VC Dimension and Configurations in \mathbb{F}_{q}^{d}

Nathanael Grand, Mandar Juvekar, Maxwell Sun

US NSF HDR TRIPODS 1934962
August 13, 2021

Introduction

- The consideration of the VC dimension of certain hypothesis classes leads to interesting configuration problems in \mathbb{F}_{q}^{d}.

Introduction

- The consideration of the VC dimension of certain hypothesis classes leads to interesting configuration problems in \mathbb{F}_{q}^{d}.
- The VC dimension is a fundamental concept in learning theory.

VC Dimension

- Let X be a set, and $Y=\{0,1\}$ be a set of labels

VC Dimension

- Let X be a set, and $Y=\{0,1\}$ be a set of labels
- A hypothesis class \mathcal{H} is a set of maps $h: X \rightarrow Y$.

VC Dimension

- Let X be a set, and $Y=\{0,1\}$ be a set of labels
- A hypothesis class \mathcal{H} is a set of maps $h: X \rightarrow Y$.
- For $C \subset X$, we say that \mathcal{H} shatters C if for all subsets C_{0} of C, there exists $h \in \mathcal{H}$ that is 1 on all points in C_{0} and 0 on all points in $C \backslash C_{0}$.

VC Dimension (Continued)

Definition

The VC Dimension of a hypothesis class \mathcal{H}, denoted by $\operatorname{VCdim}(\mathcal{H})$, is the size of the largest possible subset $C \subset X$ which is shattered by \mathcal{H} where no sets of size larger than $\operatorname{VCdim}(\mathcal{H})$ are shattered by \mathcal{H}.

- This idea was developed by Vapnik and Chervonenkis in the 1970.

Finite Fields and \mathbb{F}_{q}^{d}

- For a prime q we let \mathbb{F}_{q} denote the finite field with q elements.

Finite Fields and \mathbb{F}_{q}^{d}

- For a prime q we let \mathbb{F}_{q} denote the finite field with q elements.
- We let \mathbb{F}_{q}^{d} denote the vector space of d-tuples of elements of \mathbb{F}_{q}.

Finite Fields and \mathbb{F}_{q}^{d}

- For a prime q we let \mathbb{F}_{q} denote the finite field with q elements.
- We let \mathbb{F}_{q}^{d} denote the vector space of d-tuples of elements of \mathbb{F}_{q}.
- For our purposes, q is extremely large with respect to d.

Configuration Problems in \mathbb{F}_{q}^{d}

- The study of the VC dimension of certain hypothesis classes in an input space contained in \mathbb{F}_{q}^{d} leads to the study of interesting point configurations in that space.

Configuration Problems in \mathbb{F}_{q}^{d}

- The study of the VC dimension of certain hypothesis classes in an input space contained in \mathbb{F}_{q}^{d} leads to the study of interesting point configurations in that space.
- We define a "norm" in \mathbb{F}_{q}^{d} for $y=\left(y_{1}, y_{2}, \ldots, y_{d}\right) \in \mathbb{F}_{q}^{d}$ as

$$
\|y\|=y_{1}^{2}+y_{2}^{2}+\cdots+y_{d}^{2}
$$

Configuration Problems in \mathbb{F}_{q}^{d}

- The study of the VC dimension of certain hypothesis classes in an input space contained in \mathbb{F}_{q}^{d} leads to the study of interesting point configurations in that space.
- We define a "norm" in \mathbb{F}_{q}^{d} for $y=\left(y_{1}, y_{2}, \ldots, y_{d}\right) \in \mathbb{F}_{q}^{d}$ as

$$
\|y\|=y_{1}^{2}+y_{2}^{2}+\cdots+y_{d}^{2}
$$

- We define a configuration in \mathbb{F}_{q}^{d} to be a sequence of points $x_{1}, \ldots, x_{k} \in \mathbb{F}_{q}^{d}$ where the distances between points x_{i}, x_{j} with $i \neq j$ are specified to be t for some pairs x_{i}, x_{j} and not for others, with $t \in \mathbb{F}_{q}$.

