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NOTES ON EQUIVARIANT BUNDLES

FOLING ZOU

Abstract. We compare two notions of G-fiber bundles and G-principal bundles in
the literature, with an aim to clarify early results in equivariant bundle theory that
are needed in current work of equivariant algebraic topology. We also give proofs of
some equivariant generalizations of well-known non-equivariant results involving the
classifying space.
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1. Introduction

Non-equivariantly, fiber bundles and principal bundles are closely related. Namely,
fixing a compact Lie group Π and a space F with an effective Π-action, one can make
sense of a fiber bundle with fiber F to have structure group Π, and there is a structure
theorem providing an equivalence of categories between such fiber bundles and principal
Π-bundles. One key idea involved is the data of admissible maps of a fiber bundle
p : E → B with fiber F , which are specified homeomorphisms ψ : F ∼= p−1(b) for b ∈ B
that come from the local trivializations.
Equivariantly, let G and Π be compact Lie groups, with G being the ambient action

group and Π being the structure group. It is common to assume G to be a compact
Lie group in G-equivariant homotopy theory for several reasons. Firstly, the orbit
category of a compact Lie group G is more controlled as it has a discrete skeleton.
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2 FOLING ZOU

More precisely, the orbit category has objects G/H for closed subgroups H ⊂ G, and
two closed subgroups of G being sufficiently close will imply that one is conjugate to a
subgroup of the other by [MZ42]. If one works with a general topological group G, the
isotropy subgroups of a G-space may vary continuously. Secondly, nice G-spaces such
as smooth G-manifolds are known to allow G-equivariant triangulation by [Ill83]. One
can work with more general topological groups Π with careful point set considerations,
but we refrain from doing so in this paper.
To obtain a structure theorem relating fiber bundles and principal bundles equivari-

antly, we need to answer the following two questions: What does it mean for a G-fiber
bundle with fiber F to have structure group Π? What is an equivariant principal
Π-bundle?
Section 2.3 is devoted to answering these two questions and establishing the structure

theorems. The forthright guess already works for some examples including equivariant
vector bundles. We assume that the Π-action on F is effective throughout.

Definition 1.1. (Definition 2.9) Let F be a space with Π-action. AG-fiber bundle with
fiber F and structure group Π is a map p : E → B such that the following statements
hold:

(1) The map p is a non-equivariant fiber bundle with fiber F and structure group Π;
(2) Both E and B are G-spaces and p is G-equivariant;
(3) The G-action is given by morphisms of bundles with structure group Π.

Tom Dieck [TD69] generalized this definition to a twisted version and Lewis–May–
Steinberger [LMSM86, IV1] introduced the following further generalization. We fix an
extension of compact Lie groups 1 → Π → Γ → G→ 1 as data.

Definition 1.2. (Definition 2.22) Let F be a space with Γ-action. A G-fiber bundle
with fiber F , structure group Π and total group Γ is a map p : E → B such that the
following statements hold:

(1) The map p is a non-equivariant fiber bundle with fiber F and structure group Π;
(2) Both E and B are G-spaces and p is a G-map;
(3) For any g ∈ G and admissible maps ψ : F → Fb and ζ : F → Fgb, the composite

F
ψ
→ Fb

g
→ Fgb

ζ−1

→ F

is a lift y ∈ Γ of g ∈ G.

In terms of admissible maps, Definition 1.1 requires that for any admissible map
ψ : F → E and g ∈ G, the composite gψ is also admissible; while Definition 1.2
requires that there is a lift y ∈ Γ of g such that gψy−1 is admissible.
The following gives an interesting example of the generalization .

Example 1.3. (Examples 2.15, 2.27 and 2.38) Atiyah [Ati66] introduced the notion of
Real vector bundles: it is a complex vector bundle with C2-action such that the non-
trivial element of C2 acts anti-complex-linearly. It is a C2-fiber bundle with fiber Cn,
structure group U(n) and total group Γ = U(n) ⋊α C2 in the sense of Definition 1.2,
where α : C2 → Aut(U(n)) sends the non-trivial element of C2 to the entry-wise
complex-conjugation of U(n). But it is not a C2-fiber bundle with fiber Cn, structure
group U(n) in the sense of Definition 1.1.
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Note that in Definition 1.1, the fiber F only has a Π-action, but in Definition 1.2,
the fiber F has an action of the total group Γ. Definition 1.1 becomes a special case
of Definition 1.2 by setting Γ = Π × G and imposing the trivial G-action on F (see
Proposition 2.34). Tom Dieck’s definition, which is not given above, corresponds to the
case of split extensions Γ = Π ⋊α G in Definition 1.2. It allows the G-action on the
bundle to have a preassigned twisting in the structure group, such as in the Real vector
bundles. Conceptually, the most general Definition 1.2 sees a more general twisting
specified by the group extension 1 → Π → Γ → G→ 1.
The following are companion definitions of equivariant principal bundles.

Definition 1.4. (Definition 2.12) A principal G-Π-bundle is a map p : P → B such
that the following statements hold:

(1) The map p is a non-equivariant principal Π-bundle;
(2) Both P and B are G-spaces and p is G-equivariant;
(3) The actions of G and Π commute on P .

Definition 1.5. (Definition 2.17) Let 1 → Π → Γ → G → 1 be an extension of
compact Lie groups. A principal (Π; Γ)-bundle is a map p : P → B such that the
following statements hold:

(1) The map p is a non-equivariant principal Π-bundle;
(2) The space P is a Γ-space; B is a G-space. Viewing B as a Γ-space by pulling

back the action, the map p is Γ-equivariant.

The first definition is a special case of the second definition by setting Γ = Π×G.

There are structure theorems relating equivariant fiber bundles and equivariant prin-
cipal bundles (Theorems 2.14 and 2.29). For any G-space B, there is an equivalence of
categories between

G-fiber bundles over B with fiber F
and structure group Π

↔ principal G-Π-bundles over B.

G-fiber bundles over B with fiber F
structure group Π and total group Γ

↔ principal (Π; Γ)-bundles over B.

In the first equivalence, F is any Π-effective space; in the second equivalence, F is any
Π-effective Γ-space.
As an example, we study the V -framing bundle FrV (E) of a G-n-vector bundle E,

where V is a G-representation given by β : G→ O(n). It turns out FrRn(E) ∼= FrV (E)
as (O(n);O(n)×G) ∼= (O(n);O(V )⋊G)-principal bundles in the sense of Definition 1.2,
hinting that the V -framing bundle may not be an interesting notion. However, they
can be given different canonical G-actions and the G-action on FrV (E) can be identified
with the Λβ-action on FrRn(E) for some subgroup Λβ ⊂ O(n)×G. This is in Section 2.5.

There exists a universal principal (Π; Γ)-bundle E(Π; Γ) → B(Π; Γ). It is universal
in the sense that there is a bijection of sets between {equivalence classes of principal
(Π; Γ)-bundles over B} and {G-homotopy classes of G-maps B → B(Π; Γ)} for any
paracompact G-space B. Thus, B(Π; Γ) is called the classifying space of principal
(Π; Γ)-bundles. In the case Γ = Π × G, we also denote the universal principal G-Π-
bundle by EGΠ → BGΠ.
The universal principal bundle can be constructed using homotopy theory techniques.

Non-equivariantly, one can construct EΠ, a contractible space with free Π-action, and



4 FOLING ZOU

the universal principal Π-bundle is modeled by EΠ → EΠ/Π. Equivariantly, a family
F of subgroups of Γ is a collection of subgroups that is non-empty and closed under
subgroups and conjugations. For each family, there exists a Γ-space EF with the

property that (EF )Λ ≃

{
∅ Λ ⊂ Γ and Λ 6∈ F

∗ Λ ⊂ Γ and Λ ∈ F
. We take the family to be F =

F (Π) := {Λ ⊂ Γ|Λ∩Π = e}. Then the universal principal (Π; Γ)-bundle is modeled by
EF (Π) → EF (Π)/Π (Theorem 3.7). Note that to recover the non-equivariant case,
we can take G = e, so that Γ = Π and F (Π) = e, and the fixed-point properties of
EF (Π) coincide with the defining properties of EΠ. More details are in Section 3.2.

Remark 1.6. Lück–Uribe worked with general topological groups G and Π and those
principal G-Π-bundles such that the isotropy subgroups of the total space are in R for a
prescribed family of subgroups of Γ = Π×G. This family needs to satisfy conditions in
[LU14, Definition 6.1]. The universal bundle of such principal bundles can be modeled
by ER → ER/Π ([LU14, Theorem 11.5]). In our case, R = F (Π), and we will not
make use of a general R. To translate notations, their Γ is our G and their G is our Π.

In Section 2.6, we study the fixed points of a principal G-Π-bundle p : P → B. Let
H ⊂ G be a subgroup and use Rep(H,Π) to denote group homomorphisms ρ : H → Π
up to Π-conjugation. Each component B0 of BH has an associated homomorphism
[ρ] ∈ Rep(H,Π). The [ρ] is determined by the fixed-point behavior of the total space:

Let Λρ ⊂ Π × G denote the graph of ρ, then {ρ : H → Π|
(
p−1(B0)

)Λρ
6= ∅} holds for

exactly one Π-conjugate class of homomorphisms. Furthermore, the non-equivariant
principal Π-bundle p−1(B0) → B0 has a reduction of the structure group from Π to a
subgroup ZΠ(ρ) ⊂ Π (Theorem 2.46). We apply this theorem to obtain a comparison
of principal G-Π-bundles. In a map between principal G-Π-bundles, if f̄ , the map of
the total spaces, is an F (Π)-equivalence, then f , the map of the base spaces, is a
G-equivalence (Theorem 2.48).

In Section 3.3, we study the loop space ΩbBGΠ of BGΠ based at a G-fixed point b.
As (BGΠ)

G is not connected in general, the G-homotopy type of ΩbBGΠ depends on
the choice of b. Our greatest interest is in the case Π = O(n), and it works the same
for general Π as discussed in Remark 3.14. Note that BGO(n) classifies G-n-vector
bundles and a homomorphism ρ : G → O(n) gives an n-dimensional G-representation
V . Suppose b ∈ BGO(n) is in the component indexed by [V ]. In Theorem 3.12, we
show that there is a G-homotopy equivalence ΩbBGO(n) ≃ O(V ), where O(V ) is the
isometric self maps of V with G-action by conjugation. Later in Corollary 3.31, we
upgrade the G-equivalence to one compatible with the monoid structure: ΩbBGO(n)
has the structure of a G-A∞-monoid via concatenation of loops. There is a zig-zag of
equivalence of G-A∞-monoids ΩbBGO(n) ≃ O(V ).
In Section 3.4, we study the space of bundle maps to the equivariant universal bundle.

It is an equivariant principal bundle with a non-trivial extension in the total group. Let
p : P → B be a principal G-O(n)-bundle, Π = AutB(P ) be the topological group of
automorphisms of P over B and Hom(P,EGO(n)) be the space of non-equivariant
principal O(n)-bundle maps. We have that G acts on Hom(P,EGO(n)) and Π by
conjugation, and that Π acts on Hom(P,EGO(n)) by precomposition. This gives a
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(Γ = Π⋊G)-action on Hom(P,EGO(n)). In Theorem 3.17, we show that

π : Hom(P,EGO(n)) → Mapp(B,BGO(n))

is a principal (AutBP ; AutBP ⋊G)-bundle and Hom(P,EGO(n)) ≃ EF for the family
F = {Λ ⊂ Γ such that Λ∩AutBP = e}. Here, π sends a bundle map to its map of base
spaces and Mapp(B,BGO(n)) is the image of π in Map(B,BGO(n)). We conjecture that
π is the universal principal (AutBP ; AutBP ⋊ G)-bundle. The issue is that AutBP is
not necessarily a Lie group, nor does it satisfy the conditions in [LU14], and we have
not developed the classification theory in such full generality.
In Section 3.5, we show that there is a weak G-equivalence between the free loop

space LBGΠ and the adjoint bundle Ad(EGΠ) := EGΠ ×Π Πad as G-fibrations over
BGΠ (Theorem 3.30).
Organization of the paper. We give preliminaries ofG-CW complexes in Section 2.1.

