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CONGRUENCES OF EISENSTEIN SERIES OF LEVEL Γ1(N)
VIA DIEUDONNÉ THEORY OF FORMAL GROUPS

NINGCHUAN ZHANG

Abstract. In this paper, we first explain congruences of Eisenstein series of level Γ1(N) and character
χ. Our approach is based on Katz’s algebro-geometric explanation of p-adic congruences of normalized
Eisenstein series E2k of level 1. One crucial step in our argument is to reformulate a Riemann-Hilbert
correspondence in Katz’s explanation in terms of Dieudonné theory of height 1 formal A-modules and their
finite subgroup schemes.

We further connect congruences of modular forms in the Eisenstein subspace Ek(Γ1(N), χ) with certain
group cohomology involving the Dirichlet character χ. When χ is trivial, this group cohomology computes
the image of the J-homomorphism in the stable homotopy groups of spheres. We have therefore connected
congruences of Eisenstein series E2k of level 1 to the image of J .
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In [Kat73b], Katz gave an algebro-geometric explanation of the p-adic congruences of normalized Eisen-
stein series E2k of weight 2k and level 1. Using a Riemann-Hilbert type correspondence (Theorem 2.4.1)
and a theorem of Igusa, Katz showed:

Theorem. [Kat73b, Corollary 4.4.1] The followings are equivalent:

(1) E2k(q) ≡ 1 mod pm.
(2) The 2k-th power representation Z⊗2kp of Z×p is trivial mod pm.

The first goal of this paper is to adapt Katz method’s to study congruences of modular forms in the
Eisenstein subspace

Ek(Γ1(N), χ) ⊆Mk(Γ1(N), χ) ∶=Mk(Γ1(N))χ−1 ,
where χ ∶ (Z/N)× → C× is a primitive Dirichlet character of conductor N . The strategy is to study a p-adic
version of this problem and then assemble the congruence at each prime. As we will be working integrally
and p-adically, it is necessary to specify meaning of level structures. LetMell(µN) be a stack over Z whose
R points are:

Mell(µN)(R) ∶= {(C/R,η ∶ µN ↪ C) ∣ C is an elliptic curve over R,
η is an embedding of group schemes

} .
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2 NINGCHUAN ZHANG

When N is invertible in R, a µN -level structure on an elliptic curve is (non-canonically) equivalent to a
classical Γ1(N)-level structure. Write N = pvN ′ where p ∤ N ′. The p-adic version of Mell(µN) we will
consider isMord

ell (pv,Γ1(N ′)), whose R points are

Mord
ell (pv,Γ1(N ′))(R) = {(C/R,ηp, η′) ∣ C is a p-ordinary elliptic curve over R,

ηp ∶ µpv

∼
Ð→ Ĉ[pv], η′ ∶ Z/N ′ ↪ C[N] } .

Mord
ell (pv,Γ1(N ′)) = Mell(µN)∧p when p ∣ N and is an open substack otherwise. Now let χ ∶ (Z/N)× → C×p

be a p-adic primitive Dirichlet character of conductor N . Write Zp[χ] ∶= Zp[Imχ]. χ is uniquely factorized
as product χ = χp ⋅ χ

′ where χp and χ′ have conductors pv and N ′, respectively. Let k be an integer such

that (−1)k = χ(−1). Let Z⊗kp [χ] be the Z×p × (Z/N ′)×-representation, whose underlying module is Zp[χ] and
where (a, b) ∈ Z×p × (Z/N ′)× acts by multiplication by ak ⋅χp(a) ⋅χ′(b). The first main result of this paper is:

Theorem (Main Theorem 2.6.1). Let I ⊴ Zp[χ] be an ideal. The followings are equivalent:

(i). There is an Eisenstein series f in Ek(pv,Γ1(N ′), χ) with q-expansion f(q) ∈ 1 + IqJqK.
(v). The Z×p × (Z/N ′)×-representation Z⊗kp [χ] is trivial modulo I.
The proof of the Main Theorem has three major steps:

I. Identify the Dirichlet character χ to the Galois descent data of formal Zp[χ]-modules Ĉk,χ overMord
ell (Γ0(N ′)). This allows us to translate congruences of Eisenstein series in Ek(pv,Γ1(N ′), χ) to

those of elements in the Dieudonné module D(Ĉk,χ) of Ĉk,χ.
II. Reformulate a Riemann-Hilbert correspondence in Katz’s explanation in terms of the Dieudonné mod-

ule and the Galois descent data of the formal A-modules:

Theorem. (2.4.6) Let R be a flat algebra over Wκ for some separable extension κ of Fp, such that R/p
is an integrally closed integral domain. Suppose R is formally smooth over κ, so that it admits a lift
of Frobenius ϕ ∶ R → R. Let Ĝ be a formal A-module over R whose reduction mod p has height/slope

1. Write D(Ĝ) = (M,F ∶ M
∼
Ð→ ϕ∗M) and ρ ∶ πét

1 (R) → A× for the Dieudonné module and Galois

descent data for Ĝ, respectively. Let I ⊴ A be an ideal and denote the I-torsion of Ĝ by Ĝ[I]. Then
the followings are equivalent:
(a) There is a generator γ of M as an R⊗A-module such that Fγ ≡ γ mod I.
(b) Ĝ[I] ≃ (Ĝm ⊗A)[I].
(c) The composition homomorphism ρI ∶ π

ét
1 (R) ρ

Ð→ A×↠ (A/I)× is trivial.

From this, we relate congruences of generators in D(Ĉk,χ) to those of the Galois representation [ρk,χ]
attached to Ĉk,χ.

III. Factorize the character ρk,χ associated to the Galois representation [ρk,χ] and use a relative version
of Igusa’s theorem to reduce the group to Z×p × (Z/N ′)×.

The main theorem implies the maximal congruence of Eisenstein series in Ek(pv,Γ1(N ′), χ) is equal to
that of the Z×p × (Z/N ′)×-representation Z⊗kp [χ]. The latter is further related to the group cohomology of

Z×p × (Z/N ′)×.
Corollary (4.1.8). The followings are equivalent:

(1) I ⊴ Zp[χ] is the maximal congruence of Eisenstein series in Ek(pv,Γ1(N ′), χ).
(2) H1

c (Z×p × (Z/N ′)× ;Z⊗kp [χ]) ≃ Zp[χ]/I.
The maximal congruences of the Z×p × (Z/N ′)×-representations Z⊗kp [χ] are easy to compute since the

group is topologically finitely generated. The result of this computation is recorded in Theorem 3.1.4. We
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then want to find explicit formulas of Eisenstein series in Ek(pv,Γ1(N ′), χ) that matches the congruence of
Z⊗kp [χ].

Write χ = χp ⋅χ
′ as above. When ∣ Imχ′∣ is not a power of p, the maximal congruence of Eisenstein series

in Ek(pv,Γ1(N ′), χ) is realized by

Ek,χ(q) = 1 − 2k

Bk,χ

∞

∑
n=1

σk−1,χ(n)qn, where σm,χ(n) = ∑
0<d∣n

χ(d)dm.
The argument in paper is therefore a cohomological explanation of the denominator of

Bk,χ

2k
, whose arithmetic

properties were described in [Car59] up to a factor of 2.
When ∣ Imχ′∣ is a power of p greater than 1, the maximal congruence is realized as a linearly combination of

Ek,χ with some other basis in the Eisenstein subspace Ek(pv,Γ1(N ′), χ). In this case, the group cohomology

H1
c (Z×p × (Z/N ′)× ;Z⊗kp [χ]) sheds light on the numerator of

Bk,χ

2k
. One such example is:

Corollary (3.2.6 and 4.1.8). Let p > 2 be a prime and χ ∶ (Z/ℓ)× → C×p be a Dirichlet character of conductor
ℓ such that ℓ ≠ p is a prime number and ∣ Imχ′∣ = ∣ Imχ∣ is a p-power. Denote the maximal ideal of Zp[χ] by
m. Assume (−1)k = χ(−1), Bk,χ

2k
∈ Zp[χ] by [Car59, Theorem 1]. We then have

Bk,χ

2k
∈ m ⇐⇒ (p − 1) ∤ k.

This relation is reflected in the cohomological computation that

H1
c (Z×p × (Z/ℓ)× ;Z⊗kp [χ−1]) = { Zp[χ]/m, (p − 1) ∣ k;

0, otherwise.

The continuous group cohomology H1
c (Z×p × (Z/N ′)× ;Z⊗kp [χ]) is on the E2-page of a spectral sequence to

compute the homotopy groups of the Dirichlet K(1)-local spheres, introduced in [Zha19]:

E
s,2t
2 =Hs

c (Z×p × (Z/N ′)× ;Z⊗tp [χ−1])Ô⇒ π2t−s (S0
K(1)(pv)hχ) .

These Dirichlet K(1)-local spheres at each prime assemble into the Dirichlet J-spectra J(N)hχ, which are
analogs of Dirichlet L-functions in chromatic homotopy theory.

We have therefore connected the homotopy groups of the Dirichlet J-spectra J(N)hχ with congruences of
Eisenstein series in Ek(Γ1(N), χ). This explains how homotopy groups of J(N)hχ are related to the special
values of the Dirichlet L-function L(s;χ). When χ is trivial, our argument gives a new explanation of the
relation between congruences of Eisenstein series of level 1 with the image of the J-homomorphism in the
stable homotopy groups of spheres.

Notations and conventions.

● Denote the Teichmüller character by the Greek letter ω and denote the sheaf of invariant differentials on
various stacks by the boldface version of the same Greek letter ω.
● Cp is the analytic completion of Qp, the algebraic closure of the rational p-adics.
● We write G for the constant G-group scheme.

● Ĝm is the multiplicative formal groups, respectively. Ĝa is the additive formal groups. µN and αN are
finite subgroup schemes of Ĝm and Ĝa of rank N , respectively.
● By a height 1 or slope 1 formal group Ĝ, we mean Ĝ is étale locally isomorphic Ĝ⊕dm , where d is the

dimension of Ĝ.
● Let M be a G-representation in an R-modules and χ ∶ G → R× be a character. We write Mχ for the
χ-eigensubspace of M .
● We will suppress the Zp in M ⊗Zp

N when M and N are both Zp-modules.
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● Let χ be a Dirichlet character of conductor N . Write N = pvN ′, where p ∤ N ′. Then there is a unique
decomposition χ = χpχ

′, where the conductors of χp and χ′ are pv and N ′, respectively. We fix the
meanings of N , N ′, v, χp, and χ

′ throughout the paper.

Acknowledgments. I would like to thank Matt Ando for advising me to think about the implications of
[Kat73b, Chapter 4] in homotopy theory, which eventually leads to this paper; Patrick Allen for patiently
answering my many questions on modular forms and moduli of elliptic curves, and for correcting a few
mistakes I made in an earlier version of this paper. I would also like to thank Mark Behrens, Dominic
Culver, Charles Rezk, Shiyu Shen, and Vesna Stojanoska for many helpful discussions and comments.

1. µN -level structures on elliptic curves and modular forms

1.1. The Eisenstein subspace. Let χ ∶ (Z/N)× → C× be a primitive Dirichlet character of conductor N .
We are now going to introduce the Eisenstein series of level Γ1(N) and character χ, following [Hid93, §5.1]
and [Ste07, Chapter 5].