Example of a Configuration in \mathbb{F}_{q}^{d}

Hypothesis Class of Spheres in \mathbb{F}_{q}^{d}

- $\mathcal{H}_{t}^{d}=\left\{h_{y}: y \in \mathbb{F}_{q}^{d}\right\}$, where

$$
h_{y}(x)=\left\{\begin{array}{lll}
1 & \text { if } & \|y-x\|=t \\
0 & \text { if } & \|y-x\| \neq t
\end{array}\right.
$$

Hypothesis Class of Spheres in \mathbb{F}_{q}^{d}

- $\mathcal{H}_{t}^{d}=\left\{h_{y}: y \in \mathbb{F}_{q}^{d}\right\}$, where

$$
h_{y}(x)=\left\{\begin{array}{lll}
1 & \text { if } & \|y-x\|=t \\
0 & \text { if } & \|y-x\| \neq t
\end{array}\right.
$$

- Define $\mathcal{H}_{t}^{d}(E)$ for a subset E of \mathbb{F}_{q}^{d} to be the set of all predictors h_{y}, $y \in E$.

Hypothesis Class of Spheres in \mathbb{F}_{q}^{d}

- $\mathcal{H}_{t}^{d}=\left\{h_{y}: y \in \mathbb{F}_{q}^{d}\right\}$, where

$$
h_{y}(x)=\left\{\begin{array}{lll}
1 & \text { if } & \|y-x\|=t \\
0 & \text { if } & \|y-x\| \neq t
\end{array}\right.
$$

- Define $\mathcal{H}_{t}^{d}(E)$ for a subset E of \mathbb{F}_{q}^{d} to be the set of all predictors h_{y}, $y \in E$.
- If $E=\mathbb{F}_{q}^{d}$, we will see later that $\operatorname{VCdim}\left(\mathcal{H}_{t}^{d}(E)\right)=d+1$.

Shattering of 1 point in \mathbb{F}_{q}^{2}

Shattering of 2 points in \mathbb{F}_{q}^{2}

Shattering of 3 points in \mathbb{F}_{q}^{2}

VC Dimension of a Hypothesis Class of Spheres

- We conjecture that that there exists $\alpha<d$ such that if $|E|>q^{\alpha}$, then

$$
\operatorname{VCdim}\left(\mathcal{H}_{t}^{d}(E)\right)=d+1
$$

for all $t \neq 0$.

VC Dimension of a Hypothesis Class of Spheres

- We conjecture that that there exists $\alpha<d$ such that if $|E|>q^{\alpha}$, then

$$
\operatorname{VCdim}\left(\mathcal{H}_{t}^{d}(E)\right)=d+1
$$

for all $t \neq 0$.

- In other words, the sample complexity of E is the same as \mathbb{F}_{q}^{d} for $|E|$ sufficiently large.

PAC Learnability, and the FTSL

- The class of functions $\mathcal{H}_{t}^{d}(E)$ corresponds to a specific learning task.

PAC Learnability, and the FTSL

- The class of functions $\mathcal{H}_{t}^{d}(E)$ corresponds to a specific learning task.
- Suppose that $S_{t}(p)$ denotes the sphere of radius t, centered at a point $p \in E$:

$$
S_{t}(p)=\{x \in E:\|x-p\|=t\}
$$

PAC Learnability, and the FTSL

- The class of functions $\mathcal{H}_{t}^{d}(E)$ corresponds to a specific learning task.
- Suppose that $S_{t}(p)$ denotes the sphere of radius t, centered at a point $p \in E$:

$$
S_{t}(p)=\{x \in E:\|x-p\|=t\}
$$

- Question: Based on a i.i.d sample of size m, sampled through a distribution \mathcal{D}, is there an algorithm capable of successfully determining which $S_{t}(p)$ corresponds to the predictor with the least error?

PAC Learnability, and the FTSL (cont.)

- If $\operatorname{VCdim}\left(\mathcal{H}_{t}^{d}(E)\right)=d+1$, then by the Fundamental Theorem of Statistical Learning, $\mathcal{H}_{t}^{d}(E)$ is agnostic PAC learnable.

PAC Learnability, and the FTSL (cont.)

- If $\operatorname{VCdim}\left(\mathcal{H}_{t}^{d}(E)\right)=d+1$, then by the Fundamental Theorem of Statistical Learning, $\mathcal{H}_{t}^{d}(E)$ is agnostic PAC learnable.
- That is, running a learning algorithm on a i.i.d sample of size $m \geq m_{\mathcal{H}_{t}^{d}(E)}$ from a distribution \mathcal{D} will produce a hypothesis h such that

$$
\text { Error of } h \leq \epsilon+\text { minimum error }
$$

with probability $1-\delta$.

Sketch of Proof: VCdim $\left(\mathcal{H}_{t}^{d}\right)=d+1$

- We will prove the following

Theorem

$$
\operatorname{VCdim}\left(\mathcal{H}_{t}^{d}\left(\mathbb{F}_{q}^{d}\right)\right)=\operatorname{VCdim}\left(\mathcal{H}_{t}^{d}\right)=d+1
$$

and first assume $t=1$.