We review non-equivariant bundles in Section 2.2. We give definitions of equivariant
bundles and compare the definitions in Section 2.3 - Section 2.5. We study the fixed
points of equivariant bundles in Section 2.6. We prove the aforementioned theorems
about classifying spaces in Section 3.
Acknowledgements. This is part of the author’s PhD thesis. The author is in-

debted to her advisor, Peter May, for explaining his past work and for his enormous help
with the writing. The author thanks the referee for the useful comments and writing
suggestions.

2. Equivariant bundles

2.1. G-CW complexes. In this subsection, we give some preliminaries. For a compact
Lie group G, a G-CW complex X is a union of G-spaces Xn constructed as follows. We
start with a disjoint union of orbits X0 = ⊔KG/K. Each Xn is inductively obtained
by gluing n-cells to Xn−1. An n-cell is of the form G/K ×Dn where K ⊂ G is a closed
subgroup andDn = {x ∈ Rn||x| ≤ 1} is a disk. There are G-maps from ⊔KG/K×Sn−1,
the boundary of the n-cells, to Xn−1 and Xn = Xn−1 ∪(⊔KG/K×Sn−1)

(
⊔K G/K ×Dn

)
.

Definition 2.1. A map f : X → Y between spaces is said to be a weak equivalence if
it induces a bijection π0(X) → π0(Y ) and an isomorphism πn(X, x) → πn(Y, f(x)) for
any x ∈ X and n ≥ 1. A G-map f : X → Y between G-spaces is said to be a weak
G-equivalence if XH → Y H is a weak equivalence for any subgroup H ⊂ G.

A G-space X is said to have the homotopy type of a G-CW complex if there is a
G-CW complex X ′ and a G-homotopy equivalence X ′ ≃ X .

Theorem 2.2 (Equivariant Whitehead theorem). A weak G-equivalence between G-
spaces having homotopy types of G-CW complexes is a G-homotopy equivalence.

This theorem allows us to use the induced maps on homotopy groups to detect
homotopy equivalences when working with G-CW complexes.

2.2. Non-equivariant bundles. We start with a review of non-equivariant bundles.
A fiber bundle with fiber F is a map p : E → B with an open cover {Ui} of B and

homeomorphisms φi : p
−1(Ui) ∼= Ui × F . The Ui are called coordinate neighborhoods

and the φi are called local trivializations.
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The structure group of a fiber bundle gives information about the change of local
trivializations under changes of coordinate neighborhoods. Let Π be a topological
group with an effective action on F . Here, effective means Π → Aut(F ) is an injection.
A bundle with fiber F is said to have structure group Π, if for any two coordinate
neighborhoods with Ui ∩Uj 6= ∅, the composite φiφ

−1
j : (Ui ∩Uj)× F → (Ui ∩Uj)× F

is given by (b, f) 7→ (b, gij(b)(f)) for some continuous function gij : Ui ∩ Uj → Π,
called a coordinate transformation. We always topologize Aut(F ) with the compact-
open topology of mapping spaces. If F is a compact Hausdorff space, Aut(F ) is a
topological group; if F is only locally compact, there are more technical assumptions
for the inverse map to be continuous due to Arens (See [Ste51, I.5.4]). Morally, a fiber
bundle with fiber F is automatically a fiber bundle with the implicit structure group
Aut(F ). Having an explicit structure group Π is extra data to reduce the structure
group to a smaller one.
One can associate a principal Π-bundle to a fiber bundle with structure group Π.

An admissible map of the bundle is a homeomorphism ψ : F → p−1(b) for some b ∈
Ui, satisfying φiψ ∈ Π. The set of admissible maps has a natural topology, and the
associated principal Π-bundle of p is the space of admissible maps.
The following immediate observation about admissible maps hides the local trivial-

izations in the background.

Lemma 2.3. A map ψ : F → Fb is admissible if and only if for any admissible map
ζ : F → Fb, the composite ζ−1ψ is in Π. �

Let p1 : E1 → B1 and p2 : E2 → B2 be two fiber bundles with fiber F and structure
group Π. A morphism between them is a bundle map χ : E1 → E2 such that for any
local trivializations φU : p−11 (U) ∼= U × F and φV : p−12 (V ) ∼= V × F , the composite

(2.4) φV χφ
−1
U : (U ∩ χ−1(V ))× F → (χ(U) ∩ V )× F

is given by (b, f) 7→ (χ(b), gV U(b)(f)), where gV U : U ∩χ−1(V ) → Π is some continuous
function. Such a morphism induces a morphism between the two associated principal
Π-bundles.

Assumption 2.5. We always assume that Π has the subspace topology of Aut(F ).

We pause to explain the role of Assumption 2.5. Suppose χ is a bundle map and
we would like to check if χ is a morphism, that is, whether it respects the structure
group. It seems as if one only needs to check that χ sends all admissible maps to
admissible maps. This is not true without Assumption 2.5, since the set of admissible
maps does not see the topology. Steenrod [Ste51, I.5] studied this difference carefully
and concluded that Assumption 2.5 will resolve the discrepancy.
We include some explanation here for completeness: What the set of admissible maps

sees is an Ehresmann-Feldbau bundle with structure group Π, which has now become
an obsolete notion. An Ehresmann-Feldbau bundle is a bundle p : E → B with fiber
F and a set of homeomorphism ψ : F ∼= p−1(b) for all b ∈ B, called admissible maps.

It is required that for any b ∈ Ui, the composite F = {b} × F → Ui × F
φ−1

i→ p−1(Ui) is
admissible, and that for any b ∈ B and any admissible map ψ : F → p−1(b), all the
admissible maps F → p−1(b) are exactly ψ ◦ ν for some ν ∈ Π. While this aligns with
Lemma 2.3 when the bundle has a structure group Π, there is a difference between
the two notions, which lies exactly in that an Ehresmann-Feldbau bundle does not
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require Π to have a topology. In other words, the coordinate transformations gij are
not asked to be continuous, which is equivalent to putting the trivial topology on Π. If
Π does start life with a different topology, the coordinate transformations gij obtained
from an Ehresmann-Feldbau bundle may not be continuous. It is shown in [Ste51, I.5.4]
that with Assumption 2.5, the gij’s are automatically continuous, so that a fiber bundle
with local trivializations has structure group Π if and only if the admissible maps satisfy
Lemma 2.3. We have the following criteria:

Proposition 2.6. A bundle map χ : E1 → E2 is a morphism of fiber bundles with
structure group Π if and only if either of the two equivalent conditions is true:

(1) If F1 is a fiber in E1 and F2 is a fiber in E2 such that χ maps F1 to F2, then the
composite ζ−1χψ is in Π for any admissible maps ψ : F → F1 and ζ : F → F2.

(2) For any admissible map ψ : F → F1 to a fiber in E1, the composite χψ is an
admissible map to a fiber in E2.

Proof. We need to check that for any φU , φV as in (2.4), the desired gV U exists. With
Assumption 2.5, it suffices to check that for any b ∈ U ∩ χ−1(V ), there exists a desired
gV U(b) ∈ Π. This is part (1). Part (2) follows from Lemma 2.3. �

Example 2.7. The most familiar case is when F is a vector space (Rn or Cn) and Π =
GLn is the corresponding general linear group. By definition of the general linear group,
χ being a bundle map is equivalent to it being fiberwise linear and non-degenerate.

The following well-known structure theorem turns the problem of classifying fiber
bundles into classifying principal bundles.

Theorem 2.8. Let Π be a compact Lie group. Let B,F be spaces. Assume that Π acts
effectively on F . Then there is an equivalence of categories between {fiber bundles over
B with fiber F and structure group Π} and {principal Π-bundles over B}.

Proof. We have already shown how to construct a principal Π bundle from a fiber
bundle with fiber F and structural group Π at the beginning of this subsection. In the
other direction, given a principal Π-bundle P → B, the map P ×Π F → B is a fiber
bundle with fiber F and structure group Π. These two constructions are functorial
and inverse of each other. Indeed, [Ste51, I] described both types of bundles using local
transformations, called coordinate bundles, where the equivalence becomes transparent.

�

2.3. Definitions of equivariant bundles. When it comes to the equivariant story,
there are definitions of different generality, both on the fiber bundle side and on the
principal bundle side. The reason is that the ambient group G could interact non-
trivially with the structure group Π. We start with the simplest definition where “G
and Π commute” [Las82].

Definition 2.9. A G-fiber bundle with fiber F and structure group Π is a map p :
E → B such that the following statements hold:

(1) The map p is a non-equivariant fiber bundle with fiber F and structure group Π;
(2) Both E and B are G-spaces and p is G-equivariant;
(3) The G-action is given by morphisms of bundles with structure group Π.
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Proposition 2.10. The requirement in (3) above is equivalent to the following: for any

g ∈ G and admissible map ψ : F → Fb, the composite F
ψ
→ Fb

g
→ Fgb is also admissible.

Proof. By Proposition 2.6. �

Remark 2.11. Let G be a finite group. We take F = Rn and Π = GLn(R) in
Definition 2.9. Although GLn(R) is not compact, the definition still works, and we
obtain a G-n-vector bundle.

Definition 2.12. A principal G-Π-bundle is a map p : P → B such that the following
statements hold:

(1) The map p is a non-equivariant principal Π-bundle;
(2) Both P and B are G-spaces and p is G-equivariant;
(3) The actions of G and Π commute on P .

Remark 2.13. This is called a principal (G,Π)-bundle in [LMSM86, IV1].

As in the non-equivariant case, we write the Π-action on the right of a principal G-
Π-bundle P ; for convenience of diagonal action, we consider P to have a left Π-action,
that is, ν ∈ Π acts on z ∈ P by νz = zν−1.
The structure theorem formally passes to this equivariant context.

Theorem 2.14. Let G,Π be compact Lie groups and F,B be spaces. Assume that
Π acts effectively on F . Then there is an equivalence of categories between {G-fiber
bundles over B with fiber F and structure group Π} and {principal G-Π-bundles over
B}.

Proof. The two types of G-bundles in Definitions 2.9 and 2.12 are indeed objects with
a G-action in the corresponding non-equivariant category. So the equivalence in the
non-equivariant structure theorem restricts to give an equivalence on the G-objects. �

However, Definitions 2.9 and 2.12 are not ideal for studying some interesting cases.
In the most general scenario, we want to study a map p : E → B that happens to be
both a fiber bundle with structure group Π and a G-map between G-spaces. It is true
that p is a G-fiber bundle with structure group Aut(F ), but p is usually not a G-fiber
bundle with structure group Π. In other words, we can not reduce the structure group
even though we know non-equivariantly it reduces to Π. Below, we give two concrete
examples of this sort.
The first example is Atiyah’s Real vector bundles [Ati66].

Example 2.15. Let G = C2. A Real vector bundle is a map p : E → B such that

• The map p is a complex vector bundle of dimension n;
• The non-trivial element of C2 acts anti-complex-linearly.

In this case, p is a C2-bundle with structure group O(2n), but not U(n).

The second simple, but illuminating, example is from [LMSM86].

