Primes Which Are a Sum of Two Squares

Scott Kirila

June 25, 2020
1. Statement of the Theorem
2. An aside: infinitely many
3. Roadmap
4. Proof of Step 1
5. Proof of Step 2
6. Step 1 (again)
7. A ‘one-line’ proof
Question. When can a prime number be written as a sum of two positive squared integers?

We begin with some numerical observations:

- ✓ $2 = 1^2 + 1^2$
- ✗ $3 = 1^2 + 2$, but 2 is not a perfect square ($\sqrt{2}$ is irrational!)
- ✓ $5 = 1^2 + 2^2$
- ✗ $7 = 1^2 + 6 = 2^2 + 3$
- ✗ $11 = 1^2 + 10 = 2^2 + 7 = 3^2 + 2$
- ✓ $13 = 2^2 + 3^2$
- ✓ $17 = 1^2 + 4^2$
Let’s assume that q is an odd prime, so $q \equiv 1 \pmod{2}$.

What about modulo 4?

An odd number is congruent to 1 or 3 modulo 4, so $q = 1 + 4N$ or $q = 3 + 4N$.

From our list, only odd primes congruent to 1 modulo 4 are a sum of squares. Coincidence?
Let’s look at squares modulo 4:

\[
\begin{align*}
0^2 & \equiv 0 \pmod{4} \\
1^2 & \equiv 1 \pmod{4} \\
2^2 & \equiv 0 \pmod{4} \\
3^2 & \equiv 1 \pmod{4}.
\end{align*}
\]

So any sum of two squares, \(m^2 + n^2 \), is

\[
\begin{align*}
m^2 + n^2 & \equiv \begin{cases}
0^2 + 0^2 & \pmod{4} \\
0^2 + 1^2 & \pmod{4} \\
1^2 + 1^2 & \pmod{4}
\end{cases} \\
& \equiv \begin{cases}
0 & \pmod{4} \\
1 & \pmod{4} \\
2 & \pmod{4}
\end{cases}
\end{align*}
\]
If \(q = m^2 + n^2 \), then \(q \equiv 0, 1, 2 \pmod{4} \).

Since \(q \) is prime, it is not divisible by 4.

If \(q \equiv 2 \pmod{4} \), then \(q \) is divisible by 2 (since then \(p = 2 + 4k \)). Hence \(q = 2 \).

Conclusion? Either \(q = 1^2 + 1^2 \), or \(q \equiv 1 \pmod{4} \).
So any odd prime which is a sum of two squares must be congruent to 1 (mod 4).

Is the converse true? If \(q \) is an odd prime which is congruent to 1 (mod 4), must it be a sum of two squares?

The quick answer is: YES!

Theorem\(^1\)

An odd prime number is a sum of two squared integers **if and only if** it is congruent to 1 (mod 4).

But first we need a middle step to help bridge the gap.

\(^1\)Attributed to Girard* (1625), Fermat* (1640), and Euler (1750)
Observation. If \(q = m^2 + n^2 \), then \(q \) does not divide \(n \).

- Why not? Otherwise \(q \) divides \(m^2 = q - n^2 \).

- Since \(q \) is prime and divides \(m^2 = m \cdot m \), it actually divides \(m \).

- This means that \(q^2 \) divides \(m^2 + n^2 = q \), which is impossible!

So \(n \not\equiv 0 \pmod{q} \).

In particular, it has a multiplicative inverse\(^2\), \(n^* \), modulo \(q \):

\[
 n \cdot n^* \equiv 1 \pmod{q}.
\]

\(^2\)Infinity of Primes II, slide 6
Since \(q = m^2 + n^2 \), we have

\[
m^2 + n^2 \equiv 0 \pmod{q}
\]
\[
m^2 \equiv -n^2 \pmod{q}
\]
\[
m^2 \cdot (n^*)^2 \equiv -1 \pmod{q}
\]
\[
(m \cdot n^*)^2 \equiv -1 \pmod{q},
\]
and so \(-1\) is a square modulo \(q \).

