

If we apply fixed point functor to f , we get

fC2 : (JC2(Sn))C2 −→ (JC2(Snρ))C2 .

By Miguel Xicotencatl [13], we know that

(JC2(X))C2 � (ΩσΣσX)C2 � (ΩΣX) ×XC2 .

Then we have fC2 : ΩΣSn × Sn H×1−→ ΩΣS2n × Sn, where H is a classical Hopf map. Thus we get F � Sn, 
so we have a G-fibration

Sn Eσ

−→ ΩσSn+σ Hσ

−→ ΩσSnρ+σ.

We would like to generalize this G-fibration to SV , where C2-representations V = rσ+ s. We can define the 
same map

f : JC2(SV ) −→ JC2(SV⊗ρ).

If we apply again fixed points functor we get

fC2 : ΩΣSr+s × Ss −→ ΩΣS2r+2s × Sr+s.

It is not easy to determine what the fiber of this map is.
However, we can use the long exact sequence of the G-pair (JC2(SV ), SV ) to construct the C2-EHP 

sequences. For C2-representations V = rσ + s, U = pσ + q, and C2-pair (JC2(SV ), SV ), the long exact 
sequence is

· · · −→ πU (SV ) Eσ

−→ πU (JC2(SV )) −→ πU (JC2(SV ), SV ) −→ πU−1(SV ) −→ · · · (3.1)

By using the fact that JC2(X) � ΩσΣσX, we get that

· · · −→ πU (SV ) Eσ

−→ πU+σ(SV +σ) −→ πU (JC2(SV ), SV ) −→ πU−1(SV ) −→ · · · (3.2)

Now, before proceeding, I need to prove some results. All the following lemmas are valid for nonequivariant 
case, so these are also valid on fixed point spaces, so they are also true in equivariant case.

Lemma 9. Suppose that (Y, B, B′) is a G-triple such that (Y, B) and (B, B′) are ν-connected. Then (Y, B′)
is ν-connected.

Proof. By assumption, we know that the inclusions j : B′ −→ B and k : B −→ Y are ν-equivalences, so 
i = k ◦ j : B′ −→ Y is also ν-equivalence. �
Corollary 10. Let {Xd} be a filtration of a G-space X. If each of the pairs (Xq+1, Xq) is ν-connected, then 
(X, X0) is ν-connected.

It can be proved that by induction on m:
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Lemma 11. If G-space X is ν-connected, then JC2
m (X) is simply G-connected, and (JC2

m+1(X), JC2
m (X)) is 

((m + 1)ν + m)-connected.

Then by Corollary 10, it follows that

Lemma 12. If G-space X is ν-connected, then (JC2(X), JC2
m (X)) is ((m + 1)ν + m)-connected.

In particular, (JC2(X), JC2
2 (X)) is (3ν + 2)-connected. Therefore, the injection i : (JC2

2 (X), X) −→
(JC2(X), X) is an (3ν + 2)-equivalence. For X = SV which is |(V − 1)∗|-connected, i : (JC2

2 (SV ), SV ) −→
(JC2(SV ), SV ) is an (3|(V − 1)∗| +2)-equivalence. By the lemma 1.2. of G. Lewis in [9], it is (3(V − 1) +2)-
equivalence. Thus i∗ : πU (JC2

2 (SV ), SV ) −→ πU (JC2(SV ), SV ) is an isomorphism for p + q < 3(r + s) − 1
and q < 3s − 1.

Now, I will state equivariant Blakers-Massey theorem which is proved by Hauschild in [6] and one appli-
cation equivariant homotopy excision theorem.

Theorem 13. [6] (Blakers-Massey theorem) Let X1 and X2 be subcomplexes of the G-CW-complex X such 
that X = X1 ∪X2 with non-empty intersection X0 = X1 ∩X2. If

πi(XH
1 , XH

0 ) = 0 for 0 < i < mH ,

πi(XH
2 , XH

0 ) = 0 for 0 < i < nH ,

and |UH | < mH + nH − 2 for all subgroups H of G, then the map induced by inclusion

iU : πU (X2, X0) −→ πU (X,X1)

is an isomorphism.

One important consequence of the Blakers-Massey theorem is homotopy excision theorem:

Theorem 14. (Equivariant homotopy excision theorem) Let f : (X, A) −→ (Y, B) be a map such that f∗ :
H∗(X, A) ≈ H∗(Y, B) for all ∗. Suppose that X, A, and B are simply G-connected, (XH , AH) is mH-
connected, and f |AH : AH −→ BH is nH-connected for all subgroups H of G. Then f∗ : πU (X, A) −→
πU (Y, B) is an isomorphism for |UH | < mH + nH + 1.

Proof. Let Z be the mapping cylinder of f , and C be the mapping cylinder of f |AH : AH −→ BH . There 
are commutative diagrams

πH
U (X,A)

πU (i)

πU (f)

πH
U (X ∪ C,C)

πU (j)

πH
U (Y,B)

πU (k)
πH
U (Z,C)

HH
U (X,A)

HU (i)

HU (f)

HH
U (X ∪ C,C)

HU (j)

HH
U (Y,B)

HU (k)
HH

U (Z,C)

where i, j, k are inclusions. Since HU (f), HU (i), HU (k) are isomorphism for all U , so is HU (j). By exactness 
of the homology sequence of the triple (Z; X ∪ C, C), the groups HH

U (Z, X ∪ C) = 0 are zero for all U . 
However, X and C are simply G-connected, and their intersection A is simply G-connected. From Hurewicz 
theorem, we can deduce that πH