Sketch of Proof: VCdim $\left(\mathcal{H}_{t}^{d}\right)=d+1$

- We will prove the following

Theorem

$$
V C \operatorname{dim}\left(\mathcal{H}_{t}^{d}\left(\mathbb{F}_{q}^{d}\right)\right)=V \operatorname{Cdim}\left(\mathcal{H}_{t}^{d}\right)=d+1
$$

and first assume $t=1$.

- Take e_{j} to mean the j-th standard basis vector.

Sketch of Proof: VCdim $\left(\mathcal{H}_{t}^{d}\right)=d+1$

- We will prove the following

Theorem

$$
V C \operatorname{dim}\left(\mathcal{H}_{t}^{d}\left(\mathbb{F}_{q}^{d}\right)\right)=V \operatorname{Cdim}\left(\mathcal{H}_{t}^{d}\right)=d+1
$$

and first assume $t=1$.

- Take e_{j} to mean the j-th standard basis vector.
- We take the set of $d+1$ points $T_{a}=C \cup\{a\}$ which all lie on the unit sphere S_{1}, where

$$
C=\left\{e_{1}, \ldots, e_{d}\right\}
$$

Sketch of Proof: VCdim $\left(\mathcal{H}_{t}^{d}\right)=d+1$ (cont.)

- There are on the order of q^{d-1} points in S_{1}, so we select $a \in S_{1}$ such that $a \neq e_{j}$. Our goal is to show that we can select a which results in $C \cup\{a\}$ shattering.

Sketch of Proof: VCdim $\left(\mathcal{H}_{t}^{d}\right)=d+1$ (cont.)

- There are on the order of q^{d-1} points in S_{1}, so we select $a \in S_{1}$ such that $a \neq e_{j}$. Our goal is to show that we can select a which results in $C \cup\{a\}$ shattering.
- First, consider some $C_{0} \subset C$. Without loss of generality, we let

$$
C_{0}=\left\{e_{1}, \ldots, e_{i}\right\}, \quad 1 \leq i \leq d
$$

Sketch of Proof: VCdim $\left(\mathcal{H}_{t}^{d}\right)=d+1$ (cont.)

- Let y have $y_{j}=\frac{2}{i}$ if $1 \leq j \leq i$, and 0 otherwise. For our set C_{0}, $y=\left(\frac{2}{i}, \frac{2}{i}, \ldots, \frac{2}{i}, 0,0, \ldots, 0\right)$

Sketch of Proof: VCdim $\left(\mathcal{H}_{t}^{d}\right)=d+1$ (cont.)

- Let y have $y_{j}=\frac{2}{i}$ if $1 \leq j \leq i$, and 0 otherwise. For our set C_{0}, $y=\left(\frac{2}{i}, \frac{2}{i}, \ldots, \frac{2}{i}, 0,0, \ldots, 0\right)$
- For $e_{j} \in C_{0}$:

$$
\left\|e_{j}-y\right\|=1
$$

Sketch of Proof: VCdim $\left(\mathcal{H}_{t}^{d}\right)=d+1$ (cont.)

- Let y have $y_{j}=\frac{2}{i}$ if $1 \leq j \leq i$, and 0 otherwise. For our set C_{0}, $y=\left(\frac{2}{i}, \frac{2}{i}, \ldots, \frac{2}{i}, 0,0, \ldots, 0\right)$
- For $e_{j} \in C_{0}$:

$$
\left\|e_{j}-y\right\|=1
$$

- Whereas, for $e_{k} \notin C_{0}$:

$$
\left\|e_{k}-y\right\|=\frac{4}{i}+1 \neq 1
$$

Sketch of Proof: VCdim $\left(\mathcal{H}_{t}^{d}\right)=d+1$ (cont.)

- We now want to be able to find $a \in S_{1}$ such that $\|a-y\| \neq 1$.

Sketch of Proof: VCdim $\left(\mathcal{H}_{t}^{d}\right)=d+1$ (cont.)

- We now want to be able to find $a \in S_{1}$ such that $\|a-y\| \neq 1$.
- Consider for now the points $a \in S_{1}$ satisfying $\|a-y\|=1$.

Sketch of Proof: VCdim $\left(\mathcal{H}_{t}^{d}\right)=d+1$ (cont.)