Definition 1.1.1. Let Γ ≤ SL2(Z) be a congruence subgroup. Let T ⊆ End(Mk(Γ)) be the subring generated
by the Hecke operators. Then there is decomposition of T-modules:

(1.1.2) Mk(Γ) = Ek(Γ)⊕ Sk(Γ),
where Sk(Γ) is subspace of cusp forms, i.e. modular forms that vanish at all cusps. The subspace Ek(Γ) is
the Eisenstein subspace of weight k and level Γ.

Example 1.1.3. Below is a family of Eisenstein series in Ek(Γ1(N), χ). Let χ1 ∶ (Z/N1)× → C× and
χ2 ∶ (Z/N2)× → C× be two primitive Dirichlet characters of conductors N1 and N2. Define the Eisenstein
series:

Gk,χ1,χ2
(z) ∶= ∑

(n,m)≠(0,0)

χ1(m)χ−12 (n)(mNz + n)k
Gk,χ1,χ2

is an Eisenstein series of weight k and level N1N2.

Theorem 1.1.4. Let N > 1 be a positive integer. {Gk,χ1,χ2
(tz) ∣ (N1N2t)∣N,χ2/χ1 = χ} forms a basis ofEk(Γ1(N), χ).

1.2. µN -level structures. As we will be working integrally and p-adically at levels divisible by p, it is
necessary to specify the meaning of Γ1(N)-level structures.
Definition 1.2.1. A µN -level structure on an elliptic curve C is an embedding of group schemes η ∶ µN ↪ C.
Denote by Mell(µN) the moduli stack of elliptic curves with µN -level structures. Let R be a ring. The R
points ofMell(µN) are

Mell(µN)(R) = {(C/R,η) ∣ C is an elliptic curve over R and
η ∶ µN ↪ C is an embedding of group schemes

} .
Define the space of modular forms of weight k and level µN by

Mk(µN) ∶=H0(Mell(µN),ω⊗k), Mk(µN , χ) ∶=Mk(µN)χ−1 ,
where χ is a Dirichlet character of conductor N .

Lemma 1.2.2. Mk(Γ1(N), χ) =Mk(µN , χ) over C.

Proof. This is becauseMell(Γ1(N))(R) ≃Mell(µN)(R) when R contains a primitive N -th root of unity. �

Proposition 1.2.3. When N ≥ 4,Mell(µN) is represented by a smooth affine curve over Z.
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Proof. By [KM85, Corollary 4.7.1], it suffices to show:

(1) The forgetful mapMell(µN)→Mell is relatively representable, affine, and étale.
(2) Mell(µN) is rigid, meaning that there is no non-trivial automorphism of the pair (C,η ∶ µN ↪ C).
(1) is proved in [KM85, Section 4.9, 4.10]. (2) is proved in the [KM85, Corollary 2.7.4] when N ≥ 4. �

1.3. The q-expansion principle. Let Mell(Γ)R be moduli stack of generalized elliptic curves over R-
schemes with Γ-level structures.

Definition 1.3.1. A cusp in Mell(Γ)R is an embedding Spf RJqK → Mell(Γ)R that classifies a Γ-level
structure on the Tate curve T (q). The q-expansion of a modular form f ∈H0(Mell(Γ)R,ω⊗k) at a cusp is
its image under restriction map to the said cusp.

Proposition 1.3.2 (The q-expansion principle). A modular form f ∈ H0(Mell(Γ)R,ω⊗k) is zero iff its
restriction to all cusps are zero. Furthermore, whenMell(Γ)R is connected, the restriction map to any cusp
is injective.

It follows that congruences of modular forms are determined by their q-expansions at any cusp whenMell(Γ)R is connected. By [Con07, Theorem 1.2.1], this is indeed the case when Γ = Γ1(N) and R = Z (so
works for any ring R).

Now normalize Ek,χ1,χ2
so that its coefficients are algebraic integers.

Definition 1.3.3 (Normalization of Gk,χ1,χ2
). When χ2 is non-trivial,

Ek,χ1,χ2
(q) = ∑

n≥1

⎛
⎝ ∑0<d∣nχ2(d)χ1(n/d)dk−1⎞⎠ qn.

When χ1 is the trivial character χ0 and χ2 = χ, we define Ek,χ and Ek,χ0,χ by

Ek,χ(q) ∶=1 − 2k

Bk,χ
∑
n≥1

⎛
⎝ ∑0<d∣nχ(d)d

k−1⎞⎠ qn

Ek,χ0,χ(q) ∶= c ⋅Ek,χ(q) =c0 + c1 ∑
n≥1

⎛
⎝ ∑0<d∣nχ(d)d

k−1⎞⎠ qn, c0, c1 ∈ Z[χ] are coprime and c0/c1 = −Bk,χ

2k
.

Remark 1.3.4. As Z[χ] has non-trivial unit group, the constant c is not unique in general.

Proposition 1.3.5. Ek,χ1,χ2
(q) ∈ (H0(Mell(µN),ω⊗k)⊗Z Z[χ1, χ2])χ1/χ2 .

Proof. By Lemma 1.2.2, Ek,χ1,χ2
∈ Mk(µN). It is in the χ1/χ2-eigensubspace by Theorem 1.1.4. As the

coefficients of Ek,χ1,χ2
(q) are all in Z[χ1, χ2] by Definition 1.3.3, the q-expansion principle Proposition 1.3.2

implies that

Ek,χ1,χ2
∈H0(Mell(µN) ×SpecZ SpecZ[χ1, χ2],ω⊗k).

When the conductors of χ1 and χ2 are 3, their images are {±1} and Z[χ1, χ2] = Z. When the conductors of
χ1 and χ2 are at least 4, the claim follows from Proposition 1.2.3. �

1.4. p-adic modulis. We will study congruences of Eisenstein series in Ek(µN , χ) p-adically.
Definition 1.4.1. An elliptic curve C over a p-complete ring is called (p-)ordinary if it has nodal singularity,

or its reduction mod p is ordinary, i.e. the formal group Ĉ associated to C has height 1 reduction mod p.
Denote the p-completed moduli stack of p-ordinary elliptic curve by Mord

ell . This is an open substack ofMell, since it is the non-vanishing locus of the Hasse invariant.



6 NINGCHUAN ZHANG

Restricted toMord
ell , the µpv -level structures on an elliptic curve C are identified with the corresponding

level structures on the height 1 formal group Ĉ. As formal groups of height 1 are étale locally isomorphic to
Ĝm, the multiplicative formal group, there is a tower of stacks:

Mtriv
ell ⋯ Mord

ell (p2) Mord
ell (p) Mord

ell ,

whereMord
ell (pv) andMtriv

ell are the moduli stacks of the pairs (C,η ∶ µpv

∼
Ð→ Ĉ[pv]) and (C,η ∶ Ĝm

∼
Ð→ Ĉ)

respectively, where C is an ordinary elliptic curves. The forgetful mapMord
ell (pv) →Mord

ell is a (Z/pv)×-torsor
andMtriv

ell →Mord
ell is a Z×p -torsor. There is a pullback diagram of towers of stacks:

(1.4.2)

Mtriv
ell ⋯ Mord

ell (p2) Mord
ell (p) Mord

ell

Spf Zp ⋯ B(1 + p2Zp) B(1 + pZp) BZ×p

⌟ ⌟ ⌟ ⌟

Proposition 1.4.3. [Kat75; Beh14] When p > 2 or p = 2 and v > 1, Mord
ell (pv) and Mtriv

ell are affine formal
schemes. In particular,Mtriv

ell ≃ SpfDp where Dp is the ring of divided congruences of p-adic modular forms.

The strategy now is to relate congruences of Ek,χ to finite subgroups of the formal groups and formal
A-modules associated to p-ordinary elliptic curves. Below are some facts about needed in the study of formal
group of a p-ordinary elliptic curve.

Proposition 1.4.4. Let C be a p-ordinary elliptic curve over a Zp-algebra. Denote its formal group by Ĉ.

(1) C has a canonical subgroup H of order p, where H = Ĉ[p].
(2) The quotient map ϕ ∶ C ↦ C/H is the relative Frobenius map on Mord

ell .

(3) Let f(q) be the q-expansion of a modular form over Mord
ell , then ϕ

∗f(q) = f(qp).
(4) There is an isomorphism of invertible sheaves F ∶ ω

∼
Ð→ ϕ∗ω overMord

ell , where ω is the sheaf of invariant
differentials of C.

We conclude by comparing the integral and p-adic moduli problems.

Lemma 1.4.5. If an elliptic curve C admits a µN -level structure, then it is p-ordinary for all primes p ∣ N .

Proof. As µp is a subgroup scheme of µN when p ∣ N , it suffices to prove the case when N = p. Notice µp is
p-torsion, any embedding of µp into an elliptic curve C must factor through C[p]. When C is p-supersingular,

C[p] = Ĉ[p]. Thus it reduces to showing that there is no embedding of µp into a height 2 formal group.
Using Dieudonné theory of finite groups schemes, we can show the only finite subgroup scheme of rank p

in a height 2 formal group is étale locally isomorphic to αp, which is not étale locally isomorphic to µp. �

Definition 1.4.6. LetMord
ell (pv,Γ1(N ′)) be the stack whose R-points are

Mord
ell (pv,Γ1(N ′))(R) = {(C/R,ηp, η′) ∣ C is a p-ordinary elliptic curve over R,

ηp ∶ µpv

∼
Ð→ Ĉ[pv], η′ ∶ Z/N ′ ↪ C[N] } .

Proposition 1.4.7. Write N = pv ⋅N ′, where p ∤ N ′. Then we have

(Mell(µN))∧p ≃ { Mord
ell (pv,Γ1(N ′)), if p ∣ N ;(Mell)∧p(Γ1(N)), if p ∤ N.

Proof. Canonical subgroups and Lemma 1.4.5. �

Proposition 1.4.8. The forgetful map ξ ∶Mord
ell (pv,Γ1(N ′))→Mord

ell (Γ0(N ′)) is a (Z/N)×-torsor of stacks.
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Proof. One can check this by unraveling the definition of G-torsors of stacks. �

Proposition 1.4.9. The stackMord
ell (pv,Γ1(N ′)) is represented by a smooth formal affine curve over Zp in

the following cases:

● N = pv ⋅N ′ ≥ 4 for any p.
● N = p = 3.
● N = N ′ = 3 and p ≡ 2 mod 3.

Proof. By Proposition 1.4.7, Mord
ell (pv,Γ1(N ′)) is the p-completion (when p ∣ N), or a distinguished open

substack of the p-completion (when p ∤ N) of Mell(µN). As the latter is represented by a smooth affine
curve over Z by Proposition 1.2.3, the first case of the claim follows.

When N = p = 3,Mord
ell (3) is affine by Proposition 1.4.3.