Example 2.16. For G-spaces B and F , the projection p : B×F → B is not a G-bundle
with structure group e unless G acts trivially on F .
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Proof. The admissible maps for p are only the inclusions of fibers

ψb : {b} × F → B × F .

An element g ∈ G acts by a bundle map if and only if for all b, the composite

{b} × F
ψb→ p−1(b)

g
→ p−1(gb)

ψ−1

gb
→ {gb} × F

is in the structure group. But this map is merely the g action on F . �

Consequently, we would like a more general version than Definitions 2.9 and 2.12. To
work with Real vector bundles, Tom Dieck [TD69] introduced a complex conjugation
action of C2 on U(n). Lashof–May [LM86] had the idea to further introduce a total
group that is the extension of the structure group Π by G. Tom Dieck’s work became
a special case of a split extension, or equivalently a semidirect product. One good, but
rather brief and sketchy, early reference for both is [LMSM86, IV1]; we shall flesh out
that source and come back to the two examples afterwards.
We start with the well-studied principal bundle story.

Definition 2.17. ([LM86]) Let 1 → Π → Γ → G → 1 be an extension of compact
Lie groups. A principal (Π; Γ)-bundle is a map p : P → B such that the following
statements hold:

(1) The map p is a non-equivariant principal Π-bundle;
(2) The space P is a Γ-space; B is a G-space. Viewing B as a Γ-space by pulling

back the action, the map p is Γ-equivariant.

Remark 2.18. The total space P does not have a G-action in general. It only does
so when we specify a splitting G → Γ. An example of this sort will be discussed in
Section 2.5.

Definition 2.19. A morphism between two principal (Π; Γ)-bundles p1 : P1 → B1 and
p2 : P2 → B2 is a pair of maps (f̄ , f) fitting in the commutative diagram

P1 P2

B1 B2

f̄

p1 p2

f

such that f is G-equivariant and f̄ is Γ-equivariant.

Example 2.20. Let y ∈ Γ be with image g ∈ G. The action map (y, g) is an automor-
phism.

Taking Γ = Π × G, we recover the principal G-Π-bundles of Definition 2.12. In
this case we have two names for the same thing. This could be confusing, but since a
“principal G-Π-bundle” looks more natural than a “principal (Π;Π × G)-bundle” for
this thing, we will keep both names.
Taking Γ to be a split extension, or equivalently, Γ = Π⋊α G for some group homo-

morphism α : G→ Aut(Π), we recover Tom Dieck’s principal (G,α,Π)-bundles.

Remark 2.21. To be useful later, we write the elements of Γ = Π ⋊α G as (ν, g) for
ν ∈ Π, g ∈ G and write α(g) ∈ Aut(Π) as αg. We have the following facts:
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• The product in Γ is given by (ν, g)(µ, h) = (ναg(µ), gh) (That is, g acts on µ
when they interchange);

• The identity element is (e, e);
• The inverse is (ν, g)−1 = (αg−1(ν−1), g−1);
• The elements (e, g) form a subgroup of Γ that is canonically isomorphic to G;
• A space with Γ-action is a space with both Π and G actions such that

g(ν(−)) = αg(ν)(g(−)), which is indeed (αg(ν), g)(−).

The fiber bundle story is not as clear. It turns out that the appropriate fiber of
an equivariant fiber bundle is not just the preimage of any point, but rather with a
preassigned action of Γ. This is unnatural at first glance, for example in a G-vector
bundle we will not expect there to be an (O(n) × G)-action on the fiber R

n. We will
explain why this is necessary at the end of this subsection. How G-vector bundles fit
in this context will be stated in Example 2.26. Let us start with the definition:

Definition 2.22. ([LMSM86, IV1]) Let 1 → Π → Γ → G → 1 be an extension of
compact Lie groups and F be a space with Γ-action. A G-fiber bundle with fiber F ,
structure group Π and total group Γ is a map p : E → B such that the following
statements hold:

(1) The map p is a non-equivariant fiber bundle with fiber F and structure group Π;
(2) Both E,B are G-spaces and p is a G-map;
(3) For any g ∈ G and admissible maps ψ : F → Fb and ζ : F → Fgb, the composite

F
ψ
→ Fb

g
→ Fgb

ζ−1

→ F

is a lift y ∈ Γ of g ∈ G. In other words, the y in the following diagram is asked
to be a lift of g ∈ G in Γ:

F F

Fb Fgb

ψ ∼=

y

ζ∼=

g

Proposition 2.23. The requirement (3) above is equivalent to the following: For each
y ∈ Γ with image g ∈ G and admissible map ψ : F → Fb, the composite

F
y−1

→ F
ψ
→ Fb

g
→ Fgb

is also admissible.

Proof. For any two lifts y and y′ of g, y′y−1 is a lift of e ∈ G, so it is in Π. The claim
then follows from Lemma 2.3. �

Taking g = e in Proposition 2.23, the possible lifts y are exactly the elements of Π,
so we just see the non-equivariant structure group (compare with Lemma 2.3); taking
general g, the assignment ψ 7→ gψy−1 is mimicking the action by an element of Π on
the admissible map ψ, but it changes the fiber from over b to over gb. In this sense, the
extension of the structure group Π to the total group Γ is used to regulate admissible
maps to fibers over the orbit of b.
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Definition 2.24. Let p1 : E1 → B1 and p2 : E2 → B2 be two G-fiber bundles with
fiber F , structure group Π and total group Γ. A morphism between them is a pair of
maps (f̄ , f) fitting in the commutative diagram

E1 E2

B1 B2

f̄

p1 p2

f

such that the following statements hold:

(1) The pair (f̄ , f) is a non-equivariant morphism between bundles with fiber F
and structure group Π.

(2) Both f̄ and f are G-equivariant.

Remark 2.25. By Proposition 2.6, the condition (1) of Definition 2.24 is explicitly the
following: For any admissible map ψ : F → F1 to a fiber in E1, the composite f̄ψ is an
admissible map to a fiber in E2.

We do not have a requirement on a morphism regarding the condition (3) of Definition 2.22
because it is automatic: if ψ is admissible, we have that gψy−1 is admissible and so is
f̄(gψy−1). But f̄ g = gf̄ , so g(f̄ψ)y−1 is also admissible.

As opposed to Definition 2.9, in Definition 2.22 the Γ-action on the total space E can
restrict to a G-action only when there is a splitting of the extension given by G → Γ.
The following example illustrates that varying the splitting map can give different G-
fiber bundle descriptions of the same bundle. It will be discussed in Section 2.5.

Example 2.26. A G-n-vector bundle is both a G-fiber bundle with fiber Rn, structure
group O(n) and total group O(n) × G and a G-fiber bundle with fiber V , structure
group O(V ) and total group O(V )⋊G. (Here, we take Γ = O(n)×G ∼= O(V )⋊G.)

Example 2.27. A Real vector bundle is a C2-fiber bundle with fiber Cn, structure
group U(n) and total group Γ = U(n) ⋊α C2, where α : C2 → Aut(U(n)) sends the
non-trivial element of C2 to the entry-wise complex-conjugation of U(n).

Proof. Let the non-trivial element a of C2 act by complex conjugation on Cn. This
extends the U(n)-action to a Γ-action by Remark 2.21. We only need to check that
Definition 2.22 (3) holds for g = a. An automorphism X of Cn is anti-complex-linear
if and only if A = X ◦ a, the pre-composition of X with conjugation, is complex-linear.
So A is an element of U(n), and X = (A, a) is the lift of a in U(n)⋊α C2. �

Example 2.28. For G-spaces B and F , the projection B×F → B is a G-fiber bundle
with fiber F , structure group e and total group Γ = G.

Proof. The proof in Example 2.16 verifies Definition 2.22 (3). �

When Γ = Π×G, Definition 2.9 can be considered as a special case of Definition 2.22:
The canonical way to extend the Π-action on F to a Γ-action is by taking the trivial G-
action. With this convention, a G-fiber bundle in the first definition satisfies the second
definition, as we will show shortly in Proposition 2.34. In fact, there could be multiple
ways to extend the action, such as in Example 2.26. On the other hand, Example 2.16
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shows that even for a trivial bundle B × F → F , the more general Definition 2.22 is
needed if G acts non-trivially on F .
We have the following structure theorem in the context of Definitions 2.17 and 2.22:

Theorem 2.29. ([LMSM86, IV1]) For any Π-effective Γ-space F and G-space B, there
is an equivalence of categories between {G-fiber bundles with structure group Π, total
group Γ and fiber F over B} and {principal (Π; Γ)-bundles over B}.

Proof. This is an expansion of the sketchy proof in the reference. For brevity, we refer
to the two categories as equivariant fiber bundles and equivariant principal bundles.
Given an equivariant fiber bundle E → B, we take the non-equivariant associated

principal bundle FrF (E) → B. It suffices to give a Γ-action on FrF (E) such that
FrF (E) → B is a G-map. For y ∈ Γ with image g ∈ G and an admissible map
ψ : F → Fb, let y(ψ) = gψy−1. By Proposition 2.23, gψy−1 is an admissible map to
the fiber over gb. This shows that FrF (E) → B is an equivariant principal bundle.
Given an equivariant principal bundle P → B, let E = (P ×F )/Π → B be the fiber

bundle with admissible maps ψp : F → E of the form ψp(f) = [p, f ] for some p ∈ P .
We verify the three conditions for E → B to be an equivariant fiber bundle. Firstly,
E → B is a non-equivariant fiber bundle with structure group Π. Secondly, we describe
the G-action on E. Take the diagonal Γ-action on P ×F . For any space with Γ-action
X , we can define a Γ/Π ∼= G-action on X/Π by lifting g ∈ G to y ∈ Γ and let g[x] = [yx]
for x ∈ X . Since Π is a normal subgroup of Γ, this is a well-defined action, independent
of choice of y or representative x. For X = P × F , this gives (P × F )/Π a G-action.
Since P → B is Γ-equivariant, it can be checked that E → B is G-equivariant. Thirdly,
we show that the condition in Proposition 2.23 is satisfied. In fact, for y ∈ Γ lifting
g ∈ G and p ∈ P , we have gψpy

−1 = ψyp. To see this, evaluating on f ∈ F , we have

gψpy
−1(f) = g[p, y−1f ] definition of ψ;

= [yp, yy−1f ] definition of G-action;

= [yp, f ] = ψyp(f) definition of ψ.

These two constructions give inverse functors. Given an equivariant fiber bundle
E → B, we have a map

ξ : (FrF (E)× F )/Π → E, ξ([ψ, f ]) = ψ(f).

Non-equivariantly we already know that (ξ, idB) is a morphism of fiber bundles with
structure group Π and that ξ is a homeomorphism. To check that ξ is G-equivariant,
suppose g ∈ G lifts to y ∈ Γ. Then

g([ψ, f ]) = [y(ψ), yf ] = [gψy−1, yf ]

and ξ([gψy−1, yf ]) = (gψy−1)(yf) = g(ψ(f)). So (ξ, idB) is a morphism of equivariant
fiber bundles by Definition 2.24. It is an isomorphism because the non-equivariant
inverse is also an equivariant inverse as it is a homeomorphism. Given an equivariant
principal bundle P → B, we have a map which we abusively denote by

ψ : P → FrF ((P × F )/Π), p 7→ ψp.