- We now want to be able to find $a \in S_{1}$ such that $\|a-y\| \neq 1$.
- Consider for now the points $a \in S_{1}$ satisfying $\|a-y\|=1$.
- We will show that that the set of such a is small compared to the size of S_{1}

Sketch of Proof: VCdim $\left(\mathcal{H}_{t}^{d}\right)=d+1$ (cont.)

- We can simplify

$$
\|a-y\|=\sum_{j=1}^{i}\left(a_{j}-\frac{2}{i}\right)^{2}+\sum_{j=i+1}^{d} a_{j}^{2}=1+\frac{4}{i}\left(1-\sum_{j=1}^{i} a_{j}\right)
$$

Sketch of Proof: VCdim $\left(\mathcal{H}_{t}^{d}\right)=d+1$ (cont.)

- We can simplify

$$
\|a-y\|=\sum_{j=1}^{i}\left(a_{j}-\frac{2}{i}\right)^{2}+\sum_{j=i+1}^{d} a_{j}^{2}=1+\frac{4}{i}\left(1-\sum_{j=1}^{i} a_{j}\right)
$$

- This distance is 1 if and only if

$$
\sum_{j=1}^{i} a_{j}=1
$$

Sketch of Proof: VCdim $\left(\mathcal{H}_{t}^{d}\right)=d+1$ (cont.)

- This polynomial surface can be shown to have a intersection with the relation $\|a\|=1$ that has cardinality on the order q^{d-2}.

Sketch of Proof: VCdim $\left(\mathcal{H}_{t}^{d}\right)=d+1$ (cont.)

- This polynomial surface can be shown to have a intersection with the relation $\|a\|=1$ that has cardinality on the order q^{d-2}.
- The $i=0$ case remains. For this, take $y=3 e_{1}$. A similar argument ensues where we show $\left\|y-e_{j}\right\| \neq 1$ and $\|y-a\|=1$ for $O\left(q^{d-2}\right)$ possible a.

Sketch of Proof: VCdim $\left(\mathcal{H}_{t}^{d}\right)=d+1$ (cont.)

- Now, we deal with subsets including a. We wish to show there is a unit sphere containing $C_{0} \cup\{a\}$ but has no other points in C as elements.

Sketch of Proof: VCdim $\left(\mathcal{H}_{t}^{d}\right)=d+1$ (cont.)

- Now, we deal with subsets including a. We wish to show there is a unit sphere containing $C_{0} \cup\{a\}$ but has no other points in C as elements.
- We take h_{y} with y such that

$$
y_{j}=\frac{2 a_{i+1}^{2}}{\left(1-\sum_{j=1}^{i} a_{j}\right)^{2}+i a_{i+1}^{2}} \quad \text { and }
$$

$$
\text { and } \quad y_{i+1}=\frac{2 a_{i+1}\left(1-\sum_{j=1}^{i} a_{j}\right)}{\left(1-\sum_{j=1}^{i} a_{j}\right)^{2}+i a_{i+1}^{2}}
$$

for $1 \leq j \leq i$ and the rest of the components are 0 .

Sketch of Proof: VCdim $\left(\mathcal{H}_{t}^{d}\right)=d+1$ (cont.)

- By some algebra, it is again not hard to show that $\left\|y-e_{j}\right\|=1$ for all $1 \leq j \leq i,\|y-a\|=1$, and $\left\|y-e_{j}\right\| \neq 1$ for $j>i$ except for $O\left(q^{d-2}\right)$ values of a.

Sketch of Proof: VCdim $\left(\mathcal{H}_{t}^{d}\right)=d+1$ (cont.)

- By some algebra, it is again not hard to show that $\left\|y-e_{j}\right\|=1$ for all $1 \leq j \leq i,\|y-a\|=1$, and $\left\|y-e_{j}\right\| \neq 1$ for $j>i$ except for $O\left(q^{d-2}\right)$ values of a.
- Note: the above is only for $i<d$ but for $i=d$ we just take the origin. If $C_{0}=\emptyset$, we take $y=2 a$, which satisfies $\left\|2 a-e_{j}\right\| \neq 1$ if we exclude $O\left(q^{d-2}\right)$ values of a.

Sketch of Proof: VCdim $\left(\mathcal{H}_{t}^{d}\right)=d+1$ (cont.)