When N = 3 and p ≠ 3, it suffices to show the moduli problem is rigid as in the proof of Proposition 1.2.3.
Let ε be a nontrivial automorphism of C that preserves a Γ1(3)-level structure η′ ∶ Z/3 ↪ C[3]. Adapting

the proof of [KM85, Corollary 2.7.3] to the N = 3 case, we can show ε must satisfy ε2+ε+1 = 0. This implies
ε is an element of order 3 in Aut(C). By [Sil09, Proposition A.1.2.(c)], Aut(C) has an element of order 3 iff
its j-invariant is 0. By [Sil09, Example V.4.4, Exercise 5.7], the j = 0 elliptic curve is p-supersingular when
p ≡ 2 mod 3. As a result, when p ≡ 2 mod 3, there is no non-trivial automorphism of a p-ordinary elliptic C
that preserves a Γ1(3)-structure. This shows the moduli problemMord

ell (Γ1(3)) is rigid at such primes, and
hence represented by a smooth formal affine curve over Zp. �

Remark 1.4.10. The moduli problem Mord
ell (Γ1(3)) is NOT rigid when p ≡ 1 mod 3. For such primes, the

j = 0 elliptic curve C is p-ordinary. C has an automorphism ε of order 3. As C[3] is isomorphic to the
constant groups scheme Z/3⊕2, the automorphism ε restricts to an element of order 3 in GL2(Z/3). From

the identity 0 = ε3 − 1 = (ε − 1)3 in End(C[3]) ≃ M2(Z/3), ε is unipotent. Then there is a basis {P,Q} of

C[3] under which ε acts by the matrix (1 1
0 1
). Let η′ ∶ Z/3 ↪ C[3] that sends 1 ∈ Z/3 to P ∈ C[3]. The

matrix representations of ε shows it is an automoprhism of the pair (C,η′). Consequently,Mord
ell (Γ1(3)) is

the not rigid and is therefore not represented by a scheme.

Proposition 1.4.11. Let χ be a Dirichlet character of conductor N , where N = pvN ′ with p ∤ N ′. Denote the
Eisenstein subspace in the χ−1-eigensubspace in H0(Mord

ell (pv,Γ1(N ′)),ω⊗k ⊗ Zp[χ]) by Ek(pv,Γ1(N ′), χ).
Then we have a decomposition:

Ek(µN , χ)∧p ≃ ⊕
[σ]∈Coker ι∗

Ek(pv,Γ1(N ′), ι ○ σ ○ χ),
where ι ∶ Q(χ) ↪ Cp is a field extension and ι∗ ∶ Gal(ι(Q(χ))/Qp) → Gal(Q(χ)/Q) is the induced map of ι
on Galois groups.

Proof. This is a result of the equivalence of p-adic (Z/N)×-representations [Zha19, Corollary A.3.5]:

Z[χ]⊗Z Zp ≃ ⊕
[σ]∈Coker ι∗

Zp[ι ○ σ ○ χ].
�

Corollary 1.4.12. Let χ1 and χ2 be p-adic Dirichlet characters of conductor N1 and N2 respectively.
Then the normalized Eisenstein series Ek,χ1,χ2

in Definition 1.3.3 defines a p-adic Eisenstein series inEk(pv,Γ1(N ′), χ2/χ1), where N =N1N2 = pvN ′ and p ∤N ′.
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2. Eisenstein series and Galois representations

In this section, we adapt Katz’s explanation of congruences of E2k as p-adic modular forms in [Kat73b]
to study the congruences of p-adic Eisenstein series with level (µpv ,Γ1(N ′)).

Let χ ∶ (Z/N)× → C×p be a Dirichlet character of conductor N . Write N = pvN ′, where p ∤ N ′. Then χ
is uniquely factorized as a product χ = χp ⋅ χ

′, where χp and χ′ have conductors pv and N ′, respectively.

Let Z⊗kp [χ] be the p-adic (Z/N)×-representation, whose underlying module is Zp[χ] and where (a, b) ∈
Z×p × (Z/N ′)× acts on Zp[χ] by multiplication by ak ⋅ χp(a) ⋅ χ′(b). Throughout this section, we abbreviate

the Eisenstein subspace in H0(Mord
ell (pv,Γ1(N ′)),ω⊗k ⊗Zp[χ])χ−1 by Ek(pv,Γ1(N ′), χ).

Theorem (Main Theorem 2.6.1). Let I be an ideal of Zp[χ]. The followings are equivalent:

(i). There is an Eisenstein series f in Ek(pv,Γ1(N ′), χ) with q-expansion f(q) ∈ 1 + IqJqK.
(v). The Z×p × (Z/N ′)×-representation Z⊗kp [χ] is trivial modulo I.
The proof of the Main Theorem relies heavily on the Dieudonné theory of formal groups and formal A-

modules, which will be briefly reviewed in the next subsection. A reference for the general theory of formal
groups and Dieudonné theory can be found in [Dem72].

2.1. Review of Dieudonné modules and Galois descent of formal groups. Let R be a smooth Zp-
algebra such that R/p is an integrally closed domain and R admits an endomorphism ϕ ∶ R → R that lifts
the p-th power map on R.

The Dieudonné module D(Ĝ) of a formal group Ĝ0 over R/p is a triple

D(Ĝ) = (M,F ∶M Ð→ ϕ∗M,V ∶ ϕ∗M Ð→M),
where M = PH1

dR(Ĝ/R) is the primitives in the de-Rham cohomology for some lift Ĝ of Ĝ0 to R and
FV = p = V F on the respective domains. Formal groups of the same height h <∞ over R/p are étale locally
isomorphic to each other. It follows that their isomorphism classes are classified by the continuous Galois
cohomology H1

c (πét
1 (R/p);Aut(Γh)), where Γh is the height h Honda formal group. The Galois cohomology

class [ρ] ∈H1
c (πét

1 (R/p);Aut(Γh)) that corresponds to Ĝ0 is called the Galois descent data of Ĝ0.

When Ĝ has height (slope) 1, PH1
dR(Ĝ/R) = ω(Ĝ) is the sheaf of invariant differentials of Ĝ and F ∶

M Ð→ ϕ∗M is an isomorphism. As a result, the Verschiebung V is determined by F . In this case, we will

write D(Ĝ) = (ω(Ĝ), F ∶ ω(Ĝ) ∼
Ð→ ϕ∗ω(Ĝ)).

Example 2.1.1. Let R be a Zp-algebra and ϕ ∶ R → R be a lift of Frobenius map. . Denote the Dieudonné

module of Ĝm/R, the multiplicative formal group over R by D(Ĝm) = (M,F ∶ M
∼
Ð→ ϕ∗M). Then M is a

free R-module of rank 1 generated by an element γ such that F (γ) = γ.
The Galois descent data of height 1 formal groups are described by the following:

Proposition 2.1.2. Hom(πét
1 (R),Z×p) is an abelian group and classifies isomorphism classes of formal

groups over R with height 1 reductions modulo p. The trivial map in Hom(πét
1 (R),Z×p) corresponds to Ĝm

Proof. When h = 1, Γ1 = Ĝm and Aut(Ĝm) ≃ Z×p is an abelian group. Since p is (topologically) nilpotent

in R, πét
1 (R) ≃ πét

1 (R/p). Since formal groups of height 1 over R/p are étale locally isomorphic to Ĝm,
H1

c (πét
1 (R);Z×p) ≃ H1

c (πét
1 (R/p);Z×p) classifies isomorphism classes of formal groups of height 1 over R/p.

This shows the “constant 1” Galois cohomology class corresponds to Ĝm over R/p. This Galois cohomology
is an abelian group since Z×p is an abelian group. As the étale fundamental group acts trivially on Z×p , we

have H1
c (πét

1 (R);Z×p) ≃ Hom(πét
1 (R),Z×p). This shows Ĝm is classified by the trivial group homomorphism

in Hom(πét
1 (R),Z×p).
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By Lubin-Tate deformation theory of formal groups, height 1 formal groups over R/p have unique defor-
mations to R. This shows Hom(πét

1 (R),Z×p) ≃H1
c (πét

1 (R);Z×p) classifies isomorphism classes of formal groups
over R with height 1 reductions modulo p. �

This suggests a closed symmetric monoidal structure in the category of 1-dimensional formal groups of
height 1. Let ρi ∶ π

ét
1 (R) → Z×p be the Galois descent data for the height 1 formal groups Ĝi, i = 1,2. Then

the Galois descent data for Ĝ1 ⊗ Ĝ2 is ρ1 ⋅ ρ2. In terms of Dieudonné modules, this monoidal structure is
described by

D(Ĝ1 ⊗ Ĝ2) = (ω1 ⊗R ω2, F1 ⊗F2 ∶ ω1 ⊗R ω2
∼
Ð→ ϕ∗ω1 ⊗ϕ∗R ϕ

∗
ω2 ≃ ϕ∗(ω1 ⊗R ω2)),

where D(Ĝi) = (ωi, Fi, Vi). Below are two relevant examples in this paper:

Example 2.1.3. Let C be the universal elliptic curve over Mord
ell and Ĉ be its formal group. Ĉ is a

height 1 formal group since C is a p-ordinary elliptic curve. Denote the Galois descent data for Ĉ by

ρ1 ∶ πét
1 (Mord

ell ) → Z×p . The pair (ω, F ∶ ω ∼
Ð→ ϕ∗ω) described in Proposition 1.4.4 is the Dieudonné module

of Ĉ, where F (f(q)) = f(qp) on q-expansions of modular forms. Denote of the k-th monoidal power of Ĉ by

Ĉ⊗k. The Galois descent data for Ĉ⊗k is

ρk ∶ πét
1 (Mord

ell ) ρ1

Ð→ Z×p
(−)k
ÐÐ→ Z×p ,

The Dieudonné module of Ĉ⊗k is

D(Ĉ⊗k) = (ω⊗k, F⊗k ∶ ω⊗k ∼
Ð→ ϕ∗ω⊗k),

where F⊗k(f(q)) = f(qp) on q-expansions.
As the Eisenstein series we study in this paper have coefficients in Zp[χ], it is necessary to work with

formal Zp[χ]-modules. Let A be an algebra. A formal A-module is a formal group Ĝ together with an

embedding of algebras i ∶ A↪ EndFG(Ĝ) such that the composite

A EndFG(Ĝ) End(ω(Ĝ))
realizes ω(Ĝ) as an A-module. We will write the power series representation of i(a) by [a]. Any formal

group Ĝ comes with a unique formal Z-module structure. When Ĝ is defined over a p-complete ring R, this
formal Z-module structure extends (uniquely) to a formal Zp-module structure, since lim

v→∞
[pv](t) = 0 in RJtK.

Construction 2.1.4. When A is Zp-algebra that is a finite free Zp-module, we define a formal A-module

Ĝ⊗A out of a 1-dimensional formal group Ĝ. The underlying formal group of Ĝ⊗A is Ĝ⊕r, where r is the
rank of A as a free Zp-module. The A-action on Ĝ⊗A = Ĝ⊕r is given by

A = EndA(A) EndZp
(Z⊕rp ) EndFG(Ĝ⊕r).

where the first map is induced by A ≃ Z⊕rp . Write D(Ĝ) = (ω(Ĝ), F, V ). The Dieudonné module of Ĝ⊗A is

D(Ĝ⊗A) = D(Ĝ)⊗A = (ω(Ĝ)⊗A,F ⊗ 1, V ⊗ 1).
If the height of Ĝ is h, let [ρ] ∈H1

c (πét
1 (R);Aut(Γh)) be the Galois descent data for Ĝ. Ĝ⊗A is étale locally

isomorphic to Γh ⊗A as a formal A-module. Then we have an embedding of algebras:

i ∶ End(Γh) Endformal A-mod(Γh ⊗A) ≃ End(Γh)⊗A g z→ g ⊗ 1.

i restricts to a group homomorphism on the units (automorphisms). The Galois descent data for Ĝ ⊗A is
then the image of [ρ] under the induced map of i in Galois cohomology.
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2.2. Sketch of the proof. The proof of Theorem 2.6.1 has three steps, which will be explained in details
in the rest of this section. Here is a sketch:

I. By viewing the Dirichlet character χ as a Galois cohomology class, we construct a formal Zp[χ]-module

Ĉk,χ of height 1 overMord
ell (Γ0(N ′)) such that

H0(Mord
ell (pv,Γ1(N ′)),ω⊗k ⊗Zp[χ])χ−1 ≃H0(Mord

ell (Γ0(N ′)),ω(Ĉk,χ)).
In this way, we translate congruences of Eisenstein series in Ek(pv,Γ1(N ′), χ) to those of elements in

the Dieudonné module of Ĉk,χ.
II. By reformulating a Riemann-Hilbert type correspondence in [Kat73b] using the Dieudonné theory of

height 1 formal A-modules and their finite subgroups, we relate the congruence of the Dieudonné
module D(Ĉk,χ) with that of the Galois descent data [ρk,χ] for Ĉk,χ.