Here, ψp is the previously defined admissible map of (P × F )/Π, thus an element
of its associated principal bundle. Again, non-equivariantly we know that the map
ψ is a homeomorphism (the Π-effectiveness is needed to assure that if p 6= q in P ,
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then ψp 6= ψq). To check that ψ is Γ-equivariant, the definition of the Γ-action on
admissible maps gives yψp = gψpy

−1 and we have verified gψpy
−1 = ψyp, so we have

yψp = ψyp. Thus, (ψ, idB) is a morphism of equivariant principal bundles. It is also an
isomorphism. �

Remark 2.30. The isomorphisms ξ and ψ in the proof are natural and provide the
unit and counit maps of the adjunction

Hom((P × F )/Π, E) ∼= Hom(P,FrF (E))

(− × F )/Π :

{
principal (Π; Γ)-
bundles over B

} 



G-fiber bundles over B
with structure group Π,
total group Γ and fiber F



 : FrF (−)

We can see in the proof of Theorem 2.29 that it is essential for F to have a Γ-action.
If P were a principal (Π; Γ)-bundle and the fiber F only had a Π-action, the associated
fiber bundle (P × F )/Π would not have a G-action. If we insist on our notion of a
G-fiber bundle to be a G-map between G-spaces, this is the price to pay.

2.4. Comparisons of definitions. We have two concepts of G-fiber bundles. One is
the G-fiber bundle with fiber F and structure group Π as in Definition 2.9; the other
is the G-fiber bundle with fiber F , structure group Π and total group Γ for a specific
extension of compact Lie groups 1 → Π → Γ → G → 1, as in Definition 2.22. The
differences between the concepts are two-fold: in the first one, G acts by bundle maps,
but in the second one, the G-action is regulated by Γ; in the first one, F has only a
Π-action, but in the second one, F has a Γ-action. We compare these two concepts and
show that the first concept is a special case of the second when Γ ∼= Π×G and Γ acts
on F via the projection Π×G→ Π (Proposition 2.34).
We start with some simple group theory observations that will come into play.

Definition 2.31. A retraction Γ → Π is a group homomorphism that restricts to
identity on the subgroup Π.

It turns out that Γ admits a retraction to Π if and only if it is isomorphic to Π×G.
We prove this explicitly in the case of a semidirect product first, then for general Γ.

Proposition 2.32. Let Γ = Π⋊α G be a split extension. Then

(1) The retractions β̃ : Γ → Π are in bijection to homomorphisms β : G → Π
satisfying αg(ν) = β(g)νβ(g)−1 for all g ∈ G and ν ∈ Π. (Note that for a given
α : G→ Aut(Π), the homomorphism β may not exist.)

(2) Each β in (1) specifies an isomorphism Π⋊α G ∼= Π×G.

Proof. To see (1), we use the explicit expression for semidirect product group Γ as in

Remark 2.21. Suppose we have a retraction β̃ : Γ → Π. Let β(g) be the image β̃(e, g).

Then β is a group homomorphism. We have β̃(ν, e) = ν and

β̃(ν, g) = β̃((ν, e)(e, g)) = νβ(g).

In order for β̃ to be a homomorphism, it is required that the following two elements are
equal for all g, h ∈ G and ν, µ ∈ Π:

β̃(ναg(µ), gh) = ναg(µ)β(gh);

β̃(ν, g)β̃(µ, h) = νβ(g)µβ(h).
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Comparing the two lines gives αg(µ) = β(g)µβ(g)−1. On the other hand, if we have β

as required, the formula β̃(ν, g) = νβ(g) defines a retraction β̃.
Given such a β, the group isomorphism in (2) is given by

Π⋊α G ∼= Π×G, (ν, g) 7→ (νβ(g), g). �

Proposition 2.33. There is a bijection of sets between {retractions β̃ : Γ → Π} and
{isomorphisms of extensions Γ ∼= Π×G}.

Proof. Consider Π as a subgroup of Γ and denote by q the surjection Γ → G. Given a
retraction β̃ : Γ → Π, the map (β̃, q) : Γ → Π × G is a group isomorphism, and vice
versa.

1 Π Γ G 1

1 Π Π×G G 1

(β̃,q)

qβ̃

�

We now compare Definitions 2.9 and 2.22 in the following propositions. Note that we
can think about a retraction Γ → Π as a chosen isomorphism Γ ∼= Π×G of extensions
by Proposition 2.33.

Proposition 2.34. Let F be a space with an effective Π-action and 1 → Π → Γ →
G → 1 be an extension of compact Lie groups. Then one can extend the Π-action on
F to a Γ-action such that a G-fiber bundle of Definition 2.9 is always a G-fiber bundle
of Definition 2.22 if and only if there is a retraction Γ → Π and the extended Γ-action
on F is via the retraction.

Proof. Suppose we have p : E → B as in Definition 2.9 and F has an extended Γ-action.
Then the only thing to check for p to be a G-fiber bundle of Definition 2.22 is whether
it satisfies the condition in Proposition 2.23. That is, it suffices to show for each y ∈ Γ
with image g ∈ G and admissible homeomorphism ψ : F → Fb, the composite gψy−1

is also admissible. By Proposition 2.10, gψ is admissible. So by Lemma 2.3, for y ∈ Γ,
gψy−1 is admissible if and only if y acts on F as an element in Π. In other words, the
group homomorphism Γ → Aut(F ) factors through Π → Aut(F ). �

The converse is also true.

Proposition 2.35. Let 1 → Π → Γ → G → 1 be an extension of compact Lie groups
and F be a Π-effective Γ-space. Then a G-fiber bundle of Definition 2.22 is always a
G-fiber bundle of Definition 2.9 if and only if Γ acts on F via a retraction Γ → Π.

Proof. We can reverse the argument in Proposition 2.34. Suppose we have p : E → B
as in Definition 2.22; to check whether p is a G-fiber bundle of Definition 2.9, we only
need to check whether the condition in Proposition 2.10 holds. Take any admissible
homeomorphism ψ : F → Fb. By Proposition 2.23, for any y ∈ Γ with image g ∈ G,
gψy−1 is admissible. By Lemma 2.3, gψ is admissible if and only if y acts on F as an
element in Π. �

Using Propositions 2.34 and 2.35, we can identity Definition 2.9 as a special case of
Definition 2.22.
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Example 2.36. Let Γ = Π×G and F be a space with an effective Π-action. We give
F the trivial G-action. Equivalently, this is viewing F as a space with Γ-action via the
projection Γ → Π. In this perspective, the structure theorem Theorem 2.14 is a special
case of Theorem 2.29.

Example 2.37. In particular, let Γ = O(n) × G and give R
n the usual O(n)-action

and the trivial G-action. We have an equivalence of the two concepts:

• G-vector bundles with fiber Rn (the classical G-equivariant vector bundles);
• G-fiber bundles with fiber Rn, structure group O(n) and total group O(n)×G.

Example 2.38 (non-example). For a Real vector bundle as in Example 2.27, Γ does
not act on Cn via U(n) for any n. So a Real vector bundle is not a C2-fiber bundle
with fiber Cn and structure group U(n).

Proof. There is no retraction Γ → U(n), because otherwise by Proposition 2.32, we
would need an element β(a) of U(n) such that β(a)A = Āβ(a) for all A ∈ U(n), where
Ā is the complex conjugation of A. But this does not exist for any n. �

2.5. Examples: the V -framing bundle. In the extension 1 → Π → Γ → G → 1,
the group G is redundant because it is just Γ/Π. However, due to the special role
of the group G in equivariant homotopy theory, we would like to understand the G-
action wherever applicable. Since the total space of a principal (Π; Γ)-bundle has only
a Γ-action, we now focus on the case of split extensions, when we have a specified
group homomorphism G → Γ. This becomes relevant when we define and study the
V -framing bundle of a G-vector bundle for representations V . It turns out that FrV (E)
and FrRn(E) are the same even as principal (Π; Γ)-bundles, but they have different
G-actions.
Let F be a space with an effective Π-action and one can do some yoga with the fiber.

We fix a group homomorphism β : G→ Π. Then by Proposition 2.32, β determines an
isomorphism

(2.39) Π⋊α G ∼= Π×G.

where α : G→ Aut(Π) is the group homomorphism given by

(2.40) αg(ν) = β(g)νβ(g)−1.

We can let the groups in (2.39) act on F via their retraction to Π. Note that this
is the same abstract action but is different for elements of the form (ν, g) on the two
sides. For clarity, we denote this space by F ′. Explicitly, (Π × G) acts on F ′ by
(ν, g)(x) = ν(x) for x ∈ F ′; (Π ⋊α G) acts on F ′ by (ν, g)(x) = ν

(
β(g)(x)

)
. Inclusion

to the second coordinate gives a canonical inclusion of G into both Π×G and Π⋊αG,
but this is not compatible with the isomorphism (2.39). The second image is the graph
subgroup Λβ = {(β(g), g)|g ∈ G} ⊂ Π×G. Consequently, the two G-actions on F ′ are
different.
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In summary, we have an isomorphism of extensions in the situation, but it is not an
isomorphism of split extensions, as (e, g) of Π⋊α G is sent to (β(g), g) in Π×G.

1 Π Π⋊α G G 1

1 Π Π×G G 1

∼=(2.39)

(e,g)← [g

(e,g)← [g

As a consequence, we get the following trivial corollary of Propositions 2.34 and 2.35:

Corollary 2.41. In the context above, for a group homomorphism α : G → Aut(Π)
given by (2.40) with associated isomorphism (2.39), the following categories are equiv-
alent:

• A G-fiber bundle with fiber F and structure group Π;
• A G-fiber bundle with fiber F ′, structure group Π and total group Π×G;
• A G-fiber bundle with fiber F ′, structure group Π and total group Π⋊α G. �

Similarly, a principal (Π;Π×G)-bundle is literally the same thing as a principal (Π;Π⋊α

G)-bundle, but they have different canonical G-actions.

Notation 2.42. For a principal G-Π-bundle, we call it a principal (Π;Π×G)-bundle if
we let G act on the total space by G ⊂ Π×G; we call it a principal (Π;Π⋊G)-bundle
if we let G act on the total space by Λβ ⊂ Π × G. And similarly for a G-fiber bundle
with fiber F and structure group Π.

This trivial observation allows us to define and study the V -framing bundle of an
equivariant vector bundle. Let V be an orthogonal G-representation given by ρ : G →
O(n). In the remainder of this subsection, we write O(V ) for the group O(n) with the
data G → Aut(O(n)) given by g(ν) = ρ(g)νρ(g)−1 for g ∈ G and ν ∈ O(n), so it is
clear what O(V )⋊G means. This convention coincides with the conjugation G-action
on O(V ) thought of as a mapping space in TopG. In this case, taking F = Rn and
pointing aloud the G-action on F ′, Corollary 2.41 reads: A G-n-vector bundle is a G-
fiber bundle with fiber Rn, structure group O(n) and total group O(n)×G, as well as
a G-fiber bundle with fiber V , structure group O(n) and total group O(V )⋊G.

Definition 2.43. Let p : E → B be a G-n-vector bundle. Let FrV (E) be the space of
the admissible maps with the G-action g(ψ) = gψρ(g)−1.

In other words, FrV (E) has the same underlying space as FrRn(E), but we think of
admissible maps as mapping out of V instead of Rn.

Proposition 2.44. FrV (E) is a principal (O(n);O(V ) ⋊ G)-bundle and we have iso-
morphisms of G-vector bundles:

E ∼= (FrV (E)× V )/O(n).

