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Introduction

The consideration of the VC dimension of certain hypothesis classes
leads to interesting configuration problems in Fd

q .

The VC dimension is a fundamental concept in learning theory.
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VC Dimension

Let X be a set, and Y = {0, 1} be a set of labels

A hypothesis class H is a set of maps h : X → Y .

For C ⊂ X , we say that H shatters C if for all subsets C0 of C , there
exists h ∈ H that is 1 on all points in C0 and 0 on all points in C \C0.

Nathanael Grand, Mandar Juvekar, Maxwell Sun (University of Rochester )VC Dimension and Configurations in Fdq August 13, 2021 3 / 28



VC Dimension

Let X be a set, and Y = {0, 1} be a set of labels

A hypothesis class H is a set of maps h : X → Y .

For C ⊂ X , we say that H shatters C if for all subsets C0 of C , there
exists h ∈ H that is 1 on all points in C0 and 0 on all points in C \C0.

Nathanael Grand, Mandar Juvekar, Maxwell Sun (University of Rochester )VC Dimension and Configurations in Fdq August 13, 2021 3 / 28



VC Dimension

Let X be a set, and Y = {0, 1} be a set of labels

A hypothesis class H is a set of maps h : X → Y .

For C ⊂ X , we say that H shatters C if for all subsets C0 of C , there
exists h ∈ H that is 1 on all points in C0 and 0 on all points in C \C0.

Nathanael Grand, Mandar Juvekar, Maxwell Sun (University of Rochester )VC Dimension and Configurations in Fdq August 13, 2021 3 / 28



VC Dimension (Continued)

Definition

The VC Dimension of a hypothesis class H, denoted by VCdim(H), is the
size of the largest possible subset C ⊂ X which is shattered by H where
no sets of size larger than VCdim(H) are shattered by H.

This idea was developed by Vapnik and Chervonenkis in the 1970.
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Finite Fields and Fd
q

For a prime q we let Fq denote the finite field with q elements.

We let Fd
q denote the vector space of d-tuples of elements of Fq.

For our purposes, q is extremely large with respect to d .
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Configuration Problems in Fd
q

The study of the VC dimension of certain hypothesis classes in an
input space contained in Fd

q leads to the study of interesting point
configurations in that space.

We define a “norm” in Fd
q for y = (y1, y2, . . . , yd) ∈ Fd

q as

‖y‖ = y2
1 + y2

2 + · · ·+ y2
d

We define a configuration in Fd
q to be a sequence of points

x1, . . . , xk ∈ Fd
q where the distances between points xi , xj with i 6= j

are specified to be t for some pairs xi , xj and not for others, with
t ∈ Fq.
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Example of a Configuration in Fd
q
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Hypothesis Class of Spheres in Fd
q

Hd
t = {hy : y ∈ Fd

q}, where

hy (x) =

{
1 if ‖y − x‖ = t

0 if ‖y − x‖ 6= t

Define Hd
t (E ) for a subset E of Fd

q to be the set of all predictors hy ,
y ∈ E .

If E = Fd
q , we will see later that VCdim(Hd

t (E )) = d + 1.
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Shattering of 1 point in F2
q
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Shattering of 2 points in F2
q
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Shattering of 3 points in F2
q
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VC Dimension of a Hypothesis Class of Spheres

We conjecture that that there exists α < d such that if |E | > qα, then

VCdim(Hd
t (E )) = d + 1

for all t 6= 0.

In other words, the sample complexity of E is the same as Fd
q for |E |

sufficiently large.
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PAC Learnability, and the FTSL

The class of functions Hd
t (E ) corresponds to a specific learning task.

Suppose that St(p) denotes the sphere of radius t, centered at a
point p ∈ E :

St(p) = {x ∈ E :‖x − p‖ = t}

Question: Based on a i.i.d sample of size m, sampled through a
distribution D, is there an algorithm capable of successfully
determining which St(p) corresponds to the predictor with the least
error?
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PAC Learnability, and the FTSL (cont.)

If VCdim(Hd
t (E )) = d + 1, then by the Fundamental Theorem of

Statistical Learning, Hd
t (E ) is agnostic PAC learnable.

That is, running a learning algorithm on a i.i.d sample of size
m ≥ mHd

t (E) from a distribution D will produce a hypothesis h such
that

Error of h ≤ ε+ minimum error

with probability 1− δ.
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Sketch of Proof: VCdim(Hd
t ) = d + 1

We will prove the following

Theorem

VCdim(Hd
t (Fd

q)) = VCdim(Hd
t ) = d + 1

and first assume t = 1.

Take ej to mean the j-th standard basis vector.