What we know so far:

\[
q = m^2 + n^2
\]
\[
-1 \equiv \square \pmod{q}
\]
\[
q \equiv 1 \pmod{4}
\]
Regarding that dashed arrow on the previous slide:

■ If -1 is a square modulo q, then there is an integer j with $j^2 \equiv -1 \pmod{q}$.

■ Squaring both sides, we get $j^4 \equiv 1 \pmod{q}$.

■ Alex’s rolling pin argument\(^3\) can be used here to show that 4 divides $q - 1$.

■ But this is the same as saying $q \equiv 1 \pmod{4}$

\(^3\)Infinity of Primes II, Slide 11. Note that 4 is the size of $\{1, j, j^2, j^3\}$
Fun fact: using what we know from the previous slide, we can show that there are infinitely many primes congruent to 1 (mod 4).

- Suppose Q is the largest prime congruent to 1 (mod 4).

- If q is a prime dividing $(2 \cdot 3 \cdot 5 \cdots Q)^2 + 1$, then

\[(2 \cdot 3 \cdot 5 \cdots Q)^2 \equiv -1 \pmod{q}.

- This means that $q \equiv 1 \pmod{4}$.

- But q must also be larger than Q, since $q \neq 2, 3, 5, \ldots, Q$. Contradiction!

\(^4\)Compare this proof to Infinity of Primes I, Slide 14 (Euclid).
Here’s how we’ll finish proving the Theorem:

\[q = m^2 + n^2 \] \quad \text{Step 2} \quad -1 \equiv \square \pmod{q} \]

\[q \equiv 1 \pmod{4} \] \quad \text{Step 1}

From now on, let \(G = \{1, 2, \ldots, q - 1\} \).

So for any \(a \in G \), there is an \(a^* \in G \) with

\[a \cdot a^* \equiv 1 \pmod{q}. \]
Proof of Step 1

Step 1
If q is a prime number congruent to 1 (mod 4), then -1 is a square modulo q.

Proof. We collect the elements of G into subsets of the form

$$E_a := \{a, a^*, q - a, q - a^*\}.$$

This set has size 4, unless some of the elements are repeated.

Take $a = 1$ for example, which is its own multiplicative inverse.

Then $E_1 = \{1, q - 1\}$.

Since $q \neq 2$, we see that E_1 has size 2, not 4.
Proof of Step 1

Let's count the size of $E_a = \{a, a^*, q - a, q - a^*\}$ for $a \neq 1$.

First check if $a = a^*$.

- If $a = a^*$, then $a^2 \equiv 1 \pmod{q}$.

- Subtract 1 from both sides, so $(a - 1)(a + 1) \equiv 0 \pmod{q}$.

- Since $a \neq 1$, $a - 1$ has a multiplicative inverse modulo q.

- Multiply both sides by $(a - 1)^*$ to get $a + 1 \equiv 0 \pmod{q}$.

- Therefore $a \equiv -1 \pmod{q}$, and so $a = q - 1$.
Proof of Step 1

So $E_1 = E_{q-1}$ has size 2, and this covers the case where $a^* = a$.

Another possibility is $a = q - a$, which means that $q = 2a$.

× But q is odd, so this can’t happen.

The next case5 is when $a = q - a^*$

■ Rearranging terms, this also means that $a^* = q - a$.

■ Since $a \neq 1, q - 1$, we see that $a \neq a^*$. And so

$$E_a = \{a, a^*, q - a, q - a^*\} = \{a, a^*\}$$

has size 2.

■ Most importantly, we also have $a^2 \equiv -1 \pmod{q}$.

5Note: in this case, a cannot be 1 or $q - 1$.
Proof of Step 1

To summarize:

1. $E_1 = E_{q-1} = \{1, q - 1\}$ has size 2.