Proof. This is a corollary of the structure theorem Theorem 2.29. Namely, Corollary 2.41
and the explanation afterwards have turned the vector bundle p : E → B into a G-fiber
bundle with fiber V , structure group O(n) and total group O(V )⋊G. By examination,
FrV (E) in Definition 2.43 agrees with the construction FrV (E) in Theorem 2.29. �
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2.6. Fixed point theorems. Non-equivariantly, the long exact sequence of the ho-
motopy groups of a fiber sequence is a useful tool to study the homotopy group of one
term, knowing the other two. To do this equivariantly, we need to know what taking-
fixed-points does to equivariant bundles. We focus on Γ = Π×G in this subsection.
Let Rep(G,Π) be the set:

Rep(G,Π) = {group homomorphism ρ : G→ Π}/Π-conjugation.

Any subgroup H ⊂ G with a group homomorphism ρ : H → Π gives a subgroup Λρ
of (Π×G) via its graph. That is,

Λρ = {(ρ(h), h)|h ∈ H}.

For each ρ : H → Π, denote the centralizer of the image of ρ in Π by

ZΠ(ρ) = {ν ∈ Π|νρ(h) = ρ(h)ν for all h ∈ H}.

Proposition 2.45. Let Π be a compact Lie group and H be a subgroup. Then ZΠ(H)
is a closed subgroup of Π, thus also a compact Lie group.

Proof. Fix an element h ∈ H . Then the map ch : Π → Π, ν 7→ νhν−1 is continuous.
Since the singleton {h} ∈ Π is closed, the set c−1h ({h}) = {ν ∈ Π|νh = hν} is also
closed. So ZΠ(H) =

⋂
h∈H c

−1
h ({h}) is closed. �

The following theorem is proven in [LM86, Theorem 12] for general Γ. We spell it
out for Γ = Π×G.

Theorem 2.46. Let G and Π be compact Lie groups. Let p : E → B be a principal
G-Π-bundle and H ⊂ G be a subgroup. Assume that E is completely regular.

(1) On the base,

BH =
∐

[ρ]∈Rep(H,Π)

p(EΛρ).

(2) As sets, the preimages over each component of BH are

p−1(p(EΛρ)) =
∐

{ρ′:Π-conjugate to ρ}

EΛρ′ .

As spaces,
p−1(p(EΛρ)) ∼= Π×ZΠ(ρ) E

Λρ .

(3) For a fixed representative ρ of [ρ], we have a principal ZΠ(ρ)-bundle:

ZΠ(ρ) → EΛρ
p
→ p(EΛρ).

(4) In particular, the following is a principal Π-bundle:

Π → EH p
→ p(EH).

Explanation. In words, part (1) says that the H-fixed points of B are the images of the
Λ-fixed points of E for all subgroups Λ ⊂ Π × G that are graphs of a homomorphism
H → Π. Furthermore, EΛ and EΛ′

share the same projection image when Λ and
Λ′ are Π-conjugate, or equivalently the corresponding representations H → Π are Π-
conjugate. The assumption that E is completely regular implies that if Λ and Λ′ are
not Π-conjugate, the images of EΛ and EΛ′

are disjoint.
Parts (2) and (3) imply that E restricted on each component of BH has a reduction

of the structure group from Π to ZΠ(ρ). In the proof of Theorem 3.12(1), we will
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describe in an example how to find the representations ρ when H = G. The idea is
that the fiber over an H-fixed base has an H-action, and ρ tells what this action is
in terms of the native Π-action as a principal bundle. Note that the representation
ρ is dependent on the choice of a base point z in the fiber; a different choice gives a
conjugate representation. From the description of the action, a point in the same fiber,
written uniquely as zν for some ν ∈ Π, is Λρ-fixed if and only if ρ(h)νρ(h)−1 = ν for
all h ∈ H . This justifies the first statement of part (2) as well as part (3).
For the second statement of part (2), which is not in the reference, we use the map:

Π×ZΠ(ρ) E
Λρ → E, (ν, x) 7→ xν−1.

Here, ZΠ(ρ) is a subgroup of Π and acts on the right of Π by multiplication; the left
Π-action on E restricts to a left ZΠ(ρ)-action on EΛρ . It is a homeomorphism to its
image, which is exactly p−1(p(EΛρ)):
We have Λe = H for the trivial representation e : H → Π. Part (4) follows from

taking ρ = e in part (3). �

Remark 2.47. From Theorem 2.46, for a principal G-Π-bundle p : E → B and a
subgroup H ⊂ G, each component B0 of BH has an associated representation class
[ρ] ∈ Rep(H,Π). It is characterized by the fact that for any representation ρ′ : H → Π,

(
p−1(B0)

)Λρ′ 6= ∅ if and only if [ρ′] = [ρ].

The restricted principal Π-bundle p−1(B0) → B0 has a reduction of the structure group
from Π to ZΠ(ρ).

Non-equivariantly, a map between two principal G-bundles that is an underlying
equivalence on the total spaces will give an equivalence on the base spaces, as can be
shown by the long exact sequence of homotopy groups. Equivariantly, we also want
this tool of knowing when a map of two principal G-Π-bundles gives a G-equivalence
on the base spaces.

Theorem 2.48. Let G,Π be compact Lie groups and i : Π → Π′ be an inclusion of
topological groups. Let p : E → B be a principal G-Π-bundle, p′ : E ′ → B′ be a principal
G-Π′-bundle and assume that B,B′ have the homotopy type of G-CW complexes. Then
E ′ has a (Π×G)-action by i.
Suppose that there is a (Π × G)-map f̄ : E → E ′ over a G-map f : B → B′, as in

the following commutative diagram:

Π Π′

E E ′

B B′

i

f̄

p p′

f

Assume

(1) The map i includes Π as a deformation retract of Π′ in groups, that is, there exists
a group homomorphism j : Π′ → Π such that j ◦ i = id and i ◦ j ≃ id rel i(Π) in
topological groups;
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(2) On the total spaces, the map f̄ is an F (Π)-equivalence, that is, a Λ-equivalence for
any subgroup Λ ⊂ Π×G such that Λ ∩ Π = e.

Then, on the base spaces, f : B → B′ is a G-equivalence.

Proof. To simplify notation in this proof, we use the same letters to denote the restric-
tions of the corresponding maps to a subspace. By the equivariant Whitehead theorem,
it suffices to show that:

For any subgroup H ⊂ G, the map f : BH → (B′)H is an equivalence.

We make the following two claims comparing Π and Π′:

(a) For any group H , the induced map i∗ : Rep(H,Π) → Rep(H,Π′) is a bijection.
(b) For any subgroup K of Π, the inclusion i : ZΠK → ZΠ′i(K) is a homotopy equiva-

lence;

These two claims follow from the assumption (1). For (a), we take the functor F =
Rep(H,−) from the category of groups to sets. It has equivalent images on Π and Π′,
and we skip the details. For (b), we take the functor F = Z(−)K from the category of
groups containing K as a subgroup. It also has equivalent images on Π and Π′, and the
details come later in Lemma 2.52.
By Theorem 2.46 (1) and (a), it suffices to show that:

For any H and ρ ∈ Rep(H,Π), the map f : p(EΛρ) → p′((E ′)Λρ) is an equivalence.

By Theorem 2.46 (3), taking the Λρ-fixed points of E and E ′ yields a map between
principal bundles:

ZΠ(ρ) ZΠ′(ρ)

EΛρ (E ′)Λρ

p(EΛρ) p′((E ′)Λρ)

i

f̄

p p′

f

By the claim (b) and the assumption (2), both i and f̄ are equivalences. The long exact
sequence of homotopy groups shows that f is an equivalence. �

Remark 2.49. In Theorem 2.48, the assumption (1) is satisfied in our applications with
Π′ = Π or Π′ = ΠI . The assumption (2) is satisfied when f̄ is a (Π × G)-equivalence,
but is weaker. The weaker version is needed in our applications.

From the proof, we also have a version of Theorem 2.48 relaxing the assumption (2).

Corollary 2.50. Suppose we have (i, f̄ , f) in the context of Theorem 2.48, except that
instead of the assumption (2), f̄ : E → E ′ is only known to be a Λρ-equivalence for a
fixed representation ρ : H → Π. Then on the base spaces, f : p(EΛρ) → p((E ′)Λρ) is an
equivalence.

Note that p(EΛρ) is the space of components of BH that are associated to ρ as
described in Remark 2.47. In particular, if (B′)H is connected for all subgroups H ⊂ G,
then (B′)H has only one associated representation ρH . Moreover, ρH has to be the
restriction of ρG. We have:
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Corollary 2.51. Let B′ be a G-connected space as explained above and ρG be the
associated representation. Suppose we have (i, f̄ , f) in the context of Corollary 2.50,
such that f̄ is a ΛρG-equivalence. Then on the base spaces, f : B → B′ is a G-
equivalence.

Proof. Since the map f : BH → (B′)H preserves the associated representation, we know
that BH only has one associated representation ρH as well. The claim then follows by
applying Corollary 2.50 to ρ = ρH for all H . �

The following is a lemma for Theorem 2.48:

Lemma 2.52. Assume i : Π → Π′ is an inclusion of topological groups with a defor-
mation retract j : Π′ → Π, that is, they satisfy condition (1) in Theorem 2.48. Then
for any subgroup K of Π, the inclusion i : ZΠK → ZΠ′i(K) is a homotopy equivalence.

Proof. We first check that in general, given any group homomorphism f : G→ G′ and
subgroup K ⊂ G, the map f restricts to a map f0 : ZGK → ZG′(f(K)) on subspaces.
This is because xk = kx for all k ∈ K implies f(x)f(k) = f(k)f(x) for all f(k) ∈ f(K).
So, we have

i0 : ZΠK → ZΠ′(i(K)) and j0 : ZΠ′(i(K)) → ZΠ(ji(K)) = ZΠK.

The map j0 gives deformation retract data of the inclusion i0. It is obvious that j0i0 =
id. It remains to show i0j0 ≃ id. The image of i0 is the subspace Zi(Π)(i(K)) ⊂
ZΠ′(i(K)). The homotopy ij ≃ id rel i(Π) restricts to a homotopy i0j0 ≃ id rel
Zi(Π)(i(K)). �

3. Classifying spaces

3.1. V -trivial bundles. An equivariant bundle E → B is V -trivial for some n-dimensional
G-representation V if there is a G-vector bundle isomorphism E ∼= B×V . Such an iso-
morphism is a V -framing of the bundle. This is analogous to the case of non-equivariant
vector bundles, except that equivariance adds in the complexity of a representation V
that’s part of the data.
However, the representation V in the equivariant trivialization of a fixed vector bun-

dle may not be unique. We give a lemma to recognize when two trivial bundles are
isomorphic, then a counterexample.
Let Iso(V,W ) be the space of linear isomorphisms V → W with the conjugation

G-action for G-representations V and W .

Lemma 3.1. For a G-space B, there exists a G-vector bundle isomorphism B × V ∼=
B ×W if and only if there exists a G-map f : B → Iso(V,W ).

Proof. Let F : B × V → B ×W be a vector bundle map. For b ∈ B, let Fb : V → W
be such that Fb(v) = F (b, v). Then F is a G-vector bundle isomorphism if and only if

(1) F is fiberwise isomorphism: Fb ∈ Iso(V,W );
(2) F is a G-map: gF (b, v) = F (gb, gv), or equivalently, Fgb = gFbg

−1, for all g ∈ G.

Taking f(b) = Fb, it follows that F is an isomorphism if and only if f is a G-map. �

Corollary 3.2. If B has a G-fixed point, then B × V ∼= B ×W only when V ∼= W .