III. The Galois cohomology class [ρk,χ] ∈ H1
c (πét

1 (Mord
ell (Γ0(N ′))); (Zp[χ])×) is represented by a group

homomorphism that factorizes as

ρk,χ ∶ πét
1 (Mord

ell (Γ0(N ′))) ρ1×λN ′ÐÐÐÐ→ Z×p × (Z/N ′)× (a,b)↦χp(a)χ′(b)ak

ÐÐÐÐÐÐÐÐÐÐÐ→ (Zp[χ])×.
Here ρ1 ∶ πét

1 (Mord
ell (Γ0(N ′))) → Z×p is the Galois descent data for Ĉ described in Example 2.1.3 and

λN ′ ∶ π
ét
1 (Mord

ell (Γ0(N ′))) → (Z/N ′)× classifies the (Z/N ′)×-torsor Mord
ell (Γ1(N ′)) →Mord

ell (Γ0(N ′)).
The theorem then follows from the surjectivity of ρ1 × λN ′ .

2.3. Step I: Dirichlet characters and Galois descent. The first step in the proof of the Main Theorem
is to view the Dirichlet character χ ∶ (Z/N)× → C×p as the Galois descent data for a formal A-module Ĉk,χ

of height 1 over Mord
ell (Γ0(N ′)) along the (Z/N)×-torsor ξ ∶ Mord

ell (pv,Γ1(N ′)) Ð→ Mord
ell (Γ0(N ′)). (See

Proposition 1.4.8 for a proof that ξ is a (Z/N)×-torsor.)
Construction 2.3.1. Let (C,ηp, η′) be the universal elliptic curve with the given level structures over

Mord
ell (pv,Γ1(N ′)) and Ĉ be its formal group. Then Ĉ⊗k ⊗ Zp[χ] is a formal Zp[χ]-module of height 1.

Notice that:

● The automorphism group of Ĉ⊗k ⊗Zp[χ] as a formal Zp[χ]-module is (Zp[χ])×.
● The forgetful map ξ ∶Mord

ell (pv,Γ1(N ′))→Mord
ell (Γ0(N ′)) is a (Z/pv)× × (Z/N ′)× ≃ (Z/N)×-torsor.

The Dirichlet character χ ∶ (Z/N)× → C×p then represents a cohomology class

[χ] ∈H1((Z/N)× ; (Zp[χ])×)
≃H1(AutMord

ell
(Γ0(N ′))(Mord

ell (pv,Γ1(N ′)));Autformal Zp[χ]-mod(Ĉ⊗k ⊗ Zp[χ])),
where (Z/N)× acts on (Zp[χ])× trivially. This cohomology group classifies isomorphism classes of formal

Zp[χ]-modules Ĝ overMord
ell (Γ0(N ′)) such that ξ∗Ĝ ≃ Ĉ⊗k ⊗Zp[χ] overMord

ell (pv,Γ1(N ′)). In this way, the

cohomology class [χ] corresponds to a formal Zp[χ]-module Ĉk,χ overMord
ell (Γ0(N ′)). More precisely, fix

an isomorpshim η ∶ ξ∗Ĉk,χ ∼
Ð→ Ĉ⊗k⊗Zp[χ], then for any σ ∈ (Z/N)× ≃ AutMord

ell
(Γ0(N ′))(Mord

ell (pv,Γ1(N ′))),
we have a commutative diagram of isomorphisms:

ξ∗Ĉk,χ σ∗ξ∗Ĉk,χ ξ∗Ĉk,χ

Ĉ⊗k ⊗ Zp[χ] σ∗(Ĉ⊗k ⊗Zp[χ]) Ĉ⊗k ⊗Zp[χ]
η

σ⊗1

σ∗η σ∗η

[χ(σ)]
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In this diagram,

● [χ(σ)] is defined in Construction 2.1.4.
● σ∗η = η since (Z/N)× acts on (Zp[χ])∗ trivially.

● The correspondence between Ĉk,χ and χ is independent of the choice of the isomorpshism η, since
AutZp[χ](Ĉ⊗k ⊗Zp[χ]) = (Zp[χ])× is abelian.

Let ωk,χ
∶= ω(Ĉk,χ) be the sheaf of invariant differentials of Ĉk,χ. ωk,χ is a locally free finitely generated

sheaf overMord
ell (Γ0(N ′)), since it is the cotangent sheaf of a formal scheme that is étale locally isomorphic

to Âr, where r is the rank of Zp[χ] as a Zp-module.

Proposition 2.3.2. ξ∗ωk,χ ≃ ω⊗k ⊗ Zp[χ] over Mord
ell (pv,Γ1(N ′)). The sheaf cohomology of ωk,χ is com-

puted as follows:

(1). H0(Mord
ell (Γ0(N ′)),ωk,χ) ≃H0(Mord

ell (pv,Γ1(N ′)),ω⊗k ⊗Zp[χ])χ−1 for all N > 1.
(2). When N > 3 or N = 3 and p /≡ 1 mod 3, we have for all s ≥ 0:

Hs(Mord
ell (Γ0(N ′)),ωk,χ) ≃Hs((Z/N)× ;H0(Mord

ell (pv,Γ1(N ′)),ω⊗k ⊗ Zp[χ])).
(3). When p ∤ φ(N) = ∣ (Z/N)× ∣, we have for all t ≥ 0:

Ht(Mord
ell (Γ0(N ′)),ωk,χ) ≃Ht(Mord

ell (pv,Γ1(N ′)),ω⊗k ⊗ Zp[χ])χ−1 .
(4). In particular, when N and p satisfy both conditions above, we further have:

Hs(Mord
ell (Γ0(N ′)),ωk,χ) = { H0(Mord

ell (pv,Γ1(N ′)),ω⊗k ⊗Zp[χ])χ−1 , s = 0;
0, otherwise.

Proof. The functor ω is compatible with pullbacks, yielding

ξ∗ωk,χ = ξ∗ω(Ĉk,χ) ≃ ω(ξ∗Ĉk,χ) ≃ ω(Ĉ⊗k ⊗Zp[χ]) = ω⊗k ⊗Zp[χ].
To compute Hs(Mord

ell (Γ0(N ′)),ωk,χ), we use the Hochschild-Serre spectral sequence [Mil80, Theorem 2.20]:

(2.3.3) E
s,t
2 =Hs((Z/N)× ;Ht(Mord

ell (pv,Γ1(N ′)), ξ∗ωk,χ))Ô⇒ Hs+t(Mord
ell (Γ0(N ′)),ωk,χ),

where σ ∈ (Z/N)× acts on ξ∗ωk,χ ≃ ω⊗k⊗Zp[χ] by the Galois descent data 1⊗χ(σ). As the spectral sequence
is concentrated in the first quadrant, its E0,0

2 -term receives and supports no differentials. This implies (1).

By Proposition 1.4.9, the stack Mord
ell (pv,Γ1(N ′)) is a formal affine scheme when N ≥ 4 or N = 3 and

p /≡ 1 mod 3. It follows that (2.3.3) is concentrated in the t = 0 line in those cases. As a result, the spectral
sequence collapses on the E2-page and we have proved (2).

When p ∤ φ(N) = ∣ (Z/N)× ∣, the group cohomology of (Z/N)× with coefficients in Zp-modules vanishes
in positive degrees. It follows that (2.3.3) is concentrated in the s = 0 line in this case and thus collapses on
the E2-page. This implies (3).

(4) is the intersection of (2) and (3). �

Remark 2.3.4. Note that 2 is the only prime p dividing φ(3) = 2. The spectral sequence (2.3.3) collapses on
the E2-page for all N ≥ 3 and p.

We have proved in Proposition 2.3.2:

(2.3.5) H0(Mord
ell (pv,Γ1(N ′)),ω⊗k ⊗ Zp[χ])χ−1 ≃H0(Mord

ell (Γ0(N ′)),ωk,χ).
Write D(Ĉk,χ) = (ωk,χ, F k,χ

∶ ω
k,χ ∼
Ð→ ϕ∗ωk,χ). The Frobenius homomorphism F k,χ of Ĉk,χ descends from

that of ξ∗Ĉk,χ ≃ Ĉ⊗k ⊗Zp[χ]. By Example 2.1.3 and Construction 2.1.4, we have

ξ∗F k,χ = F⊗k ⊗ 1 ∶ ω⊗k ⊗ Zp[χ] ∼
Ð→ ϕ∗ω⊗k ⊗Zp[χ].
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Notice F⊗k ⊗ 1 commutes with the Galois descent data 1⊗ χ(σ) for σ ∈ (Z/N)×, we have shown

Proposition 2.3.6 (Step I). Let f ∈ H0(Mord
ell (pv,Γ1(N ′)),ω⊗k ⊗ Zp[χ])χ−1 ≃ H0(Mord

ell (Γ0(N ′)),ωk,χ)
be an Eisenstein series, then F k,χ(f(q)) = (F⊗k ⊗ 1)(f(q)) = f(qp). Let I ⊴ Zp[χ] be an ideal. Then the
followings are equivalent:

(i). There is an Eisenstein series f ∈ Ek(pv,Γ1(N ′), χ) such that f(q) ∈ 1 + IqJqK.
(ii). There is a generator γ ∈H0(Mord

ell (Γ0(N ′)),ωk,χ) as an H0(Mord
ell (Γ0(N ′)),O)⊗Zp[χ]-module such

that F k,χ(γ) ≡ γ mod I.
This concludes step I in Section 2.2.

2.4. Step II: From Dieudonné modules to Galois representations. One major tool Katz used in
[Kat73b, Chapter 4] to explain the congruences of the normalized Eisenstein series E2k of level 1 is a
Riemann-Hilbert type correspondence. In this subsection, we reformulate the correspondence in terms of
formal A-modules and their finite subgroup schemes, and then apply it to the formal Zp[χ]-module Ĉk,χ

overMord
ell (Γ0(N ′)) we constructed in Construction 2.3.1.

Let κ be a perfect field of characteristic p containing Fq and Wm(Fq) be the ring of Witt vectors of length
m on Fq. Let Sm be a flat affine Wm(κ)-scheme whose special fiber is normal, reduced, and irreducible.
Assume Sm is formally smooth, so that it admits an endomorphism ϕ ∶ Sm → Sm that lifts the q-th power
map on Sm/p. Then Katz proved

Theorem 2.4.1. [Kat73b, Proposition 4.1.1, Remark 4.1.2.1]
There is an equivalence of closed symmetric monoidal categories:

{ Finite locally free sheaves F on Sm

with an isomorphism F ∶ ϕ∗F
∼
Ð→F

} ≅ { Finite free Wm(Fq)-modules
with continuous πét

1 (Sm)-actions } .
Proposition 2.4.2. [Kat73a, Remark 5.5] Theorem 2.4.1 holds for affine formal schemes S over W(κ)
under the same assumption. That is, there is an equivalence of closed symmetric monoidal category:

{ Finite locally free sheaves F on S

with an isomorphism F ∶ ϕ∗F
∼
Ð→F

} ≅ { Finite free W(Fq)-modules
with continuous πét

1 (S)-actions } .
This equivalence of Katz is essentially an equivalence of Dieudonné module and Galois descent data of a

formal group and its finite subgroups. Let A be a Zp-algebra that is finite free as a Zp-module and Ĝ be
formal A-module of height 1. Let I ⊴ A be an ideal.

