Baire Category Theorem and friends (proved in 1899 in René-Louis Baire's thesis)

(X, d) metric space w/ distance d, topology induced by d in the usual way.

Define $B_r(x) = \{ y \in X : d(x, y) < r \}$

E^0, $E \subseteq X$, the union of all open sets contained in E.

δE, $E \subseteq X$, the union of all open sets containing E.

\overline{E}, $E \subseteq X$, the intersection of all closed sets containing E.

If $E \subseteq X$, we say that E is dense in X if $\overline{E} = X$.

We say that E is nowhere dense if $(\overline{E})^0 = \emptyset$.

Examples: A single point and Cantor set are both nowhere dense in \mathbb{R}.

The rationals are dense since $\overline{\mathbb{Q}} = \mathbb{R}$.
Categories: or meager

A set $E \subseteq X$ is of the first category if E is a countable union of nowhere dense sets in X.

A set $E \subseteq X$ that is not of the first category is referred to as being of second category in X.

A set $E \subseteq X$ is called generic if its complement is of the first category.

Theorem: Every complete metric space X is of the second category in itself.

Corollary: In a complete metric space, a generic set is dense.

Proof: Assume that $X = \bigcup_{n=1}^{\infty} F_n$, and each F_n is closed by replacing each F_n by its closure.

To obtain a contradiction, it suffices to find $x \in X \cap \bigcup_{n=1}^{\infty} F_n$. Since F_1 is closed and nowhere dense, F_1 is an open ball B_{r_1} of radius r_1.

Since F_2 is closed and nowhere dense, B_{r_1} cannot be completely inside F_2 since F_2 has an empty interior.
The process continues naturally, and we obtain a sequence of balls \(E_n \) with the following properties:

i) The radius of \(E_n \) tends to 0 as \(n \to \infty \).

The point here is that we can find a nested sequence \(E_1 \supset E_2 \supset \cdots \) of balls with radii \(r_n \) such that \(r_n < \frac{1}{2} r_{n+1} \) and \(E_1 \cap E_2 \neq \emptyset \).

ii) \(E_{n+1} \subset E_n \).

iii) \(F_0 \cap E_n \) is empty.

Choose any point \(x \in E_n \). Then \(x \notin \bigcup_{i=n}^{\infty} F_i \) and \(\bigcup_{i=n}^{\infty} F_i \) converges to a limit \(x \) since \(X \) is complete.

Since \(x \notin E_n \), \(x \notin F_n \) for all \(n \) and we have a contradiction.

The corollary is not entirely straightforward. Assume that \(E \) is generic but not dense. Then \(E \subset \bigcup_{i=n}^{\infty} B_i \) is a closed ball entirely contained in \(E \).

By genericity, \(E = \bigcup_{n=1}^{\infty} F_n \), \(F_n \) nowhere dense.

Since \(\bigcup_{n=1}^{\infty} \overline{F_n \cap B} \) is nowhere dense, each \(F_n \cap B \) is nowhere dense.
Theorem: Suppose that \(\{f_n\} \) is a sequence of continuous complex-valued functions on a complete metric space \(X \), and
\[
\lim_{n \to \infty} f_n(x) = f(x)
\]
each exists for every \(x \).

Then the set of points where \(f \) is continuous is a generic set.