Proof. The equivariant map f : B → Iso(V,W ) induces fG : BG → IsoG(V,W ). The
source being nonempty implies that the target is nonempty. �
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Remark 3.3. More generally, for any two n-dimensional G-vector bundles E,E ′ over
B, one can form the non-equivariant bundle HomB(E,E

′) which consists of all bundle
maps E → E ′ over B (not necessarily fiberwise isomorphisms). It has a G-action by
conjugation and is indeed an n2-dimensional G-vector bundle over B. Let IsoB(E,E

′)
be the subspace consisting of only fiberwise isomorphisms. It is a GLn-bundle over B.
Then tautologically E ∼= E ′ if there is a G-invariant section of IsoB(E,E

′).

Example 3.4 (Counterexample). Let G = C2, σ be the sign representation. The unit
sphere, S(2σ), is S1 with the 180 degree rotation action. As C2-vector bundles,

S(2σ)× R
2 ∼= S(2σ)× 2σ.

Proof. By Lemma 3.1, it suffices to construct a C2-map S(2σ) → Iso(R2, 2σ) ∼= GL2,
where the nontrivial element of C2 acts on GL2 by multiplying by −Id. We give S(2σ)
a G-CW decomposition of a 0-cell C2/e and a 1-cell C2/e×D1 and construct the map
by skeleton. It is obvious that any equivariant map on the 0-skeleton extends to the
1-skeleton if and only if the two images lie in the same path component of GL2, which
is true in this case as −Id and Id lie in the same path component. �

The following counterexample is suggested by Gus Longerman.

Example 3.5. (Counterexample) Take G to be any compact Lie group and V andW to
be any two representation of G that are of the same dimension. Then G×V ∼= G×W ,
because MapG(G, Iso(V,W )) ∼= Map(pt, Iso(V,W )) 6= ∅. Indeed, the isomorphism can
be constructed explicitly by F (g, x) = (g, ρW (g)ρV (g)

−1x), where ρV , ρW : G → O(n)
are matrix representations of V,W .

3.2. Universal equivariant bundles.

Definition 3.6. A principal (Π; Γ)-bundle E → B is called universal if for any para-
compact G-space X , there is a bijection of sets between {equivalence classes of principal
(Π; Γ)-bundles over X} and {G-homotopy classes of G-maps X → B}.

The correspondence in one direction is by pulling back the universal bundle along
G-maps X → B. The universal principal (Π; Γ)-bundle exists and is unique up to
homotopy. Moreover, it can be recognized by the following property:

Theorem 3.7. ([LM86, Theorem 9]) A principal (Π; Γ)-bundle p : E → B is universal
if and only if

EΛ ≃ ∗, for all subgroups Λ ⊂ Γ such that Λ ∩Π = e.

The universal principal (Π; Γ)-bundle can be constructed in various ways. We de-
note it as E(Π; Γ) → B(Π; Γ). One construction generalizes Milnor’s infinite join
construction. See [TD69, Section 3] for the case Γ = Π ⋊ G or [Las82, Section 2] for
the case Γ = Π × G. We describe another abstract construction using Theorem 3.7
as outlined in the introduction. Suppose we have a universal Γ-space EF for the
family F = {Λ ⊂ Γ|Λ ∩ Π = e}. Then the restricted Π-action on EF is free,
as any non-trivial element A ∈ Π will generate a subgroup 〈A〉 ⊂ Γ not in F , so
{x ∈ EF |Ax = x} ∼= EF 〈A〉 = ∅. So the quotient map EF → EF/Π is a principal
(Π; Γ)-bundle, and it is equivalent to the universal one by Theorem 3.7. Thus it suffices
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to construct EF . This can be done via Elmendorf’s construction [Elm83]: The EF is
constructed as a Γ-CW complex (See Section 2.1 for G-CW complexes). First, we take

E0 = ⊔Λ∈FΓ/Λ.

It has the property that EΛ
0 6= ∅ exactly when Λ ∈ F . We make the desired fixed-

point-spaces contractible by adding in higher cells. To start, we add 1-cells

⊔Λ0,Λ1∈FMapΓ(Γ/Λ1,Γ/Λ0)× Γ/Λ1 ×D1

to obtain E1. Here, MapΓ(Γ/Λ1,Γ/Λ0) is the space of Γ-equivariant maps topologized
as homeomorphic to the space (Γ/Λ0)

Λ1 . The gluing map on

(f, x, t) ∈ MapΓ(Γ/Λ1,Γ/Λ0)× Γ/Λ1 × S0

sends (f, x,−1) to f(x) ∈ Γ/Λ0 ⊂ E0 and sends (f, x, 1) to x ∈ Γ/Λ1 ⊂ E0. Now we
have EΛ

1 is connected for Λ ∈ F . The higher cells are selected and glued following the
same idea and we skip the details. Technically speaking, when Γ is not a discrete group,
MapΓ(Γ/Λ1,Γ/Λ0)× Γ/Λ1 ×D1 may not be a 1-cell as defined in Section 2. However,
since MapΓ(Γ/Λ1,Γ/Λ0) has the homotopy type of a CW-complex, the constructed EF

always has the homotopy type of a Γ-CW complex.

Remark 3.8. When Γ = Π×G, such a subgroup Λ comes in the form of

{(ρ(h), h)|h ∈ H}, for H ⊂ G and ρ : H → Π is a group homomorphism.

This group was denoted by Λρ in Theorem 2.46.
When Γ = Π⋊α G, such a subgroup Λ comes in the form of

{(ρ(h), h)|h ∈ H}, for H ⊂ G and ρ : H → Π such that ρ(h1h2) = ρ(h1) · αh1(ρ(h2)).

We mostly specialize to the case Γ = O(n) × G, when a principal (O(n); Γ) is also
a principal G-O(n)-bundle. We also denote the universal principal G-O(n)-bundle by
EGO(n) → BGO(n) and denote the universal G-n-vector bundle by ζn → BGO(n)
where

ζn = EGO(n)×O(n) R
n.

As an immediate corollary of Theorems 2.46 and 3.7, one gets the G-homotopy type
of the universal base. Recall that

Rep(G,O(n)) = {ρ : G→ O(n) group homomorphism }/O(n)-conjugation;
∼= {V : n-dimensional orthogonal representation of G}/isomorphism

and ZO(n)(ρ) = {a ∈ O(n)|aρ(g) = ρ(g)a, for all g ∈ G} is the centralizer of the image
of ρ in O(n).

Theorem 3.9. ([Las82, Theorem 2.17])

(BGO(n))
G ≃

∐

[ρ]∈Rep(G,O(n))

BZO(n)(ρ);

≃
∐

[V ]∈Rep(G,O(n))

B(O(V )G).
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Example 3.10. Take H = G = C2 and Π = O(2). Then

Rep(C2, O(2)) = {id, rotation, reflection},

where rotation is the rotation by 180 degrees and reflection is the equivalence class
of all reflections. For ρ = id or ρ = rotation, ZΠ(ρ) = O(2). For ρ = reflection,
ZΠ(ρ) ∼= Z/2 × Z/2. So

(BC2
O(n))C2 ≃ BO(2) ⊔BO(2) ⊔ B(Z/2× Z/2).

3.3. The fiber of the universal bundle and the loop space of the classifying

space over a point. From Theorem 3.9, one can make explicit the classifying maps
of V -trivial bundles as follows.
A G-map θ : pt → BGO(n) lands in one of the G-fixed components of BGO(n).

Suppose that this component is indexed by [V ].

Proposition 3.11. The pullback of the universal bundle is θ∗ζn ∼= V over pt.

Proof. It follows from part (1) of the following Theorem 3.12 that

θ∗ζn ∼= O(Rn, V )×O(n) R
n ∼= V.

In fact, the n-planes in a complete G-universe with the tautology n-plane bundle is a
model for BGO(n) and ζn; θ(pt) is just a G-representation isomorphic to V . �

Theorem 3.12. Take a G-fixed base point b ∈ BGO(n) in the component indexed by
[V ]. Let p : EGO(n) → BGO(n) be the universal principal G-O(n)-bundle. Then

(1) The fiber over b, p−1(b), is homeomorphic to O(Rn, V ) as an (O(n)×G)-space.
Here, (O(n)×G) acts on O(Rn, V ) by G acting on V and O(n) acting on Rn.

(2) The loop space of BGO(n) at the base point b, ΩbBGO(n), is G-homotopy equiv-
alent to O(V ), the isometric self maps of V with G acting by conjugation.

Proof. (1) This is due to Lashof and we explain how to find the representation V
here. Choose and fix a base point z ∈ p−1(b). We construct a group homomorphism
ρz : G → O(n) as follows. For any g ∈ G, there exists a unique element, ρz(g) ∈ O(n)
such that gz = zρz(g). It is easy to check that g 7→ ρz(g) gives a group homomorphism.
Suppose z′ is another base point in p−1(b), and z′ = zν for some unique ν ∈ O(n).
Then

gz′ = gzν = zρz(g)ν = z′(ν−1ρz(g)ν).

So ρz′ = ν−1ρzν is O(n)-conjugate to ρz. The different ρz’s are the matrix representa-
tions of some vector space representation V . From the proof of Theorem 2.17 of [Las82],
this is exactly the index V . Without loss of generality, we take V to be given by ρz as
matrix representation.
The following map gives a non-equivariant homeomorphism:

O(Rn, V ) ∼= O(n)
∼=
→ p−1(b),

ν 7→ zν.

It suffices to check it is an equivariant homeomorphism with the described action. Let
(µ, g) ∈ O(n)×G. Then

z((µ, g) ◦ ν) = z(ρz(g)νµ
−1) = (zρz(g))(νµ

−1) = (gz)(νµ−1) = (µ, g) ◦ zν.

(2) The idea is to compare the path space fibration with the universal bundle. Equiv-
ariantly, the base point should be G-fixed. Since the space involved is not G-connected,
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base points from different components might give inequivalent loop spaces. We use
subscripts in path spaces and loop spaces to indicate the base point. For example,

PbBGO(n) = {α ∈ Map([0, 1], BGO(n))|α(0) = b}.

Fix z ∈ p−1(b) and ρ = ρz : G → O(n) as above. Take z to be the base point of
EGO(n). It is a Λ-fixed point, where

Λ = {(ρ(g), g)|g ∈ G} ⊂ O(n)×G.

We prove that EGO(n) is Λ-contractible. In fact, let Λ′ be any subgroup of Λ. Then
Λ′ ∩O(n) = e, so by Theorem 3.7, (EGO(n))

Λ′

is contractible.
So, the contraction map gives a based Λ-equivariant homotopy:

EGO(n) ∧ I → EGO(n).

Here, I = [0, 1] is based at 0 and has the trivial Λ-action. (The map sends x ∧ 0 and
z ∧ t to z for all x ∈ EGO(n) and t ∈ I.) We take the adjoint of this homotopy to get
EGO(n) → PzEGO(n), and then compose with PzEGO(n) → PbBGO(n) induced by
p : EGO(n) → BGO(n). The composite is

f : EGO(n) → PzEGO(n) → PbBGO(n).

It sends a point x ∈ EGO(n) to a path in BGO(n) that starts at b and ends at p(x).
This yields a commutative diagram:

(3.13)

EGO(n) PbBGO(n)

BGO(n) BGO(n)

f

p p1

Moreover, this diagram is G-equivariant, where the G-action on PbBGO(n) is by point-
wise action on the path. It is worth noting that the G-action we take on EGO(n) is not
the original one, but via the identification q : Λ ∼= G. In other words, g ∈ G acts by
what (ρ(g), g) acts. The two vertical maps are non-equivariant fibrations and f maps
the fiber of p over b ∈ BGO(n), denoted F1, to the fiber of p1 over b, denoted F2.
We first identify the fibers F1 and F2. From part (1), F1

∼= O(Rn, V ) as (O(n)×G)-
spaces. So F1

∼= O(V ) as G-spaces. It is clear that F2
∼= ΩbBGO(n) as G-spaces.