Definition 2.4.3. Define Ĝ[I] to be the kernel of all the endomorphisms in I ⊴ A↪ End(Ĝ). If Ĝ = SpfRJtK

has a coordinate, then Ĝ[I] = Spf RJtK /([a](t) ∣ a ∈ I) as a finite flat scheme. When I = (a) is a principal

ideal, Ĝ[I] = Ĝ[a] = SpfRJtK/([a](t)).
Proposition 2.4.4. Let Ĝ be a formal A-module. Write the Dieudonné module of Ĝ as D(Ĝ) = (M,F,V ).
Then M has an A-module structure and the homomorphisms F and V are A-linear. The Dieudonné module
of Ĝ[I] is D(Ĝ)/I ∶= (M/IM,F ∶M/IM → ϕ∗(M/IM), V ∶ ϕ∗(M/IM)→M/IM).
Proposition 2.4.5. Let Ĝ be a formal A-module over R that is isomorphic to Ĝ′ over the separable closure
Rsep of R. Let the cohomology class [ρ] ∈ H1

c (πét
1 (R);AutA(Ĝ′)) be the Galois descent data for Ĝ. [ρ] is

represented by some crossed homomorphism ρ ∶ πét
1 (R) → AutA(Ĝ′). Then the Galois descent data for the

finite flat group scheme Ĝ[I] is represented by the crossed homomorphism:

ρI ∶ π
ét
1 (R) ρ

Ð→ AutA(Ĝ′) Ð→ Aut(Ĝ′[I]),
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where the last map AutA(Ĝ′) Ð→ Aut(Ĝ′[I]) is the restriction of the quotient map

EndA(Ĝ′) EndA(Ĝ′)/(I ⊗A EndA(Ĝ′)) ≃ EndA(Ĝ′[I])
to the units.

In the view of Proposition 2.4.4 and Proposition 2.4.5, Katz’s Riemann-Hilbert correspondence (Theorem 2.4.1)
can be generalized as:

Theorem 2.4.6. Let Ĝ be a formal A-module of height 1 over R, where SpfR satisfies the same assumptions

as in Theorem 2.4.1. Let D(Ĝ) = (M,F ∶M
∼
Ð→ ϕ∗M) and ρ ∶ πét

1 (R) → A× be the Dieudonné module and

Galois descent data for Ĝ, respectively. Then the followings are equivalent:

(1) There is a generator γ of M as an R⊗A-module such that Fγ ≡ γ mod I.
(2) Ĝ[I] ≃ (Ĝm ⊗A)[I].
(3) The composition homomorphism ρI ∶ π

ét
1 (R) ρ

Ð→ A×↠ (A/I)× is trivial.

Proof. Let’s prove the case when R = R/p. By [Jon95, Main Theorem 1], the functor D is an equivalence
over R. The claim then follows from the computation of the Dieudonné module and the Galois descent data
of Ĝm in Example 2.1.1, as well as Proposition 2.4.4 and Proposition 2.4.5.

Now let R be a Wκ-algebra. Using the Lubin-Tate deformation theory, we can show there is an equivalence
between height 1 formal groups over R/p and their deformations to R/p. The claim now follows from the
R = R/p-case. �

Remark 2.4.7. Katz’s Theorem 2.4.1 is the I = (pm) ⊴ A =WFq case of Theorem 2.4.6.

Remark 2.4.8. We can generalize Theorem 2.4.1 and Proposition 2.4.2 in terms of formal groups and formal
A-modules of height h > 1. In that case, we need to study the Dieudonné module of the height h Honda
formal group Γh and its finite subgroup schemes.

Now apply Theorem 2.4.6 to the formal Zp[χ]-module Ĉk,χ overMord
ell (Γ0(N ′)) constructed in Construction 2.3.1,

we have established Step II in Section 2.2:

Corollary 2.4.9 (Step II). Let I ⊴ Zp[χ] be an ideal. The followings are equivalent:

(ii). There is a generator γ ∈ H0(Mord
ell (Γ0(N ′)),ωk,χ) such that F k,χ(γ) ≡ γ mod I.

(iii). Ĉk,χ[I] ≃ (Ĝm ⊗ Zp[χ])[I].
(iv). The Galois descent data ρk,χ ∶ πét

1 (Mord
ell (Γ0(N ′))→ (Zp[χ])× of Ĉk,χ is trivial modulo I.

2.5. Step III: Factorizations of the Galois descent data. The final step is to study the Galois descent
data ρk,χ for Ĉk,χ. Recall from Construction 2.3.1, Ĉk,χ is constructed using the following data:

● ξ∗Ĉk,χ ≃ Ĉ⊗k⊗Zp[χ] overMord
ell (pv,Γ1(N ′)), where ξ ∶Mord

ell (pv,Γ1(N ′))→Mord
ell (Γ0(N ′)) is the forgetful

map.
● Ĉk,χ corresponds to the character [χ] ∈H1((Z/N)× ; (Zp[χ])×).
Proposition 2.5.1. ρk,χ ∶ πét

1 (Mord
ell (Γ0(N ′))→ (Zp[χ])× factorizes as

ρk,χ ∶ πét
1 (Mord

ell (Γ0(N ′))) ρ1×λξ

ÐÐÐ→ Z×p × (Z/N)× (−)
k
⋅χ(−)

ÐÐÐÐÐ→ (Zp[χ])×,
where λξ ∶ π

ét
1 (Mord

ell (Γ0(N ′)))→ (Z/N)× is the character that classifies the (Z/N)×-torsor ξ.
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Proof. Recall in Construction 2.3.1, we used the following correspondence to construct Ĉk,χ from the char-
acter χ:

(2.5.2) H1((Z/N)× ; (Zp[χ])×) ≃ { Formal Zp[χ]-modules Ĝ overMord
ell (Γ0(N ′))

such that ξ∗Ĝ ≃ Ĉ⊗k ⊗ Zp[χ] overMord
ell (pv,Γ1(N ′)) }/ ∼

Here, the constant group homomorphism on the left hand side corresponds to the formal Zp[χ]-module

Ĉ⊗k ⊗ Zp[χ] over Mord
ell (Γ0(N ′)). Now we need to describe this correspondence in terms of the Galois

descent data ρĜ of Ĝ. On the one hand, since ξ∗Ĝ ≃ Ĉ⊗k ⊗ Zp[χ], the composition

(2.5.3) πét
1 (Mord

ell (pv,Γ1(N ′))) πét
1
(ξ)

ÐÐÐ→ πét
1 (Mord

ell (Γ0(N ′))) ρ
ĜÐ→ (Zp[χ])×

is the same as the Galois descent data for the formal Zp[χ]-module Ĉ⊗k⊗Zp[χ] overMord
ell (pv,Γ1(N ′)). On

the other hand, by Example 2.1.3 and Construction 2.1.4, this Galois descent data also factorizes as

(2.5.4) πét
1 (Mord

ell (pv,Γ1(N ′))) πét
1
(ξ)

ÐÐÐ→ πét
1 (Mord

ell (Γ0(N ′))) ρ1

Ð→ Z×p
(−)k
ÐÐ→ Z×p

i
Ð→ (Zp[χ])×.

Denote the composition i ○ (−)k ○ ρ1 in (2.5.4) by ρk. Since the first maps in (2.5.3) and (2.5.4) are both
πét
1 (ξ) and the compositions are the same, the difference of ρĜ and ρk must factor through the cokernel of

πét
1 (ξ). We have the following diagram:

πét
1 (Mord

ell (pv,Γ1(N ′))) πét
1 (Mord

ell (Γ0(N ′))) (Z/N)× 1

(Zp[χ])×

πét
1
(ξ) λξ

ρ
Ĝ ρk

∃! χ
Ĝ

As the cokernel of πét
1 (ξ), λξ classifies the (Z/N)×-torsor ξ ∶Mord

ell (pv,Γ1(N ′))→Mord
ell (Γ0(N ′)). It follows

the that there exists a unique character χĜ ∶ (Z/N)× → Zp[χ] such that for any σ ∈ πét
1 (Mord

ell (Γ0(N ′))),
ρĜ(σ) = (ρ1(σ))k ⋅ (χĜ ○ λξ)(σ).

This χĜ is the character corresponding to Ĝ in (2.5.2). Since Ĉk,χ is constructed using χ, we have

ρk,χ(σ) = (ρ1(σ))k ⋅ (χ ○ λξ)(σ) = ((−)k ⋅ χ(−)) ○ (ρ1 × λξ)(σ)
for all σ ∈ πét

1 (Mord
ell (Γ0(N ′))). �

Now we need to find the image of ρ1 × λξ.

Proposition 2.5.5. ρ1 × λξ ∶ π
ét
1 (Mord

ell (Γ0(N ′)))Ð→ Z×p × (Z/N)× factorizes as:

ρ1 × λξ ∶ π
ét
1 (Mord

ell (Γ0(N ′))) ρ1
×λN ′ÐÐÐÐ→ Z×p × (Z/N ′)× (a,b)↦(a,[a],b)ÐÐÐÐÐÐÐÐ→ Z×p × (Z/pv)× × (Z/N ′)× ≃ Z×p × (Z/N)× ,

where λN ′ ∶ π
ét
1 (Mord

ell (Γ0(N ′)))→ (Z/N ′)× classifies the (Z/N ′)×-torsorMord
ell (Γ1(N ′))→Mord

ell (Γ0(N ′)).
Proof. We prove the factorization by translating Galois representations into torsors overMord

ell (Γ0(N ′)).
Lemma 2.5.6. The character ρ1 ∶ πét

1 (Mord
ell (Γ0(N ′))) → Z×p classifies the Z×p-torsor Mtriv

ell (Γ0(N ′)) →Mord
ell (Γ0(N ′)), where Mtriv

ell (Γ0(N ′)) is a stack whose R-points are

Mtriv
ell (Γ0(N ′))(R) ∶= {(C/R,η ∶ Ĝm

∼
Ð→ Ĉ,H ⊆ C[N ′]) ∣H ≃ Z/N ′}.
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Proof of the Lemma. Recall that [ρ1] ∈ H1
c (πét

1 (Mord
ell (Γ0(N ′)));Z×p) is the Galois descent data for Ĉ, the

formal group of the universal elliptic curve over Mord
ell (Γ0(N ′)). The character ρ1 then corresponds to a

Z×p -torsor overMord
ell (Γ0(N ′)) such that its fiber over the an R-point (C/R,H ⊆ C[N ′]) is the set of triples

(C/R,η ∶ Ĝm
∼
Ð→ Ĉ,H ⊆ C[N ′]). �

Lemma 2.5.6 implies that the character ρ1 × λξ classifies the Z×p × (Z/N)×-torsor Mtriv
ell (pv,Γ1(N ′)) →Mord

ell (Γ0(N ′)), whereMtriv
ell (pv,Γ1(N ′)) is a stack whose R-points are

Mtriv
ell (pv,Γ1(N ′))(R) ∶= {(C/R,η, ηp, η′) ∣ η ∶ Ĝm

∼
Ð→ Ĉ, ηp ∶ µpv

∼
Ð→ Ĉ[pv], η′ ∶ Z/N ′ ↪ C[N ′]}.