We take the set of d + 1 points Ta = C ∪ {a} which all lie on the
unit sphere S1, where

C = {e1, . . . , ed}
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Sketch of Proof: VCdim(Hd
t ) = d + 1 (cont.)

There are on the order of qd−1 points in S1, so we select a ∈ S1 such
that a 6= ej . Our goal is to show that we can select a which results in
C ∪ {a} shattering.

First, consider some C0 ⊂ C . Without loss of generality, we let

C0 = {e1, . . . , ei}, 1 ≤ i ≤ d
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Sketch of Proof: VCdim(Hd
t ) = d + 1 (cont.)

Let y have yj = 2
i if 1 ≤ j ≤ i , and 0 otherwise. For our set C0,

y = ( 2
i ,

2
i , . . . ,

2
i , 0, 0, . . . , 0)

For ej ∈ C0: ∥∥ej − y
∥∥ = 1

Whereas, for ek /∈ C0:

‖ek − y‖ =
4

i
+ 1 6= 1
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Sketch of Proof: VCdim(Hd
t ) = d + 1 (cont.)

We now want to be able to find a ∈ S1 such that ‖a− y‖ 6= 1.

Consider for now the points a ∈ S1 satisfying ‖a− y‖ = 1.

We will show that that the set of such a is small compared to the size
of S1
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Sketch of Proof: VCdim(Hd
t ) = d + 1 (cont.)

We can simplify

‖a− y‖ =
i∑

j=1

(
aj −

2

i

)2

+
d∑

j=i+1

a2
j = 1 +

4

i

1−
i∑

j=1

aj



This distance is 1 if and only if

i∑
j=1

aj = 1
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Sketch of Proof: VCdim(Hd
t ) = d + 1 (cont.)

This polynomial surface can be shown to have a intersection with the
relation ‖a‖ = 1 that has cardinality on the order qd−2.

The i = 0 case remains. For this, take y = 3e1. A similar argument
ensues where we show

∥∥y − ej
∥∥ 6= 1 and ‖y − a‖ = 1 for O(qd−2)

possible a.
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Sketch of Proof: VCdim(Hd
t ) = d + 1 (cont.)

Now, we deal with subsets including a. We wish to show there is a
unit sphere containing C0 ∪ {a} but has no other points in C as
elements.

We take hy with y such that

yj =
2a2

i+1(
1−

i∑
j=1

aj

)2
+ ia2

i+1

and yi+1 =

2ai+1

(
1−

i∑
j=1

aj

)
(

1−
i∑

j=1
aj

)2
+ ia2

i+1

for 1 ≤ j ≤ i and the rest of the components are 0.
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Sketch of Proof: VCdim(Hd
t ) = d + 1 (cont.)

By some algebra, it is again not hard to show that
∥∥y − ej

∥∥ = 1 for
all 1 ≤ j ≤ i , ‖y − a‖ = 1, and

∥∥y − ej
∥∥ 6= 1 for j > i except for

O(qd−2) values of a.

Note: the above is only for i < d but for i = d we just take the
origin. If C0 = ∅, we take y = 2a, which satisfies

∥∥2a− ej
∥∥ 6= 1 if we

exclude O(qd−2) values of a.

Since every subset of C has a corresponding predictor except for a
total of O(qd−2) a, the VC dimension of Hd

1 is at least d + 1. We
now show it is less than d + 2.
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Sketch of Proof: VCdim(Hd
t ) = d + 1 (cont.)

Take an arbitrary set of d + 2 points in Fd
q .

If they are in general position, a subset D of d + 1 of these points
determine a sphere. So, the last point is either on this sphere or not.
It follows that there does not exist a predictor that is 1 on D and 1
on the last point and another predictor that is 1 on D and 0 on the
last point.

If there is no such D in general position, this is ’worse’ in a sense. A
more nuanced argument that is similar works, however.
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Sketch of Proof: VCdim(Hd
t ) = d + 1 (cont.)

To show the result for general t that are squares, we can use a scaling
argument.

For nonsquare t, we only need to show the result for one such t and
then scale.

To do this, we take t = s2 + d − 1 and then use xj in place of ej
where xj is s in the jth place and 1 everywhere else. The rest of the
proof follows similarly.
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proof follows similarly.
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The Next Frontier

In the future, we wish to show that the VC dimension of Hd
t (E ) is

d + 1 for all E that are sufficiently large.

We want a lower bound for |E | that is small compared to qd .

This leads to questions about the existence of certain configurations
in such subsets E .
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Thanks!

We wish to thank our project supervisors for their help throughout
the research. We look forward to continue working with them!

Thanks to NSF for providing our groups with funding!
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