U (Z, X ∪ C) = 0 and therefore, πU (j) is an isomorphism for all U . On the 
other hand, we can apply the Blakers-Massey theorem to the triad (X ∪ C, X, C) and therefore πU (i) is 
an isomorphism for |UH | < mH + nH + 1. Since πU (k) is an isomorphism, then πU (f) has the desired 
properties. �
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Now, we will return the long exact sequence (3.2). There is a relative G-homeomorphism f : (N∗(SV ×
SV ), N∗(SV ∨ SV )) −→ (JC2

2 (SV ), SV ). For V = rσ + s and s > 1, the underlying spaces N∗(SV × SV )
and N∗(SV ∨ SV ) are 1-connected, and the pair

(N∗(SV × SV ), N∗(SV ∨ SV ))

is (2(r+s) −1)-connected. Moreover, the map f |N∗(SV ∨SV ) : N∗(SV ∨SV ) −→ SV is (r+s −1)-connected. 
It follows from the equivariant homotopy excision theorem that

f∗ : πU (N∗(SV × SV ), N∗(SV ∨ SV )) −→ πU (JC2
2 (SV ), SV )

is an isomorphism for p + q ≤ 3(r + s) − 2. And also, (N∗(SV × SV ))C2 � Ss and (N∗(SV ∨ SV ))C2 � ∗
are 1-connected, and the pair

((N∗(SV × SV ))C2 , (N∗(SV ∨ SV ))C2)

is (s − 1)-connected. Moreover, the map

f |(N∗(SV ∨ SV ))C2 : (N∗(SV ∨ SV ))C2 −→ (SV )C2

is (s − 1)-connected. It follows from the equivariant homotopy excision theorem that

f∗ : πU (N∗(SV × SV ), N∗(SV ∨ SV )) −→ πU (JC2
2 (SV ), SV )

is an isomorphism for q ≤ 2s − 2. On the other hand, the quotient map is a relative G-homeomorphism 
g : (N∗(SV × SV ), N∗(SV ∨ SV )) −→ (N∗(SV ∧ SV ), ∗). The map g|N∗(SV ∨ SV ) : N∗(SV ∨ SV ) −→ ∗ is 
(r + s − 1)-connected, so we can deduce that

g∗ : πU (N∗(SV × SV ), N∗(SV ∨ SV )) −→ πU (N∗(SV ∧ SV ))

is an isomorphism for p + q ≤ 3(r + s) − 2. And also, the map

g|(N∗(SV ∨ SV ))C2 : (N∗(SV ∨ SV ))C2 −→ ∗

is G-homeomorphism, so we can deduce that

g∗ : πU (N∗(SV × SV ), N∗(SV ∨ SV )) −→ πU (N∗(SV ∧ SV ))

is an isomorphism for all q.
Also, we know that with twisted action N∗(SV ∧ SV ) � S|V |ρ. By equivariant Freudenthal suspension 

theorem

Eσ : πU (S|V |ρ) −→ πU+σ(Σσ(S|V |ρ))

is an isomorphism for p + q < 4(r + s) − 1 and q < 2(r + s) − 1.
If we put together all the result above, we proved that the lemma for SV :

Lemma 15. For p +q < 3(r+s) −2, q < 2(r+s) −1, and q < 3s −1, πU (JC2(SV ), SV ) and πU (JC2(N∗(SV ∧
SV ))) are isomorphic, where the action on SV ∧ SV is again twisted, so we have

πU (JC2(SV ), SV ) � πU (JC2(SV⊗ρ)).
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Note that this lemma stated first in [10] without proof and for with different range. By inserting this 
result to the long exact sequence (3.2), we deduce that

· · · −→ πU (SV ) Eσ

−→ πU+σ(SV +σ) −→ πU+σ(S|V |σ+σ) −→ πU−1(SV ) −→ · · · (3.3)

Thus in the range p + q < 3(r + s) − 2, q < 2(r + s) − 1, and q < 3s − 1, we have a G-fibration

SV Eσ

−→ ΩσSV +σ Hσ

−→ ΩσSV⊗ρ+σ. (3.4)

We also know that J(SV ) � ΩΣSV , where the action on J(SV ) and ΩΣSV are deduced from the cartesian 
product and quotient map and conjugation action on function spaces, respectively as usual (not twisted). 
We have also 2-local C2-fibrations

SV E−→ ΩSV +1 H−→ ΩS2V +1. (3.5)

To show the existence, it is enough to look underlying and fixed points fibrations of (3.5). Let V = rσ + s

and Ω(X) = Map(S1, X) be a C2-space of all continuous maps. Fixed points of it is (ΩΣ(X))C2 = ΩΣ(XC2). 
Then fixed points fibrations of (3.5) are

Ss E−→ ΩSs+1 H−→ ΩS2s+1

which is a 2-local fibration. And underlying fibrations of (3.5) are

Sr+s E−→ ΩSr+s+1 H−→ ΩS2(r+s)+1

which is also a 2-local fibration.
As a result, one can compute unstable C2-homotopy groups of equivariant spheres by using these EHP 

sequences. For example, when U = 2 and V = 3, we have

· · · −→ π2(S3) Eσ

−→ π2+σ(S3+σ) −→ π2+σ(S4σ) −→ π1(S3) −→ · · · (3.6)

Since π2(S3) = π1(S3) = 0, we have

π2+σ(S3+σ) ∼= π2+σ(S4σ).

Because π2+σ(S3+σ) ∼= Z by [1], π2+σ(S4σ) ∼= Z.
One project is to compute the RO(C2)-graded C2-equivariant stable and unstable homotopy groups of 

C2-equivariant spheres by using the C2-EHP spectral sequences, and the C2-Lambda algebra, which is 
constructed in the author’s dissertation.
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