Sitting in betweenMtriv
ell (pv,Γ1(N ′)) andMord

ell (Γ0(N ′)) is the stackMtriv
ell (Γ1(N ′)), whose R-points are

Mtriv
ell (Γ1(N ′))(R) ∶= {(C/R,η, η′) ∣ η ∶ Ĝm

∼
Ð→ Ĉ, η′ ∶ Z/N ′ ↪ C[N ′]}.

In the Z×p × (Z/N)×-torsor
Mtriv

ell (pv,Γ1(N ′)) Mtriv
ell (Γ1(N ′)) Mord

ell (Γ0(N ′)),
the first mapMtriv

ell (pv,Γ1(N ′))Ð→Mtriv
ell (Γ1(N ′)) is a (Z/pv)×-torsor that admits a section:

s ∶Mtriv
ell (Γ1(N ′))Ð→Mtriv

ell (pv,Γ1(N ′)), (C/R,η, η′)z→ (C/R,η, η∣Ĉ[pv], η
′).

The existence of this section implies that ρ1 × λξ must factor through ρ1 × λN ′ ∶ π
ét
1 (Mord

ell (Γ0(N ′))) →
Z×p × (Z/N ′)×, the character corresponding to the Z×p × (Z/N ′)×-torsor Mtriv

ell (Γ1(N ′)) → Mord
ell (Γ0(N ′)).

The formula of s then yields a commutative diagram:

πét
1 (Mord

ell (Γ0(N ′))) Z×p × (Z/N)×

Z×p × (Z/N ′)× Z×p × (Z/pv)× × (Z/N ′)×

ρ1
×λξ

ρ1
×λN ′

(a,b)↦(a,[a],b)

�

Combining Proposition 2.5.1 and Proposition 2.5.5, we have shown

Corollary 2.5.7. ρk,χ ∶ πét
1 (Mord

ell (Γ0(N ′))→ (Zp[χ])× factorizes as

(2.5.8) ρk,χ ∶ πét
1 (Mord

ell (Γ0(N ′))) ρ1
×λN ′ÐÐÐÐ→ Z×p × (Z/N ′)× (a,b)↦χp(a)χ′(b)ak

ÐÐÐÐÐÐÐÐÐÐÐ→ (Zp[χ])×.
To relate the congruence of ρk,χ with that of the second map in (2.5.8), it remains to show:

Proposition 2.5.9. ρ1 × λN ′ ∶ π
ét
1 (Mord

ell (Γ0(N ′)))Ð→ Z×p × (Z/N ′)× is surjective.

Proof. By [Sza09, Theorem 5.4.2], the surjectivity of ρ1 × λN ′ is equivalent to the connectivity of the Z×p ×(Z/N ′)×-torsor it classifies. As ρ1 × λN ′ classifies the torsorMtriv
ell (Γ1(N ′)) →Mord

ell (Γ0(N ′)), we need to
showMtriv

ell (Γ1(N ′)) is connected.
By a relative version of Igusa’s theorem in [KM85, Corrollary 12.6.2.(2)], Mtriv

ell (Γ1(N ′)) is connected

wheneverMord
ell (Γ1(N ′)) is. The integral stackMell(Γ1(N ′)) has geometrically connected fiber by [Con07,

Theorem 1.2.1]. It is also smooth by [KM85, Corollary 4.7.1]. It follows thatMell(Γ1(N ′)) is irreducible and
so is its p-completionMell(Γ1(N ′))∧p . From this we concludeMord

ell (Γ1(N ′)) is irreducible (hence connected),
since it is an open substack of an irreducible stack. �

Now by Corollary 2.5.7 and Proposition 2.5.9, we have proved:



16 NINGCHUAN ZHANG

Corollary 2.5.10 (Step III). Let I ⊴ Zp[χ] be an ideal. The followings are equivalent:

(iv). The composition ρk,χ ∶ πét
1 (Mord

ell (Γ0(N ′))) Ð→ (Zp[χ])× ↠ (Zp[χ]/I)× is trivial.

(v). The composition Z×p × (Z/N ′)× (a,b)↦χp(a)χ′(b)ak

ÐÐÐÐÐÐÐÐÐÐÐ→ (Zp[χ])×↠ (Zp[χ]/I)× is trivial.

2.6. Restatement of the Main Theorem. Combining Proposition 2.3.6, Corollary 2.4.9, and Corollary 2.5.10,
we now restate the Main Theorem:

Theorem 2.6.1 (Main Theorem, restated). Let I ⊴ Zp[χ] be an ideal. Then the followings are equivalent:

(i). There is an Eisenstein series f ∈ Ek(pv,Γ1(N ′), χ) such that f(q) ∈ 1 + IqJqK.
(ii). There is a generator γ ∈ H0(Mord

ell (Γ0(N ′)),ωk,χ) such that F k,χ(γ) ≡ γ mod I.
(iii). Ĉk,χ[I] ≃ (Ĝm ⊗ Zp[χ])[I].
(iv). The Galois descent data ρk,χ ∶ πét

1 (Mord
ell (Γ0(N ′))→ (Zp[χ])× of Ĉk,χ is trivial modulo I.

(v). The character Z×p × (Z/N ′)× (a,b)↦χp(a)χ′(b)ak

ÐÐÐÐÐÐÐÐÐÐÐ→ (Zp[χ])× is trivial modulo I.
Remark 2.6.2. When the character χ is trivial, we recover Katz’s algebro-geometric explanation of congru-
ences of p-adic Eisenstein series of level 1 in [Kat73b, Corollary 4.4.1]. In that case, Step I in the proof above
is not needed.

3. The maximal congruence of Eisenstein series

Theorem 2.6.1 identifies the maximal congruence of Eisenstein series in Ek(pv,Γ1(N ′), χ) with that of
Z⊗kp [χ] as a Z×p × (Z/N ′)×-representation in Zp[χ]-modules. In this section, we first compute the maximal

congruence of Z⊗kp [χ] and then find explicit examples of Eisenstein series that realize this congruence in
certain cases.

3.1. Congruences of p-adic representations.

Definition 3.1.1. Let R be a p-complete local ring and M be a torsion-free R-module with a continuous
R-module action by a profinite group G. M is said to be a trivial G-representation modulo an ideal I ⊴ R
if G acts on M/IM trivially, or equivalently (M/IM)G = M/IM . The maximal congruence of M as a
G-representation is the smallest ideal I such that M/IM is a trivial G-representation.

Remark 3.1.2. The G-action on the quotientM/IM is well defined since G acts by R-linear maps. Otherwise,
we need to assume I ⊴ R is a G-invariant ideal, i.e. gI = I for all g ∈ G.
Lemma 3.1.3. When the underlying R-module of the G-representation M is R, the G-action of M is then
associated to a character χ ∶ G → R×. Let {gi ∣ i ∈ I} be a set of generators of G. The maximal congruence
of M is the ideal (1 − χ(gi) ∣ i ∈ I).
Proof. The maximal congruence of M is by definition the ideal (1 − χ(g) ∣ g ∈ G). Notice that

(1 − χ(gg′)) = (1 − χ(g)+ χ(g)− χ(gg′)) ⊆ (1 − χ(g))+ (χ(g) − χ(gg′)) = (1 − χ(g)) + (1 − χ(g′)).
and that (1 − χ(g−1)) = (χ(g) − 1), we have (1 − χ(g) ∣ g ∈ G) = (1 − χ(gi) ∣ i ∈ I). �

When p > 2, Z×p is topologically cyclic. When p = 2, Z×2 = {±1} × (1 + 4Z2) and 1 + 4Z2 is topologically
cyclic. Let g be a topological generator of Z×p when p > 2 and a topological generator of 1 + 4Z2 when p = 2.
Theorem 3.1.4. The congruences of Z⊗kp [χ] have seven cases:
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I. p > 2 and the conductor of χ is p or 1. In this case, χ = ωa for some integer 0 ≤ a ≤ p − 2, where
ω ∶ (Z/p)× → Z×p is the p-adic Teichmüller character. The image of χ is contained in Z×p . Then

the maximal congruence of Z⊗kp [ωa] is the following ideal in Zp = Zp[ωa]:
(1 − gkχ(g)) = (1 − gkωa(g)) = { (pvp(k)+1), (p − 1) ∣ (k + a);(1) otherwise.

II. p = 2 and the conductor of χ is 4 or 1. In this case χ = ωa for a = 0 or 1, where ω ∶ (Z/4)× → Z×2 is
the 2-adic Teichmüller character. As g ∈ 1 + 4Z2, ω(g) = 1. Again the image of χ is contained in Z×2 .
Then the maximal congruence of Z⊗k2 [ωa] is the following ideal in Z2 = Z2[ωa]:

(1 − gkωa(g),1 − (−1)kωa(−1)) = { (2vp(k)+2), 2 ∣ (k + a);(2), otherwise.

III. p > 2 and the conductor of χ is pv > p. In this case, (Z/pv)× ≃ (Z/p)× ×Cpv−1 and As χ is primitive of
conductor pv, χ∣C

pv−1
is injective. As a result, Zp[χ] = Zp[ζpv−1 ]. Zp[ζpv−1 ] is a p-complete local ring

with uniformizer 1 − ζpv−1 . Write χ∣(Z/p)× = ωa for some 0 ≤ a ≤ p − 2. Then the maximal congruence

of Z⊗kp [ωa] is the following ideal in Zp[ζpv−1 ] = Zp[χ]:
(1 − gkχ(g)) = (1 − ζpv−1gkωa(g)) = { (1 − ζpv−1), (p − 1) ∣ (k + a);(1), otherwise.

IV. p = 2 and the conductor of χ is 2v > 4. In this case, (Z/2v)× ≃ (Z/4)× × C2v−2 . As χ is primitive of
conductor 2v, χ∣C

2v−2
is injective. As a result, Z2[χ] = Z2[ζ2v−2]. Z2[ζ2v−2] is a 2-complete local ring

with uniformizer 1− ζ2v−2. Write χ∣(Z/4)× = ωa for a = 0 or 1. Then the maximal congruence of Z⊗k2 [χ]
is the following ideal in Z2[ζ2v−2 ] = Z2[χ]:

(1 − ζ2v−2gkωa(g),1 − (−1)kωa(−1)) = (1 − ζ2v−2) for all k and a.

V. N ′ ≠ 1 and ∣ Imχ′∣ is not a power of p. In this case, Imχ′ contains of a root of unity ζn′ whose order
n′ is coprime to p. As 1 − ζn′ is invertible in Zp[ζn′] ⊆ Zp[χ], we have the maximal congruence of

Z⊗kp [χ] is the ideal (1) in Zp[χ].
VI. p > 2, N ′ ≠ 1 and ∣ Imχ′∣ is a power of p greater than 1. In the case, Imχ′ is generated by ζpv′ for

some v′ ≥ 1. We have Z⊗kp [χ] = Zp[ζpmax(v−1,v′)]. Write χp∣(Z/p)× = ωa for some 0 ≤ a ≤ p − 2. Then the

maximal congruence of Z⊗kp [χ] is the following ideal in Z⊗kp [χ] = Zp[ζpmax(v−1,v′)]:
(1 − gkχ(g),1 − ζpv′ ) = (1 − ζpv−1gkωa(g),1 − ζpv′ ) = { (1 − ζpmax(v−1,v′)), (p − 1) ∣ (k + a);(1), otherwise.

