Bonnoulli trials:

Players A and B flip a fair coin N times. Each time H (heads) appears, A wins a dollar. Each time T (tails) appears, B wins a dollar.

There are 2^N possible sequences of outcomes. What are the chances of A winning k dollars, for some k?

We can answer this question by direct counting. Instead, we shall create a formalism that will allow us to do much more.

The 2^N outcomes can be viewed as points in \mathbb{Z}_2^N, the underlying probability space.

Indeed,

$$\mathbb{Z}_2^N = \{ x = (x_1, x_2, \ldots, x_N), x_j = 0 \text{ or } 1, 1 \leq j \leq N \}$$

$m = "probability" \ measure \ that \ assigns \ 2^{-N}\ to \ each \ point \ of \ \mathbb{Z}_2^N. \ Thus \ m(\mathbb{Z}_2^N) = 1.$

Let $E_n = \{ x \in \mathbb{Z}_2^N : x_n = 0 \}$. Then $m(E_0) = \frac{1}{2}, \quad 1 \leq n \leq N.$
Consider \(m(E_n \cap E_m) \): \(n \neq m \)

\[
E_n \cap E_m = \left\{ x \in \mathbb{Z}_2^N : x_n = x_m = 0 \right\} = \frac{1}{4} m(E_n) m(E_m)
\]

"independence"

We now introduce functions on our probability space. Probabilists call them "random variables."

Let \(\rho_n = \) amount player A wins (or loses) at the \(n \)th flip, i.e.

\[
\rho_n(x) = \begin{cases}
1, & x_n = 0 \\
-1, & x_n = 1
\end{cases}
\]

\[
S_N(x) = S(x) = \sum_{n=1}^{N} \rho_n(x)
\]

Total winnings of player A after \(N \) flips.

Let's now try to understand the probability that \(S(x) = k \), i.e. \(N_1 \) wins, \(N_2 \) losses and

\[
k = N_1 - N_2, \quad N = N_1 + N_2
\]

Note that \(k \) & \(N \) have the same parity.
Let N be even (you will get an exercise on the odd case).

The number of x's for which $S(x) = k$ is

\[
\binom{N}{N_i} = \frac{N!}{N_i!(N-N_i)!} = \frac{N!}{\binom{N+k}{2} \cdot \binom{N-k}{2}}
\]

It follows that

\[
m\left(\exists x: S(x) = k^2\right) = 2^{-N} \frac{N!}{\binom{N+k}{2} \cdot \binom{N-k}{2}}
\]

It is not difficult to see that maximum is achieved at $k = 0$, i.e.

\[
2^{-N} \frac{N!}{(\binom{N}{2})^2} \sim \frac{2}{\sqrt{2\pi}} N^{-\frac{1}{2}} \text{ by Stirling}
\]

\[
\implies 2^{-N}
\]

(This can be derived from

\[
\log n! = n \log n - n + O(\log n)
\]

We are ready to take the liberating limit as $N \to \infty$.)
\[N = \infty \] We must dispense w/ some formalities first.

\[X = \{ x = (x_1, x_2, \ldots, x_N, \ldots), \text{ each } x_n = 0 \text{ or } 1 \text{ for all } n \geq 1 \} \]

Definition: A set \(E \) is a cylinder set in \(X \) whenever there is a finite \(N \) \& \(E \subset \mathbb{Z}_2^N \), \(x \in E \) iff \((x_1, x_2, \ldots, x_N) \in E\).

The collection of all cylinder sets together w/ their finite unions and intersections forms an algebra, on \(X \) and complements.

Consequently, \(m(E) = m_N(E') \) extends to a measure on the \(\sigma \)-algebra of sets generated by the cylinder sets.

Notation:

\[X = \text{ probability space} \quad m = \text{ probability measure} \]

Now let's go back to the functions \(r_n(x) \):

\[r_n(x) = 1 - 2x_n \quad (-1 \text{ or } 1) \]

\[x_n = 0 \text{ or } 1 \]
These functions set up a correspondence between X and $[0, 1]$:

$$D : (x_1, \ldots, x_n, \ldots) \rightarrow \sum_{j=1}^{\infty} \frac{x_j}{2^j} = \xi \in [0, 1]$$

"digits"

nearly a bijection (why nearly?)

Claim: E is the cylinder set:

$$E = \left\{ x : x_j = a_j, 1 \leq j \leq N \right\}$$

0 or 1

Then $m(E) = 2^{-N}$, and

D maps E to $\left[\frac{\ell}{2N}, \frac{\ell+1}{2N} \right]$,

$$\ell = \sum_{j=1}^{N} 2^{N-j} a_j$$

note that this interval has measure 2^{-N}

This allows us to extend $r_0(x)$ to $r_0(f)$ undefined on a finite set.
Definition: $\exists f_0^3$ are mutually independent measurable functions on X.

$$\bigcap_{n=1}^{\infty} m(\{x: f_0(x) \in B_n\}) = \prod_{n=1}^{\infty} m(\{x: f_0(x) \in B_n\})$$

for any sequence of Borel sets.

We say that a collection of sets $\{E_n\}$ is mutually independent if their indicator functions are independent.

Cautionary note: Pair-wise independence does not imply independence of the whole collection. Please reproduce or look up a beautiful example due to Sergei Bernstein.
If \(I_n \)'s are bounded, mutual independence implies that

\[
\int_X f_1(x) \ldots f_n(x) \, dm = \frac{1}{n} \sum_{j=1}^n \int_X f_j(x) \, dm
\]

proved by taking \(f_j(x) = \chi_{E_j}(x) \) and then taking limits.

Example: \((X, \mathcal{E}, m) \) is a product of \((X_0, \mathcal{E}_0, m_0) \)'s, \(n=1,2,\ldots \), and \(m = \prod m_0 \)'s.

Suppose that \(f_n(x) = F_n(x_n) \), where each \(F_0 \) is given on \(X_0 \); \(X = (X_1, \ldots, X_n, \ldots) \).

Then \(\{E_n\} \)'s are mutually independent.

Indeed, let \(E_n = \{x : f_n(x) \in B_n\} \) and

\[
E'_n = \{x : F_n(x) \in B_n', E_n \subset X_n\}
\]

Then \(E_n = \{x : x_n \in E_n' \} \) is a cylinder set

with \(m(E_n) = m_0(E_n') \)

\[
\Rightarrow m\left(\bigcap_{n=1}^\infty E_n \right) = \prod_{n=1}^\infty m_0(E_n') = \prod_{n=1}^\infty m(E_n)
\]
Now take a limit as $N \to \infty$.

In particular, this shows that Rademacher functions are independent.

Our next goal is to understand the behavior of
\[
S_N(x) = \sum_{n=1}^{N} r_n(x)
\]
as $N \to \infty$.

This will soon lead us to the Central Limit Theorem for coin flips, due to De Moivre.