Lemma: p' refines p. Then $\mathcal{L}(f, p) \leq \mathcal{L}(f, p')$ and $u(f, p) \geq u(f, p')$

Proof: Let $S \in p$ be a rectangle: $S = S_1 \cup S_2 \cup \ldots \cup S_n$

so $v(S) = v(S_1) + \ldots + v(S_n)$

By definition, $ms(S) \leq ms_i(S)$ since $S_i \subseteq S$, so the values of $f(x)$ could be smaller in S.

Thus $ms(S) v(S) = \sum_{i=1}^{d} ms(S) v(S_i) \leq \sum_{i=1}^{d} ms_i(S) v(S_i)$

$\implies \mathcal{L}(f, p) \leq \mathcal{L}(f, p')$.

Same argument works for upper sums.

Idea to remember (1d): refine

\rightarrow $S_1 \quad S_2$

$ms(S) \leq ms_1(S)$

$\leq ms_2(S)$

$\implies Ms(S) \geq Ms_1(S)$

$\geq Ms_2(S)$

Another key idea: If p, p' are partitions and you are proving something about them, it is often useful to consider a partition p'' that refines both of them.
Corollary: If \(P, P' \) are partitions, then \(L(f, P) \leq U(f, P') \).

Proof: Let \(P'' \) be a refinement of both \(P \) and \(P' \). (Why does it exist? Then \(L(f, P'') \leq L(f, P) \leq U(f, P'') \leq U(f, P) \).

By above.

Definition: \(f \) is integrable on \(A \) (rectangle) if \(f : A \to \mathbb{R} \)

\[\text{if } f \text{ is bounded and } \sup_{\overline{E}} f(x) = \inf_{\underline{E}} f(x) \]

Example: \(f(x) = \begin{cases} 0, & x \in \mathbb{Q} - \text{rationals} \\ 1, & x \notin \mathbb{Q} \end{cases} \)

\(A = [0,1] \)

Take any partition of \([0,1]\). Then any \(S \cap P \) contains rationals, which implies that \(m_S(f) = 0 \). Similarly \(M_S(f) = 1 \), so \(f \) is not integrable.

Simple criterion: A bounded function \(f: A \to \mathbb{R} \) is integrable if and only for every \(\varepsilon > 0 \) there exists a partition \(P \) of \(A \)

\[U(f, P) - L(f, P) < \varepsilon. \]
Proof: If the condition holds, then \(\sup \| L_c'(P_p') \| = \in\{ \sup L_c'(P_p') \} \) by definition.

Conversely, suppose that \(\sup \| L_c'(P_p') \| = \in\{ \sup L_c'(P_p') \} \). Then for any \(\epsilon > 0 \), \(\exists \ p, p' \in U(S, P) - L(S, P') < \epsilon \). Let \(p'' \) be a refinement of both \(p, p' \). Then

\[
U(S, P) - L(S, P) \leq U(S, P) - L(S, P') < \epsilon
\]

and we are done.

Measure 0: \(A \subseteq \mathbb{R}^n \) has measure 0 if there is a cover \(\{ U_i, U_1, \ldots, U_n \} \) of \(A \) by closed rectangles \(\gamma \sum v(U_i) < \epsilon \), like the rationals \(\frac{\epsilon}{2^n} \).

Example: A countable, i.e. \(A = \{ q_i \} \).

Take a rectangle of side-length \(\frac{\epsilon}{2^n} \) centered at each \(q_i \). Then \(\sum v(U_i) \leq \sum \frac{\epsilon}{2^n} = \epsilon \).

But things get more insane. Consider

\[
0 \begin{bmatrix} 3 \ 3 \ 4 \ end{bmatrix} 1 \begin{bmatrix} E_i \ what \ is \ left \ get \ rid \ of \ the \ middle \ part \end{bmatrix}
\]
Let $C = \bigcap_{i=1}^{\infty} E_i$ be closed and bounded, hence compact.

Clearly, $C \subseteq E_n$ for each n. Observe that $v(E_n) = 2^{-n} \cdot 3^{-n} \to 0$ as $n \to \infty$.

It follows that C has measure 0!

And yet, C is uncountable. Why? Because C contains all numbers in $[0,1]$ with 0's and 2's in their decimal binary expansion and you get all of $[0,1]$.

Definition: $A \subseteq \mathbb{R}^n$ has n-dimensional content 0 if for every $\varepsilon > 0$ a finite cover $\{U_1, \ldots, U_n\}$ of closed rectangles

\[\sum_{i=1}^{n} v(U_i) < \varepsilon \]
If \(a < b \), then \([a,b]\) does not have content 0.

If \(\{\mathcal{U}_i\}_{i=1}^n \) is a finite cover, then
\[
\sum_{i=1}^n v(\mathcal{U}_i) \geq b-a
\]
by closed intervals.

Proof: Let \(a = t_0 < t_1 < \ldots < t_k = b \) endpoints of \(\mathcal{U}_i \)’s. Then
\[
v(\mathcal{U}_i) = \sup \sum_{j=0}^{k-1} (t_j - t_{j+1}) \leq \sum_{j=0}^{k-1} (t_j - t_{j+1}) = b-a
\]
So
\[
\sum_{i=1}^n v(\mathcal{U}_i) \geq \sum_{j=1}^{k-1} (t_j - t_{j-1}) = b-a
\]

What about measure 0?

Theorem: If \(A \) is compact and has measure 0, then
\(A \) has content 0.

Proof: Let \(\varepsilon > 0 \). Since \(A \) has measure 0, there is a cover \(\mathcal{U}_1, \mathcal{U}_2, \ldots \) of \(A \) by open rectangles such that
\[
\sum_{i=1}^{n} v(\mathcal{U}_i) < \varepsilon.
\]
Since \(A \) is compact, a finite subcollection covers, so
\[
\sum_{i=1}^{n} v(\mathcal{U}_i) < \varepsilon.
\]

Caution: \(A = \mathbb{Q} \) has measure 0, especially in \([0,1]\), but
\[
\text{content}(A) \neq 0.
\]