VII. p = 2, N ′ ≠ 1 and Q2(χ′) is a totally ramified extension of Q2. In the case, the image of χ′ is generated
by ζ2v′ for some v′ ≥ 1. We have Z⊗k2 [χ] = Z2[ζ2max(v′,v−2)]. Write χ2∣(Z/4)× = ωa for a = 0,1. Then the

maximal congruence of Z⊗k2 [χ] is the following ideal in Z2[ζ2max(v′,v−2)] = Z2[χ]:
(1 − ζ2v′ ,1 − ζ2v−2gkωa(g),1 − (−1)kωa(−1)) = (1 − ζ2max(v′,v−2)) for all k and a.

3.2. Realizations of the maximal congruence. Having computed the maximal congruence of the Z×p ×(Z/N ′)×-representation Z⊗p [χ], now we give explicit examples of Eisenstein series in Ek(pv,Γ1(N ′), χ) whose
q-expansions realize the maximal congruence.
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Let k be an integer such that (−1)k = χ(−1). Recall from Theorem 1.1.4 and Corollary 1.4.12 that
Eisenstein subspace Ek(pv,Γ1(N ′), χ)⊗Qp is spanned by Eisenstein series of the forms:

Ek,χ0,χ(qt) = c ⋅Ek,χ(qt) = c ⋅ ⎛⎝1 −
2k

Bk,χ
∑
n≥1

⎛
⎝ ∑0<d∣nχ(d)d

k−1⎞⎠ qnt
⎞
⎠ ,

Ek,χ1,χ2
(qt) =∑

n≥1

⎛
⎝ ∑0<d∣nχ

−1
1 (n/d)χ2(d)dk−1⎞⎠ qnt,

where

● c is Zp[χ] with the smallest valuation so that Ek,χ0,χ(qt) ∈ Zp[χ]JqK.
● χ1 and χ2 are characters of conductors N1 and N2 satisfying χ1/χ2 = χ−1 and (N1N2t) ∣ N .

By the q-expansion principle Proposition 1.3.2, an element of Ek(pv,Γ1(N ′), χ) is a Qp-linear combination
f(q) of theseEk,χ1,χ2

(q) such that f(q) ∈ Zp[χ]JqK. Write Ek,χ0,χ andEk,χ1,χ2
for Ek,χ0,χ(q) and Ek,χ1,χ2

(q),
respectively. Using the arithmetic properties of generalized Bernoulli numbers in [Car59, Theorem 1, 3], we
can check

Proposition 3.2.1. In Cases I-V in Theorem 3.1.4, the Eisenstein series Ek,χ realizes the maximal con-
gruence predicted in Theorem 2.6.1.

By [Car59, Theorem 1],
Bk,χ

k
is an algebraic p-adic integer when N is not a power of p. As a result

Ek,χ(q) does not realize the maximal congruence in Cases VI and VII in Theorem 3.1.4. Instead, we need
to consider linear combinations of basis in the Eisenstein subspace. In general, it is hard to write down the
explicit formulas of Eisenstein series that satisfies the maximal congruence predicted in Theorem 2.6.1 and
Theorem 3.1.4 in cases VI and VII. Here, we work out one of the simplest cases in the rest of this subsection.

Example 3.2.2. Consider the character χ ∶ (Z/ℓ)× → C×p , where ℓ is a prime different from p > 2 and Qp(χ)
is a totally ramified extension of Qp. In this case, Zp[χ] = Zp[ζpm] for some m ≥ 1 is a p-complete local ring

with uniformizer ̟ = 1 − ζpm . Write the maximal ideal of Zp[χ] by m. By [Car59, Theorem 1],
Bk,χ

2k
is an

algebraic p-adic integer. As a result, we can take Ek,χ0,χ to be:

Ek,χ0,χ = Bk,χ

2k
− ∑

n≥1

⎛
⎝ ∑0<d∣nχ(d)d

k−1⎞⎠ qn.
Comparing Theorem 2.6.1 and Case VI in Theorem 3.1.4, we should expect to find Eisenstein series of

weight k, level Γ1(ℓ), and character χ that is congruent to 1 modulo m = (̟) only when (p − 1) ∣ k, and
there is no Eisenstein series of level Γ1(ℓ) and character χ that is congruent to 1 modulo m

2. The Eisenstein
subspace in this case Ek(Γ1(ℓ), χ) is spanned by Ek,χ0,χ(q) and Ek,χ−1,χ0(q).

When (p − 1) ∣ k, the maximal congruence is the realized by a linear combination of the two basis

Eisenstein series, since neither of them satisfies the maximal congruence relation. As
Bk,χ

2k
∈ Zp[χ], we have

Bk,χ

2k
⋅ Ek,χ ∈ Zp[χ]JqK. Notice that the coefficients of q in Ek,χ0,χ and Ek,χ−1,χ0 are −1 and 1, respectively.

Consider the q-expansion of their sum:

(3.2.3) Ek,χ0,χ +Ek,χ−1,χ0 = Bk,χ

2k
+ ∑

n≥1

anq
n = Bk,χ

2k
+ ∑

n≥1

⎛
⎝ ∑0<d∣n(χ

−1(n/d)− χ(d))dk−1⎞⎠ qn.

Lemma 3.2.4. Ek,χ0,χ +Ek,χ−1,χ0 ≡ Bk,χ

2k
mod mqJqK for all k with (−1)k = χ(−1).
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Proof. We need to show the coefficient an of qn in (3.2.3) is in m for all n ≥ 1. Write n = ℓvn′ where ℓ ∤ n′.
Since the conductor of χ is the prime number ℓ, χ(a) = 0 iff ℓ ∣ a. As a result, we have

an = ∑
0<d∣n
(χ−1(n/d) − χ(d))dk−1 = ∑

0<d∣n
χ−1(n/d)dk−1 − ∑

0<d∣n
χ(d)dk−1

= ∑
ℓv ∣d∣n

χ−1(n/d)dk−1 − ∑
0<d∣n′

χ(d)dk−1
(set d = ℓvd′ in the first summation) = ∑

0<d′∣n′
χ−1(n′/d′)(ℓvd′)k−1 − ∑

0<d∣n′
χ(d)dk−1

= ∑
0<d′∣n′

χ−1(n′)χ(d′)ℓv(k−1)d′k−1 − ∑
0<d∣n′

χ(d)dk−1
= (χ−1(n′)ℓv(k−1) − 1) ∑

0<d∣n′
χ(d)dk−1.(3.2.5)

Since (Z/ℓ)× surjects onto Cpm by assumption, ℓ ≡ 1 mod p. This implies ℓv(k−1) ≡ 1 mod p. Also, as
χ−1(n′) ≠ 0 is a p-power root of unity, 1 − χ−1(n′) ∈ m. Combining these two facts, we conclude

χ−1(n′)ℓv(k−1) − 1 = χ−1(n′) − 1 + χ−1(n′)(ℓv(k−1) − 1) ∈ m
for all n′ not divided by ℓ. This shows an ∈ m for all n. From this, we conclude Ek,χ0,χ + Ek,χ−1,χ0 ≡ Bk,χ

2k

mod mqJqK. �

Proposition 3.2.6. The algebraic p-adic integer
Bk,χ

2k
is in m iff (p − 1) ∤ k.

Proof. When (p − 1) ∤ k, there is no Eisenstein series in Ek(Γ1(ℓ), χ) whose q-expansion is in 1 +mqJqK by
Theorem 2.6.1 and Case VI in Theorem 3.1.4. In Lemma 3.2.4, we showed all the an’s in (3.2.3) are in m.

This implies its constant term
Bk,χ

2k
must also be in m so that there is a common factor.

When (p−1) ∣ k, Theorem 2.6.1 and Case VI in Theorem 3.1.4 predicts an Eisenstein series in Ek(Γ1(ℓ), χ)
whose q-expansion is in 1 +mqJqK, or equivalently (Zp[χ])× +mqJqK. We can write this Eisenstein series as
̟−v(aEk,χ0,χ + bEk,χ−1,χ0) for some v ≥ 0 and a, b ∈ Zp[χ] such that one of them is in (Zp[χ])×. Notice the
coefficients of q in the q-expansions of this Eisenstein series is ̟−v(−a+b). We have b−a is in m

v+1 ⊆ m. This
implies vp(a) = vp(b) = 0. Without loss of generality, we can then assume a = 1 and b ≡ 1 mod m

v+1 ⊆ m. It

now suffices to prove v = 0, for that implies
Bk,χ

2k
, the constant term of Ek,χ0,χ + bEk,χ−1,χ0 is in (Zp[χ])×.

Suppose v > 0. Following (3.2.5), we have

Ek,χ0,χ + bEk,χ−1,χ0 =Ek,χ0,χ +Ek,χ−1,χ0 + (b − 1)Ek,χ−1,χ0(3.2.7)

=Bk,χ

2k
+ ∑

n≥1

bnq
n(3.2.8)

(set n = ℓvn′) =Bk,χ

2k
+ ∑

n≥1

⎛
⎝(bχ−1(n′)ℓv(k−1) − 1) ∑0<d∣n′ χ(d)d

k−1⎞⎠ qn

Lemma 3.2.4 and (3.2.7) imply Ek,χ0,χ + bEk,χ−1,χ0 ≡ Bk,χ

2k
mod mqJqK. Now we want to find a bn in (3.2.8)

that is not in m
2. Let p′ be a prime number such that χ(p′) is a primitive pm-th root of unity and that

p′ /≡ (−1) mod p. This assumption implies p′ ≠ ℓ. If p′ = p does not satisfy the assumption (i.e. χ(p) is not
a primitive pm root of unity), then there are infinitely many choices of the prime p′. This is because the
conditions on p′ depend only on its residual class modulo p ⋅ ℓ. In this case, we have by (3.2.8),

bp′ = (bχ−1(p′) − 1)(1 + χ(p′)p′k−1) = ((b − 1) ⋅ χ−1(p′) + χ−1(p′) − 1)(1 + χ(p′)p′k−1).
Notice:
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● 1 − χ−1(p′) is a uniformizer in Zp[χ], since Zp[χ] = Zp[ζpm] = Zp[χ(p′)].
● b − 1 ∈ mv+1 ⊆ m2, since v > 0 by assumption. We have (bχ−1(p′) − 1) is also a uniformizer.
● p′k−1 ≡ p′−1 /≡ (−1) mod p, since (p − 1) ∣ k.
We have 1 + χ(p′)p′k−1 ∉ m. As a result, bp′ ∈ m −m2 and ̟−vbp′ ∉ m. This contradicts the assumption that
̟−v(Ek,χ0,χ + bEk,χ−1,χ0) ∈ (Zp[χ])× +mqJqK is an Eisenstein series that realizes the maximal congruence.

Consequently, we have v = 0, Bk,χ

2k
∈ (Zp[χ])× when (p − 1) ∣ k. �

Remark 3.2.9. When (p − 1) ∤ k, it is possible that
Bk,χ

2k
∈ ms for some s > 1.

It follows that when (p − 1) ∤ k, the maximal congruence in Ek(Γ1(ℓ), χ) is realized by:

2k ⋅ (Ek,χ0,χ + bEk,χ−1,χ0)
Bk,χ

= 1 + 2k

Bk,χ
∑
n≥1

⎛
⎝ ∑0<d∣n(bχ

−1(n/d) − χ(d))dk−1⎞⎠ qn ∈ 1 +mqJqK,
where b ∈ 1 +m ⊆ Zp[χ].