2. If $a^2 \equiv -1 \ (\text{mod } q)$, then $E_a = \{a, a^*\}$ has size 2.

3. For all other a, each element is distinct; so E_a has size 4.

Of course, G doesn’t always have elements of the second type. For example:

- ✓ If $q = 101$, then $(10)^2 \equiv -1 \ (\text{mod } q)$.

- ✗ If $q = 7$, then $a^2 \equiv 1, 2, 4 \ (\text{mod } q)$.
Proof of Step 1

This splits up G into subsets of size 2 and 4:

- If -1 is not a square modulo q, then there is precisely one subset of size 2: $\{1, q - 1\}$.

- There are two subsets of size 2 otherwise.

- Everything else is containing in a subset of size 4.

Let c_2 count the number of such subsets of size 2, so $c_2 = 1$ or 2.

Let c_4 be the number of distinct subsets E_a of size 4.
Proof of Step 1

Then we have

\[2c_2 + 4c_4 = q - 1. \]

Reducing modulo 4, we get

\[q \equiv 1 + 2c_2 \pmod{4}. \]

From this, we see that

\[c_2 = \begin{cases}
1 & \text{if } q \equiv 3 \pmod{4}, \\
2 & \text{if } q \equiv 1 \pmod{4}.
\end{cases} \]

This proves Step 1, since \(q \equiv 1 \pmod{4} \) implies there are two subsets of size 2. \qed
Step 2

If -1 is a square modulo q, then q is a sum of two squared integers.

Proof. Let $j \in G$ be such that $j^2 \equiv -1 \pmod{q}$.

- Consider $a - jb$ for integers a, b with $0 \leq a, b < \sqrt{q}$.

- **Key point:** there are $> \sqrt{q}$ choices for each of a and b (because we include 0).

- So there are *more than* $(\sqrt{q})^2 = q$ pairs (a, b).

Let’s look at $a - jb \pmod{q}$.
Proof of Step 2

There are q possible values for $a - jb \pmod{q}$.

Pigeonhole principle: If you sort $> q$ items6 into q bins7, one of the bins must contain (at least) two items.

- So there are two different pairs (a, b) and (a', b') with

\[a - jb \equiv a' - jb' \pmod{q}. \]

- Rearranging, we get

\[a - a' \equiv j(b - b') \pmod{q}. \]

- Set $x = a - a'$ and $y = b - b'$, so

\[x \equiv jy \pmod{q}. \]

6 its value modulo q

7 its value modulo q
Proof of Step 2

Squaring both sides, we get

\[x^2 \equiv j^2 y^2 \pmod{q} \]
\[\equiv -y^2 \pmod{q}. \]

So \(q \) divides \(x^2 + y^2 \). Almost there!

- Since \(0 \leq a, a' < \sqrt{q} \), we have \(|x| = |a - a'| < \sqrt{q} \)
- So \(x^2 < q \), and the same is true for \(y^2 \).
- Then \(x^2 + y^2 < 2q \) and is divisible by \(q \).
- Hence \(x^2 + y^2 = 0 \) or \(q \).
Proof of Step 2

If $x^2 + y^2 = 0$, then $x = 0$ and $y = 0$.

- But then $a = a'$ and $b = b'$.

- We used the pigeonhole principle to find distinct pairs (a, b) and (a', b'), so this can't happen.

And we’re done, because the only possibility left is that $x^2 + y^2 = q$.

Combining Steps 1 and 2 proves the rest of the Theorem.
Constructive proof of Step 1

Lemma\(^8\)

Since \(q\) is prime, we have \((q - 1)! \equiv -1 \pmod{q}\).

Proof. Recall that 1 and \(q - 1\) are the only elements of \(G\) which are their own inverse.

Write the remaining \(2Q := q - 3\) elements as \(a_1, a_1^*, \ldots, a_Q, a_Q^*\). Then

\[(q - 1)! = (q - 1) \prod_{k=1}^{Q} a_k a_k^* \equiv (-1) \prod_{k=1}^{Q} 1 \pmod{q}.