We claim that f restricts to a G-equivalence F1 → F2. The strategy is to show that
it induces an isomorphism on homotopy groups of H-fixed points for all H ⊂ G, using
the long exact sequences of homotopy groups of fiber sequences. Without dealing with
general G-fibrations, it suffices to work out the following:

• Denote by Λ′ = q−1(H), the subgroup of Λ that is isomorphic to H . The
commutative diagram (3.13) restricts to the following commutative diagram:

(F1)
H (F2)

H

(EGO(n))
Λ′

(PbBGO(n))
H

p((EGO(n))
Λ′

) p1((PbBGO(n))
H)

p

fH

p1
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• On the total space level, fH induces isomorphism on homotopy groups. This is
true because EGO(n) is Λ-contractible and PbBGO(n) is G-contractible.

• The base spaces are equal. In fact, it is easy to see that they are both the
component of (BGO(n))

H indexed by [V ] from Theorems 2.46 and 3.9.
• The two vertical lines are fiber sequences. For the first, we use Theorem 2.46 (3)
with (F1)

H = (O(V ))H = ZΠ(ρ|H); for the second, it is merely the path space
fibration ΩbX → PbX → X , where X denotes the component of (BGO(n))

H

containing b. �

Remark 3.14. The proof of Theorem 3.12 works for general Π placing O(n). Take a
G-fixed base point b ∈ BGΠ in the component indexed by [ρ : G→ Π]. Let Πad be the
space Π with the adjoint Π-action and consider it as a G-space via ρ. Then there is a
G-homotopy equivalence ΩbBGΠ ≃ Πad.

3.4. The gauge group of an equivariant principal bundle. Let EO(n) → BO(n)
be the universal principal O(n)-bundle and p : P → B be any principal O(n)-bundle.
The gauge group of P , AutB(P ), is the space of bundle automorphisms of P that are
identity on the base space B ([Hus94, Chap 7, Definition 1.1]). It turns out that the
space of principal bundle maps, Hom(P,EO(n)), is also universal: The map

(3.15) Hom(P,EO(n)) → Mapp(B,BO(n))

that restricts a bundle map to its base spaces is known to be the universal princi-
pal AutB(P )-bundle. Here, Mapp(B,BO(n)) denotes the component of the classifying
map of p in Map(B,BO(n)). A proof of this result can be found in [Hus94, Chap 7,
Corollary 3.5]. In this subsection, we show the equivariant generalization of this result
(Theorem 3.17).
Let EGO(n) → BGO(n) be the universal principal G-O(n)-bundle and p : P → B be

any principal G-O(n)-bundle. The restricting-to-the-base map

(3.16) π : Hom(P,EGO(n)) → Mapp(B,BGO(n))

is a G-map lifting (3.15). Here, Mapp(B,BGO(n)) is the (non-equivariant) component
of the classifying map of p in Map(B,BGO(n)); G acts by conjugation on both sides of
(3.16). Let Γ = AutBP ⋊G, where G acts on AutBP by conjugation. Then the map π
in (3.16) is a universal principal (AutB(P ); Γ)-bundle. Note that this is an equivariant
principal bundle not in the sense of Definition 2.12, but of Definition 2.17 - the total
group is a non-trivial extension of AutB(P ) by G.

Theorem 3.17. In the context above, the map

π : Hom(P,EGO(n)) → Mapp(B,BGO(n))

is a principal (AutBP ; Γ)-bundle, where Γ = AutB(P )⋊G. Moreover, we have

Hom(P,EGO(n)) ≃ EF

for the family F = {Λ ⊂ Γ such that Λ ∩AutBP = e}.

Proof. As stated above, it is known non-equivariantly that π is a universal principal
AutBP -bundle. One can use the conjugation G-action to get a principal (AutBP ; Γ)-
bundle structure on π. However, later in this proof we want a Γ-action on the bundle P ,
so at the risk of elaborating the obvious, we describe the Γ-action on Hom(P,EGO(n))
by putting a Γ-action on both P and EGO(n). The group AutBP naturally has a left
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action on P ; take its trivial action on EGO(n). The group G acts on P and EGO(n)
because they are G-vector bundles. One can check by Remark 2.21 that this gives a
Γ-action on P and EGO(n), thus by conjugation on Hom(P,EGO(n)). Explicitly, the
action is

(AutBP ⋊G)×Hom(P,EGO(n)) → Hom(P,EGO(n))
((s, g), f) 7→ gfs−1g−1.

Since s ∈ AutBP restricts to identity on B, we have

π(gfs−1g−1) = gπ(f)g−1.

By Definition 2.17, the map π is a principal (AutBP ; Γ)-bundle.
It remains to show that

Hom(P,EGO(n))
Λ ≃ ∗ for any Λ ⊂ Γ such that Λ ∩AutBP = e.

Such subgroups Λ are isomorphic to subgroups H of G. The claim follows from various
applications of the postponed Lemma 3.18, and it is essentially a consequence of the
universality of EGO(n).
To see it, we first consider the case Λ = H , that is, the case where ρ(h) = e for all

h ∈ H in Remark 3.8. By restricting the G-action to an H-action, EGO(n) is also the
universal principal H-O(n)-bundle. Then Hom(P,EGO(n))

H ≃ ∗ by taking Π = O(n),
G = H and Γ = O(n)×H in Lemma 3.18.
In the general case, Λ is isomorphic to a subgroup H ⊂ G by the projection map

Γ → G, with a possibly non-trivial map ρ in Remark 3.8. Here is the crux: the elements
in AutBP are O(n)-equivariant maps, so the (Γ = AutBP ⋊G)-action on P defined at
the beginning of this proof commutes with the O(n)-action; and we have Λ ⊂ Γ. In
other words, P is also a principal Λ-O(n)-bundle. Since Λ acts by H on EGO(n), the
space EGO(n) is also the universal principal Λ-O(n)-bundle. Now we are basically in the
first case again: Hom(P,EGO(n))

Λ ≃ ∗ by taking Π = O(n), G = Λ and Γ = O(n)×Λ
in Lemma 3.18. �

The following lemma is a consequence of the universality:

Lemma 3.18. Let 1 → Π → Γ → G→ 1 be an extension of groups. Let

pΠ;Γ : E(Π; Γ) → B(Π; Γ)

be the universal principal (Π; Γ)-bundle and let p : P → B be any principal (Π; Γ)-

bundle. Then
(
Hom(P,E(Π; Γ))

)G
is contractible.

Proof. To clarify the notations, Hom(P,E(Π; Γ)) is the space of maps of (nonequivari-
ant) principal Π-bundles. By definition,

Hom(P,E(Π; Γ)) ∼= MapΠ(P,E(Π; Γ)).

The space Hom(P,E(Π; Γ)) has a Γ-action by conjugation. Since Π ⊂ Γ acts trivially,
it descends to a G-action, and

(
Hom(P,E(Π; Γ))

)G ∼= MapΓ(P,E(Π; Γ)).

By definition, the space MapΓ(P,E(Π; Γ)) is in fact the space of morphisms between
principal (Π; Γ)-bundles. It is non-empty because it consists of the classifying map of
p. It is further path-connected because any two Γ-maps P → E(Π; Γ) will both restrict
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to a classifying map B → B(Π; Γ) of p, so they are G-homotopic. The pull back of pΠ;Γ

along this homotopy gives a homotopy, or path, between the two maps.
Using the arbitrariness of P in the above argument, one can further show that the

space MapΓ(P,E(Π; Γ)) is contractible as follows. Let Y be a random G-space. We
denote by Y × P the principal (Π; Γ)-bundle Y × P → Y × B. Here, Γ acts on Y by
pulling back the G-action and acts Y × P diagonally. Then we have an adjunction:

(3.19) MapG(Y,Hom(P,E(Π; Γ))) ∼= MapΓ(Y × P,E(Π; Γ)).

By what has been shown, the right hand side, thus the left hand side of (3.19) is always
non-empty and path-connected for any Y . Taking Y = Hom(P,E(Π; Γ)), we obtain
that MapG(Y, Y ) is path-connected. In particular, the identity map and the constant
map to a point in Y G are connected by a path. This implies the contractibility of

Y G =
(
Hom(P,E(Π; Γ))

)G
. �

Remark 3.20. Alternatively, one can show MapΓ(P,E(Π; Γ)) ≃ ∗ using the fact that
E(Π; Γ) is a universal space for a family of subgroups of Γ specified by Theorem 3.7,
which contains all the isotropy groups of P .

3.5. Free loop spaces and adjoint bundles. We end this section by showing an
equivariant equivalence of the free loop space LBGΠ and the adjoint bundle Ad(EGΠ) in
Theorem 3.30. This gives Corollary 3.31, which upgrades theG-equivalence ΩbBGO(n) ≃
O(V ) to a multiplicative one. Our proof follows the non-equivariant treatment in the
appendix of Gruher’s thesis [Gru07] and the key equivariant tool is Theorem 2.48.
We start with G-fibrations.

Definition 3.21. A G-map p : E → B between G-spaces is a G-fibration if for all
subgroups H ⊂ G, the map pH : EH → BH is a Hurewicz fibration.

The first examples of G-fibrations are G-fiber bundles.

Example 3.22. Let p : E → B be a principal G-Π-bundle as in Definition 2.12. Then
p is also a G-fibration by Theorem 2.46 (4). However, p : EH → BH is not necessarily
surjective. In contrast to the other parts of Theorem 2.46, we do not have control over
the components of BH that are not hit by p(EH), at least not obviously. In this sense,
the notion of a G-fibration is not as rich as a principal G-Π-bundle.

Example 3.23. Let F be an effective Π-space and q : E ′ → B′ be a G-fiber bundle
with fiber F , structure group Π as in Definition 2.9. Then q is also a G-fibration.

Lemma 3.24. We have the following results on the fiber of a G-fibration:

(1) Let p : E → B be a G-fibration and b ∈ BH be an H-fixed point, then the maps
(p−1(b))H → EH → BH form a fiber sequence.

(2) Let p : D → B and q : E → B be two G-fibrations and f : D → E be a
G-map over B. Take an H-fixed point b ∈ BH . If f is a G-equivalence, then
p−1(b) → q−1(b) is an H-equivalence.

Proof. Non-equivariantly (G = {e}), this is the fact that a map over B and homo-
topy equivalence is a homotopy equivalence of fibrations over B (See [May99, 7.5-7.6]).
Equivariantly, the first claim is immediate from the definition; the second claim reduces
to the non-equivariant case for each subgroup H ′ ⊂ H . �

We adopt the language of fiberwise monoids in [Gru07, Definition 4.2.1].
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Definition 3.25. A G-fibration p : E → B is a G-fiberwise monoid if there is a unit
section map η : B → E and a multiplication map m : E ×B E → E over B, both
G-equivariant, that satisfy the unital and associativity conditions. In other words, E
is a monoid in the category of G-fibrations over B.

We can relax the strict associativity condition and define G-fiberwise A∞-monoids
as well. Let A be a reduced A∞-operad in Top (A (0) = ∗).

Definition 3.26. A G-fibration p : E → B is a G-fiberwise A∞-monoid if it is an
algebra over A in the category of G-fibrations over B. In concrete words, there are
G-equivariant structure maps over B for each k ≥ 0

γk : A (k)×Σk

(
E ×B E ×B · · · ×B E︸ ︷︷ ︸

k times

)
→ E

that satisfy the unital, associativity and Σ-equivariance conditions of an algebra over
an operad. Here, A (k) is thought to have the trivial G-action; for k = 0, γ0 : B → E
is just a section of p.