- By some algebra, it is again not hard to show that $\left\|y-e_{j}\right\|=1$ for all $1 \leq j \leq i,\|y-a\|=1$, and $\left\|y-e_{j}\right\| \neq 1$ for $j>i$ except for $O\left(q^{d-2}\right)$ values of a.
- Note: the above is only for $i<d$ but for $i=d$ we just take the origin. If $C_{0}=\emptyset$, we take $y=2 a$, which satisfies $\left\|2 a-e_{j}\right\| \neq 1$ if we exclude $O\left(q^{d-2}\right)$ values of a.
- Since every subset of C has a corresponding predictor except for a total of $O\left(q^{d-2}\right)$ a, the VC dimension of \mathcal{H}_{1}^{d} is at least $d+1$. We now show it is less than $d+2$.

Sketch of Proof: VCdim $\left(\mathcal{H}_{t}^{d}\right)=d+1$ (cont.)

- Take an arbitrary set of $d+2$ points in \mathbb{F}_{q}^{d}.

Sketch of Proof: VCdim $\left(\mathcal{H}_{t}^{d}\right)=d+1$ (cont.)

- Take an arbitrary set of $d+2$ points in \mathbb{F}_{q}^{d}.
- If they are in general position, a subset D of $d+1$ of these points determine a sphere. So, the last point is either on this sphere or not. It follows that there does not exist a predictor that is 1 on D and 1 on the last point and another predictor that is 1 on D and 0 on the last point.

Sketch of Proof: VCdim $\left(\mathcal{H}_{t}^{d}\right)=d+1$ (cont.)

- Take an arbitrary set of $d+2$ points in \mathbb{F}_{q}^{d}.
- If they are in general position, a subset D of $d+1$ of these points determine a sphere. So, the last point is either on this sphere or not. It follows that there does not exist a predictor that is 1 on D and 1 on the last point and another predictor that is 1 on D and 0 on the last point.
- If there is no such D in general position, this is 'worse' in a sense. A more nuanced argument that is similar works, however.

Sketch of Proof: VCdim $\left(\mathcal{H}_{t}^{d}\right)=d+1$ (cont.)

- To show the result for general t that are squares, we can use a scaling argument.

Sketch of Proof: VCdim $\left(\mathcal{H}_{t}^{d}\right)=d+1$ (cont.)

- To show the result for general t that are squares, we can use a scaling argument.
- For nonsquare t, we only need to show the result for one such t and then scale.

Sketch of Proof: VCdim $\left(\mathcal{H}_{t}^{d}\right)=d+1$ (cont.)

- To show the result for general t that are squares, we can use a scaling argument.
- For nonsquare t, we only need to show the result for one such t and then scale.
- To do this, we take $t=s^{2}+d-1$ and then use x_{j} in place of e_{j} where x_{j} is s in the j th place and 1 everywhere else. The rest of the proof follows similarly.

The Next Frontier

- In the future, we wish to show that the VC dimension of $\mathcal{H}_{t}^{d}(E)$ is $d+1$ for all E that are sufficiently large.

The Next Frontier

- In the future, we wish to show that the VC dimension of $\mathcal{H}_{t}^{d}(E)$ is $d+1$ for all E that are sufficiently large.
- We want a lower bound for $|E|$ that is small compared to q^{d}.

The Next Frontier

- In the future, we wish to show that the VC dimension of $\mathcal{H}_{t}^{d}(E)$ is $d+1$ for all E that are sufficiently large.
- We want a lower bound for $|E|$ that is small compared to q^{d}.
- This leads to questions about the existence of certain configurations in such subsets E.

References

(1. M. Bennett, J. Chapman, D. Covert, D. Hart, A. losevich and J. Pakianathan, Long paths in the distance graph over large subsets of vector spaces over finite fields, J. Korean Math. Soc. 53, (2016).
冨 S. Shalev-Shwartz and S. Ben-David, Understanding Machine Learning: From Theory to Algorithms, Cambridge University Press, (2014).
(R. Iosevich and M. Rudnev, Erdős distance problem in vector spaces over finite fields, Trans. Amer. Math. Soc. 359 (2007), no. 12, 6127-6142.

References

D. Covert, The Finite Field Distance Problem, MAA Press, an imprint of the American Mathematical Society, (2021).

围 A. losevich and H. Parshall, Embedding distance graphs in finite field vector spaces, (2018).
(1). losevich, G. Jardine and B. McDonald, Cycles of arbitrary length in distance graphs on \mathbb{F}_{q}^{d}, (2021).

Thanks!

- We wish to thank our project supervisors for their help throughout the research. We look forward to continue working with them!

Thanks!

- We wish to thank our project supervisors for their help throughout the research. We look forward to continue working with them!
- Thanks to NSF for providing our groups with funding!

