Lemma: A closed rectangle \(f: A \to \mathbb{R} \) bounded \(\forall x \in A \), \(0(f(x)) \leq c \).

Proof: For each \(x \in A \), \(\exists U_x \), closed rectangle \(U_x \),

\[m(U_x) \leq m(U_x) < \varepsilon. \]

Extract a finite subcover (by \(U_x \)), say \(U_{x_1}, \ldots, U_{x_n} \) that cover \(A \).

Construct \(\mathcal{A} \) partition \(\mathcal{A} \) each \(S \in \mathcal{A} \), \(S \in \mathcal{A} \), for some \(i \).

Then \(M_S(s) - m_S(s) = \varepsilon \), \(\forall S \in \mathcal{A} \), so

\[\begin{align*}
U(S, P) - L(S, P) &\geq \sum_{S \in \mathcal{A}} [M_S(s) - m_S(s)] \mu(A) \\
&< \varepsilon \mu(A)
\end{align*} \]

Food for thought: Can you construct a function and a family of rectangles \(\mathcal{A} \) illustrating that \(\mu(A) \) is the

Theorem (Serious Business) Suppose that \(B \) is \(\mathcal{E} \): \(f \) is not continuous at \(x \). Then

\[f: A \to \mathbb{R} \]

\[\text{closed rectangle} \]

Then \(f \) is integrable iff \(B \) is a set of measure 0.

Proof: The key idea is to "approximate" \(B \) using sets

\[B_\varepsilon = \{ x \in A : \delta(x) > \varepsilon \} \]. Note that \(B_\varepsilon \subseteq B \implies B \) has measure 0.

Since \(B_\varepsilon \) is compact (proved in Chapter 1) \(B_\varepsilon \) also has content 0.

It follows that \(\exists \) finite collection \(U_1, U_2, \ldots, U_n \) of closed rectangles

whose interiors cover \(B_\varepsilon \) \(\varepsilon \sum_{i=1}^{n} \mu(U_i) \leq \varepsilon. \)
Construct a partition of A as every $S \in \mathcal{P}$ is in one of two categories:

i) $\mathcal{S}_1 = \{ S : S \subseteq C_i \text{ for some } i \}$

ii) $\mathcal{S}_2 = \{ S : S \cap B_\varepsilon = \emptyset \}$

Let $|f(x)| < M$ for $x \in A$. Then $M_S(g) - m_S(g) < 2M$ for every S.

$$\sum_{S \in \mathcal{S}_1} \left(M_S(g) - m_S(g) \right) v(S) < 2M \sum_{i=1}^{n} v(U_i) < 2Me$$

If $S \in \mathcal{S}_2$, then $d(S, x) < \varepsilon$ by above.

$$\sum_{S' \in S} (M_{S'}(g) - m_{S'}(g)) v(S') < \varepsilon v(S) + \varepsilon \sum_{S \in \mathcal{S}_2} v(S')$$

It follows that

$$U(S, P') - L(S, P') = \sum_{S \in \mathcal{S}_1} \left(M_S(g) - m_S(g) \right) v(S')$$

$$+ \sum_{S' \in \mathcal{S}_2} \left(M_{S'}(g) - m_{S'}(g) \right) v(S')$$

$$< 2Me + \varepsilon v(A) \rightarrow \text{integrability}$$
Conversely, suppose that \(f \) is integrable. Since
\[B = B_1 \cup B_2 \cup \ldots \]
it suffices to prove that each \(B_n \) has measure 0. This is because the union of
sets of measure 0 (countable union) has measure 0. The argument is straightforward.

Let \(\varepsilon > 0 \) be given. Let \(P \) = partition of \(A \),
\[u(g, P) - l(g, P) < \frac{\varepsilon}{n}. \]
Let \(S \in \mathcal{S} \) rectangle \(P \)
(properly intersect \(B_n \))

If \(s \in S \), \(m_S(g) - m_S(g) \geq \frac{1}{n} \)
by definition of \(B_n \)

\[\frac{1}{n} \sum_{s \in S} v(s) \leq \sum_{s \in S} \left[m_S(g) - m_S(g) \right] v(s) \leq \sum_{s \in S} \left[m_S(g) - m_S(g) \right] v(s) \leq \frac{\varepsilon}{n} \]

\[\sum_{s \in S} v(s) \leq \varepsilon \]

\[S \]

\[B_n \text{ has measure 0}. \]