Definition 3.27. A morphism of G-fiberwise A∞-monoids over B is a morphism of
A∞-monoids in the category of G-fibrations over B. An equivalence is a morphism and
G-equivalence on the total space.

By a G-monoid, we mean a monoid in G-spaces, and similarly for a G-A∞-monoid.
Notice that the fiber of a G-fiberwise (A∞)-monoid over a point b ∈ B is not a G-
(A∞)-monoid. Instead, it is a Gb-(A∞)-monoid, where Gb = {g ∈ G|gb = b} is the
isotropy subgroup of b. A morphism of fiberwise G-(A∞)-monoids induces a morphism
of Gb-(A∞)-monoids on the fibers over b; An equivalence induces a Gb-equivalence on
the fibers by Lemma 3.24.
To clarify this notion, we make the following remarks:

(1) A G-fiberwise monoid is a G-fiberwise A∞-monoid. In this case, the unit section
map η is γ0 and the multiplication map m is γ2.

(2) The relevant examples of G-fiberwise A∞-monoids here are mostly G-fibrations
over B whose fibers are some sort of loops. The structure maps come from
fiberwise-A∞ structure of loop spaces. We will abuse terms to refer to the
structure maps as the unit map and the multiplication map.

(3) A G-fiberwise monoid or a G-monoid here is not a “genuinely equivariant alge-
bra” as it does not have G-set indexed multiplications.

Construction 3.28. For a G-space X , the free loop space LX = XS1

is a G-fibration
over X by evaluating at a base point of S1. It is also a G-fiberwise A∞-monoid with
the unit map given by the constant loop and the multiplication map given by the
concatenation of loops.

Construction 3.29. For a principal G-Π-bundle E → B, the adjoint bundle of E
is Ad(E) = E ×Π Πad. Here, Πad is the space Π with adjoint action: for elements
µ ∈ Π and ν ∈ Πad, µ acts on ν by µ(ν) = µνµ−1. As defined, Ad(E) is a G-fiber
bundle over B with fiber Π, but no longer a principal G-Π-bundle. We claim that
Ad(E) has the structure of a G-fiberwise monoid over B. First, Ad(E) is the fiberwise
automorphism bundle IsoB(E,E), so naturally a fiberwise monoid over B. This is the
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bundle version of the observation that for a right Π-space S homeomorphic to Π, there
is a homeomorphism

AutΠ(S) ∼= S ×Π Πad

f(s) = sν ↔ [(s, ν)].

Moreover, Ad(E) ∼= IsoB(E,E) as G-spaces, where G acts on Ad(E) by acting on E
and on IsoB(E,E) by conjugation. This breaks down to commuting the action of G
and Π on E. Just to clarify the notations,

AutB(E) = IsoB(E,E) ∼= Section(IsoB(E,E)).

Theorem 3.30. Let G,Π be compact Lie groups. Then there is a G-fiberwise A∞-

monoid (P̃EGΠ)/Π over BGΠ and equivalences as G-fiberwise A∞-monoids over BGΠ:

LBGΠ (P̃EGΠ)/Π Ad(EGΠ)
ξ

≃

ψ

≃

Proof. We first construct the space and the map

p̃ : (P̃EGΠ)/Π → BGΠ.

Recall that p : EGΠ → BGΠ is the universal principal G-Π bundle. Denote the space
of paths in EGΠ that start and end in the same fiber over BGΠ to be

P̃EGΠ = {α : I → EGΠ | p(α(0)) = p(α(1))}.

Then P̃EGΠ inherits an (Π × G)-action from EGΠ. The quotient (P̃EGΠ)/Π is a
G-space over BGΠ by p̃(α) = p(α(0)).
The map p̃ has the structure of a G-fiberwise A∞-monoid. The unit map η is given

by the constant path in the fiber of p. There is only one constant path in each fiber
since we have taken quotient of the Π-action. The multiplication map m is given as

follows: for two classes of paths [α], [β] ∈ (P̃EGΠ)/Π, we may choose representatives
such that α(1) = β(0). Let m([α], [β]) = [α.β] be the concatenation of the paths:

• β(1)

• α(1) = β(0)

• α(0)

β

α

α.β

The class [α.β] does not depend on the choice of α, β. Both η and m are G-equivariant.

Next, we compare both LBGΠ and Ad(EGΠ) with (P̃EGΠ)/Π.

On one hand, we have LBGΠ = (P̃EGΠ)/Π
I . Here, ΠI is the group Map([0, 1],Π)

and acts on P̃EGΠ ⊂ (EGΠ)
I pointwise in I. The projection P̃EGΠ → LBGΠ is a

principal G-ΠI-bundle, as the ΠI action commutes with the G-action on P̃EGΠ.

The projection ξ : (P̃EGΠ)/Π → (P̃EGΠ)/Π
I commutes with the unit map and

multiplication map, so it is a map of G-fiberwise A∞-monoids. Moreover, we have the
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following commutative diagram:

Π ΠI

P̃EGΠ P̃EGΠ

(P̃EGΠ)/Π (P̃EGΠ)/Π
I = LBGΠ

ξ

By Theorem 2.48, ξ is a G-equivalence. (The idea is that Π and ΠI are not so different.)
On the other hand, we may define a (Π×G)-equivariant map

ψ̄ : P̃EGΠ → EGΠ× Πad

α 7→ (α(1), ν)

where ν ∈ Π is the unique element such that α(1) = α(0)ν−1. We give EGΠ×Πad the
G-action on EGΠ and the diagonal Π-action. To check the equivariance of ψ̄, take any
(µ, g) ∈ Π×G, then (µ, g) ◦ α(t) = gα(t)µ−1 for t ∈ [0, 1]. So,

ψ̄((µ, g) ◦ α) = (gα(1)µ−1, µνµ−1) = (µ, g) ◦ ψ̄(α).

Since Ad(EGΠ) = (EGΠ× Πad)/Π, we get a map ψ : (P̃EGΠ)/Π → Ad(EGΠ). It is
easy to check that ψ commutes with the unit and multiplication maps, and is thus a
map of G-fiberwise A∞-monoids.
To show that ψ is a G-equivalence, we consider the following morphism of principal

G-Π-bundles:

Π Π

P̃EGΠ EGΠ× Πad

(P̃EGΠ)/Π Ad(EGΠ)

ψ̄

ψ

By Theorem 2.48, it suffices to show that ψ̄ is a Λ-equivalence for any Λ ⊂ Π×G with
Λ ∩Π = e.
We can construct a Λ-homotopy inverse for ψ̄ : P̃EGΠ → EGΠ×Πad, called φ̄. The

idea is already in Gruher’s proof [Gru07]. But in the equivariant case, φ̄ is dependent
on the subgroup Λ. (In particular, it is not meant to be a (Π×G)-homotopy inverse.)
Recall that ψ̄ records the two endpoints of a path. So an inverse φ̄ is going to choose
a canonical path between any two points in a continuous way. This choice of canonical
path exists because of the Λ-contractibility of EGΠ; it is not meant to be a canonical
choice.
The construction of φ̄ is as follows: Since EGΠ is Λ-contractible, (EGΠ)

Λ is non-
empty. We fix a Λ-fixed base point z0 ∈ EGΠ. Let EGΠ× I → EGΠ be a Λ-equivariant
contraction of EGΠ to z0; the adjoint of it gives a Λ-map γ : EGΠ → Pz0EGΠ. For
z ∈ EGΠ, we write γ(z) as γz. It is a path connecting z to z0. Now, recall that for an

element (z, ν) ∈ EGΠ×Πad, the image φ̄(z, ν) ∈ P̃EGΠ wants to be a path from zν to
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z in EGΠ. We define it to be

φ̄(z, ν) = concatenation of γzν and the reverse of γz,

as illustrated in the picture on the left:

z

z0

zν

γz

γzν

φ̄(z,ν)

α

z0

a b

γa γb

φ̄ψ̄(α)

γ

It remains to verify that φ̄ is Λ-homotopy inverse of ψ̄. It is clear that ψ̄φ̄ = id.
The illustration above on the right shows how a Λ-equivariant homotopy φ̄ψ̄ ≃ id is
defined: For a path α ∈ P̃EGΠ going from a point a to a point b, the path φ̄ψ̄(α)
is the concatenation of γa and the reverse of γb. A homotopy of paths φ̄ψ̄(α) ≃ α is
a map H out of the square, such that the value of H has been given on the border
as indicated. To fill the interior, we connect every point x on the border to the point
labeled by z0 with line segments and use the map γH(x) on each segment. This homotopy

H is “functorial” for elements α ∈ P̃EGΠ, so it extends to a homotopy φ̄ψ̄ ≃ id; it is
Λ-equivariant because the map γ is. �

We review the Moore loop space construction. For any space X and base point b,
the Moore loop space of X at the base point b, ΛbX , is defined to be

ΛbX = {(l, α) ∈ R≥0 ×XR≥0|α(0) = b, α(t) = b for t ≥ l}.

It has the same homotopy type as ΩbX and it is a (strictly associative) monoid, with
η : ∗ → ΛbX given by η(∗) = (0, b) and m : ΛbX ×ΛbX → ΛbX given by

m((l, α), (s, β)) = (l + s, α.β) for (α.β)(t) =





α(t) t < l

β(t− l) l ≤ t < l + s

b t ≥ l + s

.

As a corollary of Theorem 3.30, we can upgrade Theorem 3.12 (2) into an equivalence
of G-A∞-monoids ΩbBGO(n) ≃ O(V ). Strictifying ΩbBGO(n) to the Moore loop space
ΛbBGO(n), there is an equivalence of G-monoids ΛbBGO(n) ≃ O(V ):

Corollary 3.31. Take a G-fixed base point b ∈ BGO(n) in the component indexed by
V . Then ΛbBGO(n) is equivalent to O(V ) as a G-monoid. Here, G acts on ΛbBGO(n)
by acting on BGO(n) and acts on O(V ) by conjugation.

Proof. We explain how the G-A∞-monoid statement is a corollary. Take the fiber over
b in Theorem 3.30 for Π = O(n). Then there are equivalences of the fibers as G-A∞-
monoids by Lemma 3.24. The fiber of LBGO(n) is ΩbBGO(n). By Theorem 3.12 (1),
the fiber of Ad(EGO(n)) is O(Rn, V ) ×O(n) O(n)ad ∼= O(V ) as G-monoid. So there
is a zig-zag of equivalences of G-A∞-monoids between ΩbBGO(n) and O(V ). For the
G-monoid statement, just replace the free loop space and path space in Theorem 3.30
by the Moore version, and the proof stays intact.
Explicitly, the zigzag of G-monoids is given by

(3.32) ΛbBGO(n) (Λ̃bEGO(n))/Π O(V ).
ξ

≃

ψ

≃
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We use p to denote the universal principal G-O(n)-bundle EGO(n) → BGO(n). We
define

Λ̃bEGO(n) = {(l, α)|l ∈ R≥0, α : R≥0 → EGO(n), p(α(0)) = p(α(t)) = b for t ≥ l},

so that (Λ̃bEGO(n))/Π = [l, α] where the equivalence relation is

(l, α) ∼ (l, β) if there is ν ∈ O(n) such that α(t) = β(t)ν for all t ≥ 0.

While Λ̃bEGO(n) does not have the structure of a G-monoid, (Λ̃bEGO(n))/Π does.
Fix a base point z ∈ p−1(b) ⊂ EGO(n). The maps are given by

ξ([l, α]) = (l, p(α)) ∈ ΛbBGO(n);

ψ([l, α]) ∈ O(V ) is determined by α(0)ψ([l, α]) = α(l). �
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