This is \(\equiv -1 \pmod{q}\), so we’re done. \(\square\)

\(^8\)Part of Wilson’s Theorem
Now note that

\[(q - 1)! = 1 \cdot \left(\frac{q - 1}{2}\right) \cdot \left(\frac{q + 1}{2}\right) \cdot \ldots \cdot (q - 1)\]

\[= 1 \cdot \left(\frac{q - 1}{2}\right) \cdot \left(q - \frac{q - 1}{2}\right) \cdot \ldots \cdot (q - 1)\]

\[\equiv 1^2 \cdot \ldots \left(\frac{q - 1}{2}\right)^2 \cdot (-1)^\frac{q-1}{2} \quad (\text{mod } q).\]

But \(\frac{q-1}{2}\) is even. So, after applying the Lemma, we see that

\[-1 \equiv \left[\left(\frac{q - 1}{2}\right)!\right]^2 \quad (\text{mod } q).\]
Let \mathbb{N} denote the positive integers. Consider the set

$$S := \{(x, y, z) \in \mathbb{N}^3 : x^2 + 4yz = q\}.$$

For example, if $q = 1 + 4N$, then $(1, 1, N) \in S$.

Define a map $f : S \to S$ by $f(x, y, z) = (x, z, y)$.

Since $x^2 + 4yz = x^2 + 4zy$, this map is well-defined.\(^9\)

If we apply f twice, then we get back our original input:

$$f(f(x, y, z)) = (x, y, z).$$

Such a function is called an *involution*.

\(^9\)That is, if $(x, y, z) \in S$, then $f(x, y, z) \in S$
Remark. A *fixed point* of f is any point for which $f(x, y, z) = (x, y, z)$.

But this means that $y = z$, and so $x^2 + 4y^2 = q$.

That is, $q = x^2 + (2y)^2$, which is exactly what we want!

So it suffices to show that f has at least one fixed point.
To do this, we define another involution\(^{10}\):

\[
g(x, y, z) = \begin{cases}
(x + 2z, z, y - x - z) & \text{if } x < y - z, \\
(2y - x, y, x - y + z) & \text{if } y - z < x < 2y, \\
(x - 2y, x - y + z, y) & \text{if } x > 2y.
\end{cases}
\]

Let's find its fixed points, i.e. where \(g(x, y, z) = (x, y, z)\)

- If \(x < y - z\), then

\[
x + 2z = x, \\
z = y, \\
y - x - z = z.
\]

\(\times\) The only possibility is \(x = y = z = 0\), but this doesn't satisfy \(x < y - z\).

\(\times\) Similarly for \(x > 2y\).

\(^{10}\text{Exercise. Check this!}\)
A ‘one-line’ proof

If \(y - z < x < 2y \), then

\[
2y - x = x, \\
y = y, \\
x - y + z = z.
\]

So \(x = y \), and \(x, y, z > 0 \).

- Thus \((x, x, z) \in S\) is a fixed point of \(g\).
- But \((x, x, z) \in S\) satisfies

\[
q = x^2 + 4xz = x(x + 4z).
\]

- Since \(q\) is prime, \(x = 1\) and hence \(z = N\).
- So \(g\) has a single fixed point \((1, 1, N)\) when \(q = 1 + 4N\).
We’re practically done!

- Since g has exactly one fixed point, S must have an odd number of elements.

- Why? Pair each element $(x, y, z) \in S$ with its buddy $g(x, y, z)$.

- The only element that can’t be paired is $(1, 1, N)$.

- $\#S = 2(\text{number of pairs}) + 1$, so $\#S$ is odd.
Fact. An involution, f, on a set of odd size must have a fixed point.

- Why? The same reasoning as on the previous slide.

- We pair up each (x, y, z) with $f(x, y, z)$

So f has a fixed point, as desired.

This proof is due to Don Zagier (1990), building upon work of Roger Heath-Brown (1984).