4. Relations with Dirichlet K(1)-local spheres and J-spectra

In this section, we first relate the maximal congruence of Z⊗kp [χ] to the group cohomology of Z×p×(Z/N ′)×.
This group cohomology is on the E2-page of a spectra sequence to compute homotopy groups of the Dirichlet
K(1)-local sphere attached to χ. This spectrum was introduced by the author in [Zha19].

Combined with Theorem 2.6.1, this connects congruences of Eisenstein series of level Γ1(N) to chromatic
homotopy theory. In particular, when the character is trivial, we have given a new explanation of the
relation between congruences of Eisenstein series of level 1 and the image of the J-homomorphism in the
stable homotopy groups of spheres.

4.1. Congruence and group cohomology. Let Z⊗kp [χ] be the Z×p × (Z/N ′)×-representation associated

to the character Z×p × (Z/N ′)× (a,b)↦χp(a)χ′(b)ak

ÐÐÐÐÐÐÐÐÐÐÐ→ (Zp[χ])×. The maximal congruence of Z⊗kp [χ] as a Z×p ×(Z/N ′)×-representation is closely related to its group cohomology.

Lemma 4.1.1. Suppose (R,m) is a p-complete discrete valuation ring and let ̟ ∈ m be a uniformizer. The
maximal congruence of M is the ideal mk such that

colim
m
((M/̟m)G) = colim

m
((M/mm)G) =M/mk.

Proposition 4.1.2. When G is topologically finitely generated, the natural map

colim
m
((M/̟m)G)Ð→ (colim

m
(M/̟m))G =∶ (M/̟∞)G

is an isomorphism.

Proof. When G is topologically finitely generated, taking G-fixed points is a equivalent to a finite limit
(in the 1-categorical sense). As a result, (−)G commutes with the sequential colimit (−/̟∞) by [Mac71,
Theorem 1 in Section IX.2]. �

As M is a torsion-free R-module, the total quotient module M/̟∞ can also be obtained from a short
exact sequence of G-representations in R-modules:

(4.1.3) 0 M ̟−1M M/̟∞ 0.
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Remark 4.1.4. (4.1.3) is the colimit of the following tower of short exact sequences:

0 M M M/̟ 0

0 M M M/̟2 0

0 M M M/̟3 0

⋯ ⋯ ⋯

̟

̟

̟2

̟

̟3

̟

Proposition 4.1.5. Assumptions and notations as above. When MG = 0, there is a natural injection
δ ∶ (M/̟∞)G →H1

c (G;M).
Proof. Apply H∗c (G;−) on (4.1.3), we get a long exact sequence of G cohomology that start with:

0 MG (̟−1M)G (M/̟∞)G H1
c (G;M) H1

c (G;̟−1M) ⋯
δ

The fixed points (̟−1M)G = 0 since

(̟−1M)G = (colim(M ̟
Ð→M

̟
Ð→ ⋯))G ≃ colim(MG ̟

Ð→MG ̟
Ð→ ⋯) =̟−1(MG) = 0.

This shows δ is injective. �

Theorem 4.1.6. The connecting homomorphism δ ∶ (Z⊗kp [χ]/̟∞)Z×p×(Z/N ′)× → H1
c (Z×p × (Z/N ′)× ;Z⊗kp [χ])

is an isomorphism.

Proof. In this case, G = Z×p × (Z/N ′)× is topologically finitely generated, R = Zp[χ] and M = Z⊗kp [χ].
R = Zp[χ] is a p-complete discrete valuation ring since it is isomorphic to the form Zp[ζn] for some n.

As Zp[ζn] is an integral domain, the action of an non-identity element (a, b) ∈ Z×p × (Z/N ′)× on Zp[ζn] by
multiplication by χp(a)χ′(b)ak has no fixed points. By Proposition 4.1.5, the connecting homomorphism δ

is injective.
As p is a power of the uniformizer̟, ̟−1M = p−1M = Q⊗kp (χ). We now showH1

c (Z×p×(Z/N ′)× ;Q⊗kp (χ)) =
0, which would imply δ is surjective. Write G = Z×p × (Z/N ′)× = Gfin ×Gpro, where

● Gfin is the maximal finite subgroup of G.
● Gpro = 1 + pZp when p > 2 and Gpro = 1 + 4Zp when p = 2.
Since Q⊗kp (χ) is a Qp-module, we have H1

c (Z×p × (Z/N ′)× ;Q⊗kp (χ)) ≃ H0(Gfin;H
1
c (Gpro;Q

⊗k
p (χ))). This

is because the associated Hochschild-Serre spectral sequences is concentrated in the 0-line. Let g be a
pro-generator of Gpro. Then we have

H1
c (Gpro;Q

⊗k
p (χ)) ≃ Qp(χ) /(1 − χp(g)gk) ,

where g is viewed as an element of Qp(χ) via g ∈ Gpro = 1 + 2pZp ⊆ Qp(χ). The quotient is zero since

1 − χp(g)gk ≠ 0 and Qp(χ) = Qp(ζn) is a field. This implies H1
c (Z×p × (Z/N ′)× ;Q⊗kp (χ)) = 0. Consequently,

the connecting homomorphism δ is surjective. �

Remark 4.1.7. Unlike the finite group case, it is in general NOT true that Hs
c (G;M) = 0 for s > 0 when G

is profinite and M is a Qp-module. Using Kummer theory, one can construct explicit examples G and M
when the group cohomology H1

c (G;M) is non-zero.
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However, it is true that Hs
c (G;M) = 0 when s > 0, if M = ⋃H≤GM

H where H ranges over all open
subgroups of G. Such an M is called a discrete G-module. In this case, we have by [Ser97, Corollary 1 in
§2.2]:

Hs
c (G;M) ≃ colim

H≤G open
Hs(G/H ;MH).

This is group cohomology is zero when s > 0, since G/H is finite for any open subgroup H of G and MH ⊆M
is a Qp-module. It is straight forward to check that Zp[χ]⊗k is not a discrete Z×p × (Z/N ′)×. That is why we

have to explicitly compute H1
c (Z×p × (Z/N ′)× ;Q⊗kp (χ)) = 0 in Theorem 4.1.6.

Now combining Theorem 2.6.1 and Theorem 4.1.6 yields:

Corollary 4.1.8. The followings are equivalent:

(1) I ⊴ Zp[χ] is the maximal congruence of Eisenstein series in Ek(pv,Γ1(N ′), χ).
(2) H1

c (Z×p × (Z/N ′)× ;Z⊗kp [χ]) ≃ Zp[χ]/I.
Remark 4.1.9. Comparing Corollary 4.1.8 with Proposition 3.2.1 and Proposition 3.2.6, the group cohomol-

ogy H1
c (Z×p × (Z/N ′)× ;Z⊗kp [χ]) computes the denominator of

Bk,χ

2k
∈ Qp(χ) under the assumptions in Cases

I-V in Theorem 3.1.4. In Cases VI and VII, this cohomological computation sheds light on the numerator

of
Bk,χ

2k
(still does not determine the valuation in general).

4.2. The Dirichlet K(1)-local spheres and J-spectra. The group cohomology H1
c (Z×p ;Z⊗tp ) is on the

E2-page of a homotopy fixed point spectral sequence (HFPSS):

E
s,t
2 =Hs

c (Z×p ;Z⊗tp )Ô⇒ π2t−s ((KU∧p )hZ×p) ,
where a ∈ Z×p acts on the p-adic K-theory spectrum KU∧p by the Adams operation ψa. The homotopy

fixed point spectrum is equivalent to S0
K(1), the Bousfield localization of the sphere spectrum at K(1), the

Morava K-theory of height 1 at prime p. The HFPSS collapses on the E2-page except when p = 2. This
yields isomorphisms

H1
c (Z×p ;Z⊗2kp ) ≃ π4k−1(S0

K(1))
for all primes p. The K(1)-local sphere spectrum is the p-completion of the K-local sphere spectrum S0

KU .
S0
KU by construction is a KU -local E∞-ring spectum. The Hurewicz image in π∗(S0

KU) detects the image
of the stable J-homomorphisms in π∗(S0). In way, when the character χ is trivial, we have given a new
explanation of the connection between the congruences E2k and the image of J-homomorphism in π4k−1(S0)
in Corollary 4.1.8.

In [Zha19], the author constructed the Dirichlet K(1)-local sphere for each p-adic Dirichlet character
χ ∶ (Z/N)× → C×p . These Dirichlet K(1)-local spheres are defined by

S0
K(1)(pv)hχ ∶=Map (M(Zp[χ]), S0

K(1)(pv))h(Z/N)× .
In this construction

● M(Zp[χ]) is a Moore spectrum of Zp[χ] together with a (Z/N)×-action such that the induced action on
π0(M(Zp[χ])) is equivalent to that on Zp[χ].
● S0

K(1)(pv) ∶= (KU∧p )h(1+p
v
Zp)

is a (Z/pv)×-Galois extension of the K(1)-local sphere.
S0
K(1)(pv)hχ can be identified with

S0
K(1)(pv)hχ ≃Map (M(Zp[χ]),KU∧p )Z×p×(Z/N ′)

×

,
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where Z×p × (Z/N ′)× acts on M(Zp[χ]) through the (Z/pv)× × (Z/N ′)× ≃ (Z/N)×-action on M(Zp[χ])
and on KU∧p through the Adams operations on KU∧p by Z×p . Then the group cohomology H1

c (Z×p ×(Z/N ′)× ;Z⊗kp [χ−1]) is on the E2-page of another HFPSS:

Hs
c (Z×p × (Z/N ′)× ;Z⊗tp [χ−1])Ô⇒ π2t−s (S0

K(1)(pv)hχ) .
This spectral collapses at the E2-page under the assumptions of Cases I, III, and V in Theorem 3.1.4. In
those cases, we get

H1
c (Z×p × (Z/N ′)× ;Z⊗tp [χ−1]) ≃ π2t−1 (S0

K(1)(pv)hχ) .
Like the classical K(1)-local sphere, the Dirichlet K(1)-local sphere is a summand of the p-completions of
the Dirichlet J-spectra J(N)hχ, where χ ∶ (Z/N)× → C× is C-valued Dirichlet character. It is defined by

J(N)hχ ∶=Map(M(Z[χ]), J(N))h(Z/N)×
In this construction:

● M(Z[χ]) is the Moore spetrum of Z[χ] with an (Z/N)×-action such that the induced action on its zeroth
homomotopy group is equivalent to that on Z[χ].
● J(N) is a “J-spectrum of level µN”. It is constructed with the arithmetic pullback square:

J(N) ∏p S
0
KU/p (pvp(N))

S0
Q (∏p S

0
KU/p (pvp(N)))Q

⌟
Rationalization

Hurewicz

J(N) is a K-local E∞-ring spectrum with an (Z/N)×-action by E∞-ring automorphisms. This (Z/N)×-
action is inherited from the (Z/pv)×-actions on S0

K/p (pvp(N)) for all primes p ∣ N .

The splitting of (J(N)hχ)∧
p
is parallel to that of the Eisenstein subspace in Proposition 1.4.11. In this

way, we have connected congruences of Eisenstein series in Ek(µN , χ) to homotopy groups of the Dirichlet

J-spectra π2k−1(J(N)hχ−1) in Corollary 4.1.8. In addition, this explains how these homotopy groups are
related to special values of the corresponding Dirichlet L-function L(